Thwaites, M; Hall, D; Shinabarger, D; Serio, A W; Krause, K M; Marra, A; Pillar, C
2018-06-04
The next-generation aminoglycoside plazomicin, in development for infections due to multi-drug resistant (MDR) Enterobacteriaceae, was evaluated alongside comparators for bactericidal activity in minimum bactericidal concentration (MBC) and time-kill (TK) assays against MDR Enterobacteriaceae isolates with characterized aminoglycoside and β-lactam resistance mechanisms. Overall, plazomicin and colistin were the most potent, with plazomicin demonstrating an MBC 50/90 of 0.5/4 μg/mL and sustained 3-log 10 kill against MDR Escherichia coli , Klebsiella pneumoniae and Enterobacter spp. Copyright © 2018 Thwaites et al.
Propionibacterium acnes Has Low Susceptibility to Chlorhexidine Digluconate.
Nakase, Keisuke; Fukushima, Hanae; Yukawa, Tomoko; Nakaminami, Hidemasa; Fujii, Takeshi; Noguchi, Norihisa
2018-04-01
The skin bacterium Propionibacterium acnes has been reported to be responsible for surgical site infections (SSIs). Skin disinfection before surgery therefore is of the utmost importance in the prevention of SSIs caused by skin bacteria. We assessed the susceptibility of clinical isolates of two skin bacteria, P. acnes and Staphylococcus epidermidis, to disinfectants. The range of chlorhexidine digluconate (CHG) minimum inhibitory concentrations (MICs) for P. acnes isolates was 0.25-1 mcg/mL. Furthermore, the minimum bactericidal concentrations (MBCs) for a range of disinfectants were determined to evaluate their rapid bactericidal activity. The MBC range of CHG against the P. acnes isolates was 4,096->32,768 mcg/mL (MBC 80 16,384 mcg/mL) after one minute of exposure and 1,024-32,768 mcg/mL (MBC 80 8,192 mcg/mL) after five minutes, indicating that some strains required a CHG MBC higher than the commercial concentration of 2% (20,000 mcg/mL). In contrast, the MBCs of glutaraldehyde, sodium hypochlorite, povidone-iodine, ethanol, benzalkonium chloride, and olanexidine gluconate were all sufficiently lower than their commercial concentrations. In S. epidermidis, the MBC range of CHG was 128-1,024 mcg/mL at one minute of exposure and 4-8 mcg/mL at five minutes. Different skin bacteria have different susceptibilities to disinfectants. To prevent SSIs, the selected disinfectant agent and the disinfection time should have bactericidal activity toward all the bacteria that pose a risk of infection.
Effectiveness of disinfectants used in cooling towers against Legionella pneumophila.
García, M T; Pelaz, C
2008-01-01
Legionella persists in man-made aquatic installations despite preventive treatments. More information about disinfectants could improve the effectiveness of treatments. This study tests the susceptibility of Legionella pneumophila serogroup (sg) 1 against 8 disinfectants used in cooling tower treatments. We determined the minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and bactericidal effect of sodium hypochlorite (A), hydrogen peroxide with silver nitrate (B), didecyldimethylammonium chloride (C), benzalkonium chloride (D), tributyltetradecylphosphonium chloride (E), tetrahydroxymethylphosphonium sulfide (F), 2,2-dibromonitropropionamide (G) and chloromethylisothiazolone (H) against 28 L. pneumophila sg 1 isolates. MIC and MBC values were equivalent. Bacteria are less susceptible to disinfectants F, B, D and A than to H, E, C and G. All disinfectants induced a bactericidal effect. The effect rate is dose dependent for G, H, F and B; the effect is fast for the rest of disinfectants at any concentration. The bactericidal activity of disinfectants A, G and F depends on the susceptibility test used. All disinfectants have bactericidal activity against L. pneumophila sg 1 at concentrations used in cooling tower treatments. Results depend on the assay for some products.
Effects of oakmoss and its components on biofilm formation of Legionella pneumophila.
Nomura, Harue; Isshiki, Yasunori; Sakuda, Keisuke; Sakuma, Katsuya; Kondo, Seiichi
2013-01-01
Oakmoss and its components are known as antibacterial agents, specifically against Legionella pneumophila. In the present study, we investigated the effects of oakmoss and its components (phenol, didepside and isochromen derivatives) on L. pneumophila biofilm formation, with particular reference to the bactericidal activity (minimum bactericidal concentration; MBC) of these components against the bacterial cells in the biofilm. Of the 20 compounds tested, two didepside derivatives and four phenol derivatives reduced biofilm formation by more than 50% of that observed for the control at their respective minimum inhibitory concentrations (1/2×MIC). The inhibitory activities of these compounds were either equivalent to or greater than that of the clarithromycin reference. Isochromen derivatives had no effect on biofilm formation. Analysis of bactericidal activity of didepside and isochromen derivatives revealed that three of four didepside derivatives and one of four isochromen derivatives exhibited high bactericidal activity (MBC: 32.0-74.7 µg/mL) against the L. pneumophila in the biofilm after 24 h or 48 h of co-incubation; the antibacterial activities of these compounds were almost equivalent to clarithromycin and chlorhexidine gluconate (MBC: 42.7-64.0 µg/mL) that were used as references. Thus, based on their anti-biofilm forming and bactericidal activities, didepside derivatives are considered to be good candidates for disinfectants against L. pneumophila.
Anti-Salmonella activity of medicinal plants from Cameroon.
Nkuo-Akenji, T; Ndip, R; McThomas, A; Fru, E C
2001-06-01
To evaluate the effects of herbal extracts derived from plants commonly prescribed by traditional practitioners for the treatment of typhoid fever. A cross sectional study. Departments of Life Sciences and Chemistry, University of Buea, Cameroon. Methanol extracts of plant parts commonly used in Cameroon for the treatment of typhoid fever. Antimicrobial activity was tested using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assays. Methanol extracts of plant parts commonly used in Cameroon for the treatment of typhoid fever were tested for antibacterial activity against Salmonella typhi, S. paratyphi and S. typhimurium. The formulations used were: 1) Formulation A comprising Cymbogogon citratus leaves, Carica papaya leaves, and Zea mays silk. 2) Formulation B comprising C. papaya roots, Mangifera indica leaves, Citrus limon fruit and C. citratus leaves. 3) C. papaya leaves. 4) Emilia coccinea whole plant. 5) Comelina bengalensis leaves. 6) Telfaria occidentalis leaves. 7) Gossypium arboreum whole plant. Antimicrobial activity was tested using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assays. Generally, Formulation A elicited inhibitory activity at a lower range of 0.02 to 0.06 mg/ml. Similarly, Formulation B elicited bacterial activity at the lowest range of 0.06 to 0.25 mg/ml. C. bengalensis leaves on the other hand, showed the lowest activity with a concentration range of 0.132 to 2.0 mg/ml and 1 to 4 mg/ml in MIC and MBC assays respectively. S. paratyphi was most sensitive to the formulations (concentration range of 0.02 to 1 mg/ml in both MIC and MBC assays) while S. typhimurium was the least sensitive and concentrations of up to 4 mg/ml were required to be bactericidal. It is concluded that plant extracts with low MIC and MBC values (1 mg/ml and lower) may contain compounds with therapeutic activity.
Vancomycin tolerance in enterococci.
Saribas, Suat; Bagdatli, Yasar
2004-11-01
Tolerance can be defined as the ability of bacteria to grow in the presence of high concentrations of bactericide antimicrobics, so that the killing action of the drug is avoided but the minimal inhibitory concentration (MIC) remains the same. We investigated vancomycin tolerance in the Enterococcus faecium and Enterococcus faecalis strains isolated from different clinical specimens. Vancomycin was obtained from Sigma Chemical Co. We studied 100 enterococci strains. Fifty-six and 44 of Enterococcus strains were idendified as E. feacalis and E. faecium, respectively. To determine MICs and minimal bactericidal concentration (MBC), we inoculated strains from an overnight agar culture to Muller-Hinton broth and incubated them for 4-6 h at 37 degrees C with shaking to obtain a logarithmic phase culture. The inoculum was controlled by performing a colony count for each test. We determined MBC values and MBC/MIC ratios to study tolerance to vancomycin. Vancomycin tolerance was defined as a high MBC value and an MBC/MIC ratio > or =32. Fifty-six and 44 of the Enterococcus strains were identified as E. faecium and E. faecalis, respectively. Thirty-one E. faecium and 48 E. faecalis were found to be susceptible to vancomycin and these susceptible strains were included in this study. The MICs of susceptible strains ranged from < or =1 to 4 mg/l, the MBCs were > or =512 mg/l. Tolerance was detected in all E. faecalis and E. faecium strains. The standard E. faecalis 21913 strain also exhibited tolerance according to the high MBC value and the MBC/MIC ratio. We defined the tolerant strains as having no bactericidal effect and MBC/MIC > or =32. We found that a 100% tolerance was present in susceptible strains. One of the hypotheses for tolerance is that tolerant cells fail to mobilize or create the autolysins needed for enlargement and division. Our data suggests that tolerance may compromise glycopeptide therapy of serious enterococci infections. To add an aminoglycoside to the glycopeptide therapy unless MBCs are unavailable can be useful in the effective treatment of serious Enterococcus infections.
Alves, M J; Ferreira, I C F R; Martins, A; Pintado, M
2012-08-01
This work aimed to screen the antimicrobial activity of aqueous methanolic extracts of 13 mushroom species, collected in Bragança, against several clinical isolates obtained in Hospital Center of Trás-os-Montes and Alto Douro, Portugal. Microdilution method was used to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). MIC results showed that Russula delica and Fistulina hepatica extracts inhibited the growth of gram-negative (Escherichia coli, Morganella morganni and Pasteurella multocida) and gram-positive (Staphylococcus aureus, MRSA, Enterococcus faecalis, Listeria monocytogenes, Streptococcus agalactiae and Streptococcus pyogenes) bacteria. A bactericide effect of both extracts was observed in Past. multocida, Strep. agalactiae and Strep. pyogenes with MBC of 20, 10 and 5 mg ml⁻¹, respectively. Lepista nuda extract exhibited a bactericide effect upon Past. multocida at 5 mg ml⁻¹ and inhibited Proteus mirabilis at 20 mg ml⁻¹. Ramaria botrytis extract showed activity against Enterococcus faecalis and L. monocytogenes, being bactericide for Past. multocida, Strep. agalactiae (MBCs 20 mg ml⁻¹) and Strep. pyogenes (MBC 10 mg ml⁻¹). Leucopaxillus giganteus extract inhibited the growth of E. coli and Pr. mirabilis, being bactericide for Past. multocida, Strep. pyogenes and Strep. agalactiae. Fistulina hepatica, R. botrytis and R. delica are the most promising species as antimicrobial agents. Mushroom extracts could be an alternative as antimicrobials against pathogenic micro-organisms resistant to conventional treatments. © 2012The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Wenisch, C
2000-01-01
Antibiotics reduce the mortality from infectious diseases but not the prevalence of these diseases. Use, and often abuse, of antimicrobial agents encourages the evolution of bacteria toward resistance, often resulting in therapeutic failure. There are two factors which influence potential utility of a drug in a specific clinical situation. The first is the measure of potency of the antibiotic for the pathogen in question (minimal inhibitory concentration [MIC], minimal bactericidal concentration [MBC]). The second is whichever relationship between the concentration-time profile and potency of the antibiotic linked most robustly to clinical outcome (time above MIC or MBC [T > MIC or T > MBC]; Peak/MIC or MBC; area under the curve [AUC]/MIC or AUC/MBC). Herein the effects of pharmacokinetics of antimicrobials on the evolution of antimicrobial resistance with particular reference to azithromycin are considered.
Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy
2015-01-01
The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50–250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity. PMID:26288570
Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy
2015-09-01
The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50-250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity.
Kot, Barbara; Wierzchowska, Kamila; Piechota, Małgorzata; Czerniewicz, Paweł; Chrzanowski, Grzegorz
2018-06-11
Analysis of Lamiaceae essential oils (EOs) by GC-FID-MS revealed the presence as the major constituents of linalool (16.8%), linalyl acetate (15.7%) in Lavandula angustifolia, menthol (29.0%), menthone (22.7%), menthyl acetate (19.2%) in Mentha x piperita, terpinen-4-ol (27.1%), (E)-sabinene hydrate (12.1%), γ-terpinene (10.0%) in Origanum majorana, α-thujone (19.5%), camphor (19.0%), viridiflorol (13.5%) in Salvia officinalis, thymol (61.9%), p-cymene (10.0%), γ-terpinene (10.0%) in Thymus vulgaris. Based on the MIC and MBC values (0.09-0.78 mg/mL) and ratio MBC/MIC showed that EO from T. vulgaris (TO) had the strong inhibitory and bactericidal effect against multidrug-resistant Staphylococcus aureus. The bacterial cells were total killed by TO at 2MIC concentration after 6 h. The higher concentrations of other EOs were needed to achieve bactericidal effects. The strong bactericidal effect of TO against these bacteria indicates the possibility of topical use of TO but it requires research under clinical conditions.
Intorasoot, Amornrat; Chornchoem, Piyaorn; Sookkhee, Siriwoot; Intorasoot, Sorasak
2017-01-01
The aim of the study is to investigate the antibacterial activity of 10 volatile oils extracted from medicinal plants, including galangal ( Alpinia galanga Linn.), ginger ( Zingiber officinale ), plai ( Zingiber cassumunar Roxb.), lime ( Citrus aurantifolia ), kaffir lime ( Citrus hystrix DC.), sweet basil ( Ocimum basilicum Linn.), tree basil ( Ocimum gratissimum ), lemongrass ( Cymbopogon citratus DC.), clove ( Syzygium aromaticum ), and cinnamon ( Cinnamomum verum ) against four standard strains of Staphylococcus aureus , Escherichia coli , Pseudomonas aeruginosa , Acinetobacter baumannii , and 30 clinical isolates of multidrug-resistant A. baumannii (MDR- A. baumannii ). Agar diffusion, minimum inhibitory concentration, and minimum bactericidal concentration (MBC) were employed for the determination of bactericidal activity of water distilled medicinal plants. Tea tree oil ( Melaleuca alternifolia ) was used as positive control in this study. The results indicated the volatile oil extracted from cinnamon exhibited potent antibacterial activity against the most common human pathogens, S. aureus , E. coli , P. aeruginosa , and A. baumannii . Most of volatile oil extracts were less effective against non-fermentative bacteria, P. aeruginosa . In addition, volatile oil extracted from cinnamon, clove, and tree basil possessed potent bactericidal activity against MDR- A. baumannii with MBC 90 of 0.5, 1, and 2 mg/mL, respectively. The volatile oil extracts would be useful as alternative natural product for the treatment of the most common human pathogens and MDR- A. baumannii infections.
Naturally occurring anti-Salmonella agents.
Kubo, I; Fujita, K
2001-12-01
Polygodial and (2E)-hexenal were found to possess antibacterial activity against Salmonella choleraesuis with the minimum bactericidal concentrations (MBC) of 50 microg/mL (0.17 mM) and 100 microg/mL (0.98 mM), respectively. The time kill curve study showed that these two alpha,beta-unsaturated aldehydes were bactericidal against this food-borne bacterium at any stage of growth. However, they showed different effects on the growth of S. choleraesuis. The combination of polygodial and anethole exhibited strong synergism on their bacteriostatic action but only marginal synergism on their bactericidal action.
Lima, D B; Torres, A F C; Mello, C P; de Menezes, R R P P B; Sampaio, T L; Canuto, J A; da Silva, J J A; Freire, V N; Quinet, Y P; Havt, A; Monteiro, H S A; Nogueira, N A P; Martins, A M C
2014-08-01
Dinoponera quadriceps venom (DqV) was examined to evaluate the antibacterial activity and its bactericidal action mechanism against Staphylococcus aureus. DqV was tested against a standard strain of methicillin-sensitive Staphylococcus aureus (MSSA), Staph. aureus ATCC 6538P and two standard strains of methicillin-resistant Staphylococcus aureus (MRSA), Staph. aureus ATCC 33591 and Staph. aureus CCBH 5330. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the rate of kill and pH sensitivity of the DqV were determined by microdilution tests. Bactericidal and inhibitory concentrations of DqV were tested to check its action on Staph. aureus membrane permeability and cell morphology. The MIC and MBC of DqV were 6·25 and 12·5 μg ml(-1) for Staph. aureus ATCC 6538P, 12·5 and 50 μg ml(-1) for Staph. aureus CCBH 5330 and 100 and 100 μg ml(-1) for Staph. aureus ATCC 33591, respectively. Complete bacterial growth inhibition was observed after 4 h of incubation with the MBC of DqV. A lowest MIC was observed in alkaline pH. Alteration in membrane permeability was observed through the increase in crystal violet uptake, genetic material release and morphology in atomic force microscopy. The results suggest antibacterial activity of DqV against Staph. aureus and that the venom acts in the cell membrane. Alteration in membrane permeability may be associated with the antimicrobial activity of hymenopteran venoms. © 2014 The Society for Applied Microbiology.
Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio
2015-10-01
The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils.
Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio
2015-01-01
The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils. PMID:26424908
Brudzynski, Katrina; Abubaker, Kamal; Wang, Tony
2012-01-01
Exposure of bacterial cells to honey inhibits their growth and may cause cell death. Our previous studies showed a cause-effect relationship between hydroxyl radical generated from honey hydrogen peroxide and growth arrest. Here we explored the role of hydroxyl radicals as inducers of bacterial cells death. The bactericidal effect of ·OH on antibiotic-resistant clinical isolates of MRSA and VRE and standard bacterial strains of E. coli and B. subtiles was examined using a broth microdilution assay supplemented with 3'-(p-aminophenyl) fluorescein (APF) as the ·OH trap, followed by colony enumeration. Bactericidal activities of eight honeys (six varieties of buckwheat, blueberry and manuka honeys) were analyzed. The MBC/MIC ratio ≤4 and the killing curves indicated that honeys exhibited powerful, concentration-dependent bactericidal effect. The extent of killing depended on the ratio of honey concentration to bacterial load, indicating that honey dose was critical for its bactericidal efficacy. The killing rate and potency varied between honeys and ranged from over a 6-log(10) to 4-log(10) CFU/ml reduction of viable cells, equivalent to complete bacterial eradication. The maximal killing was associated with the extensive degradation of bacterial DNA. Honey concentration at which DNA degradation occurred correlated with cell death observed in the concentration-dependent cell-kill on agar plates. There was no quantitative relationship between the ·OH generation by honey and bactericidal effect. At the MBC, where there was no surviving cells and no DNA was visible on agarose gels, the ·OH levels were on average 2-3x lower than at Minimum Inhibitory Concentration (MICs) (p < 0.0001). Pre-treatment of honey with catalase, abolished the bactericidal effect. This raised possibilities that either the abrupt killing prevented accumulation of ·OH (dead cells did not generate ·OH) or that DNA degradation and killing is the actual footprint of ·OH action. In conclusion, honeys of buckwheat origin exhibited powerful, concentration-dependent bactericidal effect. The killing and DNA degradation showed a cause-effect relationship. Hydrogen peroxide was an active part of honey killing mechanism.
Ghibaudo, Giovanni; Santospirito, Davide; Sala, Andrea; Flisi, Sara; Taddei, Simone; Cavirani, Sandro; Cabassi, Clotilde Silvia
2016-10-01
Pseudomonas aeruginosa (PA) may cause suppurative otitis externa with severe inflammation and ulceration in dogs. Multidrug resistance is commonly reported for this organism, creating a difficult therapeutic challenge. The aim of this study was to evaluate the in vitro antimicrobial activity of a gel containing 0.5 μg/mL of antimicrobial peptide AMP2041, 0.07% chlorhexidine digluconate (CLX), 0.4% Tris and 0.1% EDTA on 30 clinical isolates of PA from canine otitis externa. Antimicrobial activity was evaluated through minimal bactericidal concentration (MBC). Standardized bacterial suspensions were incubated with different concentrations of the gel at 37°C for 30 min and plated for colony forming unit (CFU) counts. Time-to-kill kinetics were evaluated with the undiluted product and at MBC for each PA strain at 30 s, 1, 5, 10, 15, 30 min, 24 and 48 h. The MBC was 1:64 for two of 30 strains, 1:128 for 15 of 30 strains and 1:256 for 13 of 30 strains. The geometric mean was 1:165, equivalent to a concentration of 0.003 μg/mL AMP2041 + 0.0004% CLX + 0.0024%Tris + 0.0006% EDTA. Time-to-kill assays with the undiluted product showed complete bactericidal effect within 30 s for all isolates, whereas at the MBC this effect was reached within 5 min for 20 of 30 isolates and within 30 min for all isolates. Bactericidal activity was maintained after 48 h for all isolates. This gel has shown rapid, complete and long-lasting activity against a panel of 30 PA isolates from cases of canine otitis externa. © 2016 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the ESVD and ACVD.
Van der Auwera, P
1989-01-01
Twelve volunteers, in two groups of six, received daptomycin at a dose of 1 or 2 mg/kg. In addition, they received in a randomly allocated order amikacin (500 mg), daptomycin-amikacin, and vancomycin (500 mg). Thirty-five clinical isolates, including Staphylococcus aureus, S. epidermidis, Corynebacterium sp. group JK, and Enterococcus faecalis, were tested in vitro for the measure of the serum bactericidal titers and killing rates. The mean peak concentrations of daptomycin in serum 1 h after the administration of 1 and 2 mg/kg were 11 and 20 micrograms/ml, respectively. At 24 h after the administration of 2 mg/kg, the mean level in serum was 1.9 micrograms/ml, which is higher than the MICs for susceptible pathogens. Daptomycin and amikacin provided identical concentrations in serum whether given alone or in combination. Among the six regimens tested, those including daptomycin provided the highest and the most prolonged serum bactericidal titers against S. aureus, S. epidermidis, and E. faecalis. The killing rates measured by the killing curves were correlated with the concentration/MIC and concentration/MBC ratios of daptomycin for all strains tested. Significant killing occurred once the concentration of daptomycin in the serum 4- to 6-fold the MIC or 1- to 1.2-fold the MBC. The combination of daptomycin and amikacin had no effect on either the serum bactericidal titers or the rates of killing. Only vancomycin provided significant killing of the strains of Corynebacterium sp. group JK. PMID:2556079
Kim, Doo; Kordick, Dorsey; Divers, Thomas
2006-01-01
Antimicrobial susceptibility testing was conducted with 6 different spirochetal strains (4 strains of Leptospira spp. and 2 strains of Borrelia burgdorferi) against 3 antimicrobial agents, commonly used in equine and bovine practice. The ranges of MIC and MBC of amoxicillin against Leptospira spp. were 0.05-6.25 µg/ml and 6.25-25.0 µg/ml, respectively. And the ranges of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of amoxicillin against B. burgdorferi were 0.05-0.39 µg/ml and 0.20-0.78 µg/ml, respectively. The ranges of MIC and MBC of enrofloxacin against Leptospira spp. were 0.05-0.39 µg/ml and 0.05-0.39 µg/ml, respectively. Two strains of B. burgdorferi were resistant to enrofloxacin at the highest concentration tested for MBC (≥100 µg/ml). Therefore, the potential role of tilmicosin in the treatment of leptospirosis and borreliosis should be further evaluated in animal models to understand whether the in vivo studies will confirm in vitro results. All spirochetal isolates were inhibited (MIC) and were killed (MBC) by tilmicosin at concentrations below the limit of testing (≤0.01 µg/ml). PMID:17106227
Kim, Doo; Kordick, Dorsey; Divers, Thomas; Chang, Yung Fu
2006-12-01
Antimicrobial susceptibility testing was conducted with 6 different spirochetal strains (4 strains of Leptospira spp. and 2 strains of Borrelia burgdorferi) against 3 antimicrobial agents, commonly used in equine and bovine practice. The ranges of MIC and MBC of amoxicillin against Leptospira spp. were 0.05 - 6.25 microgram/ml and 6.25 - 25.0 microgram/ml, respectively. And the ranges of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of amoxicillin against B. burgdorferi were 0.05 - 0.39 microgram/ml and 0.20 - 0.78 microgram/ml, respectively. The ranges of MIC and MBC of enrofloxacin against Leptospira spp. were 0.05 - 0.39 microgram/ml and 0.05 - 0.39 microgram/ml, respectively. Two strains of B. burgdorferi were resistant to enrofloxacin at the highest concentration tested for MBC (>or=100 microgram/ml). Therefore, the potential role of tilmicosin in the treatment of leptospirosis and borreliosis should be further evaluated in animal models to understand whether the in vivo studies will confirm in vitro results. All spirochetal isolates were inhibited (MIC) and were killed (MBC) by tilmicosin at concentrations below the limit of testing (
NASA Astrophysics Data System (ADS)
Aminah; Nugraheni, E. R.; Yugatama, A.
2018-03-01
The aim of this study was to evaluate the antibacterial activity from Attacus atlas cocoon extract against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) with 3 diffferent solvents polar, semi-polar and non polar which was ethanol, ethyl acetate and chloroform, also to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extract. Cocoon was extracted with maceration method using 3 solvents with ratio of sample and solvent 1:10. Antibacterial activity of the Extracts obtained was evaluated with Agar disk diffusion method. The best result was then continued to determine the MIC and MBC of the extract using broth macro-dilution method. The results show that each of the extracts have antibacterial activity with broad spectrum against two different type of bacteria at concentration of 1 g/mL with different clear zone between these extracts. Clear zone from the biggest to the smallest against Escherichia coli was ethyl acetate (10.5 mm), chloroform (9 mm) and ethanol (8 mm). While against Staphylococcus aureus, was obtained by chloroform (12.5 mm), ethyl acetate (10.5 mm) and ethanol (7 mm). The MIC value of extracts can not be determine. The smallest MBC value against both bacteria was obtained by ethyl acetate with concentration of 3.125% b/v as a bactericidal.
Intorasoot, Amornrat; Chornchoem, Piyaorn; Sookkhee, Siriwoot; Intorasoot, Sorasak
2017-01-01
Aim: The aim of the study is to investigate the antibacterial activity of 10 volatile oils extracted from medicinal plants, including galangal (Alpinia galanga Linn.), ginger (Zingiber officinale), plai (Zingiber cassumunar Roxb.), lime (Citrus aurantifolia), kaffir lime (Citrus hystrix DC.), sweet basil (Ocimum basilicum Linn.), tree basil (Ocimum gratissimum), lemongrass (Cymbopogon citratus DC.), clove (Syzygium aromaticum), and cinnamon (Cinnamomum verum) against four standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and 30 clinical isolates of multidrug-resistant A. baumannii (MDR-A. baumannii). Materials and Methods: Agar diffusion, minimum inhibitory concentration, and minimum bactericidal concentration (MBC) were employed for the determination of bactericidal activity of water distilled medicinal plants. Tea tree oil (Melaleuca alternifolia) was used as positive control in this study. Results: The results indicated the volatile oil extracted from cinnamon exhibited potent antibacterial activity against the most common human pathogens, S. aureus, E. coli, P. aeruginosa, and A. baumannii. Most of volatile oil extracts were less effective against non-fermentative bacteria, P. aeruginosa. In addition, volatile oil extracted from cinnamon, clove, and tree basil possessed potent bactericidal activity against MDR-A. baumannii with MBC90 of 0.5, 1, and 2 mg/mL, respectively. Conclusions: The volatile oil extracts would be useful as alternative natural product for the treatment of the most common human pathogens and MDR-A. baumannii infections. PMID:28512603
Petrolini, Fernanda Villas Boas; Lucarini, Rodrigo; de Souza, Maria Gorete Mendes; Pires, Regina Helena; Cunha, Wilson Roberto; Martins, Carlos Henrique Gomes
2013-01-01
In this study we evaluated the antibacterial activity of the crude hydroalcoholic extracts, fractions, and compounds of two plant species, namely Rosmarinus officinalis and Petroselinum crispum, against the bacteria that cause urinary tract infection. The microdilution method was used for determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The crude hydroalcoholic extract of R. officinalis displayed in vitro activity against Gram-positive bacteria, with satisfactory MBC for the clinical isolate S. saprophyticus. The fractions and the pure compound rosmarinic acid did not furnish promising results for Gram-negative bacteria, whereas fractions 2, 3, and 4 gave encouraging results for Gram-positive bacteria and acted as bactericide against S. epidermidis as well as E. faecalis (ATCC 29212) and its clinical isolate. R. officinalis led to promising results in the case of Gram-positive bacteria, resulting in a considerable interest in the development of reliable alternatives for the treatment of urinary infections. PMID:24516424
Petrolini, Fernanda Villas Boas; Lucarini, Rodrigo; de Souza, Maria Gorete Mendes; Pires, Regina Helena; Cunha, Wilson Roberto; Martins, Carlos Henrique Gomes
2013-01-01
In this study we evaluated the antibacterial activity of the crude hydroalcoholic extracts, fractions, and compounds of two plant species, namely Rosmarinus officinalis and Petroselinum crispum, against the bacteria that cause urinary tract infection. The microdilution method was used for determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The crude hydroalcoholic extract of R. officinalis displayed in vitro activity against Gram-positive bacteria, with satisfactory MBC for the clinical isolate S. saprophyticus. The fractions and the pure compound rosmarinic acid did not furnish promising results for Gram-negative bacteria, whereas fractions 2, 3, and 4 gave encouraging results for Gram-positive bacteria and acted as bactericide against S. epidermidis as well as E. faecalis (ATCC 29212) and its clinical isolate. R. officinalis led to promising results in the case of Gram-positive bacteria, resulting in a considerable interest in the development of reliable alternatives for the treatment of urinary infections.
Ruiz, Suelen P; Anjos, Márcia Maria Dos; Carrara, Vanessa S; Delima, Juliana N; Cortez, Diógenes Aparício G; Nakamura, Tânia U; Nakamura, Celso V; de Abreu Filho, Benício A
2013-11-01
Alicyclobacillus acidoterrestris is a gram-positive aerobic bacterium. This bacterium resists pasteurization temperatures and low pH and is usually involved in the spoilage of juices and acidic drinks. The objective of this study was to evaluate the antibacterial activities of nisin and the species Piper (Piperaceae) on A. acidoterrestris. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined by the broth microdilution method. The species Piper aduncum had the lowest MIC and an MBC of 15.6 μg/mL and was selected for fractionation. Six fractions were obtained, and the dichloromethane fraction (F.3) had the lowest MIC/MBC (7.81 μg/mL). The dichloromethane fraction was again fractionized, and a spectral analysis revealed that the compound was prenylated chromene (F.3.7). The checkerboard method demonstrated that the crude extract (CE) of P. aduncum plus nisin had a synergistic interaction (fractional inhibitory concentration [FIC] = 0.24). The bactericidal activity of (F.3.7) was confirmed by the time-kill curve. P. aduncum, nisin, and prenylated chromene exhibited strong antibacterial activity against the spores and vegetative cells of A. acidoterrestris. The results of this study suggest that extracts of the genus Piper may provide an alternative to the use of thermal processing for controlling A. spoilage. © 2013 Institute of Food Technologists®
Antibacterial, antifungal and cytotoxic evaluation of some new quinazolinone derivatives
Hassanzadeh, F.; Jafari, E.; Hakimelahi, G.H.; Khajouei, M. Rahmani; Jalali, M.; Khodarahmi, G.A.
2012-01-01
Quinazolinone ring system is renown because of its wide spectrum of pharmacological activities due to various substitutions on this ring system. In this study, the minimum inhibitory concentration of the synthesized compounds in our laboratory was determined by micro dilution Alamar Blue® Assay against six strains of bacteria (three Gram-positive and three Gram-negative) and three strains of fungi. Following a broth micro dilution minimum inhibitory concentration (MIC) test, Minimum Bactericidal Concentration (MBC) and Minimum Fungicidal Concentration (MFC) tests were performed. Cytotoxic effects of the compounds were measured using the MTT colorimetric assay on HeLa cell line. Results of antimicrobial screening showed that compounds had better bacteriostatic activity against Gram-negative bacteria. Results from MBC revealed that these compounds had more significant bacteriostatic than bactericidal activities. Nearly all screened compounds showed good activity against C. albicans and A. niger. Results from MFC indicated that these compounds had better fungistatic rather than fungicidal activities. The synthesized target molecules were found to exhibit different cytotoxicity in the range of 10 to 100 μM on HeLa cell line. Compounds 6 and 7 exhibited acceptable cytotoxicity approximately 50% at 10 μM concentration. PMID:23181085
Carregaro, Adriano Bonfim; Santurio, Deise Flores; de Sá, Mariangela Facco; Santurio, Janio Moraes; Alves, Sydney Hartz
2016-01-01
This study evaluated the in vitro antibacterial activity of essential oils from Lippia graveolens (Mexican oregano), Origanum vulgaris (oregano), Thymus vulgaris (thyme), Rosmarinus officinalis (rosemary), Cymbopogon nardus (citronella), Cymbopogon citratus (lemongrass), and Eucalyptus citriodora (eucalyptus) against Escherichia coli (n = 22) strains isolated from Alouatta spp. feces. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for each isolate using the broth microdilution technique. Essential oils of Mexican oregano (MIC mean = 1818 μg mL−1; MBC mean = 2618 μg mL−1), thyme (MIC mean = 2618 μg mL−1; MBC mean = 2909 μg mL−1), and oregano (MIC mean = 3418 μg mL−1; MBC mean = 4800 μg mL−1) showed the best antibacterial activity, while essential oils of eucalyptus, rosemary, citronella, and lemongrass displayed no antibacterial activity at concentrations greater than or equal to 6400 μg mL−1. Our results confirm the antimicrobial potential of some essential oils, which deserve further research. PMID:27313638
Composition and antimicrobial properties of essential oils of four Mediterranean Lamiaceae.
Panizzi, L; Flamini, G; Cioni, P L; Morelli, I
1993-08-01
Essential oils from Satureja montana L., Rosmarinus officinalis L., Thymus vulgaris L., and Calamintha nepeta (L.) Savi, were chemically analysed and their antimicrobial and fungicide activities evaluated on the basis of their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). All four oils have a biotoxic effect, the most active being those from Calamintha and Thymus.
Antibacterial activities of leave extracts as bactericides for soaking of skin or hide
NASA Astrophysics Data System (ADS)
Suparno, Ono; Panandita, Tania; Afifah, Amalia; Marimin; Purnawati, Rini
2018-03-01
Antibacteria, a subtance inhibiting the growth of bacteria, can be obtained from tropical-almond (Terminalia catappa), morinda (Morinda citrifolia), and white leadtree (Leucaena leucocephala) plants, since the plants have phytochemical content functioning as antibacterial agent. Commonly, part of plant that contains higher antibacterial substances is its leaf. The objectives of this study were to determine antibacterial activity of tropical-almond, morinda, and white leadtree leaves extracts, and to analyse the potency of the three extracts as natural bactericide for soaking of skin or hide. The responses measured in this study were phytochemical contents, total flavonoid, tannin content, the inhibition zone, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Phytochemical contents containing the three leaves extracts were alkaloid, flavonoid, tannin, saponin, phenolic, and glycoside. Total flavonoid and tannin contents of the three extracts were tropical-almond extract of 1.14 % and 1.51 %, respectively; morinda extract of 0.61 % and 0.36 %, respectively; and white leadtree extract of 0.60 % and 4.82 %, respectively. White leadtree leaf extract gave the highest inhibition zone against B. subtilis, S. aureus and E. coli, i.e. 1.50, 1.3, and 1.65 cm, respectively; and the lowest MIC and MBC against B. subtilis, S. aureus and E. coli, i.e. 1500, 3000, and 1500 μg/ml, respectively. Therefore, the white leadtree leave extract had more potential as bactericide for soaking of skin or hide compared to those of the tropical-almond and morinda leaves extracts.
Sarjit, Amreeta; Wang, Yi; Dykes, Gary A
2015-04-01
Gallic acid has been suggested as a potential antimicrobial for the control of Campylobacter but its effectiveness is poorly studied. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of gallic acid against Campylobacter jejuni (n = 8) and Campylobacter coli (n = 4) strains was determined. Gallic acid inhibited the growth of five C. jejuni strains and three C. coli strains (MIC: 15.63-250 μg mL(-1)). Gallic acid was only bactericidal to two C. coli strains (MBC: 125 and 62.5 μg mL(-1)). The mechanism of the bactericidal effect against these two strains (and selected non-susceptible controls) was investigated by determining decimal reduction times and by monitoring the loss of cellular content and calcium ions, and changes in cell morphology. Gallic acid did not result in a loss of cellular content or morphological changes in the susceptible strains as compared to the controls. Gallic acid resulted in a loss of calcium ions (0.58-1.53 μg mL(-1) and 0.54-1.17 μg mL(-1), respectively, over a 180 min period) from the susceptible strains but not the controls. Gallic acid is unlikely to be an effective antimicrobial against Campylobacter in a practical sense unless further interventions to ensure an effective bactericidal mode of action against all strains are developed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of Punica granatum on the virulence factors of cariogenic bacteria Streptococcus mutans.
Gulube, Zandiswa; Patel, Mrudula
2016-09-01
Dental caries is caused by acids produced by biofilm-forming Streptococcus mutans from fermentable carbohydrates and bacterial byproducts. Control of these bacteria is important in the prevention of dental caries. This study investigated the effect of the fruit peel of Punica granatum on biofilm formation, acid and extracellular polysaccharides production (EPS) by S. mutans. Pomegranate fruit peels crude extracts were prepared. The Minimum bactericidal concentrations (MBC) were determined against S. mutans. At 3 sub-bactericidal concentrations, the effect on the acid production, biofilm formation and EPS production was determined. The results were analysed using Kruskal-Wallis and Wilcoxon Rank Sum Tests. The lowest MBC was 6.25 mg/mL. Punica granatum significantly inhibited acid production (p < 0.01). After 6 and 24 h, it significantly reduced biofilm-formation by 91% and 65% respectively (p < 0.01). The plant extract did not inhibit the production of soluble EPS in either the biofilm or the planktonic growth. However, it significantly reduced the insoluble EPS in the biofilm and the plantktonic (p = < 0.01) form of S. mutans. The crude extract of P. granatum killed cariogenic S. mutans at high concentrations. At sub-bactericidal concentrations, it reduced biofilm formation, acid and EPS production. This suggests that P. granatum extract has the potential to prevent dental caries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bioactive compounds isolated from submerged fermentations of the Chilean fungus Stereum rameale.
Aqueveque, Pedro; Céspedes, Carlos Leonardo; Becerra, José; Dávila, Marcelo; Sterner, Olov
2015-01-01
Liquid fermentations of the fungus Stereum rameale (N° 2511) yielded extracts with antibacterial activity. The antibacterial activity reached its peak after 216 h of stirring. Bioassay-guided fractionation methods were employed for the isolation of the bioactive metabolites. Three known compounds were identified: MS-3 (1), vibralactone (2) and vibralactone B (3). The three compounds showed antibacterial activity as a function of their concentration. Minimal bactericidal concentrations (MBC) of compound 1 against Gram-positive bacteria were as follows: Bacillus cereus (50 μg/mL), Bacillus subtilis (10 μg/mL) and Staphylococcus aureus (100 μg/mL). Compounds 2 and 3 were active only against Gram-negative bacteria. The MBC of compound 2 against Escherichia coli was 200 μg/mL. Compound 3 inhibited significantly the growth of E. coli and Pseudomonas aeruginosa, with MBC values of 50 and 100 μg/mL, respectively.
Cecere, Manuel; Skaltsounis, Alexios Leandros; Argyropoulou, Aikaterini; Hellwig, Elmar; Aligiannis, Nektarios
2014-01-01
Nature is an unexplored reservoir of novel phytopharmaceuticals. Since biofilm-related oral diseases often correlate with antibiotic resistance, plant-derived antimicrobial agents could enhance existing treatment options. Therefore, the rationale of the present report was to examine the antimicrobial impact of Mediterranean natural extracts on oral microorganisms. Five different extracts from Olea europaea, mastic gum, and Inula viscosa were tested against ten bacteria and one Candida albicans strain. The extraction protocols were conducted according to established experimental procedures. Two antimicrobial assays—the minimum inhibitory concentration (MIC) assay and the minimum bactericidal concentration (MBC) assay—were applied. The screened extracts were found to be active against each of the tested microorganisms. O. europaea presented MIC and MBC ranges of 0.07–10.00 mg mL−1 and 0.60–10.00 mg mL−1, respectively. The mean MBC values for mastic gum and I. viscosa were 0.07–10.00 mg mL−1 and 0.15–10.00 mg mL−1, respectively. Extracts were less effective against C. albicans and exerted bactericidal effects at a concentration range of 0.07–5.00 mg mL−1 on strict anaerobic bacteria (Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Parvimonas micra). Ethyl acetate I. viscosa extract and total mastic extract showed considerable antimicrobial activity against oral microorganisms and could therefore be considered as alternative natural anti-infectious agents. PMID:25054150
Karunanidhi, Arunkumar; Thomas, Renjan; van Belkum, Alex; Neela, Vasanthakumari
2013-01-01
The in vitro antibacterial and antibiofilm activity of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia was investigated through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill and biofilm assays. A total of 9 clinical S. maltophilia isolates including one isolate resistant to trimethoprim/sulfamethoxazole (TMP/SMX) were tested. The inhibition zone sizes for the isolates ranged from 17 to 29 mm, while the MIC and MBC values ranged from 8 to 16 μg mL−1 and 16 to 32 μg mL−1. Chlorogenic acid appeared to be strongly bactericidal at 4x MIC, with a 2-log reduction in viable bacteria at 10 h. In vitro antibiofilm testing showed a 4-fold reduction in biofilm viability at 4x MIC compared to 1x MIC values (0.085 < 0.397 A 490 nm) of chlorogenic acid. The data from this study support the notion that the chlorogenic acid has promising in vitro antibacterial and antibiofilm activities against S. maltophilia. PMID:23509719
Babii, C; Bahrin, L G; Neagu, A-N; Gostin, I; Mihasan, M; Birsa, L M; Stefan, M
2016-03-01
This study reports on the inhibitory and bactericidal properties of a new synthetized flavonoid. Tricyclic flavonoid 1 has been synthesized through a two-step reaction sequence. The antimicrobial effects were tested using the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Also DNA fragmentation assay, fluorescence microscopy and SEM were used to study the mechanism of action. Our tested flavonoid displayed a strong antimicrobial activity with MIC and MBC values as low as 0·24 μg ml(-1) against Staphylococcus aureus and 3·9 μg ml(-1) against Escherichia coli. Flavonoid 1 displayed antimicrobial properties, causing not only the inhibition of bacterial growth, but also killing bacterial cells. The mechanism of action is related to the impairment of the cell membrane integrity and to cell agglutination. Tricyclic flavonoid 1 was found to have a stronger antibacterial effect at lower concentrations than those described in the earlier reports. Based on the strong antimicrobial activity observed, this new tricyclic flavonoid has a good potential for the design of new antimicrobial agents. © 2016 The Society for Applied Microbiology.
Eskandarian, Tahereh; Motamedifar, Mohammad; Arasteh, Peyman; Eghbali, Seyed Sajad; Adib, Ali; Abdoli, Zahra
2017-03-01
No studies have yet documented the bactericidal effects of TiF4, and its role in the treatment of dental caries, and no definite protocol has been introduced to regulate its use. The aim of this study was to determine the antimicrobial/bactericidal effects of TiF4 on Streptococcus Mutans ( S. Mutans ) and to compare it with chlorhexidine (Chx), sodium fluoride (NaF) and xylitol. This study was conducted at the Shiraz University of Medical Sciences microbiology laboratory during March 2015 to September 2015. In this in-vitro study, first a bacterial suspension was prepared and adjusted to a 0.5 McFarland standard (equivalent to 1×10 8 CFU/ml). The minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) of TiF4, Chx, NaF and xylitol were assessed using broth microdilution assay and disk diffusion methods. In order to neutralize the acidic nature of TiF4, we used a sodium hydroxide preparation to obtain a pH of 7.2 and repeated all of the previous tests with the neutralized TiF4 solution. We reported the final results as percentages where appropriate. The MIC of TiF4, NaF and Chx for S. Mutans were 12.5%, 12.5% and 6.25%, respectively. At a concentration of 12.5% the inhibition zone diameters were 9 mm, 15mm and 14mm for TiF4, NaF and Chx, respectively. The MBC was 25%, 12.5% and 12.5% for TiF4, NaF and Chx, respectively. Xylitol failed to show any bactericidal or growth inhibitory effect in all of its concentrations. When we repeated the tests with an adjusted pH, identical results were obtained. TiF4 solutions have anti-growth and bactericidal effects on S. Mutans at a concentration of 12.5% which is comparable with chlorhexidine and NaF, indicating the possible use of this solution in dental practice as an anti-cariogenic agent, furthermore the antimicrobial activity is unaffected by pH of the environment.
Eskandarian, Tahereh; Motamedifar, Mohammad; Arasteh, Peyman; Eghbali, Seyed Sajad; Adib, Ali; Abdoli, Zahra
2017-01-01
Introduction No studies have yet documented the bactericidal effects of TiF4, and its role in the treatment of dental caries, and no definite protocol has been introduced to regulate its use. The aim of this study was to determine the antimicrobial/bactericidal effects of TiF4 on Streptococcus Mutans (S. Mutans) and to compare it with chlorhexidine (Chx), sodium fluoride (NaF) and xylitol. Methods This study was conducted at the Shiraz University of Medical Sciences microbiology laboratory during March 2015 to September 2015. In this in-vitro study, first a bacterial suspension was prepared and adjusted to a 0.5 McFarland standard (equivalent to 1×108 CFU/ml). The minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) of TiF4, Chx, NaF and xylitol were assessed using broth microdilution assay and disk diffusion methods. In order to neutralize the acidic nature of TiF4, we used a sodium hydroxide preparation to obtain a pH of 7.2 and repeated all of the previous tests with the neutralized TiF4 solution. We reported the final results as percentages where appropriate. Results The MIC of TiF4, NaF and Chx for S. Mutans were 12.5%, 12.5% and 6.25%, respectively. At a concentration of 12.5% the inhibition zone diameters were 9 mm, 15mm and 14mm for TiF4, NaF and Chx, respectively. The MBC was 25%, 12.5% and 12.5% for TiF4, NaF and Chx, respectively. Xylitol failed to show any bactericidal or growth inhibitory effect in all of its concentrations. When we repeated the tests with an adjusted pH, identical results were obtained. Conclusion TiF4 solutions have anti-growth and bactericidal effects on S. Mutans at a concentration of 12.5% which is comparable with chlorhexidine and NaF, indicating the possible use of this solution in dental practice as an anti-cariogenic agent, furthermore the antimicrobial activity is unaffected by pH of the environment. PMID:28461883
Hu, Jiali; Zhang, Jing; Wu, Shi; Zhu, Demei; Huang, Haihui; Chen, Yuancheng; Yang, Yang; Zhang, Yingyuan
2014-12-01
This study evaluated the in vitro anti-anaerobic activity and spectrum of levornidazole, its metabolites and comparators against 375 clinical isolates of anaerobic bacteria, including Gram-negative bacilli (181 strains), Gram-negative cocci (11 strains), Gram-positive bacilli (139 strains) and Gram-positive cocci (44 strains), covering 34 species. Minimum inhibitory concentrations (MICs) of levornidazole, its five metabolites and three comparators against these anaerobic isolates were determined by the agar dilution method. Minimum bactericidal concentrations (MBCs) of levornidazole and metronidazole were measured against 22 strains of Bacteroides fragilis. Levornidazole showed good activity against B. fragilis, other Bacteroides spp., Clostridium difficile, Clostridium perfringens and Peptostreptococcus magnus, evidenced by MIC90 values of 0.5, 1, 0.25, 2 and 1mg/L, respectively. The activity of levornidazole and the comparators was poor for Veillonella spp. Generally, levornidazole displayed activity similar to or slightly higher than that of metronidazole, ornidazole and dextrornidazole against anaerobic Gram-negative bacilli, Gram-positive bacilli and Gram-positive cocci, especially B. fragilis. Favourable anti-anaerobic activity was also seen with levornidazole metabolites M1 and M4 but not M2, M3 or M5. For the 22 clinical B. fragilis strains, MBC50 and MBC90 values of levornidazole were 2mg/L and 4mg/L, respectively. Both MBC50/MIC50 and MBC90/MIC90 ratios of levornidazole were 4, similar to those of metronidazole. Levornidazole is an important anti-anaerobic option in clinical settings in terms of its potent and broad-spectrum in vitro activity, bactericidal property, and the anti-anaerobic activity of its metabolites M1 and M4. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Time-kill behaviour against eight bacterial species and cytotoxicity of antibacterial monomers.
Li, Fang; Weir, Michael D; Fouad, Ashraf F; Xu, Hockin H K
2013-10-01
The objectives of this study were to investigate: (1) the antibacterial activity of two antibacterial monomers, dimethylaminododecyl methacrylate (DMADDM) and dimethylammoniumethyl dimethacrylate (DMAEDM), against eight different species of oral pathogens for the first time; (2) the cytotoxicity of DMAEDM and DMADDM. DMAEDM and DMADDM were synthesized by reacting a tertiary amine group with an organo-halide. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against eight species of bacteria were tested. Time-kill determinations were performed to examine the bactericidal kinetics. Cytotoxicity of monomers on human gingival fibroblasts (HGF) was assessed using a methyl thiazolyltetrazolium assay and live/dead viability assay. DMADDM showed strong bactericidal activity against all bacteria, with MIC of 1.2-9.8μg/mL. DMAEDM had MIC of 20-80mg/mL. Time-kill determinations indicated that DMADDM and DMAEDM had rapid killing effects against eight species of bacteria, and eliminated all bacteria in 30min at the concentration of 4-fold MBC. Median lethal concentration for DMADDM and DMAEDM was between 20 and 40μg/mL, which was 20-fold higher than 1-2μg/mL for BisGMA control. DMAEDM and DMADDM were tested in time-kill assay against eight species of oral bacteria for the first time. Both were effective in bacteria-inhibition, but DMADDM had a higher potency than DMAEDM. Different killing efficacy was found against different bacteria species. DMAEDM and DMADDM had much lower cytotoxicity than BisGMA. Therefore, DMADDM and DMAEDM are promising for use in bonding agents and other restorative/preventive materials to combat a variety of oral pathogens. Published by Elsevier Ltd.
Wijesundara, Niluni M; Rupasinghe, H P Vasantha
2018-04-01
In the present study, essential oils (EOs) extracted from oregano, sage, cloves, and ginger were evaluated for the phytochemical profile, antibacterial, and anti-biofilm activities against Streptococcus pyogenes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of EOs. The minimum biofilm inhibitory concentrations (MBICs) were determined using MTT assay and fixed biofilms were observed through scan electron microscopy. The oregano and sage EOs showed the lowest MIC as well as MBC of 0.25-0.5 mg/mL. Time kill assay results showed that oregano and sage EOs exhibited bactericidal effects within 5 min and 4 h, respectively. Both oregano and sage extracts acts as a potent anti-biofilm agent with dual actions, preventing and eradicating the biofilm. The microscopic visualization of biofilms treated with EOs have shown morphological and density changes compared to the untreated control. Oregano EO was constituted predominantly carvacrol (91.6%) and in sage EO, higher levels of α-thujone (28.5%) and camphor (16.6%) were revealed. EOs of oregano and sage inhibit the growth and biofilm formation of S. pyogenes. Effective concentrations of oregano and sage EOs and their phytochemicals can be used in developing potential plant-derived antimicrobial agents in the management of streptococcal pharyngitis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lucena Filho, José Hardman Sátiro de; Lima, Rennaly de Freitas; Medeiros, Ana Claudia Dantas de; Pereira, Jozinete Vieira; Granville-Garcia, Ana Flávia; Costa, Edja Maria Melo de Brito
2015-11-01
The aim of the present study was to evaluate the antibacterial and antifungal potential in vitro of Momordica charantia L. against the microorganisms of clinical interest (standard strains and multiresistant isolates) in order to aggregate scientific information in relation to its use as a therapeutic product. M. charantia L. plant material was acquired in municipality of Malta, Paraiba, Brazil. The extract was obtained through maceration, filtration and then concentrated under reduced pressure in a rotary evaporator, resulting in a dough, and was then dried in an oven for 72 hours at 40°C. Antimicrobial action of ethanolic extract of seed M. charantia L. was evaluated based on the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) against standard strains of bacteria, isolates multiresistant bacteria and Candida species, by microdilution in broth method. All organisms were sensitive to the extract, being considered strong antimicrobial activity (MIC and MBC/MFC < 0.125 mg/ml). The M. charantia L. showed strong antimicrobial potential, with bactericidal and fungicidal profile, there is the prospect to constitute a new therapeutic strategy for the control of infections, particularly in multiresistant strains. The use of medicinal plants in treatment of infectious processes have an important function nowadays, due to the limitations of the use of synthetic antibiotics available, related specifically to the microbial resistance emergence.
Bharath, Nagaraj; Sowmya, Nagur Karibasappa; Mehta, Dhoom Singh
2015-01-01
The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa). Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. MIC values of Pg, Pi and Aa were 0.2 μg/ml whereas Fn showed sensitive at concentration of 3.125 μg/ml. MBC values mirrors the values same as that of MIC. Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease.
Yuniati, Yuniati; Hasanah, Nurul; Ismail, Sjarif; Anitasari, Silvia; Paramita, Swandari
2018-01-01
Staphylococcus aureus , methicillin-resistant and Escherichia coli , multidrug-resistant included in the list of antibiotic-resistant priority pathogens from WHO. As multidrug-resistant bacteria problem is increasing, it is necessary to probe new sources for identifying antimicrobial compounds. Medicinal plants represent a rich source of antimicrobial agents. One of the potential plants for further examined as antibacterial is Dracontomelon dao (Blanco) Merr. & Rolfe. The present study designed to find the antibacterial activity of D. dao stem bark extracts on Methicillin-resistant S. aureus (MRSA) and E. coli Multiple Drug Resistance (MDR), followed by determined secondary metabolites with antibacterial activity and determined the value of MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). D. dao stem bark extracted using 60% ethanol. Disc diffusion test methods used to find the antibacterial activity, following by microdilution methods to find the value of MIC and MBC. Secondary metabolites with antibacterial activity determined by bioautography using TLC (thin layer chromatography) methods. D. dao stem bark extracts are sensitive to MSSA, MRSA and E.coli MDR bacteria. The inhibition zone is 16.0 mm in MSSA, 11.7 mm in MRSA and 10.7 mm in E. coli MDR. The entire MBC/MIC ratios for MSSA, MRSA and E.coli MDR is lower than 4. The ratio showed bactericidal effects of D. dao stem bark extracts. In TLC results, colorless bands found to be secondary metabolites with antibacterial activity. D. dao stem bark extracts are potential to develop as antibacterial agent especially against MRSA and E. coli MDR strain.
Antimicrobial and Genotoxicity Effects of Zero-valent Iron Nanoparticles
Barzan, Elham; Mehrabian, Sedigheh; Irian, Saeed
2014-01-01
Background: In a world of nanotechnology, the first concern is the potential environmental impact of nanoparticles. An efficient way to estimate nanotoxicity is to monitor the responses of bacteria exposed to these particles. Objectives: The current study explored the antimicrobial properties of nZVI (zero-valent Iron nanoparticles) on the Gram-negative bacterial systems Erwinia amylovora, Xanthomonas oryzae and the Gram-positive bacterial systems Bacillus cereus and Streptomyces spp. The genotoxicity potential of nZVI was also assayed. Materials and Methods: The toxicity of nZVI was tested by two different methods: Growing bacteria in liquid (broth dilution) and agar media (challenge test) containing different nZVI concentrations for 24-72 hours. The genotoxicity of nZVI was assessed using the preincubation version of the Ames test. Results: The lowest concentrations of nZVI that inhibited the visible growth (MIC) of E. amylovora, X. oryzae, B. cereus and Streptomyces spp. were 625, 550, 1250 and 1280 ppm, respectively. The minimum bactericidal concentration (MBC) for E. amylovora and X. oryzae were 10,000 and 5,000 ppm of nZVI, respectively. MBC was not observed for the Gram positive bacteria. No bacteriostatic and bactericidal effects were observed for oxidized nZVI. Mutant frequency did not increase according to the vehicle control at the concentrations assayed, indicating a lack of mutagenicity associated with nZVI. Conclusions: nZVI nanoparticles are not mutagenic at low concentrations, therefore they can be used without detrimental effects on soil bacteria. PMID:25147712
García-García, Rebeca; López-Malo, Aurelio; Palou, Enrique
2011-03-01
The bactericidal effect of 3 natural agents (carvacrol, thymol, and eugenol) was evaluated as well as their binary and ternary mixtures on Listeria innocua inactivation in liquid model systems. Minimal bactericidal concentrations (MBC) of these agents were determined, and then binary and ternary mixtures were evaluated. Culture media were inoculated with L. innocua and incubated for 72 h at 35 °C. Turbidity of studied systems were determined every 24 h. The most effective individual antimicrobial agent was carvacrol, followed by thymol and then eugenol with MBCs of 150, 250, and 450 mg kg(-1), respectively. It was observed that the most effective binary mixture was 75 mg kg(-1) carvacrol and 62.5 mg kg(-1) thymol. Furthermore, the ternary mixture carvacrol-thymol-eugenol in concentrations of 75, 31.25, and 56.25 mg kg(-1), correspondingly, was the most effective for L. innocua inactivation. Several binary and ternary mixtures of these 3 natural antimicrobial agents worked adequately to inactivate L. innocua.
Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens.
Hu, Fengjiao; Wu, Qiaoxing; Song, Shuang; She, Ruiping; Zhao, Yue; Yang, Yifei; Zhang, Meikun; Du, Fang; Soomro, Majid Hussain; Shi, Ruihan
2016-12-05
Hemoglobin is a rich source of biological peptides. As a byproduct and even wastewater of poultry-slaughtering facilities, chicken blood is one of the most abundant source of hemoglobin. In this study, the chicken hemoglobin antimicrobial peptides (CHAP) were isolated and the antimicrobial and bactericidal activities were tested by the agarose diffusion assay, minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, and time-dependent inhibitory and bactericidal assays. The results demonstrated that CHAP had potent and rapid antimicrobial activity against 19 bacterial strains, including 9 multidrug-resistant bacterial strains. Bacterial biofilm and NaCl permeability assays, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were further performed to detect the mechanism of its antimicrobial effect. Additionally, CHAP showed low hemolytic activity, embryo toxicity, and high stability in different temperatures and animal plasma. CHAP may have great potential for expanding production and development value in animal medication, the breeding industry and environment protection.
Graziano, Talita Signoreti; Calil, Caroline Morini; Sartoratto, Adilson; Franco, Gilson César Nobre; Groppo, Francisco Carlos; Cogo-Müller, Karina
2016-01-01
Halitosis can be caused by microorganisms that produce volatile sulphur compounds (VSCs), which colonize the surface of the tongue and subgingival sites. Studies have reported that the use of natural products can reduce the bacterial load and, consequently, the development of halitosis. The aim of this study was to evaluate the antimicrobial activity of the essential oil of Melaleuca alternifolia on the growth and volatile sulphur compound (VSC) production of oral bacteria compared with chlorhexidine. The effects of these substances were evaluated by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) in planktonic cultures of Porphyromonas gingivalis and Porphyromonas endodontalis. In addition, gas chromatography analyses were performed to measure the concentration of VSCs from bacterial cultures and to characterize M. alternifolia oil components. The MIC and MBC values were as follows: M. alternifolia - P. gingivalis (MIC and MBC=0.007%), P. endodontalis (MIC and MBC=0.007%=0.5%); chlorhexidine - P. gingivalis and P. endodontalis (MIC and MBC=1.5 mg/mL). M. alternifolia significantly reduced the growth and production of hydrogen sulfide (H2S) by P. gingivalis (p<0.05, ANOVA-Dunnet) and the H2S and methyl mercaptan (CH3SH) levels of P. endodontalis (p<0.05, ANOVA-Dunnet). Chlorhexidine reduced the growth of both microorganisms without altering the production of VSC in P. endodontalis. For P. gingivalis, the production of H2S and CH3SH decreased (p<0.05, ANOVA-Dunnet). M. alternifolia can reduce bacterial growth and VSCs production and could be used as an alternative to chlorhexidine.
Bharath, Nagaraj; Sowmya, Nagur Karibasappa; Mehta, Dhoom Singh
2015-01-01
Background: The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa). Materials and Methods: Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. Results: MIC values of Pg, Pi and Aa were 0.2 μg/ml whereas Fn showed sensitive at concentration of 3.125 μg/ml. MBC values mirrors the values same as that of MIC. Conclusion: Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease. PMID:26097349
Kim, Chun Sung; Park, Soon-Nang; Ahn, Sug-Joon; Seo, Young-Woo; Lee, Young-Ju; Lim, Yun Kyong; Freire, Marcelo Oliveira; Cho, Eugene; Kook, Joong-Ki
2013-02-01
In this study, the antibacterial properties of sophoraflavanone G isolated from the methanol extract of Sophora flavescens were tested against 16 strains of mutans streptococci to screen and determine the optimal concentration of anti-caries natural extract. The antimicrobial activity was evaluated by measuring minimum bactericidal concentration (MBC). The cell viability of normal human gingival fibroblast (NHGF) cells was tested using the methyl thiazolyl tetrazolium assay after exposure to sophoraflavanone G. The data showed that sophoraflavanone G had a remarkable antimicrobial effect on the bacteria tested with an MBC ranging from 0.5 μg/ml to 4 μg/ml. Sophoraflavanone G had no cytotoxic effect on NHGF cells at concentrations where it produced an antimicrobial effect. These findings demonstrate that sophoraflavanone G has strong antimicrobial activity against mutans streptococci and could be useful in the development of novel oral hygiene products, such as a gargle solution or dentifrice. Copyright © 2012 Elsevier Ltd. All rights reserved.
GRAZIANO, Talita Signoreti; CALIL, Caroline Morini; SARTORATTO, Adilson; FRANCO, Gilson César Nobre; GROPPO, Francisco Carlos; COGO-MÜLLER, Karina
2016-01-01
ABSTRACT Objective Halitosis can be caused by microorganisms that produce volatile sulphur compounds (VSCs), which colonize the surface of the tongue and subgingival sites. Studies have reported that the use of natural products can reduce the bacterial load and, consequently, the development of halitosis. The aim of this study was to evaluate the antimicrobial activity of the essential oil of Melaleuca alternifolia on the growth and volatile sulphur compound (VSC) production of oral bacteria compared with chlorhexidine. Material and Methods The effects of these substances were evaluated by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) in planktonic cultures of Porphyromonas gingivalis and Porphyromonas endodontalis. In addition, gas chromatography analyses were performed to measure the concentration of VSCs from bacterial cultures and to characterize M. alternifolia oil components. Results The MIC and MBC values were as follows: M. alternifolia - P. gingivalis (MIC and MBC=0.007%), P. endodontalis (MIC and MBC=0.007%=0.5%); chlorhexidine - P. gingivalis and P. endodontalis (MIC and MBC=1.5 mg/mL). M. alternifolia significantly reduced the growth and production of hydrogen sulfide (H2S) by P. gingivalis (p<0.05, ANOVA-Dunnet) and the H2S and methyl mercaptan (CH3SH) levels of P. endodontalis (p<0.05, ANOVA-Dunnet). Chlorhexidine reduced the growth of both microorganisms without altering the production of VSC in P. endodontalis. For P. gingivalis, the production of H2S and CH3SH decreased (p<0.05, ANOVA-Dunnet). Conclusion M. alternifolia can reduce bacterial growth and VSCs production and could be used as an alternative to chlorhexidine. PMID:28076463
Al-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen; Wink, Michael
2015-02-15
The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml). Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75-1). In time-kill assays all three-drug combinations exhibited a powerful bactericidal synergistic effect against MRSA NCTC 10442, VRE ATCC 51299, and E. coli ATCC 25922 with a reduction of more than 3log10 in the colony count after 24 h. Our findings suggest that bee venom and melittin synergistically enhanced the bactericidal effect of several antimicrobial agents when applied in combination especially when the drugs affect several and differing molecular targets. These results could lead to the development of novel or complementary antibacterial drugs against MDR pathogens. Copyright © 2015 Elsevier GmbH. All rights reserved.
Sharopov, Farukh; Braun, Markus Santhosh; Gulmurodov, Isomiddin; Khalifaev, Davlat; Isupov, Salomiddin; Wink, Michael
2015-11-02
Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia) were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 312.5 µg/mL for E. coli , 625 µg/mL (MIC) and 1250 µg/mL (MBC) for MRSA (methicillin-resistant Staphylococcus aureus), respectively. The essential oil of Galagania fragrantissima was highly active against MRSA at concentrations as low as 39.1 µg/mL and 78.2 µg/mL for MIC and MBC, respectively. Origanum tyttanthum essential oil showed the highest antioxidant activity with IC 50 values of 0.12 mg/mL for ABTS (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) and 0.28 mg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl) . Galagania fragrantissima and Origanum tyttanthum essential oils showed the highest anti-inflammatory activity; IC 50 values of 5-lipoxygenase (5-LOX) inhibition were 7.34 and 14.78 µg/mL, respectively. In conclusion, essential oils of Origanum tyttanthum and Galagania fragrantissima exhibit substantial antimicrobial, antioxidant, and anti-inflammatory activities. They are interesting candidates in phytotherapy.
Qureshi, Nilam; Chaudhari, Ravindra; Mane, Pramod; Shinde, Manish; Jadakar, Sandesh; Rane, Sunit; Kale, Bharat; Bhalerao, Anand; Amalnerkar, Dinesh
2016-04-01
In our contemporary endeavor, metallic molybdenum (Mo) and semiconducting molybdenum trioxide (MoO3) nanostructures have been simultaneously generated via solid state reaction between molybdenum (III) chloride (MoCl3) and polyphenylene sulfide (PPS) at 285 (°)C in unimolar ratio for different time durations, namely, 6 h, 24 h, and 48 h. The resultant nanocomposites (NCs) revealed formation of predominantly metallic Mo for all the samples. However, MoO3 gradually gained prominent position as secondary phase with rise in reaction time. The present study was intended to investigate the antibacterial potential of metal-metal oxide-polymer NCs, i.e., Mo- MoO3-PPS against microorganisms, viz., Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, and Aspergillus fumigatus. The antibacterial activity of the NCs was evaluated by agar well diffusion investigation. Maximum sensitivity concentrations of NCs were determined by finding out minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). Moreover, the NCs prepared at reaction time of 48 h exhibited best MBC values and were tested with time kill assay which revealed that the growth of S. aureus was substantially inhibited by Mo- MoO3-PPS NCs. This synchronized formation of Mo- MoO3 nanostructures in an engineering thermoplastic may have potential antimicrobial applications in biomedical devices and components. Prima facie results on antifungal activity are indicative of the fact that these materials can show anti-cancer behavior.
Montironi, Ivana D; Cariddi, Laura N; Reinoso, Elina B
Bovine mastitis is a disease that causes great economic losses per year, being Streptococcus uberis the main environmental pathogen involved. The aim of the present study was to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Minthostachys verticillata essential oil and limonene for S. uberis strains isolated from bovine mastitis. In addition, the effect of MIC on biofilm formation was analyzed. MIC values for the essential oil ranged from 14.3 to 114.5mg/ml (1.56-12.5%v/v) and MBC between 114.5 and 229mg/ml (12.5-25%v/v). MICs for limonene ranged from 3.3 to 52.5mg/ml (0.39-6.25%v/v) and MBC was 210mg/ml (25%v/v). Both compounds showed antibacterial activity and affected the biofilm formation of most of the strains tested. In conclusion, these compounds could be used as an alternative and/or complementary therapy for bovine mastitis caused by S. uberis. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Ghotaslou, Reza; Bahrami, Nashmil
2012-01-01
Purpose: The aim of present study was to investigate the effect of chemical agents on the clinical isolates in Madani Heart Hospital, Tabriz, Iran. Methods: The minimum bactericide concentration (MBC) of disinfectants including chlorhexidine (Fort), peracetic acid (Micro) and an alcohol based compound (Deconex) on selected bacteria at various dilutions were determined by the standard suspension technique. Results: MBC of Micro, Fort and Deconex were 2-128 mg/L, 2-64 mg/L and 4 - 32 mg/L, respectively. The Gram negative bacteria were more resistance to disinfectant relation to Gram positive bacteria. Conclusion: The results showed that these agents are able to eradicate the bacteria and they can be used lonely. PMID:24312771
Wang, S; Fan, M; Bian, Z
2001-09-01
To screen some Chinese herbal medicines for their inhibitory activity on cariogenic bacteria, and investigate their active ingredients, and measure their minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC). Active components were isolated from every tested Chinese herbal medicine by means of aqueous extraction and ethanolic extraction. Berberine was purified from Coptis chinensis Fra. Disk agar diffusion method was employed in screening herbs with inhibiting effect on cariogenic bacteria. MIC and MBC were determined by broth dilution method. Against Streptococcus mutans Ingbritt, MBCs of Magnolia officinalis ethanolic extract, Berberine, Coptis chinensis Fra aqueous extract and Coptis chinensis Fra ethanolic extract were 0.488, 0.625, 7.800 and 1.950 g/L respectively. Against Streptococcus sobrinus 6715, MBCs of Magnolia extract, Coptis chinensis Fra ethanolic extract, Rhus chinensis Mill ethanolic extract and Phellodendron chinen ethanolic extract were 0.488, 0.625, 1.950, 3.900, 3.900 and 3.900 g/L respectively. Against Actinomyces viscosus ATCC 19246, MBCs of Berberine, Coptis chinensis Fra aqueous extract, Coptis chinensis Fra ethanolic extract, Rheum palmatum L aqueous extract and Rheum palmatum L ethanolic extract were 1.250, 3.900, 3.900, 15.600 and 31.250 g/L respectively. Magnolia officinalis, Coptis chinensis Fran, Rheum palmatum L aqueous extracts exhibit strong inhibition on cariogenic bacteria. Magnolia officinalis ethanolic extract has the strongest bactericidal effects on Streptococcus mutans and Streptococcus sobrinus.
Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W
2012-03-01
There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. D-sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.
NASA Astrophysics Data System (ADS)
Du, Wen-Li; Xu, Ying-Lei; Xu, Zi-Rong; Fan, Cheng-Li
2008-02-01
The present study was conducted to prepare and characterize chitosan nanoparticle loaded copper ions, and evaluate their antibacterial activity. Chitosan nanoparticles were prepared based on ionotropic gelation, and then the copper ions were loaded. The particle size, zeta potential and morphology were determined. Antibacterial activity was evaluated against E. coli K88 by determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in vitro. Results showed that the antibacterial activity was significantly enhanced by the loading of copper ions compared to those of chitosan nanoparticles and copper ions. The MIC and MBC of chitosan nanoparticle loaded copper ions were 21 times and 42 times lower than those of copper ions, respectively. To confirm the antibacterial mechanism, morphological changes of E. coli K88 treated by chitosan nanoparticle loaded copper ions were dynamically observed with an atomic force microscope (AFM). It was found that chitosan nanoparticle loaded copper ions killed E. coli K88 through damage to the cell membrane.
Paliĭ, G K; Barilo, A S; Chesnokova, A A
1992-12-01
Comparable antimicrobial and disinfecting action of decamethoxine and silver preparations on pathogens of chronic purulent otitis media (CPOM) was studied. The clinical isolates of staphylococci proved to be most sensitive to decamethoxine whose MBcC conformed to 16.5 micrograms/ml. The antimicrobial action on Proteus spp. and Pseudomonas aeruginosa was less pronounced. The required concentrations for bactericidal action on these pathogens were 69 and 93.5 micrograms/ml, respectively. The antimicrobial activity of the silver preparations such as poviargol, collargol and protargol was low. Depending on the microbial species, the bactericidal effect of the silver preparations was 12-235 times lower than that of decamethoxin. It was also shown that decamethoxin had a high disinfecting action on CPOM pathogens. It was noted that decamethoxin had a marked ability to increase the bactericidal action of poviargol (by 2-14 times) and its disinfecting action (by 2 times) on Proteus spp., E. coli and Ps. aeruginosa.
Introducing Urtica dioica, A Native Plant of Khuzestan, As an Antibacterial Medicinal Plant.
Motamedi, Hossein; Seyyednejad, Seyyed Mansour; Bakhtiari, Ameneh; Vafaei, Mozhan
2014-11-01
Urtica dioica is a flowering plant with long history of use in folk medicine and as a food source. This study examined in vitro antibacterial potential of alcoholic extracts of U. dioica. Hydroalcoholic extracts from aerial parts were prepared using aqueous solution of ethanol and methanol and their inhibitory effects against clinical isolates was examined by disc diffusion method at different doses. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) indexes were also investigated. The scanning electron microscopy (SEM) analysis was also performed to find structural changes of affected bacteria consequent to exposing with extracts. Both extracts were active against Bacillus cereus, Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli with respectively 16, 10, 18, and 14 mm (methanolic) and 11, 9, 17, and 16 mm (ethanolic) inhibition zone. The MIC of ethanolic extract against S. epidermidis and E. coli was respectively 10 and 40 mg/mL. The MIC of methanolic extract against S. aureus and S. epidermidis was 40 and 10 mg/mL, respectively. The MBC was found only for S. epidermidis (20 mg/mL). In SEM analysis the round shape of S. epidermidis was changed and irregular shapes were appeared, which suggest that the main target of these extracts was cell wall. Extracts of U. dioica showed significant antibacterial effect against some clinically important pathogenic bacteria. Based on the obtained results it can be concluded that U. dioica is useful as antibacterial and bactericidal agent in treating infectious diseases.
Abrão, Fariza; Alves, Jessica A.; Andrade, Gessica; de Oliveira, Pollyanna F.; Ambrósio, Sérgio R.; Veneziani, Rodrigo C. S.; Tavares, Denise C.; Bastos, Jairo K.; Martins, Carlos H. G.
2018-01-01
This study evaluates the antibacterial activity of the Copaifera duckei Dwyer oleoresin and two isolated compounds [eperu-8(20)-15,18-dioic acid and polyalthic acid] against bacteria involved in primary endodontic infections and dental caries and assesses the cytotoxic effect of these substances against a normal cell line. MIC and MBC assays pointed out the most promising metabolites for further studies on bactericidal kinetics, antibiofilm activity, and synergistic antibacterial action. The oleoresin and polyalthic acid but not eperu-8(20)-15,18-dioic provided encouraging MIC and MBC results at concentrations lower than 100 μg mL−1. The oleoresin and polyalthic acid activities depended on the evaluated strain. A bactericidal effect on Lactobacillus casei (ATCC 11578 and clinical isolate) emerged before 8 h of incubation. For all the tested bacteria, the oleoresin and polyalthic acid inhibited biofilm formation by at least 50%. The oleoresin and polyalthic acid gave the best activity against Actinomyces naeslundii (ATCC 19039) and L. casei (ATCC 11578), respectively. The synergistic assays combining the oleoresin or polyalthic acid with chlorhexidine did not afford interesting results. We examined the cytotoxicity of C. duckei oleoresin, eperu-8(20)-15,18-dioic acid, and polyalthic acid against Chinese hamster lung fibroblasts. The oleoresin and polyalthic acid were cytotoxic at concentrations above 78.1 μg mL−1, whereas eperu-8(20)-15,18-dioic displayed cytotoxicity at concentrations above 312.5 μg mL−1. In conclusion, the oleoresin and polyalthic acid are potential sources of antibacterial agents against bacteria involved in primary endodontic infections and dental caries in both the sessile and the planktonic modes at concentrations that do not cause cytotoxicity. PMID:29515530
[Antibacterial activity of sulopenem, a new parenteral penem antibiotic].
Inoue, E; Komoto, E; Taniyama, Y; Mitsuhashi, S
1996-04-01
Sulopenem, a new penem antibiotic, was compared with other antibiotics with regard to in vitro antibacterial and bactericidal activities, stabilization against beta-lactamases, and effect on the release of lipopolysaccharide from Gram-negative bacteria. The results are summarized as follows. 1. Sulopenem showed more potent activities than other antibiotics against both Gram-positive and Gram-negative bacteria except Pseudomonas aeruginosa. 2. Sulopenem showed potent bactericidal activities (MIC/MBC) against both Gram-positive and Gram-negative bacteria. Time kill studies against Staphylococcus aureus, Escherichia coli, Enterobacter cloacae and Citrobacter freundii showed potent bactericidal activities of sulopenem. 3. Sulopenem was found to possess a stronger activity than other antibiotics against beta-lactamase-producing strains except P. aeruginosa and Stenotrophomonas maltophilia. 4. In particular, sulopenem was found to be more stable to the hydrolysis by various beta-lactamases produced by Gram-negative bacteria than any other antibiotics tested. Vmax/Km values of sulopenem were smaller than those of cefotiam for all tested beta-lactamases, which reflected a broad antibacterial spectrum of sulopenem. 5. E. coli ML4707 exposed to sulopenem and imipenem released less endotoxin than did controls at all concentration ranges tested. In contrast, the strain exposed to ceftazidime at bacteriostatic concentrations released a large amount of endotoxin.
Sánchez-Gómez, Susana; Ferrer-Espada, Raquel; Stewart, Philip S; Pitts, Betsey; Lohner, Karl; Martínez de Tejada, Guillermo
2015-07-07
Infections by Pseudomonas aeruginosa constitute a serious health threat because this pathogen -particularly when it forms biofilms - can acquire resistance to the majority of conventional antibiotics. This study evaluated the antimicrobial activity of synthetic peptides based on LF11, an 11-mer peptide derived from human lactoferricin against P. aeruginosa planktonic and biofilm-forming cells. We included in this analysis selected N-acylated derivatives of the peptides to analyze the effect of acylation in antimicrobial activity. To assess the efficacy of compounds against planktonic bacteria, microdilution assays to determine the minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill studies were conducted. The anti-biofilm activity of the agents was assessed on biofilms grown under static (on microplates) and dynamic (in a CDC-reactor) flow regimes. The antimicrobial activity of lipopeptides differed from that of non-acylated peptides in their killing mechanisms on planktonic and biofilm-forming cells. Thus, acylation enhanced the bactericidal activity of the parental peptides and resulted in lipopeptides that were uniformly bactericidal at their MIC. In contrast, acylation of the most potent anti-biofilm peptides resulted in compounds with lower anti-biofilm activity. Both peptides and lipopeptides displayed very rapid killing kinetics and all of them required less than 21 min to reduce 1,000 times the viability of planktonic cells when tested at 2 times their MBC. The peptides, LF11-215 (FWRIRIRR) and LF11-227 (FWRRFWRR), displayed the most potent anti-biofilm activity causing a 10,000 fold reduction in cell viability after 1 h of treatment at 10 times their MIC. At that concentration, these two compounds exhibited low citotoxicity on human cells. In addition to its bactericidal activity, LF11-227 removed more that 50 % of the biofilm mass in independent assays. Peptide LF11-215 and two of the shortest and least hydrophobic lipopeptides, DI-MB-LF11-322 (2,2-dimethylbutanoyl-PFWRIRIRR) and DI-MB-LF11-215, penetrated deep into the biofilm structure and homogenously killed biofilm-forming bacteria. We identified peptides derived from human lactoferricin with potent antimicrobial activity against P. aeruginosa growing either in planktonic or in biofilm mode. Although further structure-activity relationship analyses are necessary to optimize the anti-biofilm activity of these compounds, the results indicate that lactoferricin derived peptides are promising anti-biofilm agents.
Efficient synthesis of new 2,3-dihydrooxazole-spirooxindoles hybrids as antimicrobial agents.
Tiwari, Shailendra; Pathak, Poonam; Sagar, Ram
2016-05-15
Two series of new 2,3-dihydrooxazole-spirooxindole derivatives were efficiently synthesized starting from N'-(2-oxoindolin-3-ylidene) benzohydrazide/N'-(2-oxoindolin-3-ylidene)-2-phenoxyacetohydrazide using designed synthetic route. Newly synthesized 2,3-dihydrooxazole-spirooxindole derivatives were screened for their antibacterial and antifungal activity against different pathogenic strain of bacteria and fungi. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) were determined for the test compounds as well as for reference standards. Compounds 4e, 4g, 7g have shown good antibacterial activity whereas compounds 4f, 7b, 7d have displayed better antifungal activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
KR-12-a5 is a non-cytotoxic agent with potent antimicrobial effects against oral pathogens.
Caiaffa, Karina Sampaio; Massunari, Loiane; Danelon, Marcelle; Abuna, Gabriel Flores; Bedran, Telma Blanca Lombardo; Santos-Filho, Norival Alves; Spolidorio, Denise Madalena Palomari; Vizoto, Natalia Leal; Cilli, Eduardo Maffud; Duque, Cristiane
2017-11-01
This study evaluated the cytotoxicity and antimicrobial activity of analogs of cationic peptides against microorganisms associated with endodontic infections. L-929 fibroblasts were exposed to LL-37, KR-12-a5 and hBD-3-1C V and chlorhexidine (CHX, control), and cell metabolism was evaluated with MTT. The minimal inhibitory concentration (MIC) and the minimal bactericidal/fungicidal concentration (MBC/MFC) of the peptides and CHX were determined against oral pathogens associated with endodontic infections. Enterococcus faecalis and Streptococcus mutans biofilms were cultivated in bovine dentin blocks, exposed to different concentrations of the most efficient antimicrobial peptide and analyzed by confocal laser scanning microscopy. CHX and peptides affected the metabolism of L-929 at concentrations > 31.25 and 500 μg ml -1 , respectively. Among the peptides, KR-12-a5 inhibited growth of both the microorganisms tested with the lowest MIC/MBC/MFC values. In addition, KR-12-a5 significantly reduced E. faecalis and S. mutans biofilms inside dentin tubules. In conclusion, KR-12-a5 is a non-cytotoxic agent with potent antimicrobial and anti-biofilm activity against oral pathogens associated with endodontic infections.
Jadhav, Kiran; Dhamecha, Dinesh; Bhattacharya, Debdutta; Patil, Mrityunjaya
2016-02-01
The current study summarizes a unique green process for the synthesis of silver nanoparticles (AgNPs) by simple treatment of silver nitrate with aqueous extract of Ammania baccifera. Phytosynthesized AgNPs were characterized by various advanced analytical methods and studied for its use against infections associated with burns. Formation of AgNPs was observed by visual color change from colorless to dark brown and confirmed by UV-visible characteristic peak at 436 nm. Zeta potential, particle size and polydispersity index of nano-silver were found to be -33.1 ± 1.12, 112.6 ± 6.8 nm and 0.3 ± 0.06 respectively. XRD spectra revealed crystalline nature of AgNPs whereas TEM confirmed the presence of mixed morphology of AgNPs. The overall approach designated in the present research investigation for the synthesis of AgNPs is based on all 12 principles of green chemistry, in which no man-made chemical other than the silver nitrate was used. Synthesized nano-silver colloidal dispersion was initially tested for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against a panel of organisms involved in infections associated with burns (Pseudomonas aeruginosa (PA), Staphylococcus aureus (SA) and methicillin resistant S. aureus (MRSA)). MIC and MBC were found to be in range of 0.992 to 7.93 and 7.93 to 31.75 μg/mL respectively. MBC was used for formulation of AgNP gel and tested for its efficacy using agar well diffusion method against PA, SA and MRSA. Comparative bactericidal efficacy of formulated gel (0.03% w/w) and marked formulation Silverex™ ionic (silver nitrate gel 0.2% w/w) showed equal zone of inhibition against all pathogenic bacteria. Formulated AgNP gel consisting of 95% lesser concentration of silver compared to marketed formulation was found to be equally effective against all organisms. Hence, the formulated AgNP gel could serve as a better alternative with least toxicity towards the treatment presently available for infections in burns. Copyright © 2016 Elsevier B.V. All rights reserved.
Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong
2014-03-01
A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. Copyright © 2013 Elsevier B.V. All rights reserved.
Novel Naja atra cardiotoxin 1 (CTX-1) derived antimicrobial peptides with broad spectrum activity
Santospirito, Davide; Polverini, Eugenia; Flisi, Sara; Cavirani, Sandro; Taddei, Simone
2018-01-01
Naja atra subsp. atra cardiotoxin 1 (CTX-1), produced by Chinese cobra snakes, belonging to Elapidae family, is included in the three-finger toxin family and exerts high cytotoxicity and antimicrobial activity too. Using as template mainly the tip and the subsequent β-strand of the first “finger” of this toxin, different sequences of 20 amino acids linear peptides have been designed in order to avoid toxic effects but to maintain or even strengthen the partial antimicrobial activity already seen for the complete toxin. As a result, the sequence NCP-0 (Naja Cardiotoxin Peptide-0) was designed as ancestor and subsequently 4 other variant sequences of NCP-0 were developed. These synthesized variant sequences have shown microbicidal activity towards a panel of reference and field strains of Gram-positive and Gram-negative bacteria. The sequence named NCP-3, and its variants NCP-3a and NCP-3b, have shown the best antimicrobial activity, together with low cytotoxicity against eukaryotic cells and low hemolytic activity. Bactericidal activity has been demonstrated by minimum bactericidal concentration (MBC) assay at values below 10 μg/ml for most of the tested bacterial strains. This potent antimicrobial activity was confirmed even for unicellular fungi Candida albicans, Candida glabrata and Malassezia pachydermatis (MBC 50–6.3 μg/ml), and against the fast-growing mycobacteria Mycobacterium smegmatis and Mycobacterium fortuitum. Moreover, NCP-3 has shown virucidal activity on Bovine Herpesvirus 1 (BoHV1) belonging to Herpesviridae family. The bactericidal activity is maintained even in a high salt concentration medium (125 and 250 mM NaCl) and phosphate buffer with 20% Mueller Hinton (MH) medium against E. coli, methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa reference strains. Considering these in vitro obtained data, the search for active sequences within proteins presenting an intrinsic microbicidal activity could provide a new way for discovering a large number of novel and promising antimicrobial peptides families. PMID:29364903
In vitro effects on biofilm viability and antibacterial and antiadherent activities of silymarin.
Evren, Ebru; Yurtcu, Erkan
2015-07-01
Limited treatment options in infectious diseases caused by resistant microorganisms created the need to search new approaches. Several herbal extracts are studied for their enormous therapeutic potential. Silymarin extract, from Silybum marianum (milk thistle), is an old and a new remedy for this goal. The purpose of this study is to evaluate the antibacterial and antiadherent effects of silymarin besides biofilm viability activity on standard bacterial strains. Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), antiadherent/antibiofilm activity, and effects on biofilm viability of silymarin were evaluated against standard bacterial strains. MIC values were observed between 60 and >241 μg/mL (0.25->1 mmol/L). Gram-positive bacteria were inhibited at concentrations between 60 and 120 μg/mL. Gram-negative bacteria were not inhibited by the silymarin concentrations included in this study. MBC values for Gram-positive bacteria were greater than 241 μg/mL. Adherence/biofilm formations were decreased to 15 μg/mL silymarin concentration when compared with silymarin-untreated group. Silymarin reduced the biofilm viabilities to 13 and 46 % at 1 and 0.5 mmol/L concentrations, respectively. We demonstrated that silymarin shows antibacterial and antiadherent/antibiofilm activity against certain standard bacterial strains which may be beneficial when used as a dietary supplement or a drug.
Motamedi, Hossein; Darabpour, Esmaeil; Gholipour, Mahnaz; Seyyed Nejad, Seyyed Mansour
2010-01-01
Brucellosis, a zoonosis caused by four species of brucella, has a high morbidity. Brucella melitensis is the main causative agent of brucellosis in both human and small ruminants. As an alternative to conventional antibiotics, medicinal plants are valuable resources for new agents against antibiotic-resistant strains. The aim of this study was to investigate the usage of native plants for brucellosis treatment. For this purpose, the anti-brucella activities of ethanolic and methanolic extracts of Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, Plantago ovata, Cordia myxa, and Crocus sativus were assessed. The activity against a resistant Br. melitensis strain was determined by disc diffusion method at various concentrations from 50–400 mg/ml. Antibiotic discs were also used as a control. Among the evaluated herbs, six plant (Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, and Crocus sativus) showed anti-brucella activity. Oliveria decumbens was chosen as the most effective plant for further studies. A tested isolate exhibited resistance to tetracycline, nafcillin, oxacillin, methicillin, and colistin. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values for Oliveria decumbens against resistant Br. melitensis were the same (5 mg/ml), and for gentamicin they were both 2 mg/ml. Time-kill kinetics for a methanolic extract of Oliveria decumbens was 7 h whereas for an ethanolic extract it was 28 h. Also, Oliveria decumbens extracts showed a synergistic effect in combination with doxycycline and tetracycline. In general, the similar values of MIC and MBC for Oliveria decumbens suggest that these extracts could act as bactericidal agents against Br. melitensis. In addition to Oliveria decumbens, Crocus sativus and Salvia sclarea also had good anti-brucella activity and these should be considered for further study. PMID:20593515
Motamedi, Hossein; Darabpour, Esmaeil; Gholipour, Mahnaz; Seyyed Nejad, Seyyed Mansour
2010-07-01
Brucellosis, a zoonosis caused by four species of brucella, has a high morbidity. Brucella melitensis is the main causative agent of brucellosis in both human and small ruminants. As an alternative to conventional antibiotics, medicinal plants are valuable resources for new agents against antibiotic-resistant strains. The aim of this study was to investigate the usage of native plants for brucellosis treatment. For this purpose, the anti-brucella activities of ethanolic and methanolic extracts of Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, Plantago ovata, Cordia myxa, and Crocus sativus were assessed. The activity against a resistant Br. melitensis strain was determined by disc diffusion method at various concentrations from 50-400 mg/ml. Antibiotic discs were also used as a control. Among the evaluated herbs, six plant (Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, and Crocus sativus) showed anti-brucella activity. Oliveria decumbens was chosen as the most effective plant for further studies. A tested isolate exhibited resistance to tetracycline, nafcillin, oxacillin, methicillin, and colistin. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values for Oliveria decumbens against resistant Br. melitensis were the same (5 mg/ml), and for gentamicin they were both 2 mg/ml. Time-kill kinetics for a methanolic extract of Oliveria decumbens was 7 h whereas for an ethanolic extract it was 28 h. Also, Oliveria decumbens extracts showed a synergistic effect in combination with doxycycline and tetracycline. In general, the similar values of MIC and MBC for Oliveria decumbens suggest that these extracts could act as bactericidal agents against Br. melitensis. In addition to Oliveria decumbens, Crocus sativus and Salvia sclarea also had good anti-brucella activity and these should be considered for further study.
Acharyya, Saurabh; Sarkar, Prodipta; Saha, Dhira R; Patra, Amarendra; Ramamurthy, T; Bag, Prasanta K
2015-08-01
Shigella spp. (Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnei) cause bacillary dysentery (shigellosis), which is characterized by bloody mucous diarrhoea. Although a variety of antibiotics have been effective for treatment of shigellosis, options are becoming limited due to globally emerging drug resistance. In the present study, in vitro antibacterial activity of methyl gallate (MG) isolated from Terminalia chebula was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity of MG was determined by membrane perturbation and transmission electron microscopy (TEM). Cellular drug accumulation, cell infection and assessment of intracellular activities of MG and reference antibiotics were performed using HeLa cell cultures. The bactericidal activity of MG against multidrug-resistant (MDR) Shigella spp. in comparison with other commonly used drugs including fluoroquinolone was demonstrated here. TEM findings in the present study revealed that MG caused the total disintegration of inner and outer membranes, and leakage of the cytoplasmic contents of S. dysenteriae. The level of accumulation of MG and tetracycline in HeLa cells incubated for 24 h was relatively higher than that of ciprofloxacin and nalidixic acid (ratio of intracellular concentration/extracellular concentration of antibiotic for MG and tetracycline>ciprofloxacin and nalidixic acid). The viable number of intracellular S. dysenteriae was decreased in a time-dependent manner in the presence of MG (4 × MBC) and reduced to zero within 20 h. The significant intracellular activities of MG suggested that it could potentially be used as an effective antibacterial agent for the treatment of severe infections caused by MDR Shigella spp.
Marques, Juliana de Lima; Funck, Graciele Daiana; Dannenberg, Guilherme da Silva; Cruxen, Claudio Eduardo Dos Santos; Halal, Shanise Lisie Mello El; Dias, Alvaro Renato Guerra; Fiorentini, Ângela Maria; Silva, Wladimir Padilha da
2017-05-01
The aim of this study was to evaluate the effectiveness of a biodegradable film, with antimicrobial metabolites produced by Lactobacillus curvatus P99 incorporated, targeting the control of Listeria monocytogenes in sliced "Prato" cheese. Tests were performed to evaluate the spectrum of action of cell-free supernatant (CFS) of P99 against different microorganisms, as well as to detect the minimum inhibitory (MIC) and bactericidal (MBC) concentrations against L. monocytogenes Scott A. The detection of genes that encode for the production of bacteriocins and evaluation of their expression were performed. Antimicrobial films were prepared, followed by in vitro and in situ analysis. The MIC and MBC of CFS against L. monocytogenes Scott A was 15.6 μL/mL and 62.5 μL/mL, respectively. Lactobacillus curvatus P99 presented two genes coding for the bacteriocins, which were expressed. Films with added MBC showed activity against different indicator microorganisms and were able to control L. monocytogenes Scott A when used in sliced "Prato" cheese. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cermak, Pavel; Olsovska, Jana; Mikyska, Alexandr; Dusek, Martin; Kadleckova, Zuzana; Vanicek, Jiri; Nyc, Otakar; Sigler, Karel; Bostikova, Vanda; Bostik, Pavel
2017-11-01
Anaerobic bacteria, such as Bacteroides fragilis or Clostridium perfringens, are part of indigenous human flora. However, Clostridium difficile represents also an important causative agent of nosocomial infectious antibiotic-associated diarrhoea. Treatment of C. difficile infection is problematic, making it imperative to search for new compounds with antimicrobial properties. Hops (Humulus lupulus L.) contain substances with antibacterial properties. We tested antimicrobial activity of purified hop constituents humulone, lupulone and xanthohumol against anaerobic bacteria. The antimicrobial activity was established against B. fragilis, C. perfringens and C. difficile strains according to standard testing protocols (CLSI, EUCAST), and the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were calculated. All C. difficile strains were toxigenic and clinically relevant, as they were isolated from patients with diarrhoea. Strongest antimicrobial effects were observed with xanthohumol showing MIC and MBC values of 15-107 μg/mL, which are close to those of conventional antibiotics in the strains of bacteria with increased resistance. Slightly higher MIC and MBC values were obtained with lupulone followed by higher values of humulone. Our study, thus, shows a potential of purified hop compounds, especially xanthohumol, as alternatives for treatment of infections caused by select anaerobic bacteria, namely nosocomial diarrhoea caused by resistant strains. © 2017 APMIS. Published by John Wiley & Sons Ltd.
Joy Sinha, Dakshita; D S Nandha, Kanwar; Jaiswal, Natasha; Vasudeva, Agrima; Prabha Tyagi, Shashi; Pratap Singh, Udai
2017-01-01
The purpose of this study was to compare the antibacterial properties of Azadirachta indica (neem) or Curcuma longa (turmeric) against Enterococcus faecalis with those of 5% sodium hypochlorite or 2% chlorhexidine as root canal irrigants in vitro. The activity of neem, chlorhexidine, sodium hypochlorite, or turmeric against E. faecalis was measured on agar plates using the agar diffusion method. The tube dilution method was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the irrigants used. Chlorhexidine or neem exhibited the greatest antibacterial activity when used as endodontic irrigants against E. faecalis, followed by sodium hypochlorite. No statistically significant difference was observed between neem, sodium hypochlorite, or chlorhexidine. The MIC of neem was 1: 128, which was similar to that of chlorhexidine. The MBC for each of these irrigants was 1: 16. Neem yielded antibacterial activity equivalent to 2% chlorhexidine or sodium hypochlorite against E. faecalis, suggesting that it offers a promising alternative to the other root canal irrigants tested.
In vitro antimicrobial effects of a novel Pentaherbs concoction for atopic dermatitis.
Hon, Kam Lun; Ip, Margaret; Wong, Chun Kwok; Chan, Ben Chung Lap; Leung, Ping Chung; Leung, Ting Fan
2018-05-01
In a series of bench and clinical trials, our group has determined the immunologic effects and clinical efficacy of a concoction of five herbal ingredients (PentaHerbs Formula, PHF) in treating children with atopic eczema (AE). This study investigates the antimicrobial effects that may be induced with PHF treatment. We investigated the effects of PHF on the minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Staphylococcus aureus and various bacteria that are commonly present on the skin of patients with AE. Staphylococcus aureus ATCC 25923, Methicllin resistant Staphylococcus aureus (MRSA) ATCC BAA-43, Enterococcus faecalis ATCC 29212, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Enterobacter cloacae ATCC 13047, Proteus vulgaris ATCC 6380, and Acinetobacter baumannii ATCC 19606 were tested. PHF was more effective against Staphylococcus aureus ATCC 25923 and Methicllin resistant Staphylococcus aureus (MRSA) ATCC BAA-43. MIC and MBC were 1 and 25 mg/mL, respectively. PHF was more effective against Staphylococcus aureus ATCC 25923 and Methicllin resistant Staphylococcus aureus (MRSA) ATCC BAA-43t. PHF may be developed into a Staphylococcus aureus targeting topical application.
The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms.
Nilsson, Martin; Rybtke, Morten; Givskov, Michael; Høiby, Niels; Twetman, Svante; Tolker-Nielsen, Tim
2016-09-01
Microbial biofilms are tolerant to antibiotic treatment and therefore cause problematic infections. Knowledge about the molecular mechanisms underlying biofilm-associated antimicrobial tolerance will aid the development of antibiofilm drugs. Screening of a Streptococcus mutans transposon mutant library for genes that are important for biofilm-associated antimicrobial tolerance provided evidence that the dlt genes play a role in the tolerance of S. mutans biofilms towards gentamicin. The minimum bactericidal concentration for biofilm cells (MBC-B) for a dltA transposon mutant was eight-fold lower than that of the wild-type. The minimum bactericidal concentration for planktonic cells (MBC-P) was only slightly reduced, indicating that the mechanism involved in the observed antimicrobial tolerance has a predominant role specifically in biofilms. Experiments with a knockout dltA mutant and complemented strain confirmed that the dlt genes in S. mutans play a role in biofilm-associated tolerance to gentamicin. Confocal laser scanning microscopy analyses of biofilms grown on glass slides showed that the dltA mutant produced roughly the same amount of biofilm as the wild-type, indicating that the reduced antimicrobial tolerance of the dltA mutant is not due to a defect in biofilm formation. The products of the dlt genes have been shown to mediate alanylation of teichoic acids, and in accordance the dltA mutant showed a more negatively charged surface than the wild-type, which likely is an important factor in the reduced tolerance of the dltA mutant biofilms towards the positively charged gentamicin. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Introducing Urtica dioica, A Native Plant of Khuzestan, As an Antibacterial Medicinal Plant
Motamedi, Hossein; Seyyednejad, Seyyed Mansour; Bakhtiari, Ameneh; Vafaei, Mozhan
2014-01-01
Background: Urtica dioica is a flowering plant with long history of use in folk medicine and as a food source. Objectives: This study examined in vitro antibacterial potential of alcoholic extracts of U. dioica. Materials and Methods: Hydroalcoholic extracts from aerial parts were prepared using aqueous solution of ethanol and methanol and their inhibitory effects against clinical isolates was examined by disc diffusion method at different doses. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) indexes were also investigated. The scanning electron microscopy (SEM) analysis was also performed to find structural changes of affected bacteria consequent to exposing with extracts. Results: Both extracts were active against Bacillus cereus, Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli with respectively 16, 10, 18, and 14 mm (methanolic) and 11, 9, 17, and 16 mm (ethanolic) inhibition zone. The MIC of ethanolic extract against S. epidermidis and E. coli was respectively 10 and 40 mg/mL. The MIC of methanolic extract against S. aureus and S. epidermidis was 40 and 10 mg/mL, respectively. The MBC was found only for S. epidermidis (20 mg/mL). In SEM analysis the round shape of S. epidermidis was changed and irregular shapes were appeared, which suggest that the main target of these extracts was cell wall. Conclusions: Extracts of U. dioica showed significant antibacterial effect against some clinically important pathogenic bacteria. Based on the obtained results it can be concluded that U. dioica is useful as antibacterial and bactericidal agent in treating infectious diseases. PMID:25625045
[Combined action of nitrofuran preparations and bile acids on staphylococci].
Tkachuk, N I
1984-03-01
The effect of cholic, glycocholic and deoxycholic bile acids on the antimicrobial activity of furacin, furadonin, furagin and furoxone was studied with the use of collection strains and fresh isolates of staphylococci. The method of dilutions in liquid media was used. Cholic and glycocholic acids lowered the MIC of furacin, furadonin, furoxone and furagin with respect to the collection strains by 4-16, 5, 4-6 and 22-37 times, respectively. The potentiating effect of deoxycholic acid on the nitrofuran drugs was even more pronounced. Thus, when the nitrofurans were used in combination with deoxycholic acid, their MIC dropped by 16-114 times. A significant increase in the antimicrobial activity of the nitrofurans under the effect of the bile acids was also observed with respect to the fresh isolates of Staphylococcus, while it was somewhat lower. The subbacteriostatic doses of cholic, glycocholic and deoxycholic bile acids also increased the bactericidal effect of the nitrofuran drugs. The minimum bactericidal concentrations (MBC) of furacin, furoxone, furadonin and furagin decreased from 12.5, 2.08, 25.0 and 1.82 to 0.78, 0.26, 2.34 and 0.032 micrograms/ml, respectively. The most pronounced decrease in the MBC was observed under the effect of deoxycholic acid. Therefore, the bile acids potentiated the nitrofuran antistaphylococcal activity. The combinations of deoxycholic acid with furagin or furoxone were the most effective.
Antimicrobial lectin from Schinus terebinthifolius leaf.
Gomes, F S; Procópio, T F; Napoleão, T H; Coelho, L C B B; Paiva, P M G
2013-03-01
Schinus terebinthifolius leaves are used for treating human diseases caused by micro-organisms. This work reports the isolation, characterization and antimicrobial activity of S. terebinthifolius leaf lectin (SteLL). The isolation procedure involved protein extraction with 0.15 mol l(-1) NaCl, filtration through activated charcoal and chromatography of the filtrate on a chitin column. SteLL is a 14-kDa glycopeptide with haemagglutinating activity that is inhibited by N-acetyl-glucosamine, not affected by ions (Ca(2+) and Mg(2+)) and stable upon heating (30-100 °C) as well as over the pH 5.0-8.0. The antimicrobial effect of SteLL was evaluated by determining the minimal inhibitory (MIC), bactericide (MBC) and fungicide (MFC) concentrations. Lectin was active against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella enteritidis and Staphylococcus aureus. Highest bacteriostatic and bactericide effects were detected for Salm. enteritidis (MIC: 0.45 μg ml(-1)) and Staph. aureus (MBC: 7.18 μg ml(-1)), respectively. SteLL impaired the growth (MIC: 6.5 μg ml(-1)) and survival (MFC: 26 μg ml(-1)) of Candida albicans. SteLL, a chitin-binding lectin, purified in milligram quantities, showed antimicrobial activity against medically important bacteria and fungi. SteLL can be considered as a new biomaterial for potential antimicrobial applications. © 2012 The Society for Applied Microbiology.
Buckley, Laura M; McEwan, Neil A; Nuttall, Tim
2013-10-01
Multidrug-resistant Pseudomonas aeruginosa commonly complicates chronic bacterial otitis in dogs. The aim of this in vitro study was to determine the effect of ethylenediaminetetraacetic acid-tromethamine (Tris-EDTA) on the minimal bactericidal concentrations (MBCs) and minimal inhibitory concentrations (MICs) of marbofloxacin and gentamicin for multidrug-resistant P. aeruginosa isolates from cases of canine otitis. Eleven isolates were identified as multidrug resistant on disc diffusion; 10 were resistant to marbofloxacin and two were resistant to gentamicin. Isolates were incubated for 90 min with each antibiotic alone and in combination with Tris-EDTA at concentrations of 0.075 μg/mL to 5 mg/mL for marbofloxacin, 0.001 μg/mL to 10 mg/mL for gentamicin and 17.8:4.7 to 0.14:0.04 mg/mL for Tris-EDTA. Positive and negative controls were included. Aliquots of each antibiotic and/or Tris-EDTA concentration were subsequently transferred to sheep blood agar to determine the MBCs, and tryptone soy broth was added to the remaining suspensions to determine the MICs. Tris-EDTA alone was bacteriostatic but not bactericidal at any concentration. The addition of Tris-EDTA significantly reduced the median MBC (from 625 to 468.8 μg/mL; P < 0.001) and MIC (from 29.3 to 2.4 μg/mL; P = 0.008) of marbofloxacin, and the median MBC (from 625 to 39.1 μg/mL) and MIC (from 19.5 to 1.2 μg/mL) of gentamicin (both P < 0.001). Tris-EDTA significantly reduced the MBCs and MICs of marbofloxacin and gentamicin for multidrug-resistant P. aeruginosa in vitro. This may be of use to clinicians managing these infections in dogs. © 2013 ESVD and ACVD.
Effect of United States buckwheat honey on antibiotic-resistant hospital acquired pathogens
Hammond, Eric Nee-Armah; Duster, Megan; Musuuza, Jackson Ssentalo; Safdar, Nasia
2016-01-01
Introduction Due to an upsurge in antibiotic-resistant infections and lack of therapeutic options, new approaches are needed for treatment. Honey may be one such potential therapeutic option. We investigated the susceptibility of hospital acquired pathogens to four honeys from Wisconsin, United States, and then determined if the antibacterial effect of each honey against these pathogens is primarily due to the high sugar content. Methods Thirteen pathogens including: four Clostridium difficile, two Methicillin-resistant Staphylococcus aureus, two Pseudomonas aeruginosa, one Methicillin-Susceptible Staphylococcus aureus, two Vancomycin-resistance Enterococcus, one Enterococcus faecalis and one Klebsiella pneumoniae were exposed to 1-50% (w/v) four Wisconsin honeys and Artificial honey to determine their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using the broth dilution method. Results Buckwheat honey predominantly exhibited a bactericidal mode of action against the tested pathogens, and this varied with each pathogen. C. difficile isolates were more sensitive to the Wisconsin buckwheat honey as compared to the other pathogens. Artificial honey at 50% (w/v) failed to kill any of the pathogens. The high sugar content of Wisconsin buckwheat honey is not the only factor responsible for its bactericidal activity. Conclusion Wisconsin buckwheat honey has the potential to be an important addition to therapeutic armamentarium against resistant pathogens and should be investigated further. PMID:28292167
Sandra, Vimashiinee
2016-01-01
Canarium odontophyllum (CO) Miq. has been considered as one of the most sought-after plant species in Sarawak, Malaysia, due to its nutritional and pharmacological benefits. This study aimed to evaluate the pharmacodynamic interaction of crude methanol and acetone extracts from CO leaves in combination with oxacillin, vancomycin, and linezolid, respectively, against MRSA ATCC 33591 as preliminary study has reported its potential antistaphylococcal activity. The broth microdilution assay revealed that both methanol and acetone extracts were bactericidal with Minimum Inhibitory Concentration (MIC) of 312.5 μg/mL and 156.25 μg/mL and Minimum Bactericidal Concentration (MBC) of 625 μg/mL and 312.5 μg/mL, respectively. Fractional Inhibitory Concentration (FIC) indices were obtained via the chequerboard dilution assay where methanol extract-oxacillin, acetone extract-oxacillin, methanol extract-linezolid, and acetone extract-linezolid combinations exhibited synergism (FIC index ≤ 0.5). The synergistic action of the methanol extract-oxacillin combination was verified by time-kill analysis where bactericidal effect was observed at concentration of 1/8 × MIC of both compounds at 9.6 h compared to oxacillin alone. As such, these findings postulated that both extracts exert their anti-MRSA mechanism of action similar to that of vancomycin and provide evidence that the leaves of C. odontophyllum have the potential to be developed into antistaphylococcal agents. PMID:27006659
Basri, Dayang Fredalina; Sandra, Vimashiinee
2016-01-01
Canarium odontophyllum (CO) Miq. has been considered as one of the most sought-after plant species in Sarawak, Malaysia, due to its nutritional and pharmacological benefits. This study aimed to evaluate the pharmacodynamic interaction of crude methanol and acetone extracts from CO leaves in combination with oxacillin, vancomycin, and linezolid, respectively, against MRSA ATCC 33591 as preliminary study has reported its potential antistaphylococcal activity. The broth microdilution assay revealed that both methanol and acetone extracts were bactericidal with Minimum Inhibitory Concentration (MIC) of 312.5 μg/mL and 156.25 μg/mL and Minimum Bactericidal Concentration (MBC) of 625 μg/mL and 312.5 μg/mL, respectively. Fractional Inhibitory Concentration (FIC) indices were obtained via the chequerboard dilution assay where methanol extract-oxacillin, acetone extract-oxacillin, methanol extract-linezolid, and acetone extract-linezolid combinations exhibited synergism (FIC index ≤ 0.5). The synergistic action of the methanol extract-oxacillin combination was verified by time-kill analysis where bactericidal effect was observed at concentration of 1/8 × MIC of both compounds at 9.6 h compared to oxacillin alone. As such, these findings postulated that both extracts exert their anti-MRSA mechanism of action similar to that of vancomycin and provide evidence that the leaves of C. odontophyllum have the potential to be developed into antistaphylococcal agents.
Oliveira, Ana M P; Devesa, Joana S P; Hill, Peter B
2018-03-22
Staphylococcus pseudintermedius and Malassezia pachydermatis are important agents in canine pyoderma and otitis. Determine the in vitro efficacy of a honey-based gel (HBO) against meticillin-susceptible S. pseudintermedius (MSSP), meticillin-resistant S. pseudintermedius (MRSP) and M. pachydermatis, by minimum bactericidal concentration (MBC), minimum fungicidal concentration (MFC) and time-kill assay (TKA). Efficacy of the product's honey component (HO) also was evaluated. Sixty S. pseudintermedius and 10 M. pachydermatis canine isolates were selected. All isolates were tested against serial dilutions of an HBO containing 40% HO (40%, 20%, 10%, 5% and 2.5% w/v) and HO alone (undiluted, 40%, 20%, 10%, 5% and 2.5% w/v). Microbroth assay followed by subculture was used to determine MBC and MFC. The same protocol was applied after product exposure to catalase. A well-diffusion assay for S. pseudintermedius was used to generate inhibition zones. A TKA for 10 isolates of S. pseudintermedius and 10 isolates of M. pachydermatis was performed. MBC was 20% w/v (5-20% w/v) for HBO and HO. HBO had lower MBC values when compared to HO (P = 0.003). No statistical difference was observed between MSSP/MRSP isolates (HBO P = 0.757, HO P = 0.743). Only HO was affected by catalase (P = 0.015). MFC for HBO was 10% w/v (5-10% w/v) and 40% w/v for HO (20-≥40% w/v). All isolates were killed after 4 h of exposure. Staphylococcus pseudintermedius and M. pachydermatis are susceptible to the HBO and these results can be used for future clinical trials. © 2018 ESVD and ACVD.
Tangwatcharin, Pussadee; Khopaibool, Prapaporn
2012-07-01
The objective of this study was to investigate the in vitro activities of virgin coconut oil, lauric acid and monolaurin in combination with lactic acid against two strains of Staphylococcus aureus, ATCC 25923 and an isolate from a pig carcass, by determination of Fractional Bactericidal Concentration Index (FBCI), time-kill method, as well as scanning and transmission electron microscopy. Minimum bactericidal concentrations (MBC) of lauric acid, monolaurin and lactic acid were 3.2 mg/ml, 0.1 mg/ml and 0.4% (v/v), respectively. The effects of lauric acid + lactic acid and monolaurin + lactic acid combinations were synergistic against both strains, exhibiting FBCIs of 0.25 and 0.63, respectively. In time-kill studies, lauric acid and monolaurin + lactic acid combinations added at their minimum inhibitory concentrations produced a bactericidal effect. The induction of stress in non-stressed cells was dependent on the type and concentration of antimicrobial. This resulted in a loss and change of the cytoplasm and membrane in cells of the bacterium. In contrast, virgin coconut oil (10%) was not active against S. aureus. The bacterial counts found in pork loin treated with lauric acid and monolaurin alone were significantly higher (p <0.05) than those treated with both lipids in combination with lactic acid at sub-inhibitory concentrations. The color, odor and overall acceptability of the pork loins were adversely affected by treatment with the three lipids and lactic acid alone but when combinations of the agents were used the sensory quality was acceptable.
Corvec, Stéphane; Furustrand Tafin, Ulrika; Betrisey, Bertrand; Borens, Olivier; Trampuz, Andrej
2013-03-01
Limited antimicrobial agents are available for the treatment of implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli. We compared the activities of fosfomycin, tigecycline, colistin, and gentamicin (alone and in combination) against a CTX-M15-producing strain of Escherichia coli (Bj HDE-1) in vitro and in a foreign-body infection model. The MIC and the minimal bactericidal concentration in logarithmic phase (MBC(log)) and stationary phase (MBC(stat)) were 0.12, 0.12, and 8 μg/ml for fosfomycin, 0.25, 32, and 32 μg/ml for tigecycline, 0.25, 0.5, and 2 μg/ml for colistin, and 2, 8, and 16 μg/ml for gentamicin, respectively. In time-kill studies, colistin showed concentration-dependent activity, but regrowth occurred after 24 h. Fosfomycin demonstrated rapid bactericidal activity at the MIC, and no regrowth occurred. Synergistic activity between fosfomycin and colistin in vitro was observed, with no detectable bacterial counts after 6 h. In animal studies, fosfomycin reduced planktonic counts by 4 log(10) CFU/ml, whereas in combination with colistin, tigecycline, or gentamicin, it reduced counts by >6 log(10) CFU/ml. Fosfomycin was the only single agent which was able to eradicate E. coli biofilms (cure rate, 17% of implanted, infected cages). In combination, colistin plus tigecycline (50%) and fosfomycin plus gentamicin (42%) cured significantly more infected cages than colistin plus gentamicin (33%) or fosfomycin plus tigecycline (25%) (P < 0.05). The combination of fosfomycin plus colistin showed the highest cure rate (67%), which was significantly better than that of fosfomycin alone (P < 0.05). In conclusion, the combination of fosfomycin plus colistin is a promising treatment option for implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli.
Potential Bio-Control Agent from Rhodomyrtus tomentosa against Listeria monocytogenes
Odedina, Grace Fiyinfoluwa; Vongkamjan, Kitiya; Voravuthikunchai, Supayang Piyawan
2015-01-01
Listeria monocytogenes is an important foodborne pathogen implicated in many outbreaks of listeriosis. This study aimed at screening for the potential use of Rhodomyrtus tomentosa ethanolic leaf extract as a bio-control agent against L. monocytogenes. Twenty-two L. monocytogenes isolates were checked with 16 commercial antibiotics and isolates displayed resistance to 10 antibiotics. All the tested isolates were sensitive to the extract with inhibition zones ranging from 14 to 16 mm. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values ranged from 16 to 32 µg/mL and 128 to 512 µg/mL, respectively. Time-kill assay showed that the extract had remarkable bactericidal effects on L. monocytogenes. The extract at a concentration of 16 µg/mL reduced tolerance to 10% NaCl in L. monocytogenes in 4 h. Stationary phase L. monocytogenes cells were rapidly inactivated by greater than 3-log units within 30 min of contact time with R. tomentosa extract at 128 µg/mL. Electron microscopy revealed fragmentary bacteria with changes in the physical and morphological properties. Our study demonstrates the potential of the extract for further development into a bio-control agent in food to prevent the incidence of L. monocytogenes contamination. PMID:26371033
Evaluation of the effectiveness of peracetic acid in the sterilization of dental equipment.
Ceretta, R; Paula, M M S; Angioletto, Ev; Méier, M M; Mitellstädt, F G; Pich, C T; Junior, S A; Angioletto, E
2008-01-01
To evaluate the effectiveness of peracetic acid in the microbiological sterilisation of dental materials. Peracetic acid solution was evaluated at concentrations of 800, 1500 and 2500 ppm. At these concentrations, it was determined whether peracetic acid caused corrosion to dental instruments and induced cellular mutagenicity and cytotoxicity. In addition, the minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC), agar diffusion and diffusion by well method, were also verified. The corrosion rate, calculated from potentiodynamic assays was 10(-6) cm/year, indicating that the product does not damage equipment. The sterilisation capacity of peracetic acid at 2500 ppm was the best. The comet assay indicated genotoxic activity at 2500 ppm. This study demonstrated the effectiveness of peracetic acid for sterilizing dental equipment, providing another alternative for the prevention of infections in clinics.
Antibacterial activity of Thai herbal extracts on acne involved microorganism.
Niyomkam, P; Kaewbumrung, S; Kaewnpparat, S; Panichayupakaranant, P
2010-04-01
Ethyl acetate and methanol extracts of 18 Thai medicinal plants were investigated for their antibacterial activity against Propionibacterium acnes, Stapylococcus aureus, and S. epidermidis. Thirteen plant extracts were capable of inhibiting the growth of P. acnes and S. epidermidis, while 14 plant extracts exhibited an inhibitory effect on S. aureus. Based on the broth dilution method, the ethyl acetate extract of Alpinia galanga (L.) Wild. (Zingiberaceae) rhizome showed the strongest antibacterial effect against P. acnes, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 156.0 and 312.0 microg/mL, respectively. On the basis of bioassay-guided purification, the ethyl acetate extract was isolated to afford the antibacterial active compound, which was identified as 1'-acetoxychavicol acetate (1'-ACA). 1'-ACA had a strong inhibitory effect on P. acnes with MIC and MBC values of 62.0 and 250.0 microg/mL, respectively. Thus, 1'-ACA was used as an indicative marker for standardization of A. galanga extract using high performance liquid chromatography. These results suggest that A. galanga extract could be an interesting agent for further studies on an alternative treatment of acne.
He, Wensi; Yan, Fangyou; Jia, Qingzhu; Xia, Shuqian; Wang, Qiang
2018-03-01
The hazardous potential of ionic liquids (ILs) is becoming an issue of great concern due to their important role in many industrial fields as green agents. The mathematical model for the toxicological effects of ILs is useful for the risk assessment and design of environmentally benign ILs. The objective of this work is to develop QSAR models to describe the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of ILs against Staphylococcus aureus (S. aureus). A total of 169 and 101 ILs with MICs and MBCs, respectively, are used to obtain multiple linear regression models based on matrix norm indexes. The norm indexes used in this work are proposed by our research group and they are first applied to estimate the antibacterial toxicity of these ILs against S. aureus. These two models precisely and reliably calculated the IL toxicities with a square of correlation coefficient (R 2 ) of 0.919 and a standard error of estimate (SE) of 0.341 (in log unit of mM) for pMIC, and an R 2 of 0.913 and SE of 0.282 for pMBC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Boonyanugomol, Wongwarut; Kraisriwattana, Kairin; Rukseree, Kamolchanok; Boonsam, Kraisorn; Narachai, Panchaporn
In this study, we determined the antibacterial and synergistic activities of the essential oil from Zingiber cassumunar against the extensively drug-resistant (XDR) Acinetobacter baumannii strains. The antibacterial and synergistic properties of the essential oil from Z. cassumunar were examined by agar disc diffusion tests. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated by broth microdilution using the resazurin assay. The in vitro time-kill antibacterial kinetics was analyzed using the plate count technique. We found that the essential oil from Z. cassumunar had antibacterial activity against A. baumannii, with MIC and MBC ranging from 7.00 to 9.24mg/ml. The essential oil could completely inhibit A. baumannii at 1h, and coccoid-shaped bacteria were found after treatment. In addition, the essential oil had a synergistic effect when combined with antibiotics, e.g., aminoglycosides, fluoroquinolones, tetracyclines, and folate pathway inhibitors. Thus, the essential oil from Z. cassumunar has strong antibacterial and synergistic activities against XDR A. baumannii, which may provide the basis for the development of a new therapy against drug-resistant bacteria. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
de Barros, Jefferson C.; da Conceição, Maria Lúcia; Neto, Nelson Justino Gomes; da Costa, Ana Caroliny Vieira; de Souza, Evandro Leite
2012-01-01
This study assessed the occurrence of an enhancing inhibitory effect of the combined application of Origanum vulgare L. essential oil and lactic acid against Staphylococcus aureus by the determination of Fractional Inhibitory Concentration (FIC) index and cell viability in meat broth and meat model. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the oil was 0.6 and 1.25 µL.mL-1, respectively. Lactic acid showed MIC and MBC of 2.5 and 5µL.mL-1, respectively. FIC indices of the combined application of the oil and lactic acid were 0.5 showing a synergic interaction. The essential oil and lactic acid showed similar (p>0.05) anti-S. aureus effect in meat broth over 96 h of exposure. Treatment with essential oil or lactic acid presented a smaller anti-staphylococcal effect in meat in comparison to meat broth. No significant difference (p>0.05) was found for the microbial counts in meat treated with each antimicrobial alone or in mixture. These results could arise as an interesting approach for the improvement of food preservation using more natural procedures, considering the current demand of consumer and sensory quality of foods. PMID:24031936
Pilevar, Zahra; Hajimehdipoor, Homa; Shahraz, Farzaneh; Alizadeh, Leyla; Mahmoudzadeh, Maryam
2017-01-01
Summary In the current study, the antibacterial effect of Echinophora platyloba essential oil and common liquid smoke (individually and in combination) against Staphylococcus aureus in beef meat samples is investigated. Using an automated microbiological growth analyser and the turbidimetric technique, the minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC) of the essential oil and liquid smoke were determined. Anti-S. aureus activity of essential oil and liquid smoke (individually and in combination) was defined by disk diffusion assay, generation time and cell constituent release. Apart from that, the interactions between these two compounds were measured by the checkerboard assay and by calculating the fractional inhibitory concentration (FIC) indices. Related MIC values of essential oil and smoke were found to be 7200 and 5500 mg/L, and MBC values were 8500 and 8000 mg/L, respectively. The conducted organoleptic assay showed that the addition of 0.05 g of essential oil and 0.6 g of liquid smoke to 100 g of meat samples did not have adverse effect on the overall acceptance. Weaker antibacterial effect against Staphylococcus aureus was observed when only Echinophora platyloba essential oil was used than when it was used in combination with liquid smoke. PMID:28559740
Julianti, Elin; Rajah, Kasturi K.; Fidrianny, Irda
2017-01-01
Propionibacterium acnes and Staphylococcus epidermidis are the major skin bacteria that cause the formation of acne. The present study was conducted to investigate antibacterial activity of ethanolic extract of cinnamon bark, honey, and their combination against acne bacteria. The antibacterial activity of extract of cinnamon bark and honey were investigated against P. acnes and S. epidermidis using disc diffusion. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were attained using Clinical and Laboratory Standard Institute (CLSI) methods. The interaction between cinnamon bark extract and honey was determined using a checkerboards method. The results showed that the MICs of cinnamon bark extract and honey against P. acne were 256 µg/mL and 50% v/v, respectively, while those against S. epidermidis were 1024 µg/mL and 50% v/v, respectively. The MBC of cinnamon bark extract against P. acnes and S. epidermidis were more than 2048 µg/mL, whereas the MBC for honey against P. acnes and S. epidermidis were 100%. The combination of cinnamon bark extract and honey against P. acnes and S. epidermidis showed additive activity with a fractional inhibitory concentration index (FICI) value of 0.625. Therefore, the combination of cinnamon bark extract and honey has potential activity against acne-causing bacteria. PMID:28398231
Salaheldin, Hosam I; Almalki, Meshal H K; Hezma, Abd Elhameed M; Osman, Gamal E H
2017-06-01
The current time increase in the prevalence of antibiotic resistant 'super-bugs' and the risks associated with food safety have become global issues. Therefore, further research is warranted to identify new and effective antimicrobial substances. Silver nanoparticles (Ag-NPs) were synthesized by autoclaving technique using, different concentrations of Ag salt (AgNO 3 ) solution (1, 5, 10, and 25 mM). Their presence was confirmed by a surface plasmon resonance band at ∼435 nm using UV-Vis absorption spectra. The morphology of the synthesized Ag-NPs stabilized by polyacrylamide (PAM) was examined by TEM, SAED, and EDS. TEM images revealed that the synthesized Ag-NPs had an average diameter of 2.98±0.08 nm and SAED and EDS results confirmed the formation of Ag-NPs. In addition, FT-IR spectroscopy revealed that a PAM polymer matrix stabilized the Ag-NPs. The well diffusion method, was used to test, Gram positive and Gram negative bacteria were examined. Also the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were studied against Ag-NPs. The Ag-NPs exhibited strong inhibitory activity, MIC and MBC against the tested clinical bacterial isolates. These results suggest that Ag-NPs stabilized in PAM are highly effective against clinical bacterial isolates can be applied in medical fields.
USDA-ARS?s Scientific Manuscript database
Plazomicin is a next-generation aminoglycoside with a potentially improved safety profile compared to other aminoglycosides. This study assessed plazomicin MICs and MBCs in four Brucella spp. reference strains. Like other aminoglycosides and aminocyclitols, plazomicin MBC values equaled MIC values ...
Thiesen, L C T; Sugauara, E Y Y; Tešević, V; Glamočlija, J; Soković, M; Gonçalves, J E; Gazim, Z C; Linde, G A; Colauto, N B
2017-04-13
Brunfelsia genus is traditionally utilized in popular medicine due to its antibacterial and antifungal properties to name but a few. However, studies on the antimicrobial activity of Brunfelsia uniflora flower oleoresin have not been found yet. This study aimed to evaluate the chemical composition and antimicrobial activity of B. uniflora flower oleoresin obtained by supercritical carbon dioxide. Oleoresin from the plant dried flowers was obtained by carbon dioxide, and the chemical composition was analyzed by gas chromatographic-mass spectrometry. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC) of this oleoresin for seven bacteria and eight fungi were determined using 96-well microtiter plates. The oleoresin MBC for Bacillus cereus, Enterobacter cloacae, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enterica, and Staphylococcus aureus ranged from 0.01 to 0.08 mg/mL, whereas the controls streptomycin and ampicillin varied from 0.1 and 0.5 mg/mL. The oleoresin MFC for Aspergillus fumigatus, Aspergillus niger, Aspergillus ochraceus, Aspergillus versicolor, Penicillium funiculosum, Penicillium ochrochloron, Penicillium verrucosum var. cyclopium, and Trichoderma viride varied from 0.01 to 0.08 mg/mL, whereas the controls bifonazole and ketoconazole ranged from 0.2 to 3.5 mg/mL. The oleoresin obtained by supercritical carbon dioxide presented bacteriostatic, bactericidal, fungistatic, and fungicidal activities that were higher than the positive controls streptomycin, ampicillin, bifonazole, and ketoconazole. The high antimicrobial activity was related to the high content of (E, E)-geranyllinalool that composes 21.0% of the oleoresin and a possible synergic action with fatty acid esters that made up 50.5% of the oleoresin. The oleoresin antimicrobial activity against common multiresistant bacteria in severe infectious processes as P. aeruginosa or against toxin-producing fungi such as P. ochrochloron or fungi that are difficult to control such as T. viride suggests the development of promising applications of this product in the food, farming, livestock, and pharmaceutical industry.
Could essential oils of green and black pepper be used as food preservatives?
Nikolić, Miloš; Stojković, Dejan; Glamočlija, Jasmina; Ćirić, Ana; Marković, Tatjana; Smiljković, Marija; Soković, Marina
2015-10-01
Black and green pepper essential oils were used in this study in order to determine the chemical composition, in vitro antimicrobial activity against food spoilage microorganisms and in situ oils effect on food microorganism, after incorporation in chicken soup, by suggested methodology for calculation of Growth inhibition concentrations (GIC50). Chemical analysis revealed a total of 34 components. The major constituent of black pepper oil was trans-caryophyllene (30.33 %), followed by limonene (12.12 %), while β-pinene (24.42 %), δ(3)-carene (19.72 %), limonene (18.73 %) and α-pinene (10.39 %) were dominant compounds in green pepper oil. Antimicrobial activity was determined by microdilution technique and minimal inhibitory (MIC) and minimal bactericidal/fungicidal concentrations (MBC/MFC) were determined. Green pepper oil showed stronger antibacterial and antifungal activity (MIC 0.50-1.87; MBC 0.63-2.5 mg/ml; MIC 0.07-0.16; MFC 0.13-1.25 mg/ml) against black pepper oil (MIC 0.07-3.75; MBC 0.60-10.00 mg/ml; MIC 0.63-5.00; MFC 1.25-10.00 mg/ml. Oils successfully inhibited the growth of S. aureus in chicken soup in a dose dependent manner. GIC50 values were calculated after 24, 48 and 72 h and were in range of 0.156-0.689 mg/ml. The 50 % inhibitory concentrations (IC50) of EOs were 36.84 and 38.77 mg/ml with in 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay respectively. The obtained results revealed that black and green pepper volatiles are efficient in controlling the growth of known food-spoilage microorganisms.
Adukwu, Emmanuel C; Bowles, Melissa; Edwards-Jones, Valerie; Bone, Heather
2016-11-01
The aim of this study was to determine the antimicrobial effects of lemongrass essential oil (C. flexuosus) and to determine cytotoxic effects of both test compounds on human dermal fibroblasts. Antimicrobial susceptibility screening was carried out using the disk diffusion method. Antimicrobial resistance was observed in four of five Acinetobacter baumannii strains with two strains confirmed as multi-drug-resistant (MDR). All the strains tested were susceptible to both lemongrass and citral with zones of inhibition varying between 17 to 80 mm. The mean minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of citral (mic-0.14 % and mbc-0.3 % v/v) was lower than that of Lemongrass (mic-0.65 % and mbc-1.1 % v/v) determined using the microtitre plate method. Cell viability using human dermal fibroblasts (HDF; 106-05a) was determined following exposure to both compounds and a control (Grapeseed oil) using the XTT assay and the IC 50 determined at 0.095 % (v/v) for citral and 0.126 % (v/v) for lemongrass. Grapeseed oil had no effect on cell viability. Live cell imaging was performed using the LumaScope 500 imaging equipment and changes in HDF cell morphology such as necrotic features and shrinkage were observed. The ability of lemongrass essential oil (EO) and citral to inhibit and kill MDR A. baumannii highlights its potential for use in the management of drug-resistant infections; however, in vitro cytotoxicity does suggest further tests are needed before in vivo or ex vivo human exposure.
Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination.
Brandt, Alex L; Castillo, Alejandro; Harris, Kerri B; Keeton, Jimmy T; Hardin, Margaret D; Taylor, Thomas M
2010-01-01
Combining food antimicrobials can enhance inhibition of Listeria monocytogenes in ready-to-eat (RTE) meats. A broth dilution assay was used to compare the inhibition of L. monocytogenes resulting from exposure to nisin, acidic calcium sulfate, ε-poly-L-lysine, and lauric arginate ester applied singly and in combination. Minimum inhibitory concentrations (MICs) were the lowest concentrations of single antimicrobials producing inhibition following 24 h incubation at 35 °C. Minimum bactericidal concentrations (MBCs) were the lowest concentrations that decreased populations by ≥3.0 log(10) CFU/mL. Combinations of nisin with acidic calcium sulfate, nisin with lauric arginate ester, and ɛ-poly-L-lysine with acidic calcium sulfate were prepared using a checkerboard assay to determine optimal inhibitory combinations (OICs). Fractional inhibitory concentrations (FICs) were calculated from OICs and were used to create FIC indices (FIC(I)s) and isobolograms to classify combinations as synergistic (FIC(I) < 1.00), additive/indifferent (FIC(I)= 1.00), or antagonistic (FIC(I) > 1.00). MIC values for nisin ranged from 3.13 to 6.25 μg/g with MBC values at 6.25 μg/g for all strains except for Natl. Animal Disease Center (NADC) 2045. MIC values for ε-poly-L-lysine ranged from 6.25 to 12.50 μg/g with MBCs from 12.50 to 25.00 μg/g. Lauric arginate ester at 12.50 μg/g was the MIC and MBC for all strains; 12.50 mL/L was the MIC and MBC for acidic calcium sulfate. Combining nisin with acidic calcium sulfate synergistically inhibited L. monocytogenes; nisin with lauric arginate ester produced additive-type inhibition, while ε-poly-L-lysine with acidic calcium sulfate produced antagonistic-type inhibition. Applying nisin along with acidic calcium sulfate should be further investigated for efficacy on RTE meat surfaces. © 2010 Institute of Food Technologists®
Selim, Samy
2011-01-01
Eleven essential oils (EOs) were evaluated for their antibacterial properties, against Vancomycin-Resistant Enterococci (VRE) and E. coli O157:H7. EOs were introduced into Brain Heart Infusion agar (BHI) (15ml) at a concentration of 0.25 to 2% (vol/vol) to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for each pathogen evaluated. Results showed that the most active essential oils against bacteria tested were thyme oil, with MIC90 and MBC90 for the VRA strains of 0.25% and 0.5%, respectively. Eucalyptus, juniper and clove oils were the least potent agent, with MIC90 and MBC90 of 2%. Furthermore, the inhibitory effect of these EO were evaluated against VRE and E. coli O157:H7, experimentally inoculated (103 cfu/g) in Feta soft cheese and minced beef meat, which was mixed with different concentrations (0.1%, 0.5% and 1%) of the EO and stored at 7 °C for 14 days. Out of eucalyptus, juniper, mint, rosemary, sage, clove and thyme oils tested against target bacteria sage and thyme showed the best results. Clove and mint did not show any effect on VRE and E. coli O157:H7 in both kinds of studied foods. The addition of thyme oil at concentrations of 0.5 and 1% caused best significant reduction in the growth rate of VRE and E. coli O157:H7 in cheese and meat at 7 oC. It is concluded that selected plant EOs can act as potent inhibitors of both microorganisms in a food product. The results revealed the potential of thyme oil as a natural preservative in feta soft cheese and minced beef meat against VRE and E. coli O157:H7 contamination. PMID:24031620
Park, Ho-Won; Choi, Kyu-Duck; Shin, Il-Shik
2013-01-01
The antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish root was investigated against oral microorganisms: 6 strains of facultative anaerobic bacteria, Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, Staphylococcus aureus, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans; one strain of yeast, Candida albicans, and 3 strains of anaerobic bacteria, Fusobacterium nucleatum, Prevotella nigrescens, and Clostridium perfringens. The ITCs extracted from horseradish root showed antimicrobial activity against all oral microorganisms by the paper disk method. The minimum bactericidal concentration (MBC) of the ITCs extracted from horseradish root ranged from 1.25 to 5.00 mg/ml against 6 strains of facultative anaerobic bacteria and one strain of yeast, and 4.17 to 16.67 mg/ml against 3 strains of anaerobic bacteria. The ITCs extracted from horseradish root showed the strongest antimicrobial activity, with a MBC of 1.25 mg/ml, against C. albicans among facultative microorganisms, and 4.17 mg/ml against F. nucleatum among anaerobic bacteria. These results suggest that the ITCs extracted from horseradish root may be a candidate for use as an antimicrobial agent against oral microorganisms.
Bueno-Silva, Bruno; Marsola, Alexandre; Ikegaki, Masaharu; Alencar, Severino M; Rosalen, Pedro L
2017-06-01
The aim of this study was to evaluate the effect of seasons on the chemical composition and antibacterial activity of Brazilian red propolis (BRP) and its plant source. BRP was collected from Maceio, Alagoas state, north-east of Brazil, during one year. Chemical composition was determined by physicochemical analyses and HPLC while antimicrobial activity was assessed against Streptococcus mutans, Streptococcus sobrinus, Staphylococcus aureus and Actinomyces naeslundii by determining the minimal inhibitory and bactericidal concentrations (MIC and MBC, respectively). The comparative chemical profiles varied quantitatively according to the collection period. Formononetin was the most abundant compound in both propolis and resin, while isoliquiritigenin, (3S)-neovestitol, (3S)-vestitol are suggested to be responsible for antimicrobial activity of Brazilian red propolis. MIC varied from 15.6 to 125 μg/mL, whereas MBC varied from 31.2 to 500 μg/mL. Therefore, season in which propolis and its botanical source are collected indeed influences their chemical compositions, resulting in variations in their antibacterial activity.
Sonibare, Mubo A; Aremu, Oluwafunmilola T; Okorie, Patricia N
2016-06-01
Vernonia cinerea (L.) Less is used in folk medicine as a remedy for various diseases. The present study reports antioxidant and antimicrobial activities of solvent fractions of Vernonia cinerea. The antioxidant properties of solvent fractions of V. cinerea were evaluated by determining radicals scavenging activity, total flavonoid and phenolic contents measured with the 2,2-diphenyl-1-picryl hydrazyl (DPPH) test, the aluminum chloride and the Folin-ciocalteau methods, respectively. Antimicrobial activities were tested against human pathogenic microorganisms using agar diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of each active extract were determined. The ethyl acetate fraction having the IC50 value of 6.50 µg/mL demonstrated comparable DPPH radical-scavenging activity with standard antioxidants, gallic acid and quercetin included in the study. All fractions displayed moderate antimicrobial potential against the tested pathogens with the zone of inhibition that ranged from 9.0 to 13.5 mm. The MIC (1.56 mg/mL) and MBC (3.13 mg/mL) indicated highest susceptibility of Candida albicans in all fractions. The results of this study showed that the solvent fractions of V. cinerea possess antioxidant and antimicrobial activities, hence justifying the folkloric use of the plant for the treatment of various ailments in traditional medicine.
Prunus mume extract exhibits antimicrobial activity against pathogenic oral bacteria.
Seneviratne, Chamida J; Wong, Ricky W K; Hägg, Urban; Chen, Yong; Herath, Thanuja D K; Samaranayake, P Lakshman; Kao, Richard
2011-07-01
Prunus mume is a common fruit in Asia, which has been used in traditional Chinese medicine. In this study, we focused on the antimicrobial properties of Prunus mume extract against oral pathogens related to dental caries and periodontal diseases. A total of 15 oral pathogens including Streptococcus mutans, S. sobrinus, S. mitis, S. sanguinis, Lactobacillus acidophilus, P. gingivalis, Aggregatibacter actinomycetemcomitans, and Candida species were included in the study. Initially, agar diffusion assay was performed to screen the antimicrobial activities of Prunus mume extract. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were then determined for sensitive species. Effect of Prunus mume extract on human oral keratinocytes (HOK) viability was also tested. In the agar diffusion assay, drug suspension of 2 g/mL was able to inhibit all the bacterial species tested, but not the fungal species. MIC and MBC range of Prunus mume extract against the oral bacteria was 0.15625-0.0003 g/mL and P. gingivalis being the most susceptible species. Prune extract did not cause any detrimental effect on HOK. Prunus mume extract may be a potential candidate for developing an oral antimicrobial agent to control or prevent dental diseases associated with oral pathogenic bacteria. © 2011 The Authors. International Journal of Paediatric Dentistry © 2011 BSPD, IAPD and Blackwell Publishing Ltd.
Samarakoon, Kalpa; Senevirathne, Mahinda; Lee, Won-Woo; Kim, Young-Tae; Kim, Jae-Il; Oh, Myung-Cheol
2012-01-01
In this study, the antibacterial effect was evaluated to determine the benefits of high speed drying (HSD) and far-infrared radiation drying (FIR) compared to the freeze drying (FD) method. Citrus press-cakes (CPCs) are released as a by-product in the citrus processing industry. Previous studies have shown that the HSD and FIR drying methods are much more economical for drying time and mass drying than those of FD, even though FD is the most qualified drying method. The disk diffusion assay was conducted, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined with methanol extracts of the dried CPCs against 11 fish and five food-related pathogenic bacteria. The disk diffusion results indicated that the CPCs dried by HSD, FIR, and FD prevented growth of all tested bacteria almost identically. The MIC and MBC results showed a range from 0.5-8.0 mg/mL and 1.0-16.0 mg/mL respectively. Scanning electron microscopy indicated that the extracts changed the morphology of the bacteria cell wall, leading to destruction. These results suggest that CPCs dried by HSD and FIR showed strong antibacterial activity against pathogenic bacteria and are more useful drying methods than that of the classic FD method in CPCs utilization. PMID:22808341
Evaluation of some pharmacological activities of Budmunchiamine - A isolated from Albizia amara.
Thippeswamy, Sreerangegowda; Mohana, Devihalli Chikkaiah; Abhishek, Rayasandra Umesh; Manjunath, Kiragandur
2015-03-01
The present investigations were aimed to evaluate the antimicrobial and antioxidant efficacies of budmunchiamine-A (BUA) of Albizia amara . The activity-guided isolation leaded to isolate the bioactive compound budmunchiamine-A from alkaloid extract of A. amara . The budmunchiamine-A showed significant broad-spectrum antimicrobial activity with zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values varied from 7.3 to 24.5 mm, 0.95 to 62.5 μg/mL, and 1.9 to 250 μg/mL, respectively. The budmunchiamine-A exhibited moderate antioxidant activity with inhibitory concentration 50% (IC 50 ) value of 400 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and percent inhibition of β-carotene/linoleic acid was 67.8%. The results suggest the possible use of budmunchiamine-A as a molecular entity for drug development in pharmaceutical industry.
Evaluation of some pharmacological activities of Budmunchiamine - A isolated from Albizia amara
Thippeswamy, Sreerangegowda; Mohana, Devihalli Chikkaiah; Abhishek, Rayasandra Umesh; Manjunath, Kiragandur
2015-01-01
The present investigations were aimed to evaluate the antimicrobial and antioxidant efficacies of budmunchiamine-A (BUA) of Albizia amara . The activity-guided isolation leaded to isolate the bioactive compound budmunchiamine-A from alkaloid extract of A. amara . The budmunchiamine-A showed significant broad-spectrum antimicrobial activity with zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values varied from 7.3 to 24.5 mm, 0.95 to 62.5 μg/mL, and 1.9 to 250 μg/mL, respectively. The budmunchiamine-A exhibited moderate antioxidant activity with inhibitory concentration 50% (IC 50 ) value of 400 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and percent inhibition of β-carotene/linoleic acid was 67.8%. The results suggest the possible use of budmunchiamine-A as a molecular entity for drug development in pharmaceutical industry. PMID:26221099
Pinheiro, Patrícia Fontes; Menini, Luciana Alves Parreira; Bernardes, Patrícia Campos; Saraiva, Sérgio Henriques; Carneiro, José Walkimar Mesquita; Costa, Adilson Vidal; Arruda, Társila Rodrigues; Lage, Mateus Ribeiro; Gonçalves, Patrícia Martins; Bernardes, Carolina de Oliveira; Alvarenga, Elson Santiago; Menini, Luciano
2018-01-10
Semisynthetic phenol derivatives were obtained from the natural phenols: thymol, carvacrol, eugenol, and guaiacol through catalytic oxychlorination, Williamson synthesis, and aromatic Claisen rearrangement. The compounds characterization was carried out by 1 H NMR, 13 C NMR, and mass spectrometry. The natural phenols and their semisynthetic derivatives were tested for their antimicrobial activity against the bacteria: Staphylococcus aureus, Escherichia coli, Listeria innocua, Pseudomonas aeruginosa, Salmonella enterica Typhimurium, Salmonella enterica ssp. enterica, and Bacillus cereus. Minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values were determined using concentrations from 220 to 3.44 μg mL -1 . Most of the tested compounds presented MIC values ≤220 μg mL -1 for all the bacteria used in the assays. The molecular properties of the compounds were computed with the PM6 method. Through principle components analysis, the natural phenols and their semisynthetic derivatives with higher antimicrobial potential were grouped.
Lee, Spencer; Razqan, Ghaida Saleh Al; Kwon, Dong H
2017-01-15
Infections caused by Acinetobacter baumannii were responsive to conventional antibiotic therapy. However, recently, carbapenem-associated multidrug resistant isolates have been reported worldwide and present a major therapeutic challenge. Epigallocatechin-3-Gallate (EGCG) extracted from green tea exhibits antibacterial activity. We evaluated the antibacterial activity of EGCG and possible synergism with antibiotics in carbapenem-associated multidrug resistant A. baumannii. A potential mechanism for synergism was also explored. Seventy clinical isolates of A. baumannii collected from geographically different areas were analyzed by minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EGCG. Checkerboard and time-killing assays were performed to exam the synergism between EGCG and antibiotics. The effects of EGCG on a multidrug efflux pump inhibitor (1-[1-naphthylmethyl] piperazine; NMP) and β-lactamase production were also examined in A. baumannii. Sixty-three of 70 clinical isolates of A. baumannii carried carbapenemase-encoding genes with carbapenem-associated multidrug resistance. Levels of MIC and MBC of EGCG ranged from 64 to 512µg/ml and from 128 to ≥1024µg/ml, respectively among the clinical isolates. MIC 90 and MBC 86 levels were 256µg/ml and 512µg/ml of EGCG, respectively. Subinhibitory concentration of EGCG in combination with all antibiotics tested, including carbapenem, sensitized (MICs fall≤1.0µg/ml) all carbapenem-associated multidrug resistant isolates. Checkerboard and time-killing assays showed synergism between EGCG and meropenem (or carbenicillin) counted as fractional inhibitory concentration of < 0.5 and cell numbers' decrease per ml of >2log10 within 12h, respectively. EGCG significantly increased the effect of NMP but was unrelated to β-lactamase production in A. baumannii, suggesting EGCG may be associated with inhibition of efflux pumps. Overall we suggest that EGCG-antibiotic combinations might provide an alternative approach to treat infections with A. baumannii regardless of antibiotic resistance. Copyright © 2016 Elsevier GmbH. All rights reserved.
Poonacha, Nethravathi; Nair, Sandhya; Desai, Srividya; Tuppad, Darshan; Hiremath, Deepika; Mohan, Thulasi; Vipra, Aradhana
2017-01-01
ABSTRACT Coagulase-negative staphylococci (CoNS) are the major causative agents of foreign-body-related infections, including catheter-related bloodstream infections. Because of the involvement of biofilms, foreign-body-related infections are difficult to treat. P128, a chimeric recombinant phage-derived ectolysin, has been shown to possess bactericidal activity on strains of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). We tested the killing potential of P128 on three clinically significant species of CoNS, S. epidermidis, S. haemolyticus, and S. lugdunensis, under a variety of physiological conditions representing growing and nongrowing states. The MIC90 and minimum bactericidal concentration at which 90% of strains tested are killed (MBC90) of P128 on 62 clinical strains of CoNS were found to be 16 and 32 μg/ml (0.58 and 1.16 μM), respectively, demonstrating the bactericidal nature of P128 on CoNS strains. Serum showed a potentiating effect on P128 inhibition, as indicated by 4- to 32-fold lower MIC values observed in serum. P128 caused a rapid loss of viability in all CoNS strains tested. Persisters of CoNS that were enriched in the presence of vancomycin or daptomycin were killed by P128 at 1× the MIC in a rapid manner. Low concentrations of P128 caused a 2- to 5-log reduction in CFU in stationary-phase or poorly metabolizing CoNS cultures. P128 at low concentrations eliminated CoNS biofilms in microtiter plates and on the surface of catheters. Combinations of P128 and standard-of-care (SoC) antibiotics were highly synergistic in inhibiting growth in preformed biofilms. Potent activity on planktonic cells, persisters, and biofilms of CoNS suggests that P128 is a promising candidate for the clinical development of treatments for foreign-body-related and other CoNS infections. PMID:28559263
2013-01-01
Background A plant mixture containing indigenous Australian plants was examined for synergistic antimicrobial activity using selected test microorganisms. This study aims to investigate antibacterial activities, antioxidant potential and the content of phenolic compounds in aqueous, ethanolic and peptide extracts of plant mixture. Methods Well diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were used to test antibacterial activity against four pathogenic bacteria namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa. DPPH (2, 2-diphenyl-1- picrylhydrazyl) and superoxide dismutase (SOD) assays were used to evaluate antioxidant activity. HPLC and gel filtration were used for purification of the peptides. Scanning electron microscope was applied to investigate the mode of attachment of the peptides on target microbial membranes. Results Aqueous extraction of the mixture showed no inhibition zones against all the test bacteria. Mean diameter of inhibition zones for ethanol extraction of this mixture attained 8.33 mm, 7.33 mm, and 6.33 mm against S. aureus at corresponding concentrations of 500, 250 and 125 mg/ml while E .coli showed inhibition zones of 9.33 mm, 8.00 mm and 6.66 mm at the same concentrations. B. cereus exhibited inhibition zones of 11.33 mm, 10.33 mm and 10.00 mm at concentrations of 500, 250 and 125 mg/ml respectively. The peptide extract demonstrated antibacterial activity against S. aureus, E. coli and B. cereus. The MIC and MBC values for ethanol extracts were determined at 125 mg/ml concentration against S. aureus and E. coli and B. cereus value was 31.5 mg/ml. MIC and MBC values showed that the peptide extract was significantly effective at low concentration of the Australian plant mixture (APM). Phenolic compounds were detected in hot aqueous and ethanolic extracts of the plant mixture. Hot aqueous, ethanol and peptides extracts also exhibited antioxidant activities. Conclusions It was concluded that APM possessed good antibacterial and antioxidant activities following extraction with different solvents. The results suggest that APM provide a new source with antibacterial agents and antioxidant activity for nutraceutical or medical applications. PMID:24330547
Coulibaly, K; Zirihi, G N; Guessennd-Kouadio, N; Oussou, K R; Dosso, M
2014-09-01
Methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis and coagulase-negative Staphylococcus infections are a worldwide concern. Terminalia ivorensis, of Combretaceae family plant, is widely used traditional medicinal in Côte d'Ivoire to treat dermal diseases (affection in which Staphylococci are implied) including local inflammation and also to treat voice-loss. This study focused to investigate the effect in vitro of the extracts of trunk barks of Terminalia ivorensis on some methicillin/oxacillin-resistant strains of Staphylococcus aureus, S. epidermidis, coagulase-negative S. and reference strain of S. aureus ATCC 25923. Antibacterial activity of aqueous, 70% ethanolic 70% and aqueous residue extracts was assessed using agar disc-diffusion method and liquid medium microdilution method in 96 multi-well micro-titer plates. This method led us to determine minimum inhibition concentration (M.I.C.) and minimum bactericidal concentration (M.B.C.). The presence of chemical groups major was detected qualitatively. Aqueous and 70% ethanolic 70% extracts showed significant activity against all the bacteria except aqueous residue when compared with the standard antibiotic oxacillin (5 µg/ml). M.I.C. for aqueous and 70% ethanolic 70% extracts ranged from 0,83-16,67 mg/ml and 0,156-13,33 mg/ml respectively. Viable cell determination revealed the bactericidal nature of the two barks extracts. The 70% ethanolic 70% extract exhibited the highest activity according to the M.B.C. values. The phytochemical analysis indicates the presence of tannins, saponins, flavonoids, terpen/sterols, coumarins, polyphenols and traces of alkaloid. The in-vitro antibacterial efficacy shown by the barks of this plant and his lushness in chimical compounds, would justify use of this one in the traditional treatment of some diseases of microbial origin. These compounds could be suggested to provide alternative solution to the development of new therapeutic agents.
Benli, Mehlika; Yiğit, Nazife; Geven, Fatmagül; Güney, Kerim; Bingöl, Umit
2008-12-01
Up to now an increasing number of antibiotic-resistant bacteria have been reported and thus new natural therapeutic agents are needed in order to eradicate these pathogens. Through the discovery of plants such as Crataegus tanacetifolia (Lam.) Pers that have antimicrobial activity, it will be possible to discover new natural drugs serving as chemotherapeutic agents for the treatment of nosocomial pathogens and take these antibiotic-resistant bacteria under control. The objective of the present study was to determine antimicrobial activity and the activity mechanism of C. tanacetifolia plant extract. The leaves of C. tanacetifolia, which is an endemic plant, were extracted using methanol and tested against 10 bacterial and 4 yeast strains by using a drop method. It was observed that the plant extract had antibacterial effects on Bacillus subtilis, Shigella, Staphylococcus aureus, and Listeria monocytogenes among the microorganisms that were tested. Minimum inhibitory concentration (MIC) results obtained at the end of an incubation of 24 h were found to be > or =6.16 mg ml(-1) for B. subtilis, < 394 mg ml(-1) for Shigella, and > or =3.08 mg ml(-1) for L. monocytogenes and S. aureus and minimum bactericidal concentration (MBC) were found as > or =24.63 mg ml(-1) for B. subtilis, > or =394 mg ml(-1) for Shigella, > or =6.16 mg ml(-1) for L. monocytogenes, and > or =98.5 mg ml(-1) for S. aureus. According to the MBC results, it was found that the plant extract had bactericidal effects and in order to explain the activity mechanism and cell deformation of bacterial strains treated with plant extract, the scanning electron microscopy (SEM) was used. The results of SEM showed that the treated cells appeared shrunken and there was degradation of the cell walls. This study, in which the antibacterial effect of C. tanacetifolia was demonstrated, will be a base for further investigations on advanced purification and effect mechanism of action of its active compounds.
Ahrari, Farzaneh; Eslami, Neda; Rajabi, Omid; Ghazvini, Kiarash; Barati, Sahar
2015-01-01
Background: Metal nanoparticles have been recently applied in dentistry because of their antibacterial properties. This study aimed to evaluate antibacterial effects of colloidal solutions containing zinc oxide (ZnO), copper oxide (CuO), titanium dioxide (TiO2) and silver (Ag) nanoparticles on Streptococcus mutans and Streptococcus sangius and compare the results with those of chlorhexidine and sodium fluoride mouthrinses. Materials and Methods: After adding nanoparticles to a water-based solution, six groups were prepared. Groups I to IV included colloidal solutions containing nanoZnO, nanoCuO, nanoTiO2 and nanoAg, respectively. Groups V and VI consisted of 2.0% sodium fluoride and 0.2% chlorhexidine mouthwashes, respectively as controls. We used serial dilution method to find minimum inhibitory concentrations (MICs) and with subcultures obtained minimum bactericidal concentrations (MBCs) of the solutions against S. mutans and S. sangius. The data were analyzed by analysis of variance and Duncan test and P < 0.05 was considered as significant. Results: The sodium fluoride mouthrinse did not show any antibacterial effect. The nanoTiO2-containing solution had the lowest MIC against both microorganisms and also displayed the lowest MBC against S. mutans (P < 0.05). The colloidal solutions containing nanoTiO2 and nanoZnO showed the lowest MBC against S. sangius (P < 0.05). On the other hand, chlorhexidine showed the highest MIC and MBC against both streptococci (P < 0.05). Conclusion: The nanoTiO2-containing mouthwash proved to be an effective antimicrobial agent and thus it can be considered as an alternative to chlorhexidine or sodium fluoride mouthrinses in the oral cavity provided the lack of cytotoxic and genotoxic effects on biologic tissues. PMID:25709674
Effects of Caesalpinia sappan on pathogenic bacteria causing dental caries and gingivitis.
Puttipan, Rinrampai; Wanachantararak, Penpicha; Khongkhunthian, Sakornrat; Okonogi, Siriporn
2017-01-01
The present study explores antimicrobial activities of Caesalpinia sappan extracts against three strains of oral pathogenic bacteria; Streptococcus mutans DMST9567 (Smu9), Streptococcus mutans DMST41283 (Smu4), and Streptococcus intermedius DMST42700 (Si). Ethanol crude extract of C. sappan (Cs-EtOH) was firstly compared to that of other medicinal plants using disc diffusion method. Cs-EtOH showed significantly higher effective inhibition against all tested strains than other extracts and 0.12% chlorhexidine with the inhibition zone of 17.5 ± 0.5, 18.5 ± 0.0, and 17.0 ± 0.0 mm against Smu9, Smu4, and Si, respectively. Three fractionated extracts of C. sappan using hexane, ethyl acetate, and ethanol, respectively, were further investigated. The fractionated extract from ethanol (F-EtOH) presented the strongest activities with the minimum bactericidal concentration (MBC) of 125-250 µg/mL. Killing kinetics of F-EtOH was depended on the bacterial species and the concentration of F-EtOH. Two-fold MBC of F-EtOH could kill all tested strains within 12 h whereas its 4-fold MBC showed killing effect against Si within 6 h. Separation of F-EtOH by column chromatography using chloroform/methanol mixture as an eluent yielded 11 fractions (F1-F11). The fingerprints of these fractions by high-performance liquid chromatography at 280 nm revealed that F-EtOH consisted of at least 5 compounds. F6 possessed the significantly highest antimicrobial activity among 11 fractions, however less than F-EtOH. It is considered that F-EtOH is the promising extract of C. sappan for inhibiting oral pathogenic bacteria and appropriate as natural antiseptic for further develop of oral hygiene products.
Vieira, Thiago Isidro; Câmara, João Victor Frazão; Cardoso, Júlia Gabiroboertz; Alexandria, Adílis Kalina; Pintor, Andréa Vaz Braga; Villaça, Jaqueline Correia; Cabral, Lúcio Mendes; Romanos, Maria Teresa Villela; Fonseca-Gonçalves, Andrea; Valença, Ana Maria Gondim; Maia, Lucianne Cople
2018-07-01
This study evaluated the cytotoxicity, antimicrobial activity and in vitro influence of new fluoridated nanocomplexes on dental demineralization. The nanocomplexes hydroxypropyl-β-cyclodextrin with 1% titanium tetrafluoride (TiF 4 ) and γ-cyclodextrin with TiF 4 were compared to a positive control (TiF 4 ), a blank control (without treatment) and negative controls (hydroxypropyl-β-cyclodextrin, γ-cyclodextrin, deionized water), following 12- and 72-hour complexation periods. The cytotoxicity was assessed using the neutral red dye uptake assay at T1-15 min, T2-30 min and T3-24 h. A minimum bactericidal concentration (MBC) against Streptococcus mutans (ATCC 25175) was performed. Enamel blocks were exposed to an S. mutans biofilm, and the percentage of surface microhardness loss was obtained. Biocompatibility and microhardness data were analysed using ANOVA/Tukey tests (p < 0.05). At T1, the cell viability results of the nanocomplexes were similar to that of the blank control. At T2 and T3, the 72 h nanocomplexes demonstrated cell viability results similar to that of the blank, while the 12 h solutions showed results different from that of the blank (p < 0.05). All fluoridated nanocompounds inhibited S. mutans (MBC = 0.25%), while the MBC of TiF 4 alone was 0.13%. All fluoridated compounds presented a percentage of surface microhardness loss lower than that of deionized water (p < 0.05). The new fluoridated nanocomplexes did not induce critical cytotoxic effects during the experimental periods, whilst they did show bactericidal potential against S. mutans and inhibited enamel mineral loss. Copyright © 2018 Elsevier Ltd. All rights reserved.
Furi, Leonardo; Ciusa, Maria Laura; Knight, Daniel; Di Lorenzo, Valeria; Tocci, Nadia; Cirasola, Daniela; Aragones, Lluis; Coelho, Joana Rosado; Freitas, Ana Teresa; Marchi, Emmanuela; Moce, Laura; Visa, Pilar; Northwood, John Blackman; Viti, Carlo; Borghi, Elisa; Orefici, Graziella
2013-01-01
The MICs and minimum bactericidal concentrations (MBCs) for the biocides benzalkonium chloride and chlorhexidine were determined against 1,602 clinical isolates of Staphylococcus aureus. Both compounds showed unimodal MIC and MBC distributions (2 and 4 or 8 mg/liter, respectively) with no apparent subpopulation with reduced susceptibility. To investigate further, all isolates were screened for qac genes, and 39 of these also had the promoter region of the NorA multidrug-resistant (MDR) efflux pump sequenced. The presence of qacA, qacB, qacC, and qacG genes increased the mode MIC, but not MBC, to benzalkonium chloride, while only qacA and qacB increased the chlorhexidine mode MIC. Isolates with a wild-type norA promoter or mutations in the norA promoter had similar biocide MIC distributions; notably, not all clinical isolates with norA mutations were resistant to fluoroquinolones. In vitro efflux mutants could be readily selected with ethidium bromide and acriflavine. Multiple passages were necessary to select mutants with biocides, but these mutants showed phenotypes comparable to those of mutants selected by dyes. All mutants showed changes in the promoter region of norA, but these were distinct from this region of the clinical isolates. Still, none of the in vitro mutants displayed fitness defects in a killing assay in Galleria mellonella larvae. In conclusion, our data provide an in-depth comparative overview on efflux in S. aureus mutants and clinical isolates, showing also that plasmid-encoded efflux pumps did not affect bactericidal activity of biocides. In addition, current in vitro tests appear not to be suitable for predicting levels of resistance that are clinically relevant. PMID:23669380
Haghgoo, Roza; Mehran, Majid; Afshari, Elahe; Zadeh, Hamide Farajian; Ahmadvand, Motahare
2017-01-01
The aims of the present study were to determine and compare the effects of different concentrations of Althaea officinalis extract, 0.2% chlorhexidine (CHX), and penicillin on Streptococcus mutans and Lactobacillus acidophilus in vitro . The laboratory study was done, for a period of 8 weeks. Minimum inhibitory concentration (MIC) in the test tube, minimum bactericidal concentration (MBC) in a plate culture medium, and growth inhibition zone diameter methods were used to compare the antibacterial effects of 0.2% CHX, penicillin, and different concentrations of A. officinalis root extract. The data were analyzed by SPSS version 24 using ANOVA and t -test analysis. The results showed A. officinalis root extract had antibacterial effect, but significant differences were in MIC and MBC against L. acidophilus and S. mutans with penicillin and 0.2% CHX mouthwash. In addition, the mean growth inhibition zones of all the concentrations of the plant extract were less than that of the positive control group ( P = 0.001). However, the difference in the maximum growth inhibition zone from that with the negative control group was significant. In addition, the antibacterial effect of the extract increased with an increase in its concentration. The extract exerted a greater antibacterial effect on S. mutans than on L. acidophilus . The plant polyphenols content is 3.7% which is equivalent to 29.93 g/ml. The root extract of A. officinalis exhibited antibacterial effects on S. mutans and L. acidophilus , but this effect was less than those of CHX mouthwash and penicillin. The antibacterial effect increased with an increase in the concentration of the extract.
Min, Kyung R.; Galvis, Adriana; Williams, Brandon; Rayala, Ramanjaneyulu; Cudic, Predrag
2017-01-01
ABSTRACT Despite continuous efforts to control cariogenic dental biofilms, very few effective antimicrobial treatments exist. In this study, we characterized the activity of the novel synthetic cyclic lipopeptide 4 (CLP-4), derived from fusaricidin, against the cariogenic pathogen Streptococcus mutans UA159. We determined CLP-4's MIC, minimum bactericidal concentration (MBC), and spontaneous resistance frequency, and we performed time-kill assays. Additionally, we assessed CLP-4's potential to inhibit biofilm formation and eradicate preformed biofilms. Our results demonstrate that CLP-4 has strong antibacterial activity in vitro and is a potent bactericidal agent with low spontaneous resistance frequency. At a low concentration of 5 μg/ml, CLP-4 completely inhibited S. mutans UA159 biofilm formation, and at 50 μg/ml, it reduced the viability of established biofilms by >99.99%. We also assessed CLP-4's cytotoxicity and stability against proteolytic digestion. CLP-4 withstood trypsin or chymotrypsin digestion even after treatment for 24 h, and our toxicity studies showed that CLP-4 effective concentrations had negligible effects on hemolysis and the viability of human oral fibroblasts. In summary, our findings showed that CLP-4 is a potent antibacterial and antibiofilm agent with remarkable stability and low nonspecific cytotoxicity. Hence, CLP-4 is a promising novel antimicrobial peptide with potential for clinical application in the prevention and treatment of dental caries. PMID:28533236
Okamoto, Kazuaki; Ikeda, Fumiaki; Kanayama, Shoji; Nakajima, Akiko; Matsumoto, Tatsumi; Ishii, Ritsuko; Umehara, Masatoshi; Gotoh, Naomasa; Hayashi, Naoki; Iyoda, Takako; Matsuzaki, Kaoru; Matsumoto, Satoru; Kawashima, Makoto
2016-06-01
Benzoyl peroxide (BPO), a therapeutic agent for acne vulgaris, was assessed for in vitro antimicrobial activity against Propionibacterium acnes using a novel broth microdilution testing that improved BPO solubility. We searched for a suitable culture medium to measure the minimum inhibitory concentration (MIC) of BPO against P. acnes and finally found the Gifu anaerobic medium (GAM) broth supplemented with 0.1(v/v)% glycerol and 2(v/v)% Tween 80, in which BPO dissolved up to 1250 μg/mL and P. acnes grew well. The MICs and minimum bactericidal concentrations (MBCs) of BPO against 44 clinical isolates of P. acnes collected from Japanese patients with acne vulgaris were determined by our testing method using the supplemented GAM broth. The MICs of BPO were 128 or 256 μg/mL against all isolates of P. acnes regardless of susceptibility to nadifloxacin or clindamycin. The MBCs of BPO were also 128 or 256 μg/mL against the same isolates. Moreover, BPO at the MIC showed a rapid bactericidal activity against P. acnes ATCC11827 in time-kill assay. In conclusion, we could develop a novel assay for the MIC and MBC determinations of BPO against P. acnes, which is reliable and reproducible as a broth microdilution testing and the present results suggest that BPO has a potent bactericidal activity against P. acnes. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Antibacterial activity of selected Malaysian honey
2013-01-01
Background Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa. Methods Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were performed for semi-quantitative evaluation. Agar well diffusion assay was used to investigate peroxide and non-peroxide activities of honey. Results The results showed that gelam honey possessed lowest MIC value against S. aureus with 5% (w/v) MIC and MBC of 6.25% (w/v). Highest MIC values were shown by pineapple honey against E. coli and P. aeruginosa as well as acacia honey against E. coli with 25% (w/v) MIC and 50% (w/v) MBC values. Agar inhibition assay showed kelulut honey to possess highest total antibacterial activity against S. aureus with 26.49 equivalent phenol concentrations (EPC) and non-peroxide activity of 25.74 EPC. Lowest antibacterial activity was observed in acacia honey against E. coli with total activity of 7.85 EPC and non-peroxide activity of 7.59 EPC. There were no significant differences (p > 0.05) between the total antibacterial activities and non-peroxide activities of Malaysian honey. The intraspecific correlation between MIC and EPC of E. coli (r = -0.8559) was high while that between MIC and EPC of P. aeruginosa was observed to be moderate (r = -0.6469). S. aureus recorded a smaller correlation towards the opposite direction (r = 0.5045). In contrast, B.cereus showed a very low intraspecific correlation between MIC and EPC (r = -0.1482). Conclusions Malaysian honey, namely gelam, kelulut and tualang, have high antibacterial potency derived from total and non-peroxide activities, which implies that both peroxide and other constituents are mutually important as contributing factors to the antibacterial property of honey. PMID:23758747
Antibacterial activity of selected Malaysian honey.
Zainol, Mohd Izwan; Mohd Yusoff, Kamaruddin; Mohd Yusof, Mohd Yasim
2013-06-10
Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were performed for semi-quantitative evaluation. Agar well diffusion assay was used to investigate peroxide and non-peroxide activities of honey. The results showed that gelam honey possessed lowest MIC value against S. aureus with 5% (w/v) MIC and MBC of 6.25% (w/v). Highest MIC values were shown by pineapple honey against E. coli and P. aeruginosa as well as acacia honey against E. coli with 25% (w/v) MIC and 50% (w/v) MBC values. Agar inhibition assay showed kelulut honey to possess highest total antibacterial activity against S. aureus with 26.49 equivalent phenol concentrations (EPC) and non-peroxide activity of 25.74 EPC. Lowest antibacterial activity was observed in acacia honey against E. coli with total activity of 7.85 EPC and non-peroxide activity of 7.59 EPC. There were no significant differences (p > 0.05) between the total antibacterial activities and non-peroxide activities of Malaysian honey. The intraspecific correlation between MIC and EPC of E. coli (r = -0.8559) was high while that between MIC and EPC of P. aeruginosa was observed to be moderate (r = -0.6469). S. aureus recorded a smaller correlation towards the opposite direction (r = 0.5045). In contrast, B.cereus showed a very low intraspecific correlation between MIC and EPC (r = -0.1482). Malaysian honey, namely gelam, kelulut and tualang, have high antibacterial potency derived from total and non-peroxide activities, which implies that both peroxide and other constituents are mutually important as contributing factors to the antibacterial property of honey.
Shah, Shanal; Venkataraghavan, Karthik; Choudhary, Prashant; Mohammad, Shameer; Trivedi, Krishna; Shah, Shalin G
2016-01-01
The aim of this study is to evaluate the antimicrobial activity of Soluneem ™ when used as an irrigating solution along with other commonly used irrigating solution sodium hypochlorite (NaOCl) against Enterococcus faecalis. Microorganism used in this study was E. faecalis (Microbial Type Culture Collection 439). Test substance used was Soluneem ™, which was obtained from Vittal Mallya Scientific Research Foundation (VMSRF), Bengaluru. This study was conducted in a microbiology laboratory (Biocare Research India Pvt., Ltd. Laboratory, Ahmedabad, Gujarat) to evaluate the antimicrobial effect of Soluneem ™ (Azadirachtin) on E. faecalis. Antimicrobial activity testing was performed using the macrobroth dilution method according to the Clinical Laboratory Standards Institute guidelines. All determinations were performed thrice. Minimum bactericidal concentration (MBC) was seen as 2.6% for Soluneem ™ while the same was seen at 0.1% for NaOCl. Independent sample t-test was carried out to compare the MBC of Soluneem ™ and NaOCl, which showed that there was no statistically significant difference between them, i.e., 2.6% Soluneem ™ was as effective as 0.1% NaOCl. Soluneem ™ showed antimicrobial activity against E. faecalis at various concentrations. It was also found that the efficacy of Soluneem ™ at 2.6% concentration and above was relatively similar to that of gold standard irrigating solution (NaOCl) on inhibition of E. faecalis.
Dorey, L; Hobson, S; Lees, P
2017-04-01
Pharmacodynamic properties of marbofloxacin were established for six isolates each of the pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Three in vitro indices of potency were determined; Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Mutant Prevention Concentration (MPC). For MIC determination Clinical Laboratory Standards Institute guidelines were modified in three respects: (1) comparison was made between two growth media, an artificial broth and pig serum; (2) a high inoculum count was used to simulate heavy clinical bacteriological loads; and (3) five overlapping sets of two-fold dilutions were used to improve accuracy of determinations. Similar methods were used for MBC and MPC estimations. MIC and MPC serum:broth ratios for A. pleuropneumoniae were 0.79:1 and 0.99:1, respectively, and corresponding values for P. multocida were 1.12:1 and 1.32:1. Serum protein binding of marbofloxacin was 49%, so that fraction unbound (fu) serum MIC values were significantly lower than those predicted by correction for protein binding; fu serum:broth MIC ratios were 0.40:1 (A. pleuropneumoniae) and 0.50:1 (P. multocida). For broth, MPC:MIC ratios were 13.7:1 (A. pleuropneumoniae) and 14.2:1 (P. multocida). Corresponding ratios for serum were similar, 17.2:1 and 18.8:1, respectively. It is suggested that, for dose prediction purposes, serum data might be preferable to potency indices measured in broths. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dziedzic, Arkadiusz; Kubina, Robert; Wojtyczka, Robert D.; Kabała-Dzik, Agata; Tanasiewicz, Marta; Morawiec, Tadeusz
2013-01-01
Dental caries occurrence is caused by the colonization of oral microorganisms and accumulation of extracellular polysaccharides synthesized by Streptococcus mutans with the synergistic influence of Lactobacillus spp. bacteria. The aim of this study was to determine ex vivo the antibacterial properties of ethanol extract of propolis (EEP), collected in Poland, against the main cariogenic bacteria: salivary mutans streptococci and lactobacilli. The isolation of mutans streptococci group bacteria (MS) and Lactobacillus spp. (LB) from stimulated saliva was performed by in-office CRT bacteria dip slide test. The broth diffusion method and AlamarBlue assay were used to evaluate the antimicrobial activity of EEP, with the estimation of its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The biochemical composition of propolis components was assessed. The mean MIC and MBC values of EEP, in concentrations ranging from 25 mg/mL to 0.025 mg/mL, for the MS and LB were found to be 1.10 mg/mL versus 0.7 mg/mL and 9.01 mg/mL versus 5.91 mg/mL, respectively. The exposure to an extract of Polish propolis affected mutans streptococci and Lactobacillus spp. viability, exhibiting an antibacterial efficacy on mutans streptococci group bacteria and lactobacilli saliva residents, while lactobacilli were more susceptible to EEP. Antibacterial measures containing propolis could be the local agents acting against cariogenic bacteria. PMID:23606887
NASA Astrophysics Data System (ADS)
Nugraheni, E. R.; Adriani, G. R.; Munawaroh, H.
2017-04-01
Noni fruit (Morinda citrifolia L.) contains compounds that have potential as antibacterial agent. Antibacterial compounds produced noni fruit (M. citrifolia L.) can inhibit bacterial growth. This study was conducted to test the antibacterial activity of ethyl acetate extract of noni fruit (M. citrifolia L.) against spoilage bacterial in fish. Pseudomonas aeruginosa, Bacillus cereus, Escherichia coli, Klebsiella oxytoca, and Enterobacter aerogenes isolates and examine antibacterial phytochemical profile. Extraction of noni compounds was done by maceration, followed by partition with ethyl acetate to obtain the soluble and insoluble ethyl acetate fraction. Previews result show that the ethyl acetate extract had very strong activity. Extraction process continued by separation and isolation used preparative thin layer chromatography method, so that obtained five isolates and mark them as A, B, C, D and E. Antibacterial activity assay performed on isolates A, B, C, D, and E with 20 and 30% concentration. The test results showed that isolates A could not be inhibit the growth of bacteria, isolates B, C, D, and E has antibacterial activity with weak to strong inhibition. Isolate B had the greatest inhibition activity against the B. cereus, whereas isolates E had the greatest inhibition activity against P. aeroginosa. MIC (Minimum Inhibitor Concentration) and MBC (Minimum Bactericidal Concentration) test result showed that MIC and MBC values could not be determined. Analysis of compounds by TLC showed that isolate B suspected contains coumarin or flavonoids compounds that have antibacterial activity.
Mokarizadeh, Manijeh; Kafil, Hossein Samadi; Ghanbarzadeh, Saeed; Alizadeh, Ainaz; Hamishehkar, Hamed
2017-10-01
At the present time, utilization of essential oils in food preservation to prevent bacterial and fungal growth and improve shelf life and safety of the food products has notably gained increased interest. The aim of the present study was to improve the antimicrobial efficacy of citral as a natural preservative using nanostructured lipid carriers (NLCs). Formulations of NLCs were characterized using particle size analysis and scanning electron microscopy methods. Possible citral-carrier interaction and citral encapsulation efficiency percent (EE%) were assessed by Fourier transform infrared (FTIR) spectroscopy and gas chromatography techniques, respectively. Antimicrobial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of citral-loaded NLCs were evaluated and compared with the conventional citral emulsion against various gram-positive bacteria ( Staphylococcus aureus , Bacillus cereus ), gram-negative bacteria ( Escherichia coli ), and fungi ( Candida albicans ). Citral-loaded NLCs were spherically shaped nanosized (74.8 nm) particles with narrow size distribution, high EE% (99.84%), and appropriate physical stability during 90 days of storage period. FTIR spectra indicated the interaction between citral and formulation ingredients, which justified the obtained high EE% value. The MIC and MBC values of citral-loaded NLCs were lower than those of citral emulsion for all microorganisms. NLCs formulation showed remarkable capability of encapsulating essential oil and increasing antimicrobial properties to offer effective preservation in food industry.
Paredes, Daissy; Ortiz, Claudia; Torres, Rodrigo
2014-01-01
Silver nanoparticles (AgNPs) have been shown great interest because of their potential antibacterial effect. Recently, this has been increased due to resistance in some pathogenic bacteria strains to conventional antibiotics, which has initiated new studies to search for more effective treatments against resistant microorganisms. For these reasons, AgNPs have become an important approach for applications in nanobiotechnology in the development of antibiotic treatment of different bacterial infections. This study was aimed at synthesizing AgNPs using cysteine as a reducer agent and cetyl-tri-methyl-ammonium bromide as a stabilizer in order to obtain more efficient treatment against the pathogen bacteria Escherichia coli O157:H7. These AgNPs were characterized through UV-Vis spectroscopy, transmission electron microscopy, and dynamic light scattering. From these analyses, formation of spherical nanoparticles with an average size of 55 nm was confirmed. Finally, minimal inhibitory concentration (MIC) and minimal bactericide concentration (MBC) of these AgNPs against pathogenic strains E. coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) were determined in both solid and liquid media. MIC and MBC values were around 0.25 μg/mL and 1 μg/mL, respectively. These parameters were comparable to those reported in the literature and were even more effective than other synthesized AgNPs. PMID:24729707
Mishra, Amita; Sharma, Amit Kumar; Kumar, Shashank; Saxena, Ajit K; Pandey, Abhay K
2013-01-01
The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11-222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC) values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL) was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10-40 μg/mL). Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90-99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts.
Preparation and characterization of expanded graphite/metal oxides for antimicrobial application.
Hung, Wei-Che; Wu, Kuo-Hui; Lyu, Dong-Yi; Cheng, Ken-Fa; Huang, Wen-Chien
2017-06-01
Composite materials based on expanded graphite (EG) and metal oxide (MO) particles was prepared by an explosive combustion and blending method. The objective of the study was to develop EG impregnated with metal oxide particulates (Ag 2 O, CuO and ZnO) and evaluate the level of protection the materials conferred against biological agents. The physical properties of the EG/MO composites were examined using SEM, EDX and XRD spectroscopy, and the results indicated that the MO particles were incorporated into the EG matrix after impregnation. The antimicrobial activities of the EG/MO composites against Gram-positive bacteria, Gram-negative bacteria and Bacillus anthracis were investigated using zone of inhibition, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and plate-counting methods. EG/Ag 2 O exhibited a stronger antibacterial activity than EG/CuO and EG/ZnO, with a MIC of 0.3mg/mL and a MBC of 0.5mg/mL. To the best of our knowledge, few studies have demonstrated that EG/MO composites can inhibit the growth of Bacillus anthracis-adhered cells, thus preventing the process of biofilm formation. Nanoscale metal oxides display enhanced reactive properties toward bacteria due to their high surface area, large number of highly reactive edges, corner defect sites and high surface to volume ratio. Copyright © 2017 Elsevier B.V. All rights reserved.
Radaelli, Marcela; da Silva, Bárbara Parraga; Weidlich, Luciana; Hoehne, Lucélia; Flach, Adriana; da Costa, Luiz Antonio Mendonça Alves; Ethur, Eduardo Miranda
2016-01-01
Despite recent advances in food production technology, food-borne diseases (FBD) remain a challenging public health concern. In several countries, including Brazil, Clostridium perfringens is among the five main causative agents of food-borne diseases. The present study determines antimicrobial activities of essential oils of six condiments commonly used in Brazil, viz., Ocimum basilicum L. (basil), Rosmarinus officinalis L. (rosemary), Origanum majorana L. (marjoram), Mentha × piperita L. var. Piperita (peppermint), Thymus vulgaris L. (thyme) and Pimpinella anisum L. (anise) against C. perfringens strain A. Chemical compositions of the oils were determined by GC-MS (gas chromatography-mass spectrometry). The identities of the isolated compounds were established from the respective Kováts indices, and a comparison of mass spectral data was made with those reported earlier. The antibacterial activity was assessed from minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using the microdilution method. Minimum inhibitory concentration values were 1.25mgmL(-1) for thyme, 5.0mgmL(-1) for basil and marjoram, and 10mgmL(-1) for rosemary, peppermint and anise. All oils showed bactericidal activity at their minimum inhibitory concentration, except anise oil, which was only bacteriostatic. The use of essential oils from these common spices might serve as an alternative to the use of chemical preservatives in the control and inactivation of pathogens in commercially produced food systems. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Screening for fractions of Oxytropis falcata Bunge with antibacterial activity.
Jiang, H; Hu, J R; Zhan, W Q; Liu, X
2009-01-01
Preliminary studies with the four extracts of Oxytropis falcate Bunge exhibited that the chloroform and ethyl acetate extracts showed stronger antibacterial activities against the nine tested Gram-positive and Gram-negative bacteria. The HPLC-scanned and bioassay-guided fractionation led to the isolation and identification of the main flavonoid compounds, i.e. rhamnocitrin, kaempferol, rhamnetin, 2',4'-dihydroxychalcone and 2',4',beta-trihydroxy-dihydrochalcon. Except 2',4',beta-trihydroxy-dihydrochalcon, four other compounds had good antibacterial activities. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of the four compounds ranged between 125 and 515 microg mL(-1). Staphylococcus aureus was the most susceptible to these compounds, with MIC and MBC values from 125 to 130 microg mL(-1). This is the first report of antibacterial activity in O. falcate Bunge. In this study, evidence to evaluate the biological functions of O. falcate Bunge is provided, which promote the rational use of this herb.
Harrison, Joe J; Turner, Raymond J; Ceri, Howard
2005-07-01
In this study, we examined Pseudomonas aeruginosa ATCC 27853 biofilm and planktonic cell susceptibility to metal cations. The minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC) required to eradicate 100% of the planktonic population (MBC 100), and the minimum biofilm eradication concentration (MBEC) were determined using the MBEC trade mark-high throughput assay. Six metals - Co(2+), Ni(2+), Cu(2+), Zn(2+), Al(3+) and Pb(2+)- were each tested at 2, 4, 6, 8, 10 and 27 h of exposure to biofilm and planktonic cultures grown in rich or minimal media. With 2 or 4 h of exposure, biofilms were approximately 2-25 times more tolerant to killing by metal cations than the corresponding planktonic cultures. However, by 27 h of exposure, biofilm and planktonic bacteria were eradicated at approximately the same concentration in every instance. Viable cell counts evaluated at 2 and 27 h of exposure revealed that at high concentrations, most of the metals assayed had killed greater than 99.9% of biofilm and planktonic cell populations. The surviving cells were propogated in vitro and gave rise to biofilm and planktonic cultures with normal sensitivity to metals. Further, retention of copper by the biofilm matrix was investigated using the chelator sodium diethlydithiocarbamate. Formation of visible brown metal-chelates in biofilms treated with Cu(2+) suggests that the biofilm matrix may coordinate and sequester metal cations from the aqueous surroundings. Overall, our data suggest that both metal sequestration in the biofilm matrix and the presence of a small population of 'persister' cells may be contributing factors in the time-dependent tolerance of both planktonic cells and biofilms to high concentrations of metal cations.
Antimicrobial Effects of Garcinia Mangostana on Cariogenic Microorganisms.
Janardhanan, Sunitha; Mahendra, Jaideep; Girija, A S Smiline; Mahendra, Little; Priyadharsini, Vijayashree
2017-01-01
Garcinia mangostana commonly called as Mangosteen fruit has been used as an antibacterial agent since age old times. The mangosteen pericarp has proven to have antibacterial effect, but the effect of the same on cariogenic organisms has not been explored. The present study was an attempt to gain a better understanding of the antibacterial effect of mangosteen pericarp on the cariogenic bacteria, to unravel the therapeutic potential for the same. The aim of the study was to assess the antibacterial efficacy of the crude chloroform extract of mangosteen pericarp against cariogenic bacteria. The study was done under laboratory settings using an in vitro design. The microorganisms namely Streptococcus mutans, Streptococcus sanguis, Streptococcus salivarius, Streptococcus oralis and Lactobacillus acidophilus were procured from American Type Cell Culture (ATCC) and Microbial Type Culture Collection (MTCC) were revived and lawn cultured. The antibacterial effect of mangosteen pericarp was tested using agar well diffusion method on Trypticase Soy Agar-Blood Agar (TSA-BA) and de Man, Rogosa and Sharpe (MRS) agar media. The standard antiplaque agent chlorhexidine was used as the positive control. This cross-sectional, experimental study was done in Central Research laboratory, Meenakshi Ammal Dental College for period of eight weeks. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values were determined by microbroth dilution method. Statistical analysis was done by calculating the mean of the zones of inhibition on tested microorganisms. Mann-Whitney test was done to compare the zones of inhibition of mangosteen and chlorhexidine. The antibacterial bioassay showed the highest activity for Lactobacillus acidophilus (13.6 mm) and Streptococcus sanguis (13.6 mm), whereas, it showed a medium and low activity for Streptococcus oralis (11.3 mm), Streptococcus mutans (10.6 mm) and Streptococcus salivarius (3 mm) respectively. The MBC and MIC values were lowest for Lactobacillus acidophilus (MIC 25 mg/ml, MBC 50 mg/ml) and Streptococcus oralis (MIC 50 mg/ml, MBC 100 mg/ml). Mangosteen pericarp extract had a higher zone of inhibition against the tested microorganisms which suggests its potent antibacterial action against cariogenic organisms. However, further analytical studies are needed to isolate the key molecules of mangosteen pericarp, to explore its anticariogenic therapeutic potential on gram negative oral microorganisms.
Valle, Demetrio L.; Cabrera, Esperanza C.; Puzon, Juliana Janet M.; Rivera, Windell L.
2016-01-01
Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID:26741962
Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L
2016-01-01
Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.
Zuo, Guo-Ying; An, Jing; Han, Jun; Zhang, Yun-Ling; Wang, Gen-Chun; Hao, Xiao-Yan; Bian, Zhong-Qi
2012-01-01
Through bioassay-guided fractionation of the extracts from the aerial parts of the Chinese herb Hypericum japonicum Thunb. Murray, Isojacareubin (ISJ) was characterized as a potent antibacterial compound against the clinical methicillin-resistant Staphylococcus aureus (MRSA). The broth microdilution assay was used to determine the minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of ISJ alone. The results showed that its MICs/MBCs ranged from 4/16 to 16/64 μg/mL, with the concentrations required to inhibit or kill 50% of the strains (MIC50/MBC50) at 8/16 μg/mL. Synergistic evaluations of this compound with four conventional antibacterial agents representing different types were performed by the chequerboard and time-kill tests. The chequerboard method showed significant synergy effects when ISJ was combined with Ceftazidime (CAZ), Levofloxacin (LEV) and Ampicillin (AMP), with the values of 50% of the fractional inhibitory concentration indices (FICI50) at 0.25, 0.37 and 0.37, respectively. Combined bactericidal activities were also observed in the time-kill dynamic assay. The results showed the ability of ISJ to reduce MRSA viable counts by log10CFU/mL at 24 h of incubation at a concentration of 1 × MIC were 1.5 (LEV, additivity), 0.92 (CAZ, indifference) and 0.82 (AMP, indifference), respectively. These in vitro anti-MRSA activities of ISJ alone and its synergy with conventional antibacterial agents demonstrated that ISJ enhanced their efficacy, which is of potential use for single and combinatory therapy of patients infected with MRSA. PMID:22942699
Balaje, R M; Sidhu, P K; Kaur, G; Rampal, S
2013-12-01
This study validated the use of mutant prevention concentration (MPC) and pharmacokinetic and pharmacodynamic (PK-PD) modeling approach for optimization of dose regimen of enrofloxacin to contain the emergence of Pasteurella multocida resistance. The PK and PD characteristics of enrofloxacin were investigated in buffalo calves after intramuscular administration at a dose rate of 12 mg/kg. The concentration of enrofloxacin and ciprofloxacin in serum were determined by high-performance liquid chromatography. The serum peak concentration (Cmax), terminal half-life (t1/2K10), volume of distribution (Vd(area)/F) and mean residence time (MRT) of enrofloxacin were 1.89 ± 0.35 μg/ml, 5.14 ± 0.66 h, 5.59 ± 0.99 l/kg/h and 8.52 ± 1.29 h, respectively. The percent metabolite conversion ratio of ciprofloxacin to enrofloxacin was 79. The binding of enrofloxacin to plasma proteins was 11%. The MIC, MBC and MPC for enrofloxacin against P. multocida were 0.05, 0.06 μg/ml and 1.50 μg/ml.In vitro and ex-vivo bactericidal activity of enrofloxacin was concentration dependent. Modeling of ex-vivo growth inhibition data to the sigmoid Emax equation provided AUC24h/MIC values to produce bacteriostatic (19 h), bactericidal (43 h) and bacterial eradication (64 h). PK-PD data in conjunction with MPC and MIC90 data predicted dosage schedules for enrofloxacin that may achieve optimum efficacy in respect of bacteriological and clinical cure and minimize the risk of emergence of resistance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Raphaël, Kana Jean; Meimandipour, Amir
2017-01-01
Background: The resistance of the bacteria and fungi to the innumerous antimicrobial agents is a major challenge in the treatment of the infections demands to the necessity for searching and finding new sources of substances with antimicrobial properties. The incorporation of the essential oils (EOs) in chitosan film forming solution may enhance antimicrobial properties. However, its use as the feeding additive in the poultry nutrition needs to clarify the product’s activity against both pathogen and the useful microbes in the gastrointestinal tract. Objectives: In the present study, we carried out an in vitro investigation and evaluated the antimicrobial activity of chitosan film forming solution incorporated with essential oils (CFs+EOs) against microbial strains including Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Lactobacillus rahmnosus, Aspergillus niger and Alternaria alternate. Material and Methods: In three replicates, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of different treatments including: 1- essential oils (EOs), 2- chitosan film solution (CFs), and 3-chitosan film solution enriched with EOs (CFs+EOs) were determined against above mentioned microbes. Results: The results indicated that the chitosan solution enriched with essential oils (CFs+EOs) is capable of inhibiting the bacterial and fungal growth even at the lowest concentrations. The MIC and MBC for all the antimicrobial agents against Escherichia coli and Staphylococcus aureus were very low compared to the concentrations needed to inhibit the growth of useful bacteria, Lactobacillus rahmnosu and Enterococcus faecium. The antifungal activity of chitosan was enhanced as the concentration of EOs increased in the film solution. Conclusion: Chitosan-EOs complexes are the promising candidate for novel contact antimicrobial agents that can be used in animal feeds. PMID:29845058
Raphaël, Kana Jean; Meimandipour, Amir
2017-01-01
Background: The resistance of the bacteria and fungi to the innumerous antimicrobial agents is a major challenge in the treatment of the infections demands to the necessity for searching and finding new sources of substances with antimicrobial properties. The incorporation of the essential oils (EOs) in chitosan film forming solution may enhance antimicrobial properties. However, its use as the feeding additive in the poultry nutrition needs to clarify the product's activity against both pathogen and the useful microbes in the gastrointestinal tract. Objectives: In the present study, we carried out an in vitro investigation and evaluated the antimicrobial activity of chitosan film forming solution incorporated with essential oils (CFs+EOs) against microbial strains including Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Lactobacillus rahmnosus, Aspergillus niger and Alternaria alternate . Material and Methods: In three replicates, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of different treatments including: 1- essential oils (EOs), 2- chitosan film solution (CFs), and 3-chitosan film solution enriched with EOs (CFs+EOs) were determined against above mentioned microbes. Results: The results indicated that the chitosan solution enriched with essential oils (CFs+EOs) is capable of inhibiting the bacterial and fungal growth even at the lowest concentrations. The MIC and MBC for all the antimicrobial agents against Escherichia coli and Staphylococcus aureus were very low compared to the concentrations needed to inhibit the growth of useful bacteria, Lactobacillus rahmnosu and Enterococcus faecium . The antifungal activity of chitosan was enhanced as the concentration of EOs increased in the film solution. Conclusion: Chitosan-EOs complexes are the promising candidate for novel contact antimicrobial agents that can be used in animal feeds.
Cowley, Nicola L.; Forbes, Sarah; Amézquita, Alejandro; McClure, Peter; Humphreys, Gavin J.
2015-01-01
Risk assessments of the potential for microbicides to select for reduced bacterial susceptibility have been based largely on data generated through the exposure of bacteria to microbicides in aqueous solution. Since microbicides are normally formulated with multiple excipients, we have investigated the effect of formulation on antimicrobial activity and the induction of bacterial insusceptibility. We tested 8 species of bacteria (7 genera) before and after repeated exposure (14 passages), using a previously validated gradient plating system, for their susceptibilities to the microbicides benzalkonium chloride, benzisothiozolinone, chlorhexidine, didecyldimethyl ammonium chloride, DMDM-hydantoin, polyhexamethylene biguanide, thymol, and triclosan in aqueous solution (nonformulated) and in formulation with excipients often deployed in consumer products. Susceptibilities were also assessed following an additional 14 passages without microbicide to determine the stability of any susceptibility changes. MICs and minimum bactericidal concentrations (MBC) were on average 11-fold lower for formulated microbicides than for nonformulated microbicides. After exposure to the antimicrobial compounds, of 72 combinations of microbicide and bacterium there were 19 ≥4-fold (mean, 8-fold) increases in MIC for nonformulated and 8 ≥4-fold (mean, 2-fold) increases in MIC for formulated microbicides. Furthermore, there were 20 ≥4-fold increases in MBC (mean, 8-fold) for nonformulated and 10 ≥4-fold (mean, 2-fold) increases in MBC for formulated microbicides. Susceptibility decreases fully or partially reverted back to preexposure values for 49% of MICs and 72% of MBCs after further passage. In summary, formulated microbicides exhibited greater antibacterial potency than unformulated actives and susceptibility decreases after repeated exposure were lower in frequency and extent. PMID:26253662
In vitro antibacterial activity of poly (amidoamine)-G7 dendrimer.
Gholami, Mitra; Mohammadi, Rashin; Arzanlou, Mohsen; Akbari Dourbash, Fakhraddin; Kouhsari, Ebrahim; Majidi, Gharib; Mohseni, Seyed Mohsen; Nazari, Shahram
2017-06-05
Nano-scale dendrimers are synthetic macromolecules that frequently used in medical and health field. Traditional anibiotics are induce bacterial resistence so there is an urgent need for novel antibacterial drug invention. In the present study seventh generation poly (amidoamine) (PAMAM-G7) dendrimer was synthesized and its antibacterial activities were evaluated against representative Gram- negative and Gram-positive bacteria. PAMAM-G7 was synthesized with divergent growth method. The structural and surface of PAMAM-G7 were investigated by transmission electron microscopy, scanning electron microscope and fourier transform infrared. Pseudomonas. aeruginosa (n = 15), E. coli (n = 15), Acinetobacter baumanni (n = 15), Shigella dysenteriae (n = 15), Klebsiella pneumoniae (n = 10), Proteus mirabilis (n = 15), Staphylococcus aureus (n = 15) and Bacillus subtilis (n = 10) have been used for antibacterial activity assay. Additionally, representative standard strains for each bacterium were included. Minimum Inhibitory Concentration (MIC) was determined using microdilution method. Subsequently, Minimum Bactericidal Concentration (MBC) was determined by sub-culturing each of the no growth wells onto Mueller Hinton agar medium. The cytotoxicity of PAMAM-G7 dendrimer were evaluated in HCT116 and NIH 3 T3 cells by MTT assay. The average size of each particle was approximately 20 nm. PAMAM-G7 was potentially to inhibit both Gram positive and gram negative growth. The MIC50 and MIC90 values were determined to be 2-4 μg/ml and 4-8 μg/ml, respectively. The MBC50 and MBC90 values were found to be 64-256 μg/ml and 128-256 μg/ml, respectively. The cytotoxity effect of dendrimer on HCT116 and NIH 3 T3 cells is dependent upon exposure time to and concentration of dendrimers. The most reduction (44.63 and 43%) in cell viability for HCT116 and NIH 3 T3 cells was observed at the highest concentration, 0.85 μM after 72 h treatmentm, respectively. This study we conclude that PAMAM-G7 dendrimer could be a potential candidate as a novel antibacterial agent.
Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza
2015-01-01
Background: The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. Objectives: In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) against Pseudomonas aeruginosa PTCC 1430 was evaluated. Materials and Methods: A growth medium for culturing of probiotic bacteria was separated by centrifugation. The antimicrobial effects of CFS of probiotic bacteria were evaluated using the agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the micro dilution method. Finally, an interaction between CFS and amikacin or gentamicin against P. aeruginosa PTCC 1430 was examined through the checkerboard method and fractional inhibitory concentration (FIC). Furthermore, CFSs from Lactobacillus strains were analyzed by reversed phase HPLC (RP-HPLC) for antimicrobial compounds. Results: The results showed a significant effect of CFS on the growth of P. aeruginosa. The MIC and MBC of CFS from L. casei were 62.5 µL⁄mL while the MIC and MBC of CFS from L. rhamnosus were 62.5 μL⁄mL and 125 μL⁄mL, respectively. Using the FIC indices, synergistic interactions were observed in combination of CFS and antibiotics. Fractional Inhibitory Concentration indices of CFS from L. casei and aminoglycoside antibiotics were 0.124 and 0.312 while FIC indices of CFS from L. rhamnosus and aminoglycoside antibiotics were 0.124 and 0.56, respectively showing a synergism effect. The results of RP-HPLC showed that CFS of Lactobacillus strains contained acetic acid, lactic acid and hydrogen peroxide (H2O2). Conclusions: Our findings indicate that probiotic bacterial strains of Lactobacillus have a significant inhibitory effect on the growth of P. aeruginosa PTCC 1430. The antimicrobial potency of this combination can be useful for designing and developing alternative therapeutic strategies against P. aeruginosa infections. PMID:26034539
Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza
2015-04-01
The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) against Pseudomonas aeruginosa PTCC 1430 was evaluated. A growth medium for culturing of probiotic bacteria was separated by centrifugation. The antimicrobial effects of CFS of probiotic bacteria were evaluated using the agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the micro dilution method. Finally, an interaction between CFS and amikacin or gentamicin against P. aeruginosa PTCC 1430 was examined through the checkerboard method and fractional inhibitory concentration (FIC). Furthermore, CFSs from Lactobacillus strains were analyzed by reversed phase HPLC (RP-HPLC) for antimicrobial compounds. The results showed a significant effect of CFS on the growth of P. aeruginosa. The MIC and MBC of CFS from L. casei were 62.5 µL⁄mL while the MIC and MBC of CFS from L. rhamnosus were 62.5 μL⁄mL and 125 μL⁄mL, respectively. Using the FIC indices, synergistic interactions were observed in combination of CFS and antibiotics. Fractional Inhibitory Concentration indices of CFS from L. casei and aminoglycoside antibiotics were 0.124 and 0.312 while FIC indices of CFS from L. rhamnosus and aminoglycoside antibiotics were 0.124 and 0.56, respectively showing a synergism effect. The results of RP-HPLC showed that CFS of Lactobacillus strains contained acetic acid, lactic acid and hydrogen peroxide (H2O2). Our findings indicate that probiotic bacterial strains of Lactobacillus have a significant inhibitory effect on the growth of P. aeruginosa PTCC 1430. The antimicrobial potency of this combination can be useful for designing and developing alternative therapeutic strategies against P. aeruginosa infections.
Vučić, Dragana M.; Petković, Miroslav R.; Rodić-Grabovac, Branka B.; Stefanović, Olgica D.; Vasić, Sava M.; Čomić, Ljiljana R.
2014-01-01
Calluna vulgaris L. Hull (Ericaceae) has been used for treatment of urinary tract infections in traditional medicine. In this study we analyzed in vitro antibacterial activity of the plant extracts on different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris, as well as the concentrations of total phenols and flavonoids in the extracts. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The concentrations of total phenols were examined by using Folin-Ciocalteu reagent and ranged between 67.55 to 142.46 mg GAE/g. The concentrations of flavonoids in extracts were determined using spectrophotometric method with aluminum chloride and the values ranged from 42.11 to 63.68 mg RUE/g. The aqueous extract of C. vulgaris showed a significant antibacterial activity. The values of MIC were in the range from 2.5 mg/ml to 20 mg/ml for this extract. Proteus vulgaris strains were found to be the most sensitive. The results obtained suggest that all tested extracts of C. vulgaris inhibit the growth of human pathogens, especially the aqueous extract. PMID:25428676
Vučić, Dragana M; Petković, Miroslav R; Rodić-Grabovac, Branka B; Stefanović, Olgica D; Vasić, Sava M; Comić, Ljiljana R
2014-11-15
Calluna vulgaris L. Hull (Ericaceae) has been used for treatment of urinary tract infections in traditional medicine. In this study we analyzed in vitro antibacterial activity of the plant extracts on different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris, as well as the concentrations of total phenols and flavonoids in the extracts. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The concentrations of total phenols were examined by using Folin-Ciocalteu reagent and ranged between 67.55 to 142.46 mg GAE/g. The concentrations of flavonoids in extracts were determined using spectrophotometric method with aluminum chloride and the values ranged from 42.11 to 63.68 mg RUE/g. The aqueous extract of C. vulgaris showed a significant antibacterial activity. The values of MIC were in the range from 2.5 mg/ml to 20 mg/ml for this extract. Proteus vulgaris strains were found to be the most sensitive. The results obtained suggest that all tested extracts of C. vulgaris inhibit the growth of human pathogens, especially the aqueous extract.
PK-PD Analysis of Marbofloxacin against Streptococcus suis in Pigs.
Lei, Zhixin; Liu, Qianying; Yang, Bing; Khaliq, Haseeb; Cao, Jiyue; He, Qigai
2017-01-01
Marbofloxacin is a fluoroquinolone antibiotic and highly effective treatment for respiratory diseases. Here we aimed to evaluate the ex vivo activity of marbofloxacin against Streptococcus suis in pig serum, as well as the optimal dosages scheme for avoiding the fluoroquinolone resistance development. A single dose of 8 mg/kg body weight (bw) was administrated orally to healthy pigs and serum samples were collected during the next 72 h. Serum marbofloxacin content was determined by high-performance liquid chromatography. We estimated the C max (6.28 μg/ml), AUC 0-24 h (60.30 μg.h/ml), AUC 0-∞ (88.94 μg.h/ml), T 1/2ke, (12.48 h), T max (0.75 h) and Cl b (0.104 L/h) of marbofloxacin in pigs, as well as the bioavailability of marbofloxacin (94.21%) after a single 8 mg/kg oral administration. We also determined the pharmacodynamic of marbofloxacin against 134 Streptococcus suis strains isolated from Chinese cities in TSB and serum. These isolated strains had a MIC 90 of 1 μg/ml. HB2, a virulent, serotype 2 isolate of SS , was selected for having antibacterial activity in TSB and serum to marbofloxacin. We determined the minimum inhibitory concentration (MIC, 1 μg/ml in TSB, 2 μg/ml in serum), minimum bactericidal concentration (MBC, 4 μg/ml in TSB, 4 μg/ml in serum), and mutant prevention concentration (2.56 μg/ml in TSB) for marbofloxacin against Streptococcus suis (HB2). In serum, by inhibitory sigmoid E max modeling, the AUC 0-24h /MIC values for marbofloxacin against HB2 were 25.23 (bacteriostatic), 35.64 (bactericidal), and 39.71 (elimination) h. Based on Monte Carlo simulations, the predicted optimal oral doses of marbofloxacin curing Streptococcus suis were 5.88 (bacteriostatic), 8.34 (bactericidal), and 9.36 (elimination) mg/kg.bw for a 50% target attainment ratio, and 8.16 (bacteriostatic), 11.31 (bactericidal), and 12.35 (elimination) mg/kg.bw for a 90% target attainment ratio. The data presented here provides optimized dosage information for clinical use; however, these predicted dosages should also be validated in clinical practice.
Filocamo, Angela; Bisignano, Carlo; Mandalari, Giuseppina; Navarra, Michele
2015-01-01
Background. The aim of the present study was to evaluate the antimicrobial effect of a white grape juice extract (WGJe) against a range of Gram-positive and Gram-negative bacteria, yeasts, and the fungus Aspergillus niger. WGJe was also tested on the production of bacterial biofilms in vitro. Results. WGJe inhibited in vitro most Gram-positive bacteria tested, Staphylococcus aureus ATCC 6538P being the most sensitive strain (MIC values of 3.9 μg/mL). The effect was bactericidal at the concentration of 500 μg/mL. Amongst the Gram-negative bacteria, Escherichia coli was the only susceptible strain (MIC and MBC of 2000 μg/mL). No effect on the growth of Candida sp. and the fungus Aspergillus niger was detected (MIC values > 2000 μg/mL). WGJe inhibited the biofilms formation of E. coli and Pseudomonas aeruginosa with a dose-dependent effect. Conclusions. WGJe exerted both bacteriostatic and bactericidal activity in vitro. The presented results could be used to develop novel strategies for the treatment of skin infections and against potential respiratory pathogens.
Bardají, Danae Kala Rodríguez; da Silva, Jonas Joaquim Mangabeira; Bianchi, Thamires Chiquini; de Souza Eugênio, Daniele; de Oliveira, Pollyanna Francielli; Leandro, Luís Fernando; Rogez, Hervé Louis Ghislain; Venezianni, Rodrigo Cassio Sola; Ambrosio, Sergio Ricardo; Tavares, Denise Crispim; Bastos, Jairo Kenupp; Martins, Carlos Henrique G
2016-08-01
Oral infections such as periodontitis and tooth decay are the most common diseases of humankind. Oleoresins from different copaifera species display antimicrobial and anti-inflammatory activities. Copaifera reticulata is the commonest tree of this genus and grows abundantly in several Brazilian states, such as Pará, Amazonas, and Ceará. The present study has evaluated the chemical composition and antimicrobial potential of the Copaifera reticulata oleoresin (CRO) against the causative agents of tooth decay and periodontitis and has assessed the CRO cytotoxic potential. Cutting edge analytical techniques (GC-MS and LC-MS) aided the chemical characterization of CRO. Antimicrobial assays included determination of the Minimum Inhibitory Concentration (MIC), determination of the Minimum Bactericidal Concentration (MBC), determination of the Minimum Inhibitory Concentration of Biofilm (MICB50), Time Kill Assay, and Checkerboard Dilution. Conduction of XTT assays on human lung fibroblasts (GM07492-A cells) helped to examine the CRO cytotoxic potential. Chromatographic analyses revealed that the major constituents of CRO were β-bisabolene, trans-α-bergamotene, β-selinene, α-selinene, and the terpene acids ent-agathic-15-methyl ester, ent-copalic acid, and ent-polyalthic acid. MIC and MBC results ranged from 6.25 to 200 μg/mL against the tested bacteria. The time-kill assay conducted with CRO at concentrations between 50 and 100 μg/mL showed bactericidal activity against Fusobacterium nucleatum (ATCC 25586) and Streptococcus mitis (ATCC 49456) after 4 h, Prevotella nigrescens (ATCC 33563) after 6 h, Porphyromonas gingivalis (ATCC 33277) and Lactobacillus casei (clinical isolate) after 12 h, and Streptococcus salivarius (ATCC 25975) and Streptococcus mutans (ATCC 25175) after 18 h. The fractional inhibitory concentration indexes (FICIs) revealed antagonistic interaction for Lactobacillus casei (clinical isolate), indifferent effect for Porphyromonas gingivalis (ATCC 33277), Fusobacterium nucleatum (ATCC 25586), Prevotella nigrescens (ATCC 33563), and Streptococcus salivarius (ATCC 25975), and additive effect for Streptococcus mutans (ATCC 25175) and Streptococcus mitis (ATCC 49456). Treatment of GM07492-A cells with CRO demonstrated that concentrations up to 39 μg/mL significantly reduced cell viability as compared to the negative control, being IC50 equal to 51.85 ± 5.4 μg/mL. These results indicated that CRO plays an important part in the search for novel sources of agents that can act against oral pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cava, R; Nowak, E; Taboada, A; Marin-Iniesta, F
2007-12-01
The antimicrobial activity of essential oils (EOs) of cinnamon bark, cinnamon leaf, and clove against Listeria monocytogenes Scott A were studied in semiskimmed milk incubated at 7 degrees C for 14 days and at 35 degrees C for 24 h. The MIC was 500 ppm for cinnamon bark EO and 3,000 ppm for the cinnamon leaf and clove EOs. These effective concentrations increased to 1,000 ppm for cinnamon bark EO, 3,500 ppm for clove EO, and 4,000 ppm for cinnamon leaf EO when the semiskimmed milk was incubated at 35 degrees C for 24 h. Partial inhibitory concentrations and partial bactericidal concentrations were obtained for all the assayed EOs. The MBC was 3,000 ppm for the cinnamon bark EO, 10,500 ppm for clove EO, and 11,000 ppm for cinnamon leaf EO. The incubation temperature did not affect the MBC of the EOs but slightly increased the MIC at 35 degrees C. The increased activity at the lower temperature could be attributed to the increased membrane fluidity and to the membrane-perturbing action of EOs. The influence of the fat content of milk on the antimicrobial activity of EOs was tested in whole and skimmed milk. In milk samples with higher fat content, the antimicrobial activity of the EOs was reduced. These results indicate the possibility of using these three EOs in milk beverages as natural antimicrobials, especially because milk beverages flavored with cinnamon and clove are consumed worldwide and have been increasing in popularity in recent years.
Anand, Geethashri; Ravinanthan, Manikandan; Basaviah, Ravishankar; Shetty, A. Veena
2015-01-01
Background: Oral health is an integral and important component of general health. Infectious diseases such as caries, periodontal, and gingivitis indicate the onset of imbalance in homeostasis between oral micro biota and host. The present day medicaments used in oral health care have numerous side effects. The uses of herbal plants as an alternative have gained popularity due to side effects of antibiotics and emergence of multidrug resistant strains. Anacardium occidentale (cashew) and Mangifera indica (mango) have been used as traditional oral health care measures in India since time immemorial. Materials and Methods: The ethanol extracts of cashew and mango leaves were obtained by maceration method. The antimicrobial activity was evaluated by clear zone produced by these plant extracts against Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Candida albicans in agar plate method, determination of minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and suppression of biofilm. The cytotoxic effects of plants extract was determined by microculture tetrazolium assay on human gingival fibroblast and Chinese hamster lung fibroblast (V79) cell lines. Results: Cashew and mango leaf extract significantly (P < 0.05) produced larger zone of inhibition against test pathogens when compared to povidone-iodine-based mouth rinses. Although the MIC and MBC/MFC values of mouth rinses were effective in lower concentrations; plant extracts significantly (P < 0.001) suppressed the biofilms of oral pathogens. The leaf extracts were less cytotoxic (P < 0.001) compared to mouth rinses. Conclusions: Plant extracts are superior to the mouth rinses and have a promising role in future oral health care. PMID:25709341
Anand, Geethashri; Ravinanthan, Manikandan; Basaviah, Ravishankar; Shetty, A Veena
2015-01-01
Oral health is an integral and important component of general health. Infectious diseases such as caries, periodontal, and gingivitis indicate the onset of imbalance in homeostasis between oral micro biota and host. The present day medicaments used in oral health care have numerous side effects. The uses of herbal plants as an alternative have gained popularity due to side effects of antibiotics and emergence of multidrug resistant strains. Anacardium occidentale (cashew) and Mangifera indica (mango) have been used as traditional oral health care measures in India since time immemorial. The ethanol extracts of cashew and mango leaves were obtained by maceration method. The antimicrobial activity was evaluated by clear zone produced by these plant extracts against Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Candida albicans in agar plate method, determination of minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and suppression of biofilm. The cytotoxic effects of plants extract was determined by microculture tetrazolium assay on human gingival fibroblast and Chinese hamster lung fibroblast (V79) cell lines. Cashew and mango leaf extract significantly (P < 0.05) produced larger zone of inhibition against test pathogens when compared to povidone-iodine-based mouth rinses. Although the MIC and MBC/MFC values of mouth rinses were effective in lower concentrations; plant extracts significantly (P < 0.001) suppressed the biofilms of oral pathogens. The leaf extracts were less cytotoxic (P < 0.001) compared to mouth rinses. Plant extracts are superior to the mouth rinses and have a promising role in future oral health care.
Lee, Kyung-Yeol; Cha, Su-Mi; Choi, Sung-Mi; Cha, Jeong-Dan
2017-01-01
The antibacterial activity of an extract and several fractions of Sophora flavescens (S. flavescens) root alone and in combination with antibiotics against oral bacteria was investigated by checkerboard assay and time-kill assay. The minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) values for all examined bacteria were 0.313-2.5/0.625-2.5 μg/mL for the n-BuOH fraction, 0.625-5/1.25-10 μg/mL for the EtOAc fraction, 0.25-8/0.25-16 μg/mL for ampicillin, 0.5-256/1-512 μg/mL for gentamicin, 0.008-32/0.016-64 μg/mL for erythromycin, and 0.25-64/0.5-128 μg/mL for vancomycin. The n-butanol (n-BuOH) and ethyl acetate (EtOAc) fractions exhibited stronger antibacterial activity against oral bacteria than other fractions and extracts. The MICs and MBCs were reduced to between one half and one quarter when the n-BuOH and EtOAc fractions were combined with antibiotics. After 24 h of incubation, combination of 1/2 MIC of the n-BuOH fraction with antibiotics increased the degree of bactericidal activity. The present results suggest that n-BuOH and EtOAc extracts of S. flavescens root might be applicable as new natural antimicrobial agents against oral pathogens.
NASA Astrophysics Data System (ADS)
Wang, Ning; Hu, Bo; Chen, Ming-Li; Wang, Jian-Hua
2015-05-01
A novel bactericidal material, Ag@rGO-Fe3O4-PEI composite is prepared by in situ growth of silver nanoparticles onto the polyethylenimine (PEI)-mediated magnetic reduced graphene oxide (GO). The antibacterial performances of the composite are investigated by using the gram-negative bacteria Escherichia coli O157:H7 (E. coli O157:H7) as a model. The results indicate that the Ag@rGO-Fe3O4-PEI composite exhibits excellent antibacterial performance against E. coli O157:H7, with an antibacterial performance superior to those for the ever-reported photothermal materials. The bactericidal capability or the inhibition capability for bacteria growth is found to depend on the dosage of the Ag@rGO-Fe3O4-PEI and Ag/rGO-Fe3O4-PEI mass ratio within a certain range. By using a dosage of 0.1 μg mL-1, a killing rate of 99.9% is achieved for the E. coli O157:H7 (1 × 107 cfu mL-1) under a 0.5 min NIR laser irradiation (785 nm/50 mW cm-2). In addition, a minimum bactericidal concentration (MBC) of 0.100 μg mL-1 is achieved under near infrared (NIR) laser irradiation for 10 min, for which case there is absolutely no colony of E. coli O157:H7 found in the broth agar plate.
Mith, Hasika; Duré, Rémi; Delcenserie, Véronique; Zhiri, Abdesselam; Daube, Georges; Clinquart, Antoine
2014-01-01
This study was undertaken to determine the in vitro antimicrobial activities of 15 commercial essential oils and their main components in order to pre-select candidates for potential application in highly perishable food preservation. The antibacterial effects against food-borne pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and enterohemorrhagic Escherichia coli O157:H7) and food spoilage bacteria (Brochothrix thermosphacta and Pseudomonas fluorescens) were tested using paper disk diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Most of the tested essential oils exhibited antimicrobial activity against all tested bacteria, except galangal oil. The essential oils of cinnamon, oregano, and thyme showed strong antimicrobial activities with MIC ≥ 0.125 μL/mL and MBC ≥ 0.25 μL/mL. Among tested bacteria, P. fluorescens was the most resistant to selected essential oils with MICs and MBCs of 1 μL/mL. The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria. These materials could be served as an important natural alternative to prevent bacterial growth in food products. PMID:25473498
Sánchez, E; Heredia, N; Camacho-Corona, M Del R; García, S
2013-12-01
The antimicrobial activity of Acacia farnesiana against Vibrio cholerae has been demonstrated; however, no information regarding its active compound or its mechanism of action has been documented. The active compound was isolated from A. farnesiana by bioassay-guided fractionation and identified as methyl gallate by nuclear magnetic resonance (NMR) techniques ((1) H NMR and (13) C NMR). The minimum bactericidal concentration (MBC) of methyl gallate and its effect on membrane integrity, cytoplasmic pH, membrane potential, ATP synthesis and gene expression of cholera toxin (ctx) from V. cholerae were determined. The MBC of methyl gallate ranged from 30 ± 1 to 50 ± 1 μg ml(-1) . Methyl gallate affected cell membrane integrity, causing a decrease in cytoplasmic pH (pHin , from 7·3 to <3·0), and membrane hyperpolarization, and ATP was no longer produced by the treated cells. However, methyl gallate did not affect ctx gene expression. Methyl gallate is a major antimicrobial compound from A. farnesiana that disturbs the membrane activity of V. cholerae. The effects of methyl gallate validate several traditional antimicrobial uses of A. farnesiana, and it is an attractive alternative to control V. cholerae. © 2013 The Society for Applied Microbiology.
Antibacterial Properties of Nonwoven Wound Dressings Coated with Manuka Honey or Methylglyoxal
Bulman, Sophie E. L.; Carr, Chris; Russell, Stephen J.
2017-01-01
Manuka honey (MH) is used as an antibacterial agent in bioactive wound dressings via direct impregnation onto a suitable substrate. MH provides unique antibacterial activity when compared with conventional honeys, owing partly to one of its constituents, methylglyoxal (MGO). Aiming to investigate an antibiotic-free antimicrobial strategy, we studied the antibacterial activity of both MH and MGO (at equivalent MGO concentrations) when applied as a physical coating to a nonwoven fabric wound dressing. When physically coated on to a cellulosic hydroentangled nonwoven fabric, it was found that concentrations of 0.0054 mg cm−2 of MGO in the form of MH and MGO were sufficient to achieve a 100 colony forming unit % bacteria reduction against gram-positive Staphylococcus aureus and gram-negative Klebsiella pneumoniae, based on BS EN ISO 20743:2007. A 3- to 20-fold increase in MGO concentration (0.0170–0.1 mg cm−2) was required to facilitate a good antibacterial effect (based on BS EN ISO 20645:2004) in terms of zone of inhibition and lack of growth under the sample. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was also assessed for MGO in liquid form against three prevalent wound and healthcare-associated pathogens, i.e., Staphylococcus aureus, gram-negative Pseudomonas aeruginosa and gram-positive Enterococcus faecalis. Other than the case of MGO-containing fabrics, solutions with much higher MGO concentrations (128 mg L−1–1024 mg L−1) were required to provide either a bacteriostatic or bactericidal effect. The results presented in this study therefore demonstrate the relevance of an MGO-based coating as an environmentally friendly strategy for the design of functional dressings with antibiotic-free antimicrobial chemistries. PMID:28813014
Campana, Raffaella; Casettari, Luca; Fagioli, Laura; Cespi, Marco; Bonacucina, Giulia; Baffone, Wally
2017-01-16
Food safety is a fundamental concern for both consumers and the food industry, especially as the numbers of reported cases of food-associated infections continue to increase. Industrial surfaces can provide a suitable substrate for the development and persistence of bacterial organized in biofilms that represent a potential source of food contamination. The negative consumer perception of chemical disinfectants has shifted the attention to natural substances, such as plant extracts. The aim of this study was to investigate the possibility of using the essential oils (EOs) in the fight against S. aureus biofilms. First, the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Biofilm Inhibitory Concentration (MBIC), Minimum Biofilm Eradication Concentration (MBEC) of eleven EOs against S. aureus were determined. Cinnamomum cassia and Salvia officinalis EOs showed the greatest antibacterial properties with 1.25% MIC and MBC, 1.25% MBIC and 2.5% MBEC respectively. Gas Chromatography/Mass Spectrometry analysis revealed cinnamaldehyde (82.66%) and methoxy cinnamaldehyde (10.12%) as the most abundant substances of C. cassia, while cis-thujone (23.90%), camphor (19.22%) and 1.8-cineole (10.62%) of S. officinalis. Three different microemulsions, formulated with C. cassia, S. officinalis or both, were finally tested against S. aureus biofilms in different culture media and growth conditions, causing a >3 logarithmic reductions in S. aureus 24h-old biofilms and desiccated biofilms, and up to 68% of biofilm removal after 90min of exposure. The obtained data suggest the potential use of EOs, alone or in combination, for the formulation of sanitizers as alternative or in support in the disinfection of contaminated surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.
Brighenti, F L; Salvador, M J; Delbem, Alberto Carlos Botazzo; Delbem, Ádina Cleia Bottazzo; Oliveira, M A C; Soares, C P; Freitas, L S F; Koga-Ito, C Y
2014-01-01
This study proposes a bioprospection methodology regarding the antimicrobial potential of plant extracts against bacteria with cariogenic relevance. Sixty extracts were obtained from ten plants--(1) Jatropha weddelliana, (2) Attalea phalerata, (3) Buchenavia tomentosa, (4) Croton doctoris, (5) Mouriri elliptica, (6) Mascagnia benthamiana, (7) Senna aculeata, (8) Unonopsis guatterioides, (9) Allagoptera leucocalyx and (10) Bactris glaucescens--using different extraction methods - (A) 70° ethanol 72 h/25°C, (B) water 5 min/100°C, (C) water 1 h/55°C, (D) water 72 h/25°C, (E) hexane 72 h/25°C and (F) 90° ethanol 72 h/25°C. The plants were screened for antibacterial activity at 50 mg/ml using the agar well diffusion test against Actinomyces naeslundii ATCC 19039, Lactobacillus acidophilus ATCC 4356, Streptococcus gordonii ATCC 10558, Streptococcus mutans ATCC 35688, Streptococcus sanguinis ATCC 10556, Streptococcus sobrinus ATCC 33478 and Streptococcus mitis ATCC 9811. The active extracts were tested to determine their minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), cytotoxicity and chemical characterization. Forty-seven extracts (78%) were active against at least one microorganism. Extract 4A demonstrated the lowest MIC and MBC for all microorganisms except S. gordonii and the extract at MIC concentration was non-cytotoxic. The concentrated extracts were slightly cytotoxic. Electrospray ionization with tandem mass spectrometry analyses demonstrated that the extract constituents coincided with the mass of the terpenoids and phenolics. Overall, the best results were obtained for extraction methods A, B and C. The present work proved the antimicrobial activity of several plants. Particularly, extracts from C. doctoris were the most active against bacteria involved in dental caries disease. © 2014 S. Karger AG, Basel.
Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting.
Hsu, Ching-Yun; Yang, Shih-Chun; Sung, Calvin T; Weng, Yi-Han; Fang, Jia-You
2017-01-01
Pathogens usually invade hair follicles when skin infection occurs. The accumulated bacteria in follicles are difficult to eradicate. The present study aimed to assess the cutaneous and follicular delivery of chloramphenicol (Cm)-loaded liposomes and the antibacterial activity of these liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Skin permeation was conducted by in vitro Franz diffusion cell. The anti-MRSA potential was checked using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), a well diffusion test, and intracellular MRSA killing. The classic, dimyristoylphosphatidylcholine (DMPC), and deoxycholic acid (DA) liposomes had a vesicle size of 98, 132, and 239 nm, respectively. The incorporation of DMPC or DA into the liposomes increased the bilayer fluidity. The malleable vesicles containing DMPC and DA showed increased follicular Cm uptake over the control solution by 1.5- and 2-fold, respectively. The MIC and MBC of DA liposomes loaded with Cm were 62.5 and 62.5-125 μg/mL, comparable to free Cm. An inhibition zone about 2-fold higher was achieved by DA liposomes as compared to the free control at a Cm dose of 0.5 mg/mL. DA liposomes also augmented antibacterial activity on keratinocyte-infected MRSA. The deformable liposomes had good biocompatibility against keratinocytes and neutrophils (viability >80%). In vivo administration demonstrated that DA liposomes caused negligible toxicity on the skin, based on physiological examination and histology. These data suggest the potential application of malleable liposomes for follicular targeting and the treatment of MRSA-infected dermatologic conditions.
Berger, Lúcia Raquel Ramos; Stamford, Thayza Christina Montenegro; Stamford-Arnaud, Thatiana Montenegro; de Alcântara, Sergio Roberto Cabral; da Silva, Antonio Cardoso; da Silva, Adamares Marques; do Nascimento, Aline Elesbão; de Campos-Takaki, Galba Maria
2014-01-01
This article sets out a method for producing chitin and chitosan by Cunninghamella elegans and Rhizopus arrhizus strains using a green metabolic conversion of agroindustrial wastes (corn steep liquor and molasses). The physicochemical characteristics of the biopolymers and antimicrobial activity are described. Chitin and chitosan were extracted by alkali-acid treatment, and characterized by infrared spectroscopy, viscosity and X-ray diffraction. The effectiveness of chitosan from C. elegans and R. arrhizus in inhibiting the growth of Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica, Escherichia coli and Yersinia enterocolitica were evaluated by determining the minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC). The highest production of biomass (24.60 g/L), chitin (83.20 mg/g) and chitosan (49.31 mg/g) was obtained by R. arrhizus. Chitin and chitosan from both fungi showed a similar degree of deacetylation, respectively of 25% and 82%, crystallinity indices of 33.80% and 32.80% for chitin, and 20.30% and 17.80% for chitosan. Both chitin and chitosan presented similar viscosimetry of 3.79–3.40 cP and low molecular weight of 5.08 × 103 and 4.68 × 103 g/mol. They both showed identical MIC and MBC for all bacteria assayed. These results suggest that: agricultural wastes can be produced in an environmentally friendly way; chitin and chitosan can be produced economically; and that chitosan has antimicrobial potential against pathogenic bacteria. PMID:24853288
Mishra, Amita; Sharma, Amit Kumar; Kumar, Shashank; Saxena, Ajit K.; Pandey, Abhay K.
2013-01-01
The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11–222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC) values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL) was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10–40 μg/mL). Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90–99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts. PMID:24093108
Enterobacter gergoviae adaptation to preservatives commonly used in cosmetic industry.
Périamé, M; Pagès, J-M; Davin-Regli, A
2014-08-01
The aim of this study was to obtain a better understanding regarding the origin of recurrent contamination by Enterobacter gergoviae in diverse cosmetic formula. We studied 65 isolates collected from various sources (clinical, food, cosmetics). RAPD analysis using AP12H, REP and ERIC-PCR was carried out for epidemiological typing. Evaluation of susceptibility to preservatives currently used in cosmetics for a representative panel of collection strains was measured. Preservative efficacy was evaluated by minimum inhibitory concentrations and minimum bactericidal concentrations (MBCs). Eighty per cent of isolates was unrelated. E. gergoviae showed significant levels of resistance to preservatives. MBC was higher than maximum permitted concentrations imposed by European Commission (EC). Association of preservatives showed in rare case additive effects, and no synergic effects were observed. Most of the cosmetic formulations are contaminated with unrelated E. gergoviae strains. Maximum allowed concentrations for sodium benzoate are inefficient to limit proliferation and control adaptability to this bacterium in cosmetic products. Efflux mechanisms should be involved in methylisothiazolinone-chloromethylisothiazolinone and triclosan adaptation. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Chen, Leyun; Li, Xiaolin; Hong, Haizheng; Shi, Dalin
2018-01-01
One of the most widely used organic UV filters, 4-methylbenzylidene camphor (4-MBC), is present at high concentrations in offshore waters. The marine copepod Tigriopus japonicus was exposed to different concentrations of 4-MBC (i.e., 0, 0.5, 1, 5 and 10μgL -1 ) for 4 consecutive generations (F0-F3) to evaluate the impact of 4-MBC on marine ecosystems. The results showed that in the F0 generation, 4-MBC caused significant lethal toxicity in T. japonicas at concentrations of 5 and 10μgL -1 and the nauplii were more sensitive to 4-MBC toxicity than the adults. However in the F1-F3 generations, 4-MBC exposure did not affect the survival rate. The hatching rate and the developmental duration from the nauplii to the copepodite (N-C) and from the nauplii to adult (N-A) decreased significantly in the F1-F2 generations and in the F2-F3 generations, respectively, even at the lowest exposure concentration (0.5μgL -1 ). In the subsequent two generations (i.e., the F4-F5 generations) of recovery exposure in clean seawater, the growth rates of the original 4-MBC exposure groups were still faster than the control in both the N-C and N-A stages, suggesting possible transgenerational genetic and/or epigenetic changes upon chronic 4-MBC exposure. The expression of the ecdysone receptor gene was up-regulated by 4-MBC, which was consistent with the decrease of the N-C/N-A duration. In addition, 4-MBC may induce oxidative stress and trigger apoptosis in T. japonicas, resulting in developmental, reproductive and even lethal toxicity. A preliminary risk assessment suggested that under environmentally realistic concentrations, 4-MBC had significant potential to pose a threat to marine crustaceans and marine ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Neethu, Sahadevan; Midhun, Sebastian Jose; Sunil, M A; Soumya, Soman; Radhakrishnan, E K; Jyothis, Mathew
2018-03-01
The green synthesis of silver nanoparticles (AgNPs) using biological systems such as fungi has evolved to become an important area of nanobiotechnology. Herein, we report for the first time the light-induced extracellular synthesis of silver nanoparticles using algicolous endophytic fungus Penicillium polonicum ARA 10, isolated from the marine green alga Chetomorpha antennina. Parametric optimization, including the concentration of AgNO 3 , fungal biomass, ratio of cell filtrate and AgNO 3 , pH, reaction time and presence of light, was done for rapid AgNPs production. The obtained silver nanoparticles (AgNPs) were characterized by UV-Visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and Transmission electron microscopy (HRTEM-EDAX). The AgNPs showed a characteristic UV-visible peak at 430 nm with an average size of 10-15 nm. The NH stretches in FTIR indicate the presence of protein molecules. The Raman vibrational bands suggest that the molecules responsible for the reduction and stability of AgNPs were extracellular proteins produced by P.polonicum. Antibacterial evaluation of AgNPs against the major foodborne bacterial pathogen Salmonella enterica serovar Typhimurium MTCC 1251, was assessed by well diffusion, Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assay. Killing kinetic studies revealed complete killing of the bacterial cells within 4 h and the bactericidal nature of synthesized nanoparticles was confirmed by fluorescent microscopy and scanning electron microscopy. Furthermore, the bactericidal studies with Transmission electron microscopy (TEM) at different time intervals explored the presence of AgNPs in the cell wall of S.Typhimurium at about 30 min and the complete bacterial lysis was found at 24 h. The current research opens an insight into the green synthesis of AgNPs and the mechanism of bacterial lysis by direct damage to the cell wall. Copyright © 2018 Elsevier B.V. All rights reserved.
Coronado-Aceves, Enrique Wenceslao; Gigliarelli, Giulia; Garibay-Escobar, Adriana; Zepeda, Ramón Enrique Robles; Curini, Massimo; López Cervantes, Jaime; Inés Espitia-Pinzón, Clara Inés; Superchi, Stefano; Vergura, Stefania; Marcotullio, Maria Carla
2017-07-12
The evaluation of the antimycobacterial activity of extracts of medicinal plants used by Mayos against tuberculosis and respiratory problems, allowed the identification of Rhynchosia precatoria (Humb. & Bonpl. ex Willd.) DC (Fabaceae) as the best candidate to find new antimycobacterial compounds. To isolate and characterize the compounds of R. precatoria responsible for the inhibitory and bactericidal activity against Mycobacterium tuberculosis H37Rv and Mycobacterium smegmatis ATCC 700084. To determine antimycobacterial synergistic effect of pure compounds and their selectivity index towards Vero cells. A total of six flavonoids were purified by silica gel column chromatography. Structural elucidation of the isolated compounds was achieved by using 1D and 2D NMR spectroscopy techniques. The configuration at the C-3 chiral center was established by quantum mechanical calculation of the electronic circular dichroism (ECD) spectrum. In vitro inhibitory and bactericidal activity against M. tuberculosis and M. smegmatis were determined with the redox indicator Alamar Blue (resazurin). Synergy was determined by X/Y quotient. Cytotoxicity was measured by MTT assay. The isolated compounds were identified as precatorin A (1), precatorin B (2), precatorin C (3), lupinifolin (4), cajanone (5) and lupinifolinol (6). Compounds 1-3 are new. Compounds 1 to 5 inhibited the growth of M. tuberculosis (MIC ≥31.25µg/mL); compounds 1, 2, 4 and 5 killed the bacteria (MBC ≥31.25µg/mL) and also inhibited M. smegmatis (MIC ≥125µg/mL), while 1 and 4 also resulted bactericidal (MBC ≥125µg/mL). Compounds 4 and 5 presented synergistic effect (X/Y quotient value <0.5) at a concentration of 1/2 MIC of each compound in the combination. Cytotoxicity in murine macrophages (RAW 264.7 cells) gave IC 50 values of 13.3-46.98µM, for compounds 1-5. In this work we isolated two new isoflavanones (1 and 2), and one new isoflavone (3) with a weak antimycobacterial activity. The (3R) absolute configuration was assigned to 1 by computational analysis of its ECD spectrum and to 2 and 5 by similarity of their ECD spectra with that of 1. We are also reporting by first time, activity against virulent strain of M. tuberculosis for compounds 4 and 5 and their antimycobacterial synergistic effect. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Selim, Samy; Amin, Abeer; Hassan, Sherif; Hagazey, Mohamed
2015-03-01
Extracts from 2 algal species (Hypnea esperi and Caulerpa prolifera) from Suez Canal region, Egypt were screened for the production of antibacterial compounds against some pathogenic bacteria. The bacteria tested included Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Aeromonas hydrophila, Bacillus subtilis and Staphylococcus aureus. Algal species displayed antibacterial activity. The methanolic extracts showed variable response by producing various zones of inhibition against studied bacteria. The tested Gram-negative bacteria were less affected by studied algal extracts than Gram-positive bacteria. We determined some biopotentials properties such as cytotoxicity and anticoagulant activity of most potent algal active extracts. The secondary metabolites of only Hypnea esperi algal extract effectively prevented the blood clotting to the extent of 120 seconds. Minimum inhibitory concentration (MIC) indicated that all potent tested algal extract C inhibits Bacillus subtilis and Staphylococcus aureus. Minimum bactericidal concentration (MBC) was between 1 and 1.4mg/ml. The algal isolates from Egypt have been found showing promising results against infectious bacteria instead of some synthetic antibiotics.
Peetsch, Alexander; Greulich, Christina; Braun, Dieter; Stroetges, Christian; Rehage, Heinz; Siebers, Bettina; Köller, Manfred; Epple, Matthias
2013-02-01
Spherical silver-doped calcium phosphate nanoparticles were synthesized in a co-precipitation route from calcium nitrate/silver nitrate and ammonium phosphate in a continuous process and colloidally stabilized by carboxymethyl cellulose. Nanoparticles with 0.39 wt% silver content and a diameter of about 50-60 nm were obtained. The toxic effects toward mammalian and prokaryotic cells were determined by viability tests and determination of the minimal inhibitory and minimal bactericidal concentrations (MIC and MBC). Three mammalian cells lines, i.e. human mesenchymal stem cells (hMSC) and blood peripheral mononuclear cells (PBMC, monocytes and T-lymphocytes), and two prokaryotic strains, i.e. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used. Silver-doped calcium phosphate nanoparticles and silver acetate showed similar effect toward mammalian and prokaryotic cells with toxic silver concentrations in the range of 1-3 μg mL(-1). Copyright © 2012 Elsevier B.V. All rights reserved.
Huertas Méndez, Nataly De Jesús; Vargas Casanova, Yerly; Gómez Chimbi, Anyelith Katherine; Hernández, Edith; Leal Castro, Aura Lucia; Melo Diaz, Javier Mauricio; Rivera Monroy, Zuly Jenny; García Castañeda, Javier Eduardo
2017-03-12
Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B-containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli .
Li, Li; Song, Xu; Yin, Zhongqiong; Jia, Renyong; Li, Zhengwen; Zhou, Xun; Zou, Yuanfeng; Li, Lixia; Yin, Lizi; Yue, Guizhou; Ye, Gang; Lv, Cheng; Shi, Wenjing; Fu, Yuping
2016-01-01
Haemophilus parasuis is the causative agent of Glässer's disease, which leads to serious economic loss to the swine industry. Although antibiotics are widely used to control infections, outbreaks of this disease repeatedly happen. In this study, emodin from Polygonum cuspidatum showed potent inhibitory effect against H. parasuis. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of emodin were 32 and 64μg/mL, respectively. The antibacterial kinetic curves indicated the antibacterial activity of emodin was in a concentration-dependent manner. Cell membrane permeability and flow cytometry assays proved that emodin could destroy cell membrane integrity and increase membrane permeability, and fluorescence spectra assay indicated emodin has influenced conformation of membrane protein. Under transmission electron microscopy, serious lesions of H. parasuis exposed to emodin (64μg/mL) were found, including irregular cell shape, plasmolysis, ruptured cell wall and membrane and cytoplasmic vacuolation. These results suggested that emodin could be used as candidate for treating Glässer's disease. Copyright © 2016 Elsevier GmbH. All rights reserved.
Park, Kwang-Il; Lee, Mi-Ra; Oh, Tae-Woo; Kim, Kwang-Youn; Ma, Jin-Yeul
2017-12-04
Salmonella enterica serovar Typhimurium is a foodborne pathogen that triggers inflammatory responses in the intestines of humans and livestock. Colla corii asini is a traditional medicine used to treat gynecologic and chronic diseases in Korea and China. However, the antibacterial activity of Colla corii asini has been unknown. In this study, we investigated the antibacterial activity and effects of Colla corii asini extract on Salmonella typhimurium invasion. To tested for antibacterial effects of Colla corii asini extracts, we confirmed the agar diffusion using Luria solid broth medium. Also, we determined the MIC (minimum inhibitory concentration) and the MBC (minimum bactericidal concentration) value of the Colla corii asini ethanol extract (CEE) by using two-fold serial dilution methods. We evaluated the expression of salmonella invasion proteins including SipA, SipB and SipC by using Western blot and qPCR at the concentration of CEE without inhibition of bacterial growth. In vitro and vivo, we determined the inhibitory effect of invasion of S. typhimurium on CEE by using gentamicin assay and S. typhimurium-infected mice. CEE significantly inhibited the growth of Salmonella typhimurium in an agar diffuse assay and had an MIC of 0.78 mg/ml and an MBC of 1.56 mg/ml. Additionally, CEE reduced Salmonella typhimurium cell invasion via the inhibition of Salmonella typhimurium invasion proteins, such as SipA, SipB and SipC. Furthermore, CEE significantly suppressed invasion in the small intestines (ilea) of mice injected with Salmonella typhimurium. These findings show that Colla corii asini exerts antibacterial activity and suppresses Salmonella typhimurium invasion in vitro and in vivo. Together, these findings demonstrate that Colla corii asini is a potentially useful therapeutic herbal medicine for treating salmonella-mediated diseases.
2013-01-01
Background Aquilaria crassna Pierre ex Lecomte has been traditionally used in Thailand for treatment of infectious diseases such as diarrhoea and skin diseases for a long time. The main objectives of this study were to examine antibacterial activity of the Aquilaria crassna leaf extract against Staphylococcus epidermidis and its underlying mechanism. The antioxidant activity and acute toxicity were studied as well. Methods Antioxidant activities were examined by FRAP, ABTS and DPPH scavenging methods. Antibacterial activity was conducted using disc diffusion assay and the minimum inhibitory concentration (MIC) was determined by dilution method. The minimum bactericidal concentration (MBC) was reported as the lowest concentration producing no growth of microbes in the subcultures. Morphological changes of the microbe were observed by scanning electron microscopy, while an inhibitory effect on biofilm formation was evaluated by phase contrast microscopic analysis. Bacterial cell wall integrity was assessed by transmission electron microscopy. Acute toxicity was conducted in accordance with the OECD for Testing of Chemicals (2001) guidelines. Results The extract exhibited considerable antioxidant activity. Staphylococcus epidermidis was susceptible to the extract with the MIC and MBC of 6 and 12 mg/ml, respectively. The extract caused swelling and distortion of bacterial cells and inhibited bacterial biofilm formation. Rupture of bacterial cell wall occurred after treated with the extract for 24 h. Acute toxicity test in mice showed no sign of toxicity or death at the doses of 2,000 and 15,000 mg/kg body weight. Conclusion The aqueous extract of Aquilaria crassna leaves possesses an in vitro antibacterial activity against Staphylococcus epidermidis, with no sign of acute oral toxicity in mice, probably by interfering with bacterial cell wall synthesis and inhibiting biofilm formation. PMID:23962360
Alizadeh Behbahani, Behrooz; Tabatabaei Yazdi, Farideh; Vasiee, Alireza; Mortazavi, Seyed Ali
2018-01-01
Oliveria decumbens as a valuable medicinal plant is extensively used in traditional medicine. clinical and standard strains causing infection resistance to antimicrobial agents, is one of the important problems in medicine. The aim of this study was to investigate the antibacterial activities and phytochemical analysis of Oliveria decumbens essential oil on the growth of some clinical and standard strains causing infection (Pseudomonas aerogenes, Escherichia coli, Streptococcus pyogenes and Staphylococcus epidermidis). Oliveria decumbens essential oil composition was identified by gas chromatography/mass spectrometry. Phytochemical analysis (alkaloids, saponins, flavone and phenolic) essential oil of the Oliveria decumbens were appraised based on qualitative methods. Several methods (disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)) were used to appraise the antibacterial activity of the Oliveria decumbens essential oil. Thymol (28.45%) was the major compound of Oliveria decumbens essential oil. The total phenolics content (TPC) of the essential oil positively correlated with antioxidant activity (AA). The TPC and AA of Oliveria decumbens essential oil was equal to 92.45 ± 0.70 μg GAE/mg and 164.45 ± 1.20 μg/ml, respectively. The MIC of Oliveria decumbens essential oil ranged from 1 to 8 mg/ml depending on the type of bacteria (clinical and standard strains). The MBC of Oliveria decumbens essential oil varied from 1 mg/ml to 16 mg/ml. The smallest inhibition zone diameter (IZD) on different Oliveria decumbens essential oil concentrations on P. aeruginosa. Results indicate that Oliveria decumbens essential oil can prove to be an important source of AA and antibacterial and may be used for the treatment of infection diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aziman, Nurain; Abdullah, Noriham; Noor, Zainon Mohd; Kamarudin, Wan Saidatul Syida Wan; Zulkifli, Khairusy Syakirah
2014-04-01
Preliminary phytochemical and flavonoid compounds of aqueous and ethanolic extracts of 6 aromatic Malaysian herbs were screened and quantified using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). The herbal extracts were tested for their antimicrobial activity against 10 food-borne pathogenic and food spoilage microorganisms using disk diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) of herbal extracts were determined. In the phytochemical screening process, both aqueous and ethanolic extracts of P. hydropiper exhibited presence of all 7 tested phytochemical compounds. Among all herbal extracts, the aqueous P. hydropiper and E. elatior extracts demonstrated the highest antibacterial activity against 7 tested Gram-positive and Gram-negative bacteria with diameter ranging from 7.0 to 18.5 mm and 6.5 to 19 mm, respectively. The MIC values for aqueous and ethanolic extracts ranged from 18.75 to 175 mg/mL and 0.391 to 200 mg/mL, respectively while the MBC/MFC values for aqueous and ethanolic extracts ranged from 25 to 200 mg/mL and 3.125 to 50 mg/mL, respectively. Major types of bioactive compounds in aqueous P. hydropiper and E. elatior extracts were identified using RP-HPLC instrument. Flavonoids found in these plants were epi-catechin, quercetin, and kaempferol. The ability of aqueous Persicaria hydropiper (L.) H. Gross and Etlingera elatior (Jack) R.M. Sm. extracts to inhibit the growth of bacteria is an indication of its broad spectrum antimicrobial potential. Hence these herbal extracts may be used as natural preservative to improve the safety and shelf-life of food and pharmaceutical products. © 2014 Institute of Food Technologists®
Franca, Juçara R; De Luca, Mariana P; Ribeiro, Tatiana G; Castilho, Rachel O; Moreira, Allyson N; Santos, Vagner R; Faraco, André A G
2014-12-12
Dental caries is the most prevalent oral disease in several Asian and Latin American countries. It is an infectious disease and different types of bacteria are involved in the process. Synthetic antimicrobials are used against this disease; however, many of these substances cause unwarranted undesirable effects like vomiting, diarrhea and tooth staining. Propolis, a resinous substance collected by honeybees, has been used to control the oral microbiota. So, the objective of this study was to develop and characterize sustained-release propolis-based chitosan varnish useful on dental cariogenic biofilm prevention, besides the in vitro antimicrobial activity. Three formulations of propolis - based chitosan varnish (PCV) containing different concentrations (5%, 10% and 15%) were produced by dissolution of propolis with chitosan on hydro-alcoholic vehicle. Bovine teeth were used for testing adhesion of coatings and to observe the controlled release of propolis associated with varnish. It was characterized by infrared spectroscopy, scanning electron microscopy, casting time, diffusion test in vitro antimicrobial activity and controlled release. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were tested for the main microorganisms involved in the cariogenic biofilm through the microdilution test in 96-well plates. The formulations presented a tooth surface adherence and were able to form films very fast on bovine tooth surface. Also, propolis-based chitosan varnishes have shown antimicrobial activity similar to or better than chlorhexidine varnish against all oral pathogen bacteria. All microorganisms were sensitive to propolis varnish and chitosan. MIC and MBC for microorganisms of cariogenic biofilme showed better results than chlorhexidine. Propolis active components were released for more than one week. All developed formulations turn them, 5%, 10% and 15% propolis content varnish, into products suitable for clinical application on dental caries prevention field, deserving clinical studies to confirm its in vivo activity.
New non-alcoholic formulation for hand disinfection.
Biagi, Marco; Giachetti, Daniela; Miraldi, Elisabetta; Figura, Natale
2014-04-01
Hand washing is considered as the single most important strategy to prevent infections. World health organization (WHO) defines hand hygiene as a primary issue of personal care with particular reference to hospital personnel and health facility workers. In this work, we investigated a new combination for hand disinfection as an alternative to alcohol-based and chlorhexidine products. The new combination of 5-pyrrolidone-2-carboxylic acid (PCA) and copper sulphate pentahydrate (CS) was tested upon different bacterial species that normally colonize hands, including Staphylococcus aureus, methicillin resistant S. aureus (MR S. aureus), Staphylococcus epidermidis, multidrug resistant S. epidermidis (MDR S. epidermidis), Streptococcus pyogenes, Streptococcus agalactiae, Escherichia coli, Candida albicans and three clinical isolates: MR S. aureus, MDR S. epidermidis, and an E. coli strain. Minimal inhibitory concentrations (MICs), Minimal bactericidal concentrations (MBCs), fractional inhibitory concentration (FIC) indices, and fractional bactericidal concentration (FBC) indices were evaluated. Ethanol 70% V/V, isopropanol 60% V/V, and 4% w/V chlorhexidine solution were used as reference hand disinfectants. Copper sulphate pentahydrate was very effective against all tested microorganisms: The MIC and MBC for CS ranged from 781 mg/l against S. pyogenes to 12500 mg/l against E. coli strains and C. albicans. In addition, PCA exhibited a good antimicrobial activity, in particular, against S. pyogenes and S. agalactiae. The combination of CS and PCA showed a strong synergistic effect and all FIC indices were ≤0·500. The combination of CS and PCA were more effective than ethanol 70% V/V and isopropanol 60% V/V. In addition to antimicrobial activity, the new formulation possesses peculiar features such as residual activity and moisturizing effect. This work identifies a new strategy for hand disinfection.
Ultrastructural studies on antimicrobial efficacy of thyme essential oils on Listeria monocytogenes.
Rasooli, Iraj; Rezaei, Mohammad Bagher; Allameh, Abdolamir
2006-05-01
Listeria monocytogenes has gained increasing attention as a pathogen of public health importance owing to large numbers of food-borne outbreaks of listeriosis. Because of negative consumer perception of chemical preservatives, attention is shifting towards natural alternatives. Particular interest has been focused on the potential application of plant essential oils. The objective of the present study was to determine ultrastructural changes brought about by essential oils from two types of thyme, Thymus eriocalyx and Thymus x-porlock, on Listeria monocytogenes. Minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations and bactericidal kinetics of the oils were determined. Listeria monocytogenes were treated with essential oils from two thyme species and observed under a transmission electron microscope. The oils from the above plants were found to be strongly antimicrobial. Analysis of the oils by gas chromatography and gas chromatography/mass spectrometry lead to the identification of 18 and 19 components in T. eriocalyx and T. x-porlock oils, respectively. Listeria monocytogenes treated with essential oils from the two thyme species exhibited a thickened or disrupted cell wall with increased roughness and lack of cytoplasm. The antilisterial effects of thyme oil are stronger than the action of electric shocks in combination with nisin reported in the literature. It is concluded that essential oils such as thyme oil, which inhibited the growth of L. monocytogenes at low concentrations, could be considered as preservative materials for some kinds of foods; they could find an application as additives to foodstuffs in storage to protect them from listerial contamination.
Disruption of methicillin-resistant Staphylococcus aureus protein synthesis by tannins
Adnan, Siti-Noor-Adnalizawati; Ibrahim, Nazlina; Yaacob, Wan Ahmad
2017-01-01
Introduction Methicillin-resistant Staphylococcus aureus (MRSA) is a worldwide public health threat, displaying multiple antibiotic resistance that causes morbidity and mortality. Management of multidrug-resistant (MDR) MRSA infections is extremely difficult due to their inherent resistance to currently used antibiotics. New antibiotics are needed to combat the emergence of antimicrobial resistance. Methods The in vitro effect of tannins was studied against MRSA reference strain (ATCC 43300) and MRSA clinical strains utilizing antimicrobial assays in conjunction with both scanning and transmission electron microscopy. To reveal the influence of tannins in MRSA protein synthesis disruption, we utilized next-generation sequencing (NGS) to provide further insight into the novel protein synthesis transcriptional response of MRSA exposed to these compounds. Results Tannins possessed both bacteriostatic and bactericidal activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 0.78 and 1.56 mg/mL, respectively, against all tested MRSA. Scanning and transmission electron microscopy of MRSA treated with tannins showed decrease in cellular volume, indicating disruption of protein synthesis. Conclusion Analysis of a genome-wide transcriptional profile of the reference strain ATCC 43300 MRSA in response to tannins has led to the finding that tannins induced significant modulation in essential ribosome pathways, which caused a reduction in the translation processes that lead to inhibition of protein synthesis and obviation of bacterial growth. These findings highlight the potential of tannins as new promising anti-MRSA agents in clinical application such as body wash and topical cream or ointments. PMID:29264356
Isolation of Abscisic Acid from Korean Acacia Honey with Anti-Helicobacter pylori Activity
Kim, SeGun; Hong, InPyo; Woo, SoonOk; Jang, HyeRi; Pak, SokCheon; Han, SangMi
2017-01-01
Background: Helicobacter pylori (H. pylori) is linked to the development of the majority of peptic ulcers and some types of gastric cancers, and its antibiotic resistance is currently found worldwide. Objective: This study is aimed at evaluating the anti-H. pylori activity of Korean acacia honey and isolating the related active components using organic solvents. Material and Methods: The crude acacia honey was extracted with n-hexane, dichloromethane, ethyl acetate (EtOAc), and n-butanol. The EtOAc extract was subjected to octadecyl-silica chromatography. The extracts and fractions were then examined for anti-H. pylori activity using the agar well diffusion method. The antimicrobial activity of abscisic acid against H. pylori was investigated by determining the minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and by performing a time-kill assay. Results: Abscisic acid related to the botanical origins of acacia honey from Korea has been analyzed using ultra-performance liquid chromatography. The MICs and MBCs of abscisic acid were 2.7 ± 1.3 and 6.9 ± 1.9 μg/mL, respectively. The bactericidal activity of abscisic acid (at 10.8 μg/mL corresponding to 4 × MIC) killed the organism within 36–72 h. These results suggest that abscisic acid isolated from Korean acacia honey has antibacterial activity against H. pylori. Conclusion: Abscisic acid isolated from Korean acacia honey can be therapeutic and may be further exploited as a potential lead candidate for the development of treatments for H. pylori-induced infections. SUMMARY The crude acacia honey was extracted with n-hexane, dichloromethane, EtOAc, and n-butanolThe EtOAc extract yielded eight fractions and four subfractions were subsequently obtained chromatographicallyAbscisic acid was isolated from one subfractionAll the solvent extracts and fractions showed antibacterial activity against H. pyloriAbscisic acid exhibited antibacterial activity against H. pylori. Abbreviations used: MeOH: Methanol; EtOAc: Ethyl acetate; TSB: Trypticase soy broth; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; CFU: Colony-forming units; UPLC: Ultra-performance liquid chromatography; DAD: Diode array detector; UV: Ultraviolet; ODS: Octadecyl-silica; MS: Mass spectrometry; SE: Standard error. PMID:28808376
Isolation of Abscisic Acid from Korean Acacia Honey with Anti-Helicobacter pylori Activity.
Kim, SeGun; Hong, InPyo; Woo, SoonOk; Jang, HyeRi; Pak, SokCheon; Han, SangMi
2017-07-01
Helicobacter pylori ( H. pylori ) is linked to the development of the majority of peptic ulcers and some types of gastric cancers, and its antibiotic resistance is currently found worldwide. This study is aimed at evaluating the anti- H. pylori activity of Korean acacia honey and isolating the related active components using organic solvents. The crude acacia honey was extracted with n -hexane, dichloromethane, ethyl acetate (EtOAc), and n -butanol. The EtOAc extract was subjected to octadecyl-silica chromatography. The extracts and fractions were then examined for anti- H. pylori activity using the agar well diffusion method. The antimicrobial activity of abscisic acid against H. pylori was investigated by determining the minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and by performing a time-kill assay. Abscisic acid related to the botanical origins of acacia honey from Korea has been analyzed using ultra-performance liquid chromatography. The MICs and MBCs of abscisic acid were 2.7 ± 1.3 and 6.9 ± 1.9 μg/mL, respectively. The bactericidal activity of abscisic acid (at 10.8 μg/mL corresponding to 4 × MIC) killed the organism within 36-72 h. These results suggest that abscisic acid isolated from Korean acacia honey has antibacterial activity against H. pylori . Abscisic acid isolated from Korean acacia honey can be therapeutic and may be further exploited as a potential lead candidate for the development of treatments for H. pylori -induced infections. The crude acacia honey was extracted with n -hexane, dichloromethane, EtOAc, and n -butanolThe EtOAc extract yielded eight fractions and four subfractions were subsequently obtained chromatographicallyAbscisic acid was isolated from one subfractionAll the solvent extracts and fractions showed antibacterial activity against H. pylori Abscisic acid exhibited antibacterial activity against H. pylori . Abbreviations used: MeOH: Methanol; EtOAc: Ethyl acetate; TSB: Trypticase soy broth; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; CFU: Colony-forming units; UPLC: Ultra-performance liquid chromatography; DAD: Diode array detector; UV: Ultraviolet; ODS: Octadecyl-silica; MS: Mass spectrometry; SE: Standard error.
Pompilio, Arianna; Crocetta, Valentina; Verginelli, Fabio; Di Bonaventura, Giovanni
2016-07-01
The activity of levofloxacin against planktonic and biofilm Stenotrophomonas maltophilia cells and the role played by the multidrug efflux pump SmeDEF were evaluated under conditions relevant to the cystic fibrosis (CF) lung. MIC, MBC and MBEC of levofloxacin were assessed, against five CF strains, under 'standard' (CLSI-recommended) and 'CF-like' (pH 6.8, 5% CO2, in a synthetic CF sputum) conditions. Levofloxacin was tested against biofilms at concentrations (10, 50 and 100 μg mL(-1)) corresponding to achievable serum levels and sputum levels by aerosolisation. smeD expression was evaluated, under both conditions, in planktonic and biofilm cells by RT-PCR. The bactericidal effect of levofloxacin was decreased, in three out of five strains tested, under 'CF-like' conditions (MBC: 2-4 vs 8-16 μg mL(-1), under 'standard' and 'CF-like' conditions, respectively). Biofilm was intrinsically resistant to levofloxacin, regardless of conditions tested (MBECs ≥ 100 μg mL(-1) for all strains). Only under 'CF-like' conditions, smeD expression increased during planktonic-to-biofilm transition, and in biofilm cells compared to stationary planktonic cells. Our findings confirmed that S. maltophilia biofilm is intrinsically resistant to therapeutic concentrations of levofloxacin. Under conditions relevant to CF, smeD overexpression could contribute to levofloxacin resistance. Further studies are warranted to define the clinical relevance of our findings. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yu, Jian; Zhang, Wenyun; Li, Yang; Wang, Gang; Yang, Lidou; Jin, Jianfeng; Chen, Qinghua; Huang, Minghua
2014-12-23
Postoperative infections remain a risk factor that leads to failures in oral and maxillofacial artificial bone transplantation. This study aimed to synthesize and evaluate a novel hydroxyapatite whisker (HAPw) / nano zinc oxide (n-ZnO) antimicrobial bone restorative biomaterial. A scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) were employed to characterize and analyze the material. Antibacterial capabilities against Staphylococcus aureus, Escherichia coli, Candida albicans and Streptococcus mutans were determined by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and kinetic growth inhibition assays were performed under darkness and simulated solar irradiation. The mode of antibiotic action was observed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The MIC and MBC were 0.078-1.250 mg ml(-1) and 0.156-2.500 mg ml(-1), respectively. The inhibitory function on the growth of the microorganisms was achieved even under darkness, with gram-positive bacteria found to be more sensitive than gram-negative, and enhanced antimicrobial activity was exhibited under simulated solar excitation compared to darkness. TEM and CLSM images revealed a certain level of bacterial cell membrane destruction after treatment with 1 mg ml(-1) of the material for 12 h, causing the leakage of intracellular contents and bacteria death. These results suggest favorable antibiotic properties and a probable mechanism of the biomaterial for the first time, and further studies are needed to determine its potential application as a postoperative anti-inflammation method in bone transplantation.
Sun, Mengjun; Dong, Jiachen; Xia, Yiru; Shu, Rong
2017-06-01
The aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The effects on planktonic growth and biofilm metabolic activity were evaluated by growth curve determination and MTT assay, respectively. Then, colony forming unit (CFU) counting, scanning electron microscopy (SEM) and real-time PCR were performed to further investigate the actions of DHA and EPA on exponential phase-S. mutans. Confocal laser scanning microscopy (CLSM) was used to detect the influences on mature biofilms. The MICs of DHA and EPA against S. mutans were 100 μM and 50 μM, respectively; the MBC of both compounds was 100 μM. In the presence of 12.5 μM-100 μM DHA or EPA, the planktonic growth and biofilm metabolic activity were reduced in varying degrees. For exponential-phase S. mutans, the viable counts, the bacterial membranes and the biofilm-associated gene expression were damaged by 100 μM DHA or EPA treatment. For 1-day-old biofilms, the thickness was decreased and the proportion of membrane-damaged bacteria was increased in the presence of 100 μM DHA or EPA. These results indicated that, DHA and EPA possessed antibacterial activities against planktonic and biofilm growing S. mutans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting
Sung, Calvin T; Weng, Yi-Han; Fang, Jia-You
2017-01-01
Pathogens usually invade hair follicles when skin infection occurs. The accumulated bacteria in follicles are difficult to eradicate. The present study aimed to assess the cutaneous and follicular delivery of chloramphenicol (Cm)-loaded liposomes and the antibacterial activity of these liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Skin permeation was conducted by in vitro Franz diffusion cell. The anti-MRSA potential was checked using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), a well diffusion test, and intracellular MRSA killing. The classic, dimyristoylphosphatidylcholine (DMPC), and deoxycholic acid (DA) liposomes had a vesicle size of 98, 132, and 239 nm, respectively. The incorporation of DMPC or DA into the liposomes increased the bilayer fluidity. The malleable vesicles containing DMPC and DA showed increased follicular Cm uptake over the control solution by 1.5- and 2-fold, respectively. The MIC and MBC of DA liposomes loaded with Cm were 62.5 and 62.5–125 μg/mL, comparable to free Cm. An inhibition zone about 2-fold higher was achieved by DA liposomes as compared to the free control at a Cm dose of 0.5 mg/mL. DA liposomes also augmented antibacterial activity on keratinocyte-infected MRSA. The deformable liposomes had good biocompatibility against keratinocytes and neutrophils (viability >80%). In vivo administration demonstrated that DA liposomes caused negligible toxicity on the skin, based on physiological examination and histology. These data suggest the potential application of malleable liposomes for follicular targeting and the treatment of MRSA-infected dermatologic conditions. PMID:29184410
Celenza, Giuseppe; Segatore, Bernardetta; Setacci, Domenico; Bellio, Pierangelo; Brisdelli, Fabrizia; Piovano, Marisa; Garbarino, Juan A; Nicoletti, Marcello; Perilli, Mariagrazia; Amicosante, Gianfranco
2012-05-15
The in vitro antimicrobial activities of pannarin, a depsidone isolated from lichens, collected in several Southern regions of Chile (including Antarctica), was evaluated alone and in combination with five therapeutically available antibiotics, using checkerboard microdilution assay against methicillin-resistant clinical isolates strains of Staphylococcus aureus. MIC(90), MIC(50), as well as MBC(90) and MBC(50), were evaluated. A moderate synergistic action was observed in combination with gentamicin, whilst antagonism was observed in combination with levofloxacin. All combinations with erythromycin were indifferent, whilst variability was observed for clindamycin and oxacillin combinations. Data from checkerboard assay were analysed and interpreted using the fractional inhibitory concentration index and the response surface approach using the ΔE model. Discrepancies were found between both methods for some combinations. In order to asses cellular lysis after exposure to pannarin, cell membrane permeability assay was performed. The treatment with pannarin produces bactericidal activity without significant calcein release, consistent with lack of lysis or even significant structural damage to the cytoplasmic membrane. Furthermore, pannarin shows low hemolytic activity and moderate cytotoxic effect on peripheral blood mononuclear cells. These findings suggest that the natural compound pannarin might be a good candidate for the individualization of novel templates for the development of new antimicrobial agents or combinations of drugs for chemotherapy. Copyright © 2012 Elsevier GmbH. All rights reserved.
Labovitiadi, Olga; Lamb, Andrew J; Matthews, Kerr H
2012-12-15
There is a requirement to deliver accurate amounts of broad spectrum antimicrobial compounds locally to exuding wounds. Varying amounts of exudate complicates this process by limiting the residence and therefore efficacy of active substances. Minimum bactericidal concentrations (MBC) of antimicrobials are necessary to suppress infection and lessen the chances of resistant strains of potentially pathogenic bacteria from prevailing. Polysaccharide wafers can adhere to exudating wound beds, absorbing fluids and forming highly viscous gels that remain in situ for prolonged periods of time to release sustained amounts of antimicrobial. In this study, five different formulations were produced containing the antimicrobial, chlorhexidine digluconate (CHD). Absorption of simulated wound fluid, resultant rheological properties of gels and efficacy against plated cultures of Pseudomonas aeruginosa were measured and compared. CHD reduced the 'water uptake' of wafers by 11-50% (w/w) and decreased the rheological consistency of non-SA containing gels by 10-65%. Release studies indicated that karaya wafers gave the highest sustained release of CHD, >60 μg/mL in 24 h, well in excess of the MBC for P. aeruginosa. Release kinetics indicated an anomalous diffusion mechanism according to Korsmeyer-Peppas, with diffusion exponents varying from 0.31 to 0.41 for most wafers except xanthan (0.65). Copyright © 2012 Elsevier B.V. All rights reserved.
Muratovska, Ilijana; Kitagawa, Haruaki; Hirose, Nanako; Kitagawa, Ranna; Imazato, Satoshi
2018-02-08
The aim of this study was to evaluate the antibacterial activity and dentin bonding ability of a commercial self-etch adhesive Clearfil SE Protect (Kuraray Noritake Dental, Tokyo, Japan) in combination with sodium hypochlorite (NaOCl). Agar disc diffusion tests and measurement of minimum inhibitory/bactericidal concentrations (MIC/MBC) against Streptococcus mutans were performed to evaluate antibacterial effects. The mixture solution of 5.25% NaOCl and the primer of Clearfil SE Protect demonstrated less antibacterial activity than primer only. In microtensile bond strength tests using non-carious human molars, pretreatment with 5.25% NaOCl aqueous solution had no influence on the bond strength of Clearfil SE Protect. These results indicate that pretreatment with NaOCl does not influence the bonding ability of Clearfil SE Protect, while their combined use does not enhance cavity disinfecting effects.
Alharbe, Roaa; Almansour, Ayidh; Kwon, Dong H
2017-10-01
A major clinical impact of A. baumannii is hospital-acquired infections including ventilator-associated pneumonia. The treatment of this pathogen is often difficult due to its innate and acquired resistance to almost all commercially available antibiotics. Infections with carbapenem-associated multidrug resistant A. baumannii is the most problematic. Glutathione is a tripeptide thiol-antioxidant and antibacterial activity of exogenous glutathione was reported in some bacteria. However, clinical relevance and molecular details of the antibacterial activity of glutathione are currently unclear. Seventy clinical isolates of A. baumannii including 63 carbapenem-associated multidrug resistant isolates and a type strain A. baumannii ATCC 19606 were used to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Fractional inhibitory concentration (FIC) and time-killing activity with meropenem and/or glutathione were also determined in the carbapenem-associated multidrug resistant isolates. In addition, the roles of exogenous glutathione in multidrug efflux pumps and β-lactamase production were examined. Levels of MIC and MBC were ranged from 10 to 15mM of exogenous glutathione. All tested carbapenem-associated multidrug resistant isolates were sensitized by all tested antibiotics in combination with subinhibitory concentrations of glutathione. FIC levels of glutathione with carbapenem (meropenem) were all<0.5 and the carbapenem-associated multidrug resistant isolates were killed by subinhibitory concentrations of both glutathione and meropenem at>2log10 within 12h, suggesting glutathione synergistically interacts with meropenem. The roles of multidrug efflux pumps and β-lactamase production were excluded for the glutathione-mediated antibiotic susceptibility. Overall results demonstrate that the antibacterial activity of glutathione is clinically relevant and its synergism on antibiotics sensitizes clinical isolates of A. baumannii regardless of their resistance or susceptibility to antibiotics. This finding suggests that exogenous glutathione alone and/or in combination with existing antibiotics may be applicable to treat infections with carbapenem-associated multidrug resistant A. baumannii. Copyright © 2017 Elsevier GmbH. All rights reserved.
Ranjbar, Reza; Arjomandzadegan, Mohammad; Hosseiny, Hossein
2017-07-31
The aim of the study was to examine antibacterial properties of microemulsion structure produced from Aloe vera var. littoralis extract as a new tool of nanoscale drug-like materials. Aloe vera var. littoralis ( A. littoralis ) extract was prepared by distillation method. A nonocarrier structure in the microemulsion system was prepared from the extract. Serial concentrations were prepared from 8 mg/mL extract and the nonocarrier containing 0.1 mg/mL pure extract and were evaluated by a disk diffusion method for 35 Salmonella clinical isolates. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by microbroth dilution assay using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method by an enzyme-linked immunosorbent assay(ELISA) Microplate Reader apparatus. Antioxidant activity of the extract was determined by measuring the ferric reducing ability of plasma (FRAP) assay. From 35 clinical isolates of Salmonella , 17 isolates-including resistant isolates of S.E.1103 and S.E.49-had a zone of inhibition (ZI) of 7 to 32 mm in 0.007 mg/mL of the extract. S.E.76 isolate exposed to 30 µg/mL ceftazidime disk had a ZI of 12 mm but had 10 mm in 7µg/mL of A. littoralis extract. The inhibitory effect of a nanocarrier at a concentration of 25 µg/mL by 20 mm ZI was comparable by the ceftazidime (30 µg/mL) effect. MIC 50 was 0.25 mg/mL and MBC 50 was 0.5 mg/mL by MTT method for the extract. It was shown that A.littoralis extract had antioxidant activity of 31.67 µM/mg that could be increased based on concentration. It was concluded that the nanocarrier had a significant effect on the studied isolates in comparison with ordinary antibiotics and had potential for use as a natural antioxidant and antimicrobial material in complementary medicine.
Wen, Peng; Zhu, Ding-He; Feng, Kun; Liu, Fang-Jun; Lou, Wen-Yong; Li, Ning; Zong, Min-Hua; Wu, Hong
2016-04-01
A novel antimicrobial packaging material was obtained by incorporating cinnamon essential oil/β-cyclodextrin inclusion complex (CEO/β-CD-IC) into polylacticacid (PLA) nanofibers via electrospinning technique. The CEO/β-CD-IC was prepared by the co-precipitation method and SEM and FT-IR spectroscopy analysis indicated the successful formation of CEO/β-CD-IC, which improved the thermal stability of CEO. The CEO/β-CD-IC was then incorporated into PLA nanofibers by electrospinning and the resulting PLA/CEO/β-CD nanofilm showed better antimicrobial activity compared to PLA/CEO nanofilm. The minimum inhibitory concentration (MIC) of PLA/CEO/β-CD nanofilm against Escherichia coli and Staphylococcus aureus was approximately 1 mg/ml (corresponding CEO concentration 11.35 μg/ml) and minimum bactericidal concentration (MBC) was approximately 7 mg/ml (corresponding CEO concentration 79.45 μg/ml). Furthermore, compared with the casting method, the mild electrospinning process was more favorable for maintaining greater CEO in the obtained film. The PLA/CEO/β-CD nanofilm can effectively prolong the shelf life of pork, suggesting it has potential application in active food packaging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Castillo, Sandra L; Heredia, Norma; Contreras, Juan F; García, Santos
2011-08-01
Campylobacter spp. is recognized as one of the most common cause of food-borne bacterial gastroenteritis in humans. Campylobacter infection causes campylobacteriosis, which can range from asymptomatic to dysentery-type illnesses with severe complications, such as Guillian-Barre syndrome. Epidemiological studies have revealed that consumption of poultry products is an important risk factor of this disease. Adherence and cytotoxic activity of the bacteria to host mucosal surfaces have been proposed to be critical steps in pathogenesis. Innovative tools for controlling Campylobacter, such as natural products from plants, represent good alternatives for use in foods or as therapeutic agents. In this study, 28 edible or medicinal plants species were analyzed for their bactericidal effects on the growth of Campylobacter jejuni and C. coli. The extracts of Acacia farnesiana, Artemisia ludoviciana, Opuntia ficus-indica, and Cynara scolymus were the most effective against these microorganisms at minimal bactericidal concentrations (MBCs) of 0.3, 0.5, 0.4, and 2.0 mg/mL, respectively. No effect on growth was detected with lower concentrations of extract (25%, 50%, or 75% of the MBC) added to the media. The effect of each extract (75% of the MBC) on adherence and cytotoxicity of C. jejuni and C. coli was evaluated in Vero cells. Adherence of Campylobacter to Vero cells was significantly affected by all the extracts. Cytotoxic activity of bacterial cultures was inhibited by A. farnesiana and A. ludoviciana. These plant extracts are potential candidates to be studied for controlling Campylobacter contamination in foods and the diseases associated with this microorganism. Innovative tools for controlling Campylobacter, such as natural products from plants, represent good alternatives for use in foods or as therapeutic agents. The extracts of Acacia farnesiana, Artemisia ludoviciana, Opuntia ficus-indica, and Cynara scolymus were the most effective against these microorganisms. Adherence and cytotoxic activity of the bacteria to host mucosal surfaces which are critical steps in pathogenesis were decreased by these extracts. Our results point to these plants as potential candidates for the control of Campylobacter contamination in foods, the treatment of the diseases associated with this microorganism, and as feed supplements to reduce on-farm prevalence of Campylobacter. © 2011 Institute of Food Technologists®
Nirmal, Nilesh Prakash; Panichayupakaranant, Pharkphoom
2015-01-01
Brazilin is a major active principle of Caesalpinia sappan L. (Leguminosae or Fabaceae). For industry aspects, brazilin-rich extract (BRE) has been prepared and standardized to contain 39% w/w brazilin. BRE may have more advantages than brazilin in term of a lower-cost production process. To investigate the antioxidant, antibacterial, and anti-inflammatory activities of BRE. BRE was prepared by a simple one-step purification of the crude ethanol extract of C. sappan heartwood (CSE) using a Diaion® HP-20 column. The antioxidant activities were determined using three methods, including DPPH radical scavenging, reducing power, and β-carotene bleaching assays, at concentration ranges of 1-10, 10-100, and 10-100 µg/mL, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of BRE (15.6-1000 µg/mL) against Gram-positive and Gram-negative bacteria were determined by the broth microdilution method. Anti-inflammatory activity of BRE (0.1-5 µg/mL) was evaluated as anti-denaturation activity using bovine serum albumin as a substrate. On the basis of β-carotene bleaching assay, BRE showed antioxidant activity with an EC50 value of 60.5 µg/mL, which was almost equal to that of pure brazilin (52.1 µg/mL). Gram-positive bacteria were more sensitive to all tested samples than Gram-negative bacteria. BRE possessed higher antibacterial activities than CSE, but lower than brazilin. MIC/MBC values of 62.5-125/125 and 250-500/250-500 µg/mL were obtained for BRE against Gram-positive and Gram-negative bacteria, respectively. A low concentration (0.1 µg/mL) of brazilin, BRE, and CSE showed anti-inflammatory activity by inhibiting protein denaturation up to 46.8, 54.1, and 61.9%, respectively.
Dehkordi, Naser Vahed; Kachouie, Mehrdad Ataie; Pirbalouti, Abdollah Ghasemi; Malekpoor, Fatemeh; Rabei, Mohammad
2015-01-01
Ephedra prcera belonging to the family Ephedraceae is a poison and medicinal plant. The main aim of present study was to determine total phenolic content and antioxidant and antibacterial activities of ethanolic extract from the aerial parts of E. procera collected from a natural habitat in Chaharmahal va Bakhtiari province, Southwestern Iran. The total phenolic content of the extract by Folin-Ciocalteu method and the antioxidant activity using DPPH assay were determined. The antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of the extract were evaluated against five bacteria, including Proteus vulgaris, Pseudomonas aeruginosa, Enteobacter aeogenes, Bacillus ceirus and Staphylococcus aureus. Total phenolic content in the extract of E. procera was 0.718 mg tannic acid/g dry weight extract. The results indicated that the ethanolic extract of E. piocera exhibited radical scavenging activity. In addition, the results of this study confirmed that the ethanolic extract of E. procera exhibited antibacterial activity. In conclusion, the extract of E. piocera could be an important source of phenolic components with antioxidant capacity and antibacterial activity.
Antimicrobial isothiocyanates from the seeds of Moringa oleifera Lam.
Padla, Eleanor P; Solis, Ludivina T; Levida, Ruel M; Shen, Chien-Chang; Ragasa, Consolacion Y
2012-01-01
4-(alpha-L-Rhamnosyloxy)benzyl isothiocyanate (1) and 4-(4'-O-acetyl-alpha-L-rhamnosyloxy)-benzyl isothiocyanate (2) isolated from Moringa oleifera seeds were screened for their antibacterial activities against Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and for their antifungal activities against Candida albicans, Trichophyton rubrum, and Epidermophyton floccosum using the disk diffusion method. Isothiocyanates 1 and 2 were found active at the lowest inhibitory concentration of 1 mg/ml against all Gram-positive bacteria tested (S. aureus, S. epidermidis, B. subtilis) and against the dermatophytic fungi E. floccosum and T. rubrum. Statistically significant differences were found between the mean inhibition zones (IZ) of 1 and 2 and the standard drugs, ofloxacin and clotrimazole. The minimum inhibitory concentration (MIC) values confirmed the good antimicrobial activity of 1 and 2 against S. aureus, good to moderate activity against S. epidermidis, moderate activity against B. subtilis, and weak activity against E. floccosum and T. rubrum. The in vitro bactericidal effect of 1 and 2 against the Gram-positive bacterial strains tested is suggested by MBC:MIC ratios of 2:1.
Antimicrobial and antiparasitic activities of three algae from the northwest coast of Algeria.
Ghania, Aissaoui; Nabila, Belyagoubi-Benhammou; Larbi, Belyagoubi; Elisabeth, Mouray; Philippe, Grellier; Mariem, Benmahdjoub; Khadidja, Kerzabi-Kanoun; Wacila, Benguedda-Rahal; Fawzia, Atik-Bekkara
2017-11-22
The objective of this study was to investigate the biological activities of Algerian algae, Sargassum vulgare, Cladostephus hirsutus and Rissoella verruculosa. Antimicrobial activity of the crude extracts and their fractions was assessed using the disc diffusion assay, the minimum inhibitory concentration and the minimum bactericidal concentration. Antiparasitic activity was studied in vitro against the blood stream forms of Trypanosoma brucei brucei and the intraerythrocytic stages of Plasmodium falciparum. Ethyl acetate (EA) fractions of the three tested algae showed more potent antimicrobial activity against S. aureus (7-14.5 mm) and B. cereus (7-10.75 mm), MIC values ranged from 0.9375 to 7.5 mg mL -1 and MBC values > 15 mg mL -1 . Concerning the antiparasitic activity, EA factions of S. vulgare (IC 50 = 9.3 μg mL -1 ) and R. verruculosa (IC 50 = 11.0 μg mL -1 ) were found to be more effective against T. brucei brucei, whereas the three EA fractions were little active against P. falciparum.
Activity of Aristolochia bracteolata against Moraxella catarrhalis
Khedr, Amgad I. M.; Abd AlGadir, Haidar; Takeshita, Satoshi; Shah, Mohammad Monir; Ichinose, Yoshio; Maki, Toshihide
2014-01-01
A bioassay-guided fractionation of methanol extract of Aristolochia bracteolata whole plant was carried out in order to evaluate its antimicrobial activity and to identify the active compounds in this extract. Antibacterial and antifungal activities of methanol extract against gram-positive, gram-negative, and fungal strains were investigated by the agar disk diffusion method. Among the strains tested, Moraxella catarrhalis and sea urchin-derived Bacillus sp. showed the highest sensitivity towards the methanol extract and hence they are used as test organisms for the bioassay-guided fractionation. From this extract, aristolochic acid 1 (AA-1) has been isolated and has showed the greatest antibacterial activity against both standard strain and clinical isolates of Moraxella catarrhalis with equal minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 25 and 50 μg/mL. Modification of the AA-1 to AA-1 methyl ester completely abolished the antibacterial activity of the compound and the piperonylic acid moiety of AA-1 which suggested that the coexistence of phenanthrene ring and free carboxylic acid is essential for AA-1 antibacterial activity. PMID:26904734
NASA Astrophysics Data System (ADS)
Allafchian, Ali R.; Jalali, S. A. H.; Amiri, R.; Shahabadi, Sh.
2016-11-01
In this study, the NiFe2O4 was embedded in (3-mercaptopropyl) trimethoxysilane (TPS) and tetraethyl orthosilicate (TEOS) using the sol-gel method. These compounds were used as the support of Ag nanoparticles (Ag NPs). The NiFe2O4@TEOS-TPS@Ag nanocomposites were obtained with the development of bonding between the silver atoms of Ag NPs and the sulfur atoms of TPS molecule. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were used for the characterization of the Ag nanocomposites. Also, the magnetic properties of these nanocomposites were studied by using a vibrating sample magnetometer (VSM) technique. The disk diffusion, minimum inhibition concentration (MIC) and minimum bactericidal concentrations (MBC) tests were used for the investigation of the antibacterial effect of this nanocomposite against bacterial strains. The synthesized nanocomposite presented high reusability and good antibacterial activity against gram-positive and gram-negative bacteria. Remarkably, this nanocomposite could be easily removed from the disinfected media by magnetic decantation.
Lees, P; Illambas, J; Pelligand, L; Toutain, P-L
2016-12-01
The in vitro pharmacodynamics of oxytetracycline was established for six isolates of each of the calf pneumonia pathogens Mannheimia haemolytica and Pasteurella multocida. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and bacterial time-kill curves were determined in two matrices, Mueller Hinton broth (MHB) and calf serum. Geometric mean MIC ratios, serum:MHB, were 25.2:1 (M. haemolytica) and 27.4:1 (P. multocida). The degree of binding of oxytetracycline to serum protein was 52.4%. Differences between serum and broth MICs could not be accounted for by oxytetracycline binding to serum protein. In vitro time-kill data suggested a co-dependent killing action of oxytetracycline. The in vitro data indicate inhibition of the killing action of oxytetracycline by serum factor(s). The nature of the inhibition requires further study. The outcome of treatment with oxytetracycline of respiratory tract infections in calves caused by M. haemolytica and P. multocida may not be related solely to a direct killing action. Copyright © 2016 Elsevier Ltd. All rights reserved.
Antibacterial abietane-type diterpenoid, taxodone from Metasequoia glyptostroboides Miki ex Hu.
Bajpai, Vivek K; Kang, Sun Chul
2010-12-01
In an attempt to isolate bioactive constituents, ethyl acetate cone extract of Metasequoia glyptostroboides was subjected to a column chromatographic analysis that resulted in isolation of an abietane-type diterpenoid, taxodone. Its structure was elucidated by spectroscopic means. Further, taxodone showed potential antibacterial effect as diameters of zones of inhibition against foodborne pathogenic bacteria, such as Listeria monocytogenes ATCC 19166, Salmonella typhimurium KCTC 2515, S. enteritidis KCTC 2021, Escherichia coli ATCC 8739, E. coli O157:H7 ATCC 43888, Enterobacter aerogenes KCTC 2190, Staphylococcus aureus ATCC 6538 and S. aureus KCTC 1916, were found in the range of 9.4 to 14.2 mm. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of taxodone against the employed bacterial pathogens were found in the range of 250 to 1000 and 250 to less than 2000 microg/ml, respectively. Also the compound had a strong antibacterial effect on the viable counts of the tested bacteria. These findings indicate that the bioactive compound taxodone present in M. glyptostroboides could be used as an antibacterial agent in food industry to inhibit the growth of certain important foodborne pathogens.
Angell, Joseph W; Clegg, Simon R; Sullivan, Leigh E; Duncan, Jennifer S; Grove-White, Dai H; Carter, Stuart D; Evans, Nicholas J
2015-12-01
Contagious ovine digital dermatitis (CODD) is an important cause of infectious lameness in sheep in the UK and Ireland and has a severe impact on the welfare of affected individuals. The three treponemal phylogroups Treponema medium/Treponema vincentii-like, Treponema phagedenis-like and Treponema pedis spirochaetes have been associated with clinical CODD lesions and are considered to be a necessary cause of disease. There are scant data on the antimicrobial susceptibility of the treponemes cultured from CODD lesions. The aim of this study was to determine in vitro the miniumum inhibitory concentration/ minimum bactericidal concentration (MIC/MBC) of antimicrobials used in the sheep industry for isolates of the three CODD associated treponeme phylogroups T. medium/T. vincentii-like, T. phagedenis-like and T. pedis. Twenty treponeme isolates; from 19 sheep with clinical CODD lesions. A microdilution method was used to determine in vitro the MIC/MBC of 10 antimicrobial agents for 20 treponeme isolates (five T. medium/T. vincentii-like, 10 T. phagedenis-like and five T. pedis). The antimicrobials tested were penicillin G, amoxicillin, oxytetracycline, tilmicosin, lincomycin, spectinomycin, tylosin, tildipirosin, tulathromycin and gamithromycin. The treponeme isolates tested showed low MICs and MBCs to all 10 antimicrobials tested. They were most susceptible to gamithromycin and tildipirosin (MIC90: 0.0469 mg/L), and were least susceptible to lincomycin, spectinomycin and oxytetracycline (MIC90: 48 mg/L, 24 mg/L and 3 mg/L, respectively). These data are comparable to in vitro antimicrobial susceptibility data for treponemes cultured from bovine digital dermatitis lesions. Dependent on local licensing, penicillin and tilmicosin appear to be the best candidates for future in vivo studies. © 2015 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the ESVD and ACVD.
Meerungrueang, W; Panichayupakaranant, P
2014-09-01
Medicinal plants involved in traditional Thai longevity formulations are potential sources of antimicrobial compounds. To evaluate the antimicrobial activities of some extracts from medicinal plants used in traditional Thai longevity formulations against some oral pathogens, including Streptococcus pyogenes, Streptococcus mitis, Streptococcus mutans, and Candida albicans. An extract that possessed the strongest antimicrobial activity was fractionated to isolate and identify the active compounds. Methanol and ethyl acetate extracts of 25 medicinal plants used as Thai longevity formulations were evaluated for their antimicrobial activity using disc diffusion (5 mg/disc) and broth microdilution (1.2-2500 µg/mL) methods. The ethyl acetate extract of Ficus foveolata Wall. (Moraceae) stems that exhibited the strongest antibacterial activity was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract of F. foveolata showed the strongest antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 19.5-39.0 and 39.0-156.2 µg/mL, respectively. On the basis of an antibacterial assay-guided isolation, seven antibacterial compounds, including 2,6-dimethoxy-1,4-benzoquinone (1), syringaldehyde (2), sinapaldehyde (3), coniferaldehyde (4), 3β-hydroxystigmast-5-en-7-one (5), umbelliferone (6), and scopoletin (7), were purified. Among these isolated compounds, 2,6-dimethoxy-1,4-benzoquinone (1) exhibited the strongest antibacterial activities against S. pyogenes, S. mitis, and S. mutans with MIC values of 7.8, 7.8, and 15.6 µg/mL, and MBC values of 7.8, 7.8, and 31.2 µg/mL, respectively. In addition, this is the first report of these antibacterial compounds in the stems of F. foveolata.
Antibacterial activity of propolins from Taiwanese green propolis.
Chen, Yue-Wen; Ye, Siou-Ru; Ting, Chieh; Yu, Yu-Hsiang
2018-04-01
Taiwanese green propolis is a prenylated flavonoid rich honeybee product and propolins isolated from Taiwanese green propolis exert a broad spectrum of biological activities, such as anti-cancer and anti-oxidant. However, the anti-bacterial effects of Taiwanese green propolis or propolins are still poorly understood. In the current study, the antibacterial effects of Taiwanese green propolis and propolins were evaluated. Results show that the maximum dry matter yields of Taiwanese green propolis were observed in the 95% and 99.5% ethanol extracts compared to other extraction methods. Consistently, the highest concentration of propolins C, D, F and G from Taiwanese green propolis was obtained in 95% and 99.5% ethanol extracts. Propolins inhibited the growth of gram-positive bacterial strains (Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes and Paenibacillus larvae). The average minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of propolins from ethanol extracts were 20 μg/ml. Among the propolins, propolin C had the highest antibacterial activity. Furthermore, Taiwanese green propolis also showed antibacterial activity against methicillin-resistant S. aureus (MRSA). In conclusion, these results demonstrate that Taiwanese green propolis and propolins have significant antibacterial activity, particularly against gram-positive bacterial strains. Copyright © 2017. Published by Elsevier B.V.
In Vitro Susceptibility of the Relapsing-Fever Spirochete Borrelia miyamotoi to Antimicrobial Agents
Draga, Ronald O. P.; Wagemakers, Alex; Manger, Annemijn; Oei, Anneke; Visser, Caroline E.; Hovius, Joppe W.
2017-01-01
ABSTRACT Hard-tick-borne relapsing fever (HTBRF) is an emerging infectious disease throughout the temperate zone caused by the relapsing-fever spirochete Borrelia miyamotoi. Antibiotic treatment of HTBRF is empirically based on the treatment of Lyme borreliosis; however, the antibiotic susceptibility of B. miyamotoi has not been studied to date. Thus, we set out to determine the in vitro antimicrobial susceptibility of B. miyamotoi. A microdilution method with 96-well microtiter plates was used to determine the antibiotic susceptibilities of two B. miyamotoi strains isolated on two different continents (Asia and North America), two Borrelia burgdorferi sensu lato strains, and one Borrelia hermsii isolate for purposes of comparison. The MIC and minimal bactericidal concentration (MBC) were determined by both microscopy and colorimetric assays. We were able to show that relative to the B. burgdorferi sensu lato isolates, both B. miyamotoi strains and B. hermsii demonstrated greater susceptibility to doxycycline and azithromycin, equal susceptibility to ceftriaxone, and resistance to amoxicillin in vitro. The MIC and MBC of amoxicillin for B. miyamotoi evaluated by microscopy were 16 to 32 mg/liter and 32 to 128 mg/liter, respectively. Since B. miyamotoi is susceptible to doxycycline, azithromycin, and ceftriaxone in vitro, our data suggest that these antibiotics can be used for the treatment of HTBRF. Oral amoxicillin is currently used as an alternative for the treatment of HTBRF; however, since we found that the B. miyamotoi strains tested were resistant to amoxicillin in vitro, this issue warrants further study. PMID:28674060
Gepotidacin (GSK2140944) In Vitro Activity against Gram-Positive and Gram-Negative Bacteria
Farrell, D. J.; Rhomberg, P. R.; Scangarella-Oman, N. E.; Sader, H. S.
2017-01-01
ABSTRACT Gepotidacin is a first-in-class, novel triazaacenaphthylene antibiotic that inhibits bacterial DNA replication and has in vitro activity against susceptible and drug-resistant pathogens. Reference in vitro methods were used to investigate the MICs and minimum bactericidal concentrations (MBCs) of gepotidacin and comparator agents for Staphylococcus aureus, Streptococcus pneumoniae, and Escherichia coli. Gepotidacin in vitro activity was also evaluated by using time-kill kinetics and broth microdilution checkerboard methods for synergy testing and for postantibiotic and subinhibitory effects. The MIC90 of gepotidacin for 50 S. aureus (including methicillin-resistant S. aureus [MRSA]) and 50 S. pneumoniae (including penicillin-nonsusceptible) isolates was 0.5 μg/ml, and for E. coli (n = 25 isolates), it was 4 μg/ml. Gepotidacin was bactericidal against S. aureus, S. pneumoniae, and E. coli, with MBC/MIC ratios of ≤4 against 98, 98, and 88% of the isolates tested, respectively. Time-kill curves indicated that the bactericidal activity of gepotidacin was observed at 4× or 10× MIC at 24 h for all of the isolates. S. aureus regrowth was observed in the presence of gepotidacin, and the resulting gepotidacin MICs were 2- to 128-fold higher than the baseline gepotidacin MICs. Checkerboard analysis of gepotidacin combined with other antimicrobials demonstrated no occurrences of antagonism with agents from multiple antimicrobial classes. The most common interaction when testing gepotidacin was indifference (fractional inhibitory concentration index of >0.5 to ≤4; 82.7% for Gram-positive isolates and 82.6% for Gram-negative isolates). The postantibiotic effect (PAE) of gepotidacin was short when it was tested against S. aureus (≤0.6 h against MRSA and MSSA), and the PAE–sub-MIC effect (SME) was extended (>8 h; three isolates at 0.5× MIC). The PAE of levofloxacin was modest (0.0 to 2.4 h), and the PAE-SME observed varied from 1.2 to >9 h at 0.5× MIC. These in vitro data indicate that gepotidacin is a bactericidal agent that exhibits a modest PAE and an extended PAE-SME against Gram-positive and -negative bacteria and merits further study for potential use in treating infections caused by these pathogens. PMID:28483959
Phenolic content, antibacterial and antioxidant activities of Erica herbacea L.
Vucić, Dragana M; Petković, Miroslav R; Rodić-Grabovac, Branka B; Stefanović, Olgica D; Vasić, Sava M; Comić, Ljiljana R
2013-01-01
Antibacterial and antioxidant activity, total phenolic and flavonoid concentrations of aqueous, ethanol and ethyl acetate extracts from the leaves and flowers of Erica herbacea L. were studied. In vitro antibacterial activity of the extracts was determined by macrodilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) have been determined. Testing was performed on 30 clinical isolates, including different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris. The values for MIC were in the range from 2.5 mg/mL to 40 mg/mL. The most sensitive bacterial strains were Proteus vulgaris strains. The aqueous extract from E. herbacea was found the most active. The total phenolic content was determined using Folin-Ciocalteu reagent and ranged between 14.98 and 119.88 mg GA/g. The concentration of flavonoids in extracts was determined using spectrophotometric method with aluminium chloride and obtained results varied from 16.19 to 26.90 mg RU/g. Antioxidant activity was monitored spectrophotometrically using DPPH reagent. The highest capacity to neutralize DPPH radicals was found in the aqueous extract from E. herbacea. The results of the total phenolic content determination of the examined extracts indicate that E. herbacea extracts are a rich source of phenolic compounds and also possess a significant antioxidant activity and moderate antibacterial activity.
Azizan, Nuramirah; Mohd Said, Shahida; Zainal Abidin, Zamirah; Jantan, Ibrahim
2017-12-05
In this study, the essential oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack were evaluated for their antibacterial activity against invasive oral pathogens, namely Enterococcus faecalis , Streptococcus mutans , Streptococcus mitis , Streptococcus salivarius , Aggregatibacter actinomycetemcomitans , Porphyromonas gingivalis and Fusobacterium nucleatum . Chemical composition of the oils was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the oils and their major constituents were investigated using the broth microdilution method (minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)). Susceptibility test, anti-adhesion, anti-biofilm, checkerboard and time-kill assays were also carried out. Physiological changes of the bacterial cells after exposure to the oils were observed under the field emission scanning electron microscope (FESEM). O. stamineus and F. deltoidea oils mainly consisted of sesquiterpenoids (44.6% and 60.9%, respectively), and β-caryophyllene was the most abundant compound in both oils (26.3% and 36.3%, respectively). Other compounds present in O. stamineus were α-humulene (5.1%) and eugenol (8.1%), while α-humulene (5.5%) and germacrene D (7.7%) were dominant in F. deltoidea . The oils of both plants showed moderate to strong inhibition against all tested bacteria with MIC and MBC values ranging 0.63-2.5 mg/mL. However, none showed any inhibition on monospecies biofilms. The time-kill assay showed that combination of both oils with amoxicillin at concentrations of 1× and 2× MIC values demonstrated additive antibacterial effect. The FESEM study showed that both oils produced significant alterations on the cells of Gram-negative bacteria as they became pleomorphic and lysed. In conclusion, the study indicated that the oils of O. stamineus and F. deltoidea possessed moderate to strong antibacterial properties against the seven strains pathogenic oral bacteria and may have caused disturbances of membrane structure or cell wall of the bacteria.
Akinyemi, Kabir O; Oladapo, Olukayode; Okwara, Chidi E; Ibe, Christopher C; Fasure, Kehinde A
2005-01-01
Background Six Nigerian medicinal plants Terminalia avicennioides, Phylantus discoideus, Bridella ferruginea, Ageratum conyzoides, Ocimum gratissimum and Acalypha wilkesiana used by traditional medical practitioners for the treatment of several ailments of microbial and non-microbial origins were investigated for in vitro anti-methicillin Resistant Staphylococcus aureus (MRSA) activity. Methods Fresh plant materials were collected from the users. Water and ethanol extracts of the shredded plants were obtained by standard methods. The Bacterial cultures used were strains of MRSA isolated from patients. MRSA was determined by the reference broth microdilution methods using the established National Committee for Clinical Laboratory Standards break points. Staphylococcus aureus NCIB 8588 was used as a standard strain. Susceptibility testing and phytochemical screening of the plant extracts were performed by standard procedures. Controls were maintained for each test batch. Results Both water and ethanol extracts of T. avicennioides, P. discoideus, O. gratissimum, and A. wilkesiana were effective on MRSA. The Minimum Inhibition Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the ethanol extracts of these plants range from 18.2 to 24.0 mcg/ml and 30.4 to 37.0 mcg/ml respectively. In contrast, MIC range of 30.6 to 43.0 mcg/ml and 55.4 to 71.0 mcg/ml were recorded for ethanol and water extracts of B. ferruginea, and A. conyzoides respectively. Higher MBC values were obtained for the two plants. These concentrations were too high to be considered active in this study. All the four active plants contained at least trace amount of anthraquinones. Conclusion Our results offer a scientific basis for the traditional use of water and ethanol extracts of A. wilkesiana, O. gratissimum, T. avicennioides and P. discoideus against MRSA-associated diseases. However, B. ferruginea and A. conyzoides were ineffective in vitro in this study; we therefore suggest the immediate stoppage of their traditional use against MRSA-associated diseases in Lagos, Nigeria. PMID:15762997
Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria.
Pacheco-Ordaz, R; Wall-Medrano, A; Goñi, M G; Ramos-Clamont-Montfort, G; Ayala-Zavala, J F; González-Aguilar, G A
2018-01-01
Fruit extracts from different tissues (pulp, seed and peel) have shown antimicrobial and prebiotic activities related to their phenolic profile, although structure-specific evaluations have not been reported yet. The effect of five phenolic compounds (catechin and gallic, vanillic, ferulic and protocatechuic acids) identified in different fruits, particularly in mango, was evaluated on the growth of two probiotic (Lactobacillus rhamnosusGG ATCC 53103 and Lactobacillus acidophilusNRRLB 4495) and two pathogenic (Escherichia coli 0157:H7 ATCC 43890 and Salmonella enterica serovar Typhimurium ATCC 14028) bacteria. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of phenolic acids ranged from 15-20 mmol l -1 and 20-30 mmol l -1 against E. coli and S. Typhimurium, respectively. For catechin, the MIC and MBC were 35 mmol l -1 and >35 mmol l -1 against E. coli and S. Typhimurium, respectively. The presence of catechin and gallic, protocatechuic and vanillic acids in MRS broth without dextrose allowed the growth of lactobacilli. Catechin combined with protocatechuic or vanillic acid mildly allowed the growth of both probiotics. In conclusion, phenolic compounds can selectively inhibit the growth of pathogenic bacteria without affecting the viability of probiotics. This study provides relevant information about the effects of phenolic compounds commonly present in fruit and vegetables on the growth of probiotic and pathogenic bacteria. The compounds selectively allowed the growth of probiotic lactobacilli (Lactobacillus rhamnosus GG and Lactobacillus acidophilus) and inhibited pathogenic bacteria (Escherichia coli and Salmonella Typhimurium) at the same concentration (20 mmol l -1 ). These findings can contribute to the formulation of nutraceutical products, such as synbiotics, that can restore or maintain an optimal composition of human microbiota, potentially improving the overall health of the consumer. © 2017 The Society for Applied Microbiology.
Jyothi, K. S.; Seshagiri, M.
2012-01-01
Objective: Dental caries, periodontitis and other mucosal diseases are caused by a complex community of microorganisms. This study aimed to investigate the antimicrobial properties of saponins of four important oil yielding medicinal plant extracts on selected oral pathogens that are involved in such diseases. Materials and Methods: Saponins were extracted from Bauhinia purpurea, Madhuca longifolia, Celastrus paniculatus and Semecarpus anacardium and purified. Antimicrobial properties of these saponins against Streptococcus mutans, Streptococcus mitis, Streptococcus salivarius, Staphylococcus aureus and Lactobacillus acidophilus were determined using well diffusion method. The minimum inhibitory concentration (MIC) was determined as the lowest concentration of saponins inhibiting bacterial growth after 14 h of incubation at 37°C. The bactericidal activity was evaluated using the viable cell count method. Results: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Madhuca longifolia saponin on Streptococcus mutans MTCC 890, Streptococcus mitis and Staphylococcus aureus was 18.3 ± 0.15/34.4 ± 0.24 μg/ml, 19.0 ± 0.05/32.2 ± 0.0 μg/ml and 21.2 ± 0.35/39.0 ± 0.30 μg/ml, respectively and Bauhinia purpurea saponin on Streptococcus mutans MTCC 890, Staphylococcus aureus and Lactobacillus acidophilus was 26.4 ± 0.20/43.0 ± 0.40 μg/ml, 29.0 ± 0.30/39.6 ± 0.12 μg/ml and 20.2 ± 0.05/36.8 ± 0.23 μg/ml, respectively. Conclusion: The strong antimicrobial activity of Madhuca longifolia and Bauhinia purpurea may be due to the presence of complex triterpenoid saponins, oleanane type triterpenoid glycosides or atypical pentacyclic triterpenoid saponin. Hence, these extracted saponins may be used in food and oral products to prevent and control oral diseases. PMID:23323183
Hosseiny, Hossein
2017-01-01
The aim of the study was to examine antibacterial properties of microemulsion structure produced from Aloe vera var. littoralis extract as a new tool of nanoscale drug-like materials. Aloe vera var. littoralis (A. littoralis) extract was prepared by distillation method. A nonocarrier structure in the microemulsion system was prepared from the extract. Serial concentrations were prepared from 8 mg/mL extract and the nonocarrier containing 0.1 mg/mL pure extract and were evaluated by a disk diffusion method for 35 Salmonella clinical isolates. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by microbroth dilution assay using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method by an enzyme-linked immunosorbent assay(ELISA) Microplate Reader apparatus. Antioxidant activity of the extract was determined by measuring the ferric reducing ability of plasma (FRAP) assay. From 35 clinical isolates of Salmonella, 17 isolates—including resistant isolates of S.E.1103 and S.E.49—had a zone of inhibition (ZI) of 7 to 32 mm in 0.007 mg/mL of the extract. S.E.76 isolate exposed to 30 µg/mL ceftazidime disk had a ZI of 12 mm but had 10 mm in 7µg/mL of A. littoralis extract. The inhibitory effect of a nanocarrier at a concentration of 25 µg/mL by 20 mm ZI was comparable by the ceftazidime (30 µg/mL) effect. MIC50 was 0.25 mg/mL and MBC50 was 0.5 mg/mL by MTT method for the extract. It was shown that A.littoralis extract had antioxidant activity of 31.67 µM/mg that could be increased based on concentration. It was concluded that the nanocarrier had a significant effect on the studied isolates in comparison with ordinary antibiotics and had potential for use as a natural antioxidant and antimicrobial material in complementary medicine. PMID:28758958
Sun, Mengjun; Zhou, Zichao; Dong, Jiachen; Zhang, Jichun; Xia, Yiru; Shu, Rong
2016-10-01
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). MTT assay showed that DHA and EPA still exhibited no cytotoxicity to human oral tissue cells when the concentration came to 100 μM and 200 μM, respectively. Against P. gingivalis, DHA and EPA showed the same minimum inhibitory concentration (MIC) of 12.5 μM, and a respective minimum bactericidal concentration (MBC) of 12.5 μM and 25 μM. However, the MIC and MBC values of DHA or EPA against F. nucleatum were both greater than 100 μM. For early-stage bacteria, DHA or EPA displayed complete inhibition on the planktonic growth and biofilm formation of P. gingivalis from the lowest concentration of 12.5 μM. And the planktonic growth of F. nucleatum was slightly but not completely inhibited by DHA or EPA even at the concentration of 100 μM, however, the biofilm formation of F. nucleatum at 24 h was significantly restrained by 100 μM EPA. For exponential-phase bacteria, 100 μM DHA or EPA completely killed P. gingivalis and significantly decreased the viable counts of F. nucleatum. Meanwhile, the morphology of P. gingivalis was apparently damaged, and the virulence factor gene expression of P. gingivalis and F. nucleatum was strongly downregulated. Besides, the viability and the thickness of mature P. gingivalis biofilm, together with the viability of mature F. nucleatum biofilm were both significantly decreased in the presence of 100 μM DHA or EPA. In conclusion, DHA and EPA possessed antibacterial activities against planktonic and biofilm forms of periodontal pathogens, which suggested that DHA and EPA might be potentially supplementary therapeutic agents for prevention and treatment of periodontal diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ferraz, Mariana C.; Mano, Renata A.; Oliveira, Daniela H.; Maia, Darla S. V.; Silva, Wladimir P.; Savegnago, Lucielli; Lenardão, Eder J.; Jacob, Raquel G.
2017-01-01
Background: The main constituents of Cymbopogonnardus (L) Rendle and C. citratus (DC) Stapfessential oils are (R)-citronellal and citral, respectively. Organochalcogen compounds can boost the biological activities of natural products. Methods: Several chalcogen-containing nitrones derived from (R)-citronellal and citral were prepared and evaluated for their antimicrobial and antioxidant activities. The antimicrobial activity was evaluated by the disc diffusion test and the antioxidant properties were evaluated in vitro by DPPH (1,1-diphenyl-2-picryl-hydrazyl), ABTS (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), and FRAP (ferric ion reducing antioxidant power) assays. Results: In the antimicrobial assay, (E)-N,3,7-trimethyl-3-(phenylthio)oct-6-en-1-imine oxide 5c exhibited halos between 21.5 mm (Escherichia coli O157:H7) and 26.0 mm (Listeria monocytogenes), while (E)-N,3,7-trimethyloct-6-en-1-imine oxide 5d presented halos between 22.5 mm (E. coli O157:H7) and 31.0 mm (L. monocytogenes). (E)-N,3,7-Trimethyl-2-(phenylthio)oct-6-en-1-imine oxide 5a showed the lowest minimal inhibitory concentration (MIC) value against Bacillus cereus (0.48 mM), and 5c was the most potent bactericide, with a minimal bactericidal concentration (MBC) of 0.52 mM for E. coli O157:H7. In the antioxidant assays, 5c, 5d, and 10 ((E)-3,7-dimethyl-2-(phenylselanyl)oct-6-enal oxime) were the most actives in the DPPH, ABTS, and FRAP assays, respectively. Conclusions: The presence of a phenylthio group in the nitrone increases its antimicrobial activity against Gram-positive and Gram-negative foodborne pathogens in the disk diffusion test and the antioxidant activity in vitro. PMID:28930254
The direct anti-MRSA effect of emodin via damaging cell membrane.
Liu, Ming; Peng, Wei; Qin, Rongxin; Yan, Zifei; Cen, Yanyan; Zheng, Xinchuan; Pan, Xichun; Jiang, Weiwei; Li, Bin; Li, Xiaoli; Zhou, Hong
2015-09-01
Methicillin-resistant Staphylococcus aureus (MRSA) has become an important bacterium for nosocomial infection. Only a few antibiotics can be effective against MRSA. Therefore, searching for new drugs against MRSA is important. Herein, anti-MRSA activities of emodin and its mechanisms were investigated. Firstly, in vitro antimicrobial activity was investigated by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-growth curve, and multipassage resistance testing was performed. Secondly, protection of emodin on mice survival and blood bacterial load in mice challenged with lethal or sublethal dose of MRSA were investigated. Subsequently, the influences of emodin on the bacterial morphology, messenger RNA (mRNA) expressions related to cell wall synthesis and lysis, β-lactamase activity, drug accumulation, membrane fluidity, and integrity were performed to investigate its mechanisms. Lastly, in vitro cytotoxicity assay were performed using the 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) method. The results showed MICs and MBCs of emodin against MRSA252 and 36 clinical MRSA strains were among 2-8 and 4-32 μg/mL, respectively. There was no MIC increase for emodin during 20 passages. In vivo, emodin dose-dependently protected mice challenged with lethal dose of MRSA and decreased bacterial load in mice challenged with sublethal dose of MRSA. Morphology observation showed emodin might disrupt cell wall and membrane of MRSA. Although emodin had no influence on genes related to cell wall synthesis and lysis as well as β-lactamase activity and drug accumulation, emodin reduced membrane fluidity and disrupted membrane integrity. Based on the fact that emodin had no significant cytotoxicity against mammalian cells, it could be further investigated as a membrane-damage bactericide against MRSA in the future.
Lebel, Geneviève; Piché, Fanny; Frenette, Michel; Gottschalk, Marcelo; Grenier, Daniel
2013-12-01
Streptococcus suis serotype 2 is known to cause severe infections in pigs, including meningitis, endocarditis and pneumonia. Furthermore, this bacterium is considered an emerging zoonotic agent. Recently, increased antibiotic resistance in S. suis has been reported worldwide. The objective of this study was to evaluate the potential of nisin, a bacteriocin of the lantibiotic class, as an antibacterial agent against the pathogen S. suis serotype 2. In addition, the synergistic activity of nisin in combination with conventional antibiotics was assessed. Using a plate assay, the nisin-producing strain Lactococcus lactis ATCC 11454 proved to be capable of inhibiting the growth of S. suis (n=18) belonging to either sequence type (ST)1, ST25, or ST28. In a microdilution broth assay, the minimum inhibitory concentration (MIC) of purified nisin ranged between 1.25 and 5 μg/mL while the minimum bactericidal concentration (MBC) was between 5 and 10 μg/mL toward S. suis. The use of a capsule-deficient mutant of S. suis indicated that the presence of this polysaccharidic structure has no marked impact on susceptibility to nisin. Following treatment of S. suis with nisin, transmission electron microscopy observations revealed lysis of bacteria resulting from breakdown of the cell membrane. A time-killing curve showed a rapid bactericidal activity of nisin. Lastly, synergistic effects of nisin were observed in combination with several antibiotics, including penicillin, amoxicillin, tetracycline, streptomycin and ceftiofur. This study brought clear evidence supporting the potential of nisin for the prevention and treatment of S. suis infections in pigs. Copyright © 2013 Elsevier Inc. All rights reserved.
Umar, Sajid; Maiyah, Ana Triana; Shareef, Mehwish; Qadir, Hajra; Nisa, Qamarun; Abbas, Seema
2018-03-01
Antibiotic resistance in avian pathogenic Escherichia coli (APEC) is a common problem in the Indonesian poultry industry. Zoo birds have been postulated as sentinels, reservoirs, and potential spreaders of antibiotic resistance, although much is still unknown about the strains of zoo birds. Disinfection can reduce the infection burden. However, little is known about the presence of resistance against these products. Sixty one APEC strains were isolated from Indonesian zoo birds. The resistance to different classes of antibiotics as well as the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of five disinfectants most often used in the poultry industry was determined. Resistance to tetracycline (42.6%), sulfonamides (24.5%), ampicillin (22.9%), gentamicin (19.6), nalidixic acid (18.03%) and streptomycin (16.3%) was high, but resistance to other tested antibiotics was low and none of the isolates were resistant to extended spectrum beta-lactamase (ESBL) producers. Sixteen strains (26.2%) were found positive for multi drug resistance. The MIC of the disinfectants for the APEC strains showed normal distribution, indicating that there was no acquired resistance. MBCs were similar to MICs using the broth dilution method, showing the bactericidal effect of the disinfectants. Phenotypic resistance to commonly used disinfectants could not be found, indicating that the current use of disinfectants in the zoo and aviaries did not select for resistance. Significantly high resistance rates against commonly used antibiotics in Indonesian zoos is worrisome and indicates that widespread use of antibiotics could have negative implications for animal health and the environment. Proper use of antibiotics and surveillance programs to monitor antimicrobial resistance in pathogenic bacteria are warranted.
2017-01-01
The alarming increase in multidrug resistance of pathogenic microorganisms to conventional drugs in recent years has prompted the search for new leads in alternative remedies in natural products. Hence, this study was aimed at evaluating the antimicrobial properties of Phragmanthera capitata, a parasitic mistletoe growing on rubber trees. The in vitro antimicrobial activities of the acetone, methanol, ethanol, and aqueous extracts were investigated using five gram-negative and five gram-positive bacteria and four fungi. A 96-well resazurin broth and agar dilution techniques were used for the determination of the Minimum Inhibitory and Bactericidal Concentrations. The antibacterial activity of the organic extracts had comparative effects on all the bacteria with a MIC of 1.25 to 5 mg/mL and MBC of 2.5 to 10 mg/mL. However, the acetone extract showed higher bactericidal effect while the aqueous extract was not active. The organic solvent extracts also showed antifungal activities on two of the fungi with a MIC of 1.25 mg/mL to 10 mg/mL. However, the aqueous extract had the highest activity inhibiting all the fungi with a MIC of ≤0.3125 to 1.25 mg/mL. The study supports the ethnomedicinal claims of P. capitata as a remedy for the diseases/infections caused by these organisms. PMID:28642934
Antioxidant and antibacterial activity of Thai medicinal plant (Capparis micracantha)
NASA Astrophysics Data System (ADS)
Laoprom, Nonglak; Sangprom, Araya; Chaisri, Patcharaporn
2018-04-01
This work aims to study the antioxidants capacity, Total phenolic content and antibacterial activity of Thai medicinal plant for the treatment of dermatitis-related inflammations, Capparis micracantha. Crude extract from stem of Thai medicinal plant was extracted with hexane, ethyl acetate, methanol and water. The antioxidant activities (IC50) was evaluated with 1,1-diphenyl-1-princylhydrazyl (DPPH) radical scavenging assay. Total phenolic content (TPC) was determined by using Folin-Ciocalteu method. Bacterial activities was tested with four human pathogenic bacteria; Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Stapylococcus epidermidis by using agar diffusion assay. Minimum Inhibition Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were also determined by broth dilution method. For antioxidant activity, the methanol fraction from stem extract showed the highest activity with an IC50 of 2.4 mg/ml. Water extraction was the high TPC with 10,136.9 mg GAE/g dry weight. Methanol and water extraction showed the remarkable inhibition of bacterial growth was shown against L. monocytogenes and S. aureus. In addition, ethyl acetate, methanol and water fraction from stem extract against S. epidermidis. The present finding suggests that the extract of C. micracantha could be used to discover bioactive natural products that may serve as pharmaceutical products.
Al-Azzawi, Amad; Alguboori, Alyaa; Hachim, Mahmoud Y; Najat, M; Al Shaimaa, A; Sad, Maryam
2012-10-01
The present study describes the phytochemical profile and antimicrobial activity of Sesuvium portulacastrum. Three extracts of S. portulacastrum obtained by extraction in aqueous, ethanolic and dichloromethane solvents, respectively, were compared for their antimicrobial activity and ethanolic extract further subjected to gas chromatography-mass spectrometry (GC-MS) analysis to find out the nature of the compounds responsible for the antimicrobial activity. The antibacterial activities were assessed by measuring the diameter of the inhibition zones, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. Compared to the aqueous and dichloromethane extract, the ethanolic extract showed better antimicrobial activity against Staphylococcus aureus and E. coli, indicating its potential application related to noscomial infections. GC-MS results revealed 22, 23-Dihydrostigmasterol, Benzoic acid, 3,4,5-trihydroxy-(Gallic acid), (2R,3R)-(-)-Epicatechin and Capsaicin in the ethanolic extract to be the molecules responsible for the antimicrobial activity of S. portulacastrum. To the best of our knowledge, this is the first report on analysis of antimicrobial components from S. portulacastrum in United Arab Emirates (UAE), and our results confer the utility of this plant extract in developing a novel broad spectrum antimicrobial agent.
Ng, Wen-Jie; Ken, Khai-Wei; Kumar, Roshani-Vijaya; Gunasagaran, Hemamalani; Chandramogan, Vanaysha; Lee, Ying-Yee
2014-01-01
Different researches on therapeutic effects of honey have been conducted in different regions; however the study on the potential antibacterial activity of Malaysian honey is still limited. In this study, antibacterial activities of different monofloral honey samples were tested against several common human pathogenic bacteria. The well-diffusion method, minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) techniques were employed to investigate the putative antibacterial activity of Malaysian monofloral honey from Koompassia excelsa (Becc.) Taub (Tualang), Melaleuca cajuputi Powell (Gelam) and Durio zibethinus Murr. (Durian). Honey samples were tested against Staphylococcus aureus ATCC6518 and ATCC25923, Staphylococcus epidermidis ATCC12228, Enterococcus faecium LMG16192, Enterococcus faecalis LMG16216 and ATCC29212, Escherichia coli ATCC25922, Salmonella enterica serovar Typhimurium ATCC14028 and Klebsiella pneumoniae ATCC13883. Marked variations were observed in the antibacterial activity of these honey samples. Durian honey failed to produce substantial antibacterial activity, whereas Tualang and Gelam honey showed a spectrum of antibacterial activity with their growth inhibitory effects against all of the tested bacterial species including vancomycin-resistant enterococci (VRE). Present findings suggested Gelam honey possesses highest antibacterial effect among the tested Malaysian honey samples.
Mendes, Renata de F; Pinto, Nícolas de C C; da Silva, Josiane M; da Silva, Jucélia B; Hermisdorf, Raquel C Dos S; Fabri, Rodrigo L; Chedier, Luciana M; Scio, Elita
2017-03-01
The aims of this study were to investigate the chemical composition and the antioxidant activity and antibacterial activity of the essential oil of Xylopia sericea fruits (OXS). The fruits of this species are popularly used for medicinal purposes, and as a condiment in food preparation. The chemical composition of OXS was analysed by GC/MS. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging, β-carotene/linoleic acid bleaching and phosphomolybdenum and thiobarbituric acid-reactive substance (TBARS) assays were used to evaluate the antioxidant activity. Antibacterial activity was assessed by minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against bacterial strains of interest to human health and food spoilage. Eighty-four compounds were identified. The sesquiterpenes spathulenol (16.42%), guaiol (13.93%) and germacrene D (8.11%) were the most abundant constituents. OXS presented a significant antioxidant activity and also a high bacteriostatic effect against Staphylococcus aureus, Enterobacter cloacae, Bacillus cereus and Klebsiella pneumoniae. Those results evidenced the potential of OXS to treat human bacterial infections and as an antimicrobial ingredient for food preservation. © 2017 Royal Pharmaceutical Society.
Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts.
Zampini, Iris C; Vattuone, Marta A; Isla, Maria I
2005-12-01
The present study was conducted to investigate antibacterial activity of Zuccagnia punctata ethanolic extract against 47 strains of antibiotic-resistant Gram-negative bacteria and to identify bioactive compounds. Inhibition of bacterial growth was investigated using agar diffusion, agar macrodilution, broth microdilution and bioautographic methods. Zuccagnia punctata extract was active against all assayed bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) with minimal inhibitory concentration (MIC) values ranging from 25 to 200 microg/mL. Minimal bactericidal concentration (MBC) values were identical or two-fold higher than the corresponding MIC values. Contact bioautography, indicated that Zuccagnia punctata extracts possess one major antibacterial component against Pseudomonas aeruginosa and at least three components against. Klebsiella pneumoniae and Escherichia coli. Activity-guided fractionation of 1he ethanol extract on a silica gel column yielded a compound (2',4'-dihydroxychalcone), which exhibited strong antibacterial activity with MIC values between 0.10 and 1.00 microg/mL for Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia. These values are lower than imipenem (0.25-16 microg/mL). Zuccagnia punctata might provide promising therapeutic agents against infections with multi-resistant Gram-negative bacteria.
NASA Astrophysics Data System (ADS)
Adhikary, Jaydeep; Das, Balaram; Chatterjee, Sourav; Dash, Sandeep Kumar; Chattopadhyay, Sourav; Roy, Somenath; Chen, Jeng-Wei; Chattopadhyay, Tanmay
2016-06-01
One copper and two silver containing one hetero tri-nuclear precursor compound [Cu(Imdz)4(Ag(CN)2)2] (1) (Imdz = Imidazole) has been synthesized and characterized by single crystal X-ray diffraction. Simple pyrolysis of the complex at 550 °C for 4 h afforded Ag/CuO nanoparticles (NPs). The synthesized nanoparticles were characterized by ultraviolet-visible (UV-Vis), Fourier transform infrared (FT-IR), X-ray powder diffraction (XRPD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photo electron spectroscopy (XPS). Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) have been employed as model microbial species to study the anti-microbial activity of the synthesized NPs. The NPs showed potent anti-microbial activity evidenced from the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values. Very high level of cell uptake and then generation of reactive oxygen species (ROS) are the origin of such strong antimicrobial activity for the NPs. However, the cytotoxicity level of the NPs towards normal human cell is very low.
Black, L A; Higgins, D P; Govendir, M
2015-11-01
To determine the in vitro susceptibilities of koala isolates of Chlamydia pecorum to enrofloxacin and chloramphenicol, which are frequently used to treat koalas with chlamydiosis, and florfenicol, a derivative of chloramphenicol. The in vitro susceptibilities were determined by culturing three stored isolates and seven clinical swabs of C. pecorum. Susceptibility testing was undertaken using cycloheximide-treated buffalo green monkey kidney cells in 96 well microtitre plates. The minimum inhibitory concentrations (MICs) for all isolates were 0.25-0.50 µg/mL (enrofloxacin), 1-2 µg/mL (chloramphenicol), and 1-2 µg/mL (florfenicol). Minimum bactericidal concentration (MBC) values for five isolates were also determined and were within one two-fold dilution of MICs. The MICs and MBCs of these antimicrobials were within ranges previously reported for other chlamydial species. When combined with previously published pharmacokinetic data, the in vitro susceptibility results support chloramphenicol as a more appropriate treatment option than enrofloxacin for koalas with chlamydiosis. The susceptibility results also indicate florfenicol may be an appropriate treatment option for koalas with chlamydiosis, warranting further investigation. © 2015 Australian Veterinary Association.
Koetsveld, Joris; Draga, Ronald O P; Wagemakers, Alex; Manger, Annemijn; Oei, Anneke; Visser, Caroline E; Hovius, Joppe W
2017-09-01
Hard-tick-borne relapsing fever (HTBRF) is an emerging infectious disease throughout the temperate zone caused by the relapsing-fever spirochete Borrelia miyamotoi Antibiotic treatment of HTBRF is empirically based on the treatment of Lyme borreliosis; however, the antibiotic susceptibility of B. miyamotoi has not been studied to date. Thus, we set out to determine the in vitro antimicrobial susceptibility of B. miyamotoi A microdilution method with 96-well microtiter plates was used to determine the antibiotic susceptibilities of two B. miyamotoi strains isolated on two different continents (Asia and North America), two Borrelia burgdorferi sensu lato strains, and one Borrelia hermsii isolate for purposes of comparison. The MIC and minimal bactericidal concentration (MBC) were determined by both microscopy and colorimetric assays. We were able to show that relative to the B. burgdorferi sensu lato isolates, both B. miyamotoi strains and B. hermsii demonstrated greater susceptibility to doxycycline and azithromycin, equal susceptibility to ceftriaxone, and resistance to amoxicillin in vitro The MIC and MBC of amoxicillin for B. miyamotoi evaluated by microscopy were 16 to 32 mg/liter and 32 to 128 mg/liter, respectively. Since B. miyamotoi is susceptible to doxycycline, azithromycin, and ceftriaxone in vitro , our data suggest that these antibiotics can be used for the treatment of HTBRF. Oral amoxicillin is currently used as an alternative for the treatment of HTBRF; however, since we found that the B. miyamotoi strains tested were resistant to amoxicillin in vitro , this issue warrants further study. Copyright © 2017 American Society for Microbiology.
Lacombe, Alison; McGivney, Christine; Tadepalli, Shravani; Sun, Xiaohong; Wu, Vivian C H
2013-06-01
The antimicrobial properties of the American cranberry were studied against Escherichia coli O157:H7, Listeria monocytogenes, and Lactobacillus rhamnosus to determine the effects on growth inhibition, membrane permeability, and injury. Cranberry powder was separated using a C-18 Sep-Pak cartridge into sugars plus organic acids (F1), monomeric phenolics (F2), and anthocyanins plus proanthocyanidins (F3). Fraction 3 was further separated into anthocyanins (F4) and proanthocyanidins (F5) using an LH-20 Sephadex column. Each fraction was diluted in the brain heart infusion (BHI) broth to determine the minimum inhibitory/bactericidal concentrations (MIC/MBC). L. monocytogenes was the most susceptible to cranberry fraction treatment with the lowest MIC/MBC for each treatment, followed by E. coli O157:H7 and L. rhamnosus. Membrane permeability and potential was studied using LIVE/DEAD viability assay and using Bis (1, 3-dibutylbarbituric acid) trimethine oxonol (DiBAC4), respectively. L. rhamnosus demonstrated the highest permeability followed by E. coli O157:H7, and L. monocytogenes. L. rhamnosus demonstrated the highest recovery followed by E. coli O157:H7, and L. monocytogenes. Each cranberry fraction demonstrated membrane hyperpolarization at their native pH, while F2, F3, and F5 demonstrated membrane depolarization at neutral pH. With this knowledge cranberry compounds may be used to prevent maladies and potentially substitute for synthetic preservatives and antibiotics. Copyright © 2013 Elsevier Ltd. All rights reserved.
Biofilm prevention by dicephalic cationic surfactants and their interactions with DNA.
Piecuch, A; Lamch, Ł; Paluch, E; Obłąk, E; Wilk, K A
2016-09-01
The studies were aimed to contribute to the elucidation of the relationships between structure of the double-headed cationic surfactants-N,N-bis[3,3'-(dimethylamine)- propyl]alkylamide dihydrochlorides and N,N-bis[3,3'-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-C9 H19 , n-C11 H23 , n-C13 H27 , n-C15 H31 ) and their antibacterial and biofilm preventing activity. The minimal inhibitory and bactericidal concentrations (MIC and MBC) of dicephalic surfactants against Staphylococcus epidermidis and Pseudomonas aeruginosa were tested using standard methods. Pseudomonas aeruginosa was resistant to studied compounds but MBC values against Staph. epidermidis reached 0·48-0·01 mmol l(-1) . The influence of dicephalic surfactants on bacterial biofilm and adhesion to the various surfaces was investigated with crystal violet staining or colony counting. The reduction in bacterial adhesion was observed, especially in the case of glass and stainless steel. The condensation of the DNA was shown in the ethidium bromide intercalation assay. Dicephalic surfactants exhibited antibacterial activity against Staph. epidermidis. The activity of studied compounds depended on the hydrocarbon chain length and the counterion. Surfactants deposited on different materials reduced Staph. epidermidis adhesion, dependently on the surfactant structure and the substratum. Dicephalic surfactants showed the ability of DNA compaction. This study points the possibility of application of dicephalic surfactants as the surface-coating agents to prevent biofilm formation. These compounds efficiently condensed DNA and are potential candidates for further studies towards the transfection. © 2016 The Society for Applied Microbiology.
Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product.
Hafidh, Rand R; Abdulamir, Ahmed S; Vern, Law Se; Abu Bakar, Fatimah; Abas, Faridah; Jahanshiri, Fatemeh; Sekawi, Zamberi
2011-01-01
The continuous escalation of resistant bacteria against a wide range of antibiotics necessitates discovering novel unconventional sources of antibiotics. B. oleracea L (red cabbage) is health-promoting food with proven anticancer and anti-inflammatory activities. However, it has not been researched adequately for its antimicrobial activity on potential resistant pathogens. The methanol crude extract of B. oleracea L. was investigated for a possible anti-microbial activity. The screening method was conducted using disc diffusion assay against 22 pathogenic bacteria and fungi. It was followed by evaluation of the minimum inhibitory concentration (MIC). Moreover, the antibacterial and the antifungal activities were confirmed using the minimum bactericidal concentration (MBC) and the minimum fungicidal concentration (MFC), respectively. Remarkable, antibacterial activity was evident particularly against highly infectious microorganisms such as Methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Salmonella enterica serovar Typhimurium as well as against human fungal pathogens, Trichophyton rubrum and Aspergillus terreus. Red cabbage is a rich source of phenolic compounds, anthocyanins being the most abundant class, which might explain its potent antimicrobial action. This extract is potentially novel for future antimicrobials, inexpensive, and readily available at a large scale for pharmaceutical companies for further investigation and processing.
Inhibition of Growth of Highly Resistant Bacterial and Fungal Pathogens by a Natural Product
Hafidh, Rand R; Abdulamir, Ahmed S; Vern, Law Se; Abu Bakar, Fatimah; Abas, Faridah; Jahanshiri, Fatemeh; Sekawi, Zamberi
2011-01-01
The continuous escalation of resistant bacteria against a wide range of antibiotics necessitates discovering novel unconventional sources of antibiotics. B. oleracea L (red cabbage) is health-promoting food with proven anticancer and anti-inflammatory activities. However, it has not been researched adequately for its antimicrobial activity on potential resistant pathogens. The methanol crude extract of B. oleracea L. was investigated for a possible anti-microbial activity. The screening method was conducted using disc diffusion assay against 22 pathogenic bacteria and fungi. It was followed by evaluation of the minimum inhibitory concentration (MIC). Moreover, the antibacterial and the antifungal activities were confirmed using the minimum bactericidal concentration (MBC) and the minimum fungicidal concentration (MFC), respectively. Remarkable, antibacterial activity was evident particularly against highly infectious microorganisms such as Methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Salmonella enterica serovar Typhimurium as well as against human fungal pathogens, Trichophyton rubrum and Aspergillus terreus. Red cabbage is a rich source of phenolic compounds, anthocyanins being the most abundant class, which might explain its potent antimicrobial action. This extract is potentially novel for future antimicrobials, inexpensive, and readily available at a large scale for pharmaceutical companies for further investigation and processing. PMID:21915230
Marino, Andreana; Bellinghieri, Valentina; Nostro, Antonia; Miceli, Natalizia; Taviano, Maria Fernanda; Güvenç, Ayşegül; Bisignano, Giuseppe
2010-08-01
Methanol and aqueous branch extracts of five Juniperus species were examined for their effects on Staphylococcus aureus ATCC 6538P and S. aureus 810 biofilm. The Turkish plant material was Juniperus communis L. var. communis, J. communis L. var. saxatilis Pall., Juniperus drupacea Labill., Juniperus oxycedrus L. ssp. oxycedrus, J. oxycedrus L. ssp. macrocarpa (Sibth. & Sm.) Ball. The Juniperus extracts were subjected to preliminary phytochemical analysis by thin-layer chromatography. The antimicrobial activity was evaluated using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The effects of the extracts on biofilm formation and preformed biofilm were quantified by both biomass OD and the CFU counting method. The phytochemical screening revealed the presence of polyphenols, coumarins, lignans, steroids, alkaloids and terpenes. For both strains, the MICs of all extracts were in the range of 4.88-78.12 microg mL(-1). On S. aureus ATCC 6538P, the effects of subinhibitory concentration (0.5 MIC) of the extracts were minimal on planktonic growth and on adhering cells, whereas they were greater on biofilm formation. Differently, on S. aureus 810, they showed only a rather low efficacy on biofilm formation. The extracts at 2 MIC demonstrated a good activity on a preformed biofilm of S. aureus ATCC 6538P.
de Lima-Saraiva, Sarah Raquel Gomes; Oliveira, Fernanda Granja da Silva; Junior, Raimundo Gonçalves de Oliveira; Araújo, Camila de Souza; de Oliveira, Ana Paula; César, Francine Celise Siqueira
2017-01-01
Schinopsis brasiliensis Engl. is a native plant of Caatinga which has high concentrations of compounds capable of absorbing ultraviolet light, suggesting its potential application for the development of sunscreen preparations. After its identification and collection, this vegetable drug was submitted to a physicochemical analysis through the preparation of ethanolic extract. The phytochemical screening and analysis of extracts were carried out by high-performance liquid chromatography (HPLC) evaluation. The antioxidant activity of the extract was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and β-carotene bleaching test. Inhibitory hemolytic activity and morphological deformation of erythrocytes induced by H2O2 were also demonstrated and the antimicrobial activity was analyzed by the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) method. For the in vitro determination of the sun protection factor (SPF), the spectrophotometric method was used. From the analyses carried out with this species, this plant showed significant results for the antioxidant and antimicrobial activities, as well as sunscreen action. Important flavonoids were identified. These data are an important step for the development of new photoprotective cosmetic with Caatinga species, revealing importance and representing another incentive for the preservation of the species involved and analyzed in the study. PMID:29124118
Alves, Erika P; de F Lima, Rennaly; de Almeida, Carolina M; Freires, Irlan A; Rosalen, Pedro L; Ruiz, Ana Ltg; Granville-Garcia, Ana F; Godoy, Gustavo P; Pereira, Jozinete V; de Brito Costa, Edja Mm
2017-08-01
Bauhinia forficata and Cnidoscolus quercifolius plants are commonly used in folk medicine. However, few studies have investigated their therapeutic potential. Herein, we evaluated the antimicrobial activity of B. forficata and C. quercifolius extracts against microorganisms of clinical relevance and their antiproliferative potential against tumor cells. The following tests were performed: Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC), inhibition of biofilm adhesion, and effects on cell morphology. Antiproliferative tests were carried out with human keratinocytes and six tumor lines. Bauhinia forficata showed antimicrobial activity only against C. albicans with MIC of 15.62 ug/mL and MFC higher than 2000 ug/mL. It also inhibited biofilm adhesion and caused alterations in cell morphology. Cnidoscolus quercifolius showed no significant activity (MIC > 2.0 mg/mL) against the strains. Bauhinia forficata and C. quercifolius extracts showed cytostatic activity against the tumor cells. Bauhinia forficata has promising anti-Cand/da activity and should be further investigated for its therapeutic potential. The use of medicinal plants in the treatment of infectious processes has an important function nowadays, due to the limitations of the use of synthetic antibiotics available, related specifically to the microbial resistance emergence.
Vetas, Dimitrios; Dimitropoulou, Eleni; Mitropoulou, Gregoria; Kourkoutas, Yiannis; Giaouris, Efstathios
2017-09-18
Staphylococcus aureus causes human infections and foodborne intoxications. This study explored the potential antibacterial actions of sage and spearmint essential oils (EOs) against both its planktonic and biofilm cells, in comparison with sodium hypochlorite (NaOCl), a commonly applied chemical sanitizer. Initially, the minimum inhibitory and bactericidal concentrations (MICs, MBCs) of each plant mixture were determined against planktonic cultures, following growth at 30°C for 24h. Stationary phase planktonic bacteria were then individually exposed for 6min to either each EO (applied at 1-2×MBC; 2.5-5%), or NaOCl (250-450ppm). These were also left to form biofilms on 96-well polystyrene microplates, at 30°C for 96h, with medium renewal at 48h, in the presence of 10 different concentrations of each EO, expanding from sub- to super-inhibitory for planktonic growth, and the minimum biofilm inhibitory concentrations (MBICs; >90% inhibition) of each plant mixture were calculated. Formed biofilms were finally exposed for 6min to either each EO (applied at 2-6×MBC; 5-15%), or NaOCl (7500-25,000ppm; applied either alone or in combination with each EO at 5%). Results showed that both EOs presented MIC and MBC equal to 1.25 and 2.5%, respectively. As expected, their application at their MIC and above significantly inhibited biofilm formation, while spearmint EO was still able to cause this at ½ of its MIC, with MBICs equal to 1.25 and 0.63% for sage and spearmint EOs, respectively. Alarmingly, the application of both EOs at 1/8 to 1/16 of their MIC further increased biofilm formation. Regarding biofilm disinfection experiments, the individual application of each EO against the pre-established sessile communities resulted in log decrease ranges of 0.8-3logCFU/cm 2 , while in the case of NaOCl application (either alone or combined with each EO), the observed reductions never exceeded 1.7logCFU/cm 2 . These last results highlight the great antimicrobial recalcitrance of biofilm communities, found here to be ca. 100 times more resistant to NaOCl compared to planktonic ones, and stress the urgent need for further research on alternative, adequate and safe disinfection strategies to control them in food processing and other environments. Copyright © 2017 Elsevier B.V. All rights reserved.
Anti-inflammatory, antioxidant, and antimicrobial activities of Cocos nucifera var. typica.
Silva, Rafaela Ribeiro; Oliveira e Silva, Davi; Fontes, Humberto Rollemberg; Alviano, Celuta Sales; Fernandes, Patricia Dias; Alviano, Daniela Sales
2013-05-16
Teas from the husk fiber of Cocos nucifera are used in the folk medicine to treat arthritis and other inflammatory processes. Some works show that some varieties have biological activities. However, one of the main variety of the species, C. nucifera var. typica, known in Brazil as "gigante", was not studied yet. Thus, this study evaluates if this variety has the anti-inflammatory and antimicrobial activities already reported in other varieties. C. nucifera aqueous crude extract (10, 50, and 100 mg/kg) and the reference drugs morphine (1 mg/kg) and acetylsalicylic acid (100 mg/kg) were evaluated in models of inflammation (formalin-induced licking and subcutaneous air pouch). The antioxidant activity was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) photometric assay and compared with those of the standards (quercetin, rutin, and ascorbic acid). The extract was also screened against Candida albicans, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA), in the agar diffusion method. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the broth micro-dilution assay. Activities of combinations of the extract and antibiotics (methicillin or vancomycin) against MRSA were evaluated using checkerboard assays. The extract significantly inhibited the time that the animals spent licking the formalin-injected paws (second phase). The extract also inhibited the inflammatory process induced by subcutaneous carrageenan injection by reducing cell migration, protein extravasation, and TNF-α production. Additionally, the extract showed an antioxidant potential in vitro as good as standards in their antioxidant activity. The extract was active only against S. aureus and MRSA. MIC and the bactericidal concentrations were identical (1,024 μg/ml). The extract and methicillin acted synergistically against the clinical MRSA isolate, whereas an indifferent effect was detected when the extract was combined with vancomycin. The extract exhibits anti-inflammatory activity through the inhibition of the cell migration. The mixture of extract constituents and methicillin could lead to the development of a new combination antibiotic against MRSA infections.
Huang, Jiehui; Qian, Chao; Xu, Hongjie; Huang, Yanjie
2018-01-01
The main objective of the current study was to investigate the chemical composition of the essential oil of Artemisia asiatica together with investigating the antibacterial effects it exerts on several common respiratory infection causing bacteria including Haemophilus influenzae. Its mechanism of action was studied using various state-of-the-art assays like scanning electron microscopy, DNA, RNA and protein leakage assays, growth curve assays etc. The essential oil was extracted from the leaves of A. asiatica by supercritical CO 2 fluid extraction technology. Chemical composition of essential oils was analyzed by gas chromatography-mass-spectrometry (GC-MS). The antibacterial activity was evaluated against 6 bacteria by the paper disc diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericide concentration (MBC) values of the essential oil were estimated by agar dilution method. The antibacterial mechanism was evaluated by growth curve, the integrity of cell membrane and scanning electronmicroscope (SEM). Gas chromatographic analysis of the A. asiatica essential oil led to the identification of 16 chemical constituents accounting for 97.2% of the total oil composition. The major components were found to be Piperitone, (z)-davanone, p-cymene and 1, 8-cineole. The essential oil showed maximum growth inhibition against Haemophilus influenzae with a zone of inhibition of 24.5 mm and MIC/MBC values of 1.9/4.5 mg/mL respectively. Bacteria treated with the essential oil led to a rapid decrease in the number of viable cells. On adding the essential oil of A. asiatica to the bacterial culture, the constituents of the bacterial cell got released into the medium and this cell constituent release increased with increasing doses of the essential oil. SEM showed that the bacterial cells treated with the essential oil showed damaged cell wall, deformed cell morphology and shrunken cells. Copyright © 2017. Published by Elsevier Ltd.
Antimicrobial activity of clove and rosemary essential oils alone and in combination.
Fu, Yujie; Zu, Yuangang; Chen, Liyan; Shi, Xiaoguang; Wang, Zhe; Sun, Su; Efferth, Thomas
2007-10-01
In the present study, the antimicrobial activity of the essential oils from clove (Syzygium aromaticum (L.) Merr. et Perry) and rosemary (Rosmarinus officinalis L.) was tested alone and in combination. The compositions of the oils were analysed by GC/MS. Minimum inhibitory concentrations (MIC) against three Gram-positive bacteria, three Gram-negative bacteria and two fungi were determined for the essential oils and their mixtures. Furthermore, time-kill dynamic processes of clove and rosemary essential oils against Staphylococcus epidermidis, Escherichia coli and Candida albicans were tested. Both essential oils possessed significant antimicrobial effects against all microorganisms tested. The MICs of clove oil ranged from 0.062% to 0.500% (v/v), while the MICs of rosemary oil ranged from 0.125% to 1.000% (v/v). The antimicrobial activity of combinations of the two essential oils indicated their additive, synergistic or antagonistic effects against individual microorganism tests. The time-kill curves of clove and rosemary essential oils towards three strains showed clearly bactericidal and fungicidal processes of (1)/(2) x MIC, MIC, MBC and 2 x MIC.
De Silva, B C J; Jung, Won-Gi; Hossain, Sabrina; Wimalasena, S H M P; Pathirana, H N K S; Heo, Gang-Joon
2017-06-01
The usage of essential oils as antimicrobial agents is gaining attention. Besides, pet turtles were known to harbor a range of pathogenic bacteria while the turtle keeping is a growing trend worldwide.The current study examined the antimicrobial activity of lemon grass oil (LGO) against seven species of Gram negative bacteria namely; Aeromonas hydrophila , A. caviae , Citrobacter freundii , Salmonella enterica , Edwardsiella tarda , Pseudomonas aeruginosa , and Proteus mirabilis isolated from three popular species of pet turtles. Along with the results of disc diffusion, minimum inhibitory and minimum bactericidal concentration (MIC and MBC) tests, LGO was detected as effective against 6 species of bacteria excluding P. aeruginosa . MIC of LGO for the strains except P. aeruginosa ranged from 0.016 to 0.5% (V/V). The lowest MIC recorded in the E. tarda strain followed by A. hydrophilla , C. freundii , P. mirabilis , and S. enterica . Interestingly, all the bacterial species except E. tarda were showing high multiple antimicrobial resistance (MAR) index values ranging from 0.36 to 0.91 upon the 11 antibiotics tested although they were sensitive to LGO.
De Silva, B.C.J.; Jung, Won-Gi; Hossain, Sabrina; Wimalasena, S.H.M.P.; Pathirana, H.N.K.S.
2017-01-01
The usage of essential oils as antimicrobial agents is gaining attention. Besides, pet turtles were known to harbor a range of pathogenic bacteria while the turtle keeping is a growing trend worldwide.The current study examined the antimicrobial activity of lemon grass oil (LGO) against seven species of Gram negative bacteria namely; Aeromonas hydrophila, A. caviae, Citrobacter freundii, Salmonella enterica, Edwardsiella tarda, Pseudomonas aeruginosa, and Proteus mirabilis isolated from three popular species of pet turtles. Along with the results of disc diffusion, minimum inhibitory and minimum bactericidal concentration (MIC and MBC) tests, LGO was detected as effective against 6 species of bacteria excluding P. aeruginosa. MIC of LGO for the strains except P. aeruginosa ranged from 0.016 to 0.5% (V/V). The lowest MIC recorded in the E. tarda strain followed by A. hydrophilla, C. freundii, P. mirabilis, and S. enterica. Interestingly, all the bacterial species except E. tarda were showing high multiple antimicrobial resistance (MAR) index values ranging from 0.36 to 0.91 upon the 11 antibiotics tested although they were sensitive to LGO. PMID:28747972
Weyhing-Zerrer, Nadine; Kalb, Roland; Oßmer, Rolf; Rossmanith, Peter; Mester, Patrick
2018-02-01
Increased interest in ionic liquids (ILs) is due to their designable and tunable unique physicochemical properties, which are utilized for a wide variety of chemical and biotechnological applications. ILs containing the tris(pentafluoroethyl)trifluorophosphate ([FAP]) anion have been shown to have excellent hydrolytic, electrochemical and thermal stability and have been successfully used in various applications. In the present study the influence of the cation on the toxicity of the [FAP] anion was investigated. Due to the properties of [FAP] ILs, the IL-toxicity of seven cations with [FAP] compared to [Cl] was examined by determination of minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) on six Gram-positive and six Gram-negative clinically-relevant bacteria. For the first time, to our knowledge, the results provide evidence for a decrease in toxicity with increasing alkyl side-chain length, indicating that the combination of both ions is responsible for this 'reverse side-chain effect'. These findings could portend development of new non-toxic ILs as green alternatives to conventional organic solvents. Copyright © 2017 Elsevier Inc. All rights reserved.
Chemical Composition and Antipathogenic Activity of Artemisia annua Essential Oil from Romania.
Marinas, Ioana C; Oprea, Eliza; Chifiriuc, Mariana Carmen; Badea, Irinel Adriana; Buleandra, Mihaela; Lazar, Veronica
2015-10-01
The essential oil extracted by hydrodistillation from Romanian Artemisia annua aerial parts was characterized by GC/MS analysis, which allowed the identification of 94.64% of the total oil composition. The main components were camphor (17.74%), α-pinene (9.66%), germacrene D (7.55%), 1,8-cineole (7.24%), trans-β-caryophyllene (7.02%), and artemisia ketone (6.26%). The antimicrobial activity of this essential oil was evaluated by determining the following parameters: minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), minimal fungicidal concentration (MFC), and minimal biofilm eradication concentration (MBEC). Moreover, the soluble virulence factors were quantified with different biochemical substrates incorporated in the culture media. The reference and resistant, clinical strains proved to be susceptible to the A. annua oil, with MICs ranging from 0.51 to 16.33 mg/ml. The tested essential oil also showed good antibiofilm activity, inhibiting both the initial stage of the microbial cell adhesion to the inert substratum and the preformed mature biofilm. When used at subinhibitory concentrations, the essential oil proved to inhibit the phenotypic expression of five soluble virulence factors (hemolysins, gelatinase, DNase, lipases, and lecithinases). Briefly, the present results showed that the A. annua essential oil contained antimicrobial compounds with selective activity on Gram-positive and Gram-negative bacterial strains as well as on yeast strains and which also interfere with the expression of cell-associated and soluble virulence factors. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Fakhri, Ali; Kahi, Delaram Salehpour
2017-01-01
A facile one-step hydrothermal route was developed here to prepare MnS 2 /reduced graphene oxide nanohybrids. The crystal morphologies could be controlled by adjusting the solvent, surfactant, and pH of the precursor solution. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-Vis absorption spectra, and photoluminescence spectra (PL), were used to characterize the structures of the samples were used to characterize the structures of the samples, and the specific surface area was determined using the Brunauer-Emmett-Teller (BET) method. The thickness of the MnS 2 nanoparticles and MnS 2 /reduced graphene oxide nanohybrids were measured to be about 20 and 5nm, respectively. The total pore volume and specific surface area were 0.540 and 1.173cm 3 g -1 and 45.91 and 98.23m 2 g -1 for pure MnS 2 and MnS 2 /r-GO hybrids, respectively. Carbophenothion as an insecticide photodegradation was used to estimate the photocatalytic activity of the MnS 2 /reduced graphene oxide nanohybrids morphologies under UV light. The Carbophenothion hardly decomposed during photolysis over a period of 45min. The rate constant, k value, for the photocatalysis of Carbophenothion by MnS 2 /reduced graphene oxide nanohybrids under UV light radiation is 0.134min -1 . The antibacterial properties of the nanohybrids were evaluated by determining their minimum inhibitory and bactericidal concentrations (MIC and MBC), using a broth microdilution assay for Escherichia coli (E. coli) bacteria. The MIC and MBC values are 4.0 and 32.0μg/mL. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluation of the anti-Listeria potentials of some plant-derived triterpenes.
Penduka, Dambudzo; Mosa, Rebamang; Simelane, Mthokozisi; Basson, Albert; Okoh, Anthony; Opoku, Andy
2014-07-23
Listeriosis is a fatal disease caused by pathogenic Listeria bacteria and it is most prevalent in immune-compromised individuals. The increase in numbers of immune-compromised individuals against a background of Listeria antibiotic resistance, limits listeriosis treatment options. This therefore calls for research into substitute treatments, of which, medicinal plants derived compounds offer a viable alternative. The broth microdilution assay was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of three plant triterpenes namely 3β-hydroxylanosta-9,24-dien-21-oic acid, methyl-3β-hydroxylanosta-9,24-dien-21-oate and 3β-acetylursolic acid, against Listeria monocytogenes, Listeria ivanovii and Listeria grayi species. The chequerboard method was used to assess the interactions between the triterpenes and conventional antibiotics: ampicillin, neomycin, gentamicin and penicillin G. The lactate dehydrogenase membrane damage method was used to assess the triterpenes' membrane damaging potentials against the Listeria bacteria. The triterpenes' MIC values were found to range from 0.185 to 1.67 mg/ml while, the MBC determination assay results revealed that the test triterpenes were bacteriostatic against the Listeria bacteria. The interactions involving 3β-hydroxylanosta-9,24-dien-21-oic acid were mainly additive with ampicillin and synergistic with neomycin, gentamicin and penicillin G. The interactions involving methyl-3β-hydroxylanosta-9,24-dien-21-oate were mainly antagonistic with ampicillin, indifferent with neomycin, ranging from synergistic to indifference with gentamicin and synergistic with penicillin G. The interactions involving 3β-acetylursolic acid were mainly indifferent with ampicillin, synergistic with neomycin and gentamicin while ranging between synergistic and additive with penicillin G. The low levels of cytosolic lactate dehydrogenase released from the cells treated with 4× MIC concentration of the triterpenes in comparison to that of cells treated with 3% Triton X-100 proved that membrane damage was not the mode of action of the triterpenes. This study therefore shows the potential that these plant triterpenes have in listeriosis chemotherapy especially as shown by the favourable interactions they had with penicillin G, one of the antibiotics of choice in listeriosis treatment.
Tan, Hern Tze; Rahman, Rosliza Abdul; Gan, Siew Hua; Halim, Ahmad Sukari; Hassan, Siti Asma'; Sulaiman, Siti Amrah; BS, Kirnpal-Kaur
2009-01-01
Background Antibiotic resistance of bacteria is on the rise, thus the discovery of alternative therapeutic agents is urgently needed. Honey possesses therapeutic potential, including wound healing properties and antimicrobial activity. Although the antimicrobial activity of honey has been effectively established against an extensive spectrum of microorganisms, it differs depending on the type of honey. To date, no extensive studies of the antibacterial properties of tualang (Koompassia excelsa) honey on wound and enteric microorganisms have been conducted. The objectives of this study were to conduct such studies and to compare the antibacterial activity of tualang honey with that of manuka honey. Methods Using a broth dilution method, the antibacterial activity of tualang honey against 13 wound and enteric microorganisms was determined; manuka honey was used as the control. Different concentrations of honey [6.25-25% (w/v)] were tested against each type of microorganism. Briefly, two-fold dilutions of honey solutions were tested to determine the minimum inhibitory concentration (MIC) against each type of microorganism, followed by more assays within a narrower dilution range to obtain more precise MIC values. MICs were determined by both visual inspection and spectrophotometric assay at 620 nm. Minimum bactericidal concentration (MBC) also was determined by culturing on blood agar plates. Results By visual inspection, the MICs of tualang honey ranged from 8.75% to 25% compared to manuka honey (8.75-20%). Spectrophotometric readings of at least 95% inhibition yielded MIC values ranging between 10% and 25% for both types of honey. The lowest MBC for tualang honey was 20%, whereas that for manuka honey was 11.25% for the microorganisms tested. The lowest MIC value (8.75%) for both types of honey was against Stenotrophomonas maltophilia. Tualang honey had a lower MIC (11.25%) against Acinetobacter baumannii compared to manuka honey (12.5%). Conclusion Tualang honey exhibited variable activities against different microorganisms, but they were within the same range as those for manuka honey. This result suggests that tualang honey could potentially be used as an alternative therapeutic agent against certain microorganisms, particularly A. baumannii and S. maltophilia. PMID:19754926
The potency of plant extracts as antimicrobials for the skin or hide preservation
NASA Astrophysics Data System (ADS)
Suparno, Ono; Afifah, Amalia; Panandita, Tania; Marimin, Purnawati, Rini
2017-03-01
Preservation of skin or hide uses antimicrobial that will be disposed in wastewater in the skin or hide processing resulting in the environmental pollution. Extracts of some types of plants contain some antimicrobial substances which are potential to be used as biocides for the preservation of skin or hide and are more environmentally friendly. The objectives of this study were to determine the phytochemical contents of moringa, cucumber tree or wuluh starfruit, cherry, and white leadtree or lamtoro leaves and to analyse the antibacterial activities of the plant extracts against microorganisms that cause spoilage of skin or hide. Phytochemical constituents of the dried plant leaves were extracted by 70% ethanol. The resulting extracts were analysed their phytochemical contents and antimicrobial activities against gram negative and gram positive bacteria (inhibition zone test) by well diffusion method, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Phytochemical test showed that the four leaf extracts contained alkaloids, saponins, tannins, flavonoids, steroids, and glycosides. The inhibition zones of the extracts against Escherichia coli were 5 mm for moringa leaf, 6 mm for cucumber tree leaf, 12 mm for cherry leaf, and 17 mm for white leadtree leaf. Inhibition zone of the extracts against Staphylococcus aureus were 2.5 mm for moringa leaf, 7 mm for cucumber tree leaf, 7.3 mm for cherry leaf, and 13 mm for white leadtree leaf. Inhibition zones of the extracts against Bacillus subtilis were 8 mm for moringa leaf, 9 mm for cucumber tree starfruit leaf, 14 mm for cherry leaf, and 15 mm for white leadtree leaf. The best MIC and MBC tests were demonstrated by white leadtree leaf extract against E. coli found at concentration of 1500 µg/ml, against S. aureus at concentration of 3000 µg/ml, and against B. subtilis at concentration of 3000 µg/ml. The ethanol extract of white leadtree leaf had the best antibacterial activity and antimicrobial potency compared to the extracts of moringa, cucumber tree starfruit, and cherry leaves. Therefore, the ethanol extract of white leadtree leaf had a potency as a preservative of animal skin or hide and might be able to substitute the biocides used in the skin or hide preservation.
Jardak, Marwa; Elloumi-Mseddi, Jihene; Aifa, Sami; Mnif, Sami
2017-10-02
Rosmarinus officinalis L. from Tunisia, popularly known as rosemary, is of a considerable importance for its medicinal uses and aromatic value. The aim of this study was to examine the chemical composition of Rosmarinus officinalis essential oil (ROEO) and to evaluate its antibiofilm activity on biofilm-forming bacterium and its anticancer activity on cancer cell lines. The chemical composition of Rosmarinus officinalis essential oil (ROEO) was analyzed by GC-MS and its antibacterial activity was evaluated by micro-dilution method. The antibofilm activity of ROEO was evaluated using the crystal violet test and the cytotoxicity activity was determined by the MTT assay. In this research, thirty-six compounds were identified in ROEO using GC-MS analyses. The main components were 1,8-cineole (23.56%), camphene (12.78%), camphor (12.55%) and β-pinene (12.3%). The antibacterial activity of ROEO was evaluated by micro-dilution method. The oil exhibited inhibition and bactericidal effect against two strains: Staphylococcus aureus ATCC 9144 and Staphylococcus epidermidis S61. It was found that the minimum inhibitory concentration (MIC) obtained for S. aureus and S. epidermidis ranged from 1.25 to 2.5 and from 0.312 to 0.625 μl ml -1 , respectively and the minimum bactericidal concentration (MBC) were in the order of 5 and 2.5 μl ml -1 , respectively. Furthermore, this oil showed a S. epidermidis biofilm inhibition more than 57% at a concentration of 25 μl ml -1 . The eradication of 67% of the established biofilm was observed at a concentration of 50 μl ml -1 of ROEO, whereas the dose of 25 μl ml -1 removed only 38% of preformed biofilm. ROEO strongly inhibited the proliferation of Hela and MCF-7 cells with IC 50 values of 0.011 and 0.253 μl ml -1 , respectively. Our results demonstrate that ROEO could have a potential role in the treatment of diseases related to infection by microorganisms or proliferation of cancer cells.
Antimicrobial activity of ethanol extracts of Laminaria japonica against oral microorganisms.
Kim, Yeon-Hee; Kim, Jeong Hwan; Jin, Hyung-Joo; Lee, Si Young
2013-06-01
Laminaria japonica is a brown alga, which is consumed widely in Korea, Japan, and China. This study investigated the antimicrobial activity of ethanol extracts of L. japonica against oral microbial species to assess the possible application of L. japonica extracts in dental care products. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined in culture medium using a microdilution method. The MICs of ethanol extracts of L. japonica with oral streptococci were 62.5-500 μg/ml and the MBCs were 125-1000 μg/ml. The MICs of Actinomyces naeslundii and Actinomyces odontolyticus were 250 and 62.5 μg/ml, respectively. The MBCs of A. naeslundii and A. odontolyticus were 500 and 250 μg/ml, respectively. The MICs were 250 and 62.5 μg/ml for Fusobacterium nucleatum and Porphyromonas gingivalis, respectively. The killing of Streptococcus mutans and P. gingivalis was dependent on the incubation time. The killing of S. mutans, A. odontolyticus, and P. gingivalis was significantly dependent on the extract concentration. Bacterial treatment with L. japonica extracts changed the cell surface texture of S. mutans, A. odontolyticus, and P. gingivalis. The results of this study suggest that L. japonica extracts may be useful for the development of antimicrobial agents to combat oral pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sá, Mirivaldo Barros; Ralph, Maria Taciana; Nascimento, Danielle Cristina Oliveira; Ramos, Clécio Souza; Barbosa, Isvânia Maria Serafin; Sá, Fabrício Bezerra; Lima-Filho, J. V.
2014-01-01
The chloroform extract of the stem bark of Amburana cearensis was chemically characterized and tested for antibacterial activity.The extract was analyzed by gas chromatography and mass spectrometry. The main compounds identified were 4-methoxy-3-methylphenol (76.7%), triciclene (3.9%), α-pinene (1.0%), β-pinene (2.2%), and 4-hydroxybenzoic acid (3.1%). Preliminary antibacterial tests were carried out against species of distinct morphophysiological characteristics: Escherichia coli, Salmonella enterica Serotype Typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus. The minimum inhibitory concentration (MIC) was determinate in 96-well microplates for the chloroform extract and an analogue of themain compound identified, which was purchased commercially.We have shown that plant's extract was only inhibitory (but not bactericidal) at the maximum concentration of 6900 μg/mL against Pseudomonas aeruginosa and Bacillus cereus. Conversely, the analogue 2-methoxy-4-methylphenol produced MICs ranging from215 to 431 μg/mL against all bacterial species.New antibacterial assays conducted with such chemical compound against Klebsiella pneumoniae carbapenemase-producing strains have shown similarMICresults and minimumbactericidal concentration (MBC) of 431 μg/mL.We conclude that A. cearensis is a good source of methoxy-methylphenol compounds,which could be screened for antibacterial activity againstmultiresistant bacteria fromdifferent species PMID:24772183
Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin
2015-01-01
Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms.
Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin
2015-01-01
Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms. PMID:26347778
Park, Miri; Bae, Jungdon; Lee, Dae-Sil
2008-11-01
Ginger (Zingiber officinale Roscoe) has been used widely as a food spice and an herbal medicine. In particular, its gingerol-related components have been reported to possess antimicrobial and antifungal properties, as well as several pharmaceutical properties. However, the effective ginger constituents that inhibit the growth of oral bacteria associated with periodontitis in the human oral cavity have not been elucidated. This study revealed that the ethanol and n-hexane extracts of ginger exhibited antibacterial activities against three anaerobic Gram-negative bacteria, Porphyromonas gingivalis ATCC 53978, Porphyromonas endodontalis ATCC 35406 and Prevotella intermedia ATCC 25611, causing periodontal diseases. Thereafter, five ginger constituents were isolated by a preparative high-performance liquid chromatographic method from the active silica-gel column chromatography fractions, elucidated their structures by nuclear magnetic resonance spectroscopy and electrospray ionization mass spectrometry and their antibacterial activity evaluated. In conclusion, two highly alkylated gingerols, [10]-gingerol and [12]-gingerol effectively inhibited the growth of these oral pathogens at a minimum inhibitory concentration (MIC) range of 6-30 microg/mL. These ginger compounds also killed the oral pathogens at a minimum bactericidal concentration (MBC) range of 4-20 microg/mL, but not the other ginger compounds 5-acetoxy-[6]-gingerol, 3,5-diacetoxy-[6]-gingerdiol and galanolactone.
Comparison of antimicrobial activities of naphthoquinones from Impatiens balsamina.
Sakunphueak, Athip; Panichayupakaranant, Pharkphoom
2012-01-01
Lawsone (1), lawsone methyl ether (2), and methylene-3,3'-bilawsone (3) are the main naphthoquinones in the leaf extracts of Impatiens balsamina L. (Balsaminaceae). Antimicrobial activities of these three naphthoquinones against dermatophyte fungi, yeast, aerobic bacteria and facultative anaerobic and anaerobic bacteria were evaluated by determination of minimal inhibitory concentrations (MICs) and minimal bactericidal or fungicidal concentrations (MBCs or MFCs) using a modified agar dilution method. Compound 2 showed the highest antimicrobial activity. It showed antifungal activity against dermatophyte fungi and Candida albicans with the MICs and MFCs in the ranges of 3.9-23.4 and 7.8-23.4 µg mL(-1), respectively, and also had some antibacterial activity against aerobic, facultative anaerobic and anaerobic bacteria with MICs in the range of 23.4-93.8, 31.2-62.5 and 125 µg mL(-1), respectively. Compound 1 showed only moderate antimicrobial activity against dermatophytes (MICs and MFCs in the ranges of 62.5-250 and 125-250 µg mL(-1), respectively), but had low potency against aerobic bacteria, and was not active against C. albicans and facultative anaerobic bacteria. In contrast, 3 showed significant antimicrobial activity only against Staphylococus epidermidis and Bacillus subtilis (MIC and MBC of 46.9 and 93.8 µg mL(-1), respectively).
Lu, WenQing; Zhou, XiaoMin
2016-01-01
In our previous study, we have found that persimmon, guava, and sweetsop owned considerably high antioxidant activity and contained high total phenolic contents as well. In order to further supply information on the antibacterial and antioxidant activity of these three tropic fruits, they were extracted by 80% methanol. We then examined the extractions about their phenolic compounds and also studied the extractions and phenolic contents about their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against twelve targeted pathogens including 8 standard strains (Staphylococcus aureus, Bacillus cereus, Staphylococcus epidermidis, Monilia albican, Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Pseudomonas aeruginosa) and 4 multidrug-resistant strains (methicillin-resistant Staphylococcus aureus, ESBLs-producing Escherichia coli, carbapenems-resistant Pseudomonas aeruginosa, and multidrug-resistant Acinetobacter baumannii), which are common and comprehensive in clinic. We also employed two ways, that is, FRAP and TEAC, to evaluate their antioxidant activities, using ultraviolet and visible spectrophotometer. Our study indicated that the three tropical fruits possessed obvious antioxidant and antibacterial activity, which supported the possibility of developing the fruits into new natural resource food and functional food as well as new natural antimicrobial agent and food preservatives. Moreover, phenolic compounds detected in the fruits could be used as a potential natural antibacterial agent and antioxidant. PMID:27648444
Antibacterial and antibiofilm effects of iron chelators against Prevotella intermedia.
Moon, Ji-Hoi; Kim, Cheul; Lee, Hee-Su; Kim, Sung-Woon; Lee, Jin-Yong
2013-09-01
Prevotella intermedia, a major periodontopathogen, has been shown to be resistant to many antibiotics. In the present study, we examined the effect of the FDA-approved iron chelators deferoxamine (DFO) and deferasirox (DFRA) against planktonic and biofilm cells of P. intermedia in order to evaluate the possibility of using these iron chelators as alternative control agents against P. intermedia. DFRA showed strong antimicrobial activity (MIC and MBC values of 0.16 mg ml(-1)) against planktonic P. intermedia. At subMICs, DFRA partially inhibited the bacterial growth and considerably prolonged the bacterial doubling time. DFO was unable to completely inhibit the bacterial growth in the concentration range tested and was not bactericidal. Crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that DFRA significantly decreased the biofilm-forming activity as well as the biofilm formation, while DFO was less effective. DFRA was chosen for further study. In the ATP-bioluminescent assay, which reflects viable cell counts, subMICs of DFRA significantly decreased the bioactivity of biofilms in a concentration-dependent manner. Under the scanning electron microscope, P. intermedia cells in DFRA-treated biofilm were significantly elongated compared to those in untreated biofilm. Further experiments are necessary to show that iron chelators may be used as a therapeutic agent for periodontal disease.
Antibacterial Activity and Kinetics of Litsea cubeba Oil on Escherichia coli
Li, Wen-Ru; Shi, Qing-Shan; Liang, Qing; Xie, Xiao-Bao; Huang, Xiao-Mo; Chen, Yi-Ben
2014-01-01
Litsea cubeba oil is extracted from the fresh fruits of Litsea cubeba by distillation. In this study, its chemical constituents, antibacterial activity, kinetics and effects against Escherichia coli were studied. Its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were both 0.125% (v/v) by toxic food method. Moreover, the antibacterial kinetic curves indicated 0.0625% (v/v) of litsea cubeba oil was able to prolong the growth lag phase of E. coli cells to approximate 12 hours while 0.125% (v/v) of litsea cubeba oil was able to kill the cells completely. Furthermore, transmission electron microscope (TEM) observation showed most E. coli cells treated with 0.125% (v/v) of litsea cubeba oil were killed or destroyed severely within 2 hours. The litsea cubeba oil might penetrate and destroy the outer and inner membrane of E. coli cells. Thus many holes and gaps were observed on the damaged cells, which led to their death eventually. The antibacterial effects of litsea cubeba oil mainly attributed to the presence of aldehydes, which accounted for approximately 70% in its whole components analyzed by GC/MS. Based on the antimicrobial properties, litsea cubeba oil would have a broad application in the antimicrobial industry. PMID:25372706
Bajpai, Vivek K; Na, Minkyun; Kang, Sun Chul
2010-07-01
In an attempt to isolate bioactive substances, ethyl acetate cone extract of Metasequoia glyptostroboides was subjected to a column chromatographic analysis that resulted in isolation of an abietane type diterpenoid, taxoquinone. Its structure was elucidated by spectroscopic means. In further, taxoquinone showed potential antibacterial effect as diameters of zones of inhibition against foodborne pathogenic bacteria such as Listeria monocytogenes ATCC 19166, Salmonella typhimurium KCTC 2515, Salmonella enteritidis KCTC 2021, Escherichia coli ATCC 8739, E. coli O157:H7 ATCC 43888, Enterobacter aerogenes KCTC2190, Staphylococcus aureus ATCC 6538 and S. aureus KCTC 1916, which were found in the range of 10.6-15.8mm. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of taxoquinone against the employed bacterial pathogens were found in the range of 62.5-250 and 125-500 microg/ml. Also the compound had strong antibacterial effect on the viable counts of the tested bacteria. Further, scanning electron microscopic study demonstrated potential detrimental effect of taxoquinone on the morphology of E. coli ATCC 8739. These findings indicate that bioactive compound taxoquinone present in M. glyptostroboides could be used as a promising antibacterial agent in food industry to inhibit the growth of certain important foodborne pathogens. 2010 Elsevier Ltd. All rights reserved.
Lopez-Romero, Julio Cesar; González-Ríos, Humberto; Borges, Anabela; Simões, Manuel
2015-01-01
Bacterial resistance has been increasingly reported worldwide and is one of the major causes of failure in the treatment of infectious diseases. Natural-based products, including plant secondary metabolites (phytochemicals), may be used to surpass or reduce this problem. The objective of this study was to determine the antibacterial effect and mode of action of selected essential oils (EOs) components: carveol, carvone, citronellol, and citronellal, against Escherichia coli and Staphylococcus aureus. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed for the selected EOs components. Moreover, physicochemical bacterial surface characterization, bacterial surface charge, membrane integrity, and K + leakage assays were carried out to investigate the antimicrobial mode of action of EOs components. Citronellol was the most effective molecule against both pathogens, followed by citronellal, carveol, and carvone. Changes in the hydrophobicity, surface charge, and membrane integrity with the subsequent K + leakage from E. coli and S. aureus were observed after exposure to EOs. This study demonstrates that the selected EOs have significant antimicrobial activity against the bacteria tested, acting on the cell surface and causing the disruption of the bacterial membrane. Moreover, these molecules are interesting alternatives to conventional antimicrobials for the control of microbial infections. PMID:26221178
Bis-indolic compounds as potential new therapeutic alternatives for tularaemia
Caspar, Yvan; Sutera, Vivien; Boisset, Sandrine; Denis, Jean-Noël; Maurin, Max
2014-01-01
Francisella tularensis is the etiological agent of tularaemia and a CDC class A biological threat agent. Few antibiotic classes are currently useful in treating tularaemia, including the aminoglycosides gentamicin and streptomycin, fluoroquinolones, and tetracyclines. However, treatment failures and relapses remain frequent and F. tularensis strains resistant to antibiotics have been easily selected in vitro. In this study, we evaluated the activity of new synthetic bis-indole derivatives against this pathogen. Minimum inhibitory concentrations (MICs) of four compounds (dcm01 to dcm04) were determined for the reference strains F. tularensis subsp. holarctica LVS NCTC10857, F. tularensis subsp. novicida CIP56.12 and F. philomiragia ATCC25015, and for 41 clinical strains of F. tularensis subsp. holarctica isolated in France. Minimal bactericidal concentrations (MBCs) were determined for the dcm02 and dcm04 compounds for the LVS and two clinical strains. Killing curves were also determined for the same three strains exposed to dcm04. All tested bis-indole compounds were bacteriostatic against F. tularensis subsp. holarctica strains, with a MIC90 of 8 μg/mL for dcm01, dcm02, and dcm03, and 2 μg/mL for dcm04. Only one strain was resistant to both dcm01 and dcm03, with MICs > 32 μg/mL. In contrast, F. tularensis subsp. novicida was resistant to all derivatives and F. philomiragia was only susceptible to dcm02 and dcm04, with MICs of 16 and 4 μg/mL, respectively. MBC and killing curve experiments revealed significant bactericidal activity (i.e., 3-log reduction of the bacterial inoculum) of the dcm02 and dcm04 compounds only for the LVS strain. In conclusion, we have identified novel synthetic bis-indole compounds that are active against F. tularensis subsp. holarctica. They may be drug candidates for the development of new therapeutic alternatives for tularaemia treatment. Their further characterization is needed, especially identification of their bacterial targets. PMID:24579066
Bis-indolic compounds as potential new therapeutic alternatives for tularaemia.
Caspar, Yvan; Sutera, Vivien; Boisset, Sandrine; Denis, Jean-Noël; Maurin, Max
2014-01-01
Francisella tularensis is the etiological agent of tularaemia and a CDC class A biological threat agent. Few antibiotic classes are currently useful in treating tularaemia, including the aminoglycosides gentamicin and streptomycin, fluoroquinolones, and tetracyclines. However, treatment failures and relapses remain frequent and F. tularensis strains resistant to antibiotics have been easily selected in vitro. In this study, we evaluated the activity of new synthetic bis-indole derivatives against this pathogen. Minimum inhibitory concentrations (MICs) of four compounds (dcm01 to dcm04) were determined for the reference strains F. tularensis subsp. holarctica LVS NCTC10857, F. tularensis subsp. novicida CIP56.12 and F. philomiragia ATCC25015, and for 41 clinical strains of F. tularensis subsp. holarctica isolated in France. Minimal bactericidal concentrations (MBCs) were determined for the dcm02 and dcm04 compounds for the LVS and two clinical strains. Killing curves were also determined for the same three strains exposed to dcm04. All tested bis-indole compounds were bacteriostatic against F. tularensis subsp. holarctica strains, with a MIC90 of 8 μg/mL for dcm01, dcm02, and dcm03, and 2 μg/mL for dcm04. Only one strain was resistant to both dcm01 and dcm03, with MICs > 32 μg/mL. In contrast, F. tularensis subsp. novicida was resistant to all derivatives and F. philomiragia was only susceptible to dcm02 and dcm04, with MICs of 16 and 4 μg/mL, respectively. MBC and killing curve experiments revealed significant bactericidal activity (i.e., 3-log reduction of the bacterial inoculum) of the dcm02 and dcm04 compounds only for the LVS strain. In conclusion, we have identified novel synthetic bis-indole compounds that are active against F. tularensis subsp. holarctica. They may be drug candidates for the development of new therapeutic alternatives for tularaemia treatment. Their further characterization is needed, especially identification of their bacterial targets.
A screening for antimicrobial activities of Caribbean herbal remedies
2013-01-01
Background The TRAMIL program aims to understand, validate and expand health practices based on the use of medicinal plants in the Caribbean, which is a “biodiversity hotspot” due to high species endemism, intense development pressure and habitat loss. The antibacterial activity was examined for thirteen plant species from several genera that were identified as a result of TRAMIL ethnopharmacological surveys or were reported in ethnobotanical accounts from Puerto Rico. The aim of this study was to validate the traditional use of these plant species for the treatment of bacterial infections, such as conjunctivitis, fever, otitis media and furuncles. Methods An agar disc diffusion assay was used to examine five bacterial strains that are associated with the reported infections, including Staphylococcus saprophyticus (ATCC 15305), S. aureus (ATCC 6341), Escherichia coli (ATCC 4157), Haemophilus influenzae (ATCC 8142), Pseudomonas aeruginosa (ATCC 7700) and Proteus vulgaris (ATCC 6896), as well as the fungus Candida albicans (ATCC 752). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined for each of the extracts that showed inhibitory activity. Results The decoctions of Pityrogramma calomelanos, Tapeinochilus ananassae, and Syzygium jambos, as well as the juice of Gossypium barbadense, showed > 20% growth inhibition against several bacteria relative to the positive control, which was the antibiotic Streptomycin. Extracts with the best antimicrobial activities were S. jambos that showed MIC = 31 μg/mL and MBC = 1.0 mg/mL against P. vulgaris and T. ananassae that showed MIC = 15 μg/mL against S. aureus. Conclusion This report confirms the traditional use of P. calomelanos for the treatment of kidney infections that are associated with stones, as well as the antimicrobial and bactericidal effects of T. ananassae against P. vulgaris and S. saprophyticus and the effects of S. jambos against S. aureus and S. saprophyticus. PMID:23731467
Ecotoxicity of two organic UV-filters to the freshwater caddisfly Sericostoma vittatum.
Campos, Diana; Gravato, Carlos; Fedorova, Ganna; Burkina, Viktoriia; Soares, Amadeu M V M; Pestana, João L T
2017-09-01
Organic ultraviolet filters (UV-filters) used for protection against radiation in personal care products and other materials (e.g. textiles, plastic products) are considered emerging contaminants of aquatic ecosystem. Benzophenone-3 (BP3) and 3-(4-methylbenzylidene)camphor (4-MBC) are the most commonly used organic UV-filters and have been reported in freshwater environments due to contamination through discharges from wastewater treatment plants and swimming pools or by direct contamination from recreational activities. Our aim was to evaluate the ecotoxicological effects of these UV-filters using the freshwater caddisfly Sericostoma vittatum' biochemical biomarkers and energy processing related endpoints (feeding behaviour, energy reserves and cellular metabolism). In laboratory trials, both compounds induced feeding inhibition of S. vittatum at 3.55 mg/kg of BP3 and at concentrations ≥2.57 mg/kg of 4-MBC, decreased carbohydrates content at 3.55 and 6.95 mg/kg of BP3 and 4-MBC respectively, and increased total glutathione levels at concentrations ≥1.45 and 1.35 mg/kg of BP3 and 4-MBC respectively. No significant effects were observed on endpoints associated with oxidative stress, antioxidant defences, phase II biotransformation or neurotoxicity after exposure to the two UV-filters. Our results show that environmental relevant concentrations of BP3 and 4-MBC, can negatively impact freshwater insects and demonstrate the importance of monitoring the ecological effects of organic UV-filters using non-model invertebrate species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Haichang; Wang, Jingya; Zhang, Fenghua
2016-12-01
The soil microbial biomass carbon (MBC) is considered as a sensitive index of soil carbon ecosystem. The distribution of aggregate-associated MBC determines the capacity of the soil to store soil organic carbon (SOC). We compared soil aggregate-associated SOC and aggregate-associated MBC under four halophyte communities: Karelinia caspia (Pall.) Less. (Abbr. K. caspia), Bassia dasyphylla (Fisch. et C. A. Mey.) Kuntze. (Abbr. B. dasyphylla), Haloxylon ammodendron (C. A. Mey.) Bunge. (Abbr. H. ammodendron), and Tamarix ramosissima Lour (Abbr. T. ramosissima) on an alluvial fan in the Manasi River Basin, Xinjiang, China. The specific objectives of the study were to determine which aggregate size fraction was the most important for MBC and SOC retention in these soils of four halophyte communities. The results showed that the 0.053-0.25 mm fraction contained 47 to 75 % of the total soil mass. The amount of soil in the 0.053-0.25 mm fraction was significantly greater than that in the >0.25 and the <0.053 mm fractions. The >0.25 and the <0.053 mm fractions contained 7.8 to 43.0 % of the soil mass. Aggregate-associated SOC concentrations ranged from 1.70 to 13.68 g kg -1 , and the aggregate-associated SOC were the highest under the H. ammodendron and T. ramosissima communities. The aggregate-associated MBC ranged from 55.26 to 217.11 g kg -1 , and the aggregate-associated MBC were higher under the K. caspia and B. dasyphylla communities. The aggregate-associated SOC concentrations were significantly higher in the >0.25 and the <0.053 mm fractions than in the 0.053-0.25 mm fraction. The aggregate-associated MBC in the 20-40 cm depth was consistent with its law. However, in the 0-20 cm depth, the aggregate-associated MBC concentrations were significantly higher in the >0.25 mm fraction than the other two aggregate fractions, and there were no significant differences in 0.25-0.053 or <0.053 mm fraction. Correlation analyses showed that the aggregate-associated MBC positively correlated with aggregate-associated SOC in >0.25 mm fraction (P < 0.01). The microbial entropies ranged from 1.12 to 4.17 %, and the microbial entropy generally was higher in >0.25 mm fraction. Overall, the H. ammodendron community had the higher aggregate-associated SOC and aggregate-associated MBC, but the microbial entropy was low. This suggested that among the four halophyte communities in this study, the H. ammodendron community could be beneficial for soil carbon storage in arid regions.
Bactericidal activity of antibiotics against Legionella micdadei (Pittsburgh pneumonia agent).
Dowling, J N; Weyant, R S; Pasculle, A W
1982-01-01
The bactericidal activity of five antibiotics for Legionella micdadei was determined by the construction of time-kill curves. Erythromycin, rifampin, penicillin G, cephalothin, and gentamicin were bactericidal for L. micdadei at readily achievable concentrations. The minimal bactericidal concentrations, defined as those producing 99.9% killing within 24 h, were: erythromycin, 4.6; rifampin, 0.13; penicillin G, 0.25; cephalothin, 2.5; and gentamicin, 0.25 micrograms/ml. The ratios of the minimal bactericidal to minimal inhibitory concentrations for these antibiotics ranged from 1 to 8. Thus, the poor in vivo activity of beta-lactam and aminoglycoside antibiotics against L. micdadei cannot be ascribed to a lack of killing by these agents. PMID:6927637
Anti-inflammatory, antioxidant, and antimicrobial activities of Cocos nucifera var. typica
2013-01-01
Background Teas from the husk fiber of Cocos nucifera are used in the folk medicine to treat arthritis and other inflammatory processes. Some works show that some varieties have biological activities. However, one of the main variety of the species, C. nucifera var. typica, known in Brazil as “gigante”, was not studied yet. Thus, this study evaluates if this variety has the anti-inflammatory and antimicrobial activities already reported in other varieties. Methods C. nucifera aqueous crude extract (10, 50, and 100 mg/kg) and the reference drugs morphine (1 mg/kg) and acetylsalicylic acid (100 mg/kg) were evaluated in models of inflammation (formalin-induced licking and subcutaneous air pouch). The antioxidant activity was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) photometric assay and compared with those of the standards (quercetin, rutin, and ascorbic acid). The extract was also screened against Candida albicans, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA), in the agar diffusion method. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the broth micro-dilution assay. Activities of combinations of the extract and antibiotics (methicillin or vancomycin) against MRSA were evaluated using checkerboard assays. Results The extract significantly inhibited the time that the animals spent licking the formalin-injected paws (second phase). The extract also inhibited the inflammatory process induced by subcutaneous carrageenan injection by reducing cell migration, protein extravasation, and TNF-α production. Additionally, the extract showed an antioxidant potential in vitro as good as standards in their antioxidant activity. The extract was active only against S. aureus and MRSA. MIC and the bactericidal concentrations were identical (1,024 μg/ml). The extract and methicillin acted synergistically against the clinical MRSA isolate, whereas an indifferent effect was detected when the extract was combined with vancomycin. Conclusions The extract exhibits anti-inflammatory activity through the inhibition of the cell migration. The mixture of extract constituents and methicillin could lead to the development of a new combination antibiotic against MRSA infections. PMID:23680079
Knafl, D; Tobudic, S; Cheng, S C; Bellamy, D R; Thalhammer, F
2017-04-01
Activity of dalbavancin against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE) in biofilm was investigated and the microbicidal biofilm concentrations (MBC) were determined. Biofilms obtained from ten MRSA and ten MRSE bloodstream isolates, collected from patients in the General Hospital of Vienna between 2012 and 2015, were incubated with dalbavancin in trypticase soy broth (TSB) in serial dilution from 0.0625 mg/l to 256 mg/l using a microtiter plate biofilm model. The plates were incubated for 24 h at 37 ° C and 50% humidity. Biofilms were fixed with 2.5% glutaraldehyde and stained with crystal violet. Subsequently the optical density (OD 620 ) was used to measure the MBC, defined as the concentration of dalbavancin leading to a 50% reduction of biofilm. MBC for MRSA was 1 mg/l-4 mg/l (minimal inhibitory concentrations (MIC) 0.0312 mg/l-0.064 mg/l). MBC for MRSE was 2 mg/l-16 mg/l (MIC 0.023 mg/l-0.0625 mg/l). Dalbavancin successfully reduced MRSA and MRSE in biofilms, and therefore provides a promising option for the treatment of biofilm-associated infections.
NASA Astrophysics Data System (ADS)
Xiao, Shuangshuang; Zhang, Wei; Ye, Yingying; Zhao, Jie; Wang, Kelin
2017-02-01
Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China. Five common land-use types—enclosure land (natural system, control), prescribed-burning land, fuel-wood shrubland, pasture and maize fields—were selected. Results showed that pasture and maize fields remarkably decreased the SOC and TN concentrations in aggregates. Conversion of natural system to other land uses decreased MBC (except for prescribed-burning) and increased Cmic: Corg ratios in aggregates. The extent of the response to land uses of SOC and TN concentrations was similar whereas that of MBC and Cmic: Corg ratios differed across the three aggregate sizes. Further, the SOC concentrations were significantly higher in macro-aggregates than micro-aggregates; the MBC and Cmic: Corg ratios were highest in small macro-aggregates. Therefore, small macro-aggregates might have more active C dynamics.
Torres, Ieda Maria Sapateiro; Bento, Etiene Barbosa; Almeida, Larissa da Cunha; de Sá, Luisa Zaiden Carvalho Martins; Lima, Eliana Martins
2012-01-01
Pseudomonas aeruginosa is an opportunistic microorganism with the ability to respond to a wide variety of environmental changes, exhibiting a high intrinsic resistance to a number of antimicrobial agents. This low susceptibility to antimicrobial substances is primarily due to the low permeability of its outer membrane, efflux mechanisms and the synthesis of enzymes that promote the degradation of these drugs. Cephalosporins, particularty ceftazidime and cefepime are effective against P. aeruginosa, however, its increasing resistance has limited the usage of these antibiotics. Encapsulating antimicrobial drugs into unilamellar liposomes is an approach that has been investigated in order to overcome microorganism resistance. In this study, antimicrobial activity of liposomal ceftazidime and cefepime against P. aeruginosa ATCC 27853 and P. aeruginosa SPM-1 was compared to that of the free drugs. Liposomal characterization included diameter, encapsulation efficiency and stability. Minimum Inhibitory Concentration (MIC) was determined for free and liposomal forms of both drugs. Minimum Bactericidal Concentration (MBC) was determined at concentrations 1, 2 and 4 times MIC. Average diameter of liposomes was 131.88 nm and encapsulation efficiency for cefepime and ceftazidime were 2.29% end 5.77%, respectively. Improved stability was obtained when liposome formulations were prepared with a 50% molar ratio for cholesterol in relation to the phospholipid. MIC for liposomal antibiotics for both drugs were 50% lower than that of the free drug, demonstrating that liposomal drug delivery systems may contribute to increase the antibacterial activity of these drugs. PMID:24031917
Arjunan, Nithya; Kumari, Henry Linda Jeeva; Singaravelu, Chandra Mohan; Kandasamy, Ruckmani; Kandasamy, Jothivenkatachalam
2016-11-01
Chitosan (CS), a seaweed polysaccharide is a natural macromolecule which is widely being used in medical applications because of its distinctive antimicrobial and anticancer properties. Silver, a noble metal, is also receiving wide attention for its potential usage in antimicrobial and anticancer therapeutics. In this study, an effective way of reduction of silver using chitosan at varying reaction temperatures and an optimised concentration of silver were performed. The optical, structural, spectral, morphological and elemental studies of the biosynthesized chitosan-silver (CS-Ag) nanocomposites were characterized by several techniques. The synthesized CS-Ag nanocomposites exhibit particle size around 20nm and were further exploited for potent biological applications in nanomedicine due to their nanometric sizes and biocompatibility of chitosan. The antimicrobial activity of the biosynthesized CS-Ag nanocomposites exhibits zone of inhibition ranged between 09.666±0.577 and 19.000±1.000 (mm). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were from 8 to 128μgmL -1 and 16 to 256μgmL -1 respectively, with the highest antimicrobial activity shown against Gram-negative Salmonella sp. The synergistic effect of chitosan and silver as a composite in nanometric size revealed significant IC 50 value of 29.35μgmL -1 and a maximum of 95.56% inhibition at 100μgmL -1 against A549 lung cancer cell line, resulting in potent anticancer effect. Copyright © 2016 Elsevier B.V. All rights reserved.
Two-Phase Bactericidal Mechanism of Silver Nanoparticles against Burkholderia pseudomallei
Hongsing, Nuttaya; Thammawithan, Saengrawee; Daduang, Sakda; Klaynongsruang, Sompong; Tuanyok, Apichai; Patramanon, Rina
2016-01-01
Silver nanoparticles (AgNPs) have a strong antimicrobial activity against a variety of pathogenic bacteria. The killing mechanism of AgNPs involves direct physical membrane destruction and subsequent molecular damage from both AgNPs and released Ag+. Burkholderia pseudomallei is the causative agent of melioidosis, an endemic infectious disease primarily found in northern Australia and Southeast Asia. B. pseudomallei is intrinsically resistant to most common antibiotics. In this study, the antimicrobial activity and mechanism of AgNPs (10–20 nm) against B. pseudomallei were investigated. The MIC and MBC for nine B. pseudomallei strains ranged from 32–48 μg/mL and 96–128 μg/mL, respectively. Concentrations of AgNPs less than 256 μg/mL were not toxic to human red blood cells. AgNPs exhibited a two-phase mechanism: cell death induction and ROS induction. The first phase was a rapid killing step within 5 min, causing the direct damage of the cytoplasmic membrane of the bacterial cells, as observed by a time-kill assay and fluorescence microscopy. During the period of 5–30 min, the cell surface charge was rapidly neutralized from -8.73 and -7.74 to 2.85 and 2.94 mV in two isolates of B. pseudomallei, as revealed by zeta potential measurement. Energy-dispersive X-ray (EDX) spectroscopy showed the silver element deposited on the bacterial membrane, and TEM micrographs of the AgNP-treated B. pseudomallei cells showed severe membrane damage and cytosolic leakage at 1/5 MIC and cell bursting at MBC. During the killing effect the released Ag+ from AgNPs was only 3.9% from the starting AgNPs concentration as observed with ICP-OES experiment. In the second phase, the ROS induction occurred 1–4 hr after the AgNP treatment. Altogether, we provide direct kinetic evidence of the AgNPs killing mechanism, by which cell death is separable from the ROS induction and AgNPs mainly contributes in the killing action. AgNPs may be considered a potential candidate to develop a novel alternative agent for melioidosis treatment with fast action. PMID:27977746
Cheng, Dandan; Zhang, Yingying; Gao, Demin; Zhang, Hongmeng
2014-09-11
Pyrrosia petiolosa is commonly used as a traditional Chinese medicine for treatment of acute pyelonephritis, chronic bronchitis and bronchial asthma. This study aims to evaluate the antibacterial activity of the ethanol extract and its derived fractions of Pyrrosia petiolosa obtained with solvents of different polarities and to perform the anti-inflammatory screening. The powdered aerial parts of Pyrrosia petiolosa were used to extract various fractions with ethanol, petroleum ether, ethyl acetate, N-butanol and aqueous. Qualitative phytochemical screening was performed on the ethanol extract, petroleum ether fraction, ethyl acetate fraction, N-butanol fraction and aqueous fraction. The agar diffusion method, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were employed to evaluate antibacterial activity of the ethanol extract and fractions. The in vitro cytotoxicity of ethanol extract and fractions was determined using MTT assay. The anti-inflammatory activity was analyzed using the mouse ear swelling induced by xylene. The phytochemical screening revealed the presence of anthraquinones, flavonoids, terpenoids, steroids, saponins, phenols and reducing sugars in the extract and fractions. Antibacterial results showed that petroleum ether fraction and N-butanol fraction inhibited all the tested microorganisms with the maximum inhibition zone of 15.25±0.35 mm. Ethyl acetate fraction also exhibited good antibacterial activity except Pseudomonas aeruginosa ATCC 27853, while extract and aqueous fraction inhibited 8 out of 13 (61.5%) of the tested microorganisms. The MIC values of ethanol extract and fractions ranged from 1.25 to 10.00 mg/mL and most of the MBC values were equal or twice as high as the corresponding MIC values. The in vitro cytotoxicity showed the ethanol extract and fractions exhibited non-toxic or low toxic activity against lung cancer cell lines A549 and mouse spleen cells. In anti-inflammatory experiment, ethanol extract at 5.0 and 10.0 mg/kg exhibited significant anti-inflammatory activity against the mouse ear swelling induced by xylene and the maximum inhibition rate reached as high as 67%. Pyrrosia petiolosa could be a potential candidate for future development of a novel antibacterial and anti-inflammatory agent. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Orue, Nydia; García, Santos; Feng, Peter; Heredia, Norma
2013-02-01
Fresh cilantro, parsley, and spinach are products that are regularly consumed fresh, but are difficult to decontaminate, as a result, they are common vehicles of transmission of enteropathogenic bacteria. In this study, the efficacy of plant extracts as alternatives for disinfection of cilantro, parsley, and spinach that were artificially contaminated with Salmonella, Escherichia coli O157:H7, and Shigella sonnei was determined. Edible plant extracts obtained using ethanol as the extraction solvent were tested to determine the minimum bactericidal concentration (MBC) and those that exhibited the lowest MBC were selected for further studies. Leaves of fresh greens were washed with sterile water and dried. For seeding, leaves were submerged in suspensions of 2 different concentrations of bacteria (1.5 × 10(8) and 1 × 10(5) ), dried, and then stored at 4 °C until use. To determine the effects of the extracts, inoculated leafy greens were submerged in a container and subjected to treatments with chlorine, Citrol®, or selected plant extracts. Each treatment type was stored at 4 °C for 0, 1, 5, and 7 d, and the bacterial counts were determined. From the 41 plant extracts tested, the extracts from oregano leaves and from the peel and pulp of limes were found to be as effective as chlorine or Citrol® in reducing by > 2 logs, the population of pathogenic bacteria on leafy greens and therefore, may be a natural and edible alternative to chemicals to reduce the risk of Salmonella, E. coli O157:H7 and S. sonnei contamination on leafy vegetables. The antimicrobial efficacy of the extracts of Mexican lime and oregano was clearly demonstrated on cilantro, parsley, and spinach. The extracts of Mexican lime and oregano provide alternatives to chlorine to significantly reduce bacterial pathogens that have been associated with outbreaks from contaminated leafy green vegetables. A simple, low cost, and labor-saving extraction system for production of the extracts was used. © 2013 Institute of Food Technologists®
Tribuiani, Natália; da Silva, Alexandro Mateus; Ferraz, Miriéle Cristina; Silva, Magali Glauzer; Bentes, Ana Paula Guerreiro; Graziano, Talita Signoreti; dos Santos, Marcio Galdino; Cogo, José Carlos; Varanda, Eliana Aparecida; Groppo, Francisco Carlos; Cogo, Karina; Oshima-Franco, Yoko
2014-02-08
Snakebite is a significant public health issue in tropical countries. In Brazil, some of the most common snake envenomations are from Bothrops. Bothrops bites trigger local and systemic effects including edema, pain, erythema, cyanosis, infections, and necrosis. Vellozia flavicans is a plant from the Brazilian "cerrado" (savanna) that is popularly used as an anti-inflammatory medicine. Since inflammation develops quickly after Bothrops bites, which can lead to infection, the aim of the present study was to observe possible anti-snake venom and antimicrobial activities of V. flavicans (Vf). The chromatographic profile of the main constituents from the Vf leaf hydroalcoholic extract was obtained by thin-layer chromatography (TLC). The anti-snake venom activity was measured by Vf's ability to neutralize the in vitro neuromuscular blockade caused by Bothrops jararacussu venom (Bjssu) in a mouse phrenic nerve-diaphragm model (PND). After a 20 min incubation, preparations of PND were added to Tyrode's solution (control); Vf (0.2, 0.5, 1, and 2 mg/mL); 40 μg/mL Bjssu; pre-incubation for 30 min with Bjssu and 1 mg/mL Vf; and a Bjssu pretreated preparation (for 10 min) followed by 1 mg/mL Vf. Myographic recording was performed, and the contractile responses were recorded. The antimicrobial activity (minimum inhibitory concentration [MIC] and minimum bactericidal concentration [MBC]) was obtained for Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis, using gentamicin and vancomycin as positive controls. TLC analysis yielded several compounds from Vf, such as flavonoids (quercetin) and phenolic acids (chlorogenic acid). Bjssu completely blocked the contractile responses of PND preparations, while Vf preserved 97% (±10%) of the contractile responses when incubated with Bjssu. In the PND pretreated with Bjssu, Vf was able to inhibit the neuromuscular blockade progress. MIC and MBC of Vf ranged from 2.5 to 5.0 mg/mL for P. aeruginosa and S. aureus strains, while no antimicrobial activity was observed for E. coli and E. faecalis. The hydroalcoholic extract from Vf leaves was able to neutralize and decrease the in vitro neuromuscular blockade caused by Bjssu. However, it did not show significant antimicrobial activity against the tested bacteria.
NASA Astrophysics Data System (ADS)
Beyzaei, Hamid; Aryan, Reza; Moghaddam-Manesh, Mohammadreza; Ghasemi, Behzad; Karimi, Pouya; Samareh Delarami, Hojat; Sanchooli, Mahmood
2017-09-01
The synthesis of pyrazolo[3,4-d]pyrimidine derivatives is important due to their presence in various biologically active compounds such as anticancer, antimicrobial, antiparasitic, anti-inflammatory and antidiabetic agents. In this project, a new and efficient approach for the synthesis of some novel 4-imino-5H-pyrazolo[3,4-d]pyrimidin-5-amines from reaction of 5-amino-pyrazole-4-carbonitrile with various hydrazides in ethanolic sodium ethoxide medium was reported. Antimicrobial activities of all synthesized derivatives were evaluated against eight Gram-positive and five Gram-negative pathogenic bacteria. The moderate to good inhibitory effects were observed based on inhibition zone diameter (IZD), minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. In order to determine the reasonable relationship between antibacterial activities and physiochemical properties of the derivatives, computational studies were carried out in terms of geometry optimization, short-range van der Waals forces, dipole moments, atomic charges and frontier orbital energies. It was found that both short-range forces and covalent bonds are important in the observed inhibitory effects of the molecules. The results suggested that pyrazolo[3,4-d]pyrimidine derivatives prefer a soft nucleophilic attack on bio-macromolecular targets. Furthermore, our models proposed that the antibacterial activities of these derivatives can be improved by substituting large electron donating groups on the 6-phenyl rings.
Tchinda, Cedric F; Voukeng, Igor K; Beng, Veronique P; Kuete, Victor
2017-05-01
In the last 10 years, resistance in Gram-negative bacteria has been increasing. The present study was designed to evaluate the in vitro antibacterial activities of the methanol extracts of six Cameroonian medicinal plants Albizia adianthifolia , Alchornea laxiflora , Boerhavia diffusa , Combretum hispidum , Laportea ovalifolia and Scoparia dulcis against a panel of 15 multidrug resistant Gram-negative bacterial strains. The broth microdilution was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts. The preliminary phytochemical screening of the extracts was conducted according to the reference qualitative phytochemical methods. Results showed that all extracts contained compounds belonging to the classes of polyphenols and triterpenes, other classes of chemicals being selectively distributed. The best antibacterial activities were recorded with bark and root extracts of A. adianthifolia as well as with L. ovalifolia extract, with MIC values ranging from 64 to 1024 μg/mL on 93.3% of the fifteen tested bacteria. The lowest MIC value of 64 μg/mL was recorded with A. laxiflora bark extract against Enterobacter aerogenes EA289. Finally, the results of this study provide evidence of the antibacterial activity of the tested plants and suggest their possible use in the control of multidrug resistant phenotypes.
de Barros, Mariana; Perciano, Pedro Griffo; Dos Santos, Marcelo Henrique; De Oliveira, Leandro Licursi; Costa, Éderson D'Martin; Moreira, Maria Aparecida Scatamburlo
2017-05-17
Mastitis is an inflammation of mammary gland parenchyma that adversely affects bovine health and dairy production worldwide despite significant efforts to eradicate it. The aim of this work was to characterize the antimicrobial activity of 7-epiclusianone (7-epi), a compound extracted from the Rheedia brasiliensis fruit, its complex with copper against Streptococcus spp. isolated from bovine mastitis, and to assess their cytotoxicity to bovine mammary alveolar cells (MAC-T). The complex 7-epiclusianone-Cu (7-epi-Cu) was an amorphous green solid with optical activity. Its vibrational spectrum in the infrared region showed absorption bands in the high-frequency region, as well as bands that can be attributed to the unconjugated and conjugated stretching of the free ligand. The complex was anhydrous. One of the tested bacterial strains was not sensitive to the compounds, while the other three had MIC values of 7.8 µg mL -1 and minimum bactericidal concentration (MBC) values between 15.6 and 31.3 µg mL -1 . These two compounds are bacteriostatic, did not cause damage to the cell wall and, at sub-inhibitory concentrations, did not induce bacterial adhesion. The compounds were not cytotoxic. Based on these results, 7-epi and 7-epi-Cu exhibited desirable antimicrobial properties and could potentially be used in bovine mastitis treatment.
Preparation and antibacterial activity of compound chitosan-compound Yizhihao-nanoparticles.
Ou, Sheng; Zhang, Yang-de
2008-05-01
To prepare chitosan (CS)-compound Yizhihao-nanoparticles (NP) and to investigate its antibacterial activity. CS NPs were formed by the incorporation of CS and Na3 PO4. CS-compound Yizhihao NPs were prepared by ion-cross-linking. The particle sizes and surface charges of CS NPs were determined by Malvern Zetasizer 1000-HAS and atomic force microscope (AFM), respectively. The antibacterial activity of CS-compound Yizhihao-NPs was studied in vitro and compared with that of compound Yizhihao powder. Malvern Zetasizer 1000-HAS and AFM demonstrated that the diameter of CS-compound Yizhihao NPs was (137.00+/-14.28)nm and CS NPs had (16.90+/-1.32)mV positive surface charges. The minimal inhibitory concentrations (MIC) of CS-compound Yizhihao NPs on Staphylococcus aureus,Pneumococcus,beta-hemolytic streptococcus, and Escherichia coli were 1:32,1:32,1:16,and 1:2, respectively. The minimal bactericidal concentrations (MBC) of CS-compound Yizhihao-NPs on Staphylococcus aureus, Pneumococcus, beta-hemolytic streptococcus, and Escherichia coli were 1:16,1:16,1:8, and 1:2, respectively. The antibacterial efficacy of CS-compound Yizhihao-NPs to Staphylococcus aureus, Pneumococcus, and beta-hemolytic streptococcus had been improved significantly (P< 0.05). CS-compound Yizhihao-nanoparticles have obvious antibacterial activity to the Staphylococcus aureus,Pneumococcus,and beta-hemolytic streptococcus,which lays the experimental foundation for new preparation of traditional Chinese medicine in future research.
Chen, Shaojiang; Popovich, John; Iannuzo, Natalie; Haydel, Shelley E; Seo, Dong-Kyun
2017-11-15
As antibiotic resistance continues to be a major public health problem, antimicrobial alternatives have become critically important. Nanostructured zeolites have been considered as an ideal host for improving popular antimicrobial silver-ion-exchanged zeolites, because with very short diffusion path lengths they offer advantages in ion diffusion and release over their conventional microsized zeolite counterparts. Herein, comprehensive studies are reported on materials characteristics, silver-ion release kinetics, and antibacterial properties of silver-ion-exchanged nanostructured zeolite X with comparisons to conventional microsized silver-ion-exchanged zeolite (∼2 μm) as a reference. The nanostructured zeolites are submicrometer-sized aggregates (100-700 nm) made up of primary zeolite particles with an average primary particle size of 24 nm. The silver-ion-exchanged nanostructured zeolite released twice the concentration of silver ions at a rate approximately three times faster than the reference. The material exhibited rapid antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values ranging from 4 to 16 μg/mL after 24 h exposure in various growth media and a minimum bactericidal concentration (MBC; >99.9% population reduction) of 1 μg/mL after 2 h in water. While high concentrations of silver-ion-exchanged nanostructured zeolite X were ineffective at reducing MRSA biofilm cell viability, efficacy increased at lower concentrations. In consideration of potential medical applications, cytotoxicity of the silver-ion-exchanged nanostructured zeolite X was also investigated. After 4 days of incubation, significant reduction in eukaryotic cell viability was observed only at concentrations 4-16-fold greater than the 24 h MIC, indicating low cytotoxicity of the material. Our results establish silver-ion-exchanged nanostructured zeolites as an effective antibacterial material against dangerous antibiotic-resistant bacteria.
Bouyahya, Abdelhakim; Et-Touys, Abdeslam; Bakri, Youssef; Talbaui, Ahmed; Fellah, Hajiba; Abrini, Jamal; Dakka, Nadia
2017-10-01
The aim of the study was the determination of the chemical composition of Mentha pulegium L. and Rosmarinus officinalis L. essential oils and the evaluation of their antileishmanial, antibacterial and antioxidant activities. Essential oils (EOs) were isolated using steam distillation and the chemical composition was determined using GC-MS analysis. The antibacterial activity was tested against ten pathogenic strains using the diffusion method, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) by microtitration assay. The antioxidant activity was estimated by DPPH free radical scavenging ability and ferric-reducing power. The antileishmanial activity was tested against Leishmania major, Leishmania tropica and Leishmania infantum using MTT (3-(4.5-dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide) assay. The yield of essential oils (v/w %) M. puleguim and R. officinalis based on dry weight were 5.4 and 2.7% respectively. GC/MS analysis of R. officinalis essential oil (ROEO) revealed the presence of 29 components, mainly represented by oxygenated monoterpenes (63.743%) and hydrocarbons monoterpenes (21.231%). Mentha pulegium essential oil (MPEO) revealed 21 components, mainly represented by oxygenated monoterpenes (83.865%). The major components of ROEO were α-pinene (14.076), 1,8-Cineole (23.673) and camphor (18.743), while menthone (21.164) and pulegone (40.98) were the main major components of MPEO. M. pulegium and R. officinalis EOs showed a significant antioxidant activity compared with ascorbic acid and Trolox to the IC 50 values of 58.27 ± 2.72 and 85.74 ± 7.57 μg/mL respectively revealed by reducing power assay. As for the antibacterial effect, the highest zone diameters were shown by the MPEO against Bacillus subtilis (30 ± 1.43 mm) and Proteus mirabilis (28 ± 1.32 mm). These values are significantly important compared with those of the commercialized antibiotic (Erythromycin and Chlorophenicol). The lowest MIC and MBC values were obtained with MPEO against S. aureus MBLA (MIC = MBC = 0.25% (v/v)). While, ROEO has exhibited a bactericidal effect against Listeria monocytogenes (MIC = MBC = 0.5% (v/v)), Bacillus subtilis (MIC = MBC = 1% (v/v)) and Escherichia coli (MIC = MBC = 1% (v/v)). For the antileishmanial effect, ROEO is the most active against L. major (IC 50 = 1.2 ± 0.36 μg/mL. While, the MPEO has the most leishmanicidal effect against L. major (IC 50 = 1.3 ± 0.45 μg/mL). These findings show that the EOs of M. pulegium and R. officinalis are good sources of bioactive molecules that could have potential applications in the food and pharmaceutical industries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pharmacokinetic-Pharmacodynamic Modeling of Enrofloxacin Against Escherichia coli in Broilers.
Sang, KaNa; Hao, HaiHong; Huang, LingLi; Wang, Xu; Yuan, ZongHui
2015-01-01
The purpose of the present study was to establish a pharmacokinetic/pharmacodynamic (PK/PD) modeling approach for the dosage schedule design and decreasing the emergence of drug-resistant bacteria. The minimal inhibitory concentration (MIC) of 929 Escherichia coli isolates from broilers to enrofloxacin and ciprofloxacin was determined following CLSI guidance. The MIC50 was calculated as the populational PD parameter for enrofloxacin against E. coli in broilers. The 101 E. coli strains with MIC closest to the MIC50 (0.05 μg/mL) were submitted for serotype identification. The 13 E. coli strains with O and K serotype were further utilized for determining pathogencity in mice. Of all the strains tested, the E. coli designated strain Anhui 112 was selected for establishing the disease model and PK/PD study. The PKs of enrofloxacin after oral administration at the dose of 10 mg/kg body weights (BW) in healthy and infected broilers was evaluated with high-performance liquid chromatography (HPLC) method. For intestinal contents after oral administration, the peak concentration (C max), the time when the maximum concentration reached (T max), and the area under the concentration-time curve (AUC) were 21.69-31.69 μg/mL, 1.13-1.23 h, and 228.97-444.86 μg h/mL, respectively. The MIC and minimal bactericidal concentration (MBC) of enrofloxacin against E. coli (Anhui 112) in Mueller-Hinton (MH) broth and intestinal contents were determined to be similar, 0.25 and 0.5 μg/mL respectively. In this study, the sum of concentrations of enrofloxacin and its metabolite (ciprofloxacin) was used for the PK/PD integration and modeling. The ex vivo growth inhibition data were fitted to the sigmoid E max (Hill) equation to provide values for intestinal contents of 24 h area under concentration-time curve/MIC ratios (AUC0-24 h/MIC) producing, bacteriostasis (624.94 h), bactericidal activity (1065.93 h) and bacterial eradication (1343.81 h). PK/PD modeling was established to simulate the efficacy of enrofloxacin for different dosage regimens. By model validation, the protection rate was 83.3%, demonstrating that the dosage regimen of 11.9 mg/kg BW every 24 h during 3 days provided great therapeutic significance. In summary, the purpose of the present study was to first design a dosage regimen for the treatment E. coli in broilers by enrofloxacin using PK/PD integrate model and confirm that this dosage regimen presents less risk for emergence of floroquinolone resistance.
Antibacterial activity of papain and bromelain on Alicyclobacillus spp.
dos Anjos, Márcia Maria; da Silva, Angela Aparecida; de Pascoli, Isabela Carolini; Mikcha, Jane Martha Graton; Machinski, Miguel; Peralta, Rosane Marina; de Abreu Filho, Benício Alves
2016-01-04
Alicyclobacillus spp. are spore forming bacteria that are often related to the deterioration of acidic products such as beverages and citrus juices. After the process of industrial pasteurization, the spore produced by the bacteria can germinate and the microorganism can grow, causing sensory abnormalities in the product. Alternative biopreservatives, such as the antimicrobial compounds, are of considerable importance to the food industry. Papain and bromelain are proteolytic enzymes derived frompapaya and pineapple, respectively. These enzymes are widely used in medicine and in the pharmaceutical and food industries, but while some studies have described their antibacterial action, no studies of the Alicyclobacillus spp. exist. The aimof this studywas to analyze the antibacterial effect of papain and bromelain on Alicyclobacillus spp. through 1) determining minimum inhibitory and bactericidal concentration (MIC and MBC); 2) determining the death time curve of the micro-organism in the presence and absence of enzymes; and 3) investigating the enzymatic mechanism on the microorganism. The antibacterial activity of enzymes in combination with nisin was also evaluated. The results showed that for the Alicyclobacillus acidoterrestris strain, the MIC of papain was 0.98 μg/mL and the MBC was 3.91 μg/mL, while theMIC of bromelain was 62.5 μg/mL and the MBCwas 250 μg/mL. The concentration of 4 ×MIC for both the enzymes was sufficient to eliminate 4 logs of the micro-organism after 24 h of incubation. Through the use of enzyme inhibitors specific for cysteine proteases, it was found that the antibacterial activity of papain and bromelain is not related to its proteolytic activity, butmay be related to other activities, such as amidse and esterase. The synergistic activity of the enzymes revealed a fractional inhibitory concentration (FIC) level of 0.16. Combination with nisin revealed an FIC of 0.25 for papain and 0.19 for bromelain, indicating synergism between both compounds. The application of enzymes in reconstituted orange juice contaminated with A. acidoterrestris was found to be effective, as after 48 h of incubation, at three different temperatures, the initial microbial population was eliminated. This study showed that the enzymes papain and bromelain have an antibacterial effect on A. acidoterrestris.
Xiao, Shuangshuang; Zhang, Wei; Ye, Yingying; Zhao, Jie; Wang, Kelin
2017-01-01
Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25–2 mm), and micro- (0.053–0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China. Five common land-use types—enclosure land (natural system, control), prescribed-burning land, fuel-wood shrubland, pasture and maize fields—were selected. Results showed that pasture and maize fields remarkably decreased the SOC and TN concentrations in aggregates. Conversion of natural system to other land uses decreased MBC (except for prescribed-burning) and increased Cmic: Corg ratios in aggregates. The extent of the response to land uses of SOC and TN concentrations was similar whereas that of MBC and Cmic: Corg ratios differed across the three aggregate sizes. Further, the SOC concentrations were significantly higher in macro-aggregates than micro-aggregates; the MBC and Cmic: Corg ratios were highest in small macro-aggregates. Therefore, small macro-aggregates might have more active C dynamics. PMID:28211507
Torres, Tiago; Cunha, Isabel; Martins, Rosário; Santos, Miguel M.
2016-01-01
Recently, several emerging pollutants, including Personal Care Products (PCPs), have been detected in aquatic ecosystems, in the ng/L or µg/L range. Available toxicological data is limited, and, for certain PCPs, evidence indicates a potential risk for the environment. Hence, there is an urgent need to gather ecotoxicological data on PCPs as a proxy to improve risk assessment. Here, the toxicity of three different PCPs (4-Methylbenzylidene Camphor (4-MBC), propylparaben and triclocarban) was tested using embryo bioassays with Danio rerio (zebrafish) and Paracentrotus lividus (sea urchin). The No Observed Effect Concentration (NOEC) for triclocarban was 0.256 µg/L for sea urchin and 100 µg/L for zebrafish, whereas NOEC for 4-MBC was 0.32 µg/L for sea urchin and 50 µg/L for zebrafish. Both PCPs impacted embryo development at environmentally relevant concentrations. In comparison with triclocarban and 4-MBC, propylparaben was less toxic for both sea urchin (NOEC = 160 µg/L) and zebrafish (NOEC = 1000 µg/L). Overall, this study further demonstrates the sensitivity of embryo bioassays as a high-throughput approach for testing the toxicity of emerging pollutants. PMID:27775672
Torres, Tiago; Cunha, Isabel; Martins, Rosário; Santos, Miguel M
2016-10-21
Recently, several emerging pollutants, including Personal Care Products (PCPs), have been detected in aquatic ecosystems, in the ng/L or µg/L range. Available toxicological data is limited, and, for certain PCPs, evidence indicates a potential risk for the environment. Hence, there is an urgent need to gather ecotoxicological data on PCPs as a proxy to improve risk assessment. Here, the toxicity of three different PCPs (4-Methylbenzylidene Camphor (4-MBC), propylparaben and triclocarban) was tested using embryo bioassays with Danio rerio (zebrafish) and Paracentrotus lividus (sea urchin). The No Observed Effect Concentration (NOEC) for triclocarban was 0.256 µg/L for sea urchin and 100 µg/L for zebrafish, whereas NOEC for 4-MBC was 0.32 µg/L for sea urchin and 50 µg/L for zebrafish. Both PCPs impacted embryo development at environmentally relevant concentrations. In comparison with triclocarban and 4-MBC, propylparaben was less toxic for both sea urchin (NOEC = 160 µg/L) and zebrafish (NOEC = 1000 µg/L). Overall, this study further demonstrates the sensitivity of embryo bioassays as a high-throughput approach for testing the toxicity of emerging pollutants.
Zollinger, Lilly; Schnyder, Simone; Nietzsche, Sandor; Sculean, Anton; Eick, Sigrun
2015-04-01
The antimicrobial activity of taurolidine was compared with minocycline against microbial species associated with periodontitis (four single strains and a 12-species mixture). Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs), killing as well as activities on established and forming single-species biofilms and a 12-species biofilm were determined. The MICs of taurolidine against single species were always 0.31 mg/ml, the MBCs were 0.64 mg/ml. The used mixed microbiota was less sensitive to taurolidine, MIC and the MBC was 2.5 mg/ml. The strains and the mixture were completely killed by 2.5 mg/ml taurolidine, whereas 256 μg/ml minocycline reduced the bacterial counts of the mixture by 5 log10 colony forming units (cfu). Coating the surface with 10 mg/ml taurolidine or 256 μg/ml minocycline prevented completely biofilm formation of Porphyromonas gingivalis ATCC 33277 but not of Aggregatibacter actinomycetemcomitans Y4 and the mixture. On 4.5 d old biofilms, taurolidine acted concentration dependent with a reduction by 5 log10 cfu (P. gingivalis ATCC 33277) and 7 log10 cfu (A. actinomycetemcomitans Y4) when applying 10 mg/ml. Minocycline decreased the cfu counts by 1-2 log10 cfu independent of the used concentration. The reduction of the cfu counts in the 4.5 d old multi-species biofilms was about 3 log10 cfu after application of any minocycline concentration and after using 10 mg/ml taurolidine. Taurolidine is active against species associated with periodontitis, even within biofilms. Nevertheless a complete elimination of complex biofilms by taurolidine seems to be impossible and underlines the importance of a mechanical removal of biofilms prior to application of taurolidine. Copyright © 2014 Elsevier Ltd. All rights reserved.
Moore, Harold L; Twardowski, Zbylut J
2003-10-01
Soft, cuffed indwelling catheters are used for hemodialysis access and intravenous infusions. The majority of these catheters are removed as a result of infection caused by contamination of the catheter hub during the connection/disconnection procedures. To prevent clot formation in the lumen, these catheters are routinely "locked" with heparin or some other anticoagulant. None of the anticoagulants commonly used as locking solutions demonstrates any significant bactericidal properties. The primary goal of this study was the development of a catheter locking method that retains anticoagulant properties at the catheter tip and bactericidal properties at the catheter hub. The second goal was to find a solution that possesses excellent bactericidal properties but is not detrimental in the event of injection into the patient's blood stream. The bactericidal properties of acidified, concentrated saline (ACS) were compared to concentrated trisodium citrate and to commonly used bactericidal agents such as povidone iodine, sodium hypochlorite, and chlorhexidine. In preliminary studies, the rate of diffusion of solutes was measured in glass tubes. In another set of experiments, the mixing of two solutions (anticoagulant and bactericide) separated by an air bubble ("air-bubble method") was observed in stationary and moving systems. The final series of studies compared the bactericidal properties of ACS to other bactericidal solutions mentioned above. The solutions diffused swiftly in the glass tubes, and by the third day, both solutions were mixed. The air-bubble method prevented mixing in both stationary and moving systems. The bactericidal properties of ACS were superior to all other tested solutions. The proposed method of catheter locking with anticoagulant at the catheter tip and ACS at the catheter hub separated by an air bubble is a promising technique and clinical studies are warranted.
Antagonism between Bacteriostatic and Bactericidal Antibiotics Is Prevalent
Lázár, Viktória; Papp, Balázs; Arnoldini, Markus; Abel zur Wiesch, Pia; Busa-Fekete, Róbert; Fekete, Gergely; Pál, Csaba; Ackermann, Martin; Bonhoeffer, Sebastian
2014-01-01
Combination therapy is rarely used to counter the evolution of resistance in bacterial infections. Expansion of the use of combination therapy requires knowledge of how drugs interact at inhibitory concentrations. More than 50 years ago, it was noted that, if bactericidal drugs are most potent with actively dividing cells, then the inhibition of growth induced by a bacteriostatic drug should result in an overall reduction of efficacy when the drug is used in combination with a bactericidal drug. Our goal here was to investigate this hypothesis systematically. We first constructed time-kill curves using five different antibiotics at clinically relevant concentrations, and we observed antagonism between bactericidal and bacteriostatic drugs. We extended our investigation by performing a screen of pairwise combinations of 21 different antibiotics at subinhibitory concentrations, and we found that strong antagonistic interactions were enriched significantly among combinations of bacteriostatic and bactericidal drugs. Finally, since our hypothesis relies on phenotypic effects produced by different drug classes, we recreated these experiments in a microfluidic device and performed time-lapse microscopy to directly observe and quantify the growth and division of individual cells with controlled antibiotic concentrations. While our single-cell observations supported the antagonism between bacteriostatic and bactericidal drugs, they revealed an unexpected variety of cellular responses to antagonistic drug combinations, suggesting that multiple mechanisms underlie the interactions. PMID:24867991
Souza, Ariana B; de Souza, Maria G M; Moreira, Maísa A; Moreira, Monique R; Furtado, Niege A J C; Martins, Carlos H G; Bastos, Jairo K; dos Santos, Raquel A; Heleno, Vladimir C G; Ambrosio, Sergio Ricardo; Veneziani, Rodrigo C S
2011-11-18
The antimicrobial activity of four labdane-type diterpenes isolated from the oleoresin of Copaifera langsdorffii as well as of two commercially available diterpenes (sclareol and manool) was investigated against a representative panel of microorganisms responsible for periodontitis. Among all the evaluated compounds, (-)-copalic acid (CA) was the most active, displaying a very promising MIC value (3.1 µg mL-1; 10.2 µM) against the key pathogen (Porphyromonas gingivalis) involved in this infectious disease. Moreover, CA did not exhibit cytotoxicity when tested in human fibroblasts. Time-kill curve assays performed with CA against P. gingivalis revealed that this compound only inhibited the growth of the inoculums in the first 12 h (bacteriostatic effect). However, its bactericidal effect was clearly noted thereafter (between 12 and 24 h). It was also possible to verify an additive effect when CA and chlorhexidine dihydrochloride (CHD, positive control) were associated at their MBC values. The time curve profile resulting from this combination showed that this association needed only six hours for the bactericidal effect to be noted. In summary, CA has shown to be an important metabolite for the control of periodontal diseases. Moreover, the use of standardized extracts based on copaiba oleoresin with high CA contents can be an important strategy in the development of novel oral care products.
Mohsenipour, Zeinab; Hassanshahian, Mehdi
2015-08-01
Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms.
Pseudomonas fluorescens' view of the periodic table.
Workentine, Matthew L; Harrison, Joe J; Stenroos, Pernilla U; Ceri, Howard; Turner, Raymond J
2008-01-01
Growth in a biofilm modulates microbial metal susceptibility, sometimes increasing the ability of microorganisms to withstand toxic metal species by several orders of magnitude. In this study, a high-throughput metal toxicity screen was initiated with the aim of correlating biological toxicity data in planktonic and biofilm cells to the physiochemical properties of metal ions. To this end, Pseudomonas fluorescens ATCC 13525 was grown in the Calgary Biofilm Device (CBD) and biofilms and planktonic cells of this microorganism were exposed to gradient arrays of different metal ions. These arrays included 44 different metals with representative compounds that spanned every group of the periodic table (except for the halogens and noble gases). The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) values were obtained after exposing the biofilms to metal ions for 4 h. Using these values, metal ion toxicity was correlated to the following ion-specific physicochemical parameters: standard reduction-oxidation potential, electronegativity, the solubility product of the corresponding metal-sulfide complex, the Pearson softness index, electron density and the covalent index. When the ions were grouped according to outer shell electron structure, we found that heavy metal ions gave the strongest correlations to these parameters and were more toxic on average than the other classes of the ions. Correlations were different for biofilms than for planktonic cells, indicating that chemical mechanisms of metal ion toxicity differ between the two modes of growth. We suggest that biofilms can specifically counter the toxic effects of certain physicochemical parameters, which may contribute to the increased ability of biofilms to withstand metal toxicity.
Yu, Zhihong; Qiu, Weiwen; Wang, Fei; Lei, Ming; Wang, Di; Song, Zhengguo
2017-02-01
A pot experiment was used to investigate arsenic (As) speciation and accumulation in rice, as well as its concentration in both heavily contaminated and moderately contaminated soils amended with manganese oxide-modified biochar composites (MBC) and biochar alone (BC). In heavily As-contaminated soil, application of BC and MBC improved the weight of above-ground part and rice root, whereas in moderately As-contaminated soil, the application of MBC and low rate BC amendment increased rice root, grain weight and the biomass of the plant. Arsenic reduction in different parts of rice grown in MBC-amended soils was greater than that in plants cultivated in BC-amended soils. Such reduction can be attributed to the oxidation of arsenite, As(III), to arsenate, As(V), by Mn-oxides, which also had a strong adsorptive capacity for As(V). MBC amended to As-contaminated soil had a positive effect on amino acids. The Fe and Mn levels in the iron-manganese plaque that formed on the rice root surface differed among the treatments. MBC addition significantly increased Mn content (p < 0.05); the application of 2.0% MBC increased Mn content 36- and 10-fold compared to the control in heavily and moderately As-contaminated soils, respectively. The results indicate that application of Mn oxide-modified biochar to As-contaminated paddy soil could effectively remediate contaminated soil and reduce As accumulation in edible parts of rice. Copyright © 2016 Elsevier Ltd. All rights reserved.
Requena, Pilar; Campo, Joseph J; Umbers, Alexandra J; Ome, Maria; Wangnapi, Regina; Barrios, Diana; Robinson, Leanne J; Samol, Paula; Rosanas-Urgell, Anna; Ubillos, Itziar; Mayor, Alfredo; López, Marta; de Lazzari, Elisa; Arévalo-Herrera, Myriam; Fernández-Becerra, Carmen; del Portillo, Hernando; Chitnis, Chetan E; Siba, Peter M; Bardají, Azucena; Mueller, Ivo; Rogerson, Stephen; Menéndez, Clara; Dobaño, Carlota
2014-09-15
Pregnancy triggers immunological changes aimed to tolerate the fetus, but its impact on B lymphocytes is poorly understood. In addition, exposure to the Plasmodium parasite is associated with altered distribution of peripheral memory B cell (MBC) subsets. To study the combined impact of high malaria exposure and pregnancy in B cell subpopulations, we analyzed PBMCs from pregnant and nonpregnant individuals from a malaria-nonendemic country (Spain) and from a high malaria-endemic country (Papua New Guinea). In the malaria-naive cohorts, pregnancy was associated with a significant expansion of all switched (IgD(-)) MBC and a decrease of naive B cells. Malaria-exposed women had more atypical MBC and fewer marginal zone-like MBC, and their levels correlated with both Plasmodium vivax- and Plasmodium falciparum-specific plasma IgG levels. Classical but not atypical MBC were increased in P. falciparum infections. Moreover, active atypical MBC positively correlated with proinflammatory cytokine plasma concentrations and had lower surface IgG levels than the average. Decreased plasma eotaxin (CCL11) levels were associated with pregnancy and malaria exposure and also correlated with B cell subset frequencies. Additionally, active atypical and active classical MBC expressed higher levels of eotaxin receptor CCR3 than the other B cell subsets, suggesting a chemotactic effect of eotaxin on these B cell subsets. These findings are important to understand immunity to infections like malaria that result in negative outcomes for both the mother and the newborn and may have important implications on vaccine development. Copyright © 2014 by The American Association of Immunologists, Inc.
Pb(II) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves.
Zhang, Zengsheng; Wang, Xuejiang; Wang, Yin; Xia, Siqing; Chen, Ling; Zhang, Yalei; Zhao, Jianfu
2013-05-01
Bamboo charcoal (BC) was used as starting material to prepare iron-modified bamboo charcoal (Fe-MBC) by its impregnation in FeCl3 and HNO3 solutions simultaneously, followed by microwave heating. The material can be used as an adsorbent for Pb(II) contaminants removal in water. The composites were prepared with Fe molar concentration of 0.5, 1.0 and 2.0 mol/L and characterized by means of N2 adsorption-desorption isotherms, X-ray diffraction spectroscopy (XRD), scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDS), Fourier transform infrared (FT-IR) and point of zero charge (pH(pzc)) measurements. Nitrogen adsorption analyses showed that the BET specific surface area and total pore volume increased with iron impregnation. The adsorbent with Fe molar concentration of 2 mol/L (2Fe-MBC) exhibited the highest surface area and produced the best pore structure. The Pb(II) adsorption process of 2Fe-MBC and BC were evaluated in batch experiments and 2Fe-MBC showed an excellent adsorption capability for removal Pb(II). The adsorption of Pb(II) strongly depended on solution pH, with maximum values at pH 5.0. The ionic strength had a significant effect on the adsorption at pH < 6.0. The adsorption isotherms followed the Langmuir isotherm model well, and the maximum adsorption capacity for Pb(II) was 200.38 mg/g for 2Fe-MBC. The adsorption processes were well fitted by a pseudo second-order kinetic model. Thermodynamic parameters showed that the adsorption of Pb(II) onto Fe-MBC was feasible, spontaneous, and exothermic under the studied conditions, and the ion exchange mechanism played an significant role. These results have important implications for the design of low-cost and effective adsorbents in the removal of Pb(II) from wastewater.
NASA Astrophysics Data System (ADS)
Chylewska, Agnieszka; Sikorski, Artur; Ogryzek, Małgorzata; Makowski, Mariusz
2016-02-01
Pyrazine-2-thiocarboxamide (PTCA) was obtained after recrystallization and was characterised by elemental analysis, IR spectroscopy and thermogravimetry. Five dimers of PTCA were found in X-ray diffraction studies. These results were then compared with the known structures of a popular drug, i.e. pyrazine-2-carboxamide (PZA). S⋯π and π-π interactions were observed in the PTCA crystal structure as a novelty in X-ray measurements and our attention was focused on their role in stabilizing the PCTA structure. The geometry, energy and IR spectra for two conformers (E, Z) of PTCA and five dimers (D1-D5) were calculated for the gas phase with the DFT method at 6-311 + G(d,p) basis set. The results of calculations showed that D1 is the most stable dimer among five dimers of PTCA which were found experimentally. Thermal decomposition of PTCA was examined with the use of the TG/IR analysis (20-1000 °C) and the results were discussed. To test the antimicrobial activity of PTCA a biological assay was performed to determine its potentially pharmaceutical applications. The minimum inhibitory (MIC) and minimal bactericidal (fungicidal) concentrations (MBC) for PTCA were determined against six microorganisms.
Sahiner, Nurettin; Sagbas, Selin; Sahiner, Mehtap; Ayyala, Ramesh S
2017-03-01
Poly(hyaluronic acid) (p(HA)) particles with sizes from few hundred nm to few tens of micrometer were synthesized by using epoxy groups containing crosslinker glycerol diglycidyl ether (GDE) with high yield, 94±5%. P(HA) particles were oxidized by treatment with sodium periodate and then reacted with cationic polyethyleneimine (PEI) at 1:0.5, 1:1, and 1:2 wt ratio of p(HA):PEI to obtain p(HA)-PEI particles. From zeta potential measurements, isoelectronic points of bare p(HA) particles increased to pH 8.7 from 2.7 after modification with cationic PEI. New properties, such as antibacterial property, were attained for p(HA)-PEI after modification. The highest minimum bactericidal concentration (MBC) values were 0.5, 1, and 0.5mg/mL against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis species for 1:0.5 ratio of p(HA)-PEI at 72h incubation time. Moreover, the p(HA)-PEI particles were found to be biocompatible with L929 fibroblast cells, and interestingly, p(HA)-PEI particles were found to inhibit MDA-MB-231 breast and H1299 cancer cell growth depending on amount of PEI in p(HA)-PEI particles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rokbani, Hajer; Daigle, France; Ajji, Abdellah
2018-02-25
This study investigates the antibacterial activity (ABA) of suspensions of pure ZnO nanoparticles (ZnO-NPs) and mesoporous silica doped with ZnO (ZnO-UVM7), as well as electrospun nanofibers containing those nanoparticles. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of these two materials were also determined under the same conditions. The results showed a concentration-dependent effect of antibacterial nanoparticles on the viability of Escherichia coli ( E. coli ). Moreover, the combination of the stimulations and sterilization considerably enhanced the antimicrobial activity (AMA) of the ZnO suspensions. Poly (lactic acid) (PLA) solutions in 2,2,2-trifluoroethanol (TFE) were mixed with different contents of nanoparticles and spun into nonwoven mats by the electrospinning process. The morphology of the mats was analyzed by scanning electron microscopy (SEM). The amount of nanoparticles contained in the mats was determined by thermogravimetric analysis (TGA). The obtained PLA-based mats showed a fibrous morphology, with an average diameter ranging from 350 to 450 nm, a porosity above 85%, but with the nanoparticles agglomeration on their surface. TGA analysis showed that the loss of ZnO-NPs increased with the increase of ZnO-NPs content in the PLA solutions and reached 79% for 1 wt % of ZnO-NPs, which was mainly due to the aggregation of nanoparticles in solution. The ABA of the obtained PLA mats was evaluated by the dynamic method according to the ASTM standard E2149. The results showed that, above an optimal concentration, the nanoparticle agglomeration reduced the antimicrobial efficiency of PLA mats. These mats have potential features for use as antimicrobial food packaging material.
Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis
2013-01-01
Background Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. Methods The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography–mass spectrometry. Results EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. Conclusions The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties. PMID:23356696
Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis.
da Cunha, Marcos Guilherme; Franchin, Marcelo; de Carvalho Galvão, Lívia Câmara; de Ruiz, Ana Lúcia Tasca Góis; de Carvalho, João Ernesto; Ikegaki, Masarahu; de Alencar, Severino Matias; Koo, Hyun; Rosalen, Pedro Luiz
2013-01-28
Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography-mass spectrometry. EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties.
The antimicrobial efficacy of Lippia alba essential oil and its interaction with food ingredients
Machado, Terezinha Feitosa; Nogueira, Nádia Accioly P.; de Cássia Alves Pereira, Rita; de Sousa, Cívita Teixeira; Batista, Valéria Chaves Vasconcelos
2014-01-01
The objective of this study was to evaluate the antimicrobial potential of Lippia alba essential oil (EOLa) and to investigate the effect of food ingredients on its efficacy. The antimicrobial potential of the oil was determined by the presence or absence of inhibition zones, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Escherichia coli, Listeria innocua, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella choleraesuis and Staphylococcus aureus. The effect of food ingredients and the pH on the antimicrobial efficacy of oil was assessed by monitoring the maximum growth rate of Listeria monocytogenes in model media. The model media included potato starch (0, 1, 5 or 10%), beef extract (1, 5, 3, 6 or 12%), sunflower oil (0, 5 or 10%) and TSB broth at pH levels of 4, 5, 6 or 7. The EOLa showed efficacy at all concentrations (50%, 25%, 6.25%, 3%, 1.5%, 0.8%, 0.4% and 0.2%) evaluated, against all bacterial species, Gram-positive and Gram-negative. The antimicrobial efficacy of EO was found to be a function of ingredient manipulation. Proteins and lipids had a negative impact on the oil effectiveness, indicating the protective action of both on the microbial specie tested. On the contrary, at the highest concentration of starch (10%), the lower rate growth of L. monocytogenes was detected, therefore indicating a positive effect of carbohydrates on the oil effectivenes. Regarding the pH, the studies showed that the rate of microbial growth increased with increasing pH. It was concluded that the use of EOLa is more effective control pathogenic and spoilage bacteria when applied to starchy foods under an acidic pH. PMID:25242961
Rokbani, Hajer; Ajji, Abdellah
2018-01-01
This study investigates the antibacterial activity (ABA) of suspensions of pure ZnO nanoparticles (ZnO-NPs) and mesoporous silica doped with ZnO (ZnO-UVM7), as well as electrospun nanofibers containing those nanoparticles. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of these two materials were also determined under the same conditions. The results showed a concentration-dependent effect of antibacterial nanoparticles on the viability of Escherichia coli (E. coli). Moreover, the combination of the stimulations and sterilization considerably enhanced the antimicrobial activity (AMA) of the ZnO suspensions. Poly (lactic acid) (PLA) solutions in 2,2,2-trifluoroethanol (TFE) were mixed with different contents of nanoparticles and spun into nonwoven mats by the electrospinning process. The morphology of the mats was analyzed by scanning electron microscopy (SEM). The amount of nanoparticles contained in the mats was determined by thermogravimetric analysis (TGA). The obtained PLA-based mats showed a fibrous morphology, with an average diameter ranging from 350 to 450 nm, a porosity above 85%, but with the nanoparticles agglomeration on their surface. TGA analysis showed that the loss of ZnO-NPs increased with the increase of ZnO-NPs content in the PLA solutions and reached 79% for 1 wt % of ZnO-NPs, which was mainly due to the aggregation of nanoparticles in solution. The ABA of the obtained PLA mats was evaluated by the dynamic method according to the ASTM standard E2149. The results showed that, above an optimal concentration, the nanoparticle agglomeration reduced the antimicrobial efficiency of PLA mats. These mats have potential features for use as antimicrobial food packaging material. PMID:29495334
Amores, Raquel; Alou, Luis; Giménez, María José; Sevillano, David; Gómez-Lus, María Luisa; Aguilar, Lorenzo; Prieto, José
2004-07-01
The in vitro effect that the presence of components of non-specific immunity (serum plus polymorphonuclear neutrophils) has on the bactericidal activity of co-amoxiclav was explored against Streptococcus pneumoniae strains exhibiting an amoxicillin MIC > or =4 mg/L. Eight penicillin-resistant clinical isolates non-susceptible to co-amoxiclav with MICs of 4 (two strains), 8 (four strains) and 16 mg/L (two strains) were used. Values of MBC were identical to MIC values in all cases. Time-kill curves were performed with co-amoxiclav concentrations achievable in serum after a single oral dose administration of the new 2000/125 mg sustained-release formulation. Results were expressed as percentage of reduction of initial inocula after 3 h incubation. Control curves showed growth with no reduction of initial inocula. Against strains with MIC of 4 and 8 mg/L, the results obtained with the antibiotic alone or with the presence of factors of non-specific immunity were similar, with a weak combined effect due to the intrinsic activity of co-amoxiclav (reductions of initial inocula ranging from 70 to 99.16%). Against strains with MIC of 16 mg/L, the addition of PMN in the presence of serum increased the reduction of bacterial load provided by the aminopenicillin, even at sub-inhibitory concentrations (25.8% versus 51.1% at 0.5 x MIC concentration--8/0.5 mg/L). This combined activity against strains with an amoxicillin MIC of 16 mg/L which decreased the bacterial load may be important in preventing bacterial proliferation within the host and the transmission of resistant clones to others.
Bento, Roberta A; Stamford, Tânia L M; de Campos-Takaki, Galba M; Stamford, Thayza C M; de Souza, Evandro L
2009-07-01
Listeria monocytogenes is widely distributed in nature and the infection listeriosis is recognized as a potential threat for human health because of its mortality rate. The objective of this study was to evaluate the growth profile and chitosan production by Mucor rouxxi UCP 064 grown in yam bean (Pachyrhizus erosus L. Urban) medium. It was also to assess the anti-L. monocytogenes efficacy of the obtained chitosan. Higher values of biomass of M. rouxxi (16.9 g.L(-1)) and best yield of chitosan (62 mg.g(-1)) were found after 48 h of cultivation. Residual glucose and nitrogen in the growth media were 4.1 and 0.02 g.L(-1) after 96 h, respectively. Obtained chitosan presented 85 % of degree of deacetylation and 2.60 x 10(4) g.mol(-1) of viscosimetric molecular weight. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values of chitosan against L. monocytogenes ATCC 7644 were, respectively, 2.5 and 5.0 mg.mL(-1). At 2.5 and 5.0 mg.mL(-1) chitosan caused cidal effect in a maximum time of 4 h. Bacterial count below 2 log cfu.mL(-1) were found from 2 h onwards and no recovery in bacterial growth was noted in the remainder period. These results show the biotechnological potential of yam bean medium for chitosan production by Mucor rouxxi and support the possible rational use of chitosan from fungi as natural antimicrobial to control L. monocytogenes.
Bento, Roberta A.; Stamford, Tânia L.M.; de Campos-Takaki, Galba M.; Stamford, Thayza C.M.; de Souza, Evandro L.
2009-01-01
Listeria monocytogenes is widely distributed in nature and the infection listeriosis is recognized as a potential threat for human health because of its mortality rate. The objective of this study was to evaluate the growth profile and chitosan production by Mucor rouxxi UCP 064 grown in yam bean (Pachyrhizus erosus L. Urban) medium. It was also to assess the anti-L. monocytogenes efficacy of the obtained chitosan. Higher values of biomass of M. rouxxi (16.9 g.L-1) and best yield of chitosan (62 mg.g-1) were found after 48 h of cultivation. Residual glucose and nitrogen in the growth media were 4.1 and 0.02 g.L-1 after 96 h, respectively. Obtained chitosan presented 85 % of degree of deacetylation and 2.60 x 104 g.mol-1 of viscosimetric molecular weight. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values of chitosan against L. monocytogenes ATCC 7644 were, respectively, 2.5 and 5.0 mg.mL-1. At 2.5 and 5.0 mg.mL-1 chitosan caused cidal effect in a maximum time of 4 h. Bacterial count below 2 log cfu.mL-1 were found from 2 h onwards and no recovery in bacterial growth was noted in the remainder period. These results show the biotechnological potential of yam bean medium for chitosan production by Mucor rouxxi and support the possible rational use of chitosan from fungi as natural antimicrobial to control L. monocytogenes. PMID:24031403
Ewnetu, Yalemwork; Lemma, Wossenseged; Birhane, Nega
2014-01-01
Purpose. To evaluate antimicrobial effects of mixtures of Ethiopian honeys and ginger rhizome powder extracts on Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Staphylococcus aureus (MRSA), Escherichia coli (R), and Klebsiella pneumoniae (R). Methods. Agar diffusion and broth assays were performed to determine susceptibility of these standard and resistant clinical bacteria isolates using honey-ginger powder extract mixtures. Results. Honey-ginger powder extract mixtures produced the highest mean inhibition (25.62 mm ± 2.55) compared to the use of honeys (21.63 mm ± 3.30) or ginger extracts (19.23 mm ± 3.42) individually. The ranges of inhibitions produced by honey-ginger extract mixtures on susceptible test organisms (26–30 mm) and resistant strains (range: 19–27 mm) were higher compared to 7–22 mm and 0–14 mm by standard antibiotic discs. Minimum inhibitory concentrations (MIC) of mixture of honeys-ginger extracts were 6.25% (0.625 v/mL) on the susceptible bacteria compared to 75% for resistant clinical isolates. Minimum bactericidal concentration (MBC) of honey-ginger extracts was 12.5% (0.125 g/mL) for all the test organisms. Conclusion. The result of this study showed that honey-ginger powder extract mixtures have the potential to serve as cheap source of antibacterial agents especially for the drug resistant bacteria strains. PMID:24772182
Nirmal, Nilesh Prakash; Panichayupakaranant, Pharkphoom
2014-09-01
Caesalpinia sappan L. (Leguminosae or Fabaceae) heartwood has been used as a coloring agent, with antibacterial activity in food, beverages, cosmetics, and garments. To purify brazilin from C. sappan heartwood and use it as a standard marker for the preparation and standardization of an active constituent-rich extract. Crude ethanol extracts of C. sappan heartwood (CSE) were fractionated to isolate brazilin by an anti-P. acnes assay-guided isolation. Quantitative analysis was performed by HPLC. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined by the broth microdilution method. Brazilin isolated from CSE possessed antibacterial activity against P. acnes with MIC and MBC values of 15.6 and 31.2 µg/mL, respectively. Brazilin was, therefore, used as a standard marker for standardization and preparation of a brazilin rich extract (BRE). BRE was prepared from CSE using a simple one-step purification using a macroporous resin column eluted with 35% v/v ethanol. This method increased the brazilin content in the BRE up to 39.9% w/w. The antibacterial activity of the standardized BRE against acne involved bacteria was higher than for the CSE but lower than brazilin. However, for industrial applications, a large-scale one-step preparation of BRE has more advantages than the use of pure brazilin in terms of convenience and a low-cost production process. Therefore, BRE is considered as a potential coloring agent with antibacterial activity which is used for pharmaceutical, cosmetic, and nutraceutical applications.
da SILVA, Juliana Paola Corrêa; de CASTILHO, Adriana Lígia; SARACENI, Cíntia Helena Couri; DÍAZ, Ingrit Elida Collantes; PACIÊNCIA, Mateus Luís Barradas; SUFFREDINI, Ivana Barbosa
2014-01-01
Caries is a global public health problem, whose control requires the introduction of low-cost treatments, such as strong prevention strategies, minimally invasive techniques and chemical prevention agents. Nature plays an important role as a source of new antibacterial substances that can be used in the prevention of caries, and Brazil is the richest country in terms of biodiversity. Objective In this study, the disk diffusion method (DDM) was used to screen over 2,000 Brazilian Amazon plant extracts against Streptococcus mutans. Material and Methods Seventeen active plant extracts were identified and fractionated. Extracts and their fractions, obtained by liquid-liquid partition, were tested in the DDM assay and in the microdilution broth assay (MBA) to determine their minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs). The extracts were also subjected to antioxidant analysis by thin layer chromatography. Results EB271, obtained from Casearia spruceana, showed significant activity against the bacterium in the DDM assay (20.67±0.52 mm), as did EB1129, obtained from Psychotria sp. (Rubiaceae) (15.04±2.29 mm). EB1493, obtained from Ipomoea alba, was the only extract to show strong activity against Streptococcus mutans (0.08 mg/mL
Evaluation of bactericidal effect of three antiseptics on bacteria isolated from wounds.
Kumara, D U A; Fernando, S S N; Kottahachchi, J; Dissanayake, D M B T; Athukorala, G I D D A D; Chandrasiri, N S; Damayanthi, K W N; Hemarathne, M H S L; Pathirana, A A
2015-01-01
Antiseptics are widely used in wound management to prevent or treat wound infections due to their proven wound healing properties regardless of their cytotoxicity. The objective of this study was to determine the bactericidal effects of three antiseptics on pathogens known to cause wound infections. The study was carried out at a tertiary care hospital and a university microbiology laboratory in Sri Lanka in 2013. The three acids (acetic acid, ascorbic acid and boric acid) in increasing concentration (0.5%, 0.75% and 1%) were tested against bacterial suspensions equivalent to 0.5 McFarland standard. The Bacteria isolates used were isolated from wound and standard strains of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. There were 33 (68.8%) Coliforms, 10 (20.8%) Pseudomonas species, and 5 (10.4%) strains of Staphylococcus aureus. Acetic acid at concentration of 0.5% inhibited growth of 37 (77%) and 42 (87.5%) of tested isolates when exposed for 30 and 60 minutes, respectively. However 100% inhibition was achieved at four hours. At a concentration of 0.75%, 40 (83.3%) and 44 (91.7%) were inhibited when exposed for 30 and 60 minutes, respectively, with 100% inhibition at 4 hours. At concentration of 1%, 46 (95.8%) inhibition was seen at 30 minutes and 100% inhibition at 60 minutes. Ascorbic acid, at 0.5% and 0.75 % concentrations, inhibited growth of 45(93.7%) and 47(97.9%) of isolates respectively when exposed for 30 minutes. At these two concentrations, 100% inhibition was achieved when exposed for one hour. At 1% concentration, 100% inhibition was achieved at 30 minutes. Boric acid did not show bactericidal effect at concentrations of 0.5%, 0.75 % and 1%. Pseudomonas species were inhibited at 30 minutes by 0.5% acetic acid. Bactericidal effect against all the standard strains was seen with three acids at each concentration tested from 30 minutes onwards Ascorbic acid was bactericidal for all organisms tested within the shortest exposure time at the lowest concentration compared to other two acids. Despite promising bactericidal effects, further studies warrant, as ongoing debates on toxicity of acids on tissue epithelialisation. Application of antiseptics for a shorter duration could overcome this problem without losing bactericidal activity. The authors have no conflict of interest and no funding was received for this study.
NASA Astrophysics Data System (ADS)
Song, Yanyu; Song, Changchun; Yang, Guisheng; Miao, Yuqing; Wang, Jiaoyue; Guo, Yuedong
2012-09-01
The extensive reclamation of marshland into cropland has tremendously impacted the ecological environment of the Sanjiang Plain in northeast China. To understand the impacts of marshland reclamation and restoration on soil properties, we investigated the labile organic carbon fractions and the soil enzyme activities in an undisturbed marshland, a cultivated marshland and three marshlands that had been restored for 3, 6 and 12 years. Soil samples collected from the different management systems at a depth of 0-20 cm in July 2009 were analyzed for soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) and easily degradable organic carbon. In addition, the activities of the invertase, β-glucosidase, urease and acid phosphatase were determined. These enzymes are involved in C, N and P cycling, respectively. Long-term cultivation resulted in decreased SOC, DOC, MBC, microbial quotient and C (invertase, β-glucosidase) and N-transforming (urease) enzyme activities compared with undisturbed marshland. After marshland restoration, the MBC and DOC concentrations and the soil invertase, β-glucosidase and urease activities increased. Soil DOC and MBC concentrations are probably the main factors responsible for the different invertase, β-glucosidase and urease activities. In addition, marshland restoration caused a significant increase in the microbial quotient, which reflects enhanced efficiency of organic substrate use by microbial biomass. Our observations demonstrated that soil quality recovered following marshland restoration. DOC, MBC and invertase, β-glucosidase and urease activities were sensitive for discriminating soil ecosystems under the different types of land use. Thus, these parameters should be considered to be indicators for detecting changes in soil quality and environmental impacts in marshlands.
Pharmacokinetic–Pharmacodynamic Modeling of Enrofloxacin Against Escherichia coli in Broilers
Sang, KaNa; Hao, HaiHong; Huang, LingLi; Wang, Xu; Yuan, ZongHui
2016-01-01
The purpose of the present study was to establish a pharmacokinetic/pharmacodynamic (PK/PD) modeling approach for the dosage schedule design and decreasing the emergence of drug-resistant bacteria. The minimal inhibitory concentration (MIC) of 929 Escherichia coli isolates from broilers to enrofloxacin and ciprofloxacin was determined following CLSI guidance. The MIC50 was calculated as the populational PD parameter for enrofloxacin against E. coli in broilers. The 101 E. coli strains with MIC closest to the MIC50 (0.05 μg/mL) were submitted for serotype identification. The 13 E. coli strains with O and K serotype were further utilized for determining pathogencity in mice. Of all the strains tested, the E. coli designated strain Anhui 112 was selected for establishing the disease model and PK/PD study. The PKs of enrofloxacin after oral administration at the dose of 10 mg/kg body weights (BW) in healthy and infected broilers was evaluated with high-performance liquid chromatography (HPLC) method. For intestinal contents after oral administration, the peak concentration (Cmax), the time when the maximum concentration reached (Tmax), and the area under the concentration-time curve (AUC) were 21.69–31.69 μg/mL, 1.13–1.23 h, and 228.97–444.86 μg h/mL, respectively. The MIC and minimal bactericidal concentration (MBC) of enrofloxacin against E. coli (Anhui 112) in Mueller–Hinton (MH) broth and intestinal contents were determined to be similar, 0.25 and 0.5 μg/mL respectively. In this study, the sum of concentrations of enrofloxacin and its metabolite (ciprofloxacin) was used for the PK/PD integration and modeling. The ex vivo growth inhibition data were fitted to the sigmoid Emax (Hill) equation to provide values for intestinal contents of 24 h area under concentration-time curve/MIC ratios (AUC0–24 h/MIC) producing, bacteriostasis (624.94 h), bactericidal activity (1065.93 h) and bacterial eradication (1343.81 h). PK/PD modeling was established to simulate the efficacy of enrofloxacin for different dosage regimens. By model validation, the protection rate was 83.3%, demonstrating that the dosage regimen of 11.9 mg/kg BW every 24 h during 3 days provided great therapeutic significance. In summary, the purpose of the present study was to first design a dosage regimen for the treatment E. coli in broilers by enrofloxacin using PK/PD integrate model and confirm that this dosage regimen presents less risk for emergence of floroquinolone resistance. PMID:26779495
Gao, Li; Yuan, Tao; Zhou, Chuanqi; Cheng, Peng; Bai, Qifeng; Ao, Junjie; Wang, Wenhua; Zhang, Haimou
2013-11-01
UV filters are increasingly used in sunscreens and other personal care products. Although their residues have been widely identified in aquatic environment, little is known about the influences of UV filters to protozoan. The growth inhibition effects, cell viability and oxidative stress responses of four commonly used UV filters, 2-ethylhexyl 4-methoxycinnamate (EHMC), benzophenone-3 (BP-3), 4-methyl-benzylidene camphor (4-MBC) and octocrylene (OC), to protozoan Tetrahymena thermophila were investigated in this study. The 24-h EC50 values with 95% confidence intervals for BP-3 and 4-MBC were 7.544 (6.561-8.675) mg L(-1) and 5.125 (4.874-5.388) mg L(-1), respectively. EHMC and OC did not inhibit the growth of T. thermophila after 24h exposure at the tested concentrations. The results of cell viability assays with propidium iodide (PI) staining were consistent with that of the growth inhibition tests. As for BP-3 and 4-MBC, the relatively higher concentrations, i.e. of 10.0 and 15.0 mg L(-1), could lead to the cell membranes impairment after 4h exposure. With the increase of the exposure time to 6h, their adverse effects on cell viability of T. thermophila were observed at the relatively lower concentration groups (1.0 mg L(-1) and 5.0 mg L(-1)). In addition, it is noticeable that at environmentally relevant concentration (1.0 μg L(-1)), BP-3 and 4-MBC could lead to the significant increase of catalase (CAT) activities of the T. thermophila cells. Especially for the BP-3, the oxidative injuries were further confirmed by the reduction of glutathione (GSH) content. It is imperative to further investigate the additive action of UV filters and seek other sensitive endpoint, especially at environmentally relevant concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Meng, Xiaxia; Li, Dengwu; Zhou, Dan; Wang, Dongmei; Liu, Qiaoxiao; Fan, Sufang
2016-12-24
Juniperus rigida is used as Tibetan and Mongolian medicine in China for the treatment of rheumatoid arthritis, nephritis, brucellosis and other various inflammatory diseases. To evaluate antibacterial potential of essential oils from J. rigida leaves against Klebsiella pneumoniae and to examine its possible related mechanisms. The study was undertaken in order to scientifically validate the traditional use of J. rigida. The essential oil was extracted from the leaves of J. rigida by supercritical CO 2 fluid extraction technology. Chemical composition of essential oils was analyzed by gas chromatography-mass spectrometry (GC-MS). The antibacterial activity was evaluated against 10 bacteria by the paper disc diffusion method. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of the essential oil were estimated by agar dilution method. The antibacterial mechanism was evaluated by growth curve, the integrity of cell membrane, the SDS-PAGE of protein patterns and scanning electron microscope (SEM). 61 components were identified from the essential oil. Caryophyllene (13.11%) and α-Caryophyllene (11.72%) were found to be the major components. The antibacterial activities of the essential oil were screened and compared against 10 bacteria. The essential oil showed good antibacterial activity against K. pneumoniae, with the biggest diameters of inhibition zones (DIZ) (16.00±0.25mm) and the lowest MIC and MBC values of 3.125mg/mL. The increase in proteins, 260nm absorbing materials of bacterial cells suspension indicated that the cytoplasmic membranes were broken by the essential oil. The SDS-PAGE of bacterial proteins demonstrated that the essential oil could damage bacterial cells through the destruction of cellular proteins. Scanning electron microscopy (SEM) showed that the essential oil damaged the morphology of cell wall and membrane. The essential oil of J. rigida has potential antibacterial activities against K. pneumoniae. The antibacterial mechanism is the essential oil causing the irreversible damage to the cell wall and membrane, leading to the leakage of proteins and 260nm absorbing materials (DNA and RNA). Further phytochemical and pharmacological studies are required for proper scientific validation of the folk use of this plant species. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2014-01-01
Background Snakebite is a significant public health issue in tropical countries. In Brazil, some of the most common snake envenomations are from Bothrops. Bothrops bites trigger local and systemic effects including edema, pain, erythema, cyanosis, infections, and necrosis. Vellozia flavicans is a plant from the Brazilian “cerrado” (savanna) that is popularly used as an anti-inflammatory medicine. Since inflammation develops quickly after Bothrops bites, which can lead to infection, the aim of the present study was to observe possible anti-snake venom and antimicrobial activities of V. flavicans (Vf). Methods The chromatographic profile of the main constituents from the Vf leaf hydroalcoholic extract was obtained by thin-layer chromatography (TLC). The anti-snake venom activity was measured by Vf’s ability to neutralize the in vitro neuromuscular blockade caused by Bothrops jararacussu venom (Bjssu) in a mouse phrenic nerve-diaphragm model (PND). After a 20 min incubation, preparations of PND were added to Tyrode’s solution (control); Vf (0.2, 0.5, 1, and 2 mg/mL); 40 μg/mL Bjssu; pre-incubation for 30 min with Bjssu and 1 mg/mL Vf; and a Bjssu pretreated preparation (for 10 min) followed by 1 mg/mL Vf. Myographic recording was performed, and the contractile responses were recorded. The antimicrobial activity (minimum inhibitory concentration [MIC] and minimum bactericidal concentration [MBC]) was obtained for Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis, using gentamicin and vancomycin as positive controls. Results TLC analysis yielded several compounds from Vf, such as flavonoids (quercetin) and phenolic acids (chlorogenic acid). Bjssu completely blocked the contractile responses of PND preparations, while Vf preserved 97% (±10%) of the contractile responses when incubated with Bjssu. In the PND pretreated with Bjssu, Vf was able to inhibit the neuromuscular blockade progress. MIC and MBC of Vf ranged from 2.5 to 5.0 mg/mL for P. aeruginosa and S. aureus strains, while no antimicrobial activity was observed for E. coli and E. faecalis. Conclusions The hydroalcoholic extract from Vf leaves was able to neutralize and decrease the in vitro neuromuscular blockade caused by Bjssu. However, it did not show significant antimicrobial activity against the tested bacteria. PMID:24507387
Bactericidal Effects and Mechanism of Action of Olanexidine Gluconate, a New Antiseptic
Iwata, Koushi; Nii, Takuya; Nakata, Hikaru; Tsubotani, Yoshie; Inoue, Yasuhide
2015-01-01
Olanexidine gluconate [1-(3,4-dichlorobenzyl)-5-octylbiguanide gluconate] (development code OPB-2045G) is a new monobiguanide compound with bactericidal activity. In this study, we assessed its spectrum of bactericidal activity and mechanism of action. The minimal bactericidal concentrations of the compound for 30-, 60-, and 180-s exposures were determined with the microdilution method using a neutralizer against 320 bacterial strains from culture collections and clinical isolates. Based on the results, the estimated bactericidal olanexidine concentrations with 180-s exposures were 869 μg/ml for Gram-positive cocci (155 strains), 109 μg/ml for Gram-positive bacilli (29 strains), and 434 μg/ml for Gram-negative bacteria (136 strains). Olanexidine was active against a wide range of bacteria, especially Gram-positive cocci, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and had a spectrum of bactericidal activity comparable to that of commercial antiseptics, such as chlorhexidine and povidone-iodine. In vitro experiments exploring its mechanism of action indicated that olanexidine (i) interacts with the bacterial surface molecules, such as lipopolysaccharide and lipoteichoic acid, (ii) disrupts the cell membranes of liposomes, which are artificial bacterial membrane models, (iii) enhances the membrane permeability of Escherichia coli, (iv) disrupts the membrane integrity of S. aureus, and (v) denatures proteins at relatively high concentrations (≥160 μg/ml). These results indicate that olanexidine probably binds to the cell membrane, disrupts membrane integrity, and its bacteriostatic and bactericidal effects are caused by irreversible leakage of intracellular components. At relatively high concentrations, olanexidine aggregates cells by denaturing proteins. This mechanism differs slightly from that of a similar biguanide compound, chlorhexidine. PMID:25987609
Pathak, Satya P; Gopal, K
2012-07-01
The purpose of this study is the development of a suitable process for the disinfection of drinking water by evaluating bactericidal efficacy of silver ions from silver electrodes. A prototype of a silver ioniser with silver electrodes and control unit has been fabricated. Silver ions from silver electrodes in water samples were estimated with an atomic absorption spectrophotometer. A fresh culture of Escherichia coli (1.75 × 10(3) c.f.u./ml) was exposed to 1, 2, 5, 10 and 20 ppb of silver ions in 100 ml of autoclaved tap water for 60 min. The effect of different pH and temperatures on bactericidal efficacy was observed at constant silver ion concentration (5 ppb) and contact time of 30 min. The maximum bactericidal activity (100%) was observed at 20 ppb of silver ion concentration indicating total disinfection after 20 min while minimum bactericidal activity (25%) was observed after 10 min at 01 ppb of silver ions. Likewise, 100% bactericidal activity was noticed with 2, 5 and 10 ppb of silver ions after 60, 50 and 40 min, respectively. Bactericidal activity at pH 5, 6, 7, 8 and 9 was observed at 79.9%, 79.8%, 80.5%, 100% and 100%, respectively, whereas it was 80.4%, 88.3%, 100%, 100% and 100% at 10°C, 20°C, 30°C, 40°C and 50°C, respectively. The findings of this study revealed that very low concentrations of silver ions at pH 8-9 and temperature >20°C have bactericidal efficacy for total disinfection of drinking water. Silver ionisation is suitable for water disinfection and an appropriate alternative to chlorination which forms carcinogenic disinfection by-products.
Zhou, Zhongxin; Wei, Dafu; Lu, Yanhua
2015-01-01
More information regarding the bactericidal properties of polyhexamethylene guanidine hydrochloride (PHMG) against clinically important antibiotic-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens needs to be provided for its uses in infection control. The bactericidal properties of PHMG and chlorhexidine digluconate (CHG) were compared based on their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations, and time-course-killing curves against clinically important antibiotic-susceptible and antibiotic-resistant ESKAPE pathogens. Results showed that PHMG exhibited significantly higher bactericidal activities against methicillin-resistant Staphylococcus aureus, carbapenem-resistant Klebsiella pneumoniae, and ceftazidime-resistant Enterobacter spp. than CHG. A slight bactericidal advantage over CHG was obtained against vancomycin-resistant Enterococcus faecium, ciprofloxacin- and levofloxacin-resistant Acinetobacter spp., and multidrug-resistant Pseudomonas aeruginosa. In previous reports, PHMG had higher antimicrobial activity against almost all tested Gram-negative bacteria and several Gram-positive bacteria than CHG using MIC test. These studies support the further development of covalently bound PHMG in sterile-surface materials and the incorporation of PHMG in novel disinfectant formulas. © 2014 International Union of Biochemistry and Molecular Biology, Inc.
Abedini, Amin; Roumy, Vincent; Mahieux, Séverine; Biabiany, Murielle; Standaert-Vitse, Annie; Rivière, Céline; Sahpaz, Sevser; Bailleul, François; Neut, Christel; Hennebelle, Thierry
2013-01-01
Primary biological examination of four extracts of the leaves and stems of Hyptis atrorubens Poit. (Lamiaceae), a plant species used as an antimicrobial agent in Guadeloupe, allowed us to select the hydromethanolic extract of the stems for further studies. It was tested against 46 microorganisms in vitro. It was active against 29 microorganisms. The best antibacterial activity was found against bacteria, mostly Gram-positive ones. Bioautography enabled the isolation and identification of four antibacterial compounds from this plant: rosmarinic acid, methyl rosmarinate, isoquercetin, and hyperoside. The MIC and MBC values of these compounds and their combinations were determined against eight pathogenic bacteria. The best inhibitory and bactericidal activity was found for methyl rosmarinate (0.3 mg/mL). Nevertheless, the bactericidal power of rosmarinic acid was much faster in the time kill study. Synergistic effects were found when combining the active compounds. Finally, the inhibitory effects of the compounds were evaluated on the bacterial growth phases at two different temperatures. Our study demonstrated for the first time antimicrobial activity of Hyptis atrorubens with identification of the active compounds. It supports its traditional use in French West Indies. Although its active compounds need to be further evaluated in vivo, this work emphasizes plants as potent sources of new antimicrobial agents when resistance to antibiotics increases dramatically.
Abedini, Amin; Roumy, Vincent; Mahieux, Séverine; Biabiany, Murielle; Standaert-Vitse, Annie; Rivière, Céline; Sahpaz, Sevser; Bailleul, François
2013-01-01
Primary biological examination of four extracts of the leaves and stems of Hyptis atrorubens Poit. (Lamiaceae), a plant species used as an antimicrobial agent in Guadeloupe, allowed us to select the hydromethanolic extract of the stems for further studies. It was tested against 46 microorganisms in vitro. It was active against 29 microorganisms. The best antibacterial activity was found against bacteria, mostly Gram-positive ones. Bioautography enabled the isolation and identification of four antibacterial compounds from this plant: rosmarinic acid, methyl rosmarinate, isoquercetin, and hyperoside. The MIC and MBC values of these compounds and their combinations were determined against eight pathogenic bacteria. The best inhibitory and bactericidal activity was found for methyl rosmarinate (0.3 mg/mL). Nevertheless, the bactericidal power of rosmarinic acid was much faster in the time kill study. Synergistic effects were found when combining the active compounds. Finally, the inhibitory effects of the compounds were evaluated on the bacterial growth phases at two different temperatures. Our study demonstrated for the first time antimicrobial activity of Hyptis atrorubens with identification of the active compounds. It supports its traditional use in French West Indies. Although its active compounds need to be further evaluated in vivo, this work emphasizes plants as potent sources of new antimicrobial agents when resistance to antibiotics increases dramatically. PMID:24348709
NASA Astrophysics Data System (ADS)
Kompalli, Sobhan Kumar; Suresh Babu, S.; Krishna Moorthy, K.; Nair, Vijayakumar S.; Gogoi, Mukunda M.; Chaubey, Jai Prakash
2013-01-01
Synthesizing data from several cruise experiments over the Bay of Bengal (BoB), the seasonal characterization of aerosol black carbon (BC) mass concentration was made. The study indicated that the BC mass concentration (MBC) showed significant seasonal variation over the oceanic region with MBC being the highest during the winter season (˜2407 ± 1756 ng m-3) and lowest in summer monsoon (˜765 ± 235 ng m-3). The seasonal changes in the BC mass concentration were more prominent over the northern BoB (having an annual amplitude of ˜4) compared to southern BoB (amplitude ˜ 2). Significant spatial gradients in MBC, latitudinal as well as longitudinal, existed in all the seasons. Latitudinal gradients, despite being consistently increasing northwards, were found to be sharper during winter and weakest during summer monsoon with e-fold scaling distances of ˜7.7° and ˜15.6° during winter and summer monsoon seasons respectively. Longitudinally, BC concentrations tend to increase toward east during winter and premonsoon seasons, but an opposite trend was seen in monsoon season highlighting the seasonally changing source impacts on BC loading over BoB. Examination of the results in light of possible role of transport from adjoining landmasses, using airmass back trajectory cluster analysis, also supported spatially and temporally varying source influence on oceanic region.
Mohsenipour, Zeinab; Hassanshahian, Mehdi
2015-01-01
Background: Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. Objectives: The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Materials and Methods: Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. Results: The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Conclusions: Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms. PMID:26464762
NASA Astrophysics Data System (ADS)
Bukonjić, Andriana M.; Tomović, Dušan Lj.; Nikolić, Miloš V.; Mijajlović, Marina Ž.; Jevtić, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Bogdanović, Goran A.; Radojević, Ivana D.; Maksimović, Jovana Z.; Vasić, Sava M.; Čomić, Ljiljana R.; Trifunović, Srećko R.; Radić, Gordana P.
2017-01-01
The spectroscopically predicted structure of the obtained copper(II)-complex with S-propyl derivative of thiosalicylic acid was confirmed by X-ray structural study. The binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid crystallized in two polymorphic forms with main structural difference in the orientation of phenyl rings relative to corresponding carboxylate groups. The antibacterial activity was tested determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) by using microdilution method. The influence on bacterial biofilm formation was determined by tissue culture plate method. In general, the copper(II)-complexes manifested a selective and moderate activity. The most sensitive bacteria to the effects of Cu(II)-complexes was a clinical isolate of Pseudomonas aeruginosa. For this bacteria MIC and biofilm inhibitory concentration (BIC) values for all tested complexes were in the range or better than the positive control, doxycycline. Also, for the established biofilm of clinical isolate Staphylococcus aureus, BIC values for the copper(II)-complex with S-ethyl derivative of thiosalicylic acid,[Cu2(S-et-thiosal)4(H2O)2] (C3) and copper(II)-complex with S-butyl derivative of thiosalicylic acid, [Cu2(S-bu-thiosal)4(H2O)2] (C5) were in range or better than the positive control. All the complexes acted better against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus aureus ATCC 25923) than Gram-negative bacteria (Proteus mirabilis ATCC 12453, Pseudomonas aeruginosa, and P. aeruginosa ATCC 27855). The complexes showed weak antioxidative properties tested by two methods (1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing power assay).
Oh, Byung-Taek; Jeong, Seong-Yeop; Velmurugan, Palanivel; Park, Jung-Hee; Jeong, Do-Youn
2017-11-01
The aim of this study was to investigate the fermentation of blueberry fruit with selected probiotic bacteria (Bacillus amyloliquefaciens and Lactobacillus brevis) and yeast (Starmerella bombicola) isolated from fermented starfish for the extraction of functionalized products for biomedical applications. All probiotic-based fermented extracts showed augmented antibacterial and antioxidant activity compared to the control. Biochemical parameters of viable cell count, titratable acidity, total phenol, total anthocyanin, total flavonoids, total sugar, and reducing sugar were analyzed during a 0-96 h fermentation period. In addition, Fourier transform infrared (FTIR) spectroscopy was performed to determine the functional groups in the control and fermented extracts and it signifies the presence of alcohol groups, phenol groups, carboxylic acids, and aliphatic amines, respectively. The well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays determined that the S. bombicola-mediated fermented extract has excellent activity, followed by B. amyloliquefaciens and L. brevis, at a high concentration of 1.0 g/mL fermented extract. The ABTS and DPPH showed significant scavenging activity with IC 50 values of (30.52 ± 0.08)/(155.10 ± 0.06) μg/mL, (24.82 ± 0.16)/(74.21 ± 1.26) μg/mL, and (21.81 ± 0.08)/(125.11 ± 0.04) μg/mL for B. amyloliquefaciens, L. brevis, and S. bombicola, respectively. Developing a value-added fermented blueberry product will help circumvent losses because of the highly perishable nature of the fruit. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Alizadeh Behbahani, Behrooz; Tabatabaei Yazdi, Farideh; Shahidi, Fakhri; Noorbakhsh, Hamid; Vasiee, Alireza; Alghooneh, Ali
2018-01-01
In this study, the effects of water, ethanol, methanol and glycerin at five levels (0, 31.25, 83.33, 125 and 250 ml) were investigated on the efficiency of mangrove leaf extraction using mixture optimal design. The antimicrobial effect of the extracts on Streptococcus pneumoniae, Enterococcus faecium and Klebsiella pneumoniae was evaluated using disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. The mangrove leaf extraction components were identified through gas chromatography/mass spectrometry (GC/MS). Phytochemical analysis (alkaloids, tannins, saponins, flavone and glycosides) were evaluated based on qualitative methods. Antioxidant activity of extracts was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) methods. Maximum antimicrobial effect was observed in Enterococcus faecium and highest resistance against mangrove leaf extract in Enterococcus faecium and Klebsiella pneumoniae, respectively. Increasing concentration of mangrove extracts had a significant effect (p ≤ 0.05) on inhibition zone diameter. The MICs of the mangrove leaf extraction varied from 4 mg/ml to 16 mg/ml. The optimum formulation was found to contain glycerin (0 ml), water (28.22 ml), methanol (59.83 ml) and ethanol (161.95 ml). The results showed that the highest antioxidant activity was related to optimum extract of mangrove leaf and ethanolic extract respectively. The results of phytochemical screening of Avicennia marina leaves extract showed the existence of alkaloids, tannins, saponins, flavone and glycosides. 2-Propenoic acid, 3-phenyl- was the major compound of Avicennia marina. The results of non-significant lack of fit tests, and F value (14.62) indicated that the model was sufficiently accurate. In addition, the coefficient of variations (16.8%) showed an acceptable reproducibility. Copyright © 2017 Elsevier Ltd. All rights reserved.
Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms.
Bersan, Salete M F; Galvão, Livia C C; Goes, Vivian F F; Sartoratto, Adilson; Figueira, Glyn M; Rehder, Vera L G; Alencar, Severino M; Duarte, Renata M T; Rosalen, Pedro L; Duarte, Marta C T
2014-11-18
Essential oils (EO) obtained from twenty medicinal and aromatic plants were evaluated for their antimicrobial activity against the oral pathogens Candida albicans, Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus sanguis and Streptococcus mitis. The antimicrobial activity of the EO was evaluates by microdilution method determining Minimal Inhibitory Concentration. Chemical analysis of the oils compounds was performed by Gas chromatography-mass spectrometry (CG-MS). The most active EO were also investigated as to their actions on the biolfilm formation. The most of the essential oils (EO) presented moderate to strong antimicrobial activity against the oral pathogens (MIC--Minimal Inhibitory Concentrations values between 0.007 and 1.00 mg/mL). The essential oil from Coriandrum sativum inhibited all oral species with MIC values from 0.007 to 0.250 mg/mL, and MBC/MFC (Minimal Bactericidal/Fungicidal Concentrations) from 0.015 to 0.500 mg/mL. On the other hand the essential oil of C. articulatus inhibited 63.96% of S. sanguis biofilm formation. Through Scanning Eletronic Microscopy (SEM) images no changes were observed in cell morphology, despite a decrease in biofilm formation and changes on biofilm structure. Chemical analysis by Gas Chromatography-Mass Spectrometry (GC-MS) of the C. sativum essential oil revealed major compounds derivatives from alcohols and aldehydes, while Cyperus articulatus and Aloysia gratissima (EOs) presented mono and sesquiterpenes. In conclusion, the crude oil from C. articulatus exhibited the best results of antimicrobial activity e ability to control biofilm formation. The chemical analysis showed the presence of terpenes and monoterpenes such as a-pinene, a-bulnesene and copaene. The reduction of biofilms formation was confirmed from SEM images. The results of this research shows a great potential from the plants studied as new antimicrobial sources.
Enhancement of Calibrachoa growth, secondary metabolites and bioactivity using seaweed extracts.
Elansary, Hosam O; Norrie, Jeff; Ali, Hayssam M; Salem, Mohamed Z M; Mahmoud, Eman A; Yessoufou, Kowiyou
2016-09-02
Calibrachoa x hybrida (Solanaceae) cultivars are widely used in North and South America as ornamental plants. Their potential as a source of antimicrobial compounds might be enhanced by seaweed extract (SWE) applications. SWE of Ascophyllum nodosum were applied at 5 and 7 ml/L as a soil drench or foliar spray on Calibrachoa cultivars of Superbells® 'Dreamsicle' (CHSD) and Superbells® 'Frost Fire' (CHSF). The total phenolics, tannins and antioxidants composition as well as specific flavonols in leaf extracts were determined. Further, the chemical composition of SWE was assessed. The drench and foliar SWE treatments significantly enhanced Calibrachoa cultivars leaf number and area, dry weight, plant height, antioxidant capacity as well as phenolic, flavonols and tannin content. The increased growth and composition of phenols, flavonols and tannins was attributed to the stimulatory effects of SWE mineral composition. The antifungal activity of Calibrachoa cultivars was significantly enhanced following SWE treatments and the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were in the range of 0.07-0.31 mg/ml and from 0.16 to 0.56 mg/ml, respectively. Moreover, antibacterial activity was significantly increased and the MIC and minimum bactericidal concentration (MBC) measurements were in the range of 0.06-0.23 mg/ml and from 0.10 to 0.44 mg/ml, respectively. The most sensitive fungus to SWE treatments was C. albicans and the most sensitive bacterium was E. cloacae. The results suggest that enhanced antifungal and antibacterial activities might be attributed to significant increases of phenolic, flavonols and tannin contents, which ultimately enhance the potential of Calibrachoa as a natural source of alternative antibiotics.
Identification of an iridium(III) complex with anti-bacterial and anti-cancer activity
Lu, Lihua; Liu, Li-Juan; Chao, Wei-chieh; Zhong, Hai-Jing; Wang, Modi; Chen, Xiu-Ping; Lu, Jin-Jian; Li, Ruei-nian; Ma, Dik-Lung; Leung, Chung-Hang
2015-01-01
Group 9 transition metal complexes have been widely explored as therapeutic agents due to their unique geometry, their propensity to undergo ligand exchanges with biomolecules and their diverse steric and electronic properties. These metal complexes can offer distinct modes of action in living organisms compared to carbon-based molecules. In this study, we investigated the antimicrobial and anti-proliferative abilities of a series of cyclometallated iridium(III) complexes. The iridium(III) complex 1 inhibited the growth of S. aureus with MIC and MBC values of 3.60 and 7.19 μM, respectively, indicating its potent bactericidal activity. Moreover, complex 1 also exhibited cytotoxicity against a number of cancer cell lines, with particular potency against ovarian, cervical and melanoma cells. This cyclometallated iridium(III) complex is the first example of a substitutionally-inert, Group 9 organometallic compound utilized as a direct and selective inhibitor of S. aureus. PMID:26416333
Antibacterial activity of Citrus limonum fruit juice extract.
Okeke, Malachy Ifeanyi; Okoli, Arinze Stanley; Eze, Edith Nneka; Ekwume, Grace Chinwe; Okosa, Evangelin Uchena; Iroegbu, Christian Ukwuoma
2015-09-01
The fruit juice extract of Citrus limonum was investigated for antibacterial activity. The antibacterial activity of the extract on ten strains of bacteria was determined by both agar well diffusion and macro-broth dilution methods. The extract was variously bacteriostatic and bactericidal against Bacillussubtilis ATCC 6051, Staphylococcus aureus ATCC 12600, Escherichia coli ATCC 11775, Pseudomonas aeruginosa ATCC 10145 as well as locally isolated clinical strains of the above bacteria and Salmonella kintambo (Human: 13, 23: mt:-), Salmonella typhi and Proteus sp. The MICs ranged from 0.78 mg/ml to 50mg/ml; MBCs, 25.0mg/ml to >100mg/ml and MBC/MIC ratios 2.0 to >16.0. These results provide scientific justification for the medicinal use of Citrus limonum fruit juice by Nigerian herbalists in the treatment of diseases in which strains of the test organisms have been implicated as etiologic agents.
Bactericidal Activity and Postantibiotic Effect of Levofloxacin against Anaerobes
Pendland, Susan L.; Diaz-Linares, Mariela; Garey, Kevin W.; Woodward, Jennifer G.; Ryu, Seonyoung; Danziger, Larry H.
1999-01-01
The bactericidal activity and postantibiotic effect (PAE) of levofloxacin against nine anaerobes were determined. Levofloxacin at concentrations of the MIC and twice the MIC was bactericidal at 24 h to five of nine and nine of nine strains, respectively. The PAE of levofloxacin following a 2-h exposure ranged from 0.06 to 2.88 h. PMID:10508042
Roohi, Mahnaz; Riaz, Muhammad; Arif, Muhammad Saleem; Shahzad, Sher Muhammad; Yasmeen, Tahira; Riaz, Muhammad Atif; Tahir, Shermeen; Mahmood, Khalid
2016-12-01
Wastewater is an alternative, valuable and cost effective resource for irrigation in water-scarce arid and sami-arid regions of the world including Pakistan. Soils near urban centers are cultivated for vegetable and cash crops using untreated wastewater. Current study was performed with objectives of assessing impacts of untreated textile wastewater on some soil chemical, biological and enzymatic activities. The microcosm incubation study used a clay loam soil that received 0 (distilled-water), 25, 50 and 100% wastewater concentrations and incubated for 30 and 60 days under optimum temperature and moisture conditions. Soil respiration was measured periodically throughout the experiment over 60 days. After the incubation periods of 30- and 60-d, soils were destructively analyzed for pH, electrical conductivity (EC), water extractable organic matter (WEOM), microbial biomass carbon (MBC), microbial metabolic quotient (qCO 2 ) and dehydrogenase enzymatic activity. Results revealed that wastewater and incubation time significantly altered chemical, biological and enzymatic properties of soils. The observed large surge in soil respiration, at initial stage, was stimulated by dissolved organic matter in wastewater. Dehydrogenase activity increased significantly with increasing wastewater concentrations. Increase in qCO 2 with wastewater concentration and incubation time suggested more stress to microorganisms but also enhanced microbial activity under stress to synthesize biomass. We found significant positive (R 2 = 0.64, p < 0.001) relationship between soil respiration and MBC, however, correlation between WEOM and MBC was significant negative (R 2 = 0.18, p < 0.01) indicating a dynamic mismatch between carbon substrate, soil respiration and buildup of MBC pool. Wastewater concentration and incubation time interaction had significant (p < 0.01) effect on WEOM suggesting that WEOM accumulated over time and comparatively less utilized by microorganisms. Short- and long-term effects of untreated wastewater on soil physico-chemical and biological health should be assessed before its use for crop production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of Bromide-Hypochlorite Bactericides on Microorganisms1
Shere, Lewis; Kelley, Maurice J.; Richardson, J. Harold
1962-01-01
A new principle in compounding stable, granular bactericidal products led to unique combinations of a water-soluble inorganic bromide salt with a hypochlorite-type disinfectant of either inorganic or organic type. Microbiological results are shown for an inorganic bactericide composed of chlorinated trisodium phosphate containing 3.1% “available chlorine” and 2% potassium bromide, and for an organic bactericide formulated from sodium dichloroisocyanurate so as to contain 13.4% “available chlorine” and 8% potassium bromide. Comparison of these products with their nonbromide counterparts are reported for Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Streptococcus lactis, Aerobacter aerogenes, and Proteus vulgaris. Test methods employed were the Chambers test, the A.O.A.C. Germicidal and Detergent Sanitizer-Official test, and the Available Chlorine Germicidal Equivalent Concentration test. The minimal killing concentrations for the bromide-hypochlorite bactericides against this variety of organisms were reduced by a factor 2 to 24 times those required for similar hypochlorite-type disinfectants not containing the bromide. PMID:13977149
Martins, Mariana Leonel; Leite, Karla Lorene de França; Pacheco-Filho, Edivaldo Ferreira; Pereira, Adriana Farah de Miranda; Romanos, Maria Teresa Villela; Maia, Lucianne Cople; Fonseca-Gonçalves, Andréa; Padilha, Wilton Wilney Nascimento; Cavalcanti, Yuri Wanderley
2018-05-23
The efficacy of a red propolis hydro-alcoholic extract (RP) in controlling Streptococcus mutans biofilm colonization was evaluated. The effect of RP on dental demineralization was also investigated. Chemical composition was determined by High Performance Liquid Chromatography (HPLC). Minimum Inhibitory and Bactericidal Concentration (MIC and MBC, respectively) were investigated against Streptococcus mutans (ATCC 25175). The cytotoxic potential of 3% RP in oral fibroblasts was observed after 1 and 3 min. Bovine dental enamel blocks (N = 24) were used for S. mutans biofilm formation (48 h), simulating 'feast or famine' episodes. Blocks/biofilms were exposed 2×/day, for 3 days, to a cariogenic challenge with sucrose 10% (5 min) and treated (1 min) with: 0.85% saline solution (negative control), 0.12% Chlorhexidine (CHX, positive control for biofilm colonization), 0.05% Sodium Fluoride (NaF, positive control to avoid demineralization) and 3% RP. Biofilms were assessed for viability (CFU/mL), and to observe the concentration of soluble and insoluble extracellular polysaccharides (SEPS and IEPS). Dental demineralization was assessed by the percentage of surface hardness loss (%SHL) and through polarized light microscopy (PLM). The RP presented 4.0 pH and ºBrix = 4.8. The p-coumaric acid (17.2 μg/mL) and luteolin (15.23 μg/mL) were the largest contents of phenolic acids and flavonoids, respectively. MIC and MBC of RP were 293 μg/mL and 1172 μg/mL, respectively. The 3% RP showed 43% of viably cells after 1 min. Lower number (p < 0.05) of viable bacteria (CFU/mL) was observed after CHX (1.8 × 10 5 ) followed by RP (1.8 × 10 7 ) treatments. The lowest concentration (μg/CFU) of SEPS (12.6) and IEPS (25.9) was observed in CHX (p < 0.05) followed by RP (17.1 and 54.3), and both differed from the negative control (34.4 and 63.9) (p < 0.05). Considering the %SHL, all groups differed statistically (p < 0.05) from the negative control (46.6%); but NaF (13.9%), CHX (20.1%) and RP (20.7%) did not differ among them (p > 0.05). After all treatments, suggestive areas of caries lesions were observed by PLM, which were lower for CHX and NaF. The 3% RP reduced S. mutans colonization, decreased concentration of extracellular polysaccharides and reduced dental enamel demineralization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Soleimanpour, Saman; Sedighinia, Fereshteh Sadat; Safipour Afshar, Akbar; Zarif, Reza; Ghazvini, Kiarash
2015-01-01
Objective: In this study, antimicrobial activities of an ethanol extract of Tribulus terrestris aloneand in combination with Capsella bursa-pastoris and Glycyrrhiza glabra were examined in vitro against six pathogens namely Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, Enterococcus faecalis Staphylococcus aureus, and Escherichia coli. Materials and methods: Antibacterial activities of the extracts were examined using disc and well diffusion methods and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ethanol extracts were determined against these microorganisms using agar and broth dilution methods. Chlorhexidine was used as positive control. Results: Tribulus terrestris extract exhibited good antibacterial activity against all bacteria. Antibacterial activity of mixed extract was evaluated and exhibited that mixed extract was more effective against all bacteria than any of the cases alone which indicates the synergistic effect between these three extracts (p˂0.05). No strain showed resistance against these extracts. In agar dilution, Tribulus terrestris exhibited MIC values ranging from 35.0 to 20.0 mg/ml and mixed extract showed MIC values ranging from 12.5 to 5.0 mg/ml. The results of broth dilution method were consistent with the findings of the agar dilution method. Conclusion: This in-vitro study was a preliminary evaluation of antibacterial activity of the plants. It provided scientific evidence to support uses of T. terrestris and its mixture with C. bursa-pastoris and G. glabra for the treatment of oral infections. In-vivo studies are also required to better evaluate the effect of these extracts. PMID:26101754
Soleimanpour, Saman; Sedighinia, Fereshteh Sadat; Safipour Afshar, Akbar; Zarif, Reza; Ghazvini, Kiarash
2015-01-01
In this study, antimicrobial activities of an ethanol extract of Tribulus terrestris aloneand in combination with Capsella bursa-pastoris and Glycyrrhiza glabra were examined in vitro against six pathogens namely Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, Enterococcus faecalis Staphylococcus aureus, and Escherichia coli. Antibacterial activities of the extracts were examined using disc and well diffusion methods and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ethanol extracts were determined against these microorganisms using agar and broth dilution methods. Chlorhexidine was used as positive control. Tribulus terrestris extract exhibited good antibacterial activity against all bacteria. Antibacterial activity of mixed extract was evaluated and exhibited that mixed extract was more effective against all bacteria than any of the cases alone which indicates the synergistic effect between these three extracts (p˂0.05). No strain showed resistance against these extracts. In agar dilution, Tribulus terrestris exhibited MIC values ranging from 35.0 to 20.0 mg/ml and mixed extract showed MIC values ranging from 12.5 to 5.0 mg/ml. The results of broth dilution method were consistent with the findings of the agar dilution method. This in-vitro study was a preliminary evaluation of antibacterial activity of the plants. It provided scientific evidence to support uses of T. terrestris and its mixture with C. bursa-pastoris and G. glabra for the treatment of oral infections. In-vivo studies are also required to better evaluate the effect of these extracts.
2013-01-01
Background Many edible plants are used in Cameroon since ancient time to control microbial infections. This study was designed at evaluating the antibacterial activities of the methanol extracts of ten Cameroonian vegetables against a panel of twenty nine Gram negative bacteria including multi-drug resistant (MDR) strains. Methods The broth microdilution method was used to determine the Minimal Inhibitory Concentrations (MIC) and the Minimal Bactericidal Concentrations (MBC) of the studied extracts. When chloramphenicol was used as a reference antibiotic, the MICs were also determined in the presence of Phenylalanine-Arginine β-Naphtylamide (PAβN), an efflux pumps inhibitor (EPI). The phytochemical screening of the extracts was performed using standard methods. Results All tested extracts exhibited antibacterial activities, with the MIC values varying from 128 to 1024 mg/L. The studied extracts showed large spectra of action, those from L. sativa, S. edule, C. pepo and S. nigrum being active on all the 29 bacterial strains tested meanwhile those from Amaranthus hybridus, Vernonia hymenolepsis, Lactuca.carpensis and Manihot esculenta were active on 96.55% of the strains used. The plant extracts were assessed for the presence of large classes of secondary metabolites: alkaloids, anthocyanins, anthraquinones, flavonoids, phenols, saponins, steroids, tannins and triterpenes. Each studied plant extract was found to contain compounds belonging to at least two of the above mentioned classes. Conclusion These results confirm the traditional claims and provide promising baseline information for the potential use of the tested vegetables in the fight against bacterial infections involving MDR phenotypes. PMID:23368430
Alotaibi, Sulaiman M I; Ayibiekea, Alafate; Pedersen, Annemette Frøling; Jakobsen, Lotte; Pinholt, Mette; Gumpert, Heidi; Hammerum, Anette M; Westh, Henrik; Ingmer, Hanne
2017-12-01
In Danish hospitals, the number of infections caused by vancomycin-resistant Enterococcus faecium (VRE faecium) has dramatically increased in recent years. Hospital disinfectants are essential in eliminating pathogenic microorganisms, and reduced susceptibility may contribute to hospital-associated infections. We have addressed whether clinical VRE faecium display decreased biocide susceptibility when compared to vancomycin-sensitive Enterococcus faecium (VSE faecium) isolates. In total 12 VSE faecium and 37 VRE faecium isolates obtained from Danish hospitals over an extended time period were tested for susceptibility towards three commonly applied biocides, namely benzalkonium chloride, chlorhexidine and hydrogen peroxide. For benzalkonium chloride, 89 % of VRE faecium strains had a minimal inhibitory concentration (MIC) of 8 mg l -1 , whereas for VSE faecium, only 25 % of the strains had an MIC of 8 mg l -1 . For chlorhexidine, the MIC of 95 % of VRE faecium strains was 4 mg l -1 or higher, while only 33 % of VSE faecium strains displayed MIC values at the same level. In contrast, both VRE and VSE faecium displayed equal susceptibility to hydrogen peroxide, but a higher minimal bactericidal concentration (MBC) was found for the former. The efflux activity was also assessed, and this was generally higher for the VRE faecium strains compared to VSE faecium. VRE faecium from Danish hospitals demonstrated decreased susceptibility towards benzalkonium chloride and chlorhexidine compared to VSE faecium, where the use of chlorhexidine is particularly heavy in the hospital environment. These findings suggest that biocide tolerance may characterize VRE faecium isolated in Danish hospitals.
Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle
Mohseni, Simin; Aghayan, Mahdi; Ghorani-Azam, Adel; Behdani, Mohammad; Asoodeh, Ahmad
2014-01-01
So far, the antibacterial activity of some organic and inorganic compounds has been studied. Barium zirconate titanate [Ba(ZrxTi1-x)O3] (x = 0.05) nanoparticle is an example of inorganic materials. In vitro studies have provided evidence for the antibacterial activity of this nanoparticle. In the current study, the nano-powder was synthesized by sol-gel method. X-ray diffraction showed that the powder was single-phase and had a perovskite structure at the calcination temperature of 1000 °C. Antibacterial activity of the desired nanoparticle was assessed on two gram-positive (Staphylococcus aureus PTCC1431 and Micrococcus luteus PTCC1625) and two gram-negative (Escherichia coli HP101BA 7601c and clinically isolated Klebsiella pneumoniae) bacteria according to Radial Diffusion Assay (RDA). The results showed that the antibacterial activity of BZT nano-powder on both gram-positive and gram-negative bacteria was acceptable. The minimum inhibitory concentration of this nano-powder was determined. The results showed that MIC values for E. coli, K. pneumoniae, M. luteus and S. aureus were about 2.3 μg/mL, 7.3 μg/mL, 3 μg/mL and 12 μg/mL, respectively. Minimum bactericidal concentration (MBC) was also evaluated and showed that the growth of E. coli, K. pneumoniae, M. luteus and S. aureus could be decreased at 2.3, 14, 3 and 18 μg/mL of BZT. Average log reduction in viable bacteria count in time-kill assay ranged between 6 Log10 cfu/mL to zero after 24 h of incubation with BZT nanoparticle. PMID:25763046
Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts.
Beesoo, Rima; Bhagooli, Ranjeet; Neergheen-Bhujun, Vidushi S; Li, Wen-Wu; Kagansky, Alexander; Bahorun, Theeshan
2017-06-01
Increasing prevalence of antibiotic resistance has led research to focus on discovering new antimicrobial agents derived from the marine biome. Although ample studies have investigated sponges for their bioactive metabolites with promising prospects in drug discovery, the potentiating effects of sponge extracts on antibiotics still remains to be expounded. The present study aimed to investigate the antibacterial capacity of seven tropical sponges collected from Mauritian waters and their modulatory effect in association with three conventional antibiotics namely chloramphenicol, ampicillin and tetracycline. Disc diffusion assay was used to determine the inhibition zone diameter (IZD) of the sponge total crude extracts (CE), hexane (HF), ethyl acetate (EAF) and aqueous (AF) fractions against nine standard bacterial isolates whereas broth microdilution method was used to determine their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and antibiotic potentiating activity of the most active sponge extract. MIC values of the sponge extracts ranged from 0.039 to 1.25mg/mL. Extracts from Neopetrosia exigua rich in beta-sitosterol and cholesterol displayed the widest activity spectrum against the 9 tested bacterial isolates whilst the best antibacterial profile was observed by its EAF particularly against Staphylococcus aureus and Bacillus cereus with MIC and MBC values of 0.039mg/mL and 0.078mg/mL, respectively. The greatest antibiotic potentiating effect was obtained with the EAF of N. exigua (MIC/2) and ampicillin combination against S. aureus. These findings suggest that the antibacterial properties of the tested marine sponge extracts may provide an alternative and complementary strategy to manage bacterial infections. Copyright © 2017 Elsevier Inc. All rights reserved.
Antimicrobial and seasonal evaluation of the carvacrol-chemotype oil from Lippia origanoides kunth.
Sarrazin, Sandra Layse F; da Silva, Leomara Andrade; de Assunção, Ana Paula F; Oliveira, Ricardo B; Calao, Victor Y P; da Silva, Rodrigo; Stashenko, Elena E; Maia, José Guilherme S; Mourão, Rosa Helena V
2015-01-23
This study evaluated the influence of seasonal variation on the yield and composition of essential oil of Lippia origanoides occurring in the Middle Rio Amazonas, Brazil, and the impact on its antimicrobial potential. The average oil yield was 1.7% ± 0.2% in the rainy season and 1.6% ± 0.3% in the dry season. Some correlations with climatic parameters were observed. The major components were carvacrol (rainy, 43.5% ± 1.9%; dry, 41.4% ± 2.04%), thymol (rainy, 10.7% ± 1.1%; dry, 10.6% ± 0.9%), p-cymene (rainy, 9.8% ± 0.7%; dry, 10.0% ± 1.4%) and p-methoxythymol (rainy, 9.6% ± 0.8%; dry, 10.4% ± 1.4%). It was found that the antibacterial activity of L. origanoides against Staphylococcus aureus and Escherichia coli was little influenced by the changes in oil composition due to seasonal variation. Against S. aureus, the oil Minimum Inhibitory Concentration (MIC) value was 1.25 μL/mL over ten months. Against E. coli, the oil MIC values ranged from 0.15 μL/mL to 0.31 μL/mL in different months of the year. The Minimum Bactericidal Concentration (MBC) value was 2.5 μL/mL against S. aureus and 1.25 μL/mL against E. coli. The results suggest that the antimicrobial activity identified in the oil remain unchanged for the full year, allowing its medicinal use without any risk of loss or absence of the active principles of the plant.
Presence of antiseptic resistance genes in porcine methicillin-resistant Staphylococcus aureus.
Wong, T Z; Zhang, M; O'Donoghue, M; Boost, M
2013-03-23
Numerous studies have documented the presence of methicillin-resistant Staphylococcus aureus (MRSA) in meat-producing animals, which has led to concern about its spread into the community. Disinfectants play an important role in reduction of contamination in both animal husbandry and food-preparation, helping control spread of organisms from foodstuffs, including raw meat. Plasmid-borne antiseptic resistance (AR) genes increasing tolerance to several disinfectants have been reported in S. aureus of human origin (qacA/B and smr) and from bovine, equine, and caprine staphylococcal isolates (qacG, qacH, and qacJ). This study investigated the presence of AR genes in porcine MRSA isolates. Plasmid DNA from 100 MRSA ST9 strains isolated from pig carcasses was amplified for the presence of AR genes. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) to benzalkonium chloride (BC) and chlorhexidine gluconate (CHX) were determined in AR gene-positive isolates. qacG was present in 45 strains, eight of which also harbored smr. No strains carried qacA/B, qacH or qacJ. Presence of smr increased MICs to both BC and CHX and MBCs of CHX, but qacG presence only resulted in elevated MBC for CHX. This is the first report of AR genes from a porcine source. AR gene positivity has previously been associated with methicillin resistance and AR gene presence in these strains may increase their ability to persist in the environment. Improved implementation of hygiene measures during transportation and pre- and post-slaughter should be considered to prevent spread in the community. Copyright © 2012 Elsevier B.V. All rights reserved.
Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide Releasing Silica Nanoparticles
Carpenter, Alexis W.; Slomberg, Danielle L.; Rao, Kavitha S.; Schoenfisch, Mark H.
2011-01-01
A reverse microemulsion synthesis was used to prepare amine functionalized silica nanoparticles of three distinct sizes (i.e., 50, 100, and 200 nm) with identical amine concentrations. The resulting hybrid nanoparticles, consisting of N-(6 aminohexyl) aminopropyltrimethoxysilane and tetraethoxysilane, were highly monodisperse in size. N-diazeniumdiolate nitric oxide (NO) donors were subsequently formed on secondary amines while controlling reaction conditions to keep the total amount of nitric oxide (NO) released constant for each particle size. The bactericidal efficacy of the NO releasing nanoparticles against Pseudomonas aeruginosa increased with decreasing particle size. Additionally, smaller diameter nanoparticles were found to associate with the bacteria at a faster rate and to a greater extent than larger particles. Neither control (non-NO-releasing) nor NO releasing particles exhibited toxicity towards L929 mouse fibroblasts at concentrations above their respective minimum bactericidal concentrations. This study represents the first investigation of the bactericidal efficacy of NO-releasing silica nanoparticles as a function of particle size. PMID:21842899
Kiura, Hiromasa; Sano, Kouichi; Morimatsu, Shinichi; Nakano, Takashi; Morita, Chizuko; Yamaguchi, Masaki; Maeda, Toyoyuki; Katsuoka, Yoji
2002-05-01
Electrolyzed strong acid water (ESW) containing free chlorine at various concentrations is becoming to be available in clinical settings as a disinfectant. ESW is prepared by electrolysis of a NaCl solution, and has a corrosive activity against medical instruments. Although lower concentrations of NaCl and free chlorine are desired to eliminate corrosion, the germicidal effect of ESW with low NaCl and free-chlorine concentrations (ESW-L) has not been fully clarified. In this study, we demonstrated that ESW-L possesses bactericidal activity against Mycobacteria and spores of Bacillus subtilis. The effect was slightly weaker than that of ESW containing higher NaCl and free-chlorine concentrations (ESW-H), but acceptable as a disinfectant. To clarify the mechanism of the bactericidal activity, we investigated ESW-L-treated Pseudomonas aeruginosa by transmission electron microscopy, a bacterial enzyme assay and restriction fragment length polymorphism pattern (RFLP) assay. Since the bacterium, whose growth was completely inhibited by ESW-L, revealed the inactivation of cytoplasmic enzyme, blebs and breaks in its outer membrane and remained complete RFLP of DNA, damage of the outer membrane and inactivation of cytoplasmic enzyme are the important determinants of the bactericidal activity.
Unusual effects of penicillin G and chloramphenicol on the growth of Moraxella osloensis.
DeLeys, R J; Juni, E
1977-11-01
Growth of exponential-phase liquid cultures of Moraxella osloensis was inhibited by 0.5 U of penicillin G per ml. For this organism, low concentrations of penicillin acted primarily in a bacteriostatic rather than in a bactericidal manner. At higher concentrations of penicillin some killing did take place, but the rate of killing was rather slow and appeared to be independent of penicillin concentration. Microscopic observation of cells from penicillin-treated cultures showed little or no cellular swelling or lysis. The total cell count did not decrease significantly during 6 h of incubation in 5,000 U of penicillin per ml. The rates of respiration, nucleic acid synthesis, and protein synthesis were not affected by the presence of penicillin. Attempts to counteract the bactericidal action of high concentrations of penicillin with growth inhibitory concentrations of chloramphenicol were unsuccessful, since chloramphenicol itself was more bactericidal than penicillin for M. osloensis.
Unusual Effects of Penicillin G and Chloramphenicol on the Growth of Moraxella osloensis
DeLeys, Robert J.; Juni, Elliot
1977-01-01
Growth of exponential-phase liquid cultures of Moraxella osloensis was inhibited by 0.5 U of penicillin G per ml. For this organism, low concentrations of penicillin acted primarily in a bacteriostatic rather than in a bactericidal manner. At higher concentrations of penicillin some killing did take place, but the rate of killing was rather slow and appeared to be independent of penicillin concentration. Microscopic observation of cells from penicillin-treated cultures showed little or no cellular swelling or lysis. The total cell count did not decrease significantly during 6 h of incubation in 5,000 U of penicillin per ml. The rates of respiration, nucleic acid synthesis, and protein synthesis were not affected by the presence of penicillin. Attempts to counteract the bactericidal action of high concentrations of penicillin with growth inhibitory concentrations of chloramphenicol were unsuccessful, since chloramphenicol itself was more bactericidal than penicillin for M. osloensis. PMID:335964
Reiter, Jana; Levina, Natalja; van der Linden, Mark; Gruhlke, Martin; Martin, Christian; Slusarenko, Alan J
2017-10-12
Garlic ( Allium sativum ) has potent antimicrobial activity due to allicin (diallylthiosulfinate) synthesized by enzyme catalysis in damaged garlic tissues. Allicin gives crushed garlic its characteristic odor and its volatility makes it potentially useful for combating lung infections. Allicin was synthesized (>98% pure) by oxidation of diallyl disulfide by H₂O₂ using formic acid as a catalyst and the growth inhibitory effect of allicin vapor and allicin in solution to clinical isolates of lung pathogenic bacteria from the genera Pseudomonas , Streptococcus , and Staphylococcus , including multi-drug resistant (MDR) strains, was demonstrated. Minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) were determined and compared to clinical antibiotics using standard European Committee on Antimicrobial Susceptibility Testing (EUCAST) procedures. The cytotoxicity of allicin to human lung and colon epithelial and murine fibroblast cells was tested in vitro and shown to be ameliorated by glutathione (GSH). Similarly, the sensitivity of rat precision-cut lung slices (PCLS) to allicin was decreased by raising the [GSH] to the approximate blood plasma level of 1 mM. Because allicin inhibited bacterial growth as a vapor, it could be used to combat bacterial lung infections via direct inhalation. Since there are no volatile antibiotics available to treat pulmonary infections, allicin, particularly at sublethal doses in combination with oral antibiotics, could make a valuable addition to currently available treatments.
Roy, Ranita; Tiwari, Monalisa; Donelli, Gianfranco; Tiwari, Vishvanath
2018-01-01
ABSTRACT Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby investigating its effective delivery in the host. It should also be ensured that minimum effective concentration of these molecules must be capable of eradicating biofilm infections with maximum potency without posing any adverse side effects on the host. PMID:28362216
KINETICS OF THE ACTION OF AMPICILLIN ON ESCHERICHIA COLI
Seligman, Stephen J.; Hewitt, William L.
1963-01-01
Seligman, Stephen J. (University of California, Los Angeles) and William L. Hewitt. Kinetics of the action of ampicillin on Escherichia coli. J. Bacteriol. 85:1160–1164. 1963.—The curve of the number of viable Escherichia coli after exposure to ampicillin can be divided into three phases: a lag phase, a rapid bactericidal phase, and a slow bactericidal phase. Some of the variables affecting the magnitude of the first two of these phases were investigated. Progressive lowering of drug concentration resulted in prolongation of the lag phase and decrease in slope and extent of the rapid bactericidal phase. The production of elongated gram-negative forms and the emergence of a mutant with increased penicillinase activity complicated interpretation of the lower dose curves. With sufficient drug concentration, the length of the lag phase and the slope of the rapid bactericidal curve were independent of the size of inoculum up to 108 organisms. Varying pH revealed that maximal activity, as measured by the shortest lag phase and steepest slope of the rapid bactericidal phase, was present at slightly acid pH levels. Increasing pH resulted principally in prolongation of lag phase. With greater acidity, decrease in slope of the rapid bactericidal phase was more prominent. Cultures studied under conditions of lessened metabolic activity exhibited prolonged lag phase and decreased slope and extent of rapid bactericidal phase. PMID:14044010
Gardner, Susan E.; Anderson, Donald C.; Webb, Bette J.; Stitzel, Ann E.; Edwards, Morven S.; Spitzer, Roger E.; Baker, Carol J.
1982-01-01
The relative roles of serum factors required for opsonization of type XIV Streptococcus pneumoniae were investigated by means of luminol-enhanced chemiluminescence (CL), bactericidal, and immunofluorescence assays employing adult sera containing high (>1,000 ng of antibody nitrogen per ml) or low (<200 ng of antibody nitrogen per ml) antibody concentrations as determined by radioimmunoassay. Specific antibody concentration correlated directly with both total and heat-labile CL activity (P < 0.005) and with the bactericidal index (P < 0.05) at a serum concentration of 10%. The importance of specific antibody as an opsonin was confirmed by the abolition of CL activity and immunoglobulin immunofluorescence observed after absorption of heated sera with type XIV pneumococcal cells and by the dose response in CL and bactericidal activity observed with the addition of immunoglobulin G to hypogammaglobulinemic serum. A role for the classical complement pathway in opsonization was indicated by significantly greater CL integrals for high-antibody sera than for low-antibody sera depleted of factor D and by the bactericidal activity noted for untreated, but not magnesium ethylene glycol-bis(β-aminoethyl ether)-N,N-tetraacetic acid-chelated low-antibody sera. The alternative pathway contributed more than half of the CL activity of both high- and low-antibody sera. However, after magnesium ethylene glycol-bis(β-aminoethyl ether)-N,N-tetraacetic acid chelation, only sera with high antibody concentrations or agammaglobulinemic serum reconstituted with immunoglobulin G with high specific antibody levels supported significant bactericidal activity. Therefore, type-specific antibody and complement promote opsonization of type XIV S. pneumoniae, and this may occur via either complement pathway. These results suggest that CL is a suitable tool to delineate serum factors and their contribution to opsonization, but results must be related to other functional assays. PMID:6802760
Tadić, Vanja; Oliva, Alessandra; Božović, Mijat; Cipolla, Alessia; De Angelis, Massimiliano; Vullo, Vincenzo; Garzoli, Stefania; Ragno, Rino
2017-08-23
A comprehensive study on essential oil and different solvent extracts of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood (Lamiaceae) from Montenegro is reported. The gas chromatography-mass spectrometry analysis of the essential oil revealed a total of 43 components with bicyclogermacrene (23.8%), germacrene D (8%), ( E )-caryophyllene (7.9%) and spathulenol (5.5%) as the major ones. Sesquiterpenoid group was found to be the most dominant one (64.8%), with 19.9% of the oxygenated forms. In the crude methanol extract of the investigated plant, obtained by Sohhlet exraction, the total phenol content was 14.7 ± 0.4 mg of GA/g, the total flavonoids were 0.29 ± 0.03% expressed as hyperoside percentage, whereas the total tannins content was 0.22 ± 0.04% expressed as pyrogallol percentage. For the antimicrobial activity determination, the following microorganisms have been used: methicillin-susceptible Staphylococcus aureus (MSSA (American Type Culture Collection (ATCC) 29213)) and methicillin-resistant S. aureus (MRSA (clinical strain)), Escherichia coli (ATCC 25922), carbapenem-susceptible Klebsiella pneumoniae (clinical strain), carbapenem-resistant K. pneumoniae (clinical strain) and Candida albicans (ATCC 14053). The essential oil showed high potency against MSSA and MRSA, both at high (~5 × 10⁵ CFU/mL) and low (~5 × 10³ CFU/mL) inoculum. With respect to MSSA, the minimal inhibitory concentration (MIC) value was 0.307 mg/mL, with bactericidal activity obtained at 0.615 mg/mL, while, in the case of MRSA, the MIC and minimal bactericidal concentration (MBC) values were 0.076 and 0.153 mg/mL, respectively. Regarding anti- Candida albicans activity, the MIC value was 2.46 mg/mL without reaching fungicidal activity. In addition to the observed essential oil efficacy, different solvent extracts were analyzed for their antimicrobial activity. Similarly to the essential oil, thehighest efficacy was observed against both MSSA and MRSA strains, at high and low inoculums, in the case of the 1,2-dichloroethane and methanol extracts. A potent fungicidal activity has been also found for the n -hexane and 1,2-dichloroethane extracts. It can be concluded that Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood provides a wide range of application in different fields such as phytochemistry, pharmacology, toxicology or pharmacognosy.
Cengiz, M; Sahinturk, P; Sonal, S; Buyukcangaz, E; Sen, A; Arslan, E
2013-05-04
The objective of this work was to investigate the bactericidal activity of enrofloxacin against gyrA mutant and qnr-containing Escherichia coli isolates from animals. The minimum inhibitory concentrations (MICs) of gyrA mutant and qnr-containing E coli isolates ranged from 1 µg/ml to 32 µg/ml for enrofloxacin. Time-kill experiments were performed using selected E coli isolates. For the time-kill experiments, the colony counts were determined by plating each diluted sample onto plate count agar and an integrated pharmacokinetic/pharmacodynamics area measure (log ratio area) was applied to the colony-forming units (cfu) data. In general, enrofloxacin exhibited bactericidal activity against all the gyrA mutant E coli isolates at all concentrations greater than four times the MIC. However, the bactericidal activity of enrofloxacin for all the qnr-containing E coli isolates was less dependent on concentration. The results of the present study indicated that the genetic mechanism of resistance might account for the different bactericidal activities of enrofloxacin observed for the gyrA mutant and the qnr-containing E coli isolates. Therefore, in addition to MIC assays, genetic mechanism-based pharmacodynamic models should be used to provide accurate predictions of the effects of drugs on resistant bacteria.
Ríos-Castillo, Abel G; González-Rivas, Fabián; Rodríguez-Jerez, José J
2017-10-01
In order to develop disinfectant formulations that leverage the effectiveness of hydrogen peroxide (H 2 O 2 ), this study evaluated the bactericidal efficacy of hydrogen peroxide-based disinfectants against Gram-positive and Gram-negative bacteria on stainless steel surfaces. Low concentration of hydrogen peroxide as 0.5% with a cationic polymer, ethoxylated fatty alcohol, and ethyl alcohol had bactericidal efficacy (reductions ≥ 4 log 10 CFU/mL) against Escherichia coli, Staphylococcus aureus, Enterococcus hirae, and Pseudomonas aeruginosa. Hydrogen peroxide-based disinfectants were more effective against E. hirae and P. aeruginosa than to S. aureus. However, the efficacy of hydrogen peroxide against catalase positive bacteria such as S. aureus was increased when this compound was formulated with low concentrations of benzalkonium chloride or ethyl alcohol, lactic acid, sodium benzoate, cationic polymer, and salicylic acid. This study demonstrates that the use of hydrogen peroxide with other antimicrobial products, in adequate concentrations, had bactericidal efficacy in Gram-positive and Gram-negative bacteria on stainless steel surfaces, enabling to reduce the effective concentration of hydrogen peroxide. In the same way, the use of hydrogen peroxide-based disinfectants could reduce the concentrations of traditional disinfectants as quaternary ammonium compounds and therefore a reduction of their chemical residues in the environment after being used. The study of the bactericidal properties of environmentally nontoxic disinfectants such as hydrogen peroxide, sole or in formulations with other disinfectants against Gram-positive and Gram-negative bacteria can enhance the efficacy of various commonly used disinfectant formulations with the hygiene benefits that it entails. Also, the use of hydrogen peroxide formulations can reduce the concentration levels of products that generate environmental residues. © 2017 Institute of Food Technologists®.
Evaluation of Antimicrobial Activity of the Methanol Extracts from 8 Traditional Medicinal Plants
Kang, Chang-Geun; Hah, Dae-Sik; Kim, Chung-Hui; Kim, Young-Hwan; Kim, Euikyung
2011-01-01
The methanol extract of 12 medicinal plants were evaluated for its antibacterial activity against Gram-positive (5 strains) and Gram-negative bacteria (10 strains) by assay for minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) . The antibacterial activity was determined by an agar dilution method (according to the guidelines of Clinical and Laboratory Standard Institute) . All the compounds (12 extracts) of the 8 medicinal plants (leaf or root) were active against both Gram-negative and Gram-positive bacteria. Gram-negative showed a more potent action than Gram positive bacteria. The MIC concentrations were various ranged from 0.6 μg/ml to 5000 μg/ml. The lowest MIC (0.6 μg/ml) and MBC (1.22 μg/ml) values were obtained with extract on 4 and 3 of the 15 microorganisms tested, respectively. PMID:24278548
Salem, Mohamed Z M; Elansary, Hosam O; Ali, Hayssam M; El-Settawy, Ahmed A; Elshikh, Mohamed S; Abdel-Salam, Eslam M; Skalicka-Woźniak, Krystyna
2018-01-22
Cupressus macrocarpa Hartw and Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson, widely grown in many subtropical areas, are used for commercial purposes, such as in perfumery, cosmetics, and room fresheners. Their potential as a source of antimicrobial compounds may be useful in different applications. The chemical composition of essential oils (EOs) from C. macrocarpa branchlets and C. citriodora leaves was analyzed by using gas chromatography-mass spectrometry (GC/MS). Antibacterial and antifungal activities were assessed by the micro-dilution method to determine the minimum inhibitory concentrations (MICs), and minimum fungicidal concentrations (MFCs), and minimum bactericidal concentrations (MBCs). Further, the antioxidant capacity of the EOs was determined via 2,2'-diphenypicrylhydrazyl (DPPH) and β-carotene-linoleic acid assays. Terpinen-4-ol (23.7%), α-phellandrene (19.2%), α-citronellol (17.3%), and citronellal were the major constituents of EO from C. macrocarpa branchlets, and α-citronellal (56%), α-citronellol (14.7%), citronellol acetate (12.3%), isopulegol, and eucalyptol were the primary constituents of EO from C. citriodora leaves. Antibacterial activity with MIC values of EO from C. citriodora leaves was ranged from 0.06 mg/mL to 0.20 mg/mL, and MBC from 0.12 mg/mL against E. coli to 0.41 mg/mL. EO from C. macrocarpa branchlets showed less activity against bacterial strains. The MIC values against tested fungi of the EO from C. citriodora ranged from 0.11 to 0.52 mg/mL while for EO from C. macrocarpa from 0.29 to 3.21 mg/mL. The MIC and MFC values of EOs against P. funiculosum were lower than those obtained from Ketoconazole (KTZ) (0.20; 0.45; 0.29 and 0.53 mg/mL, respectively, vs 0.21 and 0.41 mg/mL. Antioxidant activity of the EO from C. citriodora was higher than that of the positive control but lower than that of the standard butylhydroxytoluene (BHT) (IC 50 = 5.1 ± 0.1 μg/mL). The results indicate that the EO from Egyptian trees such as C. citriodora leaves may possesses strong bactericidal and fungicidal activities and can be used as an agrochemical for controlling plant pathogens and in human disease management which will add crop additive value.
Moscoso, Miriam; Esteban-Torres, María; Menéndez, Margarita; García, Ernesto
2014-01-01
Ceragenin CSA-13, a cationic steroid, is here reported to show a concentration-dependent bactericidal/bacteriolytic activity against pathogenic streptococci, including multidrug-resistant Streptococcus pneumoniae. The autolysis promoted by CSA-13 in pneumococcal cultures appears to be due to the triggering of the major S. pneumoniae autolysin LytA, an N-acetylmuramoyl-L-alanine amidase. CSA-13 also disintegrated pneumococcal biofilms in a very efficient manner, although at concentrations slightly higher than those required for bactericidal activity on planktonic bacteria. CSA-13 has little hemolytic activity which should allow testing its antibacterial efficacy in animal models.
Verbeek, Else; Oliver, Mark Hope; Waas, Joseph Rupert; McLeay, Lance Maxwell; Blache, Dominique; Matthews, Lindsay Ross
2012-01-01
Background Low food availability leading to reductions in Body Condition Score (BCS; 0 indicates emaciation and 5 obesity) in sheep often coincides with low temperatures associated with the onset of winter in New Zealand. The ability to adapt to reductions in environmental temperature may be impaired in animals with low BCS, in particular during pregnancy when metabolic demand is higher. Here we assess whether BCS affects a pregnant animal's ability to cope with cold challenges. Methods Eighteen pregnant ewes with a BCS of 2.7±0.1 were fed to attain low (LBC: BCS2.3±0.1), medium (MBC: BCS3.2±0.2) or high BCS (HBC: BCS3.6±0.2). Shorn ewes were exposed to a 6-h acute cold challenge in a climate-controlled room (wet and windy conditions, 4.4±0.1°C) in mid-pregnancy. Blood samples were collected during the BCS change phase, acute cold challenge and recovery phase. Results During the BCS change phase, plasma glucose and leptin concentrations declined while free fatty acids (FFA) increased in LBC compared to MBC (P<0.01, P<0.01 and P<0.05, respectively) and HBC ewes (P<0.05, P<0.01 and P<0.01, respectively). During the cold challenge, plasma cortisol concentrations were lower in LBC than MBC (P<0.05) and HBC ewes (P<0.05), and FFA and insulin concentrations were lower in LBC than HBC ewes (P<0.05 and P<0.001, respectively). Leptin concentrations declined in MBC and HBC ewes while remaining unchanged in LBC ewes (P<0.01). Glucose concentrations and internal body temperature (Tcore) increased in all treatments, although peak Tcore tended to be higher in HBC ewes (P<0.1). During the recovery phase, T4 concentrations were lower in LBC ewes (P<0.05). Conclusion Even though all ewes were able to increase Tcore and mobilize glucose, low BCS animals had considerably reduced cortisol and metabolic responses to a cold challenge in mid-pregnancy, suggesting that their ability to adapt to cold challenges through some of the expected pathways was reduced. PMID:22662144
Dorey, L; Hobson, S; Lees, P
2017-10-01
The pharmacodynamics of oxytetracycline was determined for pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Indices of potency were determined for the following: (i) two matrices, broth and pig serum; (ii) five overlapping sets of twofold dilutions; and (iii) a high strength starting culture. For A. pleuropneumoniae, minimum inhibitory concentration (MIC) was similar for the two matrices, but for P. multocida, differences were marked and significantly different. MIC and minimum bactericidal concentration (MBC) serum: broth ratios for A. pleuropneumoniae were 0.83:1 and 1.22:1, respectively, and corresponding values for P. multocida were 22.0:1 and 7.34:1. For mutant prevention concentration (MPC) serum: broth ratios were 0.79:1 (A. pleuropneumoniae) and 20.9:1 (P. multocida). These ratios were corrected for serum protein binding to yield fraction unbound (fu) serum: broth MIC ratios of 0.24:1 (A. pleuropneumoniae) and 6.30:1 (P. multocida). Corresponding fu serum: broth ratios for MPC were almost identical, 0.23:1 and 6.08:1. These corrections for protein binding did not account for potency differences between serum and broth for either species; based on fu serum MICs, potency in serum was approximately fourfold greater than predicted for A. pleuropneumoniae and sixfold smaller than predicted for P. multocida. For both broth and serum and both bacterial species, MICs were also dependent on initial inoculum strength. The killing action of oxytetracycline had the characteristics of codependency for both A. pleuropneumoniae and P. multocida in both growth media. The in vitro potency of oxytetracycline in pig serum is likely to be closer to the in vivo plasma/serum concentration required for efficacy than potency estimated in broths. © 2017 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.
Verbeek, E; Waas, J R; Oliver, M H; McLeay, L M; Ferguson, D M; Matthews, L R
2012-07-01
Low food availability often coincides with pregnancy in grazing animals. This study investigated how chronic reductions in food intake affected feeding motivation, and metabolic and endocrine parameters in pregnant sheep, which might be indicative of compromised welfare. Ewes with an initial Body Condition Score of 2.7±0.3 (BCS; 0 indicates emaciation and 5 obesity) were fed to attain low (LBC 2.0±0.0,), medium (MBC 2.9±0.1) or high BCS (HBC 3.7±0.1) in the first trimester of pregnancy. A feeding motivation test in which sheep were required to walk a set distance for a palatable food reward was conducted in the second trimester. LBC and MBC ewes consumed more rewards (P=0.001) and displayed a higher expenditure (P=0.02) than HBC ewes, LBC ewes also tended to consume more rewards than MBC ewes (P=0.09). Plasma leptin and glucose concentrations were inversely correlated to expenditure (both P<0.05) and appear to be associated with hunger in sheep. LBC ewes were in negative energy balance, with lower muscle dimensions, plasma glucose, leptin, insulin, cortisol, and insulin-like growth factor-1 concentrations and higher free fatty acids concentrations compared to HBC ewes; metabolic and endocrine parameters of the MBC ewes were intermediate. The high feeding motivation and negative energy balance of low BCS ewes suggested an increased risk of compromised welfare. Imposing even a small cost on a food reward reduced motivation substantially in high BCS ewes (despite high intake when food was freely available). Assessment of a willingness to work for rewards, combined with measures of key metabolic and endocrine parameters, may provide sensitive barometers of welfare in energetically-taxed animals. Copyright © 2012 Elsevier Inc. All rights reserved.
Alekish, Myassar O; Ismail, Zuhair B; Awawdeh, Mofleh S; Shatnawi, Shoroq
2017-08-01
The aims of this study were to evaluate the effects of intramammary infusion of sage ( Salvia officinalis ) essential oil (EO) on milk somatic cell count (SCC), milk composition parameters and selected hematology and serum biochemical parameters in 20 Awassi ewes affected with subclinical mastitis. The dried leaves of sage were used to extract the EO by hydrodistillation. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of sage EO against Staphylococcus aureus were determined by the broth dilution method. Ewes were divided randomly into three main groups and received one of the following treatments; Group 1 (n=5): Dimethyl sulfoxide (DMSO) alone (5 ml; 0.2 ml of DMSO in 4.8 ml of saline), Group 2 (n=5): Amoxicillin alone (3 ml), and Group 3 (n=10): Sage EO (5 ml of sage EO solution [0.2 ml DMSO+1 ml EO+3.8 ml sterile saline]). All treatments were administered by intramammary infusion into each teat twice per day for 3 consecutive days. Milk samples for SCC and milk components determination and whole blood samples for hematology and serum biochemical analyses were collected before treatment (T0) and at 24 (T24) and 48 (T48) h after the last treatment. The MIC and MBC of sage EO against S. aureus were 12.5% and 6.1%, respectively. SCC was decreased significantly (p<0.05) at T24 and T48 h in sage EO and amoxicillin treated groups. Milk fat and lactose were increased significantly (p<0.05) in sage EO and amoxicillin treated ewes while no significant changes were observed in the percentages of solids-not-fat, protein and total solids. No significant effects of sage EO treatment on any of the hematology or serum biochemical parameters were observed. There were no local or systemic side effects observed in any of the treated ewes. However, further clinical trials are warranted to determine safety and possible withdrawal times in milk before its recommendation for use in organic operations. In this study, the intramammary infusion of sage EO to ewes affected with subclinical mastitis resulted in a significant decrease in SCC 24 h and 48 h posttreatment. In addition, milk fat and lactose were increased in animals that received the EO as well as in those treated with the antibiotic.
Inhibitory Effects of Pterodon emarginatus Bean Oil and Extract on Staphylococcus aureus
Mendes, V. S.; Sant'Anna, J. B.; Oliveira, S. C. C.; Maldonade, Iriani Rodrigues; Machado, Eleuza Rodrigues
2017-01-01
Background: Pterodon emarginatus is a tree of the Brazilian Savannah. The beans of this tree are used in folk medicine as anti-inflammatory preparations, especially for infections caused by Staphylococcus aureus. These bacteria can cause simple infections or serious illnesses such as pneumonia, meningitis, endocarditis, toxic shock syndrome, septicemia, and others. Objective: This study had the goal of verifying the effect of the essential oil (OE) from P. emarginatus on the inhibition of S. aureus in culture medium, i.e., “ in vitro” tests. Materials and Methods: The vegetable material was cut and crushed with a press. The OE was obtained by extraction using hexane, alcohol, and water. The P. emarginatus extracts obtained were used to evaluate the antimicrobial effect on S. aureus (ATCC 25923) by tests of well diffusion, disc diffusion, and microdilution. The strain used in the assays was maintained in brain heart infusion broth and nutrient agar until testing. Afterward, the bacteria were spread on agar plates with Mueller-Hinton agar medium. In the wells and on the paper discs, the OE suspensions were placed in the following volumes: 10, 15, 20, 25, 30, 40, and 80 μL and subsequently they were incubated at 35°C ± 2°C. After 24 h, the number of colony-forming unit was determined. Results: Pure OE and hydroalcoholic extract inhibited the growth of S. aureus, while aqueous extract had no effect on bacterial growth in all microbial methods used. Conclusion: Thus, the present study showed the potential of sucupira-based extracts against S. aureus growth, opening new perspectives for the evaluation of these bioactive compounds as phytopharmaceutical products. SUMMARY Plant extract act as antimicrobials to prevent and reduce bacterial contaminationBeans of Pterodon emarginatus has antibacterial propertiesExtraction with different solvents might implicate on the rate of bacterial deathThe effect of different microbiological methods (well diffusion, disc diffusion and microdilution) was evaluated on reducing CFUThe results showed by MBC that concentrations superior to 10% (v/v) using AC and 7.5% (v/v) using OE were necessary to eliminate colonies formedAccording to data of MIC, at 2.5% of AC and OE was enough to kill S. aureusThe well diffusion technique demonstrated better performance than disc diffusion test for OE and AC extractsHydroalcoholic and oil extracts of sucupira beans had highest effect against Staphylococcus aureusAqueous extract had no effect on bacterial growth in all microbial methods testedThe sucupira-based extracts is a promising source as herbal drug due to therapeutic value Abbreviations Used: OE: Essencial oil; AC: Hydroalcoholic oil extract; AQ: Aqueous extracts; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; CFU: Colony formed unit. PMID:29263627
Inhibitory Effects of Pterodon emarginatus Bean Oil and Extract on Staphylococcus aureus.
Mendes, V S; Sant'Anna, J B; Oliveira, S C C; Maldonade, Iriani Rodrigues; Machado, Eleuza Rodrigues
2017-01-01
Pterodon emarginatus is a tree of the Brazilian Savannah. The beans of this tree are used in folk medicine as anti-inflammatory preparations, especially for infections caused by Staphylococcus aureus . These bacteria can cause simple infections or serious illnesses such as pneumonia, meningitis, endocarditis, toxic shock syndrome, septicemia, and others. This study had the goal of verifying the effect of the essential oil (OE) from P. emarginatus on the inhibition of S. aureus in culture medium, i.e., " in vitro " tests. The vegetable material was cut and crushed with a press. The OE was obtained by extraction using hexane, alcohol, and water. The P. emarginatus extracts obtained were used to evaluate the antimicrobial effect on S. aureus (ATCC 25923) by tests of well diffusion, disc diffusion, and microdilution. The strain used in the assays was maintained in brain heart infusion broth and nutrient agar until testing. Afterward, the bacteria were spread on agar plates with Mueller-Hinton agar medium. In the wells and on the paper discs, the OE suspensions were placed in the following volumes: 10, 15, 20, 25, 30, 40, and 80 μL and subsequently they were incubated at 35°C ± 2°C. After 24 h, the number of colony-forming unit was determined. Pure OE and hydroalcoholic extract inhibited the growth of S. aureus , while aqueous extract had no effect on bacterial growth in all microbial methods used. Thus, the present study showed the potential of sucupira-based extracts against S. aureus growth, opening new perspectives for the evaluation of these bioactive compounds as phytopharmaceutical products. Plant extract act as antimicrobials to prevent and reduce bacterial contaminationBeans of Pterodon emarginatus has antibacterial propertiesExtraction with different solvents might implicate on the rate of bacterial deathThe effect of different microbiological methods (well diffusion, disc diffusion and microdilution) was evaluated on reducing CFUThe results showed by MBC that concentrations superior to 10% (v/v) using AC and 7.5% (v/v) using OE were necessary to eliminate colonies formedAccording to data of MIC, at 2.5% of AC and OE was enough to kill S. aureus The well diffusion technique demonstrated better performance than disc diffusion test for OE and AC extractsHydroalcoholic and oil extracts of sucupira beans had highest effect against Staphylococcus aureus Aqueous extract had no effect on bacterial growth in all microbial methods testedThe sucupira-based extracts is a promising source as herbal drug due to therapeutic value Abbreviations Used: OE: Essencial oil; AC: Hydroalcoholic oil extract; AQ: Aqueous extracts; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; CFU: Colony formed unit.
Fadlallah, Sukayna M; Rahal, Elias A; Sabra, Ahmad; Kissoyan, Kohar A B; Matar, Ghassan M
2015-01-01
A novel pathotype, Shiga toxin-producing Escherichia coli O104:H4, was the cause of a severe outbreak that affected European countries, mainly Germany, in 2011. The effect of different regimens of rifampicin and gentamicin were evaluated to determine possible treatment modes for the novel strain, and to evaluate the SOS response and its effect on toxin release. Pulsed-field gel electrophoresis (PFGE) was performed on the novel E. coli O104:H4 pathotype and two pre-outbreak E. coli O104:H4 CDC strains. Transcript levels of the stx2 and recA gene (SOS response inducer) were evaluated using quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) in the novel E. coli O104:H4 samples subjected to different regimens of rifampicin and gentamicin. Consequently, reverse passive latex agglutination (RPLA) was used to determine the Stx2 titers in these samples. Western blot was performed to determine the LexA levels (SOS response repressor) in E. coli O104:H4. The efficacy of treatment with antimicrobial agents was assessed in BALB/c mice. The outbreak and pre-outbreak strains are closely related as shown by PFGE, which demonstrated slight genomic differences between the three strains. The transcription level of the stx2 gene in the new pathotype was 1.41- and 1.75-fold that of the 2009 EL-2050 and 2009 EL-2071 pre-outbreak strains, respectively. Moreover, the transcription level of the stx2 gene in the new pathotype was substantially decreased as a result of treatment with the different concentrations of the antimicrobial agents, but was enhanced when the antibiotics were administered at two subinhibitory levels. RPLA data were in accordance with the qRT-PCR results. E. coli O104:H4 exposed to gentamicin at both sub-minimum inhibitory concentration (MIC) levels led to high transcription levels of the recA gene and lack of expression of the LexA protein, implying that the SOS response was activated. Rifampicin at both sub-MIC levels resulted in low transcript levels of the recA gene, indicating that the SOS response was not induced. In vivo, the highest survival rate in BALB/c mice was observed in the group that was treated with the minimum bactericidal concentration (MBC) of gentamicin. The use of antimicrobial agents in E. coli O104:H4 infection seems to be effective at the MIC and MBC levels. This provides a promising ground for treatment of E. coli O104:H4.
In vitro and in vivo estrogenicity of UV screens.
Schlumpf, M; Cotton, B; Conscience, M; Haller, V; Steinmann, B; Lichtensteiger, W
2001-01-01
Ultraviolet (UV) screens are increasingly used as a result of growing concern about UV radiation and skin cancer; they are also added to cosmetics and other products for light stability. Recent data on bioaccumulation in wildlife and humans point to a need for in-depth analyses of systemic toxicology, in particular with respect to reproduction and ontogeny. We examined six frequently used UVA and UVB screens for estrogenicity in vitro and in vivo. In MCF-7 breast cancer cells, five out of six chemicals, that is, benzophenone-3 (Bp-3), homosalate (HMS), 4-methyl-benzylidene camphor (4-MBC), octyl-methoxycinnamate (OMC), and octyl-dimethyl-PABA (OD-PABA), increased cell proliferation with median effective concentrations (EC(50)) values between 1.56 and 3.73 microM, whereas butyl-methoxydibenzoylmethane (B-MDM) was inactive. Further evidence for estrogenic activity was the induction of pS2 protein in MCF-7 cells and the blockade of the proliferative effect of 4-MBC by the estrogen antagonist ICI 182,780. In the uterotrophic assay using immature Long-Evans rats that received the chemicals for 4 days in powdered feed, uterine weight was dose-dependently increased by 4-MBC (ED(50 )309mg/kg/day), OMC (ED(50) 935 mg/kg/day), and weakly by Bp-3 (active at 1,525 mg/kg/day). Three compounds were inactive by the oral route in the doses tested. Dermal application of 4-MBC to immature hairless (hr/hr) rats also increased uterine weight at concentrations of 5 and 7.5% in olive oil. Our findings indicate that UV screens should be tested for endocrine activity, in view of possible long-term effects in humans and wildlife. PMID:11333184
[Bactericidal activity of colloidal silver against grampositive and gramnegative bacteria].
Afonina, I A; Kraeva, L A; Tseneva, G Ia
2010-01-01
It was shown that colloidal silver solution prepared in cooperation with the A. F. Ioffe Physical Technical Institute of the Russian Academy of Sciences, had significant bactericidal activity. Stable bactericidal effect on gramnegative microorganisms was observed after their 2-hour exposition in the solution of colloidal silver at a concentration of 10 ppm. Grampositive capsule-forming microorganisms were less susceptible to the colloidal silver solution: their death was observed after the 4-hour exposition in the solution.
Chew, Yik Ling; Mahadi, Adlina Maisarah; Wong, Kak Ming; Goh, Joo Kheng
2018-02-20
Bauhinia kockiana originates from Peninsular Malaysia and it is grown as a garden ornamental plant. Our previous study reported that this plant exhibited fairly strong antioxidant and antimicrobial activities. This paper focused on the assessment of the antibacterial activity of B. kockiana towards methicillin-resistance Staphylococcus aureus (MRSA), to purify and to identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. Antibacterial activity of B. kockiana flower was evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts were examined. Phytochemical analysis was performed to determine the classes of phytochemicals in the extracts. Bioactivity guided isolation was employed to purify the antibacterial agents and identified via various spectroscopy methods. Scanning electron microscopy (SEM) technique was used to evaluate the antibacterial mechanism of extract and compounds isolated. B. kockiana flower was found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria used, MIC varies from 62.5-250 μg/mL. Tannins and flavonoids have been detected in the phytochemical analysis. Gallic acid and its ester derivatives purified from ethyl acetate extract could inhibit MRSA at 250-500 μg/mL. SEM revealed that the cells have undergone plasmolysis upon treatment with the extract and compounds. Tannins and polyphenols are the antibacterial components towards MRSA in B. kockiana. Massive leakage of the cell content observed in treated cells showed that the phytochemicals have changed the properties of the cell membranes. Amphiphilic nature of the compounds exhibited the antibacterial activity towards MRSA via three stages: (1) cell membrane attachment; (2) cell membrane fluidity modification; and (3) cell membrane structure disruption.
Chakotiya, Ankita Singh; Tanwar, Ankit; Narula, Alka; Sharma, Rakesh Kumar
2016-09-01
The multi-drug resistance offered by Pseudomonas aeruginosa to antibiotics can be attributed towards its propensity to develop biofilm, modification in cell membrane and to efflux antibacterial drugs. The present study explored the activity of Glycyrrhiza glabra and one of its pure compounds, glycyrrhizic acid against P. aeruginosa and their mechanism of action in terms of the effect on membrane permeability, efflux activity, and biofilm formation were determined. Minimum inhibitory concentrations were determined by using broth dilution technique. The minimum bactericidal concentrations were assessed on agar plate. The MIC of the extract and glycyrrhizic acid was found to be 200 and 100 μg ml(-1), respectively. The MBC was found to be 800 and 400 μg ml(-1) in the case of extract and glycyrrhizic acid, respectively. Time -dependent killing efficacy was also estimated. Flowcytometric analysis with staining methods was used to determine the effect of extract and glycyrrhizic acid at 2 × MIC on different physiological parameters and compared it with the standard (antibiotic). The growth of P. aeruginosa was significantly inhibited by extract and the pure compound. The herbal extract and the glycyrrhic acid were also found to effective in targeting the physiological parameters of the bacteria that involve cell membrane permeabilization, efflux activity, and biofilm formation. This study reports the antipseudomonal action of Glycyrrhiza glabra and one of its compound and provides insight into their mode of action. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ghasemi Pirbalouti, Abdollah; Izadi, Arezo; Malek Poor, Fatemeh; Hamedi, Behzad
2016-11-01
Ferulago angulata Boiss. (Apiaceae), a perennial aromatic herb, grows wild in Iran. The aerial parts of F. angulata are used as a flavouring in foods, especially dairy foods by indigenous people in western and southwestern Iran. This study investigates variation in chemical compositions, antioxidant and antibacterial activities of the essential oils from F. angulata collected from natural habitats in the alpine regions of southwestern Iran. The antimicrobial activity, minimum inhibitory concentration (MIC) and minimum bactericidal (MBC) of the essential oils were evaluated against four bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus and Salmonella typhimurium). Antioxidant activity of the oils was determined by DPPH assay. The essential oils were analyzed by GC-FID and GC/MS, which 49 volatile components were identified. There were significant differences between the various populations for oil yield and some main compounds. The major constituents of the essential oils from F. angulata were α-pinene, and cis-β-ocimene. The MICs of the essential oils were within concentration ranges from 62 to 250 μg/mL and the respective MBCs were 125 to > 500 μg/mL. Generally, the oils from F. angulata indicated weak to moderate inhibitory activities against bacteria, especially against Listeria monocytogenes. The highest antioxidant activity was obtained from the oil of the Kallar population (IC 50 value = 488 μg/mL) and BHT as positive control (IC 50 value = 321 μg/mL). The essential oil of F. angulata could be serving as a potential source of α-pinene and cis-β-ocimene for use in the food, cosmetic and pharmaceutical industries.
Baghbani-Arani, Fahimeh; Movagharnia, Rabee; Sharifian, Alireza; Salehi, Soheil; Shandiz, Seyed Ataollah Sadat
2017-08-01
Metal nanoparticles have largely been investigated due to their potential medicinal activities. This study demonstrates the biological properties of green-synthesized silver nanoparticles (AgNPs) by using Artemisia tournefortiana Rchb ethanol extract. Instrumentations such as ultraviolet-visible spectra analysis, high-resolution transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, and Fourier transform infrared spectroscopy were used to reveal the synthesized AgNPs. Microscopic results showed that the particles were mostly spherical in shape, having an average diameter of 22.89±14.82nm. The antibacterial activity of the phyto-fabricated AgNPs was investigated by the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The in vitro cytotoxicity effect was investigated against normal human embryonic kidney (HEK293) cells and human colon adenocarcinoma cancer (HT29) cells. The apoptotic cells were identified by annexin V/PI FITC staining, and morphological assessment. The expressions of Bax and Bcl2 were evaluated by quantitative real time PCR method. The phyto-synthesized AgNPs have shown increased cell apoptosis and demonstrated dose-dependent cytotoxicity in HT29 cancer cells. Moreover, the photocatalytic activity of the phyto-synthesized AgNPs was evaluated by degradation of Coomassie Brilliant Blue G-250 under UV light exposure and these fabricated Ag nanoparticles demonstrated efficacy in degrading the dye within 60min. Overall, the present results highlighted the antibacterial and anticancer properties of fabricated AgNPs, suggesting that phyto-synthesized silver nanoparticles could possess potent anti-pathogenic bacteria and anti-colon cancer activities. Copyright © 2017. Published by Elsevier B.V.
Cheng, Lei; Weir, Michael D.; Zhang, Ke; Arola, Dwayne D.; Zhou, Xuedong; Xu, Hockin H. K.
2013-01-01
Objectives The main reason for restoration failure is secondary caries caused by biofilm acids. Replacing the failed restorations accounts for 50–70% of all operative work. The objectives of this study were to incorporate a new quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) and nanoparticles of silver (NAg) into a primer and an adhesive, and to investigate their effects on antibacterial and dentin bonding properties. Methods Scotchbond Multi-Purpose (SBMP) served as control. DMADDM was synthesized and incorporated with NAg into primer/adhesive. A dental plaque microcosm biofilm model with human saliva was used to investigate metabolic activity, colony-forming units (CFU), and lactic acid. Dentin shear bond strengths were measured. Results Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the new DMADDM were orders of magnitude lower than those of a previous quaternary ammonium dimethacrylate (QADM). Uncured primer with DMADDM had much larger inhibition zones than QADM (p<0.05). Cured primer/adhesive with DMADDM-NAg greatly reduced biofilm metabolic activity (p<0.05). Combining DMADDM with NAg in primer/adhesive resulted in less CFU than DMADDM alone (p<0.05). Lactic acid production by biofilms was reduced by 20-fold via DMADDM-NAg, compared to control. Incorporation of DMADDM and NAg into primer/adhesive did not adversely affect dentin bond strength. Conclusions A new antibacterial monomer DMADDM was synthesized and incorporated into primer/adhesive for the first time. The bonding agents are promising to combat residual bacteria in tooth cavity and invading bacteria at tooth-restoration margins to inhibit caries. DMADDM and NAg are promising for use into a wide range of dental adhesive systems and restoratives. PMID:23353068
Antioxidant and antimicrobial activities of branches extracts of five Juniperus species from Turkey.
Taviano, Maria Fernanda; Marino, Andreana; Trovato, Ada; Bellinghieri, Valentina; La Barbera, Tommaso Massimo; Güvenç, Ayşegül; Hürkul, Muhammed Mesud; Pasquale, Rita De; Miceli, Natalizia
2011-10-01
Several Juniperus species (Cupressaceae) are utilized in folk medicine in the treatment of infections and skin diseases. This work was designed to evaluate the antioxidant and antimicrobial potential of methanol and water branches extracts of Juniperus species from Turkey: Juniperus communis L. var. communis (Jcc), Juniperus communis L. var. saxatilis Pall. (Jcs), Juniperus drupacea Labill. (Jd), Juniperus oxycedrus L. subsp. oxycedrus (Joo), Juniperus oxycedrus L. subsp. macrocarpa (Sibth. & Sm.) Ball. (Jom). Total phenolics, total flavonoids and condensed tannins were spectrophotometrically determined. The antioxidant properties were examined using different in vitro systems. The toxicity was assayed by Artemia salina lethality test. The antimicrobial potential against bacteria and yeasts was evaluated using minimum inhibitory concentration and minimum bactericidal concentration (MIC/MBC) measurements. The effect on bacteria biofilms was tested by microtiter plate assay. Both in the DPPH (1,1-diphenyl-2-picrylhydrazyl) and TBA (thiobarbituric acid) test Jom resulted the most active (IC(50) = 0.034 ± 0.002 mg/mL and 0.287 ± 0.166 µg/mL). Joo exhibited the highest reducing power (1.78 ± 0.04 ASE/mL) and Fe(2+) chelating activity (IC(50) = 0.537 ± 0.006 mg/mL). A positive correlation between primary antioxidant activity and phenolic content was found. The extracts were potentially non-toxic against Artemia salina. They showed the best antimicrobial (MIC = 4.88-30.10 µg/mL) and anti-biofilm activity (60-84%) against S. aureus. The results give a scientific basis to the traditional utilization of these Juniperus species, also demonstrating their potential as sources of natural antioxidant and antimicrobial compounds.
Antibacterial activities of the methanol extracts, fractions and compounds from Fagara tessmannii.
Tankeo, Simplice B; Damen, Francois; Awouafack, Maurice D; Mpetga, James; Tane, Pierre; Eloff, Jacobus N; Kuete, Victor
2015-07-01
Fagara tessmannii is a shrub of the African rainforests used to treat bacterial infections, cancers, swellings and inflammation. In the present study, the methanol extract from the leaves (FTL), bark (FTB), and roots (FTR) of this plant as well as fractions (FTR1-5) and compounds isolated from FTR namely β-sitosterol-3-O-β-d-glucopyranoside (1), nitidine chloride (2) and buesgenine (3), were tested for their antimicrobial activities against a panel of Gram-negative bacteria including multidrug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the above samples; Column chromatography was used for the fractionation and purification of the roots extract whilst the chemical structures of compounds were determined using spectroscopic techniques. Results of the MIC determinations indicated that the crude extracts from the roots as well as fraction FTRa4 were active on all the 26 tested bacterial strains. MIC values below 100µg/mL were obtained with roots, leaves and bark extract respectively against 30.8%, 15.4% and 11.5% tested bacteria. The lowest MIC value below of 8µg/mL was obtained with extract from the roots against Escherichia coli MC100 strain. The lowest MIC value of 4µg/mL was also obtained with compound 3 against E. coli AG102 and Klebsiella pneumoniae ATCC11296 CONCLUSIONS: The present study demonstrates that F. tessmannii is a potential source of antimicrobial drugs to fight against MDR bacteria. Benzophenanthrine alkaloids 2 and 3 are the main antibacterial consituents of the roots of the plant. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Shakeri, Abolfazl; Akhtari, Javad; Soheili, Vahid; Taghizadeh, Seyedeh Faezeh; Sahebkar, Amirhossein; Shaddel, Rezvan; Asili, Javad
2017-08-01
Chemical composition and biological (antimicrobial, antioxidant and cytotoxic) activities of essential oils (EO) obtained from the aerial parts of Glycyrrhiza triphylla Fisch. & C.A.Mey (G. triphylla) were evaluated in the present study. The EO was isolated and analyzed using gas chromatography-mass spectrometry (GC-MS). Fifty-five compounds representing 99.3% of the total oil composition were identified. Major components of the oil were β-caryophyllene (25.4%), limonene (16.7%), β-myrcene (16.0%) and α-humulene (4.4%). The oil composition was dominated by the presence of sesquiterpene hydrocarbons comprising 43.6% of the total oil. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the oil were determined against eight bacterial strains and one fungus. The EO showed a good antibacterial activity against both Gram-positive and Gram-negative bacteria. The most susceptible strain was Micrococcus luteus (MIC = 2.7 μg/mL, MBC = 43.6 μg/mL). The antioxidant potential of the EO was examined using DPPH and β-carotene/linoleic acid (BCB) assays. The oil was considerably active in the DPPH assay (IC 50 = 100.40 ± 0.03 μg/mL). Moreover, in vitro cytotoxic activity was assessed against six cancer cell lines using MTT assay. The EO showed no significant cytotoxic activity. In light of the present findings, G. triphylla oil may deserves to be further investigated for its potential therapeutic effects and also as a natural preservative in food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Noshad, Mohammad; Hojjati, Mohammad; Alizadeh Behbahani, Behrooz
2018-03-01
The aim of this study was to perform chemical compositions and phytochemical analysis of Black Zira essential oil and other goal of this research was to investigate the antimicrobial effects of Black Zira essential oil against Enterobacter aerogenes, Pseudomonas aeruginosa, Escherichia coli, Shigella flexneri, Staphylococcus epidermidis, Streptococcus pyogenes and Candida albicans. Black Zira essential oil was extracted by hydrodistillation method using clevenger apparatus. Black Zira essential oil chemical composition was identified through gas chromatography/mass spectrometry. γ-terpinene with a percentage of 24.8% was the major compound of Black Zira essential oil. The antimicrobial effect Black Zira essential oil was evaluated by several qualitative and quantitative methods (disk diffusion, well diffusion, microdilution broth, agar dilution and minimum bactericidal/fungicidal concentration). Phytochemical analysis Black Zira essential oil were appraised based on qualitative methods. Antioxidant activity (2,2-diphenyl-1-picrylhydrazyl and β-carotene/linoleic acid inhibition) and total phenolic content (Folin-Ciocalteu) were examined. The results of phytochemical analysis of Black Zira essential oil showed the existence of phenolic, flavonoids, saponins, alkaloids and tannins. The total phenolic content and antioxidant activity (reported as IC 50 ) of Black Zira essential oil were equal to 120.50 ± 0.50 mg GAE/g and 11.55 ± 0.25 μg/ml, respectively. The MIC of the Black Zira essential oil ranged from 1 mg/ml to 8 mg/ml, while its MBC and MFC ranged from 1 mg/ml to 16 mg/ml. The results presented that the longest and the shortest inhibition zone diameter at the concentration of 8 mg/ml pertained to C. albicans and E. aerogenes, respectively. Copyright © 2018. Published by Elsevier Ltd.
Bouacha, Mabrouka; Ayed, Hayette; Grara, Nedjoud
2018-04-13
Medicinal benefits of honey bee have been recognized in the medical community since ancient times as a remedy for many diseases and infections. This study aimed to investigate the in vitro susceptibility of 11 multidrug-resistant bacterial strains, isolated from urinary tract infections of pregnant women, to six honey samples collected from different localities in the east of Algeria. The evaluation of the antibacterial activity was performed by the well method followed by the broth dilution method using two-fold dilutions of each honey sample ranging from 2.5 to 80% (w/v). The results obtained in this study revealed that all tested honeys exhibited potent antibacterial activity against the tested strains. The diameters of inhibition ranged from 19.67 to 53.33 mm, with minimum inhibitory concentrations (MICs) ranging from 2.5 to 40% (w/v) and minimum bactericidal concentration (MBCs) varied between 2.5 and 80% (w/v). Gram-positive bacteria were found to be more susceptible than Gram-negative bacteria with diameters ranging from 43.33 to 53.33 mm; MIC and MBC values ranged from 2.5 to 5% (w/v). The P.aeruginosa strain was found to be less susceptible than other strains with inhibitory diameters ranging from 19.67 to 27.33 mm; MICs ranged from 20 to 40% and MBCs ranged from 20 to 80% ( w/v ). This contribution has provided a broad overview of the antibacterial activity of Algerian honey and shown that honey bee has great potential for therapeutic use as an alternative therapy for urinary tract infection treatment which is safe and efficient during pregnancy.
Tekwu, Emmanuel Mouafo; Askun, Tülin; Kuete, Victor; Nkengfack, Augustin Ephraim; Nyasse, Barthélémy; Etoa, François-Xavier; Beng, Véronique Penlap
2012-07-13
Tuberculosis (TB) is considered as a re-emerging disease and one of the most important public health problems worldwide. The use or (in most cases) misuse of existint anti-tuberculosis drugs over the years has led to an increasing prevalence of resistant strains, establishing an urgent need to search for new effective agents. Spices are largely used ethno-medically across Africa. The present study aimed to evaluate the in vitro antimycobacterial activities of a total of 20 methanol crude extracts prepared from 20 Cameroonian dietary spices for their ability to inhibit the growth of or kill Mycobacterium tuberculosis strains H(37)Rv (ATCC 27294) and H(37)Ra (ATCC 25177). The antituberculosis screening was performed using the Microplate Alamar Blue Assay (MABA) method to determine the minimum inhibitory concentration (MIC) and the minimum mycobactericidal concentration (MBC). Fifteen (15) plant extracts out of 20 showed varied levels of antimycobacterial activity against the strains M. tuberculosis H(37)Rv and H(37)Ra, with MICs in the range of 2.048-0.016 mg/ml. The extract of Echinops giganteus exhibited the most significant activity with a MIC value of 32 μg/ml and 16 μg/ml, respectively against H(37)Ra and H(37)Rv. To the best of our knowledge, the antimycobacterial activity of the tested spices has not been reported before and therefore our results can be evaluated as the first report about the antimycobacterial properties. The results of this study suggest that Echinops giganteus and Piper guineense could be important sources of bactericidal compounds against M. tuberculosis and could probably be promising candidates that can be further investigated. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Blechnum Orientale Linn - a fern with potential as antioxidant, anticancer and antibacterial agent
2010-01-01
Background Blechnum orientale Linn. (Blechnaceae) is used ethnomedicinally for the treatment of various skin diseases, stomach pain, urinary bladder complaints and sterilization of women. The aim of the study was to evaluate antioxidant, anticancer and antibacterial activity of five solvent fractions obtained from the methanol extract of the leaves of Blechnum orientale Linn. Methods Five solvent fractions were obtained from the methanol extract of B. orientale through successive partitioning with petroleum ether, chloroform, ethyl acetate, butanol and water. Total phenolic content was assessed using Folin-Ciocalteu's method. The antioxidant activity was determined by measuring the scavenging activity of DPPH radicals. Cytotoxic activity was tested against four cancer cell lines and a non-malignant cell using MTT assay. Antibacterial activity was assessed using the disc diffusion and broth microdilution assays. Standard phytochemical screening tests for saponins, tannins, terpenoids, flavonoids and alkaloids were also conducted. Results The ethyl acetate, butanol and water fractions possessed strong radical scavenging activity (IC50 8.6-13.0 μg/ml) and cytotoxic activity towards human colon cancer cell HT-29 (IC50 27.5-42.8 μg/ml). The three extracts were also effective against all Gram-positive bacteria tested: Bacillus cereus, Micrococcus luteus, methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA) and Stapylococcus epidermidis(minimum inhibitory concentration MIC 15.6-250 μg/ml; minimum bactericidal concentration MBC 15.6-250 μg/ml). Phytochemical analysis revealed the presence of flavonoids, terpenoids and tannins. Ethyl acetate and butanol fractions showed highest total phenolic content (675-804 mg gallic acid equivalent/g). Conclusions The results indicate that this fern is a potential candidate to be used as an antioxidant agent, for colon cancer therapy and for treatment of MRSA infections and other MSSA/Gram-positive bacterial infectious diseases. PMID:20429956
Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods.
Septama, Abdi Wira; Panichayupakaranant, Pharkphoom
2015-01-01
Preparations from Artocarpus heterophyllus Lam. (Moraceae) heartwoods are used in the traditional folk medicine for the treatment of inflammation, malarial fever, and to prevent bacterial and fungal infections. The objective of this study was to isolate pure antibacterial compounds from A. heterophyllus heartwoods. The dried and powdered A. heterophyllus heartwoods were successively extracted with the following solvents: hexane, ethyl acetate, and methanol. Each of the extracts was screened for their antibacterial activities using a disc diffusion method (10 mg/disc). Their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined using a broth microdilution method. The extract that showed the strongest antibacterial activities was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract exhibited the strongest antibacterial activities against Streptococcus mutans, S. pyogenes, and Bacillus subtilis with MIC values of 78, 39, and 9.8 µg/mL, respectively. Based on an antibacterial assay-guided isolation, four antibacterial compounds: cycloartocarpin (1), artocarpin (2), artocarpanone (3), and cyanomaclurin (4) were purified. Among these isolated compounds, artocarpin exhibited the strongest antibacterial activity against Gram-positive bacteria, including S. mutans, S. pyogenes, B. subtilis, Staphylococcus aureus, and S. epidermidis with MICs of 4.4, 4.4, 17.8, 8.9, and 8.9 µM, respectively, and MBCs of 8.9, 8.9, 17.8, 8.9, and 8.9 µM, respectively, while artocarpanone showed the strongest activity against Escherichia coli, a Gram-negative bacteria with MIC and MBC values of 12.9 and 25.8 µM, respectively. Only artocarpin showed inhibitory activity against Pseudomonas aeruginosa with an MIC of 286.4 µM.
Fankam, Aimé G; Kuiate, Jules R; Kuete, Victor
2015-06-30
Bacterial resistance to antibiotics is becoming a serious problem worldwide. The discovery of new and effective antimicrobials and/or resistance modulators is necessary to tackle the spread of resistance or to reverse the multi-drug resistance. We investigated the antibacterial and antibiotic-resistance modifying activities of the methanol extracts from Allanblackia gabonensis, Gladiolus quartinianus and Combretum molle against 29 Gram-negative bacteria including multi-drug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the samples meanwhile the standard phytochemical methods were used for the preliminary phytochemical screening of the plant extracts. Phytochemical analysis showed the presence of alkaloids, flavonoids, phenols and tannins in all studied extracts. Other chemical classes of secondary metabolites were selectively presents. Extracts from A. gabonensis and C. molle displayed a broad spectrum of activity with MICs varying from 16 to 1024 μg/mL against about 72.41% of the tested bacteria. The extract from the fruits of A. gabonensis had the best activity, with MIC values below 100 μg/mL on 37.9% of tested bacteria. Percentages of antibiotic-modulating effects ranging from 67 to 100% were observed against tested MDR bacteria when combining the leaves extract from C. molle (at MIC/2 and MIC/4) with chloramphenicol, kanamycin, streptomycin and tetracycline. The overall results of the present study provide information for the possible use of the studied plant, especially Allanblackia gabonensis and Combretum molle in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.
Malmgren, Judith A; Mayer, Musa; Atwood, Mary K; Kaplan, Henry G
2018-01-01
Differences in de novo (dnMBC) and recurrent metastatic breast cancer (rMBC) presentation and survival over time have not been adequately described. A retrospective cohort study, 1990-2010, with follow up through 2015 of dnMBC patients (stage IV at diagnosis) and rMBC patients with subsequent distant metastatic recurrence (stage I-III initial diagnosis) [dnMBC = 247, rMBC = 911)]. Analysis included Chi squared tests of categorical variables, Kaplan-Meier survival estimates, and Cox proportional adjusted hazard ratios (HzR) and 95% confidence intervals (CI). Disease specific survival (DSS) was time from diagnosis or distant recurrence to BC death. Over time, 1990-1998, 1999-2004, and 2005-2010, dnMBC incidence was constant (3%) and rMBC incidence decreased [18% to 7% (p < 0.001)] with no change in dnMBC hormone receptor (HR) or her2-neu (HER2) status but a decrease in rMBC HER2-positive cases and increase in triple negative breast cancer (HR-negative/HER2-negative) (p = 0.049). Five-year dnMBC DSS was 44% vs. 21% for rMBC (p < 0.001). Five-year dnMBC DSS improved over time [28% to 55% (p = 0.008)] and rMBC worsened [23% to 13%, p = 0.065)]. Worse DSS was associated with HR-negative status (HzR = 1.63; 1.41, 1.89), rMBC (HzR = 1.88; 1.58, 2.23), older age (70 +) (HzR = 1.88; 1.58, 2.24), > 1 distant metastases (HzR 1.39; 1.20, 1.62), and visceral dominant disease (HzR 1.22; 1.05, 1.43). After 1998, HER2-positive disease was associated with better DSS (HzR = 0.72, 95% CI 0.56, 0.93). Factors associated with the widening survival gap and non-equivalence between dnMBC and rMBC and decreased rMBC incidence warrant further study.
Synthesis of Some New Quinazolinone Derivatives and Evaluation of Their Antimicrobial Activities
Khodarahmi, Ghadamali; Jafari, Elham; Hakimelahi, Gholamhossein; Abedi, Daryoush; Rahmani Khajouei, Marzieh; Hassanzadeh, Farshid
2012-01-01
Wide range of quinazolinone biological properties including: antibacterial, anticancer, and anti-inflammatory activities encouraged us to synthesis some fused quinazolinone derivatives. Anthranilic acid was condensed with chloro acylchloride followed by dehydration to form the benzoxazinone intermediate; subsequent addition of an amine provided the fused quinazolinones. Deoxyvasicinone which was previously synthesized by a multi step complex reactions was prepared in three steps using the following procedure: Log P values of the compounds were measured using the shake flask method in octanol/water solvent system. The synthesized compounds were evaluated against six strains of bacteria (three Gram-positive and three Gram-negative) and three strains of fungi. Overall results of antimicrobial tests showed that the compounds had better bacteriostatic activity against Gram-negative bacteria. The obtained results of MBC revealed that these compounds had more significant bacteriostatic than bactericidal activities. Almost all of the screened compounds showed good activity against C. albicans and A. niger. The obtained results of MFC indicated that these compounds had more significant fungistatic than fungicidal activities. PMID:24250506
Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori.
Shin, Il Shik; Masuda, Hideki; Naohide, Kinae
2004-08-01
In this study, the bactericidal activity of Korean and Japanese wasabi roots, stems and leaves against Helicobacter pylori were examined. Allyl isothiocyanate (AIT) in roots, stems and leaves of Korean wasabi were 0.75, 0.18 and 0.32 mg/g, respectively. AIT in roots, stems and leaves of Japanese wasabi were 1.18, 0.41 and 0.38 mg/g, respectively. All parts of wasabi showed bactericidal activities against H. pylori strain NCTC 11637, YS 27 and YS 50. The leaves of both wasabi showed the highest bactericidal activities with the minimum bactericidal concentration of 1.05-1.31 mg of dry weight/ml against three strains of H. pylori. The roots showed a little lower bactericidal activity with 2.09-4.17 mg of dry weight/ml against them. The main component related to antimicrobial activity in wasabi is well known to be AIT. In this study, the bactericidal activity of leaves was higher than that of roots, although AIT amount of leaves was lower than that of roots. These results suggest that certain components besides AIT in wasabi are effective in killing H. pylori.
Two Major Medicinal Honeys Have Different Mechanisms of Bactericidal Activity
Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.
2011-01-01
Honey is increasingly valued for its antibacterial activity, but knowledge regarding the mechanism of action is still incomplete. We assessed the bactericidal activity and mechanism of action of Revamil® source (RS) honey and manuka honey, the sources of two major medical-grade honeys. RS honey killed Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa within 2 hours, whereas manuka honey had such rapid activity only against B. subtilis. After 24 hours of incubation, both honeys killed all tested bacteria, including methicillin-resistant Staphylococcus aureus, but manuka honey retained activity up to higher dilutions than RS honey. Bee defensin-1 and H2O2 were the major factors involved in rapid bactericidal activity of RS honey. These factors were absent in manuka honey, but this honey contained 44-fold higher concentrations of methylglyoxal than RS honey. Methylglyoxal was a major bactericidal factor in manuka honey, but after neutralization of this compound manuka honey retained bactericidal activity due to several unknown factors. RS and manuka honey have highly distinct compositions of bactericidal factors, resulting in large differences in bactericidal activity. PMID:21394213
Liu, Songlin; Jiang, Zhijian; Zhang, Jingping; Wu, Yunchao; Lian, Zhonglian; Huang, Xiaoping
2016-09-15
To assess the effect of nutrient enrichment on the source and composition of sediment organic carbon (SOC) beneath Thalassia hemprichii and Enhalus acoroides in tropical seagrass beds, Xincun Bay, South China Sea, intertidal sediment, primary producers, and seawater samples were collected. No significant differences on sediment δ(13)C, SOC, and microbial biomass carbon (MBC) were observed between T. hemprichii and E. acoroides. SOC was mainly of autochthonous origin, while the contribution of seagrass to SOC was less than that of suspended particulate organic matter, macroalgae and epiphytes. High nutrient concentrations contributed substantially to SOC of seagrass, macroalgae, and epiphytes. The SOC, MBC, and MBC/SOC ratio in the nearest transect to fish farming were the highest. This suggested a more labile composition of SOC and shorter turnover times in higher nutrient regions. Therefore, the research indicates that nutrient enrichment could enhance plant-derived contributions to SOC and microbial use efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria.
Kim, Byunghoon; Kim, Dohwan; Cho, Donglyun; Cho, Sungyong
2003-07-01
Titanium dioxide (TiO(2)) photocatalysts have attracted great attention as a material for photocatalytic sterilization in the food and environmental industry. This research aimed to design a new photobioreactor and its application to sterilize selected food borne pathogenic bacteria, Salmonella choleraesuis subsp., Vibrio parahaemolyticus, and Listeria monocytogenes. The photocatalytic reaction was carried out with various TiO(2) concentrations and Ultraviolet (UV) illumination time. A feasible synergistic effect was found that the bactericidal effect of TiO(2) on all bacterial suspension after UV light irradiation was much higher than that of without TiO(2). As the concentration of TiO(2) increased to 1.0 mg/ml, bactericidal effect increased. However, the bactericidal effect was rapidly abbreviated at TiO(2) concentration higher than 1.25 mg/ml to all selected bacteria. UV illumination time affected drastically the viability of all bacteria with different death rate. Similar trends were obtained from S. choleraesuis subsp. and V. parahaemolyticus that their complete killing was achieved after 3 h of illumination. However, L. monocytogenes was more resistant and its death ratio was about 87% at that time.
Antibacterial Activity of Cinoxacin In Vitro
Giamarellou, Helen; Jackson, George G.
1975-01-01
Cinoxacin is a new synthetic compound similar chemically and in antimicrobial activity to oxolonic acid and nalidixic acid. It is most effective against Escherichia coli and Proteus mirabilis, but at concentrations expected in the urine it is inhibitory for all species of Enterobacteriaceae. Relative to nalidixic acid, cinoxacin has slightly greater inhibitory and bactericidal activity, less inoculum effect probably due to less heterogeneity in the susceptibility of bacterial cells, and less inhibition by high concentrations of serum protein. Both drugs are more active in an acid than an alkaline medium. Glucose can specifically antagonize the inhibitory effect against P. mirabilis. In urine the bactericidal rate and effect are decreased. Resistance to cinoxacin can be developed quickly by serial transfers in vitro. Some nonresistant organisms remained viable in bactericidal drug concentrations. The in vivo importance of the favorable features of cinoxacin must be determined by clinical trials. PMID:1096811
Polymer-surfactant complex formation and its effect on turbulent wall shear stress.
Suksamranchit, Siriluck; Sirivat, Anuvat; Jamieson, Alexander M
2006-02-01
Turbulent drag reduction in Couette flow was investigated in terms of a decrease in wall shear stress for aqueous solutions of a nonionic polymer, poly(ethylene oxide) (PEO), a cationic surfactant, hexadecyltrimethylammonium chloride (HTAC), and their mixtures. Consistent with literature data, drag reduction was observed for PEO solutions above a critical molecular weight, 0.91 x 10(5) < Mc < 3.04 x 10(5) g/mol. Maximum drag reduction occurred at an optimum concentration, c(PEO)*, which scales inversely with molecular weight, and the % maximum drag reduction increases with molecular weight. For aqueous HTAC solutions, wall shear stress decreased with increasing HTAC concentration and leveled off at an optimum concentration, c(HTAC)*, comparable to the critical micelle concentration. For HTAC/PEO mixtures, the critical PEO molecular weight for drag reduction decreases, interpreted as due to an increase in hydrodynamic volume because of binding of HTAC micelles to PEO. Consistent with this interpretation, at fixed PEO concentration, maximum drag reduction was observed at an optimum HTAC concentration, c(HTAC/PEO)*, comparable to the maximum binding concentration, MBC. Also, with HTAC concentration fixed at the MBC, the optimum PEO concentration for drag reduction, c(PEO/HTAC)*, decreases relative to that, c(PEO)*, in the absence of HTAC.
Khamhaengpol, Arunrat; Siri, Sineenat
2016-10-01
Alternative to crude plant extracts, a crude protein extract derived from animal cells is one of the potential sources of biomolecules for mediating a reduction of silver ions and a formation of silver nanoparticles (AgNPs) under a mild condition, which very few works have been reported. This work demonstrated a use of the protein extract of weaver ant larvae as a bio-facilitator for a simple, green synthesis of AgNPs under fluorescent light at room temperature. The protein extract of weaver ant larvae exhibited the reducing and antioxidant activities, which assisted a formation of AgNPs in the reaction containing only silver nitrate under light exposure. Transmission electron microscopy images revealed the dispersed, spherical AgNPs with an average size of 7.87±2.54nm. The maximum surface plasmon resonance (SPR) band of the synthesized AgNPs was at 435nm. The energy-dispersive X-ray analysis revealed that silver was a major element of the particles. The identity of AgNPs was confirmed by X-ray diffraction pattern, selected area electron diffraction and high resolution transmission electron microscopy analyses, which demonstrated the planes of face centered cubic silver. The synthesized AgNPs showed antibacterial activity against both Escherichia coli and Staphylococcus aureus with the minimum bactericidal concentration (MBC) values equally at 250μg/ml, suggesting their potential application as an effective antibacterial agent. Copyright © 2016 Elsevier B.V. All rights reserved.
Montanari, Maria Pia; Mingoia, Marina; Varaldo, Pietro Emanuele
2001-01-01
AF 3013, the active metabolite of prulifloxacin, was tested to determine its inhibitory and bactericidal activities against 396 nosocomial and 258 community Italian isolates. Compared with that of ciprofloxacin, its activity (assessed in MIC and minimal bactericidal concentration tests) was generally similar or greater against gram-positive bacteria and greater against gram-negative bacteria. In time-kill assays using selected isolates, its bactericidal activity was comparable to that of ciprofloxacin. PMID:11709353
O'Brien-Simpson, Neil M; Pantarat, Namfon; Attard, Troy J; Walsh, Katrina A; Reynolds, Eric C
2016-01-01
We describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E. coli and MRSA. By using the MDC50 concentration of the parent AMP, the method provides high-throughput, quantitative screening of AMP analogues. A unique feature of the MDC assay is that it directly measures peptide/bacteria interactions and lysed cell numbers rather than bacteria survival as with MIC and MBC assays. With the threat of multi-drug resistant bacteria, this high-throughput MDC assay has the potential to aid in the development of novel antimicrobials that target bacteria with improved efficacy.
Hou, Yanfei; Nakahashi, Mutsumi; Mawatari, Kazuaki; Shimohata, Takaaki; Uebanso, Takashi; Harada, Yumi; Tsunedomi, Akari; Emoto, Takahiro; Akutagawa, Masatake; Kinouchi, Yohsuke; Takahashi, Akira
2016-01-01
The presence of antibiotics in the environment and their subsequent impact on the development of multi-antibiotic resistant bacteria has raised concerns globally. Consequently, much research is focused on a method to produce a better disinfectant. We have established a disinfectant system using UVA-LED that inactivates pathogenic bacteria. We assessed the bactericidal efficiency of a combination of UVA-LED and antibiotics against Vibrio parahaemolyticus. Combined use of antibiotic drugs and UVA irradiation was more bactericidal than UVA irradiation or antibacterial drugs alone. The bactericidal synergy was observed at low concentrations of each drug that are normally unable to kill the bacteria. This combination has the potential to become a sterilization technology.
Irwin, Sally V; Fisher, Peter; Graham, Emily; Malek, Ashley; Robidoux, Adriel
2017-01-01
Sulfites and other preservatives are considered food additives to limit bacterial contamination, and are generally regarded as safe for consumption by governmental regulatory agencies at concentrations up to 5000 parts per million (ppm). Consumption of bactericidal and bacteriostatic drugs have been shown to damage beneficial bacteria in the human gut and this damage has been associated with several diseases. In the present study, bactericidal and bacteriostatic effects of two common food preservatives, sodium bisulfite and sodium sulfite, were tested on four known beneficial bacterial species common as probiotics and members of the human gut microbiota. Lactobacillus species casei, plantarum and rhamnosus, and Streptococcus thermophilus were grown under optimal environmental conditions to achieve early log phase at start of experiments. Bacterial cultures were challenged with sulfite concentrations ranging between 10 and 3780 ppm for six hours. To establish a control, a culture of each species was inoculated into media containing no sulfite preservative. By two hours of exposure, a substantial decrease (or no increase) of cell numbers (based on OD600 readings) were observed for all bacteria types, in concentrations of sulfites between 250-500 ppm, compared to cells in sulfite free media. Further testing using serial dilution and drop plates identified bactericidal effects in concentrations ranging between 1000-3780 ppm on all the Lactobacillus species by 4 hours of exposure and bactericidal effects on S. thermophilus in 2000ppm NaHSO3 after 6 hours of exposure.
2017-01-01
Sulfites and other preservatives are considered food additives to limit bacterial contamination, and are generally regarded as safe for consumption by governmental regulatory agencies at concentrations up to 5000 parts per million (ppm). Consumption of bactericidal and bacteriostatic drugs have been shown to damage beneficial bacteria in the human gut and this damage has been associated with several diseases. In the present study, bactericidal and bacteriostatic effects of two common food preservatives, sodium bisulfite and sodium sulfite, were tested on four known beneficial bacterial species common as probiotics and members of the human gut microbiota. Lactobacillus species casei, plantarum and rhamnosus, and Streptococcus thermophilus were grown under optimal environmental conditions to achieve early log phase at start of experiments. Bacterial cultures were challenged with sulfite concentrations ranging between 10 and 3780 ppm for six hours. To establish a control, a culture of each species was inoculated into media containing no sulfite preservative. By two hours of exposure, a substantial decrease (or no increase) of cell numbers (based on OD600 readings) were observed for all bacteria types, in concentrations of sulfites between 250–500 ppm, compared to cells in sulfite free media. Further testing using serial dilution and drop plates identified bactericidal effects in concentrations ranging between 1000–3780 ppm on all the Lactobacillus species by 4 hours of exposure and bactericidal effects on S. thermophilus in 2000ppm NaHSO3 after 6 hours of exposure. PMID:29045472
Antagonistic effects of lipids against the bactericidal activity of thymol-beta-D-glucopyranoside
USDA-ARS?s Scientific Manuscript database
The gut of food-producing animals is a reservoir for zoonotic pathogens. Thymol is bactericidal against Salmonella, E. coli, and Campylobacter, but its rapid absorption from the proximal gut reveals a need for protective technologies to deliver effective concentrations to the lower gut where the pa...
Yu, Jeong Il; Choi, Doo Ho; Huh, Seung Jae; Ahn, Sung Ja; Lee, Ji Shin; Shin, Kyung Hwan; Kwon, Youngmee; Kim, Yong Bae; Suh, Chang-Ok; Kim, Jin Hee; Cho, Jihyoung; Kim, In Ah; Lee, Jong Hoon; Park, Won
2015-04-01
This retrospective study was performed to investigate the need for management modification in MBC according to evaluation of characteristics and failure patterns compared with IDC. We performed this multicenter study taking MBC and randomly assigned IDC cases matched for age (± 3 years), pathologic stage (T and N), locoregional treatment methods (surgery with or without radiation therapy), and period of treatment (± 6 months) that occurred from January 1999 to November 2011 in the 6 institutions of the Korean Radiation Oncology Group. A total of 144 female MBC patients were enrolled. The median follow-up was 51 months (range, 1-186 months). The rates of positivity for estrogen receptor (P < .001), progesterone receptor (P < .001), and HER2 (P = .007) were significantly lower in MBC patients. During follow-up, recurrence developed in 22 (15.3%) MBC and 6 (4.2%) IDC patients (P = .002). The median time to recurrence of MBC and IDC was 15 months and 24 months, respectively. Most instances of recurrence in MBC developed in the triple-negative (TN) subgroup (TN-MBC). In particular, locoregional recurrence developed exclusively in the TN-MBC subgroup. In the TN-MBC subgroup, the number of risk factors (pT2-3, N1-3) was related to significant differences in overall survival (P = .001) and recurrence-free survival (P < .001). The MBC patients had a higher rate of TN, poorer differentiation, and a higher recurrence rate than did the IDC patients. Considering the unique characteristics and failure patterns, it is necessary to modify the current management guidelines for MBC. Copyright © 2015 Elsevier Inc. All rights reserved.
Fazly Bazzaz, Bibi Sedigheh; Sarabandi, Sahar; Khameneh, Bahman; Hosseinzadeh, Hossein
2016-01-01
Objectives: Bacterial resistant infections have become a global health challenge and threaten the society’s health. Thus, an urgent need exists to find ways to combat resistant pathogens. One promising approach to overcoming bacterial resistance is the use of herbal products. Green tea catechins, the major green tea polyphenols, show antimicrobial activity against resistant pathogens. The present study aimed to investigate the effect of catechins, green tea extract, and methylxanthines in combination with gentamicin against standard and clinical isolates of Staphylococcus aureus (S. aureus) and the standard strain of Pseudomonas aeruginosa (P. aeruginosa). Methods: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values of different agents against bacterial strains were determined. The interactions of green tea extract, epigallate catechin, epigallocatechin gallate, two types of methylxanthine, caffeine, and theophylline with gentamicin were studied in vitro by using a checkerboard method and calculating the fraction inhibitory concentration index (FICI). Results: The MICs of gentamicin against bacterial strains were in the range of 0.312 - 320 μg/mL. The MIC values of both types of catechins were 62.5 - 250 μg/ mL. Green tea extract showed insufficient antibacterial activity when used alone. Methylxanthines had no intrinsic inhibitory activity against any of the bacterial strains tested. When green tea extract and catechins were combined with gentamicin, the MIC values of gentamicin against the standard strains and a clinical isolate were reduced, and synergistic activities were observed (FICI < 1). A combination of caffeine with gentamicin did not alter the MIC values of gentamicin. Conclusion: The results of the present study revealed that green tea extract and catechins potentiated the antimicrobial action of gentamicin against some clinical isolates of S. aureus and standard P. aeruginosa strains. Therefore, combinations of gentamicin with these natural compounds might be a promising approach to combat microbial resistance. PMID:28097041
Antimicrobial activity and mechanisms of Salvia sclarea essential oil.
Cui, Haiying; Zhang, Xuejing; Zhou, Hui; Zhao, Chengting; Lin, Lin
2015-12-01
Nowadays, essential oils are recognized as safe substances and can be used as antibacterial additives. Salvia sclarea is one of the most important aromatic plants cultivated world-wide as a source of essential oils. In addition to being flavoring foods, Salvia sclarea essential oil can also act as antimicrobials and preservatives against food spoilage. Understanding more about the antibacterial performance and possible mechanism of Salvia sclarea essential oil will be helpful for its application in the future. But so far few related researches have been reported. In our study, Salvia sclarea oil showed obvious antibacterial activity against all tested bacterial strains. Minimum inhibitory concentration (MIC) and minimum bactericide concentration (MBC) of seven pathogens were 0.05 and 0.1 % respectively. In addition, Salvia sclarea oil also exhibited a significant inhibitory effect on the growth of Escherichia coli (E. coli) in phosphate buffer saline (PBS) and meats. After treated with Salvia sclarea oil, Scanning Electron Microscope (SEM) images can clearly see the damage of cell membrane; the intracellular ATP concentrations of E. coli and S. aureus reduced 98.27 and 69.61 % respectively, compared to the control groups; the nuclear DNA content of E. coli and S. aureus was significantly reduced to 48.32 and 50.77 % respectively. In addition, there was massive leakage of cellular material when E. coli and S. aureus were exposed to Salvia sclarea oil. Salvia sclarea essential oil damaged the cell membrane and changed the cell membrane permeability, leading to the release of some cytoplasm such as macromolecular substances, ATP and DNA. In general, the antimicrobial action of Salvia sclarea essential oil is not only attributable to a unique pathway, but also involves a series of events both on the cell surface and within the cytoplasm. Therefore, more experiments need to be done to fully understand the antimicrobial mechanism of Salvia sclarea essential oil.
Xia, Xiaoqian; Lin, Siyuan; Zhao, Jun; Zhang, Wei; Lin, Kuangfei; Lu, Qiang; Zhou, Bingsheng
2018-02-01
Nickel (Ni)-contamination impairs soil ecosystem, threatening human health. A laboratory simulation of Ni-polluted farmland soil study, in the presence or absence of earthworm, was carried out to investigate the toxic responses of soil microorganisms, including microbial biomass C (MBC), soil basal respiration (SBR), metabolic quotient (qCO 2 ), urease (UA) and dehydrogenase activities (DHA). Additionally, the variations of Ni bioavailability were also explored. Results manifested that MBC and SBR were stimulated at 50 and 100 mg·kg -1 of Ni but inhibited by further increasing Ni level, showing a Hormesis effect. Earthworm input delayed the occurrence of a maximum SBR inhibition rate under the combined double-factors of time and dose. No specific effect of Ni concentration on the qCO 2 was observed. UA was significantly suppressed at 800 mg·kg -1 Ni (P < 0.05 or 0.01), whereas DHA was more sensitive and significantly inhibited throughout all the treatments (P < 0.01), indicating a pronounced dose-response relationship. The addition of earthworm facilitated all the biomarkers above. The time-dependent of dose-effect relationship (TDR) on MBC and SBR inhibition rates suggested that the peak responsiveness of microorganisms to Ni stress were approximate on the 21st day. The bioavailable form of per unit Ni concentration declined with time expanded and concentration increased, and the changeable process of the relative amount of bioavailability was mainly controlled by a physicochemical reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H. P.
2015-01-01
Aim: The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Materials and Methods: Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. Results: All vehicles exhibited bactericidal activity at 100% concentration. Conclusion: Propylene glycol was effective against three organisms namely S. mutans E. faecalis and E. coli and its bactericidal activity was at 50%, 25% and 50% respectively. PEG 1000 was effective against S. mutans and E. coli at 25%. Hence propylene glycol was effective on more number of organisms of which E. faecalis is a known resistant species. PEG 1000 was bactericidal at a lower concentration but was effective on two organisms only. PMID:25992336
Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H P
2015-01-01
The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. All vehicles exhibited bactericidal activity at 100% concentration. Propylene glycol was effective against three organisms namely S. mutans E. faecalis and E. coli and its bactericidal activity was at 50%, 25% and 50% respectively. PEG 1000 was effective against S. mutans and E. coli at 25%. Hence propylene glycol was effective on more number of organisms of which E. faecalis is a known resistant species. PEG 1000 was bactericidal at a lower concentration but was effective on two organisms only.
Ekizoğlu, Melike; Sağiroğlu, Meral; Kiliç, Ekrem; Hasçelik, Ayşe Gülşen
2016-04-19
Hospital infections are among the most prominent medical problems around the world. Using proper biocides in an appropriate way is critically important in overcoming this problem. Several reports have suggested that microorganisms may develop resistance or reduce their susceptibility to biocides, similar to the case with antibiotics. In this study we aimed to determine the antimicrobial activity of chlorhexidine digluconate against clinical isolates. The susceptibility of 120 hospital isolated strains of 7 bacterial genera against chlorhexidine digluconate was determined by agar dilution test, using minimum inhibitory concentration (MIC) values and the EN 1040 Basic Bactericidal Activity Test to determine the bactericidal activity. According to MIC values, Pseudomonas aeruginosa and Stenotrophomonas maltophilia were found to be less susceptible to chlorhexidine digluconate. Quantitative suspension test results showed that 4% chlorhexidine digluconate was effective against antibiotic resistant and susceptible bacteria after 5 min of contact time and can be safely used in our hospital. However, concentrations below 4% chlorhexidine digluconate caused a decrease in bactericidal activity, especially for Staphylococcus aureus and P. aeruginosa. It is crucial to use biocides at appropriate concentrations and to perform surveillance studies to trace resistance or low susceptibility patterns of S. aureus, P. aeruginosa, and other hospital isolates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Kathryn L.; Tilton, Fred A.; Jansik, Danielle P.
2012-06-14
Foam delivery technology (FDT) uses surfactant based foam to immobilize subsurface contaminants in situ. Where traditional approaches are impractical, FDT has the potential to overcome many of the technical challenges facing the remediation of contaminated deep vadose zone environments. However, little is known about the effects these reactive chemicals may have on microorganisms inhabiting the contaminated subsurface. In addition, there are currently no standard assays to assess microbial responses to subsurface remedial treatments while these agents are under development. The objective of this study was to develop a rapid laboratory assay to assess the potential growth inhibition and/or stimulation ofmore » microorganisms following exposure to candidate FDT components. Calcium polysulfide (CPS) and several surfactants (i.e. sodium laureth sulfate (SLES), sodium dodecyl sulfate (SDS), cocamidopropyl betaine (CAPB) and NINOL40-CO) have diverse chemistries and are candidate components of FDT. Shewanella oneidensis MR-1 cultures were exposed to a range of concentrations of these chemicals to determine the minimum bactericidal concentration (MBC) and the growth and viability potential of these components. Concentrations of SDS higher than 700 {micro}M were toxic to S. oneidensis MR-1 growth over the course of four days of exposure. The relative acute toxicity order for these compounds was SDS>>CPS>>NINOL40-CO>SLES-CAPB. Dose dependent growth decreases (20 to 100 mM) were observed in the CAPB and SLES treated cultures and both CPS and NINOL 40-CO were toxic at all concentrations tested (1.45 to 7.25 mM CPS). Both SLES (20 to 100 mM) and SDS at lower concentrations (20 to 500 {micro}M) were stimulatory to S. oneidensis MR-1 indicating a capacity to be used as a carbon source. These studies also identified potentially key component characteristics, such as precipitate formation and oxygen availability, which may prove valuable in assessing the response of subsurface microorganisms. This benchtop system provides a capability to assess adverse microbial-remediation responses and contributes to the development of in situ remedial chemistries before they are deployed in the field.« less
Bailey, Kathryn L; Tilton, Fred; Jansik, Danielle P; Ergas, Sarina J; Marshall, Matthew J; Miracle, Ann L; Wellman, Dawn M
2012-06-01
Foam delivery technology (FDT) uses surfactant based foam to immobilize subsurface contaminants in situ. Where traditional approaches are impractical, FDT has the potential to overcome many of the technical challenges facing the remediation of contaminated deep vadose zone environments. However, little is known about the effects these reactive chemicals may have on microorganisms inhabiting the contaminated subsurface. In addition, there are currently no standard assays to assess microbial responses to subsurface remedial treatments while these agents are under development. The objective of this study was to develop a rapid laboratory assay to assess the potential growth inhibition and/or stimulation of microorganisms following exposure to candidate FDT components. Calcium polysulfide (CPS) and several surfactants (i.e. sodium laureth sulfate (SLES), sodium dodecyl sulfate (SDS), cocamidopropyl betaine (CAPB) and NINOL40-CO) have diverse chemistries and are candidate components of FDT. Shewanella oneidensis MR-1 cultures were exposed to a range of concentrations of these chemicals to determine the minimum bactericidal concentration (MBC) and the growth and viability potential of these components. Concentrations of SDS higher than 700 μM were toxic to S. oneidensis MR-1 growth over the course of four days of exposure. The relative acute toxicity order for these compounds was SDS > CPS > NINOL 40-CO>SLES≥CAPB. Dose dependent growth decreases (20-100mM) were observed in the CAPB and SLES treated cultures and both CPS and NINOL 40-CO were toxic at all concentrations tested (1.45-7.25 mM CPS). Both SLES (20-100mM) and SDS at lower concentrations (20-500 μM) were stimulatory to S. oneidensis MR-1 indicating a capacity to be used as a carbon source. These studies also identified potentially key component characteristics, such as precipitate formation and oxygen availability, which may prove valuable in assessing the response of subsurface microorganisms. This benchtop system provides a capability to assess adverse microbial-remediation responses and contributes to the development of in situ remedial chemistries before they are deployed in the field. Copyright © 2012 Elsevier Inc. All rights reserved.
Zuo, Guo-Ying; Zhang, Xin-Juan; Han, Jun; Li, Yu-Qing; Wang, Gen-Chun
2015-12-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a problematic pathogen posing a serious therapeutic challenge in the clinic. It is often multidrug-resistant (MDR) to conventional classes of antibacterial agents and there is an urgent need to develop new agents or strategies for treatment. Magnolol (ML) and honokiol (HL) are two naturally occurring diallylbiphenols which have been reported to show inhibition of MRSA. In this study their synergistic effects with antibacterial agents were further evaluated via checkerboard and time-kill assays. The susceptibility spectrum of clinical MRSA strains was tested by the disk diffusion method. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of ML and HL were assayed by broth microdilution. The synergy was evaluated through checkerboard microdilution and time-killing experiments. ML and HL showed similar activity against both MSSA and MRSA with MIC/MBC at 16 ~ 64 mg/L, with potency similar to amikacin (AMK) and gentamicin (GEN). When they were used in combination with conventional antibacterial agents, they showed bacteriostatic synergy with FICIs between 0.25 ~ 0.5, leading to the combined MICs decreasing to as low as 1 ~ 2 and 1 ~ 16 mg/L for ML (HL) and the agents, respectively. MIC50 of the combinations decreased from 16 mg/L to 1 ~ 4 mg/L for ML (HL) and 8 ~ 128 mg/L to 2 ~ 64 mg/L for the antibacterial agents, which exhibited a broad spectrum of synergistic action with aminoglycosides (AMK, etilmicin (ETM) and GEN), floroquinolones (levofloxacin (LEV), ciprofloxacin and norfloxacin), fosfomycin (FOS) and piperacillin. The times of dilution (TOD, the extent of decreasing in MIC value) were determined up to 16 for the combined MIC. A more significant synergy after combining was determined as ML (HL) with AMK, ETM, GEN and FOS. ML (HL) combined with antibacterial agents did not show antagonistic effects on any of the ten MRSA strains. Reversal effects of MRSA resistance to AMK and GEN by ML and HL were also observed, respectively. All the combinations also showed better dynamic bactericidal activity against MRSA than any of single ML (HL) or the agents at 24 h incubation. The more significant synergy of combinations were determined as HL (ML) + ETM, HL + LEV and HL + AMK (GEN or FOS), with △LC24 of 2.02 ~ 2.25. ML and HL showed synergistic potentiation of antibacterial agents against clinical isolates of MRSA and warrant further pharmacological investigation.
Genetic effects of methyl benzimidazole-2-yl-carbamate on Saccharomyces cerevisiae.
Wood, J S
1982-01-01
The genetic effects of the mitotic inhibitor methyl benzimidazole-2-yl-carbamate (MBC) have been studied in Saccharomyces cerevisiae. MBC had little or no effect on the frequency of mutation. In some experiments MBC caused an increase in the frequency of mitotic recombination; however, this effect was small and not reproducible. The primary genetic effect of MBC was to induce mitotic chromosome loss at a high frequency. Chromosome loss occurred at equal frequencies for all chromosomes tested (13 of 16). Cells which had lost multiple chromosomes were found more frequently than predicted if individual chromosome loss events were independent. The probability of loss for a particular chromosome increased with length of time cells were incubated with MBC. MBC treatment also increased the frequency at which polyploid cells were found. These results suggested that MBC acted to disrupt the structure or function of the mitotic spindle and cause chromosome nondisjunction. PMID:6757720
Imani, Saber; Hosseinifard, Hossein; Cheng, Jingliang; Wei, Chunli; Fu, Junjiang
2016-01-01
The epithelial-to-mesenchymal transition (EMT) is a vital control point in metastatic breast cancer (MBC). TWIST1, SNAIL1, SLUG, and ZEB1, as key EMT-inducing transcription factors (EMT-TFs), are involved in MBC through different signaling cascades. This updated meta-analysis was conducted to assess the correlation between the expression of EMT-TFs and prognostic value in MBC patients. A total of 3,218 MBC patients from fourteen eligible studies were evaluated. The pooled hazard ratios (HR) for EMT-TFs suggested that high EMT-TF expression was significantly associated with poor prognosis in MBC patients (HRs = 1.72; 95% confidence intervals (CIs) = 1.53–1.93; P = 0.001). In addition, the overexpression of SLUG was the most impactful on the risk of MBC compared with TWIST1 and SNAIL1, which sponsored fixed models. Strikingly, the increased risk of MBC was less associated with ZEB1 expression. However, the EMT-TF expression levels significantly increased the risk of MBC in the Asian population (HR = 2.11, 95% CI = 1.70–2.62) without any publication bias (t = 1.70, P = 0.11). These findings suggest that the overexpression of potentially TWIST1, SNAIL1 and especially SLUG play a key role in the aggregation of MBC treatment as well as in the improvement of follow-up plans in Asian MBC patients. PMID:27335258
Bactericidal activity and post-antibiotic effect of ozenoxacin against Propionibacterium acnes.
Kanayama, Shoji; Okamoto, Kazuaki; Ikeda, Fumiaki; Ishii, Ritsuko; Matsumoto, Tatsumi; Hayashi, Naoki; Gotoh, Naomasa
2017-06-01
Ozenoxacin, a novel non-fluorinated topical quinolone, is used for the treatment of acne vulgaris in Japan. We investigated bactericidal activity and post-antibiotic effect (PAE) of ozenoxacin against Propionibacterium acnes, a major causative bacterium of acne vulgaris. The minimum inhibitory concentrations (MICs) of ozenoxacin against 3 levofloxacin-susceptible strains (MIC of levofloxacin; ≤4 μg/mL) and 3 levofloxacin-resistant strains (MIC of levofloxacin; ≥8 μg/mL) ranged from 0.03 to 0.06 μg/mL and from 0.25 to 0.5 μg/mL, respectively. These MICs of ozenoxacin were almost the same or lower than nadifloxacin and clindamycin. The minimum bactericidal concentrations (MBCs) of ozenoxacin against the levofloxacin-susceptible and -resistant strains were from 0.06 to 8 μg/mL and from 0.5 to 4 μg/mL, respectively. These MBCs were lower than those of nadifloxacin and clindamycin. In time-kill assay, ozenoxacin at 1/4, 1 and 4 times the respective MIC against both levofloxacin-susceptible and -resistant strains showed a concentration-dependent bactericidal activity. Ozenoxacin at 4 times the MICs against the levofloxacin-susceptible strains showed more potent and more rapid onset of bactericidal activity compared to nadifloxacin and clindamycin at 4 times the respective MICs. The PAEs of ozenoxacin at 4 times the MICs against the levofloxacin-susceptible strains were from 3.3 to 17.1 h, which were almost the same or longer than nadifloxacin and clindamycin. In contrast, the PAEs were hardly induced by any antimicrobial agents against the levofloxacin-resistant strains. The present findings suggest that ozenoxacin has a potent bactericidal activity against both levofloxacin-susceptible and -resistant P. acnes, and a long-lasting PAE against levofloxacin-susceptible P. acnes. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Balagopalan, Lakshmi; Chen, Mei-Hui; Geisbrecht, Erika R.; Abmayr, Susan M.
2006-01-01
myoblast city (mbc), a member of the CDM superfamily, is essential in the Drosophila melanogaster embryo for fusion of myoblasts into multinucleate fibers. Using germ line clones in which both maternal and zygotic contributions were eliminated and rescue of the zygotic loss-of-function phenotype, we established that mbc is required in the fusion-competent subset of myoblasts. Along with its close orthologs Dock180 and CED-5, MBC has an SH3 domain at its N terminus, conserved internal domains termed DHR1 and DHR2 (or “Docker”), and C-terminal proline-rich domains that associate with the adapter protein DCrk. The importance of these domains has been evaluated by the ability of MBC mutations and deletions to rescue the mbc loss-of-function muscle phenotype. We demonstrate that the SH3 and Docker domains are essential. Moreover, ethyl methanesulfonate-induced mutations that change amino acids within the MBC Docker domain to residues that are conserved in other CDM family members nevertheless eliminate MBC function in the embryo, which suggests that these sites may mediate interactions specific to Drosophila MBC. A functional requirement for the conserved DHR1 domain, which binds to phosphatidylinositol 3,4,5-triphosphate, implicates phosphoinositide signaling in myoblast fusion. Finally, the proline-rich C-terminal sites mediate strong interactions with DCrk, as expected. These sites are not required for MBC to rescue the muscle loss-of-function phenotype, however, which suggests that MBC's role in myoblast fusion can be carried out independently of direct DCrk binding. PMID:17030600
Indirect costs associated with metastatic breast cancer.
Wan, Yin; Gao, Xin; Mehta, Sonam; Wang, Zhixiao; Faria, Claudio; Schwartzberg, Lee
2013-10-01
To compare the indirect costs of productivity loss between metastatic breast cancer (MBC) and early stage breast cancer (EBC) patients, as well as their respective family members. The MarketScan Health and Productivity Management database (2005-2009) was used. Adult BC patients eligible for employee benefits of sick leave and/or short-term disability were identified with ICD-9 codes. Difference in sick leave and short-term disability days was calculated between MBC patients and their propensity score matched EBC cohort and general population (controls) during a 12-month follow-up period. Generalized linear models were used to examine the impact of MBC on indirect costs to patients and their families. A total of 139 MBC, 432 EBC, and 820 controls were eligible for sick leave and 432 MBC, 1552 EBC, and 4682 controls were eligible for short-term disability (not mutually exclusive). After matching, no statistical difference was found in sick leave days and the associated costs between MBC and EBC cohorts. However, MBC patients had significantly higher short-term disability costs than EBC patients and controls (MBC: $6166 ± $9194 vs. EBC: $3690 ± $6673 vs. $558 ± $2487, both p < 0.001). MBC patients had more sick leave cost than controls ($2383 ± $5539 vs. $1282 ± $2083, p < 0.05). Controlling for covariates, MBC patients incurred 47% more short-term disability costs vs EBC patients (p = 0.009). Older patients (p = 0.002), non-HMO payers (p < 0.05), or patients not receiving chemotherapy during follow-up (p < 0.001) were associated with lower short-term disability costs. MBC patients' families incurred 39.7% (p = 0.06) higher indirect costs compared to EBC patients' families after controlling for key covariates. Productivity loss and associated costs in MBC patients are substantially higher than EBC patients or the general population. These findings underscore the economic burden of MBC from a US societal perspective. Various treatment regimens should be evaluated to identify opportunities to reduce the disease burden from the societal perspective.
Effects of myclobutanil on soil microbial biomass, respiration, and soil nitrogen transformations.
Ju, Chao; Xu, Jun; Wu, Xiaohu; Dong, Fengshou; Liu, Xingang; Zheng, Yongquan
2016-01-01
A 3-month-long experiment was conducted to ascertain the effects of different concentrations of myclobutanil (0.4 mg kg(-1) soil [T1]; 1.2 mg kg(-1) soil [T3]; and 4 mg kg(-1) soil [T10]) on soil microbial biomass, respiration, and soil nitrogen transformations using two typical agricultural soils (Henan fluvo-aquic soil and Shanxi cinnamon soil). Soil was sampled after 7, 15, 30, 60, and 90 days of incubation to determine myclobutanil concentration and microbial parameters: soil basal respiration (RB), microbial biomass carbon (MBC) and nitrogen (MBN), NO(-)3-N and NH(+)4-N concentrations, and gene abundance of total bacteria, N2-fixing bacteria, fungi, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB). The half-lives of the different doses of myclobutanil varied from 20.3 to 69.3 d in the Henan soil and from 99 to 138.6 d in the Shanxi soil. In the Henan soil, the three treatments caused different degrees of short-term inhibition of RB and MBC, NH(+)4-N, and gene abundance of total bacteria, fungi, N2-fixing bacteria, AOA, and AOB, with the exception of a brief increase in NO(-)3-N content during the T10 treatment. The MBN (immobilized nitrogen) was not affected. In the Shanxi soil, MBC, the populations of total bacteria, fungi, and N2-fixing bacteria, and NH(+)4-N concentration were not significantly affected by myclobutanil. The RB and MBN were decreased transitorily in the T10 treatment. The NO(-)3-N concentrations and the abundance of both AOA and AOB were erratically stimulated by myclobutanil. Regardless of whether stimulation or suppression occurred, the effects of myclobutanil on the two soil types were short term. In summary, myclobutanil had no long-term negative effects on the soil microbial biomass, respiration, and soil nitrogen transformations in the two types of soil, even at 10-fold the recommended dosage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kulow, Megan; Zibaee, Fahimeh; Allard, Marianne; Döpfer, Dörte
2015-11-01
Infectious claw diseases continue to plague cattle in intensively managed husbandry systems. Poor foot hygiene and constant moist environments lead to the infection and spread of diseases such as digital dermatitis (hairy heel warts), interdigital dermatitis, and interdigital phlegmon (foot rot). Currently, copper sulfate and formalin are the most widely used disinfecting agents in bovine footbaths; however, the industry could benefit from more environmentally and worker friendly substitutes. This study determined the in vitro minimum inhibitory concentrations and minimum bactericidal concentrations of Thymox (Laboratoire M2, Sherbrooke, Québec, Canada) for a selection of microorganisms related to infectious bovine foot diseases. Thymox is a broad-spectrum agricultural disinfectant that is nontoxic, noncorrosive, and readily biodegradable. The values for minimum inhibitory concentration and minimum bactericidal concentration indicated that Thymox inhibited growth and killed the various species of microorganisms under study at much lower concentrations compared with the recommended working concentration of a 1% solution. Overall, the values found in this study of minimum inhibitory concentration and minimum bactericidal concentration of Thymox show its potential as an alternative antibacterial agent used in bovine footbaths; however, field trials are needed to determine its effectiveness for the control and prevention of infectious claw diseases. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Global analysis of advanced/metastatic breast cancer: Decade report (2005-2015).
Cardoso, Fatima; Spence, Danielle; Mertz, Shirley; Corneliussen-James, Dian; Sabelko, Kimberly; Gralow, Julie; Cardoso, Maria-João; Peccatori, Fedro; Paonessa, Diego; Benares, Ann; Sakurai, Naomi; Beishon, Marc; Barker, Sarah-Jane; Mayer, Musa
2018-06-01
Approximately 0.5 million people worldwide die from metastatic breast cancer (mBC) every year. This manuscript provides an overview on the status of mBC in several regions of the world, highlighting the gaps in care, resources, and support available for patients with mBC. Primary research was conducted in 2015 and 2016, comprising four global qualitative and quantitative surveys of approximately 15,000 individuals in 34 countries. Secondary research was conducted using literature reviews of peer-reviewed publications, patient survey reports, and media or online articles. There have been modest improvements in mBC outcomes over the past decade. Patients are not provided with adequate information about mBC. There is a need for open discussion with patients and caregivers about realistic goals; however, physicians are not trained in communicating with patients about their disease. Maintaining patients' quality of life is a crucial goal; however, this has not improved, and in some cases, may have declined in the past decade. Public awareness and understanding of mBC is limited, with damaging consequences for patients and caregivers. Issues affecting employment remain relevant to patients with mBC and their caregivers. Globally, mBC is associated with a substantial economic burden. Relationships with caregivers are crucial to patients with mBC, and caregiver support needs are often overlooked. A strong and united global effort among healthcare professionals, including clinicians, oncologists, pharmaceutical manufacturers, payers, and policy makers, and with advocates, families, and patients, is necessary to improve the outcome and quality of life for patients with mBC. Copyright © 2018 Elsevier Ltd. All rights reserved.
Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis
NASA Astrophysics Data System (ADS)
Xu, W.; Yuan, W.
2017-12-01
Soil microbes play important roles in regulating terrestrial carbon and nitrogen cycling and strongly influence feedbacks of ecosystem to global warming. However, the inconsistent responses of microbial biomass carbon (MBC) and nitrogen (MBN) to experimental warming have been observed, and the response on ratio between MBC and MBN (MBC:MBN) has not been identified. This meta-analysis synthesized the warming experiments at 58 sites globally to investigate the responses of MBC:MBN to climate warming. Our results showed that warming significantly increased MBC by 3.61 ± 0.80% and MBN by 5.85 ± 0.90% and thus decreased the MBC:MBN by 3.34 ± 0.66%. MBC showed positive responses to warming but MBN exhibited negative responses to warming at low warming magnitude (<1°C); however, at high warming magnitude (>2°C) the results were inverted. The different effects of warming magnitude on microbial biomass resulted from the warming-induced decline in soil moisture and substrate supply. Moreover, MBC and MBN had strong positive responses to warming at the mid-term (3-4 years) or short-term (1-2 years) duration, but the responses tended to decrease at long-term (≥ 5 years) warming duration. This study fills the knowledge gap on the responses of MBC:MBN to warming and may benefit the development of coupled carbon and nitrogen models.
Shafiei, Zaleha; Haji Abdul Rahim, Zubaidah; Philip, Koshy; Thurairajah, Nalina
2016-01-01
Plant extracts mixture (PEM) and its individual constituent plant extracts( Psidium sp., Mangifera sp., Mentha sp.) are known to have an anti-adhering effect towards oral bacteria in the single-species biofilm. To date, the adhering ability of the early and late plaque colonisers ( Streptococcus sanguinis and Streptococcus mutans ) to PEM-treated experimental pellicle have not been investigated in dual-species biofilms. Fresh leaves of these plants were used in the preparation of the respective aqueous extract decoctions. The minimum inhibitory concentration (MIC) of the extracts towards S. sanguinis ATCC BAA-1455 and S. mutans ATCC 25175 was determined using a two-fold serial microdilution method. The sum of fractional inhibitory concentration (ΣFIC) index of PEM and its constituent plant extracts was calculated using the MIC values of the plants. The minimum bactericidal concentration (MBC) of the plant extracts was also determined. The anti-adherence effect of the plant extracts (individually and mixed) was carried out by developing simulated S. sanguinis and S. mutans respectively in single- and dual-species of biofilms in the Nordini's Artificial Mouth (NAM) model system in which the experimental pellicle was pretreated with the plant extract before bacterial inoculation. The bacterial population in the respective biofilms was quantified using ten-fold serial dilutions method and expressed as colony forming unit per ml (CFU/ml). The bacterial population was also viewed using Scanning Electron Microscope (SEM). All experiments were done in triplicate. The PEM compared with its respective constituent plants showed the lowest MIC towards S. sanguinis (3.81 mg/ml) and S. mutans (1.91 mg/ml) and exhibited a synergistic effect. The Psidium sp. (15.24 mg/ml) and, PEM and Psidium sp. (30.48 mg/ml) showed the lowest MBC towards S. sanguinis and S. mutans respectively. The anti-adherence effect of the PEM and its respective constituent plants (except Psidium sp.) was different for the two bacteria in the single-species biofilm. In the dual-species biofilms, PEM demonstrated similar anti-adherence effect towards S. sanguinis and S. mutans . The proportions of the bacterial population viewed under SEM appeared to be in agreement with the quantified population. The combination of the active constituents of the individual plant extracts in PEM may contribute to its low MIC giving rise to the synergistic effect. The different anti-adherence effect towards S. sanguinis and S. mutans in both single- and dual-species biofilms could be due to the different proportion of the active constituents of the extracts and the interaction between different bacteria. The better adhering ability of S. sanguinis towards the PEM-treated pellicle when present together with S. mutans in the dual-species biofilms may suggest the potential of PEM in controlling the balance between the early and late colonisers in biofilms.
Shafiei, Zaleha; Haji Abdul Rahim, Zubaidah; Thurairajah, Nalina
2016-01-01
Background Plant extracts mixture (PEM) and its individual constituent plant extracts(Psidium sp., Mangifera sp., Mentha sp.) are known to have an anti-adhering effect towards oral bacteria in the single-species biofilm. To date, the adhering ability of the early and late plaque colonisers (Streptococcus sanguinis and Streptococcus mutans) to PEM-treated experimental pellicle have not been investigated in dual-species biofilms. Methods Fresh leaves of these plants were used in the preparation of the respective aqueous extract decoctions. The minimum inhibitory concentration (MIC) of the extracts towards S. sanguinis ATCC BAA-1455 and S. mutans ATCC 25175 was determined using a two-fold serial microdilution method. The sum of fractional inhibitory concentration (ΣFIC) index of PEM and its constituent plant extracts was calculated using the MIC values of the plants. The minimum bactericidal concentration (MBC) of the plant extracts was also determined. The anti-adherence effect of the plant extracts (individually and mixed) was carried out by developing simulated S. sanguinis and S. mutans respectively in single- and dual-species of biofilms in the Nordini’s Artificial Mouth (NAM) model system in which the experimental pellicle was pretreated with the plant extract before bacterial inoculation. The bacterial population in the respective biofilms was quantified using ten-fold serial dilutions method and expressed as colony forming unit per ml (CFU/ml). The bacterial population was also viewed using Scanning Electron Microscope (SEM). All experiments were done in triplicate. Results The PEM compared with its respective constituent plants showed the lowest MIC towards S. sanguinis (3.81 mg/ml) and S. mutans (1.91 mg/ml) and exhibited a synergistic effect. The Psidium sp. (15.24 mg/ml) and, PEM and Psidium sp. (30.48 mg/ml) showed the lowest MBC towards S. sanguinis and S. mutans respectively. The anti-adherence effect of the PEM and its respective constituent plants (except Psidium sp.) was different for the two bacteria in the single-species biofilm. In the dual-species biofilms, PEM demonstrated similar anti-adherence effect towards S. sanguinis and S. mutans. The proportions of the bacterial population viewed under SEM appeared to be in agreement with the quantified population. Discussion The combination of the active constituents of the individual plant extracts in PEM may contribute to its low MIC giving rise to the synergistic effect. The different anti-adherence effect towards S. sanguinis and S. mutans in both single- and dual-species biofilms could be due to the different proportion of the active constituents of the extracts and the interaction between different bacteria. The better adhering ability of S. sanguinis towards the PEM-treated pellicle when present together with S. mutans in the dual-species biofilms may suggest the potential of PEM in controlling the balance between the early and late colonisers in biofilms. PMID:27761322
Men and women show similar survival outcome in stage IV breast cancer.
Wu, San-Gang; Zhang, Wen-Wen; Liao, Xu-Lin; Sun, Jia-Yuan; Li, Feng-Yan; Su, Jing-Jun; He, Zhen-Yu
2017-08-01
To evaluate the clinicopathological features, patterns of distant metastases, and survival outcome between stage IV male breast cancer (MBC) and female breast cancer (FBC). Patients diagnosed with stage IV MBC and FBC between 2010 and 2013 were included using the Surveillance, Epidemiology, and End Results program. Univariate and multivariate Cox regression analyses were used to analyze risk factors for overall survival (OS). A total of 4997 patients were identified, including 60 MBC and 4937 FBC. Compared with FBC, patients with MBC were associated with a significantly higher rate of estrogen receptor-positive, progesterone receptor-positive, unmarried, lung metastases, and a lower frequency of liver metastases. Univariate and multivariate analyses showed no significant difference in OS between MBC and FBC. In the propensity score-matched population, there was also no difference in survival between MBC and FBC. Multivariate analysis of MBC showed that OS was longer for patients aged 50-69 years and with estrogen receptor-positive disease. There was no significant difference in survival outcome between stage IV MBC and FBC, but significant differences in clinicopathological features and patterns of metastases between the genders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dyas, A; Boughton, B J; Das, B C
1983-10-01
The action of ozone generated from a small domestic device was examined with a view to using it in clinical isolation units accommodating immunosuppressed patients. Over a six-hour period in an average size room the device did not generate sufficient ozone to suppress bacterial and fungal growth. A useful bactericidal action, against a variety of human pathogens was achieved with ozone concentrations between 0.3 to 0.9 ppm. Bactericidal ozone concentrations are close to the limit permitted for human exposure however and further experiments are indicated.
NASA Astrophysics Data System (ADS)
Sun, Pengfei; Hui, Cai; Azim Khan, Rashid; Du, Jingting; Zhang, Qichun; Zhao, Yu-Hua
2015-07-01
Biochar shows great promise for use in adsorbing pollutants. However, a process for enhancing its adsorption capacity and re-collection efficiency is yet to be further developed. Hence, in this study, we developed a type of biochar coated with magnetic Fe3O4 nanoparticles (i.e., magnetic biochar (MBC)) and assessed its use for crystal violet (CV) adsorption as well as its recycling potential. The coating of Fe3O4 nanoparticles, which was not only on the surface, but also in the interior of biochar, performed two functions. Firstly, it produced a saturation magnetization of 61.48 emu/g, which enabled the biochar being efficiently re-collected using a magnet. Secondly, it significantly enhanced the adsorption capacity of the biochar (from 80.36 to 99.19 mg/g). The adsorption capacity of the MBC was determined to be the largest by so far (349.40 mg/g) for an initial CV concentration of 400 mg/L, pH of 6.0, and temperature of 40 °C, and the adsorption capacity of re-collected MBC was 73.31 mg/g. The adsorption of CV by the MBC was found to be a spontaneous and endothermic physical process in which the intraparticle diffusion was the limiting step. These findings inspire us to use other similar materials to tackle the menace of pollutions.
Sieratowicz, Agnes; Kaiser, Dominic; Behr, Maximilian; Oetken, Matthias; Oehlmann, Jörg
2011-01-01
As a consequence of growing public concern about UV radiation effects on human health chemical and physical UV filters are increasingly used in personal care and other products. The release of these lipophilic and often persistent compounds into surface waters may pose a risk for aquatic organisms. The aim of the study was to determine effects of four frequently used UV filters on primary aquatic producers and consumers, the green alga Desmodesmus subspicatus and the crustacean Daphnia magna. Exposure to benzophenone 3 (BP3), ethylhexyl methoxycinnamate (EHMC), 3-benzylidene camphor (3-BC) and 3-(4'-methylbenzylidene)-camphor (4-MBC) resulted in growth inhibition of D. subspicatus with 72 h IC(10) values of 0.56 mg/L (BP 3), 0.24 mg/L (EHMC), 0.27 mg/L (3-BC) and 0.21 mg/L (4-MBC). EC(50) concentrations in the acute test with D. magna were 1.67, 0.57, 3.61 and 0.80 mg/L for BP3, EHMC, 3-BC and 4-MBC, respectively. Chronic exposure of D. magna resulted in NOECs of 0.04 mg/L (EHMC) and 0.1 mg/L (3-BC and 4-MBC). BP 3 showed no effects on neonate production or the length of adults. Rapid dissipation of these substances from the water phase was observed indicating the need for more frequent test medium renewal in chronic tests or the use of flow-through test systems.
Ge, Xia; Huang, Zheng; Tian, Shilong; Huang, Yulong; Zeng, Chaozhen
2012-06-05
The effect of hydroxypropyl-β-cyclodextrin (HPβCD) on the improvement of the solubility and fungicidal activity of carbendazim (MBC) has been investigated. The inclusion complexation of HPβCD with MBC has been prepared and characterized by phase solubility diagram, fluorescence, (1)H NMR, ROESY and FT-IR spectra. The stoichiometric ratio and stability constant were determined by Job's plot and phase solubility studies, respectively. The inclusion complex MBC·HPβCD has exhibited different properties from MBC. The obtained inclusion complex was found to significantly improve the water solubility of MBC. In addition, the biological activity indicated that the complex displayed the better fungicidal activity than MBC. The present study provided useful information for a more rational application of MBC. Copyright © 2012 Elsevier Ltd. All rights reserved.
Stein, Gary E; Schooley, Sharon L; Nicolau, David P
2008-10-01
Increasing resistance to fluoroquinolones in uropathogens has become a clinical concern. The purpose of this study was to analyse the urinary bactericidal activity (UBA) of levofloxacin against fluoroquinolone-resistant strains of Escherichia coli. Ten healthy adult subjects (aged 23-60 years) received single doses of levofloxacin (250, 500, 750 and 1000 mg) and then blood and urine samples were collected in intervals (0-1.5, 1.5-4, 4-8, 8-12 and 12-24h) over 24h. Both serum and urine concentrations were measured by a validated high-performance liquid chromatography assay. Bactericidal titres in urine were determined against E. coli isolates with minimum inhibitory concentrations of 0.125, 4, 8, 16, 32 and 64microg/mL for levofloxacin. The mean serum pharmacokinetic parameters for these doses of levofloxacin were similar to previously published values. The mean peak urinary concentrations (0-1.5h) were 210, 347, 620 and 536microg/mL for the 250, 500, 750 and 1000 mg dose, respectively. Each dose of levofloxacin exhibited early (0-1.5h time period) bactericidal activity in urine in virtually all subjects against E. coli strains with MICs
Sun, Qingshen; Li, Xiaodi; Wang, Pu; Du, Yiyang; Han, Dequan; Wang, Fengjiao; Liu, Xumei; Li, Pengfei; Fu, Honggang
2011-08-01
This study aims to prepare bactericidal films developed from soy protein isolate (SPI) based film-forming dispersions (FFDs) for use in the food and medical fields. The FFD and films were prepared after the incorporation of different concentrations of AgNO₃ as a bactericidal agent. The transparency, tensile strength, and antimicrobial features were evaluated. Structural characterizations were also performed by Fourier transform infrared spectroscopy, scanning electron microscope, and atomic force microscopy analysis. Results showed that the opacity of these FFD was greatly decreased after the incorporation of AgNO₃. The SPI-5 film has the largest tensile strength (P < 0.05) compared with that of the other ones. Micro structural imaging analysis showed an increase in the surface irregularities with the addition of AgNO₃. The minimum inhibitory concentration of AgNO₃ was 336 μg/mL FFD for both Escherichia coli ATCC 25923 and Staphylococcus aureus ATCC 25922. The SPI-AgNO₃ films developed from the FFD with the minimal AgNO₃ concentration at 336 μg/mL FFD also showed bactericidal effects for both the strains. These results may prove promising for the use of SPI-AgNO₃ films in the food or medical industries. The films prepared in this study are biodegradable and will be used in medical and food fields. © 2011 Institute of Food Technologists®
Development of a Protocol for Predicting Bacterial Resistance to Microbicides
Knapp, Laura; Amézquita, Alejandro; McClure, Peter; Stewart, Sara
2015-01-01
Regulations dealing with microbicides in Europe and the United States are evolving and now require data on the risk of the development of resistance in organisms targeted by microbicidal products. There is no standard protocol to assess the risk of the development of resistance to microbicidal formulations. This study aimed to validate the use of changes in microbicide and antibiotic susceptibility as initial markers for predicting microbicide resistance and cross-resistance to antibiotics. Three industrial isolates (Pseudomonas aeruginosa, Burkholderia cepacia, and Klebsiella pneumoniae) and two Salmonella enterica serovar Typhimurium strains (SL1344 and 14028S) were exposed to a shampoo, a mouthwash, eye makeup remover, and the microbicides contained within these formulations (chlorhexidine digluconate [CHG] and benzalkonium chloride [BZC]) under realistic, in-use conditions. Baseline and postexposure data were compared. No significant increases in the MIC or the minimum bactericidal concentration (MBC) were observed for any strain after exposure to the three formulations. Increases as high as 100-fold in the MICs and MBCs of CHG and BZC for SL1344 and 14028S were observed but were unstable. Changes in antibiotic susceptibility were not clinically significant. The use of MICs and MBCs combined with antibiotic susceptibility profiling and stability testing generated reproducible data that allowed for an initial prediction of the development of resistance to microbicides. These approaches measure characteristics that are directly relevant to the concern over resistance and cross-resistance development following the use of microbicides. These are low-cost, high-throughput techniques, allowing manufacturers to provide to regulatory bodies, promptly and efficiently, data supporting an early assessment of the risk of resistance development. PMID:25636848
Hardy, Katherine; Sunnucks, Katie; Gil, Hannah; Shabir, Sahida; Trampari, Eleftheria; Hawkey, Peter
2018-01-01
ABSTRACT Hospital-acquired infection is a major cause of morbidity and mortality, and regimes to prevent infection are crucial in infection control. These include the decolonization of vulnerable patients with methicillin-resistant Staphylococcus aureus (MRSA) carriage using antiseptics, including chlorhexidine and octenidine. Concern has been raised, however, regarding the possible development of biocide resistance. In this study, we assembled a panel of S. aureus isolates, including isolates collected before the development of chlorhexidine and octenidine and isolates, from a major hospital trust in the United Kingdom during a period when the decolonization regimes were altered. We observed significant increases in the MIC and minimum bactericidal concentration (MBC) of chlorhexidine in isolates from periods of high usage of chlorhexidine. Isolates with increased MICs and MBCs of octenidine rapidly emerged after octenidine was introduced in the trust. There was no apparent cross-resistance between the two biocidal agents. A combination of variable-number tandem repeat (VNTR) analysis, PCR for qac genes, and whole-genome sequencing was used to type isolates and examine possible mechanisms of resistance. There was no expansion of a single strain associated with decreased biocide tolerance, and biocide susceptibility did not correlate with carriage of qac efflux pump genes. Mutations within the NorA or NorB efflux pumps, previously associated with chlorhexidine export, were identified, however, suggesting that this may be an important mechanism of biocide tolerance. We present evidence that isolates are evolving in the face of biocide challenge in patients and that changes in decolonization regimes are reflected in changes in susceptibility of isolates. PMID:29844113
Silvestri, Valentina; Zelli, Veronica; Valentini, Virginia; Rizzolo, Piera; Navazio, Anna Sara; Coppa, Anna; Agata, Simona; Oliani, Cristina; Barana, Daniela; Castrignanò, Tiziana; Viel, Alessandra; Russo, Antonio; Tibiletti, Maria Grazia; Zanna, Ines; Masala, Giovanna; Cortesi, Laura; Manoukian, Siranoush; Azzollini, Jacopo; Peissel, Bernard; Bonanni, Bernardo; Peterlongo, Paolo; Radice, Paolo; Palli, Domenico; Giannini, Giuseppe; Chillemi, Giovanni; Montagna, Marco; Ottini, Laura
2017-01-01
Male breast cancer (MBC) is a rare disease whose etiology appears to be largely associated with genetic factors. BRCA1 and BRCA2 mutations account for about 10% of all MBC cases. Thus, a fraction of MBC cases are expected to be due to genetic factors not yet identified. To further explain the genetic susceptibility for MBC, whole-exome sequencing (WES) and targeted gene sequencing were applied to high-risk, BRCA1/2 mutation-negative MBC cases. Germ-line DNA of 1 male and 2 female BRCA1/2 mutation-negative breast cancer (BC) cases from a pedigree showing a first-degree family history of MBC was analyzed with WES. Targeted gene sequencing for the validation of WES results was performed for 48 high-risk, BRCA1/2 mutation-negative MBC cases from an Italian multicenter study of MBC. A case-control series of 433 BRCA1/2 mutation-negative MBC and female breast cancer (FBC) cases and 849 male and female controls was included in the study. WES in the family identified the partner and localizer of BRCA2 (PALB2) c.419delA truncating mutation carried by the proband, her father, and her paternal uncle (all affected with BC) and the N-acetyltransferase 1 (NAT1) c.97C>T nonsense mutation carried by the proband's maternal aunt. Targeted PALB2 sequencing detected the c.1984A>T nonsense mutation in 1 of the 48 BRCA1/2 mutation-negative MBC cases. NAT1 c.97C>T was not found in the case-control series. These results add strength to the evidence showing that PALB2 is involved in BC risk for both sexes and indicate that consideration should be given to clinical testing of PALB2 for BRCA1/2 mutation-negative families with multiple MBC and FBC cases. Cancer 2017;123:210-218. © 2016 American Cancer Society. © 2016 American Cancer Society.
Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy.
Bernatová, Silvie; Samek, Ota; Pilát, Zdeněk; Serý, Mojmír; Ježek, Jan; Jákl, Petr; Siler, Martin; Krzyžánek, Vladislav; Zemánek, Pavel; Holá, Veronika; Dvořáčková, Milada; Růžička, Filip
2013-10-24
Antibiotics cure infections by influencing bacterial growth or viability. Antibiotics can be divided to two groups on the basis of their effect on microbial cells through two main mechanisms, which are either bactericidal or bacteriostatic. Bactericidal antibiotics kill the bacteria and bacteriostatic antibiotics suppress the growth of bacteria (keep them in the stationary phase of growth). One of many factors to predict a favorable clinical outcome of the potential action of antimicrobial chemicals may be provided using in vitro bactericidal/bacteriostatic data (e.g., minimum inhibitory concentrations-MICs). Consequently, MICs are used in clinical situations mainly to confirm resistance, and to determine the in vitro activities of new antimicrobials. We report on the combination of data obtained from MICs with information on microorganisms' "fingerprint" (e.g., DNA/RNA, and proteins) provided by Raman spectroscopy. Thus, we could follow mechanisms of the bacteriostatic versus bactericidal action simply by detecting the Raman bands corresponding to DNA. The Raman spectra of Staphylococcus epidermidis treated with clindamycin (a bacteriostatic agent) indeed show little effect on DNA which is in contrast with the action of ciprofloxacin (a bactericidal agent), where the Raman spectra show a decrease in strength of the signal assigned to DNA, suggesting DNA fragmentation.
Sheng, Hong; Nakamura, Keisuke; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi
2015-01-01
The bactericidal effect of hydroxyl radical (·OH) generated by combination of photolysis of hydrogen peroxide (H2O2) and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2) and ultrasound (power: 30 w, frequency: 1.65 MHz) at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.
Rivas-Cáceres, Raymundo Rene; Luis Stephano-Hornedo, Jose; Lugo, Jorge; Vaca, Rocio; Del Aguila, Pedro; Yañez-Ocampo, Gustavo; Mora-Herrera, Martha Elena; Camacho Díaz, Luis Miguel; Cipriano-Salazar, Moisés; Alaba, Peter Adeniyi
2018-02-01
This study explored the use of silver nanoparticle as a bactericidal against the propagation of Clavibacter michiganensis onto tomatoes (Lycopersicon esculentum Mill). In Mexico, tomato production covers about 73% of the total vegetable production but it is affected by outbreak of bacteria canker caused by Clavibacter michiganensis subspecies michiganensis (Cmm). Silver ions possess inhibitor properties, bactericides and high specter antimicrobials. In this study, 6 groups of culture were prepared using 6 different petri dishes where silver nanoparticles of varying concentrations (120, 84, 48, 24, 12 and 0 μg) were added. Furthermore, each group was observed for 20 min, 1, 2, 12 and 24 h. The optimum concentration is 84 μg, which shows an average of 2 Cmm colonies after 20 min. Further increase to 120 μg shows no significant change. However, the average colonies was observed for 48 μg after 1, 2, 12, and 24 h. The obtained results indicate that silver nanoparticles are a promising inhibitor, bactericide and high a specter antimicrobial for treatment or prevention of Cmm. Copyright © 2017. Published by Elsevier Ltd.
Agudelo, M.
2012-01-01
Animal models of infection have been used to demonstrate the therapeutic failure of “bioequivalent” generic products, but their applicability for this purpose requires the accurate identification of those products that are truly bioequivalent. Here, we present data comparing one intravenous generic product of metronidazole with the innovator product in a neutropenic mouse thigh anaerobic infection model. Simultaneous experiments allowed comparisons (generic versus innovator) of potency and the concentration of the active pharmaceutical ingredient (API), analytical chemistry (liquid chromatography/mass spectrometry [LC/MS]), in vitro susceptibility testing, single-dose serum pharmacokinetics (PK) in infected mice, and in vivo pharmacodynamics (PD) against Bacteroides fragilis ATCC 25825 in synergy with Escherichia coli SIG-1 in the neutropenic mouse thigh anaerobic infection model. The Hill dose-response model followed by curve-fitting analysis was used to calculate and compare primary and secondary PD parameters. The generic and the innovator products were identical in terms of the concentration and potency of the API, chromatographic and spectrographic profiles, MIC and minimal bactericidal concentrations (MBC) (2.0 mg/liter), and mouse PK. We found no differences between products in bacteriostatic doses (BD) (15 to 22 mg/kg of body weight per day) or the doses needed to kill 1 log (1LKD) (21 to 29 mg/kg per day) or 2 logs (2LKD) (28 to 54 mg/kg per day) of B. fragilis under dosing schedules of every 12 h (q12h), q8h, or q6h. The area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) was the best PD index to predict the antibacterial efficacy of metronidazole (adjusted coefficient of determination [AdjR2] = 84.6%), and its magnitude to reach bacteriostasis in vivo (56.6 ± 5.17 h) or to kill the first (90.8 ± 9.78 h) and second (155.5 ± 22.2 h) logs was the same for both products. Animal models of infection allow a thorough demonstration of the therapeutic equivalence of generic antimicrobials. PMID:22330928
NASA Astrophysics Data System (ADS)
Lykkegaard, Eva; Ulriksen, Lars
2016-03-01
During the past 30 years, Eccles' comprehensive social-psychological Expectancy-Value Model of Motivated Behavioural Choices (EV-MBC model) has been proven suitable for studying educational choices related to Science, Technology, Engineering and/or Mathematics (STEM). The reflections of 15 students in their last year in upper-secondary school concerning their choice of tertiary education were examined using quantitative EV-MBC surveys and repeated qualitative interviews. This article presents the analyses of three cases in detail. The analytical focus was whether the factors indicated in the EV-MBC model could be used to detect significant changes in the students' educational choice processes. An important finding was that the quantitative EV-MBC surveys and the qualitative interviews gave quite different results concerning the students' considerations about the choice of tertiary education, and that significant changes in the students' reflections were not captured by the factors of the EV-MBC model. This questions the validity of the EV-MBC surveys. Moreover, the quantitative factors from the EV-MBC model did not sufficiently explain students' dynamical educational choice processes where students in parallel considered several different potential educational trajectories. We therefore call for further studies of the EV-MBC model's use in describing longitudinal choice processes and especially in investigating significant changes.
Lu, Meng-Meng; Wang, Qiu-Jing; Chang, Zhi-Min; Wang, Zheng; Zheng, Xiao; Shao, Dan; Dong, Wen-Fei; Zhou, Yan-Min
2017-01-01
Combination of chlorhexidine (CHX) and silver ions could engender synergistic bactericidal effect and improve the bactericidal efficacy. It is highly desired to develop an efficient carrier for the antiseptics codelivery targeting infection foci with acidic microenvironment. In this work, monodisperse mesoporous silica nanoparticle (MSN) nanospheres were successfully developed as an ideal carrier for CHX and nanosilver codelivery through a facile and environmentally friendly method. The CHX-loaded, silver-decorated mesoporous silica nanoparticles (Ag-MSNs@CHX) exhibited a pH-responsive release manner of CHX and silver ions simultaneously, leading to synergistically antibacterial effect against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli . Moreover, the effective antibacterial concentration of Ag-MSNs@CHX showed less cytotoxicity on normal cells. Given their synergistically bactericidal ability and good biocompatibility, these nanoantiseptics might have effective and broad clinical applications for bacterial infections.
CHEK2 1100delC and male breast cancer in the Netherlands.
Wasielewski, Marijke; den Bakker, Michael A; van den Ouweland, Ans; Meijer-van Gelder, Marion E; Portengen, Henk; Klijn, Jan G M; Meijers-Heijboer, Hanne; Foekens, John A; Schutte, Mieke
2009-07-01
Mutations in the breast cancer susceptibility genes BRCA1, BRCA2, and CHEK2 are known risk factors for female breast cancer. Mutations in BRCA1 and BRCA2 also are associated with male breast cancer (MBC). Similarly, it had been suggested in the original CHEK2 identification report that the CHEK2 1100delC mutation confers an increased risk for MBC. Here, we have evaluated the risk of CHEK2 1100delC for MBC by genotyping CHEK2 1100delC in 23 familial and 71 unselected Dutch MBC cases. None of the 23 familial MBC cases carried the CHEK2 1100delC mutation. In contrast, CHEK2 1100delC was present in 3 of the 71 (4.2%) unselected MBC cases, which was significantly more prevalent than the 1.1% Dutch population frequency assessed in 1,692 individuals (P = 0.05, OR = 4.1, 95% CI 1.2-14.3). Our data suggest that, in the Netherlands, CHEK2 1100delC is associated with an increased risk for MBC.
Antibacterial activity of vegetables and juices.
Lee, Yee-Lean; Cesario, Thomas; Wang, Yang; Shanbrom, Edward; Thrupp, Lauri
2003-01-01
We evaluated the antibacterial activities of various fruit and vegetable extracts on common potential pathogens including antibiotic-resistant strains. Standardized bacterial inocula were added to serial dilutions of sterile vegetable and fruit extracts in broth, with final bacterial concentrations of 10(4-5) cells/mL. After overnight incubation at 35 degrees C, antibacterial activity was measured by minimum inhibitory and minimum bactericidal dilutions (for raw juices) or concentrations (for tea). Among the vegetable and fruit extracts tested, all green vegetables showed no antibacterial activity on Staphylococcus epidermidis and Klebsiella pneumoniae. All purple and red vegetable and fruit juices had antibacterial activities in dilutions ranging from 1:2 to 1:16. Garlic juice had significant activity, with bactericidal action in dilutions ranging up to 1:128 of the original juice. Tea also had significant activity, with bactericidal action in concentrations ranging up to 1.6 mg/mL, against a spectrum of pathogens including resistant strains such as methicillin- and ciprofloxacin-resistant staphylococci, vancomycin-resistant enterococci, and ciprofloxacin-resistant Pseudomonas aeruginosa. Tea and garlic have the potential for exploration of broader applications as antibacterial agents.
Survival benefit of tamoxifen and aromatase inhibitor in male and female breast cancer.
Eggemann, Holm; Altmann, Udo; Costa, Serban-Dan; Ignatov, Atanas
2018-02-01
Our goal was to compare the survival advantage of tamoxifen (TAM) and aromatase inhibitor (AI) in female (FBC) and male breast cancer (MBC). We performed a retrospective study of 2785 FBC and 257 MBC patients treated with hormonal therapy. The median follow-up was 106 months (range 3-151 months) and 42 months (range 2-115 months) for FBC and MBC, respectively. The patients were divided into two groups according to the hormonal therapy used: TAM-treated and AI-treated. MBC was characterized by older age, advanced tumor stage, and higher rate of lymph node metastases, in comparison with FBC. Matching analysis was performed using six prognostic criteria: patient age, tumor stage, tumor grade, lymph node status, human epidermal growth factor receptor (HER2) status, and administration of chemotherapy. The female and male patients were matched 2:1. In this analysis, 316 women and 158 men treated with TAM, and 60 women and 30 men treated with AI, were included. The overall survival (OS) was estimated by the Kaplan-Meier method and was compared between FBC and MBC. TAM-treated FBC and MBC patients had similar 5-year OS, 85.1 and 89.2%, respectively (p = 0.972). Notably, FBC patients treated with AI had significantly greater 5-year OS (85.0%) in comparison with AI-treated MBC patients (5-year OS of 73.3%; p = 0.028). The OS of TAM-treated patients with MBC was similar to the OS of TAM-treated FBC patients, whereas AI treatment is associated with poorer survival of MBC patients.
Pareja, Fresia; Murray, Melissa P; Jean, Ryan Des; Konno, Fumiko; Friedlander, Maria; Lin, Oscar; Edelweiss, Marcia
2017-01-01
Discordance in the receptor status between primary breast carcinomas (PBC) and corresponding metastasis is well documented. Interrogation of the receptor status of metastatic breast carcinoma (MBC) in cytology material is common practice; however, its utility has not been thoroughly validated. We studied patients with MBC, and evaluated the concordance rates of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) between PBC surgical specimens and corresponding MBC cell blocks (CBs). We correlated the findings with clinicopathologic variables and with the fixation methods used. We searched for patients with MBC diagnosed on cytology from 2007 to 2009 and selected those with ER, PR and HER2 tested in both the PBC surgical specimens and the MBC CBs. We included CBs fixed in formalin and methanol based solution (CytoLyt®). All slides were reevaluated by cytopathologists. Clinical information was retrieved from the medical records. We studied 65 patients with PBC and MBC paired specimens. The concordance rates between PBC and MBC were 78.5%, 58.5% and 96.9%, for ER, PR and HER2, respectively. When discordant, PR status switched from positive (PBC) to negative (MBC) in most cases (23/27). The PR concordance rate was 45.2% for CBs fixed in formalin and 70.6% for those fixed with CytoLyt® (p=0.047). The ER, PR and HER2 concordance rates between the PBC and MBC CBs are similar to those reported in paired surgical specimens. PR status was the most prevalent discordance and was not accompanied by a switch in ER.
Salcedo, Jaime; Gormaz, Maria; López-Mendoza, Maria C; Nogarotto, Elisabetta; Silvestre, Dolores
2015-04-01
Lyophilization appears to be a viable method for storing human milk, assuring no microbiological contamination and preserving its health benefits and antibacterial properties. The aim of the study is to evaluate and compare the effects of different storage methods (lyophilization and freezing at -20°C and -80°C) and maternal factors (gestational length or time postpartum) upon the microbiological contents and bactericidal activity of human milk. The possible relation between bactericidal activity and the content of certain nutrients and functional components is also investigated. Microbiological content, bactericidal activity, sialic acid, and ganglioside contents, as well as protein, fat, and lactose concentrations were assessed in 125 human milk samples from 65 healthy donors in the Human Milk Bank of La Fe (Valencia, Spain). Lyophilization and storage at -80°C significantly reduced the content of mesophilic aerobic microorganisms and Staphylococcus epidermidis when compared with storage at -20°C. Bactericidal activity was not significantly modified by lyophilization when compared with freezing at either -20°C or -80°C. Bactericidal activity was not correlated with fat, protein, or lactose content, but was significantly correlated to ganglioside content. The bactericidal activity was significantly greater (P < 0.05) in mature milk and in milk from women with term delivery than in milk from early lactation (days 1-7 postpartum) and milk from women with preterm delivery, respectively. Lyophilization and storage at -80°C of human milk yields similar results and are superior to storage at -20C with regard to microbial and bactericidal capacities, being a feasible alternative for human milk banks.
Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite
Vasquez-Peña, M.; Raymond-Herrera, O.; Villavicencio-García, H.; Petranovskii, V.; Vazquez-Duhalt, R.; Huerta-Saquero, A.
2016-01-01
The antimicrobial activity of silver nanoparticles (AgNPs) is currently used as an alternative disinfectant with diverse applications, ranging from decontamination of aquatic environments to disinfection of medical devices and instrumentation. However, incorporation of AgNPs to the environment causes collateral damage that should be avoided. In this work, a novel Ag-based nanocomposite (CEOBACTER) was successfully synthetized. It showed excellent antimicrobial properties without the spread of AgNPs into the environment. The complete CEOBACTER antimicrobial characterization protocol is presented herein. It is straightforward and reproducible and could be considered for the systematic characterization of antimicrobial nanomaterials. CEOBACTER showed minimal bactericidal concentration of 3 μg/ml, bactericidal action time of 2 hours and re-use capacity of at least five times against E. coli cultures. The bactericidal mechanism is the release of Ag ions. CEOBACTER displays potent bactericidal properties, long lifetime, high stability and re-use capacity, and it does not dissolve in the solution. These characteristics point to its potential use as a bactericidal agent for decontamination of aqueous environments. PMID:27824932
Pareja, Fresia; Murray, Melissa P; Jean, Ryan Des; Konno, Fumiko; Friedlander, Maria; Lin, Oscar; Edelweiss, Marcia
2016-01-01
BACKGROUND Discordance in the receptor status between primary breast carcinomas (PBC) and corresponding metastasis is well documented. Interrogation of the receptor status of metastatic breast carcinoma (MBC) in cytology material is common practice; however, its utility has not been thoroughly validated. We studied patients with MBC, and evaluated the concordance rates of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) between PBC surgical specimens and corresponding MBC cell blocks (CBs). We correlated the findings with clinicopathologic variables and with the fixation methods used. METHODS We searched for patients with MBC diagnosed on cytology from 2007 to 2009 and selected those with ER, PR and HER2 tested in both the PBC surgical specimens and the MBC CBs. We included CBs fixed in formalin and methanol based solution (CytoLyt®). All slides were reevaluated by cytopathologists. Clinical information was retrieved from the medical records. RESULTS We studied 65 patients with PBC and MBC paired specimens. The concordance rates between PBC and MBC were 78.5%, 58.5% and 96.9%, for ER, PR and HER2, respectively. When discordant, PR status switched from positive (PBC) to negative (MBC) in most cases (23/27). The PR concordance rate was 45.2% for CBs fixed in formalin and 70.6% for those fixed with CytoLyt® (p=0.047). CONCLUSION The ER, PR and HER2 concordance rates between the PBC and MBC CBs are similar to those reported in paired surgical specimens. PR status was the most prevalent discordance and was not accompanied by a switch in ER. PMID:28529880
Li, R C
1996-01-01
Antibiotic-bacterium interactions are complex in nature. In many cases, bacterial killing does not commence immediately after the addition of an antibiotic, and a lag period is observed. Antibiotic permeation and/or the intermediate steps that exist between antibiotic-receptor binding and expression of cell death are two major possible causes for such lag period. This study was primarily designed to determine the relationship, if any, between antibiotic concentrations and the lag periods by a modeling approach. Short-term time-kill studies were conducted for amoxicillin, ampicillin, penicillin-G, oxacillin, and dicloxacillin against Escherichia coli. In conjunction with the use of a saturable rate model to describe the concentration-dependent killing process, a first-order induction (initiation) rate constant was used to characterize the delay in bacterial killing during the lag period. For all of the beta-lactams tested, parameters describing the bactericidal effect suggest that amoxicillin and ampicillin were much more potent than oxacillin and dicloxacillin. The induction rate constant estimates for both ampicillin and amoxicillin were found to relate linearly to concentrations. Nevertheless, these induction rate constant estimates were lower for penicillin-G, oxacillin, and dicloxacillin and increased nonlinearly with concentrations until an apparent plateau was observed. These findings support the hypothesis that the permeation process is potentially a rate-limiting step for the rapid bactericidal beta-lactams such as ampicillin and amoxicillin. However, as suggested by previous observations of the various morphological changes induced by beta-lactams, the contribution of the steps following antibiotic-receptor complex formation to the lag period might be significant for the less bactericidal antibiotics such as oxacillin and dicloxacillin. Findings from the present modeling approach can potentially be used to guide future bench experimentation. PMID:8891135
Konaté, Kiessoun; Zerbo, Patrice; Ouédraogo, Maurice; Dibala, Crépin I; Adama, Hilou; Sytar, Oksana; Brestic, Marian; Barro, Nicolas
2013-06-21
Sida urens L. (Malvaceae) is in flora of Asian medicinal herbs and used traditionally in West of Burkina Faso for the treatment of infectious diseases and particularly used against, dental caries bacteria, fever, pain and possesses analgesic properties. This study was conducted to reveal the antibacterial effect against dental caries bacteria on the one hand, and evaluate their analgesic capacity in experimental model with Swiss mice and on the other hand, with an aim to provide a scientific basis for the traditional use of this plant for the management of dental caries bacteria. The antibacterial assays in this study were performed by using inhibition zone diameters, MIC (Minimum inhibitory concentration) and MBC (Minimal bactericidal concentration) methods. On the whole the dental caries bacteria (Gram-positive and Gram-negative bacterial strains) were used. Negative control was prepared using discs impregnated with 10% DMSO in water and commercially available Gentamicin from Alkom Laboratories LTD was used as positive reference standards for all bacterial strains. In acute toxicity test, mice received doses of extract (acetone/water extract) from Sida urens L. by intraperitoneal route and LD50 was determined in Swiss mice. As for analgesic effects, acetic acid writhing method was used in mice. The acetic acid-induced writhing method was used in mice with aim to study analgesic effects. The results showed that the highest antibacterial activities were founded with the polyphenol-rich fractions against all bacterial strains compared to the standard antibiotic. About preliminary study in acute toxicity test, LD50 value obtained was more than 5000 mg/kg b.w. Polyphenol-rich fractions produced significant analgesic effects in acetic acid-induced writhing method and in a dose-dependent inhibition was observed. These results validate the ethno-botanical use of Sida urens L. (Malvaceae) and demonstrate the potential of this herbaceous as a potential antibacterial agent of dental caries that could be effectively used for future health care purposes.
Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts
2014-01-01
To research the relationship of micro-structures and antibacterial properties of the titanium-doped ZnO powders and probe their antibacterial mechanism, titanium-doped ZnO powders with different shapes and sizes were prepared from different zinc salts by alcohothermal method. The ZnO powders were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), and the antibacterial activities of titanium-doped ZnO powders on Escherichia coli and Staphylococcus aureus were evaluated. Furthermore, the tested strains were characterized by SEM, and the electrical conductance variation trend of the bacterial suspension was characterized. The results indicate that the morphologies of the powders are different due to preparation from different zinc salts. The XRD results manifest that the samples synthesized from zinc acetate, zinc nitrate, and zinc chloride are zincite ZnO, and the sample synthesized from zinc sulfate is the mixture of ZnO, ZnTiO3, and ZnSO4 · 3Zn (OH)2 crystal. UV-vis spectra show that the absorption edges of the titanium-doped ZnO powders are red shifted to more than 400 nm which are prepared from zinc acetate, zinc nitrate, and zinc chloride. The antibacterial activity of titanium-doped ZnO powders synthesized from zinc chloride is optimal, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L−1. Likewise, when the bacteria are treated by ZnO powders synthesized from zinc chloride, the bacterial cells are damaged most seriously, and the electrical conductance increment of bacterial suspension is slightly high. It can be inferred that the antibacterial properties of the titanium-doped ZnO powders are relevant to the microstructure, particle size, and the crystal. The powders can damage the cell walls; thus, the electrolyte is leaked from cells. PMID:24572014
Ndhlovu, Daud N; Masika, Patrick J
2017-01-01
Bovine dermatophilosis, an important skin disease of cattle caused by Dermatophilus congolensis , negatively impacts the livelihoods of small-holder farmers in Zimbabwe. This impact is through, morbidity, loss of draught animal power, costs incurred to manage the disease, losses associated with devalued damaged hides and the resultant culling of some of the affected cattle. Due to the inaccessibility of conventional drugs to manage bovine dermatophilosis, farmers have been reported to use local medicinal plants to manage the disease. The aim of the study was to evaluate the in vitro antimicrobial activities of three plants that small-holder farmers in Zimbabwe used to manage bovine dermatophilosis. Dried plant materials were ground into powder and extracted individually using, water, 80 % acetone and 80 % methanol. The antimicrobial properties of the plants were evaluated against two Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and one Gram-positive (Staphylococcus aureus) reference bacterial strains. They were further evaluated against a field isolate of Dermatophilus congolensis . The assays used were the disc diffusion, minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). Acetone and methanol extracts had superior inhibitory activities than did those of water. Pterocarpus angolensis DC extracts had better inhibitory properties with absolute MIC values of 0.156 - 5 mg/ml, Cissus Quadrangularis L had MIC values in the range 0.156 - 5 mg/ml while that of Catunaregam spinosa Thunb, Terveng was 0.156 - 10 mg/ml. Dermatophilus congolensis was more sensitive to Pterocarpus angolensis DC average MIC = 0.63 mg/ml than to Cissus quadrangularis L average MIC = 1.25 mg/ml and Catunaregam. spinosa Thunb, Terveng average MIC = 2.08 mg/ml. These results suggest the potential antibacterial activities of extracts of the three plants and hence farmers are, in a way, justified in using the plants. Better results (lower MIC) could be obtained by extracting and evaluating pure active compounds of the plants.
Stannous Fluoride Effects on Gene Expression of Streptococcus mutans and Actinomyces viscosus.
Shi, Y; Li, R; White, D J; Biesbrock, A R
2018-02-01
A genome-wide transcriptional analysis was performed to elucidate the bacterial cellular response of Streptococcus mutans and Actinomyces viscosus to NaF and SnF 2 . The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of SnF 2 were predetermined before microarray study. Gene expression profiling microarray experiments were carried out in the absence (control) and presence (experimental) of 10 ppm and 100 ppm Sn 2+ (in the form of SnF 2 ) and fluoride controls for 10-min exposures (4 biological replicates/treatment). These Sn 2+ levels and treatment time were chosen because they have been shown to slow bacterial growth of S. mutans (10 ppm) and A. viscosus (100 ppm) without affecting cell viability. All data generated by microarray experiments were analyzed with bioinformatics tools by applying the following criteria: 1) a q value should be ≤0.05, and 2) an absolute fold change in transcript level should be ≥1.5. Microarray results showed SnF 2 significantly inhibited several genes encoding enzymes of the galactose pathway upon a 10-min exposure versus a negative control: lacA and lacB (A and B subunits of the galactose-6-P isomerase), lacC (tagatose-6-P kinase), lacD (tagatose-1,6-bP adolase), galK (galactokinase), galT (galactose-1-phosphate uridylyltransferase), and galE (UDP-glucose 4-epimerase). A gene fruK encoding fructose-1-phosphate kinase in the fructose pathway was also significantly inhibited. Several genes encoding fructose/mannose-specific enzyme IIABC components in the phosphotransferase system (PTS) were also downregulated, as was ldh encoding lactate dehydrogenase, a key enzyme involved in lactic acid synthesis. SnF 2 downregulated the transcription of most key enzyme genes involved in the galactose pathway and also suppressed several key genes involved in the PTS, which transports sugars into the cell in the first step of glycolysis.
Alnajar, Zahra A Amin; Abdulla, Mahmood A; Ali, Hapipah M; Alshawsh, Mohammed A; Hadi, A Hamid A
2012-03-20
Melastoma malabathricum (MM) is a well-known plant in Malaysian traditional medicine, locally known as senduduk. Its ethanol and aqueous extracts have been used in the present investigation to study the immunomodulatory role on human peripheral blood mononuclear cell (PBMC), and the DPPH, ABTS and FRAP free radical scavenging activities were also measured. Total flavonoids and total phenolic contents were assayed and the antibacterial effect was tested against four species of bacteria; two Gram-positive (Staphylococcus aureus and Streptococcus agalactiae) and two Gram-negative (Escherichia coli and Klebsilla pneumonia). The tests were carried out using the disc diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. Moreover, the acute toxicity was evaluated in vivo on the ethanol extract of MM to establish its safety when administered orally. In our results, both extracts of MM showed abilities to scavenge DPPH and ABTS free radicals, IC(50) values: (11.599 ± 0.84, 10.573 ± 0.58 µmol/L) and (62.657 ± 0.78, 63.939 ± 0.48 µmol/L) for ethanol and aqueous extracts respectively. Indeed the ethanol extract evidenced high phenolic content (384.33 ± 0.005 mg/g), flavonoids contents (85.8 ± 0.009 mg/g) and ferric reducing antioxidant power (33,590 ± 0.038 mmol/g), with high activity against S. aureus and S. agalactiae (11 ± 0.3 and 12 ± 0.6 mm inhibition zones). Likewise, the percentage of peripheral blood mononuclear cells (PBMC) viability was increased in response to MM, IC(50) values (1.781 ± 1.2 and 6.545 ± 0.93 µg/mL) for ethanol and aqueous extracts, respectively. In addition, our results showed that the MM extract is safe even at a high dose of 5,000 mg/kg and has no oral toxicity. These findings suggest the excellent medicinal bioactivity of MM and explain the popularity of this plant in the folk medicine as a remedy for different illnesses.
Ribeiro, Ana Roseli S; Diniz, Polyana B F; Estevam, Charles S; Pinheiro, Malone S; Albuquerque-Júnior, Ricardo L C; Thomazzi, Sara M
2013-05-20
Caesalpinia pyramidalis Tul. (Fabaceae), known as "catingueira", has been used in folk medicine in the treatment of various disorders such as gastritis, heartburn, indigestion, and stomach ache. However, the gastroprotective properties of this species have not yet been studied. The ethanol extract of Caesalpinia pyramidalis inner bark was used in rats via oral route, at the doses of 30, 100, and 300 mg/kg. The antiulcer assays were performed using the ethanol- and nonsteroidal anti-inflammatory drug-induced ulcer models. Gastric secretion parameters (volume, pH, and total acidity) were also evaluated by the pylorus ligated model, and the mucus in the gastric content was determined. The anti-Helicobacter pylori activity of the ethanol extract of Caesalpinia pyramidalis was performed using the agar-well diffusion and broth microdilution methods. The ethanol extract (30, 100, and 300 mg/kg) produced dose dependent inhibition (P<0.01) on the ulcer lesion index, the total lesion area, and the percentage of lesion area in the ethanol-induced ulcer model. The ethanol extract (30, 100, and 300 mg/kg) also reduced (P<0.001) the ulcer index in the indomethacin-induced ulcer model. In the model ligature pylorus, the treatment with Caesalpinia pyramidalis ethanol extract failed to significantly change the gastric secretion parameters. However, after treatment with the ethanol extract of Caesalpinia pyramidalis (30, 100, and 300 mg/kg), there was a significant increase (P<0.05) in mucus production. The ethanol extract showed anti-Helicobacter pylori activity, with inhibition halos of 12.0 ± 1.7 mm at 10,000 μg/mL. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of the ethanol extract were of 625 and 10,000 μg/mL, respectively. Collectively, the present results suggest that the ethanol extract of Caesalpinia pyramidalis displays gastroprotective actions, supporting the folkloric usage of the plant to treat various gastrointestinal disturbances. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Aibinu, Ibukun; Adenipekun, Tayo; Adelowotan, Toyin; Ogunsanya, Tolu; Odugbemi, Tolu
2006-11-13
We investigated the potency of Citrus aurantifolia (Lime fruit), against pathogens, in the different forms in which this fruit plant is used locally (juice of the fruit, burnt rind of the fruit commonly known as "epa-ijebu" in the Yoruba dialect) and the oil obtained from steam distillation of the fruit. The antimicrobial activity of "epa-ijebu" in different solvents was also compared. The solvents include palm-wine (a local alcoholic drink tapped from palm trees), Seaman's Schnapps 40% alcoholic drink, water, ethanol and fermented water from 3 days soaked milled maize known as "ekan-ogi" or "omidun" in the Yoruba dialect. Antimicrobial activity was carried out by the agar well diffusion. The clinical isolates used included Anaerobic facultative bacteria, namely: Staphylococcus aureus ATCC 25213, Staphylococcus aureus, Salmonella paratyphi, Shigella flexnerii, Streptococcus faecalis, Citrobacter spp, Serratia spp, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli ATCC 25922, and Escherichia coli; Fungi such as Aspergillus niger and Candida albicans; and Anaerobes which includes Bacteroides spp, Porphyromonas spp, and Clostridium spp. Crude extracts of all solvents used varied in zones of inhibition. The anaerobes and the gram-positive bacteria were susceptible to all the extracts with minimum inhibitory concentration (MIC) ranging from 32 mg/ml-128 g/ml. The activity against the fungi showed only the oil extract potent for A. niger, while Candida albicans was susceptible to all the extracts with MIC ranging from 256 mg/ml-512 mg/ml. The gram-negatives have MIC ranging from 64 mg/ml-512 mg/ml. Minimum bactericidal concentration (MBC) ranged between 32 mg/ml to 512 mg/ml depending on isolates and extracting solvent. The oil and palm-wine extract of "epa-ijebu" showed greater activity than the other extracts. The killing rate of the schnapps extract on S. aureus and E. coli was 1 and 3.5 hours respectively.
Wu, Chi-Hao; Ko, Shun-Yao; Chen, Michael Yuanchien; Shih, Yin-Hua; Shieh, Tzong-Ming; Chuang, Li-Chuan; Wu, Ching-Yi
2016-01-01
The aim of the present study was to determine the antibacterial activities of the phenolic essential oil (EO) compounds hinokitiol, carvacrol, thymol, and menthol against oral pathogens. Aggregatibacter actinomycetemcomitans, Streptococcus mutans, Methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia. coli were used in this study. The minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), bacterial growth curves, temperature and pH stabilities, and synergistic effects of the liquid and vapor EO compounds were tested. The MIC/MBC of the EO compounds, ranging from the strongest to weakest, were hinokitiol (40–60 μg/mL/40-100 μg/mL), thymol (100–200 μg/mL/200-400 μg/mL), carvacrol (200–400 μg/mL/200-600 μg/mL), and menthol (500-more than 2500 μg/mL/1000-more than 2500 μg/mL). The antibacterial activities of the four EO phenolic compound based on the agar diffusion test and bacterial growth curves showed that the four EO phenolic compounds were stable under different temperatures for 24 h, but the thymol activity decreased when the temperature was higher than 80°C. The combination of liquid carvacrol with thymol did not show any synergistic effects. The activities of the vaporous carvacrol and thymol were inhibited by the presence of water. Continual violent shaking during culture enhanced the activity of menthol. Both liquid and vaporous hinokitiol were stable at different temperatures and pH conditions. The combination of vaporous hinokitiol with zinc oxide did not show synergistic effects. These results showed that the liquid and vapor phases of hinokitiol have strong anti-oral bacteria abilities. Hinokitiol has the potential to be applied in oral health care products, dental materials, and infection controls to exert antimicrobial activity. PMID:27681039
Quantification of Microbial Osmolytes in a Drought Impacted California Grassland
NASA Astrophysics Data System (ADS)
Boot, C. M.; Schaeffer, S. M.; Doyle, A. P.; Schimel, J. P.
2008-12-01
With drought frequency and severity likely increasing in the future, understanding its effect on terrestrial carbon (C) and nitrogen (N) cycling has become essential for accurately modeling ecosystem responses to climate change. Microbes respond to drought stress by accumulating internal solutes, or osmolytes, such as amino acids, betaines and polyols, to balance cell membrane water potential as the soil dries. However, when seasonal rains arrive, internal solutes are released and rapidly mineralized. We have been studying these processes in a California grassland. Beginning in summer 2007, we made monthly measurements of soil moisture, individual amino acid concentration in total soil and in microbial biomass, total dissolved organic carbon and nitrogen (DOC and DON), and microbial biomass carbon and nitrogen (MBC and MBN). We expected microbial concentrations of the known amino acid osmolytes glutamate (glu) and proline (pro) to fluctuate inversely with soil moisture. However, pro was only recovered in Mar 2008 (0.30 μg C g-1 dry soil) and the glu concentration varied proportionally with soil moisture: lowest during summer (0.06 g H2O g-1 dry soil, 2.22 μg glutamate-C g-1 dry soil) and highest in winter (0.27 g H2O g-1 dry soil, 4.43 μg glutamate-C g-1 dry soil). The trend from DOC, MBC, and DON measurements was opposite, however, with all concentrations decreasing as soil moisture shifted from dry to wet, (DOC: 64.61 to 32.49 μg C g-1 dry soil respectively). MBN was the exception to this trend, with concentrations staying nearly constant across seasons. These patterns suggest that the expected amino acids glu and pro are not being used for microbial osmoregulation in the CA grassland, and given the summer to winter decrease in MBC, the primary osmolyte source is likely to be either polyol-type compounds such as mannitol or betaines. The implications for terrestrial carbon cycle are considerable because as the frequency of drought increases, the accumulation and release of osmolytes in response to drought has potential to pump carbon out of the grassland ecosystem.
Lyon, Aaron R; Pullmann, Michael D; Dorsey, Shannon; Martin, Prerna; Grigore, Alexandra A; Becker, Emily M; Jensen-Doss, Amanda
2018-05-11
Measurement-based care (MBC) is an increasingly popular, evidence-based practice, but there are no tools with established psychometrics to evaluate clinician use of MBC practices in mental health service delivery. The current study evaluated the reliability, validity, and factor structure of scores generated from a brief, standardized tool to measure MBC practices, the Current Assessment Practice Evaluation-Revised (CAPER). Survey data from a national sample of 479 mental health clinicians were used to conduct exploratory and confirmatory factor analyses, as well as reliability and validity analyses (e.g., relationships between CAPER subscales and clinician MBC attitudes). Analyses revealed competing two- and three-factor models. Regardless of the model used, scores from CAPER subscales demonstrated good reliability and convergent and divergent validity with MBC attitudes in the expected directions. The CAPER appears to be a psychometrically sound tool for assessing clinician MBC practices. Future directions for development and application of the tool are discussed.
An investigation of motion base cueing and G-seat cueing on pilot performance in a simulator
NASA Technical Reports Server (NTRS)
Mckissick, B. T.; Ashworth, B. R.; Parrish, R. V.
1983-01-01
The effect of G-seat cueing (GSC) and motion-base cueing (MBC) on performance of a pursuit-tracking task is studied using the visual motion simulator (VMS) at Langley Research Center. The G-seat, the six-degree-of-freedom synergistic platform motion system, the visual display, the cockpit hardware, and the F-16 aircraft mathematical model are characterized. Each of 8 active F-15 pilots performed the 2-min-43-sec task 10 times for each experimental mode: no cue, GSC, MBC, and GSC + MBC; the results were analyzed statistically in terms of the RMS values of vertical and lateral tracking error. It is shown that lateral error is significantly reduced by either GSC or MBC, and that the combination of cues produces a further, significant decrease. Vertical error is significantly decreased by GSC with or without MBC, whereas MBC effects vary for different pilots. The pattern of these findings is roughly duplicated in measurements of stick force applied for roll and pitch correction.
Ahmed, Zahir; Siddiqui, Mahmood A.; Khan, Ismat
1969-01-01
Bactericidal and bacteriostatic activities of an emulsion containing 10.0% (v/v) terpineol, 0.5% (w/v) diphenyliodonium chloride, 11.0% (v/v) ethyl alcohol, and 5.62% saponified mustard oil were tested against a number of different types of organisms. The bactericidal concentration for Salmonella typhosa was 1:400. In the presence of 5.0% horse serum, it increased to 1:250. The bacteriostatic concentration varied from organism to organism; Escherichia coli and Staphylococcus aureus required 4,000 μg/ml for complete bacteriostasis, whereas Corynebacterium diphtheriae, Salmonella paratyphi-A, and Shigella required only 2,000 μg/ml for complete inhibition. A 4.0% concentration of the emulsion killed the spores of Bacillus subtilis within 6 hr. PMID:4389659
Pharmacokinetics and bactericidal activity of cefuroxime axetil.
Ginsburg, C M; McCracken, G H; Petruska, M; Olson, K
1985-01-01
The pharmacokinetics of cefuroxime axetil were studied in 10 adult volunteers aged 24 to 31 years (mean age, 27), 22 infants and children aged 11 to 68 months (mean age, 33 months), and 11 children aged 7 years, 7 months to 12 years, 3 months (mean age, 11 years, 1 month). Mean peak plasma concentrations of cefuroxime occurred between 90 and 120 min in all study patients and were independent of the fasting or feeding status. The areas under the concentration-time curves were significantly higher in adult volunteers who received cefuroxime axetil with milk than in those who received the drug while fasting or with applesauce. The bioavailability of cefuroxime axetil was significantly enhanced in children by the concomitant ingestion of cefuroxime axetil and infant formula or whole milk. The areas under the concentration-time curves were 25 to 88% higher when cefuroxime axetil and milk were administered simultaneously than when the same dose was given to all fasting patients. The plasma bactericidal activities of cefuroxime against beta-lactamase-positive and -negative strains of Haemophilus influenzae and Staphylococcus aureus at the time of peak plasma concentrations were independent of feeding status and were similar in adults and in children. Against these strains, 52% of the children and 38% of the adults had peak bactericidal levels of 1:8 or greater. PMID:3878129
Wu, Yuan Seng; Lee, Zhong Yang; Chuah, Lay-Hong; Mai, Chun Wai; Ngai, Siew Ching
2018-04-30
Despite advances in the treatment regimen, the high incidence rate of breast cancer (BC) deaths is mostly caused by metastasis. Recently, the aberrant epigenetic modifications, which involve DNA methylation, histone modifications and microRNA (miRNA) regulations become attractive targets to treat metastatic breast cancer (MBC). In this review, the epigenetic alterations of DNA methylation, histone modifications and miRNA regulations in regulating MBC is discussed. The preclinical and clinical trials of epigenetic drugs such as the inhibitor of DNA methyltransferase (DNMTi) and the inhibitor of histone deacetylase (HDACi), as a single or combined regimen with other epigenetic drug or standard chemotherapy drug to treat MBCs are discussed. The combined regimen of epigenetic drugs or with standard chemotherapy drugs enhance the therapeutic effect against MBC. Evidences that epigenetic changes could have implications in diagnosis, prognosis and therapeutics for MBC are also presented. Several genes have been identified as potential epigenetic biomarkers for diagnosis and prognosis, as well as therapeutic targets for MBC. Endeavors in clinical trials of epigenetic drugs against MBC should be continued although limited success has been achieved. Future discovery of epigenetic drugs from natural resources would be an attractive natural treatment regimen for MBC. Further research is warranted in translating research into clinical practice with the ultimate goal of treating MBC by epigenetic therapy in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Decazes, J M; Ernst, J D; Sande, M A
1983-01-01
Ceftriaxone was highly active in eliminating Escherichia coli from the cerebrospinal fluid of rabbits infected with experimental meningitis. However, concentrations equal to or greater than 10 times the minimal bactericidal concentration had to be achieved to ensure optimal efficacy (rate of kill, 1.5 log10 CFU/ml per h). In contrast to other beta-lactams studied in this model, ceftriaxone concentrations in cerebrospinal fluid progressively increased, whereas serum steady state was obtained by constant infusion. The percent penetration was 2.1% after 1 h of therapy, in contrast to 8.9% after 7 h (P less than 0.001). In vitro time-kill curves done in cerebrospinal fluid or broth more closely predicted the drug concentrations required for a maximum cidal effect in vivo than that predicted by determinations of minimal inhibitory or bactericidal concentrations. PMID:6316841
Foster, D M; Jacob, M E; Warren, C D; Papich, M G
2016-02-01
This study's objectives were to determine intestinal antimicrobial concentrations in calves administered enrofloxacin or ceftiofur sodium subcutaneously, and their impact on representative enteric bacteria. Ultrafiltration devices were implanted in the ileum and colon of 12 steers, which received either enrofloxacin or ceftiofur sodium. Samples were collected over 48 h after drug administration for pharmacokinetic/pharmacodynamic analysis. Enterococcus faecalis or Salmonella enterica (5 × 10(5) CFU/mL of each) were exposed in vitro to peak and tail (48 h postadministration) concentrations of both drugs at each location for 24 h to determine inhibition of growth and change in MIC. Enrofloxacin had tissue penetration factors of 1.6 and 2.5 in the ileum and colon, while ciprofloxacin, an active metabolite of enrofloxacin, was less able to cross into the intestine (tissue penetration factors of 0.7 and 1.7). Ceftiofur was rapidly eliminated leading to tissue penetration factors of 0.39 and 0.25. All concentrations of enrofloxacin were bactericidal for S. enterica and significantly reduced E. faecalis. Peak ceftiofur concentration was bactericidal for S. enterica, and tail concentrations significantly reduced growth. E. faecalis experienced growth at all ceftiofur concentrations. The MICs for both organisms exposed to peak and tail concentrations of antimicrobials were unchanged at the end of the study. Enrofloxacin and ceftiofur achieved intestinal concentrations capable of reducing intestinal bacteria, yet the short exposure of ceftiofur in the intestine may select for resistant organisms. © 2015 John Wiley & Sons Ltd.
Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego
2014-01-01
(+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2′-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about the mechanism of inactivation by bactericidal antibiotics. PMID:24705541
Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego
2014-01-01
(+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2'-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about the mechanism of inactivation by bactericidal antibiotics.
HER2-positive male breast cancer: an update
Ottini, Laura; Capalbo, Carlo; Rizzolo, Piera; Silvestri, Valentina; Bronte, Giuseppe; Rizzo, Sergio; Russo, Antonio
2010-01-01
Although rare, male breast cancer (MBC) remains a substantial cause for morbidity and mortality in men. Based on age frequency distribution, age-specific incidence rate pattern, and prognostic factor profiles, MBC is considered similar to postmenopausal breast cancer (BC). Compared with female BC (FBC), MBC cases are more often hormonal receptor (estrogen receptor/progesterone receptor [ER/PR]) positive and human epidermal growth factor receptor 2 (HER2) negative. Treatment of MBC patients follows the same indications as female postmenopausal with surgery, systemic therapy, and radiotherapy. To date, ER/PR and HER2 status provides baseline predictive information used in selecting optimal adjuvant/neoadjuvant therapy and in the selection of therapy for recurrent or metastatic disease. HER2 represents a very interesting molecular target and a number of compounds (trastuzumab [Herceptin®; F. Hoffmann-La Roche, Basel, Switzerland] and lapatinib [Tykerb®, GlaxoSmithKline, London, UK]) are currently under clinical evaluation. Particularly, trastuzumab, a monoclonal antibody which selectively binds the extracellular domain of HER2, has become an important therapeutic agent for women with HER2-positive (HER2+) BC. Currently, data regarding the use of trastuzumab in MBC patients is limited and only few case reports exist. In all cases, MBC patients received trastuzumab concomitantly with other drugs and no severe toxicity above grade 3 was observed. However, MBC patients that would be candidate for trastuzumab therapy (ie, HER2+/ER+ or HER2+/ER− MBCs) represent only a very small percentage of MBC cases. This is noteworthy, when taking into account that trastuzumab is an important and expensive component of systemic BC therapy. Since there is no data supporting the fact that response to therapy is different for men or women, we concluded that systemic therapy in MBC should be considered on the same basis as for FBC. Particularly in male patients, trastuzumab should be considered exclusively for advanced disease or high-risk HER2+ early BCs. On the other hand, lapatinib (Tykerb), a novel oral dual tyrosine kinase inhibitor that targets both HER2 and epidermal growth factor receptor, may represent an interesting and promising therapeutic agent for trastuzumab-resistant MBC patients. PMID:24367166
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidlova-Wuttke, D.; Jarry, H.; Christoffel, J.
2006-02-01
OMC and 4MBC are 2 absorbers of ultraviolet light which are used in unknown quantities in sunscreens, cosmetics and plastic products to protect against UV light-induced damage of the skin or of fragrances or plastic material. From there, they were shown to reach surface water and/or by direct contamination or ingestion the human. Under various conditions in mice and rats, both substances were shown to be estrogenic. Therefore, we compared in vitro and in vivo the effects of chronic application of these compounds at 2 doses with those of E2, all administered via food. No signs of toxicity were observedmore » under application of 0.6 mg E2, 57.5 or 275 mg of OMC, 57.5 or 250 mg of 4MBC; these amounts were ingested with 21 g of control food, 17.8 g E2 food, 20.6 g or 22.3 g OMC food and 23.7 or 22.8 g 4MBC food. In the uterus, vagina and bone, E2 exerted the expected stimulatory effects which were minimally shared by OMC and 4MBC in the uterus and vagina as assessed by histology and determination of a variety of estrogen-regulated genes such as insulin-like growth factor-1, progesterone receptor and estrogen receptor {beta}. In the bone, OMC had no effect, while 4MBC shared the antiosteoporotic effects of E2 as measured by quantitative computer tomography in the metaphysis of the tibia. The mechanism of action of 4MBC, however, appears to be different as E2 reduced serum osteocalcin and the C-terminal breakdown products of collagen-1{alpha}1 which were both increased by 4MBC. Taken together, these data indicate a very weak estrogenic effect of OMC and 4MBC in the uterus and in the vagina but not in the bone where 4MBC exerted antiosteoporotic effects by a different mechanism than E2.« less
U.S. EPA, Pesticide Product Label, MBC CONCENTRATE SOIL FUMIGANT, 08/25/1998
2011-04-21
... (,,10011 eqlllpl\\\\elll rnll~1
Seabra, Catarina Leal; Nunes, Cláudia; Gomez-Lazaro, Maria; Correia, Marta; Machado, José Carlos; Gonçalves, Inês C; Reis, Celso A; Reis, Salette; Martins, M Cristina L
2017-03-15
Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid present in fish oil, has been described as a promising molecule to the treatment of Helicobacter pylori gastric infection. However, due to its highly unsaturated structure, DHA can be easily oxidized loosing part of its bioactivity. This work aims the nanoencapsulation of DHA to improve its bactericidal efficacy against H. pylori. DHA was loaded into nanostructured lipid carriers (NLC) produced by hot homogenization and ultrasonication using a blend of lipids (Precirol ATO5 ® , Miglyol-812 ® ) and a surfactant (Tween 60 ® ). Homogeneous NLC with 302±14nm diameter, -28±3mV surface charge (dynamic and electrophoretic light scattering) and containing 66±7% DHA (UV/VIS spectroscopy) were successfully produced. Bacterial growth curves, performed over 24h in the presence of different DHA concentrations (free or loaded into NLC), demonstrated that nanoencapsulation enhanced DHA bactericidal effect, since DHA-loaded NLC were able to inhibit H. pylori growth in a much lower concentrations (25μM) than free DHA (>100μM). Bioimaging studies, using scanning and transmission electron microscopy and also imaging flow cytometry, demonstrated that DHA-loaded NLC interact with H. pylori membrane, increasing their periplasmic space and disrupting membrane and allowing the leakage of cytoplasmic content. Furthermore, the developed nanoparticles are not cytotoxic to human gastric adenocarcinoma cells at bactericidal concentrations. DHA-loaded NLC should, therefore, be envisaged as an alternative to the current treatments for H. pylori infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Anding, K; Albrecht, P; Heilmann, C; Daschner, F
1993-09-01
New approaches in the diagnosis of pneumonia, especially in intensive care units, are quantitative cultures of bronchoalveolar (BAL) fluid or the protected specimen brush. The sensitivity of these methods, however, has often been found to be as low as 50-60%. One possible explanation for the low sensitivity of these diagnostic tools is the antimicrobial activity of local anaesthetics used in bronchoscopy. Therefore, we investigated the bactericidal properties of oxybuprocaine, a topical anaesthetic used for bronchoscopy in our clinic, in order to test the reliability of specimens obtained from BAL. METHODS. The bactericidal activity of oxybuprocaine in concentrations of 1%, 0.1%, 0.05% and 0.01% was tested by constructing time-kill curves for Streptococcus pneumoniae, Hemophilus influenzae, Pseudomonas aeruginosa and Escherichia coli. Five stains of each bacterial species were tested. The inoculum size was 10(4) ml, and bacteria were counted after 10, 20, 30, 60 and 120 min. RESULTS. The resulting time-kill curves are demonstrated in Figs. 1-4. The most sensitive bacteria were S. pneumoniae and H. influenzae, in which significant bactericidal activity could be shown even with a 0.01% solution of oxybuprocaine. E. coli and P. aeruginosa were also inhibited, but only at the highest concentration of 1%. CONCLUSIONS. The use of local anaesthetics before material is taken for culture, e.g. from BAL, may give rise to false-negative results and should therefore be avoided or reduced. For each local anaesthetic used in bronchoscopy, the concentrations that can be used without the risk of false-negative results should be determined.
Rabinowitz, Amanda R; Merritt, Victoria; Arnett, Peter A
2016-08-01
Baseline neuropsychological testing is commonly used in the management of sports-related concussion. However, underperformance due to poor effort could lead to invalid conclusions regarding postconcussion cognitive decline. We designed the Motivation Behaviors Checklist (MBC) as an observational rating scale to assess effort towards baseline neuropsychological testing. Here we present preliminary data in support of its reliability and validity. MBC items were generated based on the consensus of a panel of graduate students, undergraduates, and a clinical neuropsychologist who conduct neuropsychological evaluations for a sports concussion management program. A total of 261 college athletes were administered a standard neuropsychological test battery in addition to the MBC. A subset of evaluations (n= 101) was videotape and viewed by a second rater. Exploratory factor analysis (EFA) was used to refine the scale, and reliability and validity were evaluated. EFA revealed that the MBC items represent four latent factors-Complaints, Poor Focus, Psychomotor Agitation, and Impulsivity. Reliability analyses demonstrated that the MBC has good inter-rater reliability (intraclass correlation coefficient, ICC = .767) and internal consistency (α = .839). The construct validity of the MBC is supported by large correlations with examiners' ratings of effort (ρ = -.623) and medium-sized relationships with cognitive performance and self-ratings of effort (|ρ| between .263 and .345). Discriminant validity was supported by nonsignificant correlations with measures of depression and postconcussion symptoms (ρ = .056 and .082, respectively). These findings provide preliminary evidence that the MBC could be a useful adjunct to baseline neuropsychological evaluations for sports-concussion management.
Antimycobacterial activity of medicinal plants used by the Mayo people of Sonora, Mexico.
Coronado-Aceves, Enrique Wenceslao; Sánchez-Escalante, José Jesús; López-Cervantes, Jaime; Robles-Zepeda, Ramón Enrique; Velázquez, Carlos; Sánchez-Machado, Dalia Isabel; Garibay-Escobar, Adriana
2016-08-22
Tuberculosis (TB) is an infectious disease mainly caused by Mycobacterium tuberculosis (Mtb), which generates 9 million new cases worldwide each year. The Mayo ethnicity of southern Sonora, Mexico is more than 2000 years old, and the Mayos possess extensive knowledge of traditional medicine. To evaluate the antimycobacterial activity levels of extracts of medicinal plants used by the Mayos against Mtb and Mycobacterium smegmatis (Msm) in the treatment of TB, respiratory diseases and related symptoms. A total of 34 plant species were collected, and 191 extracts were created with n-hexane, dichloromethane, ethyl acetate (EtOAc), methanol and water. Their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined against Mtb H37Rv using the microplate alamar blue assay (MABA) and against Msm using the resazurin microplate assay (REMA) at 6 and 2 days of exposure, respectively, and at concentrations of 250-1.9µg/mL (n-hexane extracts) and 1000-7.81µg/mL (extracts obtained with dichloromethane, EtOAc, methanol and water). Rhynchosia precatoria (Willd.) DC. (n-hexane root extract), Euphorbia albomarginata Torr. and A. Gray. (EtOAc shoot extract) and Helianthus annuus L. (n-hexane stem extract) were the most active plants against Mtb H37Rv, with MICs of 15.6, 250, 250µg/mL and MBCs of 31.25, 250, 250µg/mL, respectively. R. precatoria (root) was the only active plant against Msm, with MIC and MBC values of ≥250µg/mL. None of the aqueous extracts were active. This study validates the medicinal use of certain plants used by the Mayo people in the treatment of TB and related symptoms. R. precatoria, E. albomarginata and H. annuus are promising plant sources of active compounds that act against Mtb H37Rv. To our knowledge, this is the first time that their antimycobacterial activity has been reported. Crude extracts obtained with n-hexane, EtOAc and dichloromethane were the most active against Mtb H37Rv. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Rushton, Laura; Sass, Andrea; Baldwin, Adam; Dowson, Christopher G; Donoghue, Denise; Mahenthiralingam, Eshwar
2013-07-01
Bacteria from the Burkholderia cepacia complex (Bcc) are encountered as industrial contaminants, and little is known about the species involved or their mechanisms of preservative resistance. Multilocus sequence typing (MLST) revealed that multiple Bcc species may cause contamination, with B. lata (n = 17) and B. cenocepacia (n = 11) dominant within the collection examined. At the strain level, 11 of the 31 industrial sequence types identified had also been recovered from either natural environments or clinical infections. Minimal inhibitory (MIC) and minimum bactericidal (MBC) preservative concentrations varied across 83 selected Bcc strains, with industrial strains demonstrating increased tolerance for dimethylol dimethyl hydantoin (DMDMH). Benzisothiazolinone (BIT), DMDMH, methylisothiazolinone (MIT), a blend of 3:1 methylisothiazolinone-chloromethylisothiazolinone (M-CMIT), methyl paraben (MP), and phenoxyethanol (PH), were all effective anti-Bcc preservatives; benzethonium chloride (BC) and sodium benzoate (SB) were least effective. Since B. lata was the dominant industrial Bcc species, the type strain, 383(T) (LMG 22485(T)), was used to study preservative tolerance. Strain 383 developed stable preservative tolerance for M-CMIT, MIT, BIT, and BC, which resulted in preservative cross-resistance and altered antibiotic susceptibility, motility, and biofilm formation. Transcriptomic analysis of the B. lata 383 M-CMIT-adapted strain demonstrated that efflux played a key role in its M-CMIT tolerance and elevated fluoroquinolone resistance. The role of efflux was corroborated using the inhibitor l-Phe-Arg-β-napthylamide, which reduced the MICs of M-CMIT and ciprofloxacin. In summary, intrinsic preservative tolerance and stable adaptive changes, such as enhanced efflux, play a role in the ability of Bcc bacteria to cause industrial contamination.
Rushton, Laura; Sass, Andrea; Baldwin, Adam; Dowson, Christopher G.; Donoghue, Denise
2013-01-01
Bacteria from the Burkholderia cepacia complex (Bcc) are encountered as industrial contaminants, and little is known about the species involved or their mechanisms of preservative resistance. Multilocus sequence typing (MLST) revealed that multiple Bcc species may cause contamination, with B. lata (n = 17) and B. cenocepacia (n = 11) dominant within the collection examined. At the strain level, 11 of the 31 industrial sequence types identified had also been recovered from either natural environments or clinical infections. Minimal inhibitory (MIC) and minimum bactericidal (MBC) preservative concentrations varied across 83 selected Bcc strains, with industrial strains demonstrating increased tolerance for dimethylol dimethyl hydantoin (DMDMH). Benzisothiazolinone (BIT), DMDMH, methylisothiazolinone (MIT), a blend of 3:1 methylisothiazolinone-chloromethylisothiazolinone (M-CMIT), methyl paraben (MP), and phenoxyethanol (PH), were all effective anti-Bcc preservatives; benzethonium chloride (BC) and sodium benzoate (SB) were least effective. Since B. lata was the dominant industrial Bcc species, the type strain, 383T (LMG 22485T), was used to study preservative tolerance. Strain 383 developed stable preservative tolerance for M-CMIT, MIT, BIT, and BC, which resulted in preservative cross-resistance and altered antibiotic susceptibility, motility, and biofilm formation. Transcriptomic analysis of the B. lata 383 M-CMIT-adapted strain demonstrated that efflux played a key role in its M-CMIT tolerance and elevated fluoroquinolone resistance. The role of efflux was corroborated using the inhibitor l-Phe-Arg-β-napthylamide, which reduced the MICs of M-CMIT and ciprofloxacin. In summary, intrinsic preservative tolerance and stable adaptive changes, such as enhanced efflux, play a role in the ability of Bcc bacteria to cause industrial contamination. PMID:23587949
Faghih, Omeed; Zhang, Zhongsheng; Ranade, Ranae M; Gillespie, J Robert; Creason, Sharon A; Huang, Wenlin; Shibata, Sayaka; Barros-Álvarez, Ximena; Verlinde, Christophe L M J; Hol, Wim G J; Fan, Erkang; Buckner, Frederick S
2017-11-01
Antibiotic-resistant bacteria are widespread and pose a growing threat to human health. New antibiotics acting by novel mechanisms of action are needed to address this challenge. The bacterial methionyl-tRNA synthetase (MetRS) enzyme is essential for protein synthesis, and the type found in Gram-positive bacteria is substantially different from its counterpart found in the mammalian cytoplasm. Both previously published and new selective inhibitors were shown to be highly active against Gram-positive bacteria with MICs of ≤1.3 μg/ml against Staphylococcus , Enterococcus , and Streptococcus strains. Incorporation of radioactive precursors demonstrated that the mechanism of activity was due to the inhibition of protein synthesis. Little activity against Gram-negative bacteria was observed, consistent with the fact that Gram-negative bacterial species contain a different type of MetRS enzyme. The ratio of the MIC to the minimum bactericidal concentration (MBC) was consistent with a bacteriostatic mechanism. The level of protein binding of the compounds was high (>95%), and this translated to a substantial increase in MICs when the compounds were tested in the presence of serum. Despite this, the compounds were very active when they were tested in a Staphylococcus aureus murine thigh infection model. Compounds 1717 and 2144, given by oral gavage, resulted in 3- to 4-log decreases in the bacterial load compared to that in vehicle-treated mice, which was comparable to the results observed with the comparator drugs, vancomycin and linezolid. In summary, the research describes MetRS inhibitors with oral bioavailability that represent a class of compounds acting by a novel mechanism with excellent potential for clinical development. Copyright © 2017 American Society for Microbiology.
Bahl, D; Miller, D A; Leviton, I; Gialanella, P; Wolin, M J; Liu, W; Perkins, R; Miller, M H
1997-01-01
We characterized the effects of ciprofloxacin and rifampin alone and in combination on Staphylococcus aureus in vitro. The effects of drug combinations (e.g., indifferent, antagonistic, or additive interactions) on growth inhibition were compared by disk approximation studies and by determining the fractional inhibitory concentrations. Bactericidal effects in log-phase bacteria and in nongrowing isolates were characterized by time-kill methods. The effect of drug combinations was dependent upon whether or not cells were growing and whether killing or growth inhibition was the endpoint used to measure drug interaction. Despite bactericidal antagonism in time-kill experiments, our in vitro studies suggest several possible explanations for the observed benefits in patients treated with a combination of ciprofloxacin and rifampin for deep-seated staphylococcal infections. Notably, when growth inhibition rather than killing was used to characterize drug interaction, indifference rather than antagonism was observed. An additive bactericidal effect was observed in nongrowing bacteria suspended in phosphate-buffered saline. While rifampin antagonized the bactericidal effects of ciprofloxacin, ciprofloxacin did not antagonize the bactericidal effects of rifampin. Each antimicrobial prevented the emergence of subpopulations that were resistant to the other. PMID:9174186
The effect of UV-filters on the viability of neuroblastoma (SH-SY5Y) cell line.
Broniowska, Żaneta; Pomierny, Bartosz; Smaga, Irena; Filip, Małgorzata; Budziszewska, Bogusława
2016-05-01
Topical application of cosmetic products, containing ultraviolet filters (UV filters) are recommended as a protection against sunburns and in order to reduce the risk of skin cancer. However, some UV filters can be absorbed through skin and by consuming contaminated food. Among the chemical UV filters, benzophenone-3 (BP-3), 3-(4-methylbenzylidene)camphor (4-MBC) and 2-ethylhexyl-4-methoxycinnamate (OMC) are absorbed through the skin to the greatest extent. So far, these lipophilic compounds were demonstrated to influence the gonadal and thyroid hormone function, but their effect on central nervous system cells has not been investigated, yet. In the present study, we investigated the effect of some UV filters on cell viability and caspase-3 activity in SH-SY5Y cells. It has been found that benzophenone-2 (BP-2), BP-3, 4-methylbenzophenone (4-MBP) and OMC present in the culture medium for 72h in high concentration (10(-5) and 10(-4)M) and 4-MBC only 10(-4)M produced a significant cytotoxic effect, as determined both by the MTT reduction test and LDH release assay. In contrast to necrotic changes, all tested UV filters increased caspase-3 activity in much lower concentrations (from 10(-8) to 10(-7)M). Proapoptotic properties of the test compounds were positively verified by Hoechst staining. The obtained results indicated that UV filters adversely affected the viability of nerve cells, most likely by enhancing the process of apoptosis. The most potent effect was exerted by BP-3 and 4-MBC and at concentrations that may be reached in vivo. Since human exposure to UV filters is significant these compound should be taken into consideration as one of the possible factors involved in pathogenesis of neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
In vitro antibody-enzyme conjugates with specific bactericidal activity.
Knowles, D M; Sulivan, T J; Parker, C W; Williams, R C
1973-06-01
IgG with antibacterial antibody opsonic activity was isolated from rabbit antisera produced by intravenous hyperimmunization with several test strains of pneumococci, Group A beta-hemolytic streptococci, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, and Escherichia coli. Antibody-enzyme conjugates were prepared, using diethylmalonimidate to couple glucose oxidase to IgG antibacterial antibody preparations. Opsonic human IgG obtained from serum of patients with subacute bacterial endocarditis was also conjugated to glucose oxidase. Antibody-enzyme conjugates retained combining specificity for test bacteria as demonstrated by indirect immunofluorescence. In vitro test for bactericidal activity of antibody-enzyme conjugates utilized potassium iodide, lactoperoxidase, and glucose as cofactors. Under these conditions glucose oxidase conjugated to antibody generates hydrogen peroxide, and lactoperoxidase enzyme catalyzes the reduction of hydrogen peroxide with simultaneous oxidation of I(-) and halogenation and killing of test bacteria. Potent in vitro bactericidal activity of this system was repeatedly demonstrated for antibody-enzyme conjugates against pneumococci, streptococci, S. aureus, P. mirabilis, and E. coli. However, no bactericidal effect was demonstrable with antibody-enzyme conjugates and two test strains of P. aeruginosa. Bactericidal activity of antibody-enzyme conjugates appeared to parallel original opsonic potency of unconjugated IgG preparations. Antibody-enzyme conjugates at concentrations as low as 0.01 mg/ml were capable of intense bactericidal activity producing substantial drops in surviving bacterial counts within 30-60 min after initiation of assay. These in vitro bactericidal systems indicate that the concept of antibacterial antibody-enzyme conjugates may possibly be adaptable as a mechanism for treatment of patients with leukocyte dysfunction or fulminant bacteremia.
NASA Astrophysics Data System (ADS)
Kiani, M.; Hernandez Ramirez, G.; Quideau, S.
2016-12-01
Improved knowledge about the spatial variability of plant available water (PAW), soil organic carbon (SOC), and microbial biomass carbon (MBC) as affected by land-use systems can underpin the identification and inventory of beneficial ecosystem good and services in both agricultural and wild lands. Little research has been done that addresses the spatial patterns of PAW, SOC, and MBC under different land use types at a field scale. Therefore, we collected 56 soil samples (5-10 cm depth increment), using a nested cyclic sampling design within both a native grassland (NG) site and an irrigated cultivated (IC) site located near Brooks, Alberta. Using classical statistical and geostatistical methods, we characterized the spatial heterogeneities of PAW, SOC, and MBC under NG and IC using several geostatistical methods such as ordinary kriging (OK), regression-kriging (RK), cokriging (COK), and regression-cokriging (RCOK). Converting the native grassland to irrigated cultivated land altered soil pore distribution by reducing macroporosity which led to lower saturated water content and half hydraulic conductivity in IC compared to NG. This conversion also decreased the relative abundance of gram-negative bacteria, while increasing both the proportion of gram-positive bacteria and MBC concentration. At both studied sites, the best fitted spatial model was Gaussian based on lower RSS and higher R2 as criteria. The IC had stronger degree of spatial dependence and longer range of spatial auto-correlation revealing a homogenization of the spatial variability of soil properties as a result of intensive, recurrent agricultural activities. Comparison of OK, RK, COK, and RCOK approaches indicated that cokriging method had the best performance demonstrating a profound improvement in the accuracy of spatial estimations of PAW, SOC, and MBC. It seems that the combination of terrain covariates such as elevation and depth-to-water with kriging techniques offers more capability for incorporating explicit ancillary information in predictive soil mapping. Overall, identification of spatial patterns of soil properties in agricultural lands gives a bird's eye view to land owners to implement and improve management practices which lead to more sustainable production.
EFFECT OF INORGANIC CATIONS ON BACTERICIDAL ACTIVITY OF ANIONIC SURFACTANTS
Voss, J. G.
1963-01-01
Voss, J. G. (Procter & Gamble Co., Cincinnati, Ohio). Effect of inorganic cations on bactericidal activity of anionic surfactants. J. Bacteriol. 86:207–211. 1963.—The bactericidal effectiveness of two alkyl benzene sulfonates and of three other types of anionic surfactants against Staphylococcus aureus is increased in the presence of low concentrations of divalent cations, especially alkaline earths and metals of group IIB of the periodic table. The cations may act by decreasing the negative charge at the cell surface and increasing adsorption of the surfactant anions, leading to damage to the cytoplasmic membrane and death of the cell. Increased adsorption of surfactant is also found with Escherichia coli, but does not lead to death of the cell. PMID:14058942
Phenothiaziniums as putative photobactericidal agents for red blood cell concentrates.
Wainwright, M; Phoenix, D A; Smillie, T E; Wareing, D R
2001-10-01
The antibacterial activities of Methylene Blue and several of its congeners were measured against Yersinia enterocolitica, a gram-negative pathogen known to exhibit significant growth at 4 degrees C and thus constituting a threat to red blood cell concentrates which are stored at this temperature. None of the derivatives was highly active in dark conditions, as expected, but on illumination using a lamp emitting light in the waveband 615-645 nm, considerable bactericidal activity was noted using similar photosensitizer concentrations to those used elsewhere to inactivate blood-borne viruses. Two novel compounds in this area, the phenothiazinium New Methylene Blue N and the phenoxazinium Brilliant Cresyl Blue, exhibited bactericidal activity at lower concentrations than both of the established phenothiaziniums, Methylene Blue and Toluidine Blue O and the recently published blood photovirucidal agent 1,9-Dimethyl Methylene Blue. The photoactivity of these compounds was undiminished in the presence of red blood cells.
Rational synthesis of zerovalent iron/bamboo charcoal composites with high saturation magnetization
Mingshan Wu; Jianfeng Ma; Zhiyong Cai; Genlin Tian; Shumin Yang; Youhong Wang; Xing' e Liu
2015-01-01
The synthesis of magnetic biochar composites is a major new research area in advanced materials sciences. A series of magnetic bamboo charcoal composites (MBC800, MBC1000 and MBC1200) with high saturation magnetization (Ms) was fabricated in this work by mixing bamboo charcoal powder with an aqueous ferric chloride solution and subsequently...
Din, Wardah Mustafa; Jin, Khoo Teng; Ramli, Ramliza; Khaithir, Tzar Mohd Nizam; Wiart, Christophe
2013-09-01
The present study served to gain further insight into the bactericidal effects of ellagitannins from Acalypha wilkesiana var. macafeana hort. against pathogenic bacteria. Ellagitannins from the aerial parts of A. wilkesiana var. macafeana hort. (EAW) inhibited the growth of Bacillus cereus (ATCC 11778), Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 11632) and Methicillin-resistant Staphylococcus aureus (MRSA) clinical strain with inhibition zones equal to 11.01 ± 1.53 mm, 16.63 ± 0.11 mm, 11.40 ± 1.10 mm and 8.22 ± 0.19 mm, respectively. The minimal inhibition concentration and the minimal bactericidal concentration of ellagitannins from A. wilkesiana var. macafeana hort. (EAW) against MRSA were 750 µg/mL and 3000 µg/mL, respectively. We then examined the synergistic effect of EAW with three antibiotics, i.e. ampicillin, streptomycin and tetracycline, via the checkerboard assay and time-kill assay and observed that EAW is synergistic with ampicillin against S. aureus (ATCC 11632). Environmental electron scanning microscopy analysis showed cell lysis against S. aureus (ATCC 11632) upon treatment with the ellagitannin fraction. The ellagitannin fraction from A. wilkesiana var. macafeana hort. is bactericidal against gram-positive bacteria tested and works synergistically with ampicillin against S. aureus. Morphology analysis of the cell suggests that the bactericidal property of the ellagitannin fraction mechanism involves lysis of the cell wall. In summary, our studies demonstrate that A. wilkesiana var. macafeana hort. produces bactericidal ellagitannins of clinical and/or cosmetological value. Copyright © 2012 John Wiley & Sons, Ltd.
Mendoza, Eduardo; Fuller, Trevon L; Thomassen, Henri A; Buermann, Wolfgang; Ramírez-Mejía, Diana; Smith, Thomas B
2013-03-01
Baird's tapir (Tapirus bairdii) is one of the most emblematic mammals of Mesoamerica, but like other large-bodied animals, it is facing an increasing risk of extinction due primarily to habitat loss. Mexico's 'ortion of the Mesoamerican Biological Corridor (MBC-M) is located in one of the main strongholds for Bairds tapir. To assess the MBC-M's effectiveness for tapir conservation, we estimated the distribution of the species' potential habitat by applying 2 modelling approaches (random forest and Maxent) to a set of uncorrelated environmental variables and a 157-point presence dataset. We calculated the extent of tapir habitat in within the MBC-M and modelled new corridors and conservation areas, which we compared to the MBC-M. Moreover, we assessed deforestation patterns in the region. Twenty-seven percent of highly suitable tapir habitat occurred in protected areas, 15% in corridors and 58.3% was outside the MBC-M and associated reserves. The spatial configuration of the MBC-M was partially concordant with the modelled set of conservation areas and corridors. The main dissimilarity was that the modelled corridors traversed forests in Belize and Guatemala to connect conservation areas. Analyses of deforestation since 1993 and human population density in the vicinity of the MBC-M indicated that future conservation efforts should give particular attention to the Montes Azules-El Triunfo Corridor due to greater habitat threat. The MBC-M has a great potential to play a prominent role in the conservation of tapir habitat but there is an urgent need to implement management plans that reinforce and complement this conservation initiative. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
ANTIMICROBIAL ACTIVITY OF BURSERA MORELENSIS RAMÍREZ ESSENTIAL OIL.
M, Canales-Martinez; C R, Rivera-Yañez; J, Salas-Oropeza; H R, Lopez; M, Jimenez-Estrada; R, Rosas-Lopez; D A, Duran; C, Flores; L B, Hernandez; M A, Rodriguez-Monroy
2017-01-01
Bursera morelensis , known as "Aceitillo", is an endemic tree of Mexico. Infusions made from the bark of this species have been used for the treatment of skin infections and for their wound healing properties. In this work, we present the results of a phytochemical and antimicrobial investigation of the essential oil of B. morelensis . The essential oil was obtained by a steam distillation method and analyzed using GC-MS. The antibacterial and antifungal activities were evaluated. GC-MS of the essential oil demonstrated the presence of 28 compounds. The principal compound of the essential oil was a-Phellandrene (32.69%). The essential oil had antibacterial activity against Gram positive and negative strains. The most sensitive strains were S. pneumoniae , V. cholerae (cc) and E. coli (MIC 0.125 mg/mL, MBC 0.25 mg/mL). The essential oil was bactericidal for V. cholera (cc). The essential oil inhibited all the filamentous fungi. F. monilifome (IC 50 = 2.27 mg/mL) was the most sensitive fungal strain. This work provides evidence that confirms the antimicrobial activity of the B. morelensis essential oil and this is a scientific support about of traditional uses of this species.
ANTIMICROBIAL ACTIVITY OF BURSERA MORELENSIS RAMÍREZ ESSENTIAL OIL
M., Canales-Martinez; C.R., Rivera-Yañez; J., Salas-Oropeza; H.R., Lopez; M., Jimenez-Estrada; R., Rosas-Lopez; D.A., Duran; C., Flores; L.B., Hernandez; M.A., Rodriguez-Monroy
2017-01-01
Background: Bursera morelensis, known as “Aceitillo”, is an endemic tree of Mexico. Infusions made from the bark of this species have been used for the treatment of skin infections and for their wound healing properties. In this work, we present the results of a phytochemical and antimicrobial investigation of the essential oil of B. morelensis. Materials and Methods: The essential oil was obtained by a steam distillation method and analyzed using GC-MS. The antibacterial and antifungal activities were evaluated. Results: GC-MS of the essential oil demonstrated the presence of 28 compounds. The principal compound of the essential oil was a-Phellandrene (32.69%). The essential oil had antibacterial activity against Gram positive and negative strains. The most sensitive strains were S. pneumoniae, V. cholerae (cc) and E. coli (MIC 0.125 mg/mL, MBC 0.25 mg/mL). The essential oil was bactericidal for V. cholera (cc). The essential oil inhibited all the filamentous fungi. F. monilifome (IC50 = 2.27 mg/mL) was the most sensitive fungal strain. Conclusions: This work provides evidence that confirms the antimicrobial activity of the B. morelensis essential oil and this is a scientific support about of traditional uses of this species. PMID:28480418
Inoue, Kenichi; Kuroi, Katsumasa; Shimizu, Satoru; Rai, Yoshiaki; Aogi, Kenjiro; Masuda, Norikazu; Nakayama, Takahiro; Iwata, Hiroji; Nishimura, Yuichiro; Armour, Alison; Sasaki, Yasutsuna
2015-12-01
Lapatinib is the human epidermal growth factor receptor 2 (HER2) targeting agent approved globally for HER2-positive metastatic breast cancer (MBC). The efficacy, safety and pharmacokinetics (PK) of lapatinib combined with paclitaxel (L+P) were investigated in this study, to establish clear evidence regarding the combination in Japanese patients. In this two-part, single-arm, open-label study, the tolerability of L+P as first-line treatment in Japanese patients with HER2-positive MBC was evaluated in six patients in the first part, and the safety, efficacy and PK were evaluated in a further six patients (making a total of twelve patients) in the second part. Eligible women were enrolled and received lapatinib 1500 mg once daily and paclitaxel 80 mg/m(2) weekly for at least 6 cycles. The only dose-limiting toxicity reported was Grade 3 diarrhea in one patient. The systemic exposure to maximum plasma concentration and area under the plasma concentration curve (AUC) for lapatinib, as well as the AUC of paclitaxel, were increased when combined. The most common adverse events (AEs) related to the study treatment were alopecia, diarrhea and decreased hemoglobin. The majority of drug-related AEs were Grade 1 or 2. The median overall survival was 35.6 months (95 % confidence interval 23.9, not reached). The response rate and clinical benefit rate were both 83 % (95 % confidence interval 51.6, 97.9). The L+P treatment was well tolerated in Japanese patients with HER2-positive MBC. Although the PK profiles of lapatinib and paclitaxel influenced each other, the magnitudes were not greatly different from those in non-Japanese patients.
Efficacy of taurolidine against periodontopathic species--an in vitro study.
Eick, Sigrun; Radakovic, Sabrina; Pfister, Wolfgang; Nietzsche, Sandor; Sculean, Anton
2012-06-01
The antimicrobial effect of taurolidine was tested against periodontopathic species in comparison to chlorhexidine digluconate in the presence or absence of serum. Minimal inhibitory concentrations (MIC), microbiocidal concentrations (MBC), as well as killing were determined against 32 different microbial strains including 3 Porphyromonas gingivalis, 3 Aggregatibacter actinomycetemcomitans, and 15 potentially superinfecting species with and without 25% v/v human serum. The MIC(50) of taurolidine against the tested microbial strains was 0.025% and the MIC(90) 0.05%. The respective values for the MBCs were 0.05% and 0.1%. Addition of 25% serum (heat-inactivated) did not change the MIC and MBC values of taurolidine. In contrast, MICs and MBCs of chlorhexidine (CHX) increased by two steps after addition of serum. Taurolidine killed microorganisms in a concentration and time-dependent manner, the killing rate of 1.6% taurolidine was 99.08% ± 2.27% in mean after 2 h. Again, killing activity of taurolidine was not affected if serum was added, whereas addition of inactivated serum clearly reduced the killing rate of all selected bacterial strains by CHX. Therefore, taurolidine possesses antimicrobial properties which are not reduced in the presence of serum as a main component in gingival crevicular fluid and wound fluid. Taurolidine may have potential as an antimicrobial agent in non-surgical and surgical periodontal treatment.
Phytochemical, antimicrobial, and antioxidant activities of different citrus juice concentrates.
Oikeh, Ehigbai I; Omoregie, Ehimwenma S; Oviasogie, Faith E; Oriakhi, Kelly
2016-01-01
The search for new antimicrobial compounds is ongoing. Its importance cannot be overemphasized in an era of emerging resistant pathogenic organisms. This study therefore investigated the phytochemical composition and antioxidant and antimicrobial activities of different citrus juice concentrates. Fruit juices of Citrus tangerine (tangerine), Citrus paradisi (grape), Citrus limon (lemon), and Citrus aurantifolia (lime) were evaluated. Antimicrobial activities against five bacterial and three fungal strains were evaluated. The results revealed the presence of alkaloids, flavonoids, steroids, terpenoids, saponins, cardiac glycosides, and reducing sugars in all the juice concentrates. DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging capacities varied with tangerine and grape juices having better scavenging capacities than lemon and lime juices. Grape juice was observed to have a significantly higher (P < 0.05) ferric-reducing antioxidant potential (FRAP) value (364.2 ± 10.25 μmol/L Fe(II)/g of the extract) than the reference antioxidant, ascorbic acid (312.88 ± 5.61 μmol/L). Antimicrobial studies revealed differential antimicrobial activities against different microbial strains. Zones of inhibition ranging from 4 to 26 mm were observed for the antibacterial tests with 0-24 mm for antifungal test. Minimum inhibitory concentrations (MIC) and minimum bacteriostatic concentrations (MBC) for concentrates against bacterial strains ranged from 12.5 to 200 μg/mL. Lemon and lime juice concentrates had lower MIC and MBC values with orange and tangerine having the highest values. Minimum fungicidal concentrations ranged from 50 to 200 μg/mL. The results of this study suggest that these juice concentrates may have beneficial antimicrobial roles that can be exploited in controlling unwanted microbial growth.
Chylkova, Tereza; Cadena, Myrna; Ferreiro, Aura; Pitesky, Maurice
2017-07-01
Poultry contaminated with Salmonella enterica subsp. enterica are a major cause of zoonotic foodborne gastroenteritis. Salmonella Heidelberg is a common serotype of Salmonella that has been implicated as a foodborne pathogen associated with the consumption of improperly prepared chicken. To better understand the effectiveness of common antimicrobial disinfectants (i.e., peroxyacetic acid [PAA], acidified hypochlorite [aCH], and cetylpyridinium chloride [CPC]), environmental isolates of nontyphoidal Salmonella were exposed to these agents under temperature, concentration, and contact time conditions consistent with poultry processing. Under simulated processing conditions (i.e., chiller tank and dipping stations), the bacteriostatic and bactericidal effects of each disinfectant were assessed against biofilm and planktonic cultures of each organism in a disinfectant challenge. Log reductions, planktonic MICs, and mean biofilm eradication concentrations were computed. The biofilms of each Salmonella isolate were more resistant to the disinfectants than were their planktonic counterparts. Although PAA was bacteriostatic and bactericidal against the biofilm and planktonic Salmonella isolates tested at concentrations up to 64 times the concentrations commonly used in a chiller tank during poultry processing, aCH was ineffective against the same isolates under identical conditions. At the simulated 8-s dipping station, CPC was bacteriostatic against all seven and bactericidal against six of the seven Salmonella isolates in their biofilm forms at concentrations within the regulatory range. These results indicate that at the current contact times and concentrations, aCH and PAA are not effective against these Salmonella isolates in their biofilm state. The use of CPC should be considered as a tool for controlling Salmonella biofilms in poultry processing environments.
Cannabinoid CB2 receptor as a new phototherapy target for the inhibition of tumor growth.
Jia, Ningyang; Zhang, Shaojuan; Shao, Pin; Bagia, Christina; Janjic, Jelena M; Ding, Ying; Bai, Mingfeng
2014-06-02
The success of targeted cancer therapy largely relies upon the selection of target and the development of efficient therapeutic agents that specifically bind to the target. In the current study, we chose a cannabinoid CB2 receptor (CB2R) as a new target and used a CB2R-targeted photosensitizer, IR700DX-mbc94, for phototherapy treatment. IR700DX-mbc94 was prepared by conjugating a photosensitizer, IR700DX, to mbc94, whose binding specificity to CB2R has been previously demonstrated. We found that phototherapy treatment using IR700DX-mbc94 greatly inhibited the growth of CB2R positive tumors but not CB2R negative tumors. In addition, phototherapy treatment with nontargeted IR700DX did not show significant therapeutic effect. Similarly, treatment with IR700DX-mbc94 without light irradiation or light irradiation without the photosensitizer showed no tumor-inhibitory effect. Taken together, IR700DX-mbc94 is a promising phototherapy agent with high target-specificity. Moreover, CB2R appears to have great potential as a phototherapeutic target for cancer treatment.
McKay, G J; Egan, D; Morris, E; Scott, C; Brown, A E
1999-02-01
Cladobotryum dendroides (= Dactylium dendroides) has hitherto been regarded as the major causal agent of cobweb disease of the cultivated mushroom, Agaricus bisporus. Nucleotide sequence data for the internal transcribed spacer (ITS) regions of four Cladobotryum/Hypomyces species reported to be associated with cobweb disease, however, indicate that the most common pathogen is now C. mycophilum. This cobweb pathogen varies somewhat in conidial septation from published descriptions of C. mycophilum and lacks the distinctive colony odor. ITS sequencing revealed minor nucleotide variation which split isolates of the pathogen into three subgroups, two comprising isolates that were sensitive to methylbenzimidazole carbamate (MBC) fungicides and one comprising MBC-resistant isolates. The MBC-resistant isolates, which were only obtained from Ireland and Great Britain, clustered together strongly in randomly amplified polymorphic DNA (RAPD) PCR analysis, suggesting that they may be clonal. The MBC-sensitive isolates were more diverse. A RAPD fragment of 800 to 900 bp, containing a microsatellite and found in the MBC-resistant isolates, also indicated their clonal nature; the microsatellites of these isolates contained the same number of GA repeats. Smaller, polymorphic microsatellites, similarly comprising GA repeats, in the MBC-sensitive isolates in general correlated with their geographic origin.
McKay, Gareth J.; Egan, Damian; Morris, Elizabeth; Scott, Carol; Brown, Averil E.
1999-01-01
Cladobotryum dendroides (= Dactylium dendroides) has hitherto been regarded as the major causal agent of cobweb disease of the cultivated mushroom, Agaricus bisporus. Nucleotide sequence data for the internal transcribed spacer (ITS) regions of four Cladobotryum/Hypomyces species reported to be associated with cobweb disease, however, indicate that the most common pathogen is now C. mycophilum. This cobweb pathogen varies somewhat in conidial septation from published descriptions of C. mycophilum and lacks the distinctive colony odor. ITS sequencing revealed minor nucleotide variation which split isolates of the pathogen into three subgroups, two comprising isolates that were sensitive to methylbenzimidazole carbamate (MBC) fungicides and one comprising MBC-resistant isolates. The MBC-resistant isolates, which were only obtained from Ireland and Great Britain, clustered together strongly in randomly amplified polymorphic DNA (RAPD) PCR analysis, suggesting that they may be clonal. The MBC-sensitive isolates were more diverse. A RAPD fragment of 800 to 900 bp, containing a microsatellite and found in the MBC-resistant isolates, also indicated their clonal nature; the microsatellites of these isolates contained the same number of GA repeats. Smaller, polymorphic microsatellites, similarly comprising GA repeats, in the MBC-sensitive isolates in general correlated with their geographic origin. PMID:9925589
An enhancer peptide for membrane-disrupting antimicrobial peptides
2010-01-01
Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4) by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn). Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin) killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus), whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin) were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane. PMID:20152058
Subinhibitory quinupristin/dalfopristin attenuates virulence of Staphylococcus aureus.
Koszczol, Carmen; Bernardo, Katussevani; Krönke, Martin; Krut, Oleg
2006-09-01
The semi-synthetic streptogramin quinupristin/dalfopristin antibiotic exerts potent bactericidal activity against Staphylococcus aureus. We investigated whether, like other bactericidal antibiotics used at subinhibitory concentrations, quinupristin/dalfopristin enhances release of toxins by Gram-positive cocci. The activity of quinupristin/dalfopristin on exotoxin release by S. aureus was investigated by 2D SDS-PAGE combined with MALDI-TOF/MS analysis and by western blotting. We show that quinupristin/dalfopristin at subinhibitory concentrations reduces the release of S. aureus factors that induce tumour necrosis factor secretion in macrophages. Furthermore, quinupristin/dalfopristin but not linezolid attenuated S. aureus-mediated killing of infected host cells. When added to S. aureus cultures at different stages of bacterial growth, quinupristin/dalfopristin reduced in a dose-dependent manner the release of specific virulence factors (e.g. autolysin, protein A, alpha- and beta-haemolysins, lipases). In contrast, other presumably non-toxic exoproteins remained unchanged. The results of the present study suggest that subinhibitory quinupristin/dalfopristin inhibits virulence factor release by S. aureus, which might be especially helpful for the treatment of S. aureus infections, where both bactericidal as well as anti-toxin activity may be advantageous.
Naturally Acquired Antibodies against Haemophilus influenzae Type a in Aboriginal Adults, Canada
Nix, Eli B.; Williams, Kylie; Cox, Andrew D.; St. Michael, Frank; Romero-Steiner, Sandra; Schmidt, Daniel S.; McCready, William G.
2015-01-01
In the post-Haemophilus influenzae type b (Hib) vaccine era that began in the 1980's, H. influenzae type a (Hia) emerged as a prominent cause of invasive disease in North American Aboriginal populations. To test whether a lack of naturally acquired antibodies may underlie increased rates of invasive Hia disease, we compared serum bactericidal activity against Hia and Hib and IgG and IgM against capsular polysaccharide between Canadian Aboriginal and non-Aboriginal healthy and immunocompromised adults. Both healthy and immunocompromised Aboriginal adults exhibited significantly higher bactericidal antibody titers against Hia than did non-Aboriginal adults (p = 0.042 and 0.045 respectively), with no difference in functional antibody activity against Hib. IgM concentrations against Hia were higher than IgG in most study groups; the inverse was true for antibody concentrations against Hib. Our results indicate that Aboriginal adults possess substantial serum bactericidal activity against Hia that is mostly due to IgM antibodies. The presence of sustained IgM against Hia suggests recent Hia exposure. PMID:25626129
Toyofuku, Chiharu; Alam, Md Shahin; Yamada, Masashi; Komura, Miyuki; Suzuki, Mayuko; Hakim, Hakimullah; Sangsriratanakul, Natthanan; Shoham, Dany; Takehara, Kazuaki
2017-06-16
An alkaline agent, namely food additive grade calcium hydroxide (FdCa(OH) 2 ) in solution at 0.17%, was evaluated for its bactericidal efficacies in chiller water with sodium hypochlorite (NaOCl) at a concentration of 200 ppm total residual chlorine. Without organic material presence, NaOCl could inactivate Salmonella Infantis and Escherichia coli within 5 sec, but in the presence of fetal bovine serum (FBS) at 0.5%, the bactericidal effects of NaOCl were diminished completely. FdCa(OH) 2 solution required 3 min to inactivate bacteria with or without 5% FBS. When NaOCl and FdCa(OH) 2 were mixed at the final concentration of 200 ppm and 0.17%, respectively, the mixed solution could inactivate bacteria at acceptable level (10 3 reduction of bacterial titer) within 30 sec in the presence of 0.5% FBS. The mixed solution also inhibited cross-contamination with S. Infantis or E. coli on chicken meats. It was confirmed and elucidated that FdCa(OH) 2 has a synergistic effect together with NaOCl for inactivating microorganisms.
An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.
Starliper, Clifford E.; Ketola, Henry G.; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc A.; Dittman, Dawn E.
2014-01-01
Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments of captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine whether selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBCs (0.02–0.04%) were obtained with three different sources of cinnamon oil. MBCs for three sources of oregano and lemongrass oils ranged from 0.14% to 0.30% and 0.10% to 0.65%, respectively, and for two thyme oils were 2.11% and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBCs to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBCs for all but one isolate. PMID:25685547
An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.
Starliper, Clifford E.; Ketola, H. George; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc; Dittman, Dawn E.
2015-01-01
Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments of captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine whether selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBCs (0.02–0.04%) were obtained with three different sources of cinnamon oil. MBCs for three sources of oregano and lemongrass oils ranged from 0.14% to 0.30% and 0.10% to 0.65%, respectively, and for two thyme oils were 2.11% and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBCs to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBCs for all but one isolate.
An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.
Starliper, Clifford E.; Ketolab, Henry G.; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc A.; Dittman, Dawn E.
2015-01-01
Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments for captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine if selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBC’s (0.02 to 0.04%) were obtained with three different sources of cinnamon oil. MBC’s for three sources of oregano and lemongrass oils ranged from 0.14 to 0.30% and 0.10 to 0.65%, respectively, and for two thyme oils were 2.11 and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBC’s to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBC’s for all but one isolate
Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus.
Cartron, Michaël L; England, Simon R; Chiriac, Alina Iulia; Josten, Michaele; Turner, Robert; Rauter, Yvonne; Hurd, Alexander; Sahl, Hans-Georg; Jones, Simon; Foster, Simon J
2014-07-01
Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents. Copyright © 2014 Cartron et al.
Zhang, Qing-zhong; Dijkstra, Feike A.; Liu, Xing-ren; Wang, Yi-ding; Huang, Jian; Lu, Ning
2014-01-01
The long term effect of biochar application on soil microbial biomass is not well understood. We measured soil microbial biomass carbon (MBC) and nitrogen (MBN) in a field experiment during a winter wheat growing season after four consecutive years of no (CK), 4.5 (B4.5) and 9.0 t biochar ha−1 yr−1 (B9.0) applied. For comparison, a treatment with wheat straw residue incorporation (SR) was also included. Results showed that biochar application increased soil MBC significantly compared to the CK treatment, and that the effect size increased with biochar application rate. The B9.0 treatment showed the same effect on MBC as the SR treatment. Treatments effects on soil MBN were less strong than for MBC. The microbial biomass C∶N ratio was significantly increased by biochar. Biochar might decrease the fraction of biomass N mineralized (K N), which would make the soil MBN for biochar treatments underestimated, and microbial biomass C∶N ratios overestimated. Seasonal fluctuation in MBC was less for biochar amended soils than for CK and SR treatments, suggesting that biochar induced a less extreme environment for microorganisms throughout the season. There was a significant positive correlation between MBC and soil water content (SWC), but there was no significant correlation between MBC and soil temperature. Biochar amendments may therefore reduce temporal variability in environmental conditions for microbial growth in this system thereby reducing temporal fluctuations in C and N dynamics. PMID:25025330
Dargère, S; Parienti, J-J; Roupie, E; Gancel, P-E; Wiel, E; Smaiti, N; Loiez, C; Joly, L-M; Lemée, L; Pestel-Caron, M; du Cheyron, D; Verdon, R; Leclercq, R; Cattoir, V
2014-11-01
Detection of microorganisms by blood cultures (BCs) is essential in managing patients with bacteraemia. Rather than the number of punctures, the volume of blood drawn is considered paramount in efficient and reliable detection of microorganisms. We performed a 1-year prospective multicentre study in adult emergency departments of three French university hospitals comparing two methods for BCs: a unique blood culture (UBC) collecting a large volume of blood (40 mL) and the standard method of multiple blood cultures (MBC). The performances of both methods for bacterial contamination and efficient microbial detection were compared, each patient serving as his own control. Amongst the 2314 patients included, three hundred were positive for pathogens (n=245) or contaminants (n=55). Out of the 245 patients, 11 were positive for pathogens by UBC but negative by MBC and seven negative by UBC but positive by MBC (p 0.480). In the subgroup of 137 patients with only two BCs, UBC was superior to MBC (p 0.044). Seven and 17 patients had contaminated BCs by UBC and MBC only, respectively (p 0.062). Considering the sums of pathogens missed and contaminants, UBC significantly outperformed MBC (p 0.045). Considering the complete picture of cost savings, efficient detection of microorganisms and decrease in contaminations, UBC offers an interesting alternative to MBC. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
Gomes, Thais Ferreira; Pedrosa, Matheus Masalskiene; de Toledo, Ana Claudia Laforga; Arnoni, Veridiana Wanshi; Dos Santos Monteiro, Mirian; Piai, Davi Cury; Sylvestre, Silvia Helena Zacarias; Ferreira, Bruno
2018-05-09
The present study analyzed the bactericidal effect of methylene blue associated with low-level lasers on Escherichia coli isolated from a pressure ulcer. Microbiological material from a pressure ulcer was isolated using an aseptic swab, and antimicrobial activity was verified using the diffusion disc method. Methylene blue was used at concentrations of 0.001 and 0.005%, and low-level lasers of 670, 830, and 904 nm, with the energy densities of 4, 8, 10, and 14 J/cm 2 , were tested on three plates each and combined with methylene blue of each concentration. In addition, three control plates were used, with each concentration and energy density separated without any interventions. The results were analyzed using the paired sample t test to determine the bactericidal effect of the methylene blue and using the ANOVA test to compare the effects of the energy densities and wavelengths among the low-level laser treatment protocols. The results showed bacterial reduction at wavelengths of 830 and 904 nm and more proliferation in wavelengths of 670 nm. In wavelength of 830 nm, a bacterial reduction was observed in the conditions with 0.001% methylene blue in all energy density utilized, with 0.005% methylene blue in energy density of 10 J/cm 2 , and without methylene blue in energy density at 10 J/cm 2 . And in a wavelength of 904 nm, all condition showed bacterial reduction with or without methylene blue. We concluded that the low-level lasers of 904 and 830 nm have bactericidal effects and at better energy densities (10 and 14 J/cm 2 ).
Vitt, A; Sofrata, A; Slizen, V; Sugars, R V; Gustafsson, A; Gudkova, E I; Kazeko, L A; Ramberg, P; Buhlin, K
2015-07-17
Polyhexamethylene guanidine phosphate (PHMG-P) belongs to the polymeric guanidine family of biocides and contains a phosphate group, which may confer better solubility, a detoxifying effect and may change the kinetics and dynamics of PHMG-P interactions with microorganisms. Limited data regarding PHMG-P activity against periodontopathogenic and cariogenic microorganisms necessitates studies in this area. Aim is to evaluate polyhexamethylene guanidine phosphate antimicrobial activity in comparison to chlorhexidine. Quantitative suspension method was used enrolling Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Streptococcus mutans and Lactobacillus acidophilus. Both tested antiseptics at their clinically-used concentrations, of 0.2% (w/v) and 1% (w/v), correspondingly provided swift bactericidal effects against S. aureus, P. aeruginosa, E. coli and C. albicans, A. actinomycetemcomitans and P. gingivalis with reduction factors higher than 6.0. Diluted polyhexamethylene guanidine phosphate and chlorhexidine to 0.05% continued to display anti-bacterial activity and decreased titers of standard quality control, periopathogens to below 1.0 × 10(3) colony forming units/ml, albeit requiring prolonged exposure time. To achieve a bactericidal effect against S. mutans, both antiseptics at all concentrations required a longer exposure time. We found that a clinically-used 1% of polyhexamethylene guanidine phosphate concentration did not have activity against L. acidophilus. High RF of polyhexamethylene guanidine phosphate and retention of bactericidal effects, even at 0.05%, support the use of polyhexamethylene guanidine phosphate as a biocide with sufficient anti-microbial activity against periopathogens. Polyhexamethylene guanidine phosphate displayed bactericidal activity against periopathogens and S. mutans and could potentially be applied in the management of oral diseases.
Antimicrobial photodynamic therapy-a promising treatment for prosthetic joint infections.
Briggs, Timothy; Blunn, Gordon; Hislop, Simon; Ramalhete, Rita; Bagley, Caroline; McKenna, David; Coathup, Melanie
2018-04-01
Periprosthetic joint infection (PJI) is associated with high patient morbidity and a large financial cost. This study investigated Photodynamic Therapy (PDT) as a means of eradicating bacteria that cause PJI, using a laser with a 665-nm wavelength and methylene blue (MB) as the photosensitizer. The effectiveness of MB concentration on the growth inhibition of methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa and Acinetobacter baumannii was investigated. The effect of laser dose was also investigated and the optimized PDT method was used to investigate its bactericidal effect on species within planktonic culture and following the formation of a biofilm on polished titanium and hydroxyapatite coated titanium discs. Results showed that Staphylococci were eradicated at the lowest concentration of 0.1 mM methylene blue (MB). With P. aeruginosa and A. baumannii, increasing the MB concentration improved the bactericidal effect. When the laser dose was increased, results showed that the higher the power of the laser the more bacteria were eradicated with a laser power ≥ 35 J/cm 2 and an irradiance of 35 mW/cm 2 , eradicating all S. epidermidis. The optimized PDT method had a significant bactericidal effect against planktonic MRSA and S. epidermidis compared to MB alone, laser alone, or control (no treatment). When biofilms were formed, PDT treatment had a significantly higher bactericidal effect than MB alone and laser alone for all species of bacteria investigated on the polished disc surfaces. P. aeruginosa grown in a biofilm was shown to be less sensitive to PDT when compared to Staphylococci, and a HA-coated surface reduced the effectiveness of PDT. This study demonstrated that PDT is effective for killing bacteria that cause PJI.
Brumbaugh, Gordon W; Herman, James D; Clancy, Julianne S; Burden, Kyland I; Barry, Tracie; Simpson, R B; López, Hector Sumano
2002-01-01
To evaluate chemotactic, phagocytic, and bactericidal activities of bovine and porcine alveolar macrophages (AM) exposed to tilmicosin. 12 healthy calves and 12 healthy pigs. Lungs were obtained immediately after euthanasia; AM were collected by means of bronchoalveolar lavage and density gradient centrifugation. Chemotactic activity was evaluated by exposing AM to lipopolysaccharide or macrophage inhibitory peptide during incubation with tilmicosin. Phagocytic activity was evaluated by incubating AM with tilmicosin for 24 hours and then with tilmicosin-resistant Salmonella serotype Typhimurium. Bactericidal activity was evaluated by incubating AM with tilmicosin (0, 10, or 20 microg/ml for bovine AM; 0 or 10 microg/ml or 10 microg/ml but washed free of tilmicosin for porcine AM) and then with Mannheimia haemolytica (bovine AM) or with Actinobacillus pleuropneumoniae or Pasteurella multocida (porcine AM). Tilmicosin had no significant effects on chemotactic or phagocytic activities of bovine or porcine AM. The time-course of bactericidal activity was best described by polynomial equations. Time to cessation of bacterial growth and area under the time versus bacterial number curve were significantly affected by incubation of AM with tilmicosin. Results show that bactericidal activity of bovine and porcine AM was enhanced by tilmicosin, but not in proportion to the reported ability of AM to concentrate tilmicosin intracellularly. With or without exposure to tilmicosin, the time-course of bactericidal activity of bovine AM against M haemolytica and of porcine AM against A pleuropneumoniae or P multocida was too complex to be reduced to a simple linear equation.
Walczak, Maciej; Richert, Agnieszka; Burkowska-But, Aleksandra
2014-11-01
The present study was aimed at investigating bactericidal properties of polylactide (PLA) films containing three different polyhexamethylene guanidine hydrochloride (PHMG) derivatives and effect of the derivatives on extracellular hydrolytic enzymes and intracellular dehydrogenases. All PHMG derivatives had a slightly stronger bactericidal effect on Staphylococcus aureus than on E. coli but only PHMG granular polyethylene wax (at the concentration of at least 0.6 %) has a bactericidal effect. PHMG derivatives introduced into PLA affected the activity of microbial hydrolases to a small extent. This means that the introduction of PHMG derivatives into PLA will not reduce its enzymatic biodegradation significantly. On the other hand, PHMG derivatives introduced into PLA strongly affected dehydrogenases activity in S. aureus than in E. coli.
Bronner, Stéphane; Murbach, Valérie; Peter, Jean-Daniel; Levêque, Dominique; Elkhaïli, Hassan; Salmon, Yves; Dhoyen, Nathalie; Monteil, Henri; Woodnutt, Gary; Jehl, François
2002-01-01
The objective of the present study was to investigate the potential bactericidal activity of amoxicillin-clavulanate against β-lactamase-producing Escherichia coli strains and to elucidate the extent to which enzyme production affects the activity. Six adult Yucatan miniature pigs received a single intravenous dose of 1.1 g of amoxicillin-clavulanate as an intravenous infusion over 30 min. The pharmacokinetic parameters were determined for the serum samples and compared to the published data for humans (2.2-g intravenous dose). The parameters were comparable for the two species, and therefore, the miniature pig constitutes a good model for pharmacodynamic study of amoxicillin-clavulanate. Therefore, the model was used in an ex vivo pharmacodynamic study of amoxicillin-clavulanate against four strains of Escherichia coli producing β-lactamases at different levels. The E. coli strains were cultured with serial dilutions (1:2 to 1:256) of the serum samples from the pharmacokinetic study, and the number of surviving bacteria was determined after 1, 3, and 6 h of exposure. Amoxicillin-clavulanate at concentrations less than the MIC and the minimal bactericidal concentration had marked bactericidal potency against the strain that produced low levels of penicillinase. For high-level or intermediate-level β-lactamase-producing strains, the existence of a clavulanate concentration threshold of 1.5 to 2 μg/ml, below which there was no bactericidal activity, was demonstrated. The index of surviving bacteria showed the existence of mixed concentration- and time-dependent actions of amoxicillin (in the presence of clavulanate) which varied as a function of the magnitude of β-lactamase production by the test strains. This study shows the effectiveness of amoxicillin-clavulanate against low- and intermediate-level penicillinase-producing strains of E. coli. These findings are to be confirmed in a miniature pig experimental infection model. PMID:12435677
Li, Yang; Hong, Jiali; Wei, Renjian; Zhang, Yingying; Tong, Zaizai; Zhang, Xinghong; Du, Binyang; Xu, Junting; Fan, Zhiqiang
2015-02-01
It is a long-standing challenge to combine mixed monomers into multiblock copolymer (MBC) in a one-pot/one-step polymerization manner. We report the first example of MBC with biodegradable polycarbonate and polyester blocks that were synthesized from highly efficient one-pot/one-step polymerization of cyclohexene oxide (CHO), CO 2 and ε-caprolactone (ε-CL) in the presence of zinc-cobalt double metal cyanide complex and stannous octoate. In this protocol, two cross-chain exchange reactions (CCER) occurred at dual catalysts respectively and connected two independent chain propagation procedures ( i.e. , polycarbonate formation and polyester formation) simultaneously in a block-by-block manner, affording MBC without tapering structure. The multiblock structure of MBC was determined by the rate ratio of CCER to the two chain propagations and could be simply tuned by various kinetic factors. This protocol is also of significance due to partial utilization of renewable CO 2 and improved mechanical properties of the resultant MBC.
Confirmation of uterotrophic activity of 3-(4-methylbenzylidine)camphor in the immature rat.
Tinwell, Helen; Lefevre, Paul A; Moffat, Graeme J; Burns, A; Odum, Jenny; Spurway, T D; Orphanides, George; Ashby, John
2002-01-01
In this study we found that the ultraviolet sunscreen component 3-(4-methylbenzylidine)camphor (4MBC) is uterotrophic in immature rats when administered by either subcutaneous injection or oral gavage. These data confirm earlier reports of uterotrophic activity for this agent when administered to immature rats in the diet or by whole-body immersion; however, they are in contrast to negative unpublished immature rat uterotrophic assay results. Data also indicate that 4MBC binds to isolated rat uterine estrogen receptors and shows activity in a human estrogen receptor yeast transactivation assay; however, we considered both of these effects equivocal. In this study, we confirmed the original observation that 4MBC was active as a mitogen to MCF-7 breast cancer cells. We evaluated and discounted the possibility that the estrogenic activity of 4MBC is related to its bulky camphor group, which is of similar molecular dimensions to that of the weak estrogen kepone. Uncertainty remains regarding the mechanism of the uterotrophic activity of 4MBC. PMID:12003759
New agents for the management of resistant metastatic breast cancer.
Anampa, Jesus; Sparano, Joseph A
2017-12-01
Metastatic breast cancer (MBC) is an incurable disease and treatment is directed towards symptom palliation and survival prolongation. Treatment selection in patients is based on tumor biology, age, comorbidities, performance status, tumor burden, and prior treatment history. Areas covered: This present review summarizes the recent treatment strategies in the management of MBC, highlighting regimens after first-line therapy. Topics discussed include new strategies for endocrine therapy, anti-HER2 therapy, and promising strategies for the management of triple negative breast cancer. Expert opinion: MBC is a heterogeneous entity and despite recent advances, there is significant room for improvement of treatment beyond first-line therapies. Combination regimens that can maximize clinical efficacy while minimizing toxicities are required. Current investigation approaches in advanced stages of clinical development include immunoconjugates, immune checkpoint blockade, novel cyclin-dependent-kinase inhibitors, and PARP inhibitors for MBC associated with germline BRCA mutations. We recommend that every patient with MBC should be evaluated for clinical trial options.