Sample records for bactericidal concentration values

  1. Effectiveness of disinfectants used in cooling towers against Legionella pneumophila.

    PubMed

    García, M T; Pelaz, C

    2008-01-01

    Legionella persists in man-made aquatic installations despite preventive treatments. More information about disinfectants could improve the effectiveness of treatments. This study tests the susceptibility of Legionella pneumophila serogroup (sg) 1 against 8 disinfectants used in cooling tower treatments. We determined the minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and bactericidal effect of sodium hypochlorite (A), hydrogen peroxide with silver nitrate (B), didecyldimethylammonium chloride (C), benzalkonium chloride (D), tributyltetradecylphosphonium chloride (E), tetrahydroxymethylphosphonium sulfide (F), 2,2-dibromonitropropionamide (G) and chloromethylisothiazolone (H) against 28 L. pneumophila sg 1 isolates. MIC and MBC values were equivalent. Bacteria are less susceptible to disinfectants F, B, D and A than to H, E, C and G. All disinfectants induced a bactericidal effect. The effect rate is dose dependent for G, H, F and B; the effect is fast for the rest of disinfectants at any concentration. The bactericidal activity of disinfectants A, G and F depends on the susceptibility test used. All disinfectants have bactericidal activity against L. pneumophila sg 1 at concentrations used in cooling tower treatments. Results depend on the assay for some products.

  2. An investigation of the bactericidal activity of chlorhexidine digluconateagainst multidrug-resistant hospital isolates.

    PubMed

    Ekizoğlu, Melike; Sağiroğlu, Meral; Kiliç, Ekrem; Hasçelik, Ayşe Gülşen

    2016-04-19

    Hospital infections are among the most prominent medical problems around the world. Using proper biocides in an appropriate way is critically important in overcoming this problem. Several reports have suggested that microorganisms may develop resistance or reduce their susceptibility to biocides, similar to the case with antibiotics. In this study we aimed to determine the antimicrobial activity of chlorhexidine digluconate against clinical isolates. The susceptibility of 120 hospital isolated strains of 7 bacterial genera against chlorhexidine digluconate was determined by agar dilution test, using minimum inhibitory concentration (MIC) values and the EN 1040 Basic Bactericidal Activity Test to determine the bactericidal activity. According to MIC values, Pseudomonas aeruginosa and Stenotrophomonas maltophilia were found to be less susceptible to chlorhexidine digluconate. Quantitative suspension test results showed that 4% chlorhexidine digluconate was effective against antibiotic resistant and susceptible bacteria after 5 min of contact time and can be safely used in our hospital. However, concentrations below 4% chlorhexidine digluconate caused a decrease in bactericidal activity, especially for Staphylococcus aureus and P. aeruginosa. It is crucial to use biocides at appropriate concentrations and to perform surveillance studies to trace resistance or low susceptibility patterns of S. aureus, P. aeruginosa, and other hospital isolates.

  3. Short communication: Determination of the ability of Thymox to kill or inhibit various species of microorganisms associated with infectious causes of bovine lameness in vitro.

    PubMed

    Kulow, Megan; Zibaee, Fahimeh; Allard, Marianne; Döpfer, Dörte

    2015-11-01

    Infectious claw diseases continue to plague cattle in intensively managed husbandry systems. Poor foot hygiene and constant moist environments lead to the infection and spread of diseases such as digital dermatitis (hairy heel warts), interdigital dermatitis, and interdigital phlegmon (foot rot). Currently, copper sulfate and formalin are the most widely used disinfecting agents in bovine footbaths; however, the industry could benefit from more environmentally and worker friendly substitutes. This study determined the in vitro minimum inhibitory concentrations and minimum bactericidal concentrations of Thymox (Laboratoire M2, Sherbrooke, Québec, Canada) for a selection of microorganisms related to infectious bovine foot diseases. Thymox is a broad-spectrum agricultural disinfectant that is nontoxic, noncorrosive, and readily biodegradable. The values for minimum inhibitory concentration and minimum bactericidal concentration indicated that Thymox inhibited growth and killed the various species of microorganisms under study at much lower concentrations compared with the recommended working concentration of a 1% solution. Overall, the values found in this study of minimum inhibitory concentration and minimum bactericidal concentration of Thymox show its potential as an alternative antibacterial agent used in bovine footbaths; however, field trials are needed to determine its effectiveness for the control and prevention of infectious claw diseases. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Two Major Medicinal Honeys Have Different Mechanisms of Bactericidal Activity

    PubMed Central

    Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2011-01-01

    Honey is increasingly valued for its antibacterial activity, but knowledge regarding the mechanism of action is still incomplete. We assessed the bactericidal activity and mechanism of action of Revamil® source (RS) honey and manuka honey, the sources of two major medical-grade honeys. RS honey killed Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa within 2 hours, whereas manuka honey had such rapid activity only against B. subtilis. After 24 hours of incubation, both honeys killed all tested bacteria, including methicillin-resistant Staphylococcus aureus, but manuka honey retained activity up to higher dilutions than RS honey. Bee defensin-1 and H2O2 were the major factors involved in rapid bactericidal activity of RS honey. These factors were absent in manuka honey, but this honey contained 44-fold higher concentrations of methylglyoxal than RS honey. Methylglyoxal was a major bactericidal factor in manuka honey, but after neutralization of this compound manuka honey retained bactericidal activity due to several unknown factors. RS and manuka honey have highly distinct compositions of bactericidal factors, resulting in large differences in bactericidal activity. PMID:21394213

  5. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria.

    PubMed

    Ait Said, L; Zahlane, K; Ghalbane, I; El Messoussi, S; Romane, A; Cavaleiro, C; Salgueiro, L

    2015-01-01

    The aim of this study was to analyse the composition of the essential oil (EO) of Lavandula coronopifolia from Morocco and to evaluate its in vitro antibacterial activity against antibiotic-resistant bacteria isolated from clinical infections. The antimicrobial activity was assessed by a broth micro-well dilution method using multiresistant clinical isolates of 11 pathogenic bacteria: Klebsiella pneumoniae subsp. pneumoniae, Klebsiella ornithinolytica, Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Providencia rettgeri, Citrobacter freundii, Hafnia alvei, Salmonella spp., Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus. The main compounds of the oil were carvacrol (48.9%), E-caryophyllene (10.8%) and caryophyllene oxide (7.7%). The oil showed activity against all tested strains with minimal inhibitory concentration (MIC) values ranging between 1% and 4%. For most of the strains, the MIC value was equivalent to the minimal bactericidal concentration value, indicating a clear bactericidal effect of L. coronopifolia EO.

  6. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties

    PubMed Central

    Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy

    2015-01-01

    The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50–250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity. PMID:26288570

  7. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties.

    PubMed

    Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy

    2015-09-01

    The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50-250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity.

  8. Bactericidal activity of antibiotics against Legionella micdadei (Pittsburgh pneumonia agent).

    PubMed Central

    Dowling, J N; Weyant, R S; Pasculle, A W

    1982-01-01

    The bactericidal activity of five antibiotics for Legionella micdadei was determined by the construction of time-kill curves. Erythromycin, rifampin, penicillin G, cephalothin, and gentamicin were bactericidal for L. micdadei at readily achievable concentrations. The minimal bactericidal concentrations, defined as those producing 99.9% killing within 24 h, were: erythromycin, 4.6; rifampin, 0.13; penicillin G, 0.25; cephalothin, 2.5; and gentamicin, 0.25 micrograms/ml. The ratios of the minimal bactericidal to minimal inhibitory concentrations for these antibiotics ranged from 1 to 8. Thus, the poor in vivo activity of beta-lactam and aminoglycoside antibiotics against L. micdadei cannot be ascribed to a lack of killing by these agents. PMID:6927637

  9. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens.

    PubMed

    Hu, Fengjiao; Wu, Qiaoxing; Song, Shuang; She, Ruiping; Zhao, Yue; Yang, Yifei; Zhang, Meikun; Du, Fang; Soomro, Majid Hussain; Shi, Ruihan

    2016-12-05

    Hemoglobin is a rich source of biological peptides. As a byproduct and even wastewater of poultry-slaughtering facilities, chicken blood is one of the most abundant source of hemoglobin. In this study, the chicken hemoglobin antimicrobial peptides (CHAP) were isolated and the antimicrobial and bactericidal activities were tested by the agarose diffusion assay, minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, and time-dependent inhibitory and bactericidal assays. The results demonstrated that CHAP had potent and rapid antimicrobial activity against 19 bacterial strains, including 9 multidrug-resistant bacterial strains. Bacterial biofilm and NaCl permeability assays, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were further performed to detect the mechanism of its antimicrobial effect. Additionally, CHAP showed low hemolytic activity, embryo toxicity, and high stability in different temperatures and animal plasma. CHAP may have great potential for expanding production and development value in animal medication, the breeding industry and environment protection.

  10. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens.

    PubMed

    Al-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen; Wink, Michael

    2015-02-15

    The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml). Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75-1). In time-kill assays all three-drug combinations exhibited a powerful bactericidal synergistic effect against MRSA NCTC 10442, VRE ATCC 51299, and E. coli ATCC 25922 with a reduction of more than 3log10 in the colony count after 24 h. Our findings suggest that bee venom and melittin synergistically enhanced the bactericidal effect of several antimicrobial agents when applied in combination especially when the drugs affect several and differing molecular targets. These results could lead to the development of novel or complementary antibacterial drugs against MDR pathogens. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Urinary bactericidal activity of single doses (250, 500, 750 and 1000 mg) of levofloxacin against fluoroquinolone-resistant strains of Escherichia coli.

    PubMed

    Stein, Gary E; Schooley, Sharon L; Nicolau, David P

    2008-10-01

    Increasing resistance to fluoroquinolones in uropathogens has become a clinical concern. The purpose of this study was to analyse the urinary bactericidal activity (UBA) of levofloxacin against fluoroquinolone-resistant strains of Escherichia coli. Ten healthy adult subjects (aged 23-60 years) received single doses of levofloxacin (250, 500, 750 and 1000 mg) and then blood and urine samples were collected in intervals (0-1.5, 1.5-4, 4-8, 8-12 and 12-24h) over 24h. Both serum and urine concentrations were measured by a validated high-performance liquid chromatography assay. Bactericidal titres in urine were determined against E. coli isolates with minimum inhibitory concentrations of 0.125, 4, 8, 16, 32 and 64microg/mL for levofloxacin. The mean serum pharmacokinetic parameters for these doses of levofloxacin were similar to previously published values. The mean peak urinary concentrations (0-1.5h) were 210, 347, 620 and 536microg/mL for the 250, 500, 750 and 1000 mg dose, respectively. Each dose of levofloxacin exhibited early (0-1.5h time period) bactericidal activity in urine in virtually all subjects against E. coli strains with MICs

  12. Interferometry as a tool for evaluating effects of antimicrobial doses on Mycobacterium bovis growth.

    PubMed

    Machado, Rachel R P; Dutra, Rafael C; Raposo, Nádia R B; Lesche, Bernhard; Gomes, Marlei S; Duarte, Rafael S; Soares, Geraldo Luiz G; Kaplan, Maria Auxiliadora C

    2015-12-01

    Interferometry was used together with the conventional microplate resazurin assay to evaluate the antimycobacterial properties of essential oil (EO) from fruits of Pterodon emarginatus and also of rifampicin against Mycobacterium bovis. The aim of this work is not only to investigate the potential antimycobacterial activity of this EO, but also to test the interferometric method in comparison with the conventional one. The Minimum Inhibitory Concentration (MIC) values of EO (625 μg/mL) and rifampicin (4 ng/mL) were firstly identified with the microplate method. These values were used as parameters in Drug Susceptibility Tests (DST) with interferometry. The interferometry confirmed the MIC value of EO identified with microplate and revealed a bacteriostatic behavior for this concentration. At 2500 μg/mL interferometry revealed bactericidal activity of the EO. Mycobacterial growth was detected with interferometry at 4 ng/mL of rifampicin and even at higher concentrations. One important difference is that the interferometric method preserves the sample, so that after weeks of quantitative observation, the sample can be used to evaluate the bactericidal activity of the tested drug. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Antimicrobial activity of five essential oils from lamiaceae against multidrug-resistant Staphylococcus aureus.

    PubMed

    Kot, Barbara; Wierzchowska, Kamila; Piechota, Małgorzata; Czerniewicz, Paweł; Chrzanowski, Grzegorz

    2018-06-11

    Analysis of Lamiaceae essential oils (EOs) by GC-FID-MS revealed the presence as the major constituents of linalool (16.8%), linalyl acetate (15.7%) in Lavandula angustifolia, menthol (29.0%), menthone (22.7%), menthyl acetate (19.2%) in Mentha x piperita, terpinen-4-ol (27.1%), (E)-sabinene hydrate (12.1%), γ-terpinene (10.0%) in Origanum majorana, α-thujone (19.5%), camphor (19.0%), viridiflorol (13.5%) in Salvia officinalis, thymol (61.9%), p-cymene (10.0%), γ-terpinene (10.0%) in Thymus vulgaris. Based on the MIC and MBC values (0.09-0.78 mg/mL) and ratio MBC/MIC showed that EO from T. vulgaris (TO) had the strong inhibitory and bactericidal effect against multidrug-resistant Staphylococcus aureus. The bacterial cells were total killed by TO at 2MIC concentration after 6 h. The higher concentrations of other EOs were needed to achieve bactericidal effects. The strong bactericidal effect of TO against these bacteria indicates the possibility of topical use of TO but it requires research under clinical conditions.

  14. The air-bubble method of locking central-vein catheters with acidified, concentrated sodium chloride as a bactericidal agent: in vitro studies.

    PubMed

    Moore, Harold L; Twardowski, Zbylut J

    2003-10-01

    Soft, cuffed indwelling catheters are used for hemodialysis access and intravenous infusions. The majority of these catheters are removed as a result of infection caused by contamination of the catheter hub during the connection/disconnection procedures. To prevent clot formation in the lumen, these catheters are routinely "locked" with heparin or some other anticoagulant. None of the anticoagulants commonly used as locking solutions demonstrates any significant bactericidal properties. The primary goal of this study was the development of a catheter locking method that retains anticoagulant properties at the catheter tip and bactericidal properties at the catheter hub. The second goal was to find a solution that possesses excellent bactericidal properties but is not detrimental in the event of injection into the patient's blood stream. The bactericidal properties of acidified, concentrated saline (ACS) were compared to concentrated trisodium citrate and to commonly used bactericidal agents such as povidone iodine, sodium hypochlorite, and chlorhexidine. In preliminary studies, the rate of diffusion of solutes was measured in glass tubes. In another set of experiments, the mixing of two solutions (anticoagulant and bactericide) separated by an air bubble ("air-bubble method") was observed in stationary and moving systems. The final series of studies compared the bactericidal properties of ACS to other bactericidal solutions mentioned above. The solutions diffused swiftly in the glass tubes, and by the third day, both solutions were mixed. The air-bubble method prevented mixing in both stationary and moving systems. The bactericidal properties of ACS were superior to all other tested solutions. The proposed method of catheter locking with anticoagulant at the catheter tip and ACS at the catheter hub separated by an air bubble is a promising technique and clinical studies are warranted.

  15. Antagonism between Bacteriostatic and Bactericidal Antibiotics Is Prevalent

    PubMed Central

    Lázár, Viktória; Papp, Balázs; Arnoldini, Markus; Abel zur Wiesch, Pia; Busa-Fekete, Róbert; Fekete, Gergely; Pál, Csaba; Ackermann, Martin; Bonhoeffer, Sebastian

    2014-01-01

    Combination therapy is rarely used to counter the evolution of resistance in bacterial infections. Expansion of the use of combination therapy requires knowledge of how drugs interact at inhibitory concentrations. More than 50 years ago, it was noted that, if bactericidal drugs are most potent with actively dividing cells, then the inhibition of growth induced by a bacteriostatic drug should result in an overall reduction of efficacy when the drug is used in combination with a bactericidal drug. Our goal here was to investigate this hypothesis systematically. We first constructed time-kill curves using five different antibiotics at clinically relevant concentrations, and we observed antagonism between bactericidal and bacteriostatic drugs. We extended our investigation by performing a screen of pairwise combinations of 21 different antibiotics at subinhibitory concentrations, and we found that strong antagonistic interactions were enriched significantly among combinations of bacteriostatic and bactericidal drugs. Finally, since our hypothesis relies on phenotypic effects produced by different drug classes, we recreated these experiments in a microfluidic device and performed time-lapse microscopy to directly observe and quantify the growth and division of individual cells with controlled antibiotic concentrations. While our single-cell observations supported the antagonism between bacteriostatic and bactericidal drugs, they revealed an unexpected variety of cellular responses to antagonistic drug combinations, suggesting that multiple mechanisms underlie the interactions. PMID:24867991

  16. Antibacterial effects of ellagitannins from Acalypha wilkesiana var. macafeana hort.: surface morphology analysis with environmental scanning electron microscopy and synergy with antibiotics.

    PubMed

    Din, Wardah Mustafa; Jin, Khoo Teng; Ramli, Ramliza; Khaithir, Tzar Mohd Nizam; Wiart, Christophe

    2013-09-01

    The present study served to gain further insight into the bactericidal effects of ellagitannins from Acalypha wilkesiana var. macafeana hort. against pathogenic bacteria. Ellagitannins from the aerial parts of A. wilkesiana var. macafeana hort. (EAW) inhibited the growth of Bacillus cereus (ATCC 11778), Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 11632) and Methicillin-resistant Staphylococcus aureus (MRSA) clinical strain with inhibition zones equal to 11.01 ± 1.53 mm, 16.63 ± 0.11 mm, 11.40 ± 1.10 mm and 8.22 ± 0.19 mm, respectively. The minimal inhibition concentration and the minimal bactericidal concentration of ellagitannins from A. wilkesiana var. macafeana hort. (EAW) against MRSA were 750 µg/mL and 3000 µg/mL, respectively. We then examined the synergistic effect of EAW with three antibiotics, i.e. ampicillin, streptomycin and tetracycline, via the checkerboard assay and time-kill assay and observed that EAW is synergistic with ampicillin against S. aureus (ATCC 11632). Environmental electron scanning microscopy analysis showed cell lysis against S. aureus (ATCC 11632) upon treatment with the ellagitannin fraction. The ellagitannin fraction from A. wilkesiana var. macafeana hort. is bactericidal against gram-positive bacteria tested and works synergistically with ampicillin against S. aureus. Morphology analysis of the cell suggests that the bactericidal property of the ellagitannin fraction mechanism involves lysis of the cell wall. In summary, our studies demonstrate that A. wilkesiana var. macafeana hort. produces bactericidal ellagitannins of clinical and/or cosmetological value. Copyright © 2012 John Wiley & Sons, Ltd.

  17. [Antibacterial activity of sulopenem, a new parenteral penem antibiotic].

    PubMed

    Inoue, E; Komoto, E; Taniyama, Y; Mitsuhashi, S

    1996-04-01

    Sulopenem, a new penem antibiotic, was compared with other antibiotics with regard to in vitro antibacterial and bactericidal activities, stabilization against beta-lactamases, and effect on the release of lipopolysaccharide from Gram-negative bacteria. The results are summarized as follows. 1. Sulopenem showed more potent activities than other antibiotics against both Gram-positive and Gram-negative bacteria except Pseudomonas aeruginosa. 2. Sulopenem showed potent bactericidal activities (MIC/MBC) against both Gram-positive and Gram-negative bacteria. Time kill studies against Staphylococcus aureus, Escherichia coli, Enterobacter cloacae and Citrobacter freundii showed potent bactericidal activities of sulopenem. 3. Sulopenem was found to possess a stronger activity than other antibiotics against beta-lactamase-producing strains except P. aeruginosa and Stenotrophomonas maltophilia. 4. In particular, sulopenem was found to be more stable to the hydrolysis by various beta-lactamases produced by Gram-negative bacteria than any other antibiotics tested. Vmax/Km values of sulopenem were smaller than those of cefotiam for all tested beta-lactamases, which reflected a broad antibacterial spectrum of sulopenem. 5. E. coli ML4707 exposed to sulopenem and imipenem released less endotoxin than did controls at all concentration ranges tested. In contrast, the strain exposed to ceftazidime at bacteriostatic concentrations released a large amount of endotoxin.

  18. Rice hull smoke extract inactivates Salmonella Typhimurium in laboratory media and protects infected mice against mortality

    USDA-ARS?s Scientific Manuscript database

    A recently discovered and characterized rice hull liquid smoke extract was tested for bactericidal activity against Salmonella Typhimurium using the disc-agar method. The Minimum Inhibitory Concentration (MIC) value of rice hull smoke extract was found to be 0.822% (v/v). The in vivo antibacterial a...

  19. In Vitro Antibacterial and Antibiofilm Activities of Chlorogenic Acid against Clinical Isolates of Stenotrophomonas maltophilia including the Trimethoprim/Sulfamethoxazole Resistant Strain

    PubMed Central

    Karunanidhi, Arunkumar; Thomas, Renjan; van Belkum, Alex; Neela, Vasanthakumari

    2013-01-01

    The in vitro antibacterial and antibiofilm activity of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia was investigated through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill and biofilm assays. A total of 9 clinical S. maltophilia isolates including one isolate resistant to trimethoprim/sulfamethoxazole (TMP/SMX) were tested. The inhibition zone sizes for the isolates ranged from 17 to 29 mm, while the MIC and MBC values ranged from 8 to 16 μg mL−1 and 16 to 32 μg mL−1. Chlorogenic acid appeared to be strongly bactericidal at 4x MIC, with a 2-log reduction in viable bacteria at 10 h. In vitro antibiofilm testing showed a 4-fold reduction in biofilm viability at 4x MIC compared to 1x MIC values (0.085 < 0.397 A 490 nm) of chlorogenic acid. The data from this study support the notion that the chlorogenic acid has promising in vitro antibacterial and antibiofilm activities against S. maltophilia. PMID:23509719

  20. Evaluation of bactericidal effect of three antiseptics on bacteria isolated from wounds.

    PubMed

    Kumara, D U A; Fernando, S S N; Kottahachchi, J; Dissanayake, D M B T; Athukorala, G I D D A D; Chandrasiri, N S; Damayanthi, K W N; Hemarathne, M H S L; Pathirana, A A

    2015-01-01

    Antiseptics are widely used in wound management to prevent or treat wound infections due to their proven wound healing properties regardless of their cytotoxicity. The objective of this study was to determine the bactericidal effects of three antiseptics on pathogens known to cause wound infections. The study was carried out at a tertiary care hospital and a university microbiology laboratory in Sri Lanka in 2013. The three acids (acetic acid, ascorbic acid and boric acid) in increasing concentration (0.5%, 0.75% and 1%) were tested against bacterial suspensions equivalent to 0.5 McFarland standard. The Bacteria isolates used were isolated from wound and standard strains of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. There were 33 (68.8%) Coliforms, 10 (20.8%) Pseudomonas species, and 5 (10.4%) strains of Staphylococcus aureus. Acetic acid at concentration of 0.5% inhibited growth of 37 (77%) and 42 (87.5%) of tested isolates when exposed for 30 and 60 minutes, respectively. However 100% inhibition was achieved at four hours. At a concentration of 0.75%, 40 (83.3%) and 44 (91.7%) were inhibited when exposed for 30 and 60 minutes, respectively, with 100% inhibition at 4 hours. At concentration of 1%, 46 (95.8%) inhibition was seen at 30 minutes and 100% inhibition at 60 minutes. Ascorbic acid, at 0.5% and 0.75 % concentrations, inhibited growth of 45(93.7%) and 47(97.9%) of isolates respectively when exposed for 30 minutes. At these two concentrations, 100% inhibition was achieved when exposed for one hour. At 1% concentration, 100% inhibition was achieved at 30 minutes. Boric acid did not show bactericidal effect at concentrations of 0.5%, 0.75 % and 1%. Pseudomonas species were inhibited at 30 minutes by 0.5% acetic acid. Bactericidal effect against all the standard strains was seen with three acids at each concentration tested from 30 minutes onwards Ascorbic acid was bactericidal for all organisms tested within the shortest exposure time at the lowest concentration compared to other two acids. Despite promising bactericidal effects, further studies warrant, as ongoing debates on toxicity of acids on tissue epithelialisation. Application of antiseptics for a shorter duration could overcome this problem without losing bactericidal activity. The authors have no conflict of interest and no funding was received for this study.

  1. In Vitro Structural and Functional Evaluation of Gold Nanoparticles Conjugated Antibiotics

    NASA Astrophysics Data System (ADS)

    Saha, Biswarup; Bhattacharya, Jaydeep; Mukherjee, Ananda; Ghosh, Anup Kumar; Santra, Chitta Ranjan; Dasgupta, Anjan K.; Karmakar, Parimal

    2007-12-01

    Bactericidal efficacy of gold nanoparticles conjugated with ampicillin, streptomycin and kanamycin were evaluated. Gold nanoparticles (Gnps) were conjugated with the antibiotics during the synthesis of nanoparticles utilizing the combined reducing property of antibiotics and sodium borohydride. The conjugation of nanoparticles was confirmed by dynamic light scattering (DLS) and electron microscopic (EM) studies. Such Gnps conjugated antibiotics showed greater bactericidal activity in standard agar well diffusion assay. The minimal inhibitory concentration (MIC) values of all the three antibiotics along with their Gnps conjugated forms were determined in three bacterial strains, Escherichia coli DH5α, Micrococcus luteus and Staphylococcus aureus. Among them, streptomycin and kanamycin showed significant reduction in MIC values in their Gnps conjugated form whereas; Gnps conjugated ampicillin showed slight decrement in the MIC value compared to its free form. On the other hand, all of them showed more heat stability in their Gnps conjugated forms. Thus, our findings indicated that Gnps conjugated antibiotics are more efficient and might have significant therapeutic implications.

  2. Powerful bacterial killing by buckwheat honeys is concentration-dependent, involves complete DNA degradation and requires hydrogen peroxide.

    PubMed

    Brudzynski, Katrina; Abubaker, Kamal; Wang, Tony

    2012-01-01

    Exposure of bacterial cells to honey inhibits their growth and may cause cell death. Our previous studies showed a cause-effect relationship between hydroxyl radical generated from honey hydrogen peroxide and growth arrest. Here we explored the role of hydroxyl radicals as inducers of bacterial cells death. The bactericidal effect of ·OH on antibiotic-resistant clinical isolates of MRSA and VRE and standard bacterial strains of E. coli and B. subtiles was examined using a broth microdilution assay supplemented with 3'-(p-aminophenyl) fluorescein (APF) as the ·OH trap, followed by colony enumeration. Bactericidal activities of eight honeys (six varieties of buckwheat, blueberry and manuka honeys) were analyzed. The MBC/MIC ratio ≤4 and the killing curves indicated that honeys exhibited powerful, concentration-dependent bactericidal effect. The extent of killing depended on the ratio of honey concentration to bacterial load, indicating that honey dose was critical for its bactericidal efficacy. The killing rate and potency varied between honeys and ranged from over a 6-log(10) to 4-log(10) CFU/ml reduction of viable cells, equivalent to complete bacterial eradication. The maximal killing was associated with the extensive degradation of bacterial DNA. Honey concentration at which DNA degradation occurred correlated with cell death observed in the concentration-dependent cell-kill on agar plates. There was no quantitative relationship between the ·OH generation by honey and bactericidal effect. At the MBC, where there was no surviving cells and no DNA was visible on agarose gels, the ·OH levels were on average 2-3x lower than at Minimum Inhibitory Concentration (MICs) (p < 0.0001). Pre-treatment of honey with catalase, abolished the bactericidal effect. This raised possibilities that either the abrupt killing prevented accumulation of ·OH (dead cells did not generate ·OH) or that DNA degradation and killing is the actual footprint of ·OH action. In conclusion, honeys of buckwheat origin exhibited powerful, concentration-dependent bactericidal effect. The killing and DNA degradation showed a cause-effect relationship. Hydrogen peroxide was an active part of honey killing mechanism.

  3. Bactericidal Effects and Mechanism of Action of Olanexidine Gluconate, a New Antiseptic

    PubMed Central

    Iwata, Koushi; Nii, Takuya; Nakata, Hikaru; Tsubotani, Yoshie; Inoue, Yasuhide

    2015-01-01

    Olanexidine gluconate [1-(3,4-dichlorobenzyl)-5-octylbiguanide gluconate] (development code OPB-2045G) is a new monobiguanide compound with bactericidal activity. In this study, we assessed its spectrum of bactericidal activity and mechanism of action. The minimal bactericidal concentrations of the compound for 30-, 60-, and 180-s exposures were determined with the microdilution method using a neutralizer against 320 bacterial strains from culture collections and clinical isolates. Based on the results, the estimated bactericidal olanexidine concentrations with 180-s exposures were 869 μg/ml for Gram-positive cocci (155 strains), 109 μg/ml for Gram-positive bacilli (29 strains), and 434 μg/ml for Gram-negative bacteria (136 strains). Olanexidine was active against a wide range of bacteria, especially Gram-positive cocci, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and had a spectrum of bactericidal activity comparable to that of commercial antiseptics, such as chlorhexidine and povidone-iodine. In vitro experiments exploring its mechanism of action indicated that olanexidine (i) interacts with the bacterial surface molecules, such as lipopolysaccharide and lipoteichoic acid, (ii) disrupts the cell membranes of liposomes, which are artificial bacterial membrane models, (iii) enhances the membrane permeability of Escherichia coli, (iv) disrupts the membrane integrity of S. aureus, and (v) denatures proteins at relatively high concentrations (≥160 μg/ml). These results indicate that olanexidine probably binds to the cell membrane, disrupts membrane integrity, and its bacteriostatic and bactericidal effects are caused by irreversible leakage of intracellular components. At relatively high concentrations, olanexidine aggregates cells by denaturing proteins. This mechanism differs slightly from that of a similar biguanide compound, chlorhexidine. PMID:25987609

  4. Evaluation of bactericidal efficacy of silver ions on Escherichia coli for drinking water disinfection.

    PubMed

    Pathak, Satya P; Gopal, K

    2012-07-01

    The purpose of this study is the development of a suitable process for the disinfection of drinking water by evaluating bactericidal efficacy of silver ions from silver electrodes. A prototype of a silver ioniser with silver electrodes and control unit has been fabricated. Silver ions from silver electrodes in water samples were estimated with an atomic absorption spectrophotometer. A fresh culture of Escherichia coli (1.75 × 10(3) c.f.u./ml) was exposed to 1, 2, 5, 10 and 20 ppb of silver ions in 100 ml of autoclaved tap water for 60 min. The effect of different pH and temperatures on bactericidal efficacy was observed at constant silver ion concentration (5 ppb) and contact time of 30 min. The maximum bactericidal activity (100%) was observed at 20 ppb of silver ion concentration indicating total disinfection after 20 min while minimum bactericidal activity (25%) was observed after 10 min at 01 ppb of silver ions. Likewise, 100% bactericidal activity was noticed with 2, 5 and 10 ppb of silver ions after 60, 50 and 40 min, respectively. Bactericidal activity at pH 5, 6, 7, 8 and 9 was observed at 79.9%, 79.8%, 80.5%, 100% and 100%, respectively, whereas it was 80.4%, 88.3%, 100%, 100% and 100% at 10°C, 20°C, 30°C, 40°C and 50°C, respectively. The findings of this study revealed that very low concentrations of silver ions at pH 8-9 and temperature >20°C have bactericidal efficacy for total disinfection of drinking water. Silver ionisation is suitable for water disinfection and an appropriate alternative to chlorination which forms carcinogenic disinfection by-products.

  5. Antibacterial activity study of Attacus atlas cocoon against Staphylococcus aureus and Escherichia coli with diffusion and dilution method

    NASA Astrophysics Data System (ADS)

    Aminah; Nugraheni, E. R.; Yugatama, A.

    2018-03-01

    The aim of this study was to evaluate the antibacterial activity from Attacus atlas cocoon extract against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) with 3 diffferent solvents polar, semi-polar and non polar which was ethanol, ethyl acetate and chloroform, also to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extract. Cocoon was extracted with maceration method using 3 solvents with ratio of sample and solvent 1:10. Antibacterial activity of the Extracts obtained was evaluated with Agar disk diffusion method. The best result was then continued to determine the MIC and MBC of the extract using broth macro-dilution method. The results show that each of the extracts have antibacterial activity with broad spectrum against two different type of bacteria at concentration of 1 g/mL with different clear zone between these extracts. Clear zone from the biggest to the smallest against Escherichia coli was ethyl acetate (10.5 mm), chloroform (9 mm) and ethanol (8 mm). While against Staphylococcus aureus, was obtained by chloroform (12.5 mm), ethyl acetate (10.5 mm) and ethanol (7 mm). The MIC value of extracts can not be determine. The smallest MBC value against both bacteria was obtained by ethyl acetate with concentration of 3.125% b/v as a bactericidal.

  6. Polyhexamethylene guanidine hydrochloride shows bactericidal advantages over chlorhexidine digluconate against ESKAPE bacteria.

    PubMed

    Zhou, Zhongxin; Wei, Dafu; Lu, Yanhua

    2015-01-01

    More information regarding the bactericidal properties of polyhexamethylene guanidine hydrochloride (PHMG) against clinically important antibiotic-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens needs to be provided for its uses in infection control. The bactericidal properties of PHMG and chlorhexidine digluconate (CHG) were compared based on their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations, and time-course-killing curves against clinically important antibiotic-susceptible and antibiotic-resistant ESKAPE pathogens. Results showed that PHMG exhibited significantly higher bactericidal activities against methicillin-resistant Staphylococcus aureus, carbapenem-resistant Klebsiella pneumoniae, and ceftazidime-resistant Enterobacter spp. than CHG. A slight bactericidal advantage over CHG was obtained against vancomycin-resistant Enterococcus faecium, ciprofloxacin- and levofloxacin-resistant Acinetobacter spp., and multidrug-resistant Pseudomonas aeruginosa. In previous reports, PHMG had higher antimicrobial activity against almost all tested Gram-negative bacteria and several Gram-positive bacteria than CHG using MIC test. These studies support the further development of covalently bound PHMG in sterile-surface materials and the incorporation of PHMG in novel disinfectant formulas. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  7. In vitro activity of tylvalosin against Spanish field strains of Mycoplasma hyopneumoniae.

    PubMed

    Tavío, M M; Poveda, C; Assunção, P; Ramírez, A S; Poveda, J B

    2014-11-29

    Mycoplasma hyopneumoniae is involved in the porcine enzootic pneumonia and respiratory disease complex; therefore, the search for new treatment options that contribute to the control of this organism is relevant. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations of tylvalosin and 19 other antimicrobial agents against 20 Spanish field isolates of M. hyopneumoniae were determined using the broth microdilution method, with the type strain (J) as a control strain. Tylvalosin had MIC50 and MIC90 values of 0.016 and 0.06 µg/ml, respectively, and was the second-most effective of the assayed antibiotics, after valnemulin. Tiamulin, tylosin and lincomycin were also among the antibiotics with the lowest MIC50 and MIC90 values against the 20 field isolates (0.06-0.25 µg/ml). However, resistance to tylosin and spiramycin, which like tylvalosin, are 16-membered macrolides, was observed. The MIC50 and MIC90 values for ciprofloxacin and enrofloxacin ranged from 0.125 to 1 µg/ml; the corresponding values ranged from 2 to 4 µg/ml for oxytetracyline, which was the most active tetracycline. Furthermore, tylvalosin and valnemulin exhibited the highest bactericidal activities. In conclusion, the macrolide tylvalosin and the pleuromutilin valnemulin exhibited the highest in vitro antimicrobial activities against M. hyopneumoniae field isolates in comparison with the other tested antibiotics. British Veterinary Association.

  8. Bactericidal Activity and Postantibiotic Effect of Levofloxacin against Anaerobes

    PubMed Central

    Pendland, Susan L.; Diaz-Linares, Mariela; Garey, Kevin W.; Woodward, Jennifer G.; Ryu, Seonyoung; Danziger, Larry H.

    1999-01-01

    The bactericidal activity and postantibiotic effect (PAE) of levofloxacin against nine anaerobes were determined. Levofloxacin at concentrations of the MIC and twice the MIC was bactericidal at 24 h to five of nine and nine of nine strains, respectively. The PAE of levofloxacin following a 2-h exposure ranged from 0.06 to 2.88 h. PMID:10508042

  9. Effect of Bromide-Hypochlorite Bactericides on Microorganisms1

    PubMed Central

    Shere, Lewis; Kelley, Maurice J.; Richardson, J. Harold

    1962-01-01

    A new principle in compounding stable, granular bactericidal products led to unique combinations of a water-soluble inorganic bromide salt with a hypochlorite-type disinfectant of either inorganic or organic type. Microbiological results are shown for an inorganic bactericide composed of chlorinated trisodium phosphate containing 3.1% “available chlorine” and 2% potassium bromide, and for an organic bactericide formulated from sodium dichloroisocyanurate so as to contain 13.4% “available chlorine” and 8% potassium bromide. Comparison of these products with their nonbromide counterparts are reported for Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Streptococcus lactis, Aerobacter aerogenes, and Proteus vulgaris. Test methods employed were the Chambers test, the A.O.A.C. Germicidal and Detergent Sanitizer-Official test, and the Available Chlorine Germicidal Equivalent Concentration test. The minimal killing concentrations for the bromide-hypochlorite bactericides against this variety of organisms were reduced by a factor 2 to 24 times those required for similar hypochlorite-type disinfectants not containing the bromide. PMID:13977149

  10. Bactericidal Effect of Pterostilbene Alone and in Combination with Gentamicin against Human Pathogenic Bacteria.

    PubMed

    Lee, Wee Xian; Basri, Dayang Fredalina; Ghazali, Ahmad Rohi

    2017-03-17

    The antibacterial activity of pterostilbene in combination with gentamicin against six strains of Gram-positive and Gram-negative bacteria were investigated. The minimum inhibitory concentration and minimum bactericidal concentration of pterostilbene were determined using microdilution technique whereas the synergistic antibacterial activities of pterostilbene in combination with gentamicin were assessed using checkerboard assay and time-kill kinetic study. Results of the present study showed that the combination effects of pterostilbene with gentamicin were synergistic (FIC index < 0.5) against three susceptible bacteria strains: Staphylococcus aureus ATCC 25923 , Escherichia coli O157 and Pseudomonas aeruginosa 15442 . However, the time-kill study showed that the interaction was indifference which did not significantly differ from the gentamicin treatment. Furthermore, time-kill study showed that the growth of the tested bacteria was completely attenuated with 2 to 8 h treatment with 0.5 × MIC of pterostilbene and gentamicin. The identified combinations could be of effective therapeutic value against bacterial infections. These findings have potential implications in delaying the development of bacterial resistance as the antibacterial effect was achieved with the lower concentrations of antibacterial agents.

  11. Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide Releasing Silica Nanoparticles

    PubMed Central

    Carpenter, Alexis W.; Slomberg, Danielle L.; Rao, Kavitha S.; Schoenfisch, Mark H.

    2011-01-01

    A reverse microemulsion synthesis was used to prepare amine functionalized silica nanoparticles of three distinct sizes (i.e., 50, 100, and 200 nm) with identical amine concentrations. The resulting hybrid nanoparticles, consisting of N-(6 aminohexyl) aminopropyltrimethoxysilane and tetraethoxysilane, were highly monodisperse in size. N-diazeniumdiolate nitric oxide (NO) donors were subsequently formed on secondary amines while controlling reaction conditions to keep the total amount of nitric oxide (NO) released constant for each particle size. The bactericidal efficacy of the NO releasing nanoparticles against Pseudomonas aeruginosa increased with decreasing particle size. Additionally, smaller diameter nanoparticles were found to associate with the bacteria at a faster rate and to a greater extent than larger particles. Neither control (non-NO-releasing) nor NO releasing particles exhibited toxicity towards L929 mouse fibroblasts at concentrations above their respective minimum bactericidal concentrations. This study represents the first investigation of the bactericidal efficacy of NO-releasing silica nanoparticles as a function of particle size. PMID:21842899

  12. Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration.

    PubMed

    Kiura, Hiromasa; Sano, Kouichi; Morimatsu, Shinichi; Nakano, Takashi; Morita, Chizuko; Yamaguchi, Masaki; Maeda, Toyoyuki; Katsuoka, Yoji

    2002-05-01

    Electrolyzed strong acid water (ESW) containing free chlorine at various concentrations is becoming to be available in clinical settings as a disinfectant. ESW is prepared by electrolysis of a NaCl solution, and has a corrosive activity against medical instruments. Although lower concentrations of NaCl and free chlorine are desired to eliminate corrosion, the germicidal effect of ESW with low NaCl and free-chlorine concentrations (ESW-L) has not been fully clarified. In this study, we demonstrated that ESW-L possesses bactericidal activity against Mycobacteria and spores of Bacillus subtilis. The effect was slightly weaker than that of ESW containing higher NaCl and free-chlorine concentrations (ESW-H), but acceptable as a disinfectant. To clarify the mechanism of the bactericidal activity, we investigated ESW-L-treated Pseudomonas aeruginosa by transmission electron microscopy, a bacterial enzyme assay and restriction fragment length polymorphism pattern (RFLP) assay. Since the bacterium, whose growth was completely inhibited by ESW-L, revealed the inactivation of cytoplasmic enzyme, blebs and breaks in its outer membrane and remained complete RFLP of DNA, damage of the outer membrane and inactivation of cytoplasmic enzyme are the important determinants of the bactericidal activity.

  13. Unusual effects of penicillin G and chloramphenicol on the growth of Moraxella osloensis.

    PubMed

    DeLeys, R J; Juni, E

    1977-11-01

    Growth of exponential-phase liquid cultures of Moraxella osloensis was inhibited by 0.5 U of penicillin G per ml. For this organism, low concentrations of penicillin acted primarily in a bacteriostatic rather than in a bactericidal manner. At higher concentrations of penicillin some killing did take place, but the rate of killing was rather slow and appeared to be independent of penicillin concentration. Microscopic observation of cells from penicillin-treated cultures showed little or no cellular swelling or lysis. The total cell count did not decrease significantly during 6 h of incubation in 5,000 U of penicillin per ml. The rates of respiration, nucleic acid synthesis, and protein synthesis were not affected by the presence of penicillin. Attempts to counteract the bactericidal action of high concentrations of penicillin with growth inhibitory concentrations of chloramphenicol were unsuccessful, since chloramphenicol itself was more bactericidal than penicillin for M. osloensis.

  14. Unusual Effects of Penicillin G and Chloramphenicol on the Growth of Moraxella osloensis

    PubMed Central

    DeLeys, Robert J.; Juni, Elliot

    1977-01-01

    Growth of exponential-phase liquid cultures of Moraxella osloensis was inhibited by 0.5 U of penicillin G per ml. For this organism, low concentrations of penicillin acted primarily in a bacteriostatic rather than in a bactericidal manner. At higher concentrations of penicillin some killing did take place, but the rate of killing was rather slow and appeared to be independent of penicillin concentration. Microscopic observation of cells from penicillin-treated cultures showed little or no cellular swelling or lysis. The total cell count did not decrease significantly during 6 h of incubation in 5,000 U of penicillin per ml. The rates of respiration, nucleic acid synthesis, and protein synthesis were not affected by the presence of penicillin. Attempts to counteract the bactericidal action of high concentrations of penicillin with growth inhibitory concentrations of chloramphenicol were unsuccessful, since chloramphenicol itself was more bactericidal than penicillin for M. osloensis. PMID:335964

  15. Nanoconjugated vancomycin: new opportunities for the development of anti-VRSA agents

    NASA Astrophysics Data System (ADS)

    Prasad Chakraborty, Subhankari; Sahu, Sumanta Kumar; Mahapatra, Santanu Kar; Santra, Susmita; Bal, Manjusri; Roy, Somenath; Pramanik, Panchanan

    2010-03-01

    More than 90% of Staphylococcus strains are resistant to penicillin. In 1961 S. aureus developed resistance to methicillin (MRSA), invalidating almost all antibiotics, including the most potent β-lactams. Vancomycin, a glycopeptide antibiotic, was used for the treatment of MRSA in 1980. Vancomycin inhibits the bio-synthesis of peptidoglycan and the assembly of NAM-NAG-polypeptide into the growing peptidoglycan chain. Vancomycin resistant S. aureus (VRSA) first appeared in the USA in 2002. Folic acid tagged chitosan nanoparticles are used as Trojan horses to deliver vancomycin into bacterial cells. These nanoparticles are biocompatible and biodegradable semisynthetic polymers. These nanosized vehicles enhance the transport of vancomycin across epithelial surfaces and show its efficient drug action, which has been understood from studies of the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles of a chitosan derivative loaded with vancomycin. Tolerance values distinctly show that vancomycin loaded into nanoconjugate is very effective and has a strong bactericidal effect on VRSA.

  16. Efficient Killing of Planktonic and Biofilm-Embedded Coagulase-Negative Staphylococci by Bactericidal Protein P128

    PubMed Central

    Poonacha, Nethravathi; Nair, Sandhya; Desai, Srividya; Tuppad, Darshan; Hiremath, Deepika; Mohan, Thulasi; Vipra, Aradhana

    2017-01-01

    ABSTRACT Coagulase-negative staphylococci (CoNS) are the major causative agents of foreign-body-related infections, including catheter-related bloodstream infections. Because of the involvement of biofilms, foreign-body-related infections are difficult to treat. P128, a chimeric recombinant phage-derived ectolysin, has been shown to possess bactericidal activity on strains of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). We tested the killing potential of P128 on three clinically significant species of CoNS, S. epidermidis, S. haemolyticus, and S. lugdunensis, under a variety of physiological conditions representing growing and nongrowing states. The MIC90 and minimum bactericidal concentration at which 90% of strains tested are killed (MBC90) of P128 on 62 clinical strains of CoNS were found to be 16 and 32 μg/ml (0.58 and 1.16 μM), respectively, demonstrating the bactericidal nature of P128 on CoNS strains. Serum showed a potentiating effect on P128 inhibition, as indicated by 4- to 32-fold lower MIC values observed in serum. P128 caused a rapid loss of viability in all CoNS strains tested. Persisters of CoNS that were enriched in the presence of vancomycin or daptomycin were killed by P128 at 1× the MIC in a rapid manner. Low concentrations of P128 caused a 2- to 5-log reduction in CFU in stationary-phase or poorly metabolizing CoNS cultures. P128 at low concentrations eliminated CoNS biofilms in microtiter plates and on the surface of catheters. Combinations of P128 and standard-of-care (SoC) antibiotics were highly synergistic in inhibiting growth in preformed biofilms. Potent activity on planktonic cells, persisters, and biofilms of CoNS suggests that P128 is a promising candidate for the clinical development of treatments for foreign-body-related and other CoNS infections. PMID:28559263

  17. Anti-Salmonella activity of medicinal plants from Cameroon.

    PubMed

    Nkuo-Akenji, T; Ndip, R; McThomas, A; Fru, E C

    2001-06-01

    To evaluate the effects of herbal extracts derived from plants commonly prescribed by traditional practitioners for the treatment of typhoid fever. A cross sectional study. Departments of Life Sciences and Chemistry, University of Buea, Cameroon. Methanol extracts of plant parts commonly used in Cameroon for the treatment of typhoid fever. Antimicrobial activity was tested using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assays. Methanol extracts of plant parts commonly used in Cameroon for the treatment of typhoid fever were tested for antibacterial activity against Salmonella typhi, S. paratyphi and S. typhimurium. The formulations used were: 1) Formulation A comprising Cymbogogon citratus leaves, Carica papaya leaves, and Zea mays silk. 2) Formulation B comprising C. papaya roots, Mangifera indica leaves, Citrus limon fruit and C. citratus leaves. 3) C. papaya leaves. 4) Emilia coccinea whole plant. 5) Comelina bengalensis leaves. 6) Telfaria occidentalis leaves. 7) Gossypium arboreum whole plant. Antimicrobial activity was tested using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assays. Generally, Formulation A elicited inhibitory activity at a lower range of 0.02 to 0.06 mg/ml. Similarly, Formulation B elicited bacterial activity at the lowest range of 0.06 to 0.25 mg/ml. C. bengalensis leaves on the other hand, showed the lowest activity with a concentration range of 0.132 to 2.0 mg/ml and 1 to 4 mg/ml in MIC and MBC assays respectively. S. paratyphi was most sensitive to the formulations (concentration range of 0.02 to 1 mg/ml in both MIC and MBC assays) while S. typhimurium was the least sensitive and concentrations of up to 4 mg/ml were required to be bactericidal. It is concluded that plant extracts with low MIC and MBC values (1 mg/ml and lower) may contain compounds with therapeutic activity.

  18. KINETICS OF THE ACTION OF AMPICILLIN ON ESCHERICHIA COLI

    PubMed Central

    Seligman, Stephen J.; Hewitt, William L.

    1963-01-01

    Seligman, Stephen J. (University of California, Los Angeles) and William L. Hewitt. Kinetics of the action of ampicillin on Escherichia coli. J. Bacteriol. 85:1160–1164. 1963.—The curve of the number of viable Escherichia coli after exposure to ampicillin can be divided into three phases: a lag phase, a rapid bactericidal phase, and a slow bactericidal phase. Some of the variables affecting the magnitude of the first two of these phases were investigated. Progressive lowering of drug concentration resulted in prolongation of the lag phase and decrease in slope and extent of the rapid bactericidal phase. The production of elongated gram-negative forms and the emergence of a mutant with increased penicillinase activity complicated interpretation of the lower dose curves. With sufficient drug concentration, the length of the lag phase and the slope of the rapid bactericidal curve were independent of the size of inoculum up to 108 organisms. Varying pH revealed that maximal activity, as measured by the shortest lag phase and steepest slope of the rapid bactericidal phase, was present at slightly acid pH levels. Increasing pH resulted principally in prolongation of lag phase. With greater acidity, decrease in slope of the rapid bactericidal phase was more prominent. Cultures studied under conditions of lessened metabolic activity exhibited prolonged lag phase and decreased slope and extent of rapid bactericidal phase. PMID:14044010

  19. Evaluation of Streptococcus pneumoniae Type XIV Opsonins by Phagocytosis-Associated Chemiluminescence and a Bactericidal Assay

    PubMed Central

    Gardner, Susan E.; Anderson, Donald C.; Webb, Bette J.; Stitzel, Ann E.; Edwards, Morven S.; Spitzer, Roger E.; Baker, Carol J.

    1982-01-01

    The relative roles of serum factors required for opsonization of type XIV Streptococcus pneumoniae were investigated by means of luminol-enhanced chemiluminescence (CL), bactericidal, and immunofluorescence assays employing adult sera containing high (>1,000 ng of antibody nitrogen per ml) or low (<200 ng of antibody nitrogen per ml) antibody concentrations as determined by radioimmunoassay. Specific antibody concentration correlated directly with both total and heat-labile CL activity (P < 0.005) and with the bactericidal index (P < 0.05) at a serum concentration of 10%. The importance of specific antibody as an opsonin was confirmed by the abolition of CL activity and immunoglobulin immunofluorescence observed after absorption of heated sera with type XIV pneumococcal cells and by the dose response in CL and bactericidal activity observed with the addition of immunoglobulin G to hypogammaglobulinemic serum. A role for the classical complement pathway in opsonization was indicated by significantly greater CL integrals for high-antibody sera than for low-antibody sera depleted of factor D and by the bactericidal activity noted for untreated, but not magnesium ethylene glycol-bis(β-aminoethyl ether)-N,N-tetraacetic acid-chelated low-antibody sera. The alternative pathway contributed more than half of the CL activity of both high- and low-antibody sera. However, after magnesium ethylene glycol-bis(β-aminoethyl ether)-N,N-tetraacetic acid chelation, only sera with high antibody concentrations or agammaglobulinemic serum reconstituted with immunoglobulin G with high specific antibody levels supported significant bactericidal activity. Therefore, type-specific antibody and complement promote opsonization of type XIV S. pneumoniae, and this may occur via either complement pathway. These results suggest that CL is a suitable tool to delineate serum factors and their contribution to opsonization, but results must be related to other functional assays. PMID:6802760

  20. In vitro bactericidal activity of enrofloxacin against gyrA mutant and qnr-containing Escherichia coli isolates from animals.

    PubMed

    Cengiz, M; Sahinturk, P; Sonal, S; Buyukcangaz, E; Sen, A; Arslan, E

    2013-05-04

    The objective of this work was to investigate the bactericidal activity of enrofloxacin against gyrA mutant and qnr-containing Escherichia coli isolates from animals. The minimum inhibitory concentrations (MICs) of gyrA mutant and qnr-containing E coli isolates ranged from 1 µg/ml to 32 µg/ml for enrofloxacin. Time-kill experiments were performed using selected E coli isolates. For the time-kill experiments, the colony counts were determined by plating each diluted sample onto plate count agar and an integrated pharmacokinetic/pharmacodynamics area measure (log ratio area) was applied to the colony-forming units (cfu) data. In general, enrofloxacin exhibited bactericidal activity against all the gyrA mutant E coli isolates at all concentrations greater than four times the MIC. However, the bactericidal activity of enrofloxacin for all the qnr-containing E coli isolates was less dependent on concentration. The results of the present study indicated that the genetic mechanism of resistance might account for the different bactericidal activities of enrofloxacin observed for the gyrA mutant and the qnr-containing E coli isolates. Therefore, in addition to MIC assays, genetic mechanism-based pharmacodynamic models should be used to provide accurate predictions of the effects of drugs on resistant bacteria.

  1. Enhancing anti-microbial properties of wood-plastic composites produced from timber and plastic wastes.

    PubMed

    Wang, Lei; Chen, Season S; Tsang, Daniel C W; Poon, Chi Sun; Ok, Yong Sik

    2017-05-01

    Considering the resource waste and environmental burden for timber and plastic materials ending up at landfills, this study proposed upcycling wood and plastic waste into value-added wood-plastic composites (WPCs), complying with the standard requirements of flexural strength, thickness swelling, water absorption and thermal insulation. Biological deterioration is a major concern of WPCs. Bacterial survival, fungal attack and algal growth of bactericide-treated WPCs were holistically analysed. Melamine resin was adopted for impregnating anti-microbial agents on the surface. All the agents showed excellent bactericidal rate (Escherichia coli), yet poly-diallyl-dimethyl-ammonium chloride (PolyDADMAC) and silver had the lowest minimum inhibitory concentrations. In terms of weight loss and strength reduction due to fungal decay (Coriolus versicolor), PolyDADMAC, silver and cetyltrimethylammonium bromide (CTAB) imparted the highest resistance on the WPCs. Moreover, PolyDADMAC and copper provided the most protection against algal growth (Chlorella vulgaris), and the former presented durable inhibitory effect. This study presents a value-added solution to wood/plastic waste recycling.

  2. Vancomycin tolerance in enterococci.

    PubMed

    Saribas, Suat; Bagdatli, Yasar

    2004-11-01

    Tolerance can be defined as the ability of bacteria to grow in the presence of high concentrations of bactericide antimicrobics, so that the killing action of the drug is avoided but the minimal inhibitory concentration (MIC) remains the same. We investigated vancomycin tolerance in the Enterococcus faecium and Enterococcus faecalis strains isolated from different clinical specimens. Vancomycin was obtained from Sigma Chemical Co. We studied 100 enterococci strains. Fifty-six and 44 of Enterococcus strains were idendified as E. feacalis and E. faecium, respectively. To determine MICs and minimal bactericidal concentration (MBC), we inoculated strains from an overnight agar culture to Muller-Hinton broth and incubated them for 4-6 h at 37 degrees C with shaking to obtain a logarithmic phase culture. The inoculum was controlled by performing a colony count for each test. We determined MBC values and MBC/MIC ratios to study tolerance to vancomycin. Vancomycin tolerance was defined as a high MBC value and an MBC/MIC ratio > or =32. Fifty-six and 44 of the Enterococcus strains were identified as E. faecium and E. faecalis, respectively. Thirty-one E. faecium and 48 E. faecalis were found to be susceptible to vancomycin and these susceptible strains were included in this study. The MICs of susceptible strains ranged from < or =1 to 4 mg/l, the MBCs were > or =512 mg/l. Tolerance was detected in all E. faecalis and E. faecium strains. The standard E. faecalis 21913 strain also exhibited tolerance according to the high MBC value and the MBC/MIC ratio. We defined the tolerant strains as having no bactericidal effect and MBC/MIC > or =32. We found that a 100% tolerance was present in susceptible strains. One of the hypotheses for tolerance is that tolerant cells fail to mobilize or create the autolysins needed for enlargement and division. Our data suggests that tolerance may compromise glycopeptide therapy of serious enterococci infections. To add an aminoglycoside to the glycopeptide therapy unless MBCs are unavailable can be useful in the effective treatment of serious Enterococcus infections.

  3. Bactericidal Efficacy of Hydrogen Peroxide-Based Disinfectants Against Gram-Positive and Gram-Negative Bacteria on Stainless Steel Surfaces.

    PubMed

    Ríos-Castillo, Abel G; González-Rivas, Fabián; Rodríguez-Jerez, José J

    2017-10-01

    In order to develop disinfectant formulations that leverage the effectiveness of hydrogen peroxide (H 2 O 2 ), this study evaluated the bactericidal efficacy of hydrogen peroxide-based disinfectants against Gram-positive and Gram-negative bacteria on stainless steel surfaces. Low concentration of hydrogen peroxide as 0.5% with a cationic polymer, ethoxylated fatty alcohol, and ethyl alcohol had bactericidal efficacy (reductions ≥ 4 log 10 CFU/mL) against Escherichia coli, Staphylococcus aureus, Enterococcus hirae, and Pseudomonas aeruginosa. Hydrogen peroxide-based disinfectants were more effective against E. hirae and P. aeruginosa than to S. aureus. However, the efficacy of hydrogen peroxide against catalase positive bacteria such as S. aureus was increased when this compound was formulated with low concentrations of benzalkonium chloride or ethyl alcohol, lactic acid, sodium benzoate, cationic polymer, and salicylic acid. This study demonstrates that the use of hydrogen peroxide with other antimicrobial products, in adequate concentrations, had bactericidal efficacy in Gram-positive and Gram-negative bacteria on stainless steel surfaces, enabling to reduce the effective concentration of hydrogen peroxide. In the same way, the use of hydrogen peroxide-based disinfectants could reduce the concentrations of traditional disinfectants as quaternary ammonium compounds and therefore a reduction of their chemical residues in the environment after being used. The study of the bactericidal properties of environmentally nontoxic disinfectants such as hydrogen peroxide, sole or in formulations with other disinfectants against Gram-positive and Gram-negative bacteria can enhance the efficacy of various commonly used disinfectant formulations with the hygiene benefits that it entails. Also, the use of hydrogen peroxide formulations can reduce the concentration levels of products that generate environmental residues. © 2017 Institute of Food Technologists®.

  4. Urinary Concentrations and Antibacterial Activities of Nitroxoline at 250 Milligrams versus Trimethoprim at 200 Milligrams against Uropathogens in Healthy Volunteers

    PubMed Central

    Münch, Fabian; Pilatz, Adrian; Bärmann, Birte; Weidner, Wolfgang; Wagenlehner, Christine M.; Straubinger, Marion; Blenk, Holger; Pfister, Wolfgang; Kresken, Michael; Naber, Kurt G.

    2014-01-01

    Because of the increasing bacterial resistance of uropathogens against standard antibiotics, such as trimethoprim (TMP), older antimicrobial drugs, such as nitroxoline (NTX), should be reevaluated. This randomized crossover study investigated the urinary concentrations of parent drugs and their metabolites and their antibacterial activities (urinary inhibitory titers [UITs] and urinary bactericidal titers [UBTs]) against uropathogens at three different urinary pH values within 24 h in six healthy volunteers after a single oral dose of NTX at 250 mg versus TMP at 200 mg. In three additional volunteers, urinary bactericidal kinetics (UBK) were studied after oral administration of NTX at 250 mg three times a day. The mean urinary concentrations of NTX and NTX sulfate in 24 h were 0.012 to 0.507 mg/liter and 0.28 to 27.83 mg/liter, respectively. The mean urinary concentrations of TMP were 18.79 to 41.59 mg/liter. The antibacterial activity of NTX was higher in acidic urine than in alkaline urine, and that of TMP was higher in alkaline urine than in acidic urine. The UITs and UBTs of NTX were generally lower than those of TMP except for a TMP-resistant Escherichia coli strain, for which NTX showed higher UITs/UBTs than did TMP. UBK showed mainly bacteriostatic activity of NTX in urine. NTX exhibits mainly bacteriostatic activity and TMP also shows bactericidal activity in urine against susceptible strains. NTX is a more active antibacterial in acidic urine, and TMP is more active in alkaline urine. The cumulative effects of multiple doses or inhibition of bacterial adherence could not be evaluated. (This study has been registered at EudraCT under registration no. 2009-015631-32.) PMID:24217699

  5. In vitro bactericidal and bacteriolytic activity of ceragenin CSA-13 against planktonic cultures and biofilms of Streptococcus pneumoniae and other pathogenic streptococci.

    PubMed

    Moscoso, Miriam; Esteban-Torres, María; Menéndez, Margarita; García, Ernesto

    2014-01-01

    Ceragenin CSA-13, a cationic steroid, is here reported to show a concentration-dependent bactericidal/bacteriolytic activity against pathogenic streptococci, including multidrug-resistant Streptococcus pneumoniae. The autolysis promoted by CSA-13 in pneumococcal cultures appears to be due to the triggering of the major S. pneumoniae autolysin LytA, an N-acetylmuramoyl-L-alanine amidase. CSA-13 also disintegrated pneumococcal biofilms in a very efficient manner, although at concentrations slightly higher than those required for bactericidal activity on planktonic bacteria. CSA-13 has little hemolytic activity which should allow testing its antibacterial efficacy in animal models.

  6. The Integral Method, a new approach to quantify bactericidal activity.

    PubMed

    Gottardi, Waldemar; Pfleiderer, Jörg; Nagl, Markus

    2015-08-01

    The bactericidal activity (BA) of antimicrobial agents is generally derived from the results of killing assays. A reliable quantitative characterization and particularly a comparison of these substances, however, are impossible with this information. We here propose a new method that takes into account the course of the complete killing curve for assaying BA and that allows a clear-cut quantitative comparison of antimicrobial agents with only one number. The new Integral Method, based on the reciprocal area below the killing curve, reliably calculates an average BA [log10 CFU/min] and, by implementation of the agent's concentration C, the average specific bactericidal activity SBA=BA/C [log10 CFU/min/mM]. Based on experimental killing data, the pertaining BA and SBA values of exemplary active halogen compounds were established, allowing quantitative assertions. N-chlorotaurine (NCT), chloramine T (CAT), monochloramine (NH2Cl), and iodine (I2) showed extremely diverging SBA values of 0.0020±0.0005, 1.11±0.15, 3.49±0.22, and 291±137log10 CFU/min/mM, respectively, against Staphylococcus aureus. This immediately demonstrates an approximately 550-fold stronger activity of CAT, 1730-fold of NH2Cl, and 150,000-fold of I2 compared to NCT. The inferred quantitative assertions and conclusions prove the new method suitable for characterizing bactericidal activity. Its application comprises the effect of defined agents on various bacteria, the consequence of temperature shifts, the influence of varying drug structure, dose-effect relationships, ranking of isosteric agents, comparison of competing commercial antimicrobial formulations, and the effect of additives. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Antipneumococcal activity of ceftobiprole, a novel broad-spectrum cephalosporin.

    PubMed

    Kosowska, Klaudia; Hoellman, Dianne B; Lin, Gengrong; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bozdogan, Bülent; Shapiro, Stuart; Appelbaum, Peter C

    2005-05-01

    Ceftobiprole (previously known as BAL9141), an anti-methicillin-resistant Staphylococcus aureus cephalosporin, was very highly active against a panel of 299 drug-susceptible and -resistant pneumococci, with MIC(50) and MIC(90) values (microg/ml) of 0.016 and 0.016 (penicillin susceptible), 0.06 and 0.5 (penicillin intermediate), and 0.5 and 1.0 (penicillin resistant). Ceftobiprole, imipenem, and ertapenem had lower MICs against all pneumococcal strains than amoxicillin, cefepime, ceftriaxone, cefotaxime, cefuroxime, or cefdinir. Macrolide and penicillin G MICs generally varied in parallel, whereas fluoroquinolone MICs did not correlate with penicillin or macrolide susceptibility or resistance. All strains were susceptible to linezolid, quinupristin-dalfopristin, daptomycin, vancomycin, and teicoplanin. Time-kill analyses showed that at 1x and 2x the MIC, ceftobiprole was bactericidal against 10/12 and 11/12 strains, respectively. Levofloxacin, moxifloxacin, vancomycin, and teicoplanin were each bactericidal against 10 to 12 strains at 2x the MIC. Azithromycin and clarithromycin were slowly bactericidal, and telithromycin was bactericidal against only 5/12 strains at 2x the MIC. Linezolid was mainly bacteriostatic, whereas quinupristin-dalfopristin and daptomycin showed marked killing at early time periods. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to yield mutants with high MICs towards this cephalosporin, and single-passage selection showed very low frequencies of spontaneous mutants with breakthrough MICs towards ceftobiprole.

  8. Antipneumococcal Activity of Ceftobiprole, a Novel Broad-Spectrum Cephalosporin

    PubMed Central

    Kosowska, Klaudia; Hoellman, Dianne B.; Lin, Gengrong; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bozdogan, Bülent; Shapiro, Stuart; Appelbaum, Peter C.

    2005-01-01

    Ceftobiprole (previously known as BAL9141), an anti-methicillin-resistant Staphylococcus aureus cephalosporin, was very highly active against a panel of 299 drug-susceptible and -resistant pneumococci, with MIC50 and MIC90 values (μg/ml) of 0.016 and 0.016 (penicillin susceptible), 0.06 and 0.5 (penicillin intermediate), and 0.5 and 1.0 (penicillin resistant). Ceftobiprole, imipenem, and ertapenem had lower MICs against all pneumococcal strains than amoxicillin, cefepime, ceftriaxone, cefotaxime, cefuroxime, or cefdinir. Macrolide and penicillin G MICs generally varied in parallel, whereas fluoroquinolone MICs did not correlate with penicillin or macrolide susceptibility or resistance. All strains were susceptible to linezolid, quinupristin-dalfopristin, daptomycin, vancomycin, and teicoplanin. Time-kill analyses showed that at 1× and 2× the MIC, ceftobiprole was bactericidal against 10/12 and 11/12 strains, respectively. Levofloxacin, moxifloxacin, vancomycin, and teicoplanin were each bactericidal against 10 to 12 strains at 2× the MIC. Azithromycin and clarithromycin were slowly bactericidal, and telithromycin was bactericidal against only 5/12 strains at 2× the MIC. Linezolid was mainly bacteriostatic, whereas quinupristin-dalfopristin and daptomycin showed marked killing at early time periods. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to yield mutants with high MICs towards this cephalosporin, and single-passage selection showed very low frequencies of spontaneous mutants with breakthrough MICs towards ceftobiprole. PMID:15855516

  9. Stem bark extract and fraction of Persea americana (Mill.) exhibits bactericidal activities against strains of bacillus cereus associated with food poisoning.

    PubMed

    Akinpelu, David A; Aiyegoro, Olayinka A; Akinpelu, Oluseun F; Okoh, Anthony I

    2014-12-30

    The study investigates the in vitro antibacterial potentials of stem bark extracts of Persea americana on strains of Bacillus cereus implicated in food poisoning. The crude stem bark extracts and butanolic fraction at a concentration of 25 mg/mL and 10 mg/mL, respectively, exhibited antibacterial activities against test isolates. The zones of inhibition exhibited by the crude extract and the fraction ranged between 10 mm and 26 mm, while the minimum inhibitory concentration values ranged between 0.78 and 5.00 mg/mL. The minimum bactericidal concentrations ranged between 3.12 mg/mL-12.5 mg/mL and 1.25-10 mg/mL for the extract and the fraction, respectively. The butanolic fraction killed 91.49% of the test isolates at a concentration of 2× MIC after 60 min of contact time, while a 100% killing was achieved after the test bacterial cells were exposed to the butanolic fraction at a concentration of 3× MIC after 90 min contact time. Intracellular protein and potassium ion leaked out of the test bacterial cells when exposed to certain concentrations of the fraction; this is an indication of bacterial cell wall disruptions by the extract's butanolic fraction and, thus, caused a biocidal effect on the cells, as evident in the killing rate test results.

  10. The pharmacokinetic-pharmacodynamic modeling and cut-off values of tildipirosin against Haemophilus parasuis

    PubMed Central

    Lei, Zhixin; Liu, Qianying; Yang, Bing; Ahmed, Saeed; Cao, Jiyue; He, Qigai

    2018-01-01

    The goal of this study was to establish the epidemiological, pharmacodynamic cut-off values, optimal dose regimens for tildipirosin against Haemophilus parasuis. The minimum inhibitory concentrations (MIC) of 164 HPS isolates were determined and SH0165 whose MIC (2 μg/ml ) were selected for PD analysis. The ex vivo MIC in plasma of SH0165 was 0.25 μg/ml which was 8 times lower than that in TSB. The bacteriostatic, bactericidal and elimination activity (AUC24h/MIC) in serum were 26.35, 52.27 and 73.29 h based on the inhibitory sigmoid Emax modeling. The present study demonstrates that 97.9% of the wild-type (WT) isolates were covered when the epidemiological cut-off value (ECV) was set at 8 μg/ml. The parameters including AUC24h, AUC, T1/2, Cmax, CLb and MRT in PELF were 19.56, 60.41, 2.32, 4.02, 56.6, and 2.63 times than those in plasma, respectively. Regarding the Monte Carlo simulation, the COPD was defined as 0.5 μg/ml in vitro, and the optimal doses to achieve bacteriostatic, bactericidal and elimination effect were 1.85, 3.67 and 5.16 mg/kg for 50% target, respectively, and 2.07, 4.17 and 5.78 mg/kg for 90% target, respectively. The results of this study offer a more optimised alternative for clinical use and demonstrated that 4.17 mg/kg of tildipirosin by intramuscular injection could have an effect on bactericidal activity against HPS. These values are of great significance for the effective treatment of HPS infections, but it also be deserved to be validated in clinical practice in the future research. PMID:29416722

  11. Antibacterial activity and proposed action mechanism of a new class of synthetic tricyclic flavonoids.

    PubMed

    Babii, C; Bahrin, L G; Neagu, A-N; Gostin, I; Mihasan, M; Birsa, L M; Stefan, M

    2016-03-01

    This study reports on the inhibitory and bactericidal properties of a new synthetized flavonoid. Tricyclic flavonoid 1 has been synthesized through a two-step reaction sequence. The antimicrobial effects were tested using the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Also DNA fragmentation assay, fluorescence microscopy and SEM were used to study the mechanism of action. Our tested flavonoid displayed a strong antimicrobial activity with MIC and MBC values as low as 0·24 μg ml(-1) against Staphylococcus aureus and 3·9 μg ml(-1) against Escherichia coli. Flavonoid 1 displayed antimicrobial properties, causing not only the inhibition of bacterial growth, but also killing bacterial cells. The mechanism of action is related to the impairment of the cell membrane integrity and to cell agglutination. Tricyclic flavonoid 1 was found to have a stronger antibacterial effect at lower concentrations than those described in the earlier reports. Based on the strong antimicrobial activity observed, this new tricyclic flavonoid has a good potential for the design of new antimicrobial agents. © 2016 The Society for Applied Microbiology.

  12. Potential Bio-Control Agent from Rhodomyrtus tomentosa against Listeria monocytogenes

    PubMed Central

    Odedina, Grace Fiyinfoluwa; Vongkamjan, Kitiya; Voravuthikunchai, Supayang Piyawan

    2015-01-01

    Listeria monocytogenes is an important foodborne pathogen implicated in many outbreaks of listeriosis. This study aimed at screening for the potential use of Rhodomyrtus tomentosa ethanolic leaf extract as a bio-control agent against L. monocytogenes. Twenty-two L. monocytogenes isolates were checked with 16 commercial antibiotics and isolates displayed resistance to 10 antibiotics. All the tested isolates were sensitive to the extract with inhibition zones ranging from 14 to 16 mm. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values ranged from 16 to 32 µg/mL and 128 to 512 µg/mL, respectively. Time-kill assay showed that the extract had remarkable bactericidal effects on L. monocytogenes. The extract at a concentration of 16 µg/mL reduced tolerance to 10% NaCl in L. monocytogenes in 4 h. Stationary phase L. monocytogenes cells were rapidly inactivated by greater than 3-log units within 30 min of contact time with R. tomentosa extract at 128 µg/mL. Electron microscopy revealed fragmentary bacteria with changes in the physical and morphological properties. Our study demonstrates the potential of the extract for further development into a bio-control agent in food to prevent the incidence of L. monocytogenes contamination. PMID:26371033

  13. Determination of antibacterial activity of green coffee bean extract on periodontogenic bacteria like Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans: An in vitro study.

    PubMed

    Bharath, Nagaraj; Sowmya, Nagur Karibasappa; Mehta, Dhoom Singh

    2015-01-01

    The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa). Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. MIC values of Pg, Pi and Aa were 0.2 μg/ml whereas Fn showed sensitive at concentration of 3.125 μg/ml. MBC values mirrors the values same as that of MIC. Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease.

  14. [Bactericidal activity of colloidal silver against grampositive and gramnegative bacteria].

    PubMed

    Afonina, I A; Kraeva, L A; Tseneva, G Ia

    2010-01-01

    It was shown that colloidal silver solution prepared in cooperation with the A. F. Ioffe Physical Technical Institute of the Russian Academy of Sciences, had significant bactericidal activity. Stable bactericidal effect on gramnegative microorganisms was observed after their 2-hour exposition in the solution of colloidal silver at a concentration of 10 ppm. Grampositive capsule-forming microorganisms were less susceptible to the colloidal silver solution: their death was observed after the 4-hour exposition in the solution.

  15. Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori.

    PubMed

    Shin, Il Shik; Masuda, Hideki; Naohide, Kinae

    2004-08-01

    In this study, the bactericidal activity of Korean and Japanese wasabi roots, stems and leaves against Helicobacter pylori were examined. Allyl isothiocyanate (AIT) in roots, stems and leaves of Korean wasabi were 0.75, 0.18 and 0.32 mg/g, respectively. AIT in roots, stems and leaves of Japanese wasabi were 1.18, 0.41 and 0.38 mg/g, respectively. All parts of wasabi showed bactericidal activities against H. pylori strain NCTC 11637, YS 27 and YS 50. The leaves of both wasabi showed the highest bactericidal activities with the minimum bactericidal concentration of 1.05-1.31 mg of dry weight/ml against three strains of H. pylori. The roots showed a little lower bactericidal activity with 2.09-4.17 mg of dry weight/ml against them. The main component related to antimicrobial activity in wasabi is well known to be AIT. In this study, the bactericidal activity of leaves was higher than that of roots, although AIT amount of leaves was lower than that of roots. These results suggest that certain components besides AIT in wasabi are effective in killing H. pylori.

  16. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria.

    PubMed

    Kim, Byunghoon; Kim, Dohwan; Cho, Donglyun; Cho, Sungyong

    2003-07-01

    Titanium dioxide (TiO(2)) photocatalysts have attracted great attention as a material for photocatalytic sterilization in the food and environmental industry. This research aimed to design a new photobioreactor and its application to sterilize selected food borne pathogenic bacteria, Salmonella choleraesuis subsp., Vibrio parahaemolyticus, and Listeria monocytogenes. The photocatalytic reaction was carried out with various TiO(2) concentrations and Ultraviolet (UV) illumination time. A feasible synergistic effect was found that the bactericidal effect of TiO(2) on all bacterial suspension after UV light irradiation was much higher than that of without TiO(2). As the concentration of TiO(2) increased to 1.0 mg/ml, bactericidal effect increased. However, the bactericidal effect was rapidly abbreviated at TiO(2) concentration higher than 1.25 mg/ml to all selected bacteria. UV illumination time affected drastically the viability of all bacteria with different death rate. Similar trends were obtained from S. choleraesuis subsp. and V. parahaemolyticus that their complete killing was achieved after 3 h of illumination. However, L. monocytogenes was more resistant and its death ratio was about 87% at that time.

  17. Antibacterial Activity of Cinoxacin In Vitro

    PubMed Central

    Giamarellou, Helen; Jackson, George G.

    1975-01-01

    Cinoxacin is a new synthetic compound similar chemically and in antimicrobial activity to oxolonic acid and nalidixic acid. It is most effective against Escherichia coli and Proteus mirabilis, but at concentrations expected in the urine it is inhibitory for all species of Enterobacteriaceae. Relative to nalidixic acid, cinoxacin has slightly greater inhibitory and bactericidal activity, less inoculum effect probably due to less heterogeneity in the susceptibility of bacterial cells, and less inhibition by high concentrations of serum protein. Both drugs are more active in an acid than an alkaline medium. Glucose can specifically antagonize the inhibitory effect against P. mirabilis. In urine the bactericidal rate and effect are decreased. Resistance to cinoxacin can be developed quickly by serial transfers in vitro. Some nonresistant organisms remained viable in bactericidal drug concentrations. The in vivo importance of the favorable features of cinoxacin must be determined by clinical trials. PMID:1096811

  18. In Vitro Antibacterial Activities of AF 3013, the Active Metabolite of Prulifloxacin, against Nosocomial and Community Italian Isolates

    PubMed Central

    Montanari, Maria Pia; Mingoia, Marina; Varaldo, Pietro Emanuele

    2001-01-01

    AF 3013, the active metabolite of prulifloxacin, was tested to determine its inhibitory and bactericidal activities against 396 nosocomial and 258 community Italian isolates. Compared with that of ciprofloxacin, its activity (assessed in MIC and minimal bactericidal concentration tests) was generally similar or greater against gram-positive bacteria and greater against gram-negative bacteria. In time-kill assays using selected isolates, its bactericidal activity was comparable to that of ciprofloxacin. PMID:11709353

  19. PK-PD Analysis of Marbofloxacin against Streptococcus suis in Pigs.

    PubMed

    Lei, Zhixin; Liu, Qianying; Yang, Bing; Khaliq, Haseeb; Cao, Jiyue; He, Qigai

    2017-01-01

    Marbofloxacin is a fluoroquinolone antibiotic and highly effective treatment for respiratory diseases. Here we aimed to evaluate the ex vivo activity of marbofloxacin against Streptococcus suis in pig serum, as well as the optimal dosages scheme for avoiding the fluoroquinolone resistance development. A single dose of 8 mg/kg body weight (bw) was administrated orally to healthy pigs and serum samples were collected during the next 72 h. Serum marbofloxacin content was determined by high-performance liquid chromatography. We estimated the C max (6.28 μg/ml), AUC 0-24 h (60.30 μg.h/ml), AUC 0-∞ (88.94 μg.h/ml), T 1/2ke, (12.48 h), T max (0.75 h) and Cl b (0.104 L/h) of marbofloxacin in pigs, as well as the bioavailability of marbofloxacin (94.21%) after a single 8 mg/kg oral administration. We also determined the pharmacodynamic of marbofloxacin against 134 Streptococcus suis strains isolated from Chinese cities in TSB and serum. These isolated strains had a MIC 90 of 1 μg/ml. HB2, a virulent, serotype 2 isolate of SS , was selected for having antibacterial activity in TSB and serum to marbofloxacin. We determined the minimum inhibitory concentration (MIC, 1 μg/ml in TSB, 2 μg/ml in serum), minimum bactericidal concentration (MBC, 4 μg/ml in TSB, 4 μg/ml in serum), and mutant prevention concentration (2.56 μg/ml in TSB) for marbofloxacin against Streptococcus suis (HB2). In serum, by inhibitory sigmoid E max modeling, the AUC 0-24h /MIC values for marbofloxacin against HB2 were 25.23 (bacteriostatic), 35.64 (bactericidal), and 39.71 (elimination) h. Based on Monte Carlo simulations, the predicted optimal oral doses of marbofloxacin curing Streptococcus suis were 5.88 (bacteriostatic), 8.34 (bactericidal), and 9.36 (elimination) mg/kg.bw for a 50% target attainment ratio, and 8.16 (bacteriostatic), 11.31 (bactericidal), and 12.35 (elimination) mg/kg.bw for a 90% target attainment ratio. The data presented here provides optimized dosage information for clinical use; however, these predicted dosages should also be validated in clinical practice.

  20. Combined treatment of UVA irradiation and antibiotics induces greater bactericidal effects on Vibrio parahaemolyticus.

    PubMed

    Hou, Yanfei; Nakahashi, Mutsumi; Mawatari, Kazuaki; Shimohata, Takaaki; Uebanso, Takashi; Harada, Yumi; Tsunedomi, Akari; Emoto, Takahiro; Akutagawa, Masatake; Kinouchi, Yohsuke; Takahashi, Akira

    2016-01-01

    The presence of antibiotics in the environment and their subsequent impact on the development of multi-antibiotic resistant bacteria has raised concerns globally. Consequently, much research is focused on a method to produce a better disinfectant. We have established a disinfectant system using UVA-LED that inactivates pathogenic bacteria. We assessed the bactericidal efficiency of a combination of UVA-LED and antibiotics against Vibrio parahaemolyticus. Combined use of antibiotic drugs and UVA irradiation was more bactericidal than UVA irradiation or antibacterial drugs alone. The bactericidal synergy was observed at low concentrations of each drug that are normally unable to kill the bacteria. This combination has the potential to become a sterilization technology.

  1. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food.

    PubMed

    Irwin, Sally V; Fisher, Peter; Graham, Emily; Malek, Ashley; Robidoux, Adriel

    2017-01-01

    Sulfites and other preservatives are considered food additives to limit bacterial contamination, and are generally regarded as safe for consumption by governmental regulatory agencies at concentrations up to 5000 parts per million (ppm). Consumption of bactericidal and bacteriostatic drugs have been shown to damage beneficial bacteria in the human gut and this damage has been associated with several diseases. In the present study, bactericidal and bacteriostatic effects of two common food preservatives, sodium bisulfite and sodium sulfite, were tested on four known beneficial bacterial species common as probiotics and members of the human gut microbiota. Lactobacillus species casei, plantarum and rhamnosus, and Streptococcus thermophilus were grown under optimal environmental conditions to achieve early log phase at start of experiments. Bacterial cultures were challenged with sulfite concentrations ranging between 10 and 3780 ppm for six hours. To establish a control, a culture of each species was inoculated into media containing no sulfite preservative. By two hours of exposure, a substantial decrease (or no increase) of cell numbers (based on OD600 readings) were observed for all bacteria types, in concentrations of sulfites between 250-500 ppm, compared to cells in sulfite free media. Further testing using serial dilution and drop plates identified bactericidal effects in concentrations ranging between 1000-3780 ppm on all the Lactobacillus species by 4 hours of exposure and bactericidal effects on S. thermophilus in 2000ppm NaHSO3 after 6 hours of exposure.

  2. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food

    PubMed Central

    2017-01-01

    Sulfites and other preservatives are considered food additives to limit bacterial contamination, and are generally regarded as safe for consumption by governmental regulatory agencies at concentrations up to 5000 parts per million (ppm). Consumption of bactericidal and bacteriostatic drugs have been shown to damage beneficial bacteria in the human gut and this damage has been associated with several diseases. In the present study, bactericidal and bacteriostatic effects of two common food preservatives, sodium bisulfite and sodium sulfite, were tested on four known beneficial bacterial species common as probiotics and members of the human gut microbiota. Lactobacillus species casei, plantarum and rhamnosus, and Streptococcus thermophilus were grown under optimal environmental conditions to achieve early log phase at start of experiments. Bacterial cultures were challenged with sulfite concentrations ranging between 10 and 3780 ppm for six hours. To establish a control, a culture of each species was inoculated into media containing no sulfite preservative. By two hours of exposure, a substantial decrease (or no increase) of cell numbers (based on OD600 readings) were observed for all bacteria types, in concentrations of sulfites between 250–500 ppm, compared to cells in sulfite free media. Further testing using serial dilution and drop plates identified bactericidal effects in concentrations ranging between 1000–3780 ppm on all the Lactobacillus species by 4 hours of exposure and bactericidal effects on S. thermophilus in 2000ppm NaHSO3 after 6 hours of exposure. PMID:29045472

  3. A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arijit Kumar; Sarkar, Raj Kumar; Prasun Chattopadhyay, Asoke; Aich, Pulakesh; Chakraborty, Ruchira; Basu, Tarakdas

    2012-03-01

    A method for preparation of copper nanoparticles (Cu-NPs) was developed by simple reduction of CuCl2 in the presence of gelatin as a stabilizer and without applying stringent conditions like purging with nitrogen. The NPs were characterized by spectrophotometry, dynamic light scattering, x-ray diffraction, transmission electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy. The particles were about 50-60 nm in size and highly stable. The antibacterial activity of this Cu-NP on Gram-negative Escherichia coli was demonstrated by the methods of agar plating, flow cytometry and phase contrast microscopy. The minimum inhibitory concentration (3.0 µg ml-1), minimum bactericidal concentration (7.5 µg ml-1) and susceptibility constant (0.92) showed that this Cu-NP is highly effective against E. coli at a much lower concentration than that reported previously. Treatment with Cu-NPs made E. coli cells filamentous. The higher the concentration of Cu-NPs, the greater the population of filamentous cells; average filament size varied from 7 to 20 µm compared to the normal cell size of ˜2.5 µm. Both filamentation and killing of cells by Cu-NPs (7.5 µg ml-1) also occurred in an E. coli strain resistant to multiple antibiotics. Moreover, an antibacterial effect of Cu-NPs was also observed in Gram-positive Bacillus subtilis and Staphylococcus aureus, for which the values of minimum inhibitory concentration and minimum bactericidal concentration were close to that for E. coli.

  4. Antagonistic effects of lipids against the bactericidal activity of thymol-beta-D-glucopyranoside

    USDA-ARS?s Scientific Manuscript database

    The gut of food-producing animals is a reservoir for zoonotic pathogens. Thymol is bactericidal against Salmonella, E. coli, and Campylobacter, but its rapid absorption from the proximal gut reveals a need for protective technologies to deliver effective concentrations to the lower gut where the pa...

  5. Effects of oakmoss and its components on biofilm formation of Legionella pneumophila.

    PubMed

    Nomura, Harue; Isshiki, Yasunori; Sakuda, Keisuke; Sakuma, Katsuya; Kondo, Seiichi

    2013-01-01

    Oakmoss and its components are known as antibacterial agents, specifically against Legionella pneumophila. In the present study, we investigated the effects of oakmoss and its components (phenol, didepside and isochromen derivatives) on L. pneumophila biofilm formation, with particular reference to the bactericidal activity (minimum bactericidal concentration; MBC) of these components against the bacterial cells in the biofilm. Of the 20 compounds tested, two didepside derivatives and four phenol derivatives reduced biofilm formation by more than 50% of that observed for the control at their respective minimum inhibitory concentrations (1/2×MIC). The inhibitory activities of these compounds were either equivalent to or greater than that of the clarithromycin reference. Isochromen derivatives had no effect on biofilm formation. Analysis of bactericidal activity of didepside and isochromen derivatives revealed that three of four didepside derivatives and one of four isochromen derivatives exhibited high bactericidal activity (MBC: 32.0-74.7 µg/mL) against the L. pneumophila in the biofilm after 24 h or 48 h of co-incubation; the antibacterial activities of these compounds were almost equivalent to clarithromycin and chlorhexidine gluconate (MBC: 42.7-64.0 µg/mL) that were used as references. Thus, based on their anti-biofilm forming and bactericidal activities, didepside derivatives are considered to be good candidates for disinfectants against L. pneumophila.

  6. Comparative Study of Hydroalcoholic Extracts of Momordica charantia L. against Foodborne Pathogens

    PubMed Central

    Rakholiya, Kalpna; Vaghela, P.; Rathod, T.; Chanda, Sumitra

    2014-01-01

    The antimicrobial effect of 24 different hydroalcoholic extracts (100, 75, 50 and 25% methanol and water) obtained from four parts (leaf+stem (aerial), peel, pulp and seed) of Momordica charantia L. were investigated against five Gram-positive, six Gram-negative and four fungal strains. The extraction was done by individual cold percolation method using hexane, different hydroalcoholic solvent (100, 75, 50 and 25% methanol) and water. The antimicrobial activity was done by agar well diffusion assay. The extracts, which showed >15 mm zone of inhibition, were further screened to determine minimum inhibitory concentration and minimum bactericidal concentration using a broth dilution method performed in 96-well microtitre plate. The extractive yield was highest in aqueous extracts of all the four parts closely followed by 25% methanol. Micrococcus flavus was the most susceptible Gram-positive bacteria and Pseudomonas testosteroni was the most susceptible Gram-negative bacteria. The highest antibacterial activity was shown by 100% methanol. The Gram-negative Pseudomonas spp. was more susceptible towards all the extracts than the Gram-positive bacteria or fungal strains investigated. One hundred percent and 50% methanol extracts of seed showed lowest minimum inhibitory concentration and minimum bactericidal concentration values, that is <39 and 625 μg/ml, respectively, against Pseudomonas pictorum. Therefore, these extracts would be of interest in the control of Pseudomonas spp. in food industry as well as used for therapeutic purposes. PMID:24843188

  7. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms

    PubMed Central

    Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H. P.

    2015-01-01

    Aim: The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Materials and Methods: Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. Results: All vehicles exhibited bactericidal activity at 100% concentration. Conclusion: Propylene glycol was effective against three organisms namely S. mutans E. faecalis and E. coli and its bactericidal activity was at 50%, 25% and 50% respectively. PEG 1000 was effective against S. mutans and E. coli at 25%. Hence propylene glycol was effective on more number of organisms of which E. faecalis is a known resistant species. PEG 1000 was bactericidal at a lower concentration but was effective on two organisms only. PMID:25992336

  8. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms.

    PubMed

    Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H P

    2015-01-01

    The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. All vehicles exhibited bactericidal activity at 100% concentration. Propylene glycol was effective against three organisms namely S. mutans E. faecalis and E. coli and its bactericidal activity was at 50%, 25% and 50% respectively. PEG 1000 was effective against S. mutans and E. coli at 25%. Hence propylene glycol was effective on more number of organisms of which E. faecalis is a known resistant species. PEG 1000 was bactericidal at a lower concentration but was effective on two organisms only.

  9. Evaluation of the Bactericidal Activity of Plazomicin and Comparators against Multidrug-resistant Enterobacteriaceae.

    PubMed

    Thwaites, M; Hall, D; Shinabarger, D; Serio, A W; Krause, K M; Marra, A; Pillar, C

    2018-06-04

    The next-generation aminoglycoside plazomicin, in development for infections due to multi-drug resistant (MDR) Enterobacteriaceae, was evaluated alongside comparators for bactericidal activity in minimum bactericidal concentration (MBC) and time-kill (TK) assays against MDR Enterobacteriaceae isolates with characterized aminoglycoside and β-lactam resistance mechanisms. Overall, plazomicin and colistin were the most potent, with plazomicin demonstrating an MBC 50/90 of 0.5/4 μg/mL and sustained 3-log 10 kill against MDR Escherichia coli , Klebsiella pneumoniae and Enterobacter spp. Copyright © 2018 Thwaites et al.

  10. Naturally occurring anti-Salmonella agents.

    PubMed

    Kubo, I; Fujita, K

    2001-12-01

    Polygodial and (2E)-hexenal were found to possess antibacterial activity against Salmonella choleraesuis with the minimum bactericidal concentrations (MBC) of 50 microg/mL (0.17 mM) and 100 microg/mL (0.98 mM), respectively. The time kill curve study showed that these two alpha,beta-unsaturated aldehydes were bactericidal against this food-borne bacterium at any stage of growth. However, they showed different effects on the growth of S. choleraesuis. The combination of polygodial and anethole exhibited strong synergism on their bacteriostatic action but only marginal synergism on their bactericidal action.

  11. Determination of antibacterial activity of green coffee bean extract on periodontogenic bacteria like Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans: An in vitro study

    PubMed Central

    Bharath, Nagaraj; Sowmya, Nagur Karibasappa; Mehta, Dhoom Singh

    2015-01-01

    Background: The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa). Materials and Methods: Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. Results: MIC values of Pg, Pi and Aa were 0.2 μg/ml whereas Fn showed sensitive at concentration of 3.125 μg/ml. MBC values mirrors the values same as that of MIC. Conclusion: Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease. PMID:26097349

  12. Ex vivo study of serum bactericidal titers and killing rates of daptomycin (LY146032) combined or not combined with amikacin compared with those of vancomycin.

    PubMed Central

    Van der Auwera, P

    1989-01-01

    Twelve volunteers, in two groups of six, received daptomycin at a dose of 1 or 2 mg/kg. In addition, they received in a randomly allocated order amikacin (500 mg), daptomycin-amikacin, and vancomycin (500 mg). Thirty-five clinical isolates, including Staphylococcus aureus, S. epidermidis, Corynebacterium sp. group JK, and Enterococcus faecalis, were tested in vitro for the measure of the serum bactericidal titers and killing rates. The mean peak concentrations of daptomycin in serum 1 h after the administration of 1 and 2 mg/kg were 11 and 20 micrograms/ml, respectively. At 24 h after the administration of 2 mg/kg, the mean level in serum was 1.9 micrograms/ml, which is higher than the MICs for susceptible pathogens. Daptomycin and amikacin provided identical concentrations in serum whether given alone or in combination. Among the six regimens tested, those including daptomycin provided the highest and the most prolonged serum bactericidal titers against S. aureus, S. epidermidis, and E. faecalis. The killing rates measured by the killing curves were correlated with the concentration/MIC and concentration/MBC ratios of daptomycin for all strains tested. Significant killing occurred once the concentration of daptomycin in the serum 4- to 6-fold the MIC or 1- to 1.2-fold the MBC. The combination of daptomycin and amikacin had no effect on either the serum bactericidal titers or the rates of killing. Only vancomycin provided significant killing of the strains of Corynebacterium sp. group JK. PMID:2556079

  13. Evaluation of some pharmacological activities of Budmunchiamine - A isolated from Albizia amara.

    PubMed

    Thippeswamy, Sreerangegowda; Mohana, Devihalli Chikkaiah; Abhishek, Rayasandra Umesh; Manjunath, Kiragandur

    2015-03-01

    The present investigations were aimed to evaluate the antimicrobial and antioxidant efficacies of budmunchiamine-A (BUA) of Albizia amara . The activity-guided isolation leaded to isolate the bioactive compound budmunchiamine-A from alkaloid extract of A. amara . The budmunchiamine-A showed significant broad-spectrum antimicrobial activity with zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values varied from 7.3 to 24.5 mm, 0.95 to 62.5 μg/mL, and 1.9 to 250 μg/mL, respectively. The budmunchiamine-A exhibited moderate antioxidant activity with inhibitory concentration 50% (IC 50 ) value of 400 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and percent inhibition of β-carotene/linoleic acid was 67.8%. The results suggest the possible use of budmunchiamine-A as a molecular entity for drug development in pharmaceutical industry.

  14. Evaluation of some pharmacological activities of Budmunchiamine - A isolated from Albizia amara

    PubMed Central

    Thippeswamy, Sreerangegowda; Mohana, Devihalli Chikkaiah; Abhishek, Rayasandra Umesh; Manjunath, Kiragandur

    2015-01-01

    The present investigations were aimed to evaluate the antimicrobial and antioxidant efficacies of budmunchiamine-A (BUA) of Albizia amara . The activity-guided isolation leaded to isolate the bioactive compound budmunchiamine-A from alkaloid extract of A. amara . The budmunchiamine-A showed significant broad-spectrum antimicrobial activity with zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values varied from 7.3 to 24.5 mm, 0.95 to 62.5 μg/mL, and 1.9 to 250 μg/mL, respectively. The budmunchiamine-A exhibited moderate antioxidant activity with inhibitory concentration 50% (IC 50 ) value of 400 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and percent inhibition of β-carotene/linoleic acid was 67.8%. The results suggest the possible use of budmunchiamine-A as a molecular entity for drug development in pharmaceutical industry. PMID:26221099

  15. Semisynthetic Phenol Derivatives Obtained from Natural Phenols: Antimicrobial Activity and Molecular Properties.

    PubMed

    Pinheiro, Patrícia Fontes; Menini, Luciana Alves Parreira; Bernardes, Patrícia Campos; Saraiva, Sérgio Henriques; Carneiro, José Walkimar Mesquita; Costa, Adilson Vidal; Arruda, Társila Rodrigues; Lage, Mateus Ribeiro; Gonçalves, Patrícia Martins; Bernardes, Carolina de Oliveira; Alvarenga, Elson Santiago; Menini, Luciano

    2018-01-10

    Semisynthetic phenol derivatives were obtained from the natural phenols: thymol, carvacrol, eugenol, and guaiacol through catalytic oxychlorination, Williamson synthesis, and aromatic Claisen rearrangement. The compounds characterization was carried out by 1 H NMR, 13 C NMR, and mass spectrometry. The natural phenols and their semisynthetic derivatives were tested for their antimicrobial activity against the bacteria: Staphylococcus aureus, Escherichia coli, Listeria innocua, Pseudomonas aeruginosa, Salmonella enterica Typhimurium, Salmonella enterica ssp. enterica, and Bacillus cereus. Minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values were determined using concentrations from 220 to 3.44 μg mL -1 . Most of the tested compounds presented MIC values ≤220 μg mL -1 for all the bacteria used in the assays. The molecular properties of the compounds were computed with the PM6 method. Through principle components analysis, the natural phenols and their semisynthetic derivatives with higher antimicrobial potential were grouped.

  16. Bactericidal activity and post-antibiotic effect of ozenoxacin against Propionibacterium acnes.

    PubMed

    Kanayama, Shoji; Okamoto, Kazuaki; Ikeda, Fumiaki; Ishii, Ritsuko; Matsumoto, Tatsumi; Hayashi, Naoki; Gotoh, Naomasa

    2017-06-01

    Ozenoxacin, a novel non-fluorinated topical quinolone, is used for the treatment of acne vulgaris in Japan. We investigated bactericidal activity and post-antibiotic effect (PAE) of ozenoxacin against Propionibacterium acnes, a major causative bacterium of acne vulgaris. The minimum inhibitory concentrations (MICs) of ozenoxacin against 3 levofloxacin-susceptible strains (MIC of levofloxacin; ≤4 μg/mL) and 3 levofloxacin-resistant strains (MIC of levofloxacin; ≥8 μg/mL) ranged from 0.03 to 0.06 μg/mL and from 0.25 to 0.5 μg/mL, respectively. These MICs of ozenoxacin were almost the same or lower than nadifloxacin and clindamycin. The minimum bactericidal concentrations (MBCs) of ozenoxacin against the levofloxacin-susceptible and -resistant strains were from 0.06 to 8 μg/mL and from 0.5 to 4 μg/mL, respectively. These MBCs were lower than those of nadifloxacin and clindamycin. In time-kill assay, ozenoxacin at 1/4, 1 and 4 times the respective MIC against both levofloxacin-susceptible and -resistant strains showed a concentration-dependent bactericidal activity. Ozenoxacin at 4 times the MICs against the levofloxacin-susceptible strains showed more potent and more rapid onset of bactericidal activity compared to nadifloxacin and clindamycin at 4 times the respective MICs. The PAEs of ozenoxacin at 4 times the MICs against the levofloxacin-susceptible strains were from 3.3 to 17.1 h, which were almost the same or longer than nadifloxacin and clindamycin. In contrast, the PAEs were hardly induced by any antimicrobial agents against the levofloxacin-resistant strains. The present findings suggest that ozenoxacin has a potent bactericidal activity against both levofloxacin-susceptible and -resistant P. acnes, and a long-lasting PAE against levofloxacin-susceptible P. acnes. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. [Antibacterial actin of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7 (Part 2). Effect of sodium chloride and temperature on bactericidal activity].

    PubMed

    Entani, E; Asai, M; Tsujihata, S; Tsukamoto, Y; Ohta, M

    1997-05-01

    Bactericidal effects of various kinds of AWASEZU (processed vinegar, 2.5% acidity) on food-borne pathogenic bacteria including Escherichia coli O157:H7 and other bacteria were examined. the order of bactericidal activities was NIHAIZU (3.5% NaCl was added) > SANBA-IZU (3.5% NaCl and 10% sucrose were added) > plain vinegar (spirit vinegar) > AMAZU (10% sucrose was added). This indicates that their activities were enhanced by the addition of sodium chloride and suppressed by the addition of sugar. On the other hand, when soy sauce was used instead of sodium chloride, the order of bactericidal activities was plain vinegar > AMAZU > NIHAIZU > SANBAIZU. This is mainly because their activities were suppressed by the increase in the pH value. The effect of sodium chloride (0.01-15%) and temperature (10-50 degrees C) on bactericidal activities against E. coli O157:H7 in spirit vinegar (0.5-2.5% acidity) was further examined. When vinegar was used in combination with sodium chloride, predominant synergism on the bactericidal activity was observed. Their activities were markedly enhanced by the addition of sodium chloride in proportion to the concentration. In addition to this, at higher temperatures spirit vinegar killed bacteria much more rapidly. It should be noted that the bactericidal activity of spirit vinegar was extremely enhanced by the combined use of the addition of sodium chloride and the rise of temperature. For example, in 2.5% acidity vinegar, the time required for 3 log decrease in viable cell numbers at 20 degrees C was shortened to 1/140-fold by the addition of 5% sodium chloride, shortened to 1/51-fold by the rise of the reaction temperature at 40 degrees C, and shortened to 1/830-fold; 0.89 minutes by both the addition of 5% sodium chloride and the rise of temperature at 40 degrees C. In order to propose the methods to prevent food poisoning by bacterial infection, bactericidal activities of vinegar solution containing sodium chloride on cooking tools and raw vegetables were examined. Vinegar solution (1-2% acidity, 3-7% NaCl) produced more than 3 log decrease in viable cell numbers of E. coli O157:H7 on the surface of cutting board, and cabbage and cucumber at 20-50 degrees C. These results suggested that the treatment with vinegar solution containing sodium chloride may be one of the useful methods to prevent food poisoning.

  18. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials

    NASA Astrophysics Data System (ADS)

    Veerapandian, Murugan; Zhang, Linghe; Krishnamoorthy, Karthikeyan; Yun, Kyusik

    2013-10-01

    A comprehensive investigation of anti-bacterial properties of graphene oxide (GO) and ultraviolet (UV) irradiated GO nanosheets was carried out. Microscopic characterization revealed that the GO nanosheet-like structures had wavy features and wrinkles or thin grooves. Fundamental surface chemical states of GO nanosheets (before and after UV irradiation) were investigated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Minimum inhibitory concentration (MIC) results revealed that UV irradiated GO nanosheets have more pronounced anti-bacterial behavior than GO nanosheets and standard antibiotic, kanamycin. The MIC of UV irradiated GO nanosheets was 0.125 μg ml-1 for Escherichia coli and Salmonella typhimurium, 0.25 μg ml-1 for Bacillus subtilis and 0.5 μg ml-1 for Enterococcus faecalis, ensuring its potential as an anti-infective agent for controlling the growth of pathogenic bacteria. The minimum bactericidal concentration of normal GO nanosheets was determined to be two-fold higher than its corresponding MIC value, indicating promising bactericidal activity. The mechanism of anti-bacterial action was evaluated by measuring the enzymatic activity of β-d-galactosidase for the hydrolysis of o-nitrophenol-β-d-galactopyranoside.

  19. Phytochemical analysis of Gymnema sylvestre and evaluation of its antimicrobial activity.

    PubMed

    Chodisetti, Bhuvaneswari; Rao, Kiranmayee; Giri, Archana

    2013-01-01

    Gymnema sylvestre (CS 149), known to be a rich source of saponins and other valuable phytochemicals, has been analysed for antimicrobial activity. The chloroform extracts of aerial and root parts of G. sylvestre exhibited higher antimicrobial activity as compared to diethyl ether and acetone. The root extracts of chloroform have shown competitive minimum inhibitory concentration and minimum bactericidal concentration values in the range of 0.04-1.28 mg mL(-1) and 0.08-2.56 mg/mL, respectively, towards the pathogens. The GC-MS analysis of chloroform extracts has shown the presence of compounds like eicosane, oleic acid, stigmasterol and vitamin E.

  20. Ozone killing action against bacterial and fungal species; microbiological testing of a domestic ozone generator.

    PubMed

    Dyas, A; Boughton, B J; Das, B C

    1983-10-01

    The action of ozone generated from a small domestic device was examined with a view to using it in clinical isolation units accommodating immunosuppressed patients. Over a six-hour period in an average size room the device did not generate sufficient ozone to suppress bacterial and fungal growth. A useful bactericidal action, against a variety of human pathogens was achieved with ozone concentrations between 0.3 to 0.9 ppm. Bactericidal ozone concentrations are close to the limit permitted for human exposure however and further experiments are indicated.

  1. Antibacterial effect evaluation of moxalactam against extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae with in vitro pharmacokinetics/pharmacodynamics simulation

    PubMed Central

    Yu, Wei; Niu, Tianshui; Xiao, Tingting; Zhang, Jing; Xiao, Yonghong

    2018-01-01

    Objectives The aim of this study was to evaluate the bactericidal effects of moxalactam (MOX), cefotaxime (CTX), and cefoperazone/sulbactam (CFZ/SBT) against extended-spectrum β-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae, using an in vitro pharmacokinetics (PK)/pharmacodynamics model. Methods Two clinical ESBL-producing strains (blaCTX-M-15 positive E. coli 3376 and blaCTX-M-14 positive K. pneumoniae 2689) and E. coli American Type Culture Collection (ATCC)25922 were used in the study. The PK Auto Simulation System 400 was used to simulate the human PK procedures after intravenous administration of different doses of MOX, CTX, and CFZ/SBT. Bacterial growth recovery time (RT) and the area between the control growth curve and bactericidal curves (IE) were employed to assess the antibacterial efficacies of all the agents. Results The minimum inhibitory concentrations of MOX, CTX, and CFZ/SBT against E. coli ATCC25922, 3376, and 2689 strains were 0.5, 0.5, 0.25; 0.06, >256, 256; and 0.5/0.5, 16/16, 32/32 mg/L. All the agents demonstrated outstanding bactericidal effects against E. coli ATCC25922 (RT >24 h and IE >120 log10 CFU/mL·h−1) with simulating PK procedures, especially in the multiple dose administration models. Against ESBL producers, CTX and CFZ/SBT displayed only weak bactericidal effects, and subsequent regrowth was evident. MOX exhibited potent antibacterial activity against all the strains tested. The values of effective parameters of MOX were much higher than those of CTX and CFZ/SBT (the bacterial RTs with the 3 agents were >24, <4, and <13 h, and the IEs were >110, <10, and <60 log10 CFU/mL·h−1, respectively). Conclusion MOX demonstrated excellent bactericidal effect, which is worthy of further exploration to serve as an alternative therapeutic agent against ESBL-producing Enterobacteriaceae. PMID:29391816

  2. In Vitro Antimicrobial Activity and Effect on Biofilm Production of a White Grape Juice (Vitis vinifera) Extract.

    PubMed

    Filocamo, Angela; Bisignano, Carlo; Mandalari, Giuseppina; Navarra, Michele

    2015-01-01

    Background. The aim of the present study was to evaluate the antimicrobial effect of a white grape juice extract (WGJe) against a range of Gram-positive and Gram-negative bacteria, yeasts, and the fungus Aspergillus niger. WGJe was also tested on the production of bacterial biofilms in vitro. Results. WGJe inhibited in vitro most Gram-positive bacteria tested, Staphylococcus aureus ATCC 6538P being the most sensitive strain (MIC values of 3.9 μg/mL). The effect was bactericidal at the concentration of 500 μg/mL. Amongst the Gram-negative bacteria, Escherichia coli was the only susceptible strain (MIC and MBC of 2000 μg/mL). No effect on the growth of Candida sp. and the fungus Aspergillus niger was detected (MIC values > 2000 μg/mL). WGJe inhibited the biofilms formation of E. coli and Pseudomonas aeruginosa with a dose-dependent effect. Conclusions. WGJe exerted both bacteriostatic and bactericidal activity in vitro. The presented results could be used to develop novel strategies for the treatment of skin infections and against potential respiratory pathogens.

  3. Characterization and evaluation of the Ag+-loaded soy protein isolate-based bactericidal film-forming dispersion and films.

    PubMed

    Sun, Qingshen; Li, Xiaodi; Wang, Pu; Du, Yiyang; Han, Dequan; Wang, Fengjiao; Liu, Xumei; Li, Pengfei; Fu, Honggang

    2011-08-01

    This study aims to prepare bactericidal films developed from soy protein isolate (SPI) based film-forming dispersions (FFDs) for use in the food and medical fields. The FFD and films were prepared after the incorporation of different concentrations of AgNO₃ as a bactericidal agent. The transparency, tensile strength, and antimicrobial features were evaluated. Structural characterizations were also performed by Fourier transform infrared spectroscopy, scanning electron microscope, and atomic force microscopy analysis. Results showed that the opacity of these FFD was greatly decreased after the incorporation of AgNO₃. The SPI-5 film has the largest tensile strength (P < 0.05) compared with that of the other ones. Micro structural imaging analysis showed an increase in the surface irregularities with the addition of AgNO₃. The minimum inhibitory concentration of AgNO₃ was 336 μg/mL FFD for both Escherichia coli ATCC 25923 and Staphylococcus aureus ATCC 25922. The SPI-AgNO₃ films developed from the FFD with the minimal AgNO₃ concentration at 336 μg/mL FFD also showed bactericidal effects for both the strains. These results may prove promising for the use of SPI-AgNO₃ films in the food or medical industries. The films prepared in this study are biodegradable and will be used in medical and food fields. © 2011 Institute of Food Technologists®

  4. Evaluation of bactericidal effects of low-temperature nitrogen gas plasma towards application to short-time sterilization.

    PubMed

    Kawamura, Kumiko; Sakuma, Ayaka; Nakamura, Yuka; Oguri, Tomoko; Sato, Natsumi; Kido, Nobuo

    2012-07-01

    To develop a novel low-temperature plasma sterilizer using pure N(2) gas as a plasma source, we evaluated bactericidal ability of a prototype apparatus provided by NGK Insulators. After determination of the sterilizing conditions without the cold spots, the D value of the BI of Geobacillus stearothermophilus endospores on the filter paper was determined as 1.9 min. However, the inactivation efficiency of BI carrying the same endospores on SUS varied to some extent, suggesting that the bactericidal effect might vary by materials of sterilized instruments. Staphylococcus aureus and Escherichia coli were also exposed to the N(2) gas plasma and confirmed to be inactivated within 30 min. Through the evaluation of bactericidal efficiency in a sterilization bag, we concluded that the UV photons in the plasma and the high-voltage pulse to generate the gas plasma were not concerned with the bactericidal effect of the N(2) gas plasma. Bactericidal effect might be exhibited by activated nitrogen atoms or molecular radicals. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.

  5. Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy.

    PubMed

    Bernatová, Silvie; Samek, Ota; Pilát, Zdeněk; Serý, Mojmír; Ježek, Jan; Jákl, Petr; Siler, Martin; Krzyžánek, Vladislav; Zemánek, Pavel; Holá, Veronika; Dvořáčková, Milada; Růžička, Filip

    2013-10-24

    Antibiotics cure infections by influencing bacterial growth or viability. Antibiotics can be divided to two groups on the basis of their effect on microbial cells through two main mechanisms, which are either bactericidal or bacteriostatic. Bactericidal antibiotics kill the bacteria and bacteriostatic antibiotics suppress the growth of bacteria (keep them in the stationary phase of growth). One of many factors to predict a favorable clinical outcome of the potential action of antimicrobial chemicals may be provided using in vitro bactericidal/bacteriostatic data (e.g., minimum inhibitory concentrations-MICs). Consequently, MICs are used in clinical situations mainly to confirm resistance, and to determine the in vitro activities of new antimicrobials. We report on the combination of data obtained from MICs with information on microorganisms' "fingerprint" (e.g., DNA/RNA, and proteins) provided by Raman spectroscopy. Thus, we could follow mechanisms of the bacteriostatic versus bactericidal action simply by detecting the Raman bands corresponding to DNA. The Raman spectra of Staphylococcus epidermidis treated with clindamycin (a bacteriostatic agent) indeed show little effect on DNA which is in contrast with the action of ciprofloxacin (a bactericidal agent), where the Raman spectra show a decrease in strength of the signal assigned to DNA, suggesting DNA fragmentation.

  6. Bactericidal Effect of Photolysis of H2O2 in Combination with Sonolysis of Water via Hydroxyl Radical Generation.

    PubMed

    Sheng, Hong; Nakamura, Keisuke; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2015-01-01

    The bactericidal effect of hydroxyl radical (·OH) generated by combination of photolysis of hydrogen peroxide (H2O2) and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2) and ultrasound (power: 30 w, frequency: 1.65 MHz) at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.

  7. Application of calcium oxide (CaO, heated scallop-shell powder) for the reduction of Listeria monocytogenes biofilms on eggshell surfaces.

    PubMed

    Park, S Y; Jung, S-J; Kang, I; Ha, S-D

    2018-05-01

    This study investigated bactericidal activity of 0.05 to 0.50% calcium oxide (CaO) against planktonic cells in tryptic soy broth (TSB) and biofilms of Listeria monocytogenes on eggshell surfaces. The bactericidal activity of CaO against planktonic cells and biofilms of L. monocytogens significantly (P < 0.05) increased log reductions with increasing concentrations of CaO. Exposure to 0.05 to 0.50% CaO for one min reduced planktonic cells in TSB cell suspensions by 0.47 to 3.86 log10CFU/mL and biofilm cells on the shell surfaces by 0.14 to 2.32 log10CFU/cm2. The Hunter colors of eggshells ("L" for lightness, "a" for redness, and "b" for yellowness), shell thickness (puncture force), and sensory quality (egg taste and yolk color) were not changed by 0.05 to 0.50% CaO treatment. The nonlinear Weibull model was used to calculate CR = 3 values as the CaO concentration of 3 log (99.9%) reduction for planktonic cells (R2 = 0.96, RMSE = 0.26) and biofilms (R2 = 0.95, RMSE = 0.18) of L. monocytogens. The CR = 3 value, 0.31% CaO for planktonic cells, was significantly (P < 0.05) lower than 0.57% CaO for biofilms. CaO could be an alternative disinfectant to reduce planktonic cells and biofilms L. monocytogenes on eggshell surface in egg processing plants.

  8. Bactericidal effect of silver nanoparticles against propagation of Clavibacter michiganensis infection in Lycopersicon esculentum Mill.

    PubMed

    Rivas-Cáceres, Raymundo Rene; Luis Stephano-Hornedo, Jose; Lugo, Jorge; Vaca, Rocio; Del Aguila, Pedro; Yañez-Ocampo, Gustavo; Mora-Herrera, Martha Elena; Camacho Díaz, Luis Miguel; Cipriano-Salazar, Moisés; Alaba, Peter Adeniyi

    2018-02-01

    This study explored the use of silver nanoparticle as a bactericidal against the propagation of Clavibacter michiganensis onto tomatoes (Lycopersicon esculentum Mill). In Mexico, tomato production covers about 73% of the total vegetable production but it is affected by outbreak of bacteria canker caused by Clavibacter michiganensis subspecies michiganensis (Cmm). Silver ions possess inhibitor properties, bactericides and high specter antimicrobials. In this study, 6 groups of culture were prepared using 6 different petri dishes where silver nanoparticles of varying concentrations (120, 84, 48, 24, 12 and 0 μg) were added. Furthermore, each group was observed for 20 min, 1, 2, 12 and 24 h. The optimum concentration is 84 μg, which shows an average of 2 Cmm colonies after 20 min. Further increase to 120 μg shows no significant change. However, the average colonies was observed for 48 μg after 1, 2, 12, and 24 h. The obtained results indicate that silver nanoparticles are a promising inhibitor, bactericide and high a specter antimicrobial for treatment or prevention of Cmm. Copyright © 2017. Published by Elsevier Ltd.

  9. Comparison of antimicrobial effects of titanium tetrafluoride, chlorhexidine, xylitol and sodium fluoride on streptococcus mutans: An in-vitro study.

    PubMed

    Eskandarian, Tahereh; Motamedifar, Mohammad; Arasteh, Peyman; Eghbali, Seyed Sajad; Adib, Ali; Abdoli, Zahra

    2017-03-01

    No studies have yet documented the bactericidal effects of TiF4, and its role in the treatment of dental caries, and no definite protocol has been introduced to regulate its use. The aim of this study was to determine the antimicrobial/bactericidal effects of TiF4 on Streptococcus Mutans ( S. Mutans ) and to compare it with chlorhexidine (Chx), sodium fluoride (NaF) and xylitol. This study was conducted at the Shiraz University of Medical Sciences microbiology laboratory during March 2015 to September 2015. In this in-vitro study, first a bacterial suspension was prepared and adjusted to a 0.5 McFarland standard (equivalent to 1×10 8 CFU/ml). The minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) of TiF4, Chx, NaF and xylitol were assessed using broth microdilution assay and disk diffusion methods. In order to neutralize the acidic nature of TiF4, we used a sodium hydroxide preparation to obtain a pH of 7.2 and repeated all of the previous tests with the neutralized TiF4 solution. We reported the final results as percentages where appropriate. The MIC of TiF4, NaF and Chx for S. Mutans were 12.5%, 12.5% and 6.25%, respectively. At a concentration of 12.5% the inhibition zone diameters were 9 mm, 15mm and 14mm for TiF4, NaF and Chx, respectively. The MBC was 25%, 12.5% and 12.5% for TiF4, NaF and Chx, respectively. Xylitol failed to show any bactericidal or growth inhibitory effect in all of its concentrations. When we repeated the tests with an adjusted pH, identical results were obtained. TiF4 solutions have anti-growth and bactericidal effects on S. Mutans at a concentration of 12.5% which is comparable with chlorhexidine and NaF, indicating the possible use of this solution in dental practice as an anti-cariogenic agent, furthermore the antimicrobial activity is unaffected by pH of the environment.

  10. Comparison of antimicrobial effects of titanium tetrafluoride, chlorhexidine, xylitol and sodium fluoride on streptococcus mutans: An in-vitro study

    PubMed Central

    Eskandarian, Tahereh; Motamedifar, Mohammad; Arasteh, Peyman; Eghbali, Seyed Sajad; Adib, Ali; Abdoli, Zahra

    2017-01-01

    Introduction No studies have yet documented the bactericidal effects of TiF4, and its role in the treatment of dental caries, and no definite protocol has been introduced to regulate its use. The aim of this study was to determine the antimicrobial/bactericidal effects of TiF4 on Streptococcus Mutans (S. Mutans) and to compare it with chlorhexidine (Chx), sodium fluoride (NaF) and xylitol. Methods This study was conducted at the Shiraz University of Medical Sciences microbiology laboratory during March 2015 to September 2015. In this in-vitro study, first a bacterial suspension was prepared and adjusted to a 0.5 McFarland standard (equivalent to 1×108 CFU/ml). The minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) of TiF4, Chx, NaF and xylitol were assessed using broth microdilution assay and disk diffusion methods. In order to neutralize the acidic nature of TiF4, we used a sodium hydroxide preparation to obtain a pH of 7.2 and repeated all of the previous tests with the neutralized TiF4 solution. We reported the final results as percentages where appropriate. Results The MIC of TiF4, NaF and Chx for S. Mutans were 12.5%, 12.5% and 6.25%, respectively. At a concentration of 12.5% the inhibition zone diameters were 9 mm, 15mm and 14mm for TiF4, NaF and Chx, respectively. The MBC was 25%, 12.5% and 12.5% for TiF4, NaF and Chx, respectively. Xylitol failed to show any bactericidal or growth inhibitory effect in all of its concentrations. When we repeated the tests with an adjusted pH, identical results were obtained. Conclusion TiF4 solutions have anti-growth and bactericidal effects on S. Mutans at a concentration of 12.5% which is comparable with chlorhexidine and NaF, indicating the possible use of this solution in dental practice as an anti-cariogenic agent, furthermore the antimicrobial activity is unaffected by pH of the environment. PMID:28461883

  11. Mutant prevention concentration, pharmacokinetic-pharmacodynamic integration, and modeling of enrofloxacin data established in diseased buffalo calves.

    PubMed

    Ramalingam, B; Sidhu, P K; Kaur, G; Venkatachalam, D; Rampal, S

    2015-12-01

    The pharmacokinetic-pharmacodynamic (PK/PD) modeling of enrofloxacin data using mutant prevention concentration (MPC) of enrofloxacin was conducted in febrile buffalo calves to optimize dosage regimen and to prevent the emergence of antimicrobial resistance. The serum peak concentration (Cmax ), terminal half-life (t1/2 K10) , apparent volume of distribution (Vd(area) /F), and mean residence time (MRT) of enrofloxacin were 1.40 ± 0.27 μg/mL, 7.96 ± 0.86 h, 7.74 ± 1.26 L/kg, and 11.57 ± 1.01 h, respectively, following drug administration at dosage 12 mg/kg by intramuscular route. The minimum inhibitory concentration (MIC), minimum bactericidal concentration, and MPC of enrofloxacin against Pasteurella multocida were 0.055, 0.060, and 1.45 μg/mL, respectively. Modeling of ex vivo growth inhibition data to the sigmoid Emax equation provided AUC24 h /MIC values to produce effects of bacteriostatic (33 h), bactericidal (39 h), and bacterial eradication (41 h). The estimated daily dosage of enrofloxacin in febrile buffalo calves was 3.5 and 8.4 mg/kg against P. multocida/pathogens having MIC90 ≤0.125 and 0.30 μg/mL, respectively, based on the determined AUC24 h /MIC values by modeling PK/PD data. The lipopolysaccharide-induced fever had no direct effect on the antibacterial activity of the enrofloxacin and alterations in PK of the drug, and its metabolite will be beneficial for its use to treat infectious diseases caused by sensitive pathogens in buffalo species. In addition, in vitro MPC data in conjunction with in vivo PK data indicated that clinically it would be easier to eradicate less susceptible strains of P. multocida in diseased calves. © 2015 John Wiley & Sons Ltd.

  12. Antimicrobial activities of six essential oils commonly used as condiments in Brazil against Clostridium perfringens.

    PubMed

    Radaelli, Marcela; da Silva, Bárbara Parraga; Weidlich, Luciana; Hoehne, Lucélia; Flach, Adriana; da Costa, Luiz Antonio Mendonça Alves; Ethur, Eduardo Miranda

    2016-01-01

    Despite recent advances in food production technology, food-borne diseases (FBD) remain a challenging public health concern. In several countries, including Brazil, Clostridium perfringens is among the five main causative agents of food-borne diseases. The present study determines antimicrobial activities of essential oils of six condiments commonly used in Brazil, viz., Ocimum basilicum L. (basil), Rosmarinus officinalis L. (rosemary), Origanum majorana L. (marjoram), Mentha × piperita L. var. Piperita (peppermint), Thymus vulgaris L. (thyme) and Pimpinella anisum L. (anise) against C. perfringens strain A. Chemical compositions of the oils were determined by GC-MS (gas chromatography-mass spectrometry). The identities of the isolated compounds were established from the respective Kováts indices, and a comparison of mass spectral data was made with those reported earlier. The antibacterial activity was assessed from minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using the microdilution method. Minimum inhibitory concentration values were 1.25mgmL(-1) for thyme, 5.0mgmL(-1) for basil and marjoram, and 10mgmL(-1) for rosemary, peppermint and anise. All oils showed bactericidal activity at their minimum inhibitory concentration, except anise oil, which was only bacteriostatic. The use of essential oils from these common spices might serve as an alternative to the use of chemical preservatives in the control and inactivation of pathogens in commercially produced food systems. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles.

    PubMed

    Lu, Meng-Meng; Wang, Qiu-Jing; Chang, Zhi-Min; Wang, Zheng; Zheng, Xiao; Shao, Dan; Dong, Wen-Fei; Zhou, Yan-Min

    2017-01-01

    Combination of chlorhexidine (CHX) and silver ions could engender synergistic bactericidal effect and improve the bactericidal efficacy. It is highly desired to develop an efficient carrier for the antiseptics codelivery targeting infection foci with acidic microenvironment. In this work, monodisperse mesoporous silica nanoparticle (MSN) nanospheres were successfully developed as an ideal carrier for CHX and nanosilver codelivery through a facile and environmentally friendly method. The CHX-loaded, silver-decorated mesoporous silica nanoparticles (Ag-MSNs@CHX) exhibited a pH-responsive release manner of CHX and silver ions simultaneously, leading to synergistically antibacterial effect against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli . Moreover, the effective antibacterial concentration of Ag-MSNs@CHX showed less cytotoxicity on normal cells. Given their synergistically bactericidal ability and good biocompatibility, these nanoantiseptics might have effective and broad clinical applications for bacterial infections.

  14. Utilization of Anting-Anting (Acalypha indica) Leaves as Antibacterial

    NASA Astrophysics Data System (ADS)

    Batubara, Irmanida; Wahyuni, Wulan Tri; Firdaus, Imam

    2016-01-01

    Anting-anting (Acalypha indica) plants is a species of plant having catkin type of inflorescence. This research aims to utilize anting-anting as antibacterial toward Streptococcus mutans and degradation of biofilm on teeth. Anting-anting leaves were extracted by maceration technique using methanol, chloroform, and n-hexane. Antibacterial and biofilm degradation assays were performed using microdilution technique with 96 well. n-Hexane extracts of anting-anting leaves gave the best antibacterial potency with minimum inhibitory concentration and minimum bactericidal concentration value of 500 μg/mL and exhibited good biofilm degradation activity. Fraction of F3 obtained from fractionation of n-hexane's extract with column chromatography was a potential for degradation of biofilm with IC50 value of 56.82 μg/mL. Alkaloid was suggested as antibacterial and degradation of biofilm in the active fraction.

  15. Application of Origanum majorana L. essential oil as an antimicrobial agent in sausage.

    PubMed

    Busatta, C; Vidal, R S; Popiolski, A S; Mossi, A J; Dariva, C; Rodrigues, M R A; Corazza, F C; Corazza, M L; Vladimir Oliveira, J; Cansian, R L

    2008-02-01

    This work reports on the antimicrobial activity in fresh sausage of marjoram (Origanum majorana L.) essential oil against several species of bacteria. The in vitro minimum inhibitory concentration (MIC) was determined for 10 selected aerobic heterotrophic bacterial species. The antimicrobial activity of distinct concentrations of the essential oil based on the highest MIC value was tested in a food system comprising fresh sausage. Batch food samples were also inoculated with a fixed concentration of Escherichia coli and the time course of the product was evaluated with respect to the action of the different concentrations of essential oil. Results showed that addition of marjoram essential oil to fresh sausage exerted a bacteriostatic effect at oil concentrations lower than the MIC, while a bactericidal effect was observed at higher oil concentrations which also caused alterations in the taste of the product.

  16. Antibacterial activity of vegetables and juices.

    PubMed

    Lee, Yee-Lean; Cesario, Thomas; Wang, Yang; Shanbrom, Edward; Thrupp, Lauri

    2003-01-01

    We evaluated the antibacterial activities of various fruit and vegetable extracts on common potential pathogens including antibiotic-resistant strains. Standardized bacterial inocula were added to serial dilutions of sterile vegetable and fruit extracts in broth, with final bacterial concentrations of 10(4-5) cells/mL. After overnight incubation at 35 degrees C, antibacterial activity was measured by minimum inhibitory and minimum bactericidal dilutions (for raw juices) or concentrations (for tea). Among the vegetable and fruit extracts tested, all green vegetables showed no antibacterial activity on Staphylococcus epidermidis and Klebsiella pneumoniae. All purple and red vegetable and fruit juices had antibacterial activities in dilutions ranging from 1:2 to 1:16. Garlic juice had significant activity, with bactericidal action in dilutions ranging up to 1:128 of the original juice. Tea also had significant activity, with bactericidal action in concentrations ranging up to 1.6 mg/mL, against a spectrum of pathogens including resistant strains such as methicillin- and ciprofloxacin-resistant staphylococci, vancomycin-resistant enterococci, and ciprofloxacin-resistant Pseudomonas aeruginosa. Tea and garlic have the potential for exploration of broader applications as antibacterial agents.

  17. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis.

    PubMed

    Gustafsson, Tomas N; Osman, Harer; Werngren, Jim; Hoffner, Sven; Engman, Lars; Holmgren, Arne

    2016-06-01

    Bacillus anthracis is the causative agent of anthrax, a disease associated with a very high mortality rate in its invasive forms. We studied a number of ebselen analogs as inhibitors of B. anthracis thioredoxin reductase and their antibacterial activity on Bacillus subtilis, Staphylococcus aureus, Bacillus cereus and Mycobacterium tuberculosis. The most potent compounds in the series gave IC(50) values down to 70 nM for the pure enzyme and minimal inhibitory concentrations (MICs) down to 0.4 μM (0.12 μg/ml) for B. subtilis, 1.5 μM (0.64 μg/ml) for S. aureus, 2 μM (0.86 μg/ml) for B. cereus and 10 μg/ml for M. tuberculosis. Minimal bactericidal concentrations (MBCs) were found at 1-1.5 times the MIC, indicating a general, class-dependent, bactericidal mode of action. The combined bacteriological and enzymological data were used to construct a preliminary structure-activity-relationship for the benzoisoselenazol class of compounds. When S. aureus and B. subtilis were exposed to ebselen, we were unable to isolate resistant mutants on both solid and in liquid medium suggesting a high resistance barrier. These results suggest that ebselen and analogs thereof could be developed into a novel antibiotic class, useful for the treatment of infections caused by B. anthracis, S. aureus, M. tuberculosis and other clinically important bacteria. Furthermore, the high barrier against resistance development is encouraging for further drug development. We have characterized the thioredoxin system from B. anthracis as a novel drug target and ebselen and analogs thereof as a potential new class of antibiotics targeting several important human pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The influence of nanoscopically thin silver films on bacterial viability and attachment.

    PubMed

    Ivanova, Elena P; Hasan, Jafar; Truong, Vi Khanh; Wang, James Y; Raveggi, Massimo; Fluke, Christopher; Crawford, Russell J

    2011-08-01

    The physicochemical and bactericidal properties of thin silver films have been analysed. Silver films of 3 and 150 nm thicknesses were fabricated using a magnetron sputtering thin-film deposition system. X-ray photoelectron and energy dispersive X-ray spectroscopy and atomic force microscopy analyses confirmed that the resulting surfaces were homogeneous, and that silver was the most abundant element present on both surfaces, being 45 and 53 at.% on the 3- and 150-nm films, respectively. Inductively coupled plasma time of flight mass spectroscopy (ICP-TOF-MS) was used to measure the concentration of silver ions released from these films. Concentrations of 0.9 and 5.2 ppb were detected for the 3- and 150-nm films, respectively. The surface wettability of the films remained nearly identical for both film thicknesses, displaying a static water contact angle of 95°, while the surface free energy of the 150-nm film was found to be slightly greater than that of the 3-nm film, being 28.8 and 23.9 mN m(-1), respectively. The two silver film thicknesses exhibited statistically significant differences in surface topographic profiles on the nanoscopic scale, with R (a), R (q) and R (max) values of 1.4, 1.8 and 15.4 nm for the 3-nm film and 0.8, 1.2 and 10.7 nm for the 150-nm film over a 5 × 5 μm scanning area. Confocal scanning laser microscopy and scanning electron microscopy revealed that the bactericidal activity of the 3-nm silver film was not significant, whereas the nanoscopically smoother 150-nm silver film exhibited appreciable bactericidal activity towards Pseudomonas aeruginosa ATCC 9027 cells and Staphylococcus aureus CIP 65.8 cells, obtaining up to 75% and 27% sterilisation effect, respectively.

  19. In vitro assay for the anti-brucella activity of medicinal plants against tetracycline-resistant Brucella melitensis *

    PubMed Central

    Motamedi, Hossein; Darabpour, Esmaeil; Gholipour, Mahnaz; Seyyed Nejad, Seyyed Mansour

    2010-01-01

    Brucellosis, a zoonosis caused by four species of brucella, has a high morbidity. Brucella melitensis is the main causative agent of brucellosis in both human and small ruminants. As an alternative to conventional antibiotics, medicinal plants are valuable resources for new agents against antibiotic-resistant strains. The aim of this study was to investigate the usage of native plants for brucellosis treatment. For this purpose, the anti-brucella activities of ethanolic and methanolic extracts of Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, Plantago ovata, Cordia myxa, and Crocus sativus were assessed. The activity against a resistant Br. melitensis strain was determined by disc diffusion method at various concentrations from 50–400 mg/ml. Antibiotic discs were also used as a control. Among the evaluated herbs, six plant (Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, and Crocus sativus) showed anti-brucella activity. Oliveria decumbens was chosen as the most effective plant for further studies. A tested isolate exhibited resistance to tetracycline, nafcillin, oxacillin, methicillin, and colistin. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values for Oliveria decumbens against resistant Br. melitensis were the same (5 mg/ml), and for gentamicin they were both 2 mg/ml. Time-kill kinetics for a methanolic extract of Oliveria decumbens was 7 h whereas for an ethanolic extract it was 28 h. Also, Oliveria decumbens extracts showed a synergistic effect in combination with doxycycline and tetracycline. In general, the similar values of MIC and MBC for Oliveria decumbens suggest that these extracts could act as bactericidal agents against Br. melitensis. In addition to Oliveria decumbens, Crocus sativus and Salvia sclarea also had good anti-brucella activity and these should be considered for further study. PMID:20593515

  20. In vitro assay for the anti-Brucella activity of medicinal plants against tetracycline-resistant Brucella melitensis.

    PubMed

    Motamedi, Hossein; Darabpour, Esmaeil; Gholipour, Mahnaz; Seyyed Nejad, Seyyed Mansour

    2010-07-01

    Brucellosis, a zoonosis caused by four species of brucella, has a high morbidity. Brucella melitensis is the main causative agent of brucellosis in both human and small ruminants. As an alternative to conventional antibiotics, medicinal plants are valuable resources for new agents against antibiotic-resistant strains. The aim of this study was to investigate the usage of native plants for brucellosis treatment. For this purpose, the anti-brucella activities of ethanolic and methanolic extracts of Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, Plantago ovata, Cordia myxa, and Crocus sativus were assessed. The activity against a resistant Br. melitensis strain was determined by disc diffusion method at various concentrations from 50-400 mg/ml. Antibiotic discs were also used as a control. Among the evaluated herbs, six plant (Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, and Crocus sativus) showed anti-brucella activity. Oliveria decumbens was chosen as the most effective plant for further studies. A tested isolate exhibited resistance to tetracycline, nafcillin, oxacillin, methicillin, and colistin. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values for Oliveria decumbens against resistant Br. melitensis were the same (5 mg/ml), and for gentamicin they were both 2 mg/ml. Time-kill kinetics for a methanolic extract of Oliveria decumbens was 7 h whereas for an ethanolic extract it was 28 h. Also, Oliveria decumbens extracts showed a synergistic effect in combination with doxycycline and tetracycline. In general, the similar values of MIC and MBC for Oliveria decumbens suggest that these extracts could act as bactericidal agents against Br. melitensis. In addition to Oliveria decumbens, Crocus sativus and Salvia sclarea also had good anti-brucella activity and these should be considered for further study.

  1. Isojacareubin from the Chinese Herb Hypericum japonicum: Potent Antibacterial and Synergistic Effects on Clinical Methicillin-Resistant Staphylococcus aureus (MRSA)

    PubMed Central

    Zuo, Guo-Ying; An, Jing; Han, Jun; Zhang, Yun-Ling; Wang, Gen-Chun; Hao, Xiao-Yan; Bian, Zhong-Qi

    2012-01-01

    Through bioassay-guided fractionation of the extracts from the aerial parts of the Chinese herb Hypericum japonicum Thunb. Murray, Isojacareubin (ISJ) was characterized as a potent antibacterial compound against the clinical methicillin-resistant Staphylococcus aureus (MRSA). The broth microdilution assay was used to determine the minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of ISJ alone. The results showed that its MICs/MBCs ranged from 4/16 to 16/64 μg/mL, with the concentrations required to inhibit or kill 50% of the strains (MIC50/MBC50) at 8/16 μg/mL. Synergistic evaluations of this compound with four conventional antibacterial agents representing different types were performed by the chequerboard and time-kill tests. The chequerboard method showed significant synergy effects when ISJ was combined with Ceftazidime (CAZ), Levofloxacin (LEV) and Ampicillin (AMP), with the values of 50% of the fractional inhibitory concentration indices (FICI50) at 0.25, 0.37 and 0.37, respectively. Combined bactericidal activities were also observed in the time-kill dynamic assay. The results showed the ability of ISJ to reduce MRSA viable counts by log10CFU/mL at 24 h of incubation at a concentration of 1 × MIC were 1.5 (LEV, additivity), 0.92 (CAZ, indifference) and 0.82 (AMP, indifference), respectively. These in vitro anti-MRSA activities of ISJ alone and its synergy with conventional antibacterial agents demonstrated that ISJ enhanced their efficacy, which is of potential use for single and combinatory therapy of patients infected with MRSA. PMID:22942699

  2. Mutant prevention concentration and PK-PD relationships of enrofloxacin for Pasteurella multocida in buffalo calves.

    PubMed

    Balaje, R M; Sidhu, P K; Kaur, G; Rampal, S

    2013-12-01

    This study validated the use of mutant prevention concentration (MPC) and pharmacokinetic and pharmacodynamic (PK-PD) modeling approach for optimization of dose regimen of enrofloxacin to contain the emergence of Pasteurella multocida resistance. The PK and PD characteristics of enrofloxacin were investigated in buffalo calves after intramuscular administration at a dose rate of 12 mg/kg. The concentration of enrofloxacin and ciprofloxacin in serum were determined by high-performance liquid chromatography. The serum peak concentration (Cmax), terminal half-life (t1/2K10), volume of distribution (Vd(area)/F) and mean residence time (MRT) of enrofloxacin were 1.89 ± 0.35 μg/ml, 5.14 ± 0.66 h, 5.59 ± 0.99 l/kg/h and 8.52 ± 1.29 h, respectively. The percent metabolite conversion ratio of ciprofloxacin to enrofloxacin was 79. The binding of enrofloxacin to plasma proteins was 11%. The MIC, MBC and MPC for enrofloxacin against P. multocida were 0.05, 0.06 μg/ml and 1.50 μg/ml.In vitro and ex-vivo bactericidal activity of enrofloxacin was concentration dependent. Modeling of ex-vivo growth inhibition data to the sigmoid Emax equation provided AUC24h/MIC values to produce bacteriostatic (19 h), bactericidal (43 h) and bacterial eradication (64 h). PK-PD data in conjunction with MPC and MIC90 data predicted dosage schedules for enrofloxacin that may achieve optimum efficacy in respect of bacteriological and clinical cure and minimize the risk of emergence of resistance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Antimicrobial activity of wild mushroom extracts against clinical isolates resistant to different antibiotics.

    PubMed

    Alves, M J; Ferreira, I C F R; Martins, A; Pintado, M

    2012-08-01

    This work aimed to screen the antimicrobial activity of aqueous methanolic extracts of 13 mushroom species, collected in Bragança, against several clinical isolates obtained in Hospital Center of Trás-os-Montes and Alto Douro, Portugal. Microdilution method was used to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). MIC results showed that Russula delica and Fistulina hepatica extracts inhibited the growth of gram-negative (Escherichia coli, Morganella morganni and Pasteurella multocida) and gram-positive (Staphylococcus aureus, MRSA, Enterococcus faecalis, Listeria monocytogenes, Streptococcus agalactiae and Streptococcus pyogenes) bacteria. A bactericide effect of both extracts was observed in Past. multocida, Strep. agalactiae and Strep. pyogenes with MBC of 20, 10 and 5 mg ml⁻¹, respectively. Lepista nuda extract exhibited a bactericide effect upon Past. multocida at 5 mg ml⁻¹ and inhibited Proteus mirabilis at 20 mg ml⁻¹. Ramaria botrytis extract showed activity against Enterococcus faecalis and L. monocytogenes, being bactericide for Past. multocida, Strep. agalactiae (MBCs 20 mg ml⁻¹) and Strep. pyogenes (MBC 10 mg ml⁻¹). Leucopaxillus giganteus extract inhibited the growth of E. coli and Pr. mirabilis, being bactericide for Past. multocida, Strep. pyogenes and Strep. agalactiae. Fistulina hepatica, R. botrytis and R. delica are the most promising species as antimicrobial agents. Mushroom extracts could be an alternative as antimicrobials against pathogenic micro-organisms resistant to conventional treatments. © 2012The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  4. In vitro activity of heather [Calluna vulgaris (L.) Hull] extracts on selected urinary tract pathogens

    PubMed Central

    Vučić, Dragana M.; Petković, Miroslav R.; Rodić-Grabovac, Branka B.; Stefanović, Olgica D.; Vasić, Sava M.; Čomić, Ljiljana R.

    2014-01-01

    Calluna vulgaris L. Hull (Ericaceae) has been used for treatment of urinary tract infections in traditional medicine. In this study we analyzed in vitro antibacterial activity of the plant extracts on different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris, as well as the concentrations of total phenols and flavonoids in the extracts. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The concentrations of total phenols were examined by using Folin-Ciocalteu reagent and ranged between 67.55 to 142.46 mg GAE/g. The concentrations of flavonoids in extracts were determined using spectrophotometric method with aluminum chloride and the values ranged from 42.11 to 63.68 mg RUE/g. The aqueous extract of C. vulgaris showed a significant antibacterial activity. The values of MIC were in the range from 2.5 mg/ml to 20 mg/ml for this extract. Proteus vulgaris strains were found to be the most sensitive. The results obtained suggest that all tested extracts of C. vulgaris inhibit the growth of human pathogens, especially the aqueous extract. PMID:25428676

  5. In vitro activity of heather [Calluna vulgaris (L.) Hull] extracts on selected urinary tract pathogens.

    PubMed

    Vučić, Dragana M; Petković, Miroslav R; Rodić-Grabovac, Branka B; Stefanović, Olgica D; Vasić, Sava M; Comić, Ljiljana R

    2014-11-15

    Calluna vulgaris L. Hull (Ericaceae) has been used for treatment of urinary tract infections in traditional medicine. In this study we analyzed in vitro antibacterial activity of the plant extracts on different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris, as well as the concentrations of total phenols and flavonoids in the extracts. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The concentrations of total phenols were examined by using Folin-Ciocalteu reagent and ranged between 67.55 to 142.46 mg GAE/g. The concentrations of flavonoids in extracts were determined using spectrophotometric method with aluminum chloride and the values ranged from 42.11 to 63.68 mg RUE/g. The aqueous extract of C. vulgaris showed a significant antibacterial activity. The values of MIC were in the range from 2.5 mg/ml to 20 mg/ml for this extract. Proteus vulgaris strains were found to be the most sensitive. The results obtained suggest that all tested extracts of C. vulgaris inhibit the growth of human pathogens, especially the aqueous extract.

  6. One-pot synthesis of biologically active 1,2,3-trisubstituted pyrrolo[2,3-b]quinoxalines through a palladium-catalyzed reaction with internal alkyne moieties.

    PubMed

    Keivanloo, Ali; Besharati-Seidani, Tayebeh; Kaboudin, Babak; Yoshida, Akihiro; Yokomatsu, Tsutomu

    2018-06-16

    Synthesis of 2,3-disubstituted 1-alkylpyrrolo[2,3-b]quinoxalines was accomplished through the reaction of 3-chloroquinoxalin-2-amines with internal alkynes in the presence of Pd(OAc)[Formula: see text], NaOAc, and KOtBu in DMSO. This method afforded desired pyrrolo[2,3-b]quinoxalines in 65-92% reaction yields. The minimum inhibition concentration and minimum bactericidal concentration determinations against Micrococcus luteus and Pseudomonas aeruginosa revealed that some of the synthesized compounds showed the same values compared to tetracycline. These compounds could be used in the future research for the development of new antibiotics.

  7. Human milk bactericidal properties: effect of lyophilization and relation to maternal factors and milk components.

    PubMed

    Salcedo, Jaime; Gormaz, Maria; López-Mendoza, Maria C; Nogarotto, Elisabetta; Silvestre, Dolores

    2015-04-01

    Lyophilization appears to be a viable method for storing human milk, assuring no microbiological contamination and preserving its health benefits and antibacterial properties. The aim of the study is to evaluate and compare the effects of different storage methods (lyophilization and freezing at -20°C and -80°C) and maternal factors (gestational length or time postpartum) upon the microbiological contents and bactericidal activity of human milk. The possible relation between bactericidal activity and the content of certain nutrients and functional components is also investigated. Microbiological content, bactericidal activity, sialic acid, and ganglioside contents, as well as protein, fat, and lactose concentrations were assessed in 125 human milk samples from 65 healthy donors in the Human Milk Bank of La Fe (Valencia, Spain). Lyophilization and storage at -80°C significantly reduced the content of mesophilic aerobic microorganisms and Staphylococcus epidermidis when compared with storage at -20°C. Bactericidal activity was not significantly modified by lyophilization when compared with freezing at either -20°C or -80°C. Bactericidal activity was not correlated with fat, protein, or lactose content, but was significantly correlated to ganglioside content. The bactericidal activity was significantly greater (P < 0.05) in mature milk and in milk from women with term delivery than in milk from early lactation (days 1-7 postpartum) and milk from women with preterm delivery, respectively. Lyophilization and storage at -80°C of human milk yields similar results and are superior to storage at -20C with regard to microbial and bactericidal capacities, being a feasible alternative for human milk banks.

  8. Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite

    PubMed Central

    Vasquez-Peña, M.; Raymond-Herrera, O.; Villavicencio-García, H.; Petranovskii, V.; Vazquez-Duhalt, R.; Huerta-Saquero, A.

    2016-01-01

    The antimicrobial activity of silver nanoparticles (AgNPs) is currently used as an alternative disinfectant with diverse applications, ranging from decontamination of aquatic environments to disinfection of medical devices and instrumentation. However, incorporation of AgNPs to the environment causes collateral damage that should be avoided. In this work, a novel Ag-based nanocomposite (CEOBACTER) was successfully synthetized. It showed excellent antimicrobial properties without the spread of AgNPs into the environment. The complete CEOBACTER antimicrobial characterization protocol is presented herein. It is straightforward and reproducible and could be considered for the systematic characterization of antimicrobial nanomaterials. CEOBACTER showed minimal bactericidal concentration of 3 μg/ml, bactericidal action time of 2 hours and re-use capacity of at least five times against E. coli cultures. The bactericidal mechanism is the release of Ag ions. CEOBACTER displays potent bactericidal properties, long lifetime, high stability and re-use capacity, and it does not dissolve in the solution. These characteristics point to its potential use as a bactericidal agent for decontamination of aqueous environments. PMID:27824932

  9. Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara).

    PubMed

    Zeng, Wei-Cai; Zhang, Zeng; Gao, Hong; Jia, Li-Rong; He, Qiang

    2012-07-01

    The chemical composition of essential oil from pine needles (Cedrus deodara) was determined, and its antioxidant and antimicrobial activities were evaluated. Twenty-three components, representing 95.79% of the oil, were identified by gas chromatography mass spectrometry. The main components include α-terpineol (30.2%), linalool (24.47%), limonene (17.01%), anethole (14.57%), caryophyllene (3.14%), and eugenol (2.14%). Pine needle essential oil showed remarkable antioxidant activity in scavenging free radicals, in lipid peroxidation, and in reducing power assays. Moreover, the essential oil revealed strong antimicrobial activity against typical food-borne microorganisms, with minimum inhibitory concentration and minimum bactericidal concentration values of 0.2 to 1.56 and 0.39 to 6.25 μg/mL, respectively. Transmission electron microscope observation ascertained that the bactericidal mechanism of pine needle essential oil may be the induction of cytoplasmic outflow and plasmolysis. These results suggest that the essential oil from pine needles has potential to be used as a natural antioxidant and antimicrobial agent in food processing. The present study provides a theoretical basis for the potential application of essential oil from pine needles (C. deodara) to be used as a natural resource of antioxidant and antimicrobial agents in food industry. © 2012 Institute of Food Technologists®

  10. Simultaneous pharmacodynamic analysis of the lag and bactericidal phases exhibited by beta-lactams against Escherichia coli.

    PubMed Central

    Li, R C

    1996-01-01

    Antibiotic-bacterium interactions are complex in nature. In many cases, bacterial killing does not commence immediately after the addition of an antibiotic, and a lag period is observed. Antibiotic permeation and/or the intermediate steps that exist between antibiotic-receptor binding and expression of cell death are two major possible causes for such lag period. This study was primarily designed to determine the relationship, if any, between antibiotic concentrations and the lag periods by a modeling approach. Short-term time-kill studies were conducted for amoxicillin, ampicillin, penicillin-G, oxacillin, and dicloxacillin against Escherichia coli. In conjunction with the use of a saturable rate model to describe the concentration-dependent killing process, a first-order induction (initiation) rate constant was used to characterize the delay in bacterial killing during the lag period. For all of the beta-lactams tested, parameters describing the bactericidal effect suggest that amoxicillin and ampicillin were much more potent than oxacillin and dicloxacillin. The induction rate constant estimates for both ampicillin and amoxicillin were found to relate linearly to concentrations. Nevertheless, these induction rate constant estimates were lower for penicillin-G, oxacillin, and dicloxacillin and increased nonlinearly with concentrations until an apparent plateau was observed. These findings support the hypothesis that the permeation process is potentially a rate-limiting step for the rapid bactericidal beta-lactams such as ampicillin and amoxicillin. However, as suggested by previous observations of the various morphological changes induced by beta-lactams, the contribution of the steps following antibiotic-receptor complex formation to the lag period might be significant for the less bactericidal antibiotics such as oxacillin and dicloxacillin. Findings from the present modeling approach can potentially be used to guide future bench experimentation. PMID:8891135

  11. Bactericidal activity of herbal volatile oil extracts against multidrug-resistant Acinetobacter baumannii.

    PubMed

    Intorasoot, Amornrat; Chornchoem, Piyaorn; Sookkhee, Siriwoot; Intorasoot, Sorasak

    2017-01-01

    The aim of the study is to investigate the antibacterial activity of 10 volatile oils extracted from medicinal plants, including galangal ( Alpinia galanga Linn.), ginger ( Zingiber officinale ), plai ( Zingiber cassumunar Roxb.), lime ( Citrus aurantifolia ), kaffir lime ( Citrus hystrix DC.), sweet basil ( Ocimum basilicum Linn.), tree basil ( Ocimum gratissimum ), lemongrass ( Cymbopogon citratus DC.), clove ( Syzygium aromaticum ), and cinnamon ( Cinnamomum verum ) against four standard strains of Staphylococcus aureus , Escherichia coli , Pseudomonas aeruginosa , Acinetobacter baumannii , and 30 clinical isolates of multidrug-resistant A. baumannii (MDR- A. baumannii ). Agar diffusion, minimum inhibitory concentration, and minimum bactericidal concentration (MBC) were employed for the determination of bactericidal activity of water distilled medicinal plants. Tea tree oil ( Melaleuca alternifolia ) was used as positive control in this study. The results indicated the volatile oil extracted from cinnamon exhibited potent antibacterial activity against the most common human pathogens, S. aureus , E. coli , P. aeruginosa , and A. baumannii . Most of volatile oil extracts were less effective against non-fermentative bacteria, P. aeruginosa . In addition, volatile oil extracted from cinnamon, clove, and tree basil possessed potent bactericidal activity against MDR- A. baumannii with MBC 90 of 0.5, 1, and 2 mg/mL, respectively. The volatile oil extracts would be useful as alternative natural product for the treatment of the most common human pathogens and MDR- A. baumannii infections.

  12. Combined Effects of Diphenyliodonium Chloride, Pine Oils, and Mustard Oil Soaps on Certain Microorganisms

    PubMed Central

    Ahmed, Zahir; Siddiqui, Mahmood A.; Khan, Ismat

    1969-01-01

    Bactericidal and bacteriostatic activities of an emulsion containing 10.0% (v/v) terpineol, 0.5% (w/v) diphenyliodonium chloride, 11.0% (v/v) ethyl alcohol, and 5.62% saponified mustard oil were tested against a number of different types of organisms. The bactericidal concentration for Salmonella typhosa was 1:400. In the presence of 5.0% horse serum, it increased to 1:250. The bacteriostatic concentration varied from organism to organism; Escherichia coli and Staphylococcus aureus required 4,000 μg/ml for complete bacteriostasis, whereas Corynebacterium diphtheriae, Salmonella paratyphi-A, and Shigella required only 2,000 μg/ml for complete inhibition. A 4.0% concentration of the emulsion killed the spores of Bacillus subtilis within 6 hr. PMID:4389659

  13. Pharmacokinetics and bactericidal activity of cefuroxime axetil.

    PubMed Central

    Ginsburg, C M; McCracken, G H; Petruska, M; Olson, K

    1985-01-01

    The pharmacokinetics of cefuroxime axetil were studied in 10 adult volunteers aged 24 to 31 years (mean age, 27), 22 infants and children aged 11 to 68 months (mean age, 33 months), and 11 children aged 7 years, 7 months to 12 years, 3 months (mean age, 11 years, 1 month). Mean peak plasma concentrations of cefuroxime occurred between 90 and 120 min in all study patients and were independent of the fasting or feeding status. The areas under the concentration-time curves were significantly higher in adult volunteers who received cefuroxime axetil with milk than in those who received the drug while fasting or with applesauce. The bioavailability of cefuroxime axetil was significantly enhanced in children by the concomitant ingestion of cefuroxime axetil and infant formula or whole milk. The areas under the concentration-time curves were 25 to 88% higher when cefuroxime axetil and milk were administered simultaneously than when the same dose was given to all fasting patients. The plasma bactericidal activities of cefuroxime against beta-lactamase-positive and -negative strains of Haemophilus influenzae and Staphylococcus aureus at the time of peak plasma concentrations were independent of feeding status and were similar in adults and in children. Against these strains, 52% of the children and 38% of the adults had peak bactericidal levels of 1:8 or greater. PMID:3878129

  14. Bactericidal action of binary and ternary mixtures of carvacrol, thymol, and eugenol against Listeria innocua.

    PubMed

    García-García, Rebeca; López-Malo, Aurelio; Palou, Enrique

    2011-03-01

    The bactericidal effect of 3 natural agents (carvacrol, thymol, and eugenol) was evaluated as well as their binary and ternary mixtures on Listeria innocua inactivation in liquid model systems. Minimal bactericidal concentrations (MBC) of these agents were determined, and then binary and ternary mixtures were evaluated. Culture media were inoculated with L. innocua and incubated for 72 h at 35 °C. Turbidity of studied systems were determined every 24 h. The most effective individual antimicrobial agent was carvacrol, followed by thymol and then eugenol with MBCs of 150, 250, and 450 mg kg(-1), respectively. It was observed that the most effective binary mixture was 75 mg kg(-1) carvacrol and 62.5 mg kg(-1) thymol. Furthermore, the ternary mixture carvacrol-thymol-eugenol in concentrations of 75, 31.25, and 56.25 mg kg(-1), correspondingly, was the most effective for L. innocua inactivation. Several binary and ternary mixtures of these 3 natural antimicrobial agents worked adequately to inactivate L. innocua.

  15. Correlation of in vitro time-kill curves and kinetics of bacterial killing in cerebrospinal fluid during ceftriaxone therapy of experimental Escherichia coli meningitis.

    PubMed Central

    Decazes, J M; Ernst, J D; Sande, M A

    1983-01-01

    Ceftriaxone was highly active in eliminating Escherichia coli from the cerebrospinal fluid of rabbits infected with experimental meningitis. However, concentrations equal to or greater than 10 times the minimal bactericidal concentration had to be achieved to ensure optimal efficacy (rate of kill, 1.5 log10 CFU/ml per h). In contrast to other beta-lactams studied in this model, ceftriaxone concentrations in cerebrospinal fluid progressively increased, whereas serum steady state was obtained by constant infusion. The percent penetration was 2.1% after 1 h of therapy, in contrast to 8.9% after 7 h (P less than 0.001). In vitro time-kill curves done in cerebrospinal fluid or broth more closely predicted the drug concentrations required for a maximum cidal effect in vivo than that predicted by determinations of minimal inhibitory or bactericidal concentrations. PMID:6316841

  16. Pharmacokinetics of enrofloxacin and ceftiofur in plasma, interstitial fluid, and gastrointestinal tract of calves after subcutaneous injection, and bactericidal impacts on representative enteric bacteria.

    PubMed

    Foster, D M; Jacob, M E; Warren, C D; Papich, M G

    2016-02-01

    This study's objectives were to determine intestinal antimicrobial concentrations in calves administered enrofloxacin or ceftiofur sodium subcutaneously, and their impact on representative enteric bacteria. Ultrafiltration devices were implanted in the ileum and colon of 12 steers, which received either enrofloxacin or ceftiofur sodium. Samples were collected over 48 h after drug administration for pharmacokinetic/pharmacodynamic analysis. Enterococcus faecalis or Salmonella enterica (5 × 10(5) CFU/mL of each) were exposed in vitro to peak and tail (48 h postadministration) concentrations of both drugs at each location for 24 h to determine inhibition of growth and change in MIC. Enrofloxacin had tissue penetration factors of 1.6 and 2.5 in the ileum and colon, while ciprofloxacin, an active metabolite of enrofloxacin, was less able to cross into the intestine (tissue penetration factors of 0.7 and 1.7). Ceftiofur was rapidly eliminated leading to tissue penetration factors of 0.39 and 0.25. All concentrations of enrofloxacin were bactericidal for S. enterica and significantly reduced E. faecalis. Peak ceftiofur concentration was bactericidal for S. enterica, and tail concentrations significantly reduced growth. E. faecalis experienced growth at all ceftiofur concentrations. The MICs for both organisms exposed to peak and tail concentrations of antimicrobials were unchanged at the end of the study. Enrofloxacin and ceftiofur achieved intestinal concentrations capable of reducing intestinal bacteria, yet the short exposure of ceftiofur in the intestine may select for resistant organisms. © 2015 John Wiley & Sons Ltd.

  17. Differential Mechanism of Escherichia coli Inactivation by (+)-Limonene as a Function of Cell Physiological State and Drug's Concentration

    PubMed Central

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-01-01

    (+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2′-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about the mechanism of inactivation by bactericidal antibiotics. PMID:24705541

  18. Differential mechanism of Escherichia coli Inactivation by (+)-limonene as a function of cell physiological state and drug's concentration.

    PubMed

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-01-01

    (+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2'-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about the mechanism of inactivation by bactericidal antibiotics.

  19. ANTIBACTERIAL ACTIVITY OF DRACONTOMELON DAO EXTRACTS ON METHICILLIN-RESISTANT S. AUREUS (MRSA) AND E. COLI MULTIPLE DRUG RESISTANCE (MDR).

    PubMed

    Yuniati, Yuniati; Hasanah, Nurul; Ismail, Sjarif; Anitasari, Silvia; Paramita, Swandari

    2018-01-01

    Staphylococcus aureus , methicillin-resistant and Escherichia coli , multidrug-resistant included in the list of antibiotic-resistant priority pathogens from WHO. As multidrug-resistant bacteria problem is increasing, it is necessary to probe new sources for identifying antimicrobial compounds. Medicinal plants represent a rich source of antimicrobial agents. One of the potential plants for further examined as antibacterial is Dracontomelon dao (Blanco) Merr. & Rolfe. The present study designed to find the antibacterial activity of D. dao stem bark extracts on Methicillin-resistant S. aureus (MRSA) and E. coli Multiple Drug Resistance (MDR), followed by determined secondary metabolites with antibacterial activity and determined the value of MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). D. dao stem bark extracted using 60% ethanol. Disc diffusion test methods used to find the antibacterial activity, following by microdilution methods to find the value of MIC and MBC. Secondary metabolites with antibacterial activity determined by bioautography using TLC (thin layer chromatography) methods. D. dao stem bark extracts are sensitive to MSSA, MRSA and E.coli MDR bacteria. The inhibition zone is 16.0 mm in MSSA, 11.7 mm in MRSA and 10.7 mm in E. coli MDR. The entire MBC/MIC ratios for MSSA, MRSA and E.coli MDR is lower than 4. The ratio showed bactericidal effects of D. dao stem bark extracts. In TLC results, colorless bands found to be secondary metabolites with antibacterial activity. D. dao stem bark extracts are potential to develop as antibacterial agent especially against MRSA and E. coli MDR strain.

  20. High-Level Antimicrobial Efficacy of Representative Mediterranean Natural Plant Extracts against Oral Microorganisms

    PubMed Central

    Cecere, Manuel; Skaltsounis, Alexios Leandros; Argyropoulou, Aikaterini; Hellwig, Elmar; Aligiannis, Nektarios

    2014-01-01

    Nature is an unexplored reservoir of novel phytopharmaceuticals. Since biofilm-related oral diseases often correlate with antibiotic resistance, plant-derived antimicrobial agents could enhance existing treatment options. Therefore, the rationale of the present report was to examine the antimicrobial impact of Mediterranean natural extracts on oral microorganisms. Five different extracts from Olea europaea, mastic gum, and Inula viscosa were tested against ten bacteria and one Candida albicans strain. The extraction protocols were conducted according to established experimental procedures. Two antimicrobial assays—the minimum inhibitory concentration (MIC) assay and the minimum bactericidal concentration (MBC) assay—were applied. The screened extracts were found to be active against each of the tested microorganisms. O. europaea presented MIC and MBC ranges of 0.07–10.00 mg mL−1 and 0.60–10.00 mg mL−1, respectively. The mean MBC values for mastic gum and I. viscosa were 0.07–10.00 mg mL−1 and 0.15–10.00 mg mL−1, respectively. Extracts were less effective against C. albicans and exerted bactericidal effects at a concentration range of 0.07–5.00 mg mL−1 on strict anaerobic bacteria (Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Parvimonas micra). Ethyl acetate I. viscosa extract and total mastic extract showed considerable antimicrobial activity against oral microorganisms and could therefore be considered as alternative natural anti-infectious agents. PMID:25054150

  1. Nanoscale Mo- MoO3 Entrapped in Engineering Thermoplastic: Inorganic Pathway to Bactericidal and Fungicidal Action.

    PubMed

    Qureshi, Nilam; Chaudhari, Ravindra; Mane, Pramod; Shinde, Manish; Jadakar, Sandesh; Rane, Sunit; Kale, Bharat; Bhalerao, Anand; Amalnerkar, Dinesh

    2016-04-01

    In our contemporary endeavor, metallic molybdenum (Mo) and semiconducting molybdenum trioxide (MoO3) nanostructures have been simultaneously generated via solid state reaction between molybdenum (III) chloride (MoCl3) and polyphenylene sulfide (PPS) at 285 (°)C in unimolar ratio for different time durations, namely, 6 h, 24 h, and 48 h. The resultant nanocomposites (NCs) revealed formation of predominantly metallic Mo for all the samples. However, MoO3 gradually gained prominent position as secondary phase with rise in reaction time. The present study was intended to investigate the antibacterial potential of metal-metal oxide-polymer NCs, i.e., Mo- MoO3-PPS against microorganisms, viz., Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, and Aspergillus fumigatus. The antibacterial activity of the NCs was evaluated by agar well diffusion investigation. Maximum sensitivity concentrations of NCs were determined by finding out minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). Moreover, the NCs prepared at reaction time of 48 h exhibited best MBC values and were tested with time kill assay which revealed that the growth of S. aureus was substantially inhibited by Mo- MoO3-PPS NCs. This synchronized formation of Mo- MoO3 nanostructures in an engineering thermoplastic may have potential antimicrobial applications in biomedical devices and components. Prima facie results on antifungal activity are indicative of the fact that these materials can show anti-cancer behavior.

  2. Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening.

    PubMed

    Pothineni, Venkata Raveendra; Wagh, Dhananjay; Babar, Mustafeez Mujtaba; Inayathullah, Mohammed; Solow-Cordero, David; Kim, Kwang-Min; Samineni, Aneesh V; Parekh, Mansi B; Tayebi, Lobat; Rajadas, Jayakumar

    2016-01-01

    Lyme disease is the most common zoonotic bacterial disease in North America. It is estimated that >300,000 cases per annum are reported in USA alone. A total of 10%-20% of patients who have been treated with antibiotic therapy report the recrudescence of symptoms, such as muscle and joint pain, psychosocial and cognitive difficulties, and generalized fatigue. This condition is referred to as posttreatment Lyme disease syndrome. While there is no evidence for the presence of viable infectious organisms in individuals with posttreatment Lyme disease syndrome, some researchers found surviving Borrelia burgdorferi population in rodents and primates even after antibiotic treatment. Although such observations need more ratification, there is unmet need for developing the therapeutic agents that focus on removing the persisting bacterial form of B. burgdorferi in rodent and nonhuman primates. For this purpose, high-throughput screening was done using BacTiter-Glo assay for four compound libraries to identify candidates that stop the growth of B. burgdorferi in vitro. The four chemical libraries containing 4,366 compounds (80% Food and Drug Administration [FDA] approved) that were screened are Library of Pharmacologically Active Compounds (LOPAC1280), the National Institutes of Health Clinical Collection, the Microsource Spectrum, and the Biomol FDA. We subsequently identified 150 unique compounds, which inhibited >90% of B. burgdorferi growth at a concentration of <25 µM. These 150 unique compounds comprise many safe antibiotics, chemical compounds, and also small molecules from plant sources. Of the 150 unique compounds, 101 compounds are FDA approved. We selected the top 20 FDA-approved molecules based on safety and potency and studied their minimum inhibitory concentration and minimum bactericidal concentration. The promising safe FDA-approved candidates that show low minimum inhibitory concentration and minimum bactericidal concentration values can be chosen as lead molecules for further advanced studies.

  3. Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against Helicobacter pylori.

    PubMed

    Seabra, Catarina Leal; Nunes, Cláudia; Gomez-Lazaro, Maria; Correia, Marta; Machado, José Carlos; Gonçalves, Inês C; Reis, Celso A; Reis, Salette; Martins, M Cristina L

    2017-03-15

    Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid present in fish oil, has been described as a promising molecule to the treatment of Helicobacter pylori gastric infection. However, due to its highly unsaturated structure, DHA can be easily oxidized loosing part of its bioactivity. This work aims the nanoencapsulation of DHA to improve its bactericidal efficacy against H. pylori. DHA was loaded into nanostructured lipid carriers (NLC) produced by hot homogenization and ultrasonication using a blend of lipids (Precirol ATO5 ® , Miglyol-812 ® ) and a surfactant (Tween 60 ® ). Homogeneous NLC with 302±14nm diameter, -28±3mV surface charge (dynamic and electrophoretic light scattering) and containing 66±7% DHA (UV/VIS spectroscopy) were successfully produced. Bacterial growth curves, performed over 24h in the presence of different DHA concentrations (free or loaded into NLC), demonstrated that nanoencapsulation enhanced DHA bactericidal effect, since DHA-loaded NLC were able to inhibit H. pylori growth in a much lower concentrations (25μM) than free DHA (>100μM). Bioimaging studies, using scanning and transmission electron microscopy and also imaging flow cytometry, demonstrated that DHA-loaded NLC interact with H. pylori membrane, increasing their periplasmic space and disrupting membrane and allowing the leakage of cytoplasmic content. Furthermore, the developed nanoparticles are not cytotoxic to human gastric adenocarcinoma cells at bactericidal concentrations. DHA-loaded NLC should, therefore, be envisaged as an alternative to the current treatments for H. pylori infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [The bactericidal effect of oxybuprocaine. A possible cause of false negative results in bronchoalveolar lavage].

    PubMed

    Anding, K; Albrecht, P; Heilmann, C; Daschner, F

    1993-09-01

    New approaches in the diagnosis of pneumonia, especially in intensive care units, are quantitative cultures of bronchoalveolar (BAL) fluid or the protected specimen brush. The sensitivity of these methods, however, has often been found to be as low as 50-60%. One possible explanation for the low sensitivity of these diagnostic tools is the antimicrobial activity of local anaesthetics used in bronchoscopy. Therefore, we investigated the bactericidal properties of oxybuprocaine, a topical anaesthetic used for bronchoscopy in our clinic, in order to test the reliability of specimens obtained from BAL. METHODS. The bactericidal activity of oxybuprocaine in concentrations of 1%, 0.1%, 0.05% and 0.01% was tested by constructing time-kill curves for Streptococcus pneumoniae, Hemophilus influenzae, Pseudomonas aeruginosa and Escherichia coli. Five stains of each bacterial species were tested. The inoculum size was 10(4) ml, and bacteria were counted after 10, 20, 30, 60 and 120 min. RESULTS. The resulting time-kill curves are demonstrated in Figs. 1-4. The most sensitive bacteria were S. pneumoniae and H. influenzae, in which significant bactericidal activity could be shown even with a 0.01% solution of oxybuprocaine. E. coli and P. aeruginosa were also inhibited, but only at the highest concentration of 1%. CONCLUSIONS. The use of local anaesthetics before material is taken for culture, e.g. from BAL, may give rise to false-negative results and should therefore be avoided or reduced. For each local anaesthetic used in bronchoscopy, the concentrations that can be used without the risk of false-negative results should be determined.

  5. In vitro activities of ciprofloxacin and rifampin alone and in combination against growing and nongrowing strains of methicillin-susceptible and methicillin-resistant Staphylococcus aureus.

    PubMed Central

    Bahl, D; Miller, D A; Leviton, I; Gialanella, P; Wolin, M J; Liu, W; Perkins, R; Miller, M H

    1997-01-01

    We characterized the effects of ciprofloxacin and rifampin alone and in combination on Staphylococcus aureus in vitro. The effects of drug combinations (e.g., indifferent, antagonistic, or additive interactions) on growth inhibition were compared by disk approximation studies and by determining the fractional inhibitory concentrations. Bactericidal effects in log-phase bacteria and in nongrowing isolates were characterized by time-kill methods. The effect of drug combinations was dependent upon whether or not cells were growing and whether killing or growth inhibition was the endpoint used to measure drug interaction. Despite bactericidal antagonism in time-kill experiments, our in vitro studies suggest several possible explanations for the observed benefits in patients treated with a combination of ciprofloxacin and rifampin for deep-seated staphylococcal infections. Notably, when growth inhibition rather than killing was used to characterize drug interaction, indifference rather than antagonism was observed. An additive bactericidal effect was observed in nongrowing bacteria suspended in phosphate-buffered saline. While rifampin antagonized the bactericidal effects of ciprofloxacin, ciprofloxacin did not antagonize the bactericidal effects of rifampin. Each antimicrobial prevented the emergence of subpopulations that were resistant to the other. PMID:9174186

  6. In vitro antibody-enzyme conjugates with specific bactericidal activity.

    PubMed

    Knowles, D M; Sulivan, T J; Parker, C W; Williams, R C

    1973-06-01

    IgG with antibacterial antibody opsonic activity was isolated from rabbit antisera produced by intravenous hyperimmunization with several test strains of pneumococci, Group A beta-hemolytic streptococci, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, and Escherichia coli. Antibody-enzyme conjugates were prepared, using diethylmalonimidate to couple glucose oxidase to IgG antibacterial antibody preparations. Opsonic human IgG obtained from serum of patients with subacute bacterial endocarditis was also conjugated to glucose oxidase. Antibody-enzyme conjugates retained combining specificity for test bacteria as demonstrated by indirect immunofluorescence. In vitro test for bactericidal activity of antibody-enzyme conjugates utilized potassium iodide, lactoperoxidase, and glucose as cofactors. Under these conditions glucose oxidase conjugated to antibody generates hydrogen peroxide, and lactoperoxidase enzyme catalyzes the reduction of hydrogen peroxide with simultaneous oxidation of I(-) and halogenation and killing of test bacteria. Potent in vitro bactericidal activity of this system was repeatedly demonstrated for antibody-enzyme conjugates against pneumococci, streptococci, S. aureus, P. mirabilis, and E. coli. However, no bactericidal effect was demonstrable with antibody-enzyme conjugates and two test strains of P. aeruginosa. Bactericidal activity of antibody-enzyme conjugates appeared to parallel original opsonic potency of unconjugated IgG preparations. Antibody-enzyme conjugates at concentrations as low as 0.01 mg/ml were capable of intense bactericidal activity producing substantial drops in surviving bacterial counts within 30-60 min after initiation of assay. These in vitro bactericidal systems indicate that the concept of antibacterial antibody-enzyme conjugates may possibly be adaptable as a mechanism for treatment of patients with leukocyte dysfunction or fulminant bacteremia.

  7. Eflect of Relative Humidity on the Bactericidal Activity of Propylene Oxide Vapor1

    PubMed Central

    Himmelfarb, Philip; El-Bisi, Hamed M.; Read, R. B.; Litsky, Warren

    1962-01-01

    Because of the low toxicity of its breakdown product, propylene oxide (PO) vapor will play an increasingly important role in the preservation of foods. It is therefore necessary that the diversified variables which influence effectiveness of PO treatment be thoroughly investigated and understood prior to advocating its general use in industry. Accordingly, the present study was undertaken to determine the effect of relative humidity (RH) upon the bactericidal activity of PO sterilant atmospheres. Death rates were established at increasing RH values of < 1, 52, 65, 80, and 98% and under constant conditions of concentration, pressure, and temperature. Test bacterial populations were preconditioned to corresponding moisture levels. Results indicate that gram-positive cocci were relatively insensitive to PO vapor at dry conditions but became progressively less resistant with the increase in RH up to a maximum of 65 to 70%. Lactic acid bacteria and gram-negative rods were much more sensitive at dry conditions, showing much less dependency upon water vapor. Bacillus subtilis spores elicited the highest degree of resistance but the death rate substantially increased with the increase in RH. PMID:13954626

  8. EFFECT OF INORGANIC CATIONS ON BACTERICIDAL ACTIVITY OF ANIONIC SURFACTANTS

    PubMed Central

    Voss, J. G.

    1963-01-01

    Voss, J. G. (Procter & Gamble Co., Cincinnati, Ohio). Effect of inorganic cations on bactericidal activity of anionic surfactants. J. Bacteriol. 86:207–211. 1963.—The bactericidal effectiveness of two alkyl benzene sulfonates and of three other types of anionic surfactants against Staphylococcus aureus is increased in the presence of low concentrations of divalent cations, especially alkaline earths and metals of group IIB of the periodic table. The cations may act by decreasing the negative charge at the cell surface and increasing adsorption of the surfactant anions, leading to damage to the cytoplasmic membrane and death of the cell. Increased adsorption of surfactant is also found with Escherichia coli, but does not lead to death of the cell. PMID:14058942

  9. Phenothiaziniums as putative photobactericidal agents for red blood cell concentrates.

    PubMed

    Wainwright, M; Phoenix, D A; Smillie, T E; Wareing, D R

    2001-10-01

    The antibacterial activities of Methylene Blue and several of its congeners were measured against Yersinia enterocolitica, a gram-negative pathogen known to exhibit significant growth at 4 degrees C and thus constituting a threat to red blood cell concentrates which are stored at this temperature. None of the derivatives was highly active in dark conditions, as expected, but on illumination using a lamp emitting light in the waveband 615-645 nm, considerable bactericidal activity was noted using similar photosensitizer concentrations to those used elsewhere to inactivate blood-borne viruses. Two novel compounds in this area, the phenothiazinium New Methylene Blue N and the phenoxazinium Brilliant Cresyl Blue, exhibited bactericidal activity at lower concentrations than both of the established phenothiaziniums, Methylene Blue and Toluidine Blue O and the recently published blood photovirucidal agent 1,9-Dimethyl Methylene Blue. The photoactivity of these compounds was undiminished in the presence of red blood cells.

  10. Bactericidal activity of herbal volatile oil extracts against multidrug-resistant Acinetobacter baumannii

    PubMed Central

    Intorasoot, Amornrat; Chornchoem, Piyaorn; Sookkhee, Siriwoot; Intorasoot, Sorasak

    2017-01-01

    Aim: The aim of the study is to investigate the antibacterial activity of 10 volatile oils extracted from medicinal plants, including galangal (Alpinia galanga Linn.), ginger (Zingiber officinale), plai (Zingiber cassumunar Roxb.), lime (Citrus aurantifolia), kaffir lime (Citrus hystrix DC.), sweet basil (Ocimum basilicum Linn.), tree basil (Ocimum gratissimum), lemongrass (Cymbopogon citratus DC.), clove (Syzygium aromaticum), and cinnamon (Cinnamomum verum) against four standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and 30 clinical isolates of multidrug-resistant A. baumannii (MDR-A. baumannii). Materials and Methods: Agar diffusion, minimum inhibitory concentration, and minimum bactericidal concentration (MBC) were employed for the determination of bactericidal activity of water distilled medicinal plants. Tea tree oil (Melaleuca alternifolia) was used as positive control in this study. Results: The results indicated the volatile oil extracted from cinnamon exhibited potent antibacterial activity against the most common human pathogens, S. aureus, E. coli, P. aeruginosa, and A. baumannii. Most of volatile oil extracts were less effective against non-fermentative bacteria, P. aeruginosa. In addition, volatile oil extracted from cinnamon, clove, and tree basil possessed potent bactericidal activity against MDR-A. baumannii with MBC90 of 0.5, 1, and 2 mg/mL, respectively. Conclusions: The volatile oil extracts would be useful as alternative natural product for the treatment of the most common human pathogens and MDR-A. baumannii infections. PMID:28512603

  11. Susceptibility of Salmonella Biofilm and Planktonic Bacteria to Common Disinfectant Agents Used in Poultry Processing.

    PubMed

    Chylkova, Tereza; Cadena, Myrna; Ferreiro, Aura; Pitesky, Maurice

    2017-07-01

    Poultry contaminated with Salmonella enterica subsp. enterica are a major cause of zoonotic foodborne gastroenteritis. Salmonella Heidelberg is a common serotype of Salmonella that has been implicated as a foodborne pathogen associated with the consumption of improperly prepared chicken. To better understand the effectiveness of common antimicrobial disinfectants (i.e., peroxyacetic acid [PAA], acidified hypochlorite [aCH], and cetylpyridinium chloride [CPC]), environmental isolates of nontyphoidal Salmonella were exposed to these agents under temperature, concentration, and contact time conditions consistent with poultry processing. Under simulated processing conditions (i.e., chiller tank and dipping stations), the bacteriostatic and bactericidal effects of each disinfectant were assessed against biofilm and planktonic cultures of each organism in a disinfectant challenge. Log reductions, planktonic MICs, and mean biofilm eradication concentrations were computed. The biofilms of each Salmonella isolate were more resistant to the disinfectants than were their planktonic counterparts. Although PAA was bacteriostatic and bactericidal against the biofilm and planktonic Salmonella isolates tested at concentrations up to 64 times the concentrations commonly used in a chiller tank during poultry processing, aCH was ineffective against the same isolates under identical conditions. At the simulated 8-s dipping station, CPC was bacteriostatic against all seven and bactericidal against six of the seven Salmonella isolates in their biofilm forms at concentrations within the regulatory range. These results indicate that at the current contact times and concentrations, aCH and PAA are not effective against these Salmonella isolates in their biofilm state. The use of CPC should be considered as a tool for controlling Salmonella biofilms in poultry processing environments.

  12. Short communication: Interaction of the isomers carvacrol and thymol with the antibiotics doxycycline and tilmicosin: In vitro effects against pathogenic bacteria commonly found in the respiratory tract of calves.

    PubMed

    Kissels, W; Wu, X; Santos, R R

    2017-02-01

    Bovine respiratory disease is the major problem faced by cattle, specially calves, leading to reduced animal performance and increased mortality, consequently causing important economic losses. Hence, calves must be submitted to antibiotic therapy to counteract this infection usually initiated by the combination of environmental stress factors and viral infection, altering the animal's defense mechanism, and thus allowing lung colonization by the opportunistic bacteria Mannheimia haemolytica and Pasteurella multocida. Essential oils appear to be candidates to replace antibiotics or to act as antibiotic adjuvants due to their antimicrobial properties. In the present study, we aimed to evaluate the 4 essential oil components carvacrol, thymol, trans-anethole, and 1,8 cineole as antibacterial agents or as adjuvants for the antibiotics doxycycline and tilmicosin against M. haemolytica and P. multocida. Bacteria were cultured according to standard protocols, followed by the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration. A checkerboard assay was applied to detect possible interactions between components, between antibiotics, and between components and antibiotics. Doxycycline at 0.25 and 0.125 μg/mL inhibited the growth of P. multocida and M. haemolytica, respectively, whereas tilmicosin MIC values were 1.0 and 4.0 μg/mL for P. multocida and M. haemolytica, respectively. Carvacrol MIC values were 2.5 and 1.25 mM for P. multocida and M. haemolytica, respectively, whereas thymol MIC values were 1.25 and 0.625 mM for P. multocida and M. haemolytica, respectively. Trans-anethole and 1,8 cineole did not present any antibacterial effect even at 40 mM against the investigated pathogens. All minimum bactericidal concentration values were the same as MIC, except when thymol was tested against M. haemolytica, being twice the MIC data (i.e., 1.25 mM thymol). Based on fractional inhibitory concentration checkerboard assay, no interaction was observed between doxycycline and tilmicosin. Carvacrol and thymol presented an additive effect when one of them was combined with tilmicosin. Additive effect was also observed when doxycycline was combined with thymol. Synergism was observed when carvacrol was combined with doxycycline or with thymol. Although the antibacterial effects of the tested essential oil components were observed at high concentrations for in vitro conditions, the additive and synergic effects of carvacrol and thymol with antibiotics suggest the option to apply them as antibiotic adjuvants. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts.

    PubMed

    Zampini, Iris C; Vattuone, Marta A; Isla, Maria I

    2005-12-01

    The present study was conducted to investigate antibacterial activity of Zuccagnia punctata ethanolic extract against 47 strains of antibiotic-resistant Gram-negative bacteria and to identify bioactive compounds. Inhibition of bacterial growth was investigated using agar diffusion, agar macrodilution, broth microdilution and bioautographic methods. Zuccagnia punctata extract was active against all assayed bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) with minimal inhibitory concentration (MIC) values ranging from 25 to 200 microg/mL. Minimal bactericidal concentration (MBC) values were identical or two-fold higher than the corresponding MIC values. Contact bioautography, indicated that Zuccagnia punctata extracts possess one major antibacterial component against Pseudomonas aeruginosa and at least three components against. Klebsiella pneumoniae and Escherichia coli. Activity-guided fractionation of 1he ethanol extract on a silica gel column yielded a compound (2',4'-dihydroxychalcone), which exhibited strong antibacterial activity with MIC values between 0.10 and 1.00 microg/mL for Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia. These values are lower than imipenem (0.25-16 microg/mL). Zuccagnia punctata might provide promising therapeutic agents against infections with multi-resistant Gram-negative bacteria.

  14. An enhancer peptide for membrane-disrupting antimicrobial peptides

    PubMed Central

    2010-01-01

    Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4) by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn). Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin) killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus), whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin) were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane. PMID:20152058

  15. Subinhibitory quinupristin/dalfopristin attenuates virulence of Staphylococcus aureus.

    PubMed

    Koszczol, Carmen; Bernardo, Katussevani; Krönke, Martin; Krut, Oleg

    2006-09-01

    The semi-synthetic streptogramin quinupristin/dalfopristin antibiotic exerts potent bactericidal activity against Staphylococcus aureus. We investigated whether, like other bactericidal antibiotics used at subinhibitory concentrations, quinupristin/dalfopristin enhances release of toxins by Gram-positive cocci. The activity of quinupristin/dalfopristin on exotoxin release by S. aureus was investigated by 2D SDS-PAGE combined with MALDI-TOF/MS analysis and by western blotting. We show that quinupristin/dalfopristin at subinhibitory concentrations reduces the release of S. aureus factors that induce tumour necrosis factor secretion in macrophages. Furthermore, quinupristin/dalfopristin but not linezolid attenuated S. aureus-mediated killing of infected host cells. When added to S. aureus cultures at different stages of bacterial growth, quinupristin/dalfopristin reduced in a dose-dependent manner the release of specific virulence factors (e.g. autolysin, protein A, alpha- and beta-haemolysins, lipases). In contrast, other presumably non-toxic exoproteins remained unchanged. The results of the present study suggest that subinhibitory quinupristin/dalfopristin inhibits virulence factor release by S. aureus, which might be especially helpful for the treatment of S. aureus infections, where both bactericidal as well as anti-toxin activity may be advantageous.

  16. Naturally Acquired Antibodies against Haemophilus influenzae Type a in Aboriginal Adults, Canada

    PubMed Central

    Nix, Eli B.; Williams, Kylie; Cox, Andrew D.; St. Michael, Frank; Romero-Steiner, Sandra; Schmidt, Daniel S.; McCready, William G.

    2015-01-01

    In the post-Haemophilus influenzae type b (Hib) vaccine era that began in the 1980's, H. influenzae type a (Hia) emerged as a prominent cause of invasive disease in North American Aboriginal populations. To test whether a lack of naturally acquired antibodies may underlie increased rates of invasive Hia disease, we compared serum bactericidal activity against Hia and Hib and IgG and IgM against capsular polysaccharide between Canadian Aboriginal and non-Aboriginal healthy and immunocompromised adults. Both healthy and immunocompromised Aboriginal adults exhibited significantly higher bactericidal antibody titers against Hia than did non-Aboriginal adults (p = 0.042 and 0.045 respectively), with no difference in functional antibody activity against Hib. IgM concentrations against Hia were higher than IgG in most study groups; the inverse was true for antibody concentrations against Hib. Our results indicate that Aboriginal adults possess substantial serum bactericidal activity against Hia that is mostly due to IgM antibodies. The presence of sustained IgM against Hia suggests recent Hia exposure. PMID:25626129

  17. Enhancement of bactericidal effects of sodium hypochlorite in chiller water with food additive grade calcium hydroxide.

    PubMed

    Toyofuku, Chiharu; Alam, Md Shahin; Yamada, Masashi; Komura, Miyuki; Suzuki, Mayuko; Hakim, Hakimullah; Sangsriratanakul, Natthanan; Shoham, Dany; Takehara, Kazuaki

    2017-06-16

    An alkaline agent, namely food additive grade calcium hydroxide (FdCa(OH) 2 ) in solution at 0.17%, was evaluated for its bactericidal efficacies in chiller water with sodium hypochlorite (NaOCl) at a concentration of 200 ppm total residual chlorine. Without organic material presence, NaOCl could inactivate Salmonella Infantis and Escherichia coli within 5 sec, but in the presence of fetal bovine serum (FBS) at 0.5%, the bactericidal effects of NaOCl were diminished completely. FdCa(OH) 2 solution required 3 min to inactivate bacteria with or without 5% FBS. When NaOCl and FdCa(OH) 2 were mixed at the final concentration of 200 ppm and 0.17%, respectively, the mixed solution could inactivate bacteria at acceptable level (10 3 reduction of bacterial titer) within 30 sec in the presence of 0.5% FBS. The mixed solution also inhibited cross-contamination with S. Infantis or E. coli on chicken meats. It was confirmed and elucidated that FdCa(OH) 2 has a synergistic effect together with NaOCl for inactivating microorganisms.

  18. Antibacterial and synergistic effects of the n-BuOH fraction of Sophora flavescens root against oral bacteria.

    PubMed

    Lee, Kyung-Yeol; Cha, Su-Mi; Choi, Sung-Mi; Cha, Jeong-Dan

    2017-01-01

    The antibacterial activity of an extract and several fractions of Sophora flavescens (S. flavescens) root alone and in combination with antibiotics against oral bacteria was investigated by checkerboard assay and time-kill assay. The minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) values for all examined bacteria were 0.313-2.5/0.625-2.5 μg/mL for the n-BuOH fraction, 0.625-5/1.25-10 μg/mL for the EtOAc fraction, 0.25-8/0.25-16 μg/mL for ampicillin, 0.5-256/1-512 μg/mL for gentamicin, 0.008-32/0.016-64 μg/mL for erythromycin, and 0.25-64/0.5-128 μg/mL for vancomycin. The n-butanol (n-BuOH) and ethyl acetate (EtOAc) fractions exhibited stronger antibacterial activity against oral bacteria than other fractions and extracts. The MICs and MBCs were reduced to between one half and one quarter when the n-BuOH and EtOAc fractions were combined with antibiotics. After 24 h of incubation, combination of 1/2 MIC of the n-BuOH fraction with antibiotics increased the degree of bactericidal activity. The present results suggest that n-BuOH and EtOAc extracts of S. flavescens root might be applicable as new natural antimicrobial agents against oral pathogens.

  19. An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.

    PubMed Central

    Starliper, Clifford E.; Ketola, Henry G.; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc A.; Dittman, Dawn E.

    2014-01-01

    Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments of captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine whether selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBCs (0.02–0.04%) were obtained with three different sources of cinnamon oil. MBCs for three sources of oregano and lemongrass oils ranged from 0.14% to 0.30% and 0.10% to 0.65%, respectively, and for two thyme oils were 2.11% and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBCs to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBCs for all but one isolate. PMID:25685547

  20. An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.

    USGS Publications Warehouse

    Starliper, Clifford E.; Ketola, H. George; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc; Dittman, Dawn E.

    2015-01-01

    Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments of captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine whether selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBCs (0.02–0.04%) were obtained with three different sources of cinnamon oil. MBCs for three sources of oregano and lemongrass oils ranged from 0.14% to 0.30% and 0.10% to 0.65%, respectively, and for two thyme oils were 2.11% and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBCs to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBCs for all but one isolate.

  1. An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.

    USGS Publications Warehouse

    Starliper, Clifford E.; Ketolab, Henry G.; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc A.; Dittman, Dawn E.

    2015-01-01

    Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments for captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine if selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBC’s (0.02 to 0.04%) were obtained with three different sources of cinnamon oil. MBC’s for three sources of oregano and lemongrass oils ranged from 0.14 to 0.30% and 0.10 to 0.65%, respectively, and for two thyme oils were 2.11 and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBC’s to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBC’s for all but one isolate

  2. Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus.

    PubMed

    Cartron, Michaël L; England, Simon R; Chiriac, Alina Iulia; Josten, Michaele; Turner, Robert; Rauter, Yvonne; Hurd, Alexander; Sahl, Hans-Georg; Jones, Simon; Foster, Simon J

    2014-07-01

    Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents. Copyright © 2014 Cartron et al.

  3. Bactericide effect of methylene blue associated with low-level laser therapy in Escherichia coli bacteria isolated from pressure ulcers.

    PubMed

    Gomes, Thais Ferreira; Pedrosa, Matheus Masalskiene; de Toledo, Ana Claudia Laforga; Arnoni, Veridiana Wanshi; Dos Santos Monteiro, Mirian; Piai, Davi Cury; Sylvestre, Silvia Helena Zacarias; Ferreira, Bruno

    2018-05-09

    The present study analyzed the bactericidal effect of methylene blue associated with low-level lasers on Escherichia coli isolated from a pressure ulcer. Microbiological material from a pressure ulcer was isolated using an aseptic swab, and antimicrobial activity was verified using the diffusion disc method. Methylene blue was used at concentrations of 0.001 and 0.005%, and low-level lasers of 670, 830, and 904 nm, with the energy densities of 4, 8, 10, and 14 J/cm 2 , were tested on three plates each and combined with methylene blue of each concentration. In addition, three control plates were used, with each concentration and energy density separated without any interventions. The results were analyzed using the paired sample t test to determine the bactericidal effect of the methylene blue and using the ANOVA test to compare the effects of the energy densities and wavelengths among the low-level laser treatment protocols. The results showed bacterial reduction at wavelengths of 830 and 904 nm and more proliferation in wavelengths of 670 nm. In wavelength of 830 nm, a bacterial reduction was observed in the conditions with 0.001% methylene blue in all energy density utilized, with 0.005% methylene blue in energy density of 10 J/cm 2 , and without methylene blue in energy density at 10 J/cm 2 . And in a wavelength of 904 nm, all condition showed bacterial reduction with or without methylene blue. We concluded that the low-level lasers of 904 and 830 nm have bactericidal effects and at better energy densities (10 and 14 J/cm 2 ).

  4. Antimicrobial activity of polyhexamethylene guanidine phosphate in comparison to chlorhexidine using the quantitative suspension method.

    PubMed

    Vitt, A; Sofrata, A; Slizen, V; Sugars, R V; Gustafsson, A; Gudkova, E I; Kazeko, L A; Ramberg, P; Buhlin, K

    2015-07-17

    Polyhexamethylene guanidine phosphate (PHMG-P) belongs to the polymeric guanidine family of biocides and contains a phosphate group, which may confer better solubility, a detoxifying effect and may change the kinetics and dynamics of PHMG-P interactions with microorganisms. Limited data regarding PHMG-P activity against periodontopathogenic and cariogenic microorganisms necessitates studies in this area. Aim is to evaluate polyhexamethylene guanidine phosphate antimicrobial activity in comparison to chlorhexidine. Quantitative suspension method was used enrolling Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Streptococcus mutans and Lactobacillus acidophilus. Both tested antiseptics at their clinically-used concentrations, of 0.2% (w/v) and 1% (w/v), correspondingly provided swift bactericidal effects against S. aureus, P. aeruginosa, E. coli and C. albicans, A. actinomycetemcomitans and P. gingivalis with reduction factors higher than 6.0. Diluted polyhexamethylene guanidine phosphate and chlorhexidine to 0.05% continued to display anti-bacterial activity and decreased titers of standard quality control, periopathogens to below 1.0 × 10(3) colony forming units/ml, albeit requiring prolonged exposure time. To achieve a bactericidal effect against S. mutans, both antiseptics at all concentrations required a longer exposure time. We found that a clinically-used 1% of polyhexamethylene guanidine phosphate concentration did not have activity against L. acidophilus. High RF of polyhexamethylene guanidine phosphate and retention of bactericidal effects, even at 0.05%, support the use of polyhexamethylene guanidine phosphate as a biocide with sufficient anti-microbial activity against periopathogens. Polyhexamethylene guanidine phosphate displayed bactericidal activity against periopathogens and S. mutans and could potentially be applied in the management of oral diseases.

  5. Antimicrobial photodynamic therapy-a promising treatment for prosthetic joint infections.

    PubMed

    Briggs, Timothy; Blunn, Gordon; Hislop, Simon; Ramalhete, Rita; Bagley, Caroline; McKenna, David; Coathup, Melanie

    2018-04-01

    Periprosthetic joint infection (PJI) is associated with high patient morbidity and a large financial cost. This study investigated Photodynamic Therapy (PDT) as a means of eradicating bacteria that cause PJI, using a laser with a 665-nm wavelength and methylene blue (MB) as the photosensitizer. The effectiveness of MB concentration on the growth inhibition of methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa and Acinetobacter baumannii was investigated. The effect of laser dose was also investigated and the optimized PDT method was used to investigate its bactericidal effect on species within planktonic culture and following the formation of a biofilm on polished titanium and hydroxyapatite coated titanium discs. Results showed that Staphylococci were eradicated at the lowest concentration of 0.1 mM methylene blue (MB). With P. aeruginosa and A. baumannii, increasing the MB concentration improved the bactericidal effect. When the laser dose was increased, results showed that the higher the power of the laser the more bacteria were eradicated with a laser power ≥ 35 J/cm 2 and an irradiance of 35 mW/cm 2 , eradicating all S. epidermidis. The optimized PDT method had a significant bactericidal effect against planktonic MRSA and S. epidermidis compared to MB alone, laser alone, or control (no treatment). When biofilms were formed, PDT treatment had a significantly higher bactericidal effect than MB alone and laser alone for all species of bacteria investigated on the polished disc surfaces. P. aeruginosa grown in a biofilm was shown to be less sensitive to PDT when compared to Staphylococci, and a HA-coated surface reduced the effectiveness of PDT. This study demonstrated that PDT is effective for killing bacteria that cause PJI.

  6. Effect of tilmicosin on chemotactic, phagocytic, and bactericidal activities of bovine and porcine alveolar macrophages.

    PubMed

    Brumbaugh, Gordon W; Herman, James D; Clancy, Julianne S; Burden, Kyland I; Barry, Tracie; Simpson, R B; López, Hector Sumano

    2002-01-01

    To evaluate chemotactic, phagocytic, and bactericidal activities of bovine and porcine alveolar macrophages (AM) exposed to tilmicosin. 12 healthy calves and 12 healthy pigs. Lungs were obtained immediately after euthanasia; AM were collected by means of bronchoalveolar lavage and density gradient centrifugation. Chemotactic activity was evaluated by exposing AM to lipopolysaccharide or macrophage inhibitory peptide during incubation with tilmicosin. Phagocytic activity was evaluated by incubating AM with tilmicosin for 24 hours and then with tilmicosin-resistant Salmonella serotype Typhimurium. Bactericidal activity was evaluated by incubating AM with tilmicosin (0, 10, or 20 microg/ml for bovine AM; 0 or 10 microg/ml or 10 microg/ml but washed free of tilmicosin for porcine AM) and then with Mannheimia haemolytica (bovine AM) or with Actinobacillus pleuropneumoniae or Pasteurella multocida (porcine AM). Tilmicosin had no significant effects on chemotactic or phagocytic activities of bovine or porcine AM. The time-course of bactericidal activity was best described by polynomial equations. Time to cessation of bacterial growth and area under the time versus bacterial number curve were significantly affected by incubation of AM with tilmicosin. Results show that bactericidal activity of bovine and porcine AM was enhanced by tilmicosin, but not in proportion to the reported ability of AM to concentrate tilmicosin intracellularly. With or without exposure to tilmicosin, the time-course of bactericidal activity of bovine AM against M haemolytica and of porcine AM against A pleuropneumoniae or P multocida was too complex to be reduced to a simple linear equation.

  7. The effect of polyhexamethylene guanidine hydrochloride (PHMG) derivatives introduced into polylactide (PLA) on the activity of bacterial enzymes.

    PubMed

    Walczak, Maciej; Richert, Agnieszka; Burkowska-But, Aleksandra

    2014-11-01

    The present study was aimed at investigating bactericidal properties of polylactide (PLA) films containing three different polyhexamethylene guanidine hydrochloride (PHMG) derivatives and effect of the derivatives on extracellular hydrolytic enzymes and intracellular dehydrogenases. All PHMG derivatives had a slightly stronger bactericidal effect on Staphylococcus aureus than on E. coli but only PHMG granular polyethylene wax (at the concentration of at least 0.6 %) has a bactericidal effect. PHMG derivatives introduced into PLA affected the activity of microbial hydrolases to a small extent. This means that the introduction of PHMG derivatives into PLA will not reduce its enzymatic biodegradation significantly. On the other hand, PHMG derivatives introduced into PLA strongly affected dehydrogenases activity in S. aureus than in E. coli.

  8. Novel Naja atra cardiotoxin 1 (CTX-1) derived antimicrobial peptides with broad spectrum activity

    PubMed Central

    Santospirito, Davide; Polverini, Eugenia; Flisi, Sara; Cavirani, Sandro; Taddei, Simone

    2018-01-01

    Naja atra subsp. atra cardiotoxin 1 (CTX-1), produced by Chinese cobra snakes, belonging to Elapidae family, is included in the three-finger toxin family and exerts high cytotoxicity and antimicrobial activity too. Using as template mainly the tip and the subsequent β-strand of the first “finger” of this toxin, different sequences of 20 amino acids linear peptides have been designed in order to avoid toxic effects but to maintain or even strengthen the partial antimicrobial activity already seen for the complete toxin. As a result, the sequence NCP-0 (Naja Cardiotoxin Peptide-0) was designed as ancestor and subsequently 4 other variant sequences of NCP-0 were developed. These synthesized variant sequences have shown microbicidal activity towards a panel of reference and field strains of Gram-positive and Gram-negative bacteria. The sequence named NCP-3, and its variants NCP-3a and NCP-3b, have shown the best antimicrobial activity, together with low cytotoxicity against eukaryotic cells and low hemolytic activity. Bactericidal activity has been demonstrated by minimum bactericidal concentration (MBC) assay at values below 10 μg/ml for most of the tested bacterial strains. This potent antimicrobial activity was confirmed even for unicellular fungi Candida albicans, Candida glabrata and Malassezia pachydermatis (MBC 50–6.3 μg/ml), and against the fast-growing mycobacteria Mycobacterium smegmatis and Mycobacterium fortuitum. Moreover, NCP-3 has shown virucidal activity on Bovine Herpesvirus 1 (BoHV1) belonging to Herpesviridae family. The bactericidal activity is maintained even in a high salt concentration medium (125 and 250 mM NaCl) and phosphate buffer with 20% Mueller Hinton (MH) medium against E. coli, methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa reference strains. Considering these in vitro obtained data, the search for active sequences within proteins presenting an intrinsic microbicidal activity could provide a new way for discovering a large number of novel and promising antimicrobial peptides families. PMID:29364903

  9. In Vitro Evaluation of CBR-2092, a Novel Rifamycin-Quinolone Hybrid Antibiotic: Microbiology Profiling Studies with Staphylococci and Streptococci ▿

    PubMed Central

    Robertson, Gregory T.; Bonventre, Eric J.; Doyle, Timothy B.; Du, Qun; Duncan, Leonard; Morris, Timothy W.; Roche, Eric D.; Yan, Dalai; Lynch, A. Simon

    2008-01-01

    We present data from antimicrobial assays performed in vitro that pertain to the potential clinical utility of a novel rifamycin-quinolone hybrid antibiotic, CBR-2092, for the treatment of infections mediated by gram-positive cocci. The MIC90s for CBR-2092 against 300 clinical isolates of staphylococci and streptococci ranged from 0.008 to 0.5 μg/ml. Against Staphylococcus aureus, CBR-2092 exhibited prolonged postantibiotic effects (PAEs) and sub-MIC effects (SMEs), with values of 3.2, 6.5, and >8.5 h determined for the PAE (3× MIC), SME (0.12× MIC), and PAE-SME (3× MIC/0.12× MIC) periods, respectively. Studies of genetically defined mutants of S. aureus indicate that CBR-2092 is not a substrate for the NorA or MepA efflux pumps. In minimal bactericidal concentration and time-kill studies, CBR-2092 exhibited bactericidal activity against staphylococci that was retained against rifampin- or intermediate quinolone-resistant strains, with apparent paradoxical cidal characteristics against rifampin-resistant strains. In spontaneous resistance studies, CBR-2092 exhibited activity consistent with balanced contributions from its composite pharmacophores, with a mutant prevention concentration of 0.12 μg/ml and a resistance frequency of <10−12 determined at 1 μg/ml in agar for S. aureus. Similarly, CBR-2092 suppressed the emergence of preexisting rifamycin resistance in time-kill studies undertaken at a high cell density. In studies of the intracellular killing of S. aureus, CBR-2092 exhibited prolonged bactericidal activity that was superior to the activities of moxifloxacin, rifampin, and a cocktail of moxifloxacin and rifampin. Overall, CBR-2092 exhibited promising activity in a range of antimicrobial assays performed in vitro that pertain to properties relevant to the effective treatment of serious infections mediated by gram-positive cocci. PMID:18443106

  10. [In vitro and in vivo antibacterial activities of pazufloxacin mesilate, a new injectable quinolone].

    PubMed

    Nomura, Nobuhiko; Mitsuyama, Junichi; Furuta, Yousuke; Yamada, Hisashi; Nakata, Mitsunori; Fukuda, Toshiko; Yamada, Hiroshi; Takahata, Masahiro; Minami, Shinzaburo

    2002-08-01

    We investigated the in vitro and in vivo antibacterial activities of pazufloxacin mesilate (PZFX mesilate), a new injectable quinolone, and obtained the following results. 1) The MIC50 and MIC90 values of PZFX against clinically isolated Gram-positive and -negative bacteria, ranged from 0.0125 to 12.5 micrograms/ml and 0.025 to 100 micrograms/ml, respectively. PZFX showed broad spectrum activity. The antibacterial activities of PZFX against quinolone-susceptible, methicillin-resistant Staphylococcus aureus, beta-lactamase-negative, ampicillin-resistant Haemophilus influenzae, extended spectrum beta-lactamase possessing Klebsiella pneumoniae and imipenem/cilastatine (IPM/CS)-resistant Pseudomonas aeruginosa were superior to those of ceftazidime (CAZ), ceftriaxone, IPM/CS, meropenem and panipenem/betamipron. 2) PZFX showed superior bactericidal activity against S. aureus, Escherichia coli, Proteus mirabilis, Serratia marcescens and P. aeruginosa to those of CAZ and IPM/CS after treatment for 15 minutes at the drug concentration equivalent to that in human serum at clinical dose to be continued for 15 minutes. 3) CAZ and IPM/CS had no bactericidal activity at the 16 times of MIC against P. aeruginosa in human polymorphonuclear leucocytes, while PZFX exhibited potent bactericidal activity in a dose-dependent manner against such bacteria. 4) PZFX inhibited both DNA gyrase and topoisomerase IV from S. aureus at nearly the same level. PZFX showed poor inhibitory activity against topoisomerase II from human placenta and showed high selectivity to bacterial topoisomerase. 5) PZFX mesilate showed superior therapeutic activity to that of CAZ with following infection model caused by S. aureus and P. aeruginosa or each; systemic infection with cyclophosphamide-treated mice, systemic infection in mice with high challenge doses, CMC pouch infection in rat, and calculus infection in rat bladder. 6) Intravenous administration of PZFX with high plasma concentration just after administration, showed more excellent therapeutic effect against the rat intraperitoneal infection, than p.o. and s.c. administration.

  11. Ex Vivo Pharmacodynamics of Amoxicillin-Clavulanate against β-Lactamase-Producing Escherichia coli in a Yucatan Miniature Pig Model That Mimics Human Pharmacokinetics

    PubMed Central

    Bronner, Stéphane; Murbach, Valérie; Peter, Jean-Daniel; Levêque, Dominique; Elkhaïli, Hassan; Salmon, Yves; Dhoyen, Nathalie; Monteil, Henri; Woodnutt, Gary; Jehl, François

    2002-01-01

    The objective of the present study was to investigate the potential bactericidal activity of amoxicillin-clavulanate against β-lactamase-producing Escherichia coli strains and to elucidate the extent to which enzyme production affects the activity. Six adult Yucatan miniature pigs received a single intravenous dose of 1.1 g of amoxicillin-clavulanate as an intravenous infusion over 30 min. The pharmacokinetic parameters were determined for the serum samples and compared to the published data for humans (2.2-g intravenous dose). The parameters were comparable for the two species, and therefore, the miniature pig constitutes a good model for pharmacodynamic study of amoxicillin-clavulanate. Therefore, the model was used in an ex vivo pharmacodynamic study of amoxicillin-clavulanate against four strains of Escherichia coli producing β-lactamases at different levels. The E. coli strains were cultured with serial dilutions (1:2 to 1:256) of the serum samples from the pharmacokinetic study, and the number of surviving bacteria was determined after 1, 3, and 6 h of exposure. Amoxicillin-clavulanate at concentrations less than the MIC and the minimal bactericidal concentration had marked bactericidal potency against the strain that produced low levels of penicillinase. For high-level or intermediate-level β-lactamase-producing strains, the existence of a clavulanate concentration threshold of 1.5 to 2 μg/ml, below which there was no bactericidal activity, was demonstrated. The index of surviving bacteria showed the existence of mixed concentration- and time-dependent actions of amoxicillin (in the presence of clavulanate) which varied as a function of the magnitude of β-lactamase production by the test strains. This study shows the effectiveness of amoxicillin-clavulanate against low- and intermediate-level penicillinase-producing strains of E. coli. These findings are to be confirmed in a miniature pig experimental infection model. PMID:12435677

  12. Evaluation of the in vitro activity of levornidazole, its metabolites and comparators against clinical anaerobic bacteria.

    PubMed

    Hu, Jiali; Zhang, Jing; Wu, Shi; Zhu, Demei; Huang, Haihui; Chen, Yuancheng; Yang, Yang; Zhang, Yingyuan

    2014-12-01

    This study evaluated the in vitro anti-anaerobic activity and spectrum of levornidazole, its metabolites and comparators against 375 clinical isolates of anaerobic bacteria, including Gram-negative bacilli (181 strains), Gram-negative cocci (11 strains), Gram-positive bacilli (139 strains) and Gram-positive cocci (44 strains), covering 34 species. Minimum inhibitory concentrations (MICs) of levornidazole, its five metabolites and three comparators against these anaerobic isolates were determined by the agar dilution method. Minimum bactericidal concentrations (MBCs) of levornidazole and metronidazole were measured against 22 strains of Bacteroides fragilis. Levornidazole showed good activity against B. fragilis, other Bacteroides spp., Clostridium difficile, Clostridium perfringens and Peptostreptococcus magnus, evidenced by MIC90 values of 0.5, 1, 0.25, 2 and 1mg/L, respectively. The activity of levornidazole and the comparators was poor for Veillonella spp. Generally, levornidazole displayed activity similar to or slightly higher than that of metronidazole, ornidazole and dextrornidazole against anaerobic Gram-negative bacilli, Gram-positive bacilli and Gram-positive cocci, especially B. fragilis. Favourable anti-anaerobic activity was also seen with levornidazole metabolites M1 and M4 but not M2, M3 or M5. For the 22 clinical B. fragilis strains, MBC50 and MBC90 values of levornidazole were 2mg/L and 4mg/L, respectively. Both MBC50/MIC50 and MBC90/MIC90 ratios of levornidazole were 4, similar to those of metronidazole. Levornidazole is an important anti-anaerobic option in clinical settings in terms of its potent and broad-spectrum in vitro activity, bactericidal property, and the anti-anaerobic activity of its metabolites M1 and M4. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  13. In vitro effects on biofilm viability and antibacterial and antiadherent activities of silymarin.

    PubMed

    Evren, Ebru; Yurtcu, Erkan

    2015-07-01

    Limited treatment options in infectious diseases caused by resistant microorganisms created the need to search new approaches. Several herbal extracts are studied for their enormous therapeutic potential. Silymarin extract, from Silybum marianum (milk thistle), is an old and a new remedy for this goal. The purpose of this study is to evaluate the antibacterial and antiadherent effects of silymarin besides biofilm viability activity on standard bacterial strains. Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), antiadherent/antibiofilm activity, and effects on biofilm viability of silymarin were evaluated against standard bacterial strains. MIC values were observed between 60 and >241 μg/mL (0.25->1 mmol/L). Gram-positive bacteria were inhibited at concentrations between 60 and 120 μg/mL. Gram-negative bacteria were not inhibited by the silymarin concentrations included in this study. MBC values for Gram-positive bacteria were greater than 241 μg/mL. Adherence/biofilm formations were decreased to 15 μg/mL silymarin concentration when compared with silymarin-untreated group. Silymarin reduced the biofilm viabilities to 13 and 46 % at 1 and 0.5 mmol/L concentrations, respectively. We demonstrated that silymarin shows antibacterial and antiadherent/antibiofilm activity against certain standard bacterial strains which may be beneficial when used as a dietary supplement or a drug.

  14. Pharmacokinetic/pharmacodynamic integration and modelling of oxytetracycline for the porcine pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida.

    PubMed

    Dorey, L; Pelligand, L; Cheng, Z; Lees, P

    2017-10-01

    Pharmacokinetic-pharmacodynamic (PK/PD) integration and modelling were used to predict dosage schedules of oxytetracycline for two pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined in broth and porcine serum. PK/PD integration established ratios of average concentration over 48 h (C av0-48 h )/MIC of 5.87 and 0.27 μg/mL (P. multocida) and 0.70 and 0.85 μg/mL (A. pleuropneumoniae) for broth and serum MICs, respectively. PK/PD modelling of in vitro time-kill curves established broth and serum breakpoint values for area under curve (AUC 0-24 h )/MIC for three levels of inhibition of growth, bacteriostasis and 3 and 4 log 10 reductions in bacterial count. Doses were then predicted for each pathogen, based on Monte Carlo simulations, for: (i) bacteriostatic and bactericidal levels of kill; (ii) 50% and 90% target attainment rates (TAR); and (iii) single dosing and daily dosing at steady-state. For 90% TAR, predicted daily doses at steady-state for bactericidal actions were 1123 mg/kg (P. multocida) and 43 mg/kg (A. pleuropneumoniae) based on serum MICs. Lower TARs were predicted from broth MIC data; corresponding dose estimates were 95 mg/kg (P. multocida) and 34 mg/kg (A. pleuropneumoniae). © 2017 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.

  15. Antibacterial activities of leave extracts as bactericides for soaking of skin or hide

    NASA Astrophysics Data System (ADS)

    Suparno, Ono; Panandita, Tania; Afifah, Amalia; Marimin; Purnawati, Rini

    2018-03-01

    Antibacteria, a subtance inhibiting the growth of bacteria, can be obtained from tropical-almond (Terminalia catappa), morinda (Morinda citrifolia), and white leadtree (Leucaena leucocephala) plants, since the plants have phytochemical content functioning as antibacterial agent. Commonly, part of plant that contains higher antibacterial substances is its leaf. The objectives of this study were to determine antibacterial activity of tropical-almond, morinda, and white leadtree leaves extracts, and to analyse the potency of the three extracts as natural bactericide for soaking of skin or hide. The responses measured in this study were phytochemical contents, total flavonoid, tannin content, the inhibition zone, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Phytochemical contents containing the three leaves extracts were alkaloid, flavonoid, tannin, saponin, phenolic, and glycoside. Total flavonoid and tannin contents of the three extracts were tropical-almond extract of 1.14 % and 1.51 %, respectively; morinda extract of 0.61 % and 0.36 %, respectively; and white leadtree extract of 0.60 % and 4.82 %, respectively. White leadtree leaf extract gave the highest inhibition zone against B. subtilis, S. aureus and E. coli, i.e. 1.50, 1.3, and 1.65 cm, respectively; and the lowest MIC and MBC against B. subtilis, S. aureus and E. coli, i.e. 1500, 3000, and 1500 μg/ml, respectively. Therefore, the white leadtree leave extract had more potential as bactericide for soaking of skin or hide compared to those of the tropical-almond and morinda leaves extracts.

  16. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions.

    PubMed

    Sarjit, Amreeta; Wang, Yi; Dykes, Gary A

    2015-04-01

    Gallic acid has been suggested as a potential antimicrobial for the control of Campylobacter but its effectiveness is poorly studied. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of gallic acid against Campylobacter jejuni (n = 8) and Campylobacter coli (n = 4) strains was determined. Gallic acid inhibited the growth of five C. jejuni strains and three C. coli strains (MIC: 15.63-250 μg mL(-1)). Gallic acid was only bactericidal to two C. coli strains (MBC: 125 and 62.5 μg mL(-1)). The mechanism of the bactericidal effect against these two strains (and selected non-susceptible controls) was investigated by determining decimal reduction times and by monitoring the loss of cellular content and calcium ions, and changes in cell morphology. Gallic acid did not result in a loss of cellular content or morphological changes in the susceptible strains as compared to the controls. Gallic acid resulted in a loss of calcium ions (0.58-1.53 μg mL(-1) and 0.54-1.17 μg mL(-1), respectively, over a 180 min period) from the susceptible strains but not the controls. Gallic acid is unlikely to be an effective antimicrobial against Campylobacter in a practical sense unless further interventions to ensure an effective bactericidal mode of action against all strains are developed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against Staphylococcus aureus.

    PubMed

    Tangwatcharin, Pussadee; Khopaibool, Prapaporn

    2012-07-01

    The objective of this study was to investigate the in vitro activities of virgin coconut oil, lauric acid and monolaurin in combination with lactic acid against two strains of Staphylococcus aureus, ATCC 25923 and an isolate from a pig carcass, by determination of Fractional Bactericidal Concentration Index (FBCI), time-kill method, as well as scanning and transmission electron microscopy. Minimum bactericidal concentrations (MBC) of lauric acid, monolaurin and lactic acid were 3.2 mg/ml, 0.1 mg/ml and 0.4% (v/v), respectively. The effects of lauric acid + lactic acid and monolaurin + lactic acid combinations were synergistic against both strains, exhibiting FBCIs of 0.25 and 0.63, respectively. In time-kill studies, lauric acid and monolaurin + lactic acid combinations added at their minimum inhibitory concentrations produced a bactericidal effect. The induction of stress in non-stressed cells was dependent on the type and concentration of antimicrobial. This resulted in a loss and change of the cytoplasm and membrane in cells of the bacterium. In contrast, virgin coconut oil (10%) was not active against S. aureus. The bacterial counts found in pork loin treated with lauric acid and monolaurin alone were significantly higher (p <0.05) than those treated with both lipids in combination with lactic acid at sub-inhibitory concentrations. The color, odor and overall acceptability of the pork loins were adversely affected by treatment with the three lipids and lactic acid alone but when combinations of the agents were used the sensory quality was acceptable.

  18. Nonspecific bactericidal activity of the lactoperoxidases-thiocyanate-hydrogen peroxide system of milk against Escherichia coli and some gram-negative pathogens.

    PubMed Central

    Reiter, B; Marshall, V M; BjörckL; Rosén, C G

    1976-01-01

    Two strains of Escherichia coli and one strain each of Salmonella typhimurium and Pseudomonas aeruginosa were killed by the bactericidal activity of the lactoperoxidase-thiocyanate-hydrogen peroxide system in milk and in a synthetic medium. H2O2 was supplied exogenously by glucose oxidase, and glucose was produced at a level which was itself noninhibitory. Two phases were distinguished: the first phase was dependent on the oxidation of SCN(-) by lactoperoxidase and H2O2, which was reversed by reducing agent, and the second phase was dependent on the presence of accumulated H2O2, which was reversed by catalase. The latter enzyme could also reverse the first phase, but only when present in excessive and unphysiological levels. The bactericidal activity was greatest at pH 5 and below, and it depended on the SCN(-)concentration and on the number of organisms. Since raw or heated milk neutralizes the acid barrier against infection in the stomach, the bactericidal system discussed may contribute to the prevention of enteric infections in neonates. PMID:5374

  19. Effect of Punica granatum on the virulence factors of cariogenic bacteria Streptococcus mutans.

    PubMed

    Gulube, Zandiswa; Patel, Mrudula

    2016-09-01

    Dental caries is caused by acids produced by biofilm-forming Streptococcus mutans from fermentable carbohydrates and bacterial byproducts. Control of these bacteria is important in the prevention of dental caries. This study investigated the effect of the fruit peel of Punica granatum on biofilm formation, acid and extracellular polysaccharides production (EPS) by S. mutans. Pomegranate fruit peels crude extracts were prepared. The Minimum bactericidal concentrations (MBC) were determined against S. mutans. At 3 sub-bactericidal concentrations, the effect on the acid production, biofilm formation and EPS production was determined. The results were analysed using Kruskal-Wallis and Wilcoxon Rank Sum Tests. The lowest MBC was 6.25 mg/mL. Punica granatum significantly inhibited acid production (p < 0.01). After 6 and 24 h, it significantly reduced biofilm-formation by 91% and 65% respectively (p < 0.01). The plant extract did not inhibit the production of soluble EPS in either the biofilm or the planktonic growth. However, it significantly reduced the insoluble EPS in the biofilm and the plantktonic (p = < 0.01) form of S. mutans. The crude extract of P. granatum killed cariogenic S. mutans at high concentrations. At sub-bactericidal concentrations, it reduced biofilm formation, acid and EPS production. This suggests that P. granatum extract has the potential to prevent dental caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Synergistic Interaction of Methanol Extract from Canarium odontophyllum Miq. Leaf in Combination with Oxacillin against Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 33591

    PubMed Central

    Sandra, Vimashiinee

    2016-01-01

    Canarium odontophyllum (CO) Miq. has been considered as one of the most sought-after plant species in Sarawak, Malaysia, due to its nutritional and pharmacological benefits. This study aimed to evaluate the pharmacodynamic interaction of crude methanol and acetone extracts from CO leaves in combination with oxacillin, vancomycin, and linezolid, respectively, against MRSA ATCC 33591 as preliminary study has reported its potential antistaphylococcal activity. The broth microdilution assay revealed that both methanol and acetone extracts were bactericidal with Minimum Inhibitory Concentration (MIC) of 312.5 μg/mL and 156.25 μg/mL and Minimum Bactericidal Concentration (MBC) of 625 μg/mL and 312.5 μg/mL, respectively. Fractional Inhibitory Concentration (FIC) indices were obtained via the chequerboard dilution assay where methanol extract-oxacillin, acetone extract-oxacillin, methanol extract-linezolid, and acetone extract-linezolid combinations exhibited synergism (FIC index ≤ 0.5). The synergistic action of the methanol extract-oxacillin combination was verified by time-kill analysis where bactericidal effect was observed at concentration of 1/8 × MIC of both compounds at 9.6 h compared to oxacillin alone. As such, these findings postulated that both extracts exert their anti-MRSA mechanism of action similar to that of vancomycin and provide evidence that the leaves of C. odontophyllum have the potential to be developed into antistaphylococcal agents. PMID:27006659

  1. Synergistic Interaction of Methanol Extract from Canarium odontophyllum Miq. Leaf in Combination with Oxacillin against Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 33591.

    PubMed

    Basri, Dayang Fredalina; Sandra, Vimashiinee

    2016-01-01

    Canarium odontophyllum (CO) Miq. has been considered as one of the most sought-after plant species in Sarawak, Malaysia, due to its nutritional and pharmacological benefits. This study aimed to evaluate the pharmacodynamic interaction of crude methanol and acetone extracts from CO leaves in combination with oxacillin, vancomycin, and linezolid, respectively, against MRSA ATCC 33591 as preliminary study has reported its potential antistaphylococcal activity. The broth microdilution assay revealed that both methanol and acetone extracts were bactericidal with Minimum Inhibitory Concentration (MIC) of 312.5 μg/mL and 156.25 μg/mL and Minimum Bactericidal Concentration (MBC) of 625 μg/mL and 312.5 μg/mL, respectively. Fractional Inhibitory Concentration (FIC) indices were obtained via the chequerboard dilution assay where methanol extract-oxacillin, acetone extract-oxacillin, methanol extract-linezolid, and acetone extract-linezolid combinations exhibited synergism (FIC index ≤ 0.5). The synergistic action of the methanol extract-oxacillin combination was verified by time-kill analysis where bactericidal effect was observed at concentration of 1/8 × MIC of both compounds at 9.6 h compared to oxacillin alone. As such, these findings postulated that both extracts exert their anti-MRSA mechanism of action similar to that of vancomycin and provide evidence that the leaves of C. odontophyllum have the potential to be developed into antistaphylococcal agents.

  2. Propionibacterium acnes Has Low Susceptibility to Chlorhexidine Digluconate.

    PubMed

    Nakase, Keisuke; Fukushima, Hanae; Yukawa, Tomoko; Nakaminami, Hidemasa; Fujii, Takeshi; Noguchi, Norihisa

    2018-04-01

    The skin bacterium Propionibacterium acnes has been reported to be responsible for surgical site infections (SSIs). Skin disinfection before surgery therefore is of the utmost importance in the prevention of SSIs caused by skin bacteria. We assessed the susceptibility of clinical isolates of two skin bacteria, P. acnes and Staphylococcus epidermidis, to disinfectants. The range of chlorhexidine digluconate (CHG) minimum inhibitory concentrations (MICs) for P. acnes isolates was 0.25-1 mcg/mL. Furthermore, the minimum bactericidal concentrations (MBCs) for a range of disinfectants were determined to evaluate their rapid bactericidal activity. The MBC range of CHG against the P. acnes isolates was 4,096->32,768 mcg/mL (MBC 80 16,384 mcg/mL) after one minute of exposure and 1,024-32,768 mcg/mL (MBC 80 8,192 mcg/mL) after five minutes, indicating that some strains required a CHG MBC higher than the commercial concentration of 2% (20,000 mcg/mL). In contrast, the MBCs of glutaraldehyde, sodium hypochlorite, povidone-iodine, ethanol, benzalkonium chloride, and olanexidine gluconate were all sufficiently lower than their commercial concentrations. In S. epidermidis, the MBC range of CHG was 128-1,024 mcg/mL at one minute of exposure and 4-8 mcg/mL at five minutes. Different skin bacteria have different susceptibilities to disinfectants. To prevent SSIs, the selected disinfectant agent and the disinfection time should have bactericidal activity toward all the bacteria that pose a risk of infection.

  3. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Ping; Li, Juan; Wu, Changzhu; Wu, Qingsheng; Li, Jian

    2005-09-01

    The bactericidal action of silver (0) nanoparticles and amoxicillin on Escherichia coli is studied, respectively. Increasing concentration of both amoxicillin (0-0.525 mg ml-1) and silver nanoparticles (0-40 µg ml-1) showed a higher antibacterial effect in Luria-Bertani (LB) medium. Escherichia coli cells have different bactericidal sensitivity to them. When amoxicillin and silver nanoparticles are combined, it results in greater bactericidal efficiency on Escherichia coli cells than when they were applied separately. Dynamic tests on bacterial growth indicated that exponential and stationary phases are greatly decreased and delayed in the synergistic effect of amoxicillin and silver nanoparticles. In addition, the effect induced by a preincubation with silver nanoparticles is examined. The results show that solutions with more silver nanoparticles have better antimicrobial effects. One hypothesized mechanism is proposed to explain this phenomenon.

  4. Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia.

    PubMed

    Jardak, Marwa; Elloumi-Mseddi, Jihene; Aifa, Sami; Mnif, Sami

    2017-10-02

    Rosmarinus officinalis L. from Tunisia, popularly known as rosemary, is of a considerable importance for its medicinal uses and aromatic value. The aim of this study was to examine the chemical composition of Rosmarinus officinalis essential oil (ROEO) and to evaluate its antibiofilm activity on biofilm-forming bacterium and its anticancer activity on cancer cell lines. The chemical composition of Rosmarinus officinalis essential oil (ROEO) was analyzed by GC-MS and its antibacterial activity was evaluated by micro-dilution method. The antibofilm activity of ROEO was evaluated using the crystal violet test and the cytotoxicity activity was determined by the MTT assay. In this research, thirty-six compounds were identified in ROEO using GC-MS analyses. The main components were 1,8-cineole (23.56%), camphene (12.78%), camphor (12.55%) and β-pinene (12.3%). The antibacterial activity of ROEO was evaluated by micro-dilution method. The oil exhibited inhibition and bactericidal effect against two strains: Staphylococcus aureus ATCC 9144 and Staphylococcus epidermidis S61. It was found that the minimum inhibitory concentration (MIC) obtained for S. aureus and S. epidermidis ranged from 1.25 to 2.5 and from 0.312 to 0.625 μl ml -1 , respectively and the minimum bactericidal concentration (MBC) were in the order of 5 and 2.5 μl ml -1 , respectively. Furthermore, this oil showed a S. epidermidis biofilm inhibition more than 57% at a concentration of 25 μl ml -1 . The eradication of 67% of the established biofilm was observed at a concentration of 50 μl ml -1 of ROEO, whereas the dose of 25 μl ml -1 removed only 38% of preformed biofilm. ROEO strongly inhibited the proliferation of Hela and MCF-7 cells with IC 50 values of 0.011 and 0.253 μl ml -1 , respectively. Our results demonstrate that ROEO could have a potential role in the treatment of diseases related to infection by microorganisms or proliferation of cancer cells.

  5. Bactericidal activity of tracheal antimicrobial peptide against respiratory pathogens of cattle.

    PubMed

    Taha-Abdelaziz, Khaled; Perez-Casal, José; Schott, Courtney; Hsiao, Jason; Attah-Poku, Samuel; Slavić, Durđa; Caswell, Jeff L

    2013-04-15

    Tracheal antimicrobial peptide (TAP) is a β-defensin produced by mucosal epithelial cells of cattle. Although effective against several human pathogens, the activity of this bovine peptide against the bacterial pathogens that cause bovine respiratory disease have not been reported. This study compared the antibacterial effects of synthetic TAP against Mannheimia haemolytica, Histophilus somni, Pasteurella multocida, and Mycoplasma bovis. Bactericidal activity against M. bovis was not detected. In contrast, the Pasteurellaceae bacteria showed similar levels of susceptibility to that of Escherichia coli, with 0.125μg TAP inhibiting growth in a radial diffusion assay and minimum inhibitory concentrations of 1.56-6.25μg/ml in a bactericidal assay. Significant differences among isolates were not observed. Sequencing of exon 2 of the TAP gene from 23 cattle revealed a prevalent non-synonymous single nucleotide polymorphism (SNP) A137G, encoding either serine or asparagine at residue 20 of the mature peptide. The functional effect of this SNP was tested against M. haemolytica using synthetic peptides. The bactericidal effect of the asparagine-containing peptide was consistently higher than the serine-containing peptide. Bactericidal activities were similar for an acapsular mutant of M. haemolytica compared to the wild type. These findings indicate that the Pasteurellaceae bacteria that cause bovine respiratory disease are susceptible to killing by bovine TAP and appear not to have evolved resistance, whereas M. bovis appears to be resistant. A non-synonymous SNP was identified in the coding region of the TAP gene, and the corresponding peptides vary in their bactericidal activity against M. haemolytica. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Evaluation of antimicrobial peptides as novel bactericidal agents for room temperature-stored platelets.

    PubMed

    Mohan, Ketha V K; Rao, Shilpakala Sainath; Atreya, Chintamani D

    2010-01-01

    A single cost-effective pathogen inactivation approach would help to improve the safety of our nation's blood supply. Several methods and technologies are currently being studied to help reduce bacterial contamination of blood components. There is clearly need for simple and easy-to-use pathogen inactivation techniques specific to plasma, platelets (PLTs), and red blood cells. In this report, we introduce a novel proof of concept: using known therapeutic antimicrobial peptides (AMPs) as bactericidal agents for room temperature-stored PLT concentrates (PCs). Nine synthetic AMPs, four from PLT microbicidal protein-derived peptides (PD1-4) and five Arg-Trp (RW) repeat peptides containing one to five repeats, were tested for bactericidal activity in plasma and PC samples spiked with Staphylococcus aureus, S. epidermidis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Bacillus cereus. A 3-log reduction of viable bacteria was considered as the bactericidal activity of a given peptide. In both plasma alone and PCs, RW3 peptide demonstrated bactericidal activity against S. aureus, S. epidermidis, E. coli, P. aeruginosa, and K. pneumoniae; PD4 and RW2 against P. aeruginosa; and RW4 against K. pneumoniae. The activity of each of these four peptides against the remaining bacterial species in the test panel resulted in less than a 3-log reduction in the number of viable bacteria and hence considered ineffective. These findings suggest a new approach to improving the safety of blood components, demonstrating the potential usefulness of screening therapeutic AMPs against selected bacteria to identify suitable bactericidal agents for stored plasma, PCs, and other blood products.

  7. Biological and surface-active properties of double-chain cationic amino acid-based surfactants.

    PubMed

    Greber, Katarzyna E; Dawgul, Małgorzata; Kamysz, Wojciech; Sawicki, Wiesław; Łukasiak, Jerzy

    2014-08-01

    Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.

  8. Bactericidal activity of cerumen.

    PubMed Central

    Chai, T J; Chai, T C

    1980-01-01

    Freshly collected cerumen (dry form) suspended at a concentration of 3% in glycerol-sodium bicarbonate buffer showed bactericidal activity against some strains of bacteria tested. This suspension reduced the viability of Haemophilus influenzae, Escherichia coli K-12, and Serratia marcescens by more than 99%, whereas the viability of two Pseudomonas aeruginosa isolates, E. coli K-1, Streptococcus, and two Staphylococcus aureus isolates of human origin was reduced by 30 to 80%. The results support the hypothesis that cerumen functions to kill certain foreign organisms which enter the ear canal. Images PMID:7447422

  9. Chemical composition and antimicrobial activity of essential oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco.

    PubMed

    Ait-Ouazzou, Abdenour; Lorán, Susana; Bakkali, Mohammed; Laglaoui, Amin; Rota, Carmen; Herrera, Antonio; Pagán, Rafael; Conchello, Pilar

    2011-11-01

    The present study reports on the antimicrobial activity and chemical composition of the essential oils (EOs) of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. The composition of these species was analysed by GC-MS, and 65 components were identified. Eucalyptus globulus EO showed a great similarity with EOs from other regions, with 1,8-cineole (79.85%) the major component. Also rich in this constituent was Rosmarinus officinalis (43.99%). However, the chemical profile of Thymus algeriensis was rather different, and for the first time such a high content of borneol (23.48%) has been described in this EO. The antimicrobial activity of these species has also been studied against seven pathogenic and spoiling bacteria of significant importance. According to the results, Thymus algeriensis showed the best bacteriostatic and bactericidal effect, followed by Eucalyptus globulus and Rosmarinus officinalis. As far as we know this is the first time that minimum inhibitory and bactericidal concentration values have been reported for Eucalyptus globulus EO. Our data support the possible use of this EO as well as Thymus algeriensis EO, as potential natural agents in preservatives for food and pharmaceutical products. Copyright © 2011 Society of Chemical Industry.

  10. Toxicity of twenty-two plant essential oils against pathogenic bacteria of vegetables and mushrooms.

    PubMed

    Todorović, Biljana; Potočnik, Ivana; Rekanović, Emil; Stepanović, Miloš; Kostić, Miroslav; Ristić, Mihajlo; Milijašević-Marčić, Svetlana

    2016-12-01

    ASBTRACT Toxicity of twenty-two essential oils to three bacterial pathogens in different horticultural systems: Xanthomonas campestris pv. phaseoli (causing blight of bean), Clavibacter michiganensis subsp. michiganensis (bacterial wilt and canker of tomato), and Pseudomonas tolaasii (causal agent of bacterial brown blotch on cultivated mushrooms) was tested. Control of bacterial diseases is very difficult due to antibiotic resistance and ineffectiveness of chemical products, to that essential oils offer a promising alternative. Minimal inhibitory and bactericidal concentrations are determined by applying a single drop of oil onto the inner side of each plate cover in macrodilution assays. Among all tested substances, the strongest and broadest activity was shown by the oils of wintergreen (Gaultheria procumbens), oregano (Origanum vulgare), and lemongrass (Cymbopogon flexuosus. Carvacrol (64.0-75.8%) was the dominant component of oregano oils, while geranial (40.7%) and neral (26.7%) were the major constituents of lemongrass oil. Xanthomonas campestris pv. phaseoli was the most sensitive to plant essential oils, being susceptible to 19 oils, while 11 oils were bactericidal to the pathogen. Sixteen oils inhibited the growth of Clavibacter michiganensis subsp. michiganensis and seven oils showed bactericidal effects to the pathogen. The least sensitive species was Pseudomonas tolaasii as five oils inhibited bacterial growth and two oils were bactericidal. Wintergreen, oregano, and lemongrass oils should be formulated as potential biochemical bactericides against different horticultural pathogens.

  11. Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections.

    PubMed

    Caetano da Silva, Sandro Donizete; Mendes de Souza, Maria Gorete; Oliveira Cardoso, Miguel Jorge; da Silva Moraes, Thais; Ambrósio, Sérgio Ricardo; Sola Veneziani, Rodrigo Cássio; Martins, Carlos Henrique G

    2014-12-01

    Endodontic infections have a polymicrobial nature, but anaerobic bacteria prevail among the infectious microbes. Considering that it is easy to eliminate planktonic bacteria, biofilm-forming bacteria still challenge clinicians during the fight against endodontic diseases. The chemical constituents of the oleoresin of Pinus elliottii, a plant belonging to the family Pinaceae, stand out in the search for biologically active compounds based on natural products with potential application in the treatment of endodontic infections. Indeed, plant oleoresins are an abundant natural source of diterpenes that display significant and well-defined biological activities as well as potential antimicrobial action. In this context, this study aimed to (1) evaluate the in vitro antibacterial activity of the oleoresin, fractions, and subfractions of P. elliottii as well as the action of dehydroabietic acid against 11 anaerobic bacteria that cause endodontic infection in both their planktonic and biofilm forms and (2) assess the in vitro antibiofilm activity of dehydroabietic acid against the same group of bacteria. The broth microdilution technique helped to determine the minimum inhibitory concentration (MIC) of the oleoresin and fractions. This same technique aided determination of the MIC values of nine subfractions of Fraction 1, the most active fraction. The MIC, minimum bactericidal concentration, and antibiofilm activity of dehydroabietic acid against the tested anaerobic bacteria were also examined. The oleoresin and fractions, especially fraction PE1, afforded promising MIC values, which ranged from 0.4 to 50 μg/mL. Concerning the nine evaluated subfractions, PE1.3 and PE1.4 furnished the most noteworthy MIC values, between 6.2 and 100 μg/mL. Dehydroabietic acid displayed antibacterial activity, with MIC values lying from 6.2 to 50 μg/mL, as well as bactericidal effect for all the investigated bacteria, except for Prevotella nigrescens. Assessment of the antibiofilm activity revealed significant results--MICB50 lay between 7.8 and 62.5 μg/mL, and dehydroabietic acid prevented all the evaluated bacteria from forming a biofilm. Hence, the chemical constituents of P. elliottii are promising biomolecules to develop novel therapeutic strategies to fight against endodontic infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Cationic Biomimetic Particles of Polystyrene/Cationic Bilayer/Gramicidin for Optimal Bactericidal Activity.

    PubMed

    Xavier, Gabriel R S; Carmona-Ribeiro, Ana M

    2017-12-02

    Nanostructured particles of polystyrene sulfate (PSS) covered by a cationic lipid bilayer of dioctadecyldimethylammonium bromide (DODAB) incorporated gramicidin D (Gr) yielding optimal and broadened bactericidal activity against both Escherichia coli and Staphylococcus aureus . The adsorption of DODAB/Gr bilayer onto PSS nanoparticles (NPs) increased the zeta-average diameter by 8-10 nm, changed the zeta-potential of the NPs from negative to positive, and yielded a narrow size distributions for the PSS/DODAB/Gr NPs, which displayed broad and maximal microbicidal activity at very small concentrations of the antimicrobials, namely, 0.057 and 0.0057 mM DODAB and Gr, respectively. The results emphasized the advantages of highly-organized, nanostructured, and cationic particles to achieve hybrid combinations of antimicrobials with broad spectrum activity at considerably reduced DODAB and Gr concentrations.

  13. Pirbenicillin: Comparison with Carbenicillin and BL-P1654, Alone and with Gentamicin, Against Pseudomonas aeruginosa

    PubMed Central

    Lopez, Carlos E.; Standiford, Harold C.; Tatem, Beverly A.; Calia, Frank M.; Schimpff, Stephen C.; Snyder, Merrill J.; Hornick, Richard B.

    1977-01-01

    Minimum inhibitory concentrations (MIC) of pirbenicillin against 135 clinical isolates of Pseudomonas aeruginosa were one-fourth of those required for carbenicillin but two times higher than those for BL-P1654. Increasing the inoculum size produced an adverse effect on the bactericidal activity for all three antibiotics. This was more apparent for pirbenicillin than for carbenicillin, but less than the effect on BL-P1654. When concentrations of antibiotics likely to be achieved clinically were used, gentamicin increased the inhibitory and bactericidal effects of all three semisynthetic penicillins for the majority of isolates. Strains highly resistant to the aminoglycoside antibiotic, however, were inhibited no more by the penicillin-gentamicin combinations than by the most effective of the antibiotics alone. PMID:404963

  14. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan.

    PubMed

    Sharopov, Farukh; Braun, Markus Santhosh; Gulmurodov, Isomiddin; Khalifaev, Davlat; Isupov, Salomiddin; Wink, Michael

    2015-11-02

    Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia) were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 312.5 µg/mL for E. coli , 625 µg/mL (MIC) and 1250 µg/mL (MBC) for MRSA (methicillin-resistant Staphylococcus aureus), respectively. The essential oil of Galagania fragrantissima was highly active against MRSA at concentrations as low as 39.1 µg/mL and 78.2 µg/mL for MIC and MBC, respectively. Origanum tyttanthum essential oil showed the highest antioxidant activity with IC 50 values of 0.12 mg/mL for ABTS (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) and 0.28 mg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl) . Galagania fragrantissima and Origanum tyttanthum essential oils showed the highest anti-inflammatory activity; IC 50 values of 5-lipoxygenase (5-LOX) inhibition were 7.34 and 14.78 µg/mL, respectively. In conclusion, essential oils of Origanum tyttanthum and Galagania fragrantissima exhibit substantial antimicrobial, antioxidant, and anti-inflammatory activities. They are interesting candidates in phytotherapy.

  15. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India.

    PubMed

    Joshi, Rajesh K

    2014-01-01

    Ocimum basilicum L. (Lamiaceae) commonly known as sweet basil, has been used as a traditional medicinal plant for the treatment of headaches, coughs, diarrhea, constipation, warts, worms, and kidney malfunctions. The essential oil of the flowering aerial parts of O. basilicum growing in the Western Ghats region of North West Karnataka, India, was obtained by hydro-distillation and analyzed by gas chromatography equipped with flame ionization detector and gas chromatography coupled to mass spectrometry (GC-MS). The oil was tested against six Gram-positive, eight Gram-negative bacteria, and three fungi by the tube-dilution method at a concentration range of 5.00-0.009 mg/mL. Twenty-five constituents were identified in the essential oil of O. basilicum. The major constituents were identified as methyl eugenol (39.3%) and methyl chavicol (38.3%), accounting for 98.6% of the total oil. The oil was found to be active against Gram-positive, Gram-negative bacteria, and fungi with minimal bactericidal concentration values in the range of 0.143 ± 0.031 to 0.572 ± 0.127 mg/mL, 0.781 ± 0.382 to 1.875 ± 0.684 mg/mL, and 0.312 ± 0.171 to 0.442 ± 0.207 mg/mL, respectively. The essential oil of O. basilicum of this region contains methyl eugenol/methyl chavicol chemotype and has bactericidal properties.

  16. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India

    PubMed Central

    Joshi, Rajesh K.

    2014-01-01

    Context: Ocimum basilicum L. (Lamiaceae) commonly known as sweet basil, has been used as a traditional medicinal plant for the treatment of headaches, coughs, diarrhea, constipation, warts, worms, and kidney malfunctions. Materials and Methods: The essential oil of the flowering aerial parts of O. basilicum growing in the Western Ghats region of North West Karnataka, India, was obtained by hydro-distillation and analyzed by gas chromatography equipped with flame ionization detector and gas chromatography coupled to mass spectrometry (GC–MS). The oil was tested against six Gram-positive, eight Gram-negative bacteria, and three fungi by the tube-dilution method at a concentration range of 5.00-0.009 mg/mL. Results: Twenty-five constituents were identified in the essential oil of O. basilicum. The major constituents were identified as methyl eugenol (39.3%) and methyl chavicol (38.3%), accounting for 98.6% of the total oil. The oil was found to be active against Gram-positive, Gram-negative bacteria, and fungi with minimal bactericidal concentration values in the range of 0.143 ± 0.031 to 0.572 ± 0.127 mg/mL, 0.781 ± 0.382 to 1.875 ± 0.684 mg/mL, and 0.312 ± 0.171 to 0.442 ± 0.207 mg/mL, respectively. Conclusion: The essential oil of O. basilicum of this region contains methyl eugenol/methyl chavicol chemotype and has bactericidal properties. PMID:25538349

  17. Effect of Punica granatum L. Flower Water Extract on Five Common Oral Bacteria and Bacterial Biofilm Formation on Orthodontic Wire

    PubMed Central

    VAHID DASTJERDI, Elahe; ABDOLAZIMI, Zahra; GHAZANFARIAN, Marzieh; AMDJADI, Parisa; KAMALINEJAD, Mohammad; MAHBOUBI, Arash

    2014-01-01

    Background: Use of herbal extracts and essences as natural antibacterial compounds has become increasingly popular for the control of oral infectious diseases. Therefore, finding natural antimicrobial products with the lowest side effects seems necessary. The present study sought to assess the effect of Punica granatum L. water extract on five oral bacteria and bacterial biofilm formation on orthodontic wire. Methods: Antibacterial property of P. granatum L. water extract was primarily evaluated in brain heart infusion agar medium using well-plate method. The minimum inhibitory concentration and minimum bactericidal concentration were determined by macro-dilution method. The inhibitory effect on orthodontic wire bacterial biofilm formation was evaluated using viable cell count in biofilm medium. At the final phase, samples were fixed and analyzed by Scanning Electron Microscopy. Results: The growth inhibition zone diameter was proportional to the extract concentration. The water extract demonstrated the maximum antibacterial effect on Streptococcus sanguinis ATCC 10556 with a minimum inhibitory concentration of 6.25 mg/ml and maximum bactericidal effect on S. sanguinis ATCC 10556 and S. sobrinus ATCC 27607 with minimum bactericidal concentration of 25 mg/ml. The water extract decreased bacterial biofilm formation by S. sanguinis, S. sobrinus, S. salivarius, S. mutans ATCC 35608 and E. faecalis CIP 55142 by 93.7–100%, 40.6–99.9%, 85.2–86.5%, 66.4–84.4% and 35.5–56.3% respectively. Conclusion: Punica granatum L. water extract had significant antibacterial properties against 5 oral bacteria and prevented orthodontic wire bacterial biofilm formation. However, further investigations are required to generalize these results to the clinical setting. PMID:26171362

  18. Developpement d'un film antibacterien ayant des proprietes de glissement pour une meilleure processabilite

    NASA Astrophysics Data System (ADS)

    Silverwood, Richard

    Product safety is of crucial importance for the food industry. The challenge of food safety is evidenced by the number of food poisoning in Canada and worldwide. An outbreak of listeriosis in 2008, having put the safety of Canadians at risk, has motivated the revision of the strategy for food safety in Canada. In this context, a collaboration between two major industrial players in Quebec and École Polytechnique de Montréal was initiated. This collaboration is supported by the creation of the Research Chair for safe, smart and sustainable food. One of the many forefront projects of this research chair is to develop a package having a bactericidal effect. Many compounds are currently available for incorporation into a finished product. Zinc Omadine™ by ArchChemicals and Irgaguard™ by BASF are some examples of products that have proven themselves. However, the incorporation of a bactericidal agent in a product having a direct contact with food must meet certain safety criteria. Thus, an overview of various antibacterial agents is made in terms of their effectiveness and their potential use in packaging a food product. To date, no technology allows easy incorporation of an antibacterial agent in a polymer matrix. Antibacterial constituents of the mixture with the polymer melt will provide the simplicity pursued. We chose nano zinc oxide as the main antibacterial agent for its mode of action, its great potential for sustainability and its ability not to migrate out of the polyethylene polymer matrix. Moreover, the effect of trace element at very low concentrations is validated. To increase efficiency, good dispersion is achieved by adding a polyethylene with maleic anhydride grafted groups. The increase in antibacterial properties by this change has been proven. Although these films exhibit a marked bactericidal effect, a lack of persistence of the antibacterial effect was noticed. This is probably due to a rearrangement of the molecular structure on the surface. This rearrangement, due to the polar nature of particles, inhibits the antibacterial effect of the particles, causing them to migrate to a critical distance, outside their scope. Furthermore, we evaluated briefly some other antibacterial agents. Calcium oxide (CaO) demonstrated, although lower than ZnO, an interesting antibacterial potential. The specificity of the bactericidal for gram-positive bacteria for this variance. The addition of iron oxide (Fe2O3) did not, by its hydrophilic properties, increase the bactericidal properties of CaO, simply by mixing them. Also, the use of thymol (component of essential oil of thyme) was effective, even at very low doses. A question mark hangs, however, the sustainability of such an agent. Its use in conjunction with a compatibilizer could result in a much more persistent bactericidal effect, slowing the process of migrating to the film surface. This effect is reduced when the bactericidal thymol is mixed with ZnO in the polyethylene matrix. Finally, a tool for optimizing slip additives was developed. To do this, a correlation that links the absorbance in infrared spectroscopy (ATR reflection) to the surface concentration of the lubricant was developed. By using this correlation, also called master curve, and an infrared spectrometer to test an unknown film, it is possible to find the initial concentration of slip additive. These studies highlight the potential use of zinc oxide and thymol as efficient bactericidal agent for the food industry. This work represents the first effort to develop an antibacterial film, involving nanoscale metal oxides and a polymer matrix of polyolefin.

  19. Inhibitory and bactericidal potential of crude acetone extracts of Combretum molle (Combretaceae) on drug-resistant strains of Helicobacter pylori.

    PubMed

    Njume, Collise; Afolayan, Anthony J; Samie, Amidou; Ndip, Roland N

    2011-10-01

    Infection with Helicobacter pylori is strongly associated with a number of gastroduodenal pathologies. Antimicrobial resistance to commonly-used drugs has generated a considerable interest in the search for novel therapeutic compounds from medicinal plants. As an ongoing effort of this search, the susceptibility of 32 clinical strains of H. pylori and a reference strain-NCTC 11,638-was evaluated against five solvent extracts of Combretum molle, a plant widely used for the treatment of gastric ulcers and other stomach-related morbidities in South Africa. The extracts were screened for activity by the agar-well diffusion method, and the most active one of them was tested against the same strains by micro-broth dilution and time kill assays. Metronidazole and amoxicillin were included in these experiments as positive control antibiotics. The solvent extracts all demonstrated anti-H. pylori activity with zone diameters of inhibition between 0 and 38 mm. The most potent anti-H. pylori activity was demonstrated by the acetone extract, to which 87.5% of the clinical strains were susceptible. The minimum inhibitory concentration (MIC90) values for this extract ranged from 1.25 to 5.0 mg/mL while those for amoxicillin and metronidazole ranged from 0.001 to 0.94 mg/mL and from 0.004 to 5.0 mg/mL respectively. The acetone extract was highly bactericidal at a concentration of 2.5 and 5.0 mg/mL, with complete elimination of the test organisms in 24 hours. Its inhibitory activity was better than that of metronidazole (p<0.05) as opposed to amoxicillin (p<0.05). The results demonstrate that C. molle may contain therapeutically-useful compounds against H. pylori, which are mostly concentrated in the acetone extract.

  20. [Bactericidal effect of soybean peroxidase-hydrogen peroxide-potassium iodide system].

    PubMed

    Jin, Jianling; Zhang, Weican; Li, Yu; Zhao, Yue; Wang, Fei; Gao, Peiji

    2011-03-01

    To study the bactericidal effect and the possible mechanisms of the three components system [soybean peroxidases (SBP)-hydrogen peroxide (H2O2)-potassium iodide (KI), SBP-H2O2-KI]. The inhibition and bactericidal effect of SBP-H2O2-KI system to bacteria was detected by OD600 and the number of live bacteria (CFU). The sensitivity was tested by comparing the minimum inhibitory concentration (MIC) of bacterial cultures before and after cultured under sub-lethal dose of SBP-H2O2-KI system. Oxidizing activity groups were detected with physical and chemical methods in order to explain the bactericidal mechanisms of SBP-H2O2-KI system. SBP-H2O2-KI ternary system had rapid and high efficient bactericidal effect to a variety of bacterial strains in just several minutes. The MICs had no significant changes when bacterial cultures continuously cultured in sub-lethal dose of SBP-H2O2-KI system, and no resistance/tolerance mutant strains could be isolated from them. Both physical and chemical test results showed that no hydroxyl radical produced in SBP- H2O2-KI reaction system, chemical test results showed that no superoxide anion but a singlet oxygen and iodine produced in SBP-H2O2-KI reaction system. These results suggested that singlet oxygen and iodine or the iodine intermediate state may possible be the main sterilization factors for SBP-H2O2-KI system, and hydroxyl radical and superoxide anion not. In addition, the both characteristics of SBP-H2O2-KI system: rapid and high efficient bactericidal effect, and bacteria difficultly resisting to it, indicated it would have a good potential application in medical and plant protection area.

  1. Multi-residue screening of prioritised human pharmaceuticals, illicit drugs and bactericides in sediments and sludge.

    PubMed

    Langford, Katherine H; Reid, Malcolm; Thomas, Kevin V

    2011-08-01

    A robust multi-residue method was developed for the analysis of a selection of pharmaceutical compounds, illicit drugs and personal care product bactericides in sediments and sludges. Human pharmaceuticals were selected for analysis in Scottish sewage sludge and freshwater sediments based on prescription, physico-chemical and occurrence data. The method was suitable for the analysis of the selected illicit drugs amphetamine, benzoylecgonine, cocaine, and methamphetamine, the pharmaceuticals atenolol, bendroflumethiazide, carbamazepine, citalopram, diclofenac, fluoxetine, ibuprofen, and salbutamol, and the bactericides triclosan and triclocarban in sewage sludge and freshwater sediment. The method provided an overall recovery of between 56 and 128%, RSDs of between 2 and 19% and LODs of between 1 and 50 ng g(-1). Using the methodology the human pharmaceuticals atenolol, carbamazepine and citalopram and the bactericides triclosan and triclocarban were detected in Scottish sewage sludge. The illicit drugs cocaine, its metabolite benzoylecgonine, amphetamine and methamphetamine were not detected in any of the samples analysed. Triclosan and triclocarban were present at the highest concentrations with triclocarban detected in all but one sample and showing a pattern of co-occurrence in both sludge and sediment samples.

  2. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria.

    PubMed

    Cavassin, Emerson Danguy; de Figueiredo, Luiz Francisco Poli; Otoch, José Pinhata; Seckler, Marcelo Martins; de Oliveira, Roberto Angelo; Franco, Fabiane Fantinelli; Marangoni, Valeria Spolon; Zucolotto, Valtencir; Levin, Anna Sara Shafferman; Costa, Silvia Figueiredo

    2015-10-05

    Multidrug resistant microorganisms are a growing challenge and new substances that can be useful to treat infections due to these microorganisms are needed. Silver nanoparticle may be a future option for treatment of these infections, however, the methods described in vitro to evaluate the inhibitory effect are controversial. This study evaluated the in vitro activity of silver nanoparticles against 36 susceptible and 54 multidrug resistant Gram-positive and Gram-negative bacteria from clinical sources. The multidrug resistant bacteria were oxacilin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., carbapenem- and polymyxin B-resistant A. baumannii, carbapenem-resistant P. aeruginosa and carbapenem-resistant Enterobacteriaceae. We analyzed silver nanoparticles stabilized with citrate, chitosan and polyvinyl alcohol and commercial silver nanoparticle. Silver sulfadiazine and silver nitrate were used as control. Different methods were used: agar diffusion, minimum inhibitory concentration, minimum bactericidal concentration and time-kill. The activity of AgNPs using diffusion in solid media and the MIC methods showed similar effect against MDR and antimicrobial-susceptible isolates, with a higher effect against Gram-negative isolates. The better results were achieved with citrate and chitosan silver nanoparticle, both with MIC90 of 6.75 μg mL(-1), which can be due the lower stability of these particles and, consequently, release of Ag(+) ions as revealed by X-ray diffraction (XRD). The bactericidal effect was higher against antimicrobial-susceptible bacteria. It seems that agar diffusion method can be used as screening test, minimum inhibitory concentration/minimum bactericidal concentration and time kill showed to be useful methods. The activity of commercial silver nanoparticle and silver controls did not exceed the activity of the citrate and chitosan silver nanoparticles. The in vitro inhibitory effect was stronger against Gram-negative than Gram-positive, and similar against multidrug resistant and susceptible bacteria, with best result achieved using citrate and chitosan silver nanoparticles. The bactericidal effect of silver nanoparticle may, in the future, be translated into important therapeutic and clinical options, especially considering the shortage of new antimicrobials against the emerging antimicrobial resistant microorganisms, in particular against Gram-negative bacteria.

  3. influence of TEM-1 beta-lactamase on the pharmacodynamic activity of simulated total versus free-drug serum concentrations of cefditoren (400 milligrams) versus amoxicillin-clavulanic acid (2,000/125 milligrams) against Haemophilus influenzae strains exhibiting an N526K mutation in the ftsI gene.

    PubMed

    Torrico, M; Aguilar, L; González, N; Giménez, M J; Echeverría, O; Cafini, F; Sevillano, D; Alou, L; Coronel, P; Prieto, J

    2007-10-01

    The aim of this study was to explore bactericidal activity of total and free serum simulated concentrations after the oral administration of cefditoren (400 mg, twice daily [bid]) versus the oral administration of amoxicillin-clavulanic acid extended release formulation (2,000/125 mg bid) against Haemophilus influenzae. A computerized pharmacodynamic simulation was performed, and colony counts and beta-lactamase activity were determined over 48 h. Three strains were used: ampicillin-susceptible, beta-lactamase-negative ampicillin-resistant (BLNAR) (also resistant to amoxicillin-clavulanic acid) and beta-lactamase-positive amoxicillin-clavulanic acid-resistant (BLPACR) strains, with cefditoren MICs of < or =0.12 microg/ml and amoxicillin-clavulanic acid MICs of 2, 8, and 8 microg/ml, respectively. Against the ampicillin-susceptible and BLNAR strains, bactericidal activity (> or =3 log(10) reduction) was obtained from 6 h on with either total and free cefditoren or amoxicillin-clavulanic acid. Against the BLPACR strain, free cefditoren showed bactericidal activity from 8 h on. In amoxicillin-clavulanic acid simulations the increase in colony counts from 4 h on occurred in parallel with the increase in beta-lactamase activity for the BLPACR strain. Since both BLNAR and BLPACR strains exhibited the same MIC, this was due to the significantly lower (P < or = 0.012) amoxicillin concentrations from 4 h on in simulations with beta-lactamase positive versus negative strains, thus decreasing the time above MIC (T>MIC). From a pharmacodynamic point of view, the theoretical amoxicillin T>MIC against strains with elevated ampicillin/amoxicillin-clavulanic acid MICs should be considered with caution since the presence of beta-lactamase inactivates the antibiotic, thus rendering inaccurate theoretical calculations. The experimental bactericidal activity of cefditoren is maintained over the dosing interval regardless of the presence of a mutation in the ftsI gene or beta-lactamase production.

  4. Aqueous and Organic Solvent-Extracts of Selected South African Medicinal Plants Possess Antimicrobial Activity against Drug-Resistant Strains of Helicobacter pylori: Inhibitory and Bactericidal Potential

    PubMed Central

    Njume, Collise; Jide, Afolayan A.; Ndip, Roland N.

    2011-01-01

    The aim of this study was to identify sources of cheap starting materials for the synthesis of new drugs against Helicobacter pylori. Solvent-extracts of selected medicinal plants; Combretum molle, Sclerocarya birrea, Garcinia kola, Alepidea amatymbica and a single Strychnos species were investigated against 30 clinical strains of H. pylori alongside a reference control strain (NCTC 11638) using standard microbiological techniques. Metronidazole and amoxicillin were included in these experiments as positive control antibiotics. All the plants demonstrated anti-H. pylori activity with zone diameters of inhibition between 0 and 38 mm and 50% minimum inhibitory concentration (MIC50) values ranging from 0.06 to 5.0 mg/mL. MIC50 values for amoxicillin and metronidazole ranged from 0.001 to 0.63 mg/mL and 0.004 to 5.0 mg/mL respectively. The acetone extracts of C. molle and S. birrea exhibited a remarkable bactericidal activity against H. pylori killing more than 50% of the strains within 18 h at 4× MIC and complete elimination of the organisms within 24 h. Their antimicrobial activity was comparable to the control antibiotics. However, the activity of the ethanol extract of G. kola was lower than amoxicillin (P < 0.05) as opposed to metronidazole (P > 0.05). These results demonstrate that S. birrea, C. molle and G. kola may represent good sources of compounds with anti-H. pylori activity. PMID:22016616

  5. Aqueous and organic solvent-extracts of selected south African medicinal plants possess antimicrobial activity against drug-resistant strains of Helicobacter pylori: inhibitory and bactericidal potential.

    PubMed

    Njume, Collise; Jide, Afolayan A; Ndip, Roland N

    2011-01-01

    The aim of this study was to identify sources of cheap starting materials for the synthesis of new drugs against Helicobacter pylori. Solvent-extracts of selected medicinal plants; Combretum molle, Sclerocarya birrea, Garcinia kola, Alepidea amatymbica and a single Strychnos species were investigated against 30 clinical strains of H. pylori alongside a reference control strain (NCTC 11638) using standard microbiological techniques. Metronidazole and amoxicillin were included in these experiments as positive control antibiotics. All the plants demonstrated anti-H. pylori activity with zone diameters of inhibition between 0 and 38 mm and 50% minimum inhibitory concentration (MIC(50)) values ranging from 0.06 to 5.0 mg/mL. MIC(50) values for amoxicillin and metronidazole ranged from 0.001 to 0.63 mg/mL and 0.004 to 5.0 mg/mL respectively. The acetone extracts of C. molle and S. birrea exhibited a remarkable bactericidal activity against H. pylori killing more than 50% of the strains within 18 h at 4× MIC and complete elimination of the organisms within 24 h. Their antimicrobial activity was comparable to the control antibiotics. However, the activity of the ethanol extract of G. kola was lower than amoxicillin (P < 0.05) as opposed to metronidazole (P > 0.05). These results demonstrate that S. birrea, C. molle and G. kola may represent good sources of compounds with anti-H. pylori activity.

  6. Lethality of a Heat- and Phosphate-Catalyzed Glucose By-Product to Escherichia coli O157:H7 and Partial Protection Conferred by the rpoS Regulon

    PubMed Central

    Byrd, Jeffrey J.; Cheville, Ann M.; Bose, Jeffrey L.; Kaspar, Charles W.

    1999-01-01

    A by-product of glucose produced during sterilization (121°C, 15 lb/in2, 15 min) at neutral pH and in the presence of phosphate (i.e., phosphate-buffered saline) was bactericidal to Escherichia coli O157:H7 (ATCC 43895). Other six-carbon (fructose and galactose) and five-carbon (arabinose, ribose, and xylose) reducing sugars also produced a toxic by-product under the same conditions. Fructose and the five-carbon sugars yielded the most bactericidal activity. Glucose concentrations of 1% (wt/vol) resulted in a 99.9% decline in the CFU of stationary-phase cells per milliliter in 2 days at 25°C. An rpoS mutant (pRR10::rpoS) of strain 43895 (FRIK 816-3) was significantly (P < 0.001) more sensitive to the glucose-phosphate by-product than the parent strain, as glucose concentrations from 0.05 to 0.25% resulted in a 2- to 3-log10 reduction in CFU per milliliter in 2 days at 25°C. Likewise, log-phase cells of the wild-type strain, 43895, were significantly more sensitive (P < 0.001) to the glucose-phosphate by-product than were stationary-phase cells, which is consistent with the stability of rpoS and the regulation of rpoS-regulated genes. The bactericidal effect of the glucose-phosphate by-product was reduced when strains ATCC 43895 and FRIK 816-3 were incubated at a low temperature (4°C). Also, growth in glucose-free medium (i.e., nutrient broth) did not alleviate the sensitivity to the glucose-phosphate by-product and excludes the possibility of substrate-accelerated death as the cause of the bactericidal effect observed. The glucose-phosphate by-product was also bactericidal to Salmonella typhimurium, Shigella dysenteriae, and a Klebsiella sp. Attempts to identify the glucose-phosphate by-product were unsuccessful. These studies demonstrate the production of a glucose-phosphate by-product bactericidal to E. coli O157:H7 and the protective effects afforded by rpoS-regulated gene products. Additionally, the detection of sublethally injured bacteria may be compromised by the presence of this by-product in recovery media. PMID:10347019

  7. Phytosynthesis of Silver Nanoparticles Using Myrtus communis L. Leaf Extract and Investigation of Bactericidal Activity

    NASA Astrophysics Data System (ADS)

    Ajdari, M. R.; Tondro, G. H.; Sattarahmady, N.; Parsa, A.; Heli, H.

    2017-12-01

    Silver nanoparticles have been synthesized using only Myrtus communis L. leaf extract by a facile procedure without other reagents. The extract played the roles of both reducing and capping agent. The nanoparticles were characterized using field-emission scanning microscopy, and remained stable for at least 3 weeks. Antibacterial activity of the nanoparticles was evaluated toward Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Enterococcus faecalis based on inhibition zone disk diffusion assays. The minimum inhibitory and bactericidal concentrations of the nanoparticles were obtained. Mechanisms for the antibacterial activity were proposed.

  8. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates

    PubMed Central

    Fahey, Jed W.; Stephenson, Katherine K.; Wade, Kristina L.; Talalay, Paul

    2013-01-01

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 280–340 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  9. Bactericidal effects of a high-power, red light-emitting diode on two periodontopathic bacteria in antimicrobial photodynamic therapy in vitro.

    PubMed

    Umeda, Makoto; Tsuno, Akiko; Okagami, Yoshihide; Tsuchiya, Fumito; Izumi, Yuichi; Ishikawa, Isao

    2011-11-01

      Light-emitting diodes have been investigated as new light activators for photodynamic therapy. We investigated the bactericidal effects of high-power, red light-emitting diodes on two periodontopathic bacteria in vitro.   A light-emitting diode (intensity: 1100 mW/cm(2) , peak wavelength: 650 nm) was used to irradiate a bacterial solution for either 10 or 20 s. Bacterial solutions (Porphyromonas gingivalis or Aggregatibacter actinomycetemcomitans) at a concentration of 2.5 × 10(6) c.f.u./mL were mixed with an equal volume of either methylene blue or toluidine blue O (0-20 μg/mL) and added to titer plate wells. The plate wells were irradiated with red light-emitting diode light from a distance of 22 or 40 mm. The contents were diluted, and 50 μL was smeared onto blood agar plates. After 1 week of culturing, bacterial c.f.u. were counted.   The light-emitting diode energy density was estimated to be approximately 4 and 8 J/cm(2) after 10 and 20 s of irradiation, respectively. Red light-emitting diode irradiation for 10 s from a distance of 22 mm, combined with methylene blue at concentrations >10 μg/mL, completely killed Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans.   High-power, red light-emitting diode irradiation with a low concentration of dye showed effective bactericidal effects against two periodontopathic bacteria. © 2011 Blackwell Publishing Asia Pty Ltd.

  10. Human Lysozyme Synergistically Enhances Bactericidal Dynamics and Lowers the Resistant Mutant Prevention Concentration for Metronidazole to Helicobacter pylori by Increasing Cell Permeability.

    PubMed

    Zhang, Xiaolin; Jiang, Anmin; Yu, Hao; Xiong, Youyi; Zhou, Guoliang; Qin, Meisong; Dou, Jinfeng; Wang, Jianfei

    2016-10-28

    Metronidazole (MNZ) is an effective agent that has been employed to eradicate Helicobacter pylori ( H. pylori ). The emergence of broad MNZ resistance in H. pylori has affected the efficacy of this therapeutic agent. The concentration of MNZ, especially the mutant prevention concentration (MPC), plays an important role in selecting or enriching resistant mutants and regulating therapeutic effects. A strategy to reduce the MPC that can not only effectively treat H. pylori but also prevent resistance mutations is needed. H. pylori is highly resistant to lysozyme. Lysozyme possesses a hydrolytic bacterial cell wall peptidoglycan and a cationic dependent mode. These effects can increase the permeability of bacterial cells and promote antibiotic absorption into bacterial cells. In this study, human lysozyme (hLYS) was used to probe its effects on the integrity of the H. pylori outer and inner membranes using as fluorescent probe hydrophobic 1- N -phenyl-naphthylamine (NPN) and the release of aspartate aminotransferase. Further studies using a propidium iodide staining method assessed whether hLYS could increase cell permeability and promote cell absorption. Finally, we determined the effects of hLYS on the bactericidal dynamics and MPC of MNZ in H. pylori . Our findings indicate that hLYS could dramatically increase cell permeability, reduce the MPC of MNZ for H. pylori , and enhance its bactericidal dynamic activity, demonstrating that hLYS could reduce the probability of MNZ inducing resistance mutations.

  11. Cytotoxicity and the effect of cationic peptide fragments against cariogenic bacteria under planktonic and biofilm conditions.

    PubMed

    Kreling, Paula Fernanda; Aida, Kelly Limi; Massunari, Loiane; Caiaffa, Karina Sampaio; Percinoto, Célio; Bedran, Telma Blanca Lombardo; Spolidorio, Denise Madalena Palomari; Abuna, Gabriel Flores; Cilli, Eduardo Maffud; Duque, Cristiane

    2016-10-01

    This study evaluated the cytotoxicity and effect of fragments derived from three oral cationic peptides (CP): LL-37, D6-17 and D1-23 against cariogenic bacteria under planktonic and biofilm conditions. For cytotoxicity analysis, two epithelial cell lines were used. The minimum inhibitory concentration and the minimal bactericidal concentration were determined for the CP fragments and the control (chlorhexidine-CHX) against cariogenic bacteria. The fractional inhibitory concentration was obtained for the combinations of CP fragments on Streptococcus mutans. Biofilm assays were conducted with the best antimicrobial CP fragment against S. mutans. The results indicated that D6-17 was not cytotoxic. D1-23, LL-37 and CHX were not cytotoxic in low concentrations. D1-23 presented the best bactericidal activity against S. mutans, S. mitis and S. salivarius. Combinations of CP fragments did not show a synergic effect. D1-23 presented a higher activity against S. mutans biofilm than CHX. It was concluded that D1-23 showed a substantial effect against cariogenic bacteria and low cytotoxicity.

  12. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives.

    PubMed

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-10-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils.

  13. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives

    PubMed Central

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-01-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils. PMID:26424908

  14. Effect of United States buckwheat honey on antibiotic-resistant hospital acquired pathogens

    PubMed Central

    Hammond, Eric Nee-Armah; Duster, Megan; Musuuza, Jackson Ssentalo; Safdar, Nasia

    2016-01-01

    Introduction Due to an upsurge in antibiotic-resistant infections and lack of therapeutic options, new approaches are needed for treatment. Honey may be one such potential therapeutic option. We investigated the susceptibility of hospital acquired pathogens to four honeys from Wisconsin, United States, and then determined if the antibacterial effect of each honey against these pathogens is primarily due to the high sugar content. Methods Thirteen pathogens including: four Clostridium difficile, two Methicillin-resistant Staphylococcus aureus, two Pseudomonas aeruginosa, one Methicillin-Susceptible Staphylococcus aureus, two Vancomycin-resistance Enterococcus, one Enterococcus faecalis and one Klebsiella pneumoniae were exposed to 1-50% (w/v) four Wisconsin honeys and Artificial honey to determine their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using the broth dilution method. Results Buckwheat honey predominantly exhibited a bactericidal mode of action against the tested pathogens, and this varied with each pathogen. C. difficile isolates were more sensitive to the Wisconsin buckwheat honey as compared to the other pathogens. Artificial honey at 50% (w/v) failed to kill any of the pathogens. The high sugar content of Wisconsin buckwheat honey is not the only factor responsible for its bactericidal activity. Conclusion Wisconsin buckwheat honey has the potential to be an important addition to therapeutic armamentarium against resistant pathogens and should be investigated further. PMID:28292167

  15. Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus.

    PubMed

    Leon-Sicairos, Nidia; Canizalez-Roman, Adrian; de la Garza, Mireya; Reyes-Lopez, Magda; Zazueta-Beltran, Jorge; Nazmi, Kamran; Gomez-Gil, Bruno; Bolscher, Jan G

    2009-01-01

    Infections caused by Vibrio parahaemolyticus, an halophilic member of the genus Vibrio, have increased globally in the last 5 years. Diarrhea caused by V. parahaemolyticus results from eating raw or undercooked seafood. The aim of this work was to investigate whether lactoferrin and some lactoferrin-peptides have bactericidal activity against Vibrio parahaemolyticus ATCC 17802, the pandemic strain O3:K6, and the multidrug resistant isolate 727, as well as against Vibrio cholerae strains O1 and non-O1. Whereas both peptides lactoferricin (17-30) and lactoferrampin (265-284) did not have bactericidal activity, 40 microM of lactoferrin chimera (a fusion of the two peptides) inhibited the growth of all Vibrio tested to the same extent as the antibiotic gentamicin. The cidal effect of LFchimera showed a clear concentration response in contrast to bovine lactoferrin which showed higher inhibition at 10 microM than at 40 microM. FITC-labeled LFchimera bound to the bacterial membranes. Moreover LFchimera permeabilized bacterial cells and membranes were seriously damaged. Finally, in experiments with the multidrug resistant isolate 727, sub-lethal doses of LFchimera strongly reduced the concentrations of ampicillin, gentamicin or kanamicin needed to reach more than 95% growth inhibition, suggesting synergistic effects. These data indicate that LFchimera is a potential candidate to combat the multidrug resistant pathogenic Vibrio species.

  16. Bactericidal Effect and Pharmacodynamics of Cethromycin (ABT-773) in a Murine Pneumococcal Pneumonia Model

    PubMed Central

    Kim, Myo-Kyoung; Zhou, Wen; Tessier, Pamela R.; Xuan, Dawei; Ye, Min; Nightingale, Charles H.; Nicolau, David P.

    2002-01-01

    Cethromycin (ABT-773), a new ketolide, possesses potent in vitro activity against Streptococcus pneumoniae. The objective of this study was to investigate the in vivo bactericidal activity of cethromycin against macrolide-susceptible and -resistant S. pneumoniae in a murine pneumonia model and to describe the pharmacodynamic (PD) profile of cethromycin. Eight (two macrolide susceptible, six macrolide resistant) clinical isolates of S. pneumoniae were investigated. Cyclophosphamide administration rendered ICR mice transiently neutropenic prior to intratracheal inoculation with 0.05 ml of an S. pneumoniae suspension containing 107 to 108 CFU/ml. Oral cethromycin was initiated 12 to 14 h postinoculation over a dosage range of 0.1 to 800 mg/kg of body weight/day. Lungs from seven to eight mice per treatment and control groups were collected at 0 and 24 h posttherapy to assess bacterial density. The cumulative mortality (n = 12 to 13) was assessed at 120 h (end of therapy) and at 192 h (3 days posttherapy). Recovery of pneumococci from the lungs of infected animals prior to the initiation of therapy ranged from 4.6 to 7.2 log10 CFU. Growth in untreated control animals over a 24-h study period increased 0.3 to 2.7 log10 CFU. Cethromycin demonstrated a substantial bactericidal effect, regardless of macrolide susceptibility. Correlation between changes in bacterial density (24 h) and survival over both 120 and 192 h were statistically significant. All three PD parameters demonstrated a significant correlation with changes in log10 CFU/lung (Spearman's correlation coefficient, P < 0.001); however, the goodness of fit as assessed with the maximum effect (Emax) model revealed that the maximum concentration of free drug in serum (Cmax free)/MIC and the area under the free drug concentration-time curve (AUCfree)/MIC best explained the relationship between drug exposure and reductions in viable bacterial counts. These data reveal that an approximate cethromycin AUCfree/MIC of 50 or Cmax free/MIC of 1 results in bacteriostatic effects, while higher values (twofold) maximize survival. PMID:12234843

  17. Priming for immunologic memory in adults by meningococcal group C conjugate vaccination.

    PubMed

    Vu, David M; de Boer, Alberdina W; Danzig, Lisa; Santos, George; Canty, Bridget; Flores, Betty M; Granoff, Dan M

    2006-06-01

    Meningococcal group C polysaccharide-protein conjugate vaccines (MCV) prime infants and children for memory anticapsular responses upon subsequent exposure to unconjugated polysaccharide. The objective of this study was to determine whether MCV primes vaccine-naïve adults and adults previously vaccinated with meningococcal polysaccharide vaccine (MPSV) for memory antibody responses. Meningococcal vaccine-naïve adults were randomized to receive either MCV (MCV/naïve group) (n = 35) or pneumococcal conjugate vaccine (PCV) (PCV/naïve group) (n = 34). Participants with a history of receiving MPSV were given MCV (MCV/MPSV group) (n = 26). All subjects were challenged 10 months later with one-fifth of the usual dose of MPSV (10 mug of each polysaccharide). Sera were obtained before the conjugate vaccination and before and 7 days after the MPSV challenge and assayed for immunoglobulin G (IgG) anticapsular antibody concentrations and bactericidal titers. The MCV/naïve group had 7- to 10-fold-higher serum IgG and bactericidal responses after the MPSV challenge than the PCV/naïve group (P < 0.001). The increases (n-fold) in anticapsular antibody concentrations in the MCV/naïve group were greatest in subjects with antibody concentrations of 2 microg/ml before the challenge; P < 0.0001). Only 3 of 11 MCV-vaccinated subjects who had received MPSV before enrollment and who had antibody concentrations of

  18. Antimicrobial and antiparasitic activities of three algae from the northwest coast of Algeria.

    PubMed

    Ghania, Aissaoui; Nabila, Belyagoubi-Benhammou; Larbi, Belyagoubi; Elisabeth, Mouray; Philippe, Grellier; Mariem, Benmahdjoub; Khadidja, Kerzabi-Kanoun; Wacila, Benguedda-Rahal; Fawzia, Atik-Bekkara

    2017-11-22

    The objective of this study was to investigate the biological activities of Algerian algae, Sargassum vulgare, Cladostephus hirsutus and Rissoella verruculosa. Antimicrobial activity of the crude extracts and their fractions was assessed using the disc diffusion assay, the minimum inhibitory concentration and the minimum bactericidal concentration. Antiparasitic activity was studied in vitro against the blood stream forms of Trypanosoma brucei brucei and the intraerythrocytic stages of Plasmodium falciparum. Ethyl acetate (EA) fractions of the three tested algae showed more potent antimicrobial activity against S. aureus (7-14.5 mm) and B. cereus (7-10.75 mm), MIC values ranged from 0.9375 to 7.5 mg mL -1 and MBC values > 15 mg mL -1 . Concerning the antiparasitic activity, EA factions of S. vulgare (IC 50  = 9.3 μg mL -1 ) and R. verruculosa (IC 50  = 11.0 μg mL -1 ) were found to be more effective against T. brucei brucei, whereas the three EA fractions were little active against P. falciparum.

  19. Screening for fractions of Oxytropis falcata Bunge with antibacterial activity.

    PubMed

    Jiang, H; Hu, J R; Zhan, W Q; Liu, X

    2009-01-01

    Preliminary studies with the four extracts of Oxytropis falcate Bunge exhibited that the chloroform and ethyl acetate extracts showed stronger antibacterial activities against the nine tested Gram-positive and Gram-negative bacteria. The HPLC-scanned and bioassay-guided fractionation led to the isolation and identification of the main flavonoid compounds, i.e. rhamnocitrin, kaempferol, rhamnetin, 2',4'-dihydroxychalcone and 2',4',beta-trihydroxy-dihydrochalcon. Except 2',4',beta-trihydroxy-dihydrochalcon, four other compounds had good antibacterial activities. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of the four compounds ranged between 125 and 515 microg mL(-1). Staphylococcus aureus was the most susceptible to these compounds, with MIC and MBC values from 125 to 130 microg mL(-1). This is the first report of antibacterial activity in O. falcate Bunge. In this study, evidence to evaluate the biological functions of O. falcate Bunge is provided, which promote the rational use of this herb.

  20. Bioactive compounds isolated from submerged fermentations of the Chilean fungus Stereum rameale.

    PubMed

    Aqueveque, Pedro; Céspedes, Carlos Leonardo; Becerra, José; Dávila, Marcelo; Sterner, Olov

    2015-01-01

    Liquid fermentations of the fungus Stereum rameale (N° 2511) yielded extracts with antibacterial activity. The antibacterial activity reached its peak after 216 h of stirring. Bioassay-guided fractionation methods were employed for the isolation of the bioactive metabolites. Three known compounds were identified: MS-3 (1), vibralactone (2) and vibralactone B (3). The three compounds showed antibacterial activity as a function of their concentration. Minimal bactericidal concentrations (MBC) of compound 1 against Gram-positive bacteria were as follows: Bacillus cereus (50 μg/mL), Bacillus subtilis (10 μg/mL) and Staphylococcus aureus (100 μg/mL). Compounds 2 and 3 were active only against Gram-negative bacteria. The MBC of compound 2 against Escherichia coli was 200 μg/mL. Compound 3 inhibited significantly the growth of E. coli and Pseudomonas aeruginosa, with MBC values of 50 and 100 μg/mL, respectively.

  1. Antibacterial, antifungal and cytotoxic evaluation of some new quinazolinone derivatives

    PubMed Central

    Hassanzadeh, F.; Jafari, E.; Hakimelahi, G.H.; Khajouei, M. Rahmani; Jalali, M.; Khodarahmi, G.A.

    2012-01-01

    Quinazolinone ring system is renown because of its wide spectrum of pharmacological activities due to various substitutions on this ring system. In this study, the minimum inhibitory concentration of the synthesized compounds in our laboratory was determined by micro dilution Alamar Blue® Assay against six strains of bacteria (three Gram-positive and three Gram-negative) and three strains of fungi. Following a broth micro dilution minimum inhibitory concentration (MIC) test, Minimum Bactericidal Concentration (MBC) and Minimum Fungicidal Concentration (MFC) tests were performed. Cytotoxic effects of the compounds were measured using the MTT colorimetric assay on HeLa cell line. Results of antimicrobial screening showed that compounds had better bacteriostatic activity against Gram-negative bacteria. Results from MBC revealed that these compounds had more significant bacteriostatic than bactericidal activities. Nearly all screened compounds showed good activity against C. albicans and A. niger. Results from MFC indicated that these compounds had better fungistatic rather than fungicidal activities. The synthesized target molecules were found to exhibit different cytotoxicity in the range of 10 to 100 μM on HeLa cell line. Compounds 6 and 7 exhibited acceptable cytotoxicity approximately 50% at 10 μM concentration. PMID:23181085

  2. Time-kill behaviour against eight bacterial species and cytotoxicity of antibacterial monomers.

    PubMed

    Li, Fang; Weir, Michael D; Fouad, Ashraf F; Xu, Hockin H K

    2013-10-01

    The objectives of this study were to investigate: (1) the antibacterial activity of two antibacterial monomers, dimethylaminododecyl methacrylate (DMADDM) and dimethylammoniumethyl dimethacrylate (DMAEDM), against eight different species of oral pathogens for the first time; (2) the cytotoxicity of DMAEDM and DMADDM. DMAEDM and DMADDM were synthesized by reacting a tertiary amine group with an organo-halide. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against eight species of bacteria were tested. Time-kill determinations were performed to examine the bactericidal kinetics. Cytotoxicity of monomers on human gingival fibroblasts (HGF) was assessed using a methyl thiazolyltetrazolium assay and live/dead viability assay. DMADDM showed strong bactericidal activity against all bacteria, with MIC of 1.2-9.8μg/mL. DMAEDM had MIC of 20-80mg/mL. Time-kill determinations indicated that DMADDM and DMAEDM had rapid killing effects against eight species of bacteria, and eliminated all bacteria in 30min at the concentration of 4-fold MBC. Median lethal concentration for DMADDM and DMAEDM was between 20 and 40μg/mL, which was 20-fold higher than 1-2μg/mL for BisGMA control. DMAEDM and DMADDM were tested in time-kill assay against eight species of oral bacteria for the first time. Both were effective in bacteria-inhibition, but DMADDM had a higher potency than DMAEDM. Different killing efficacy was found against different bacteria species. DMAEDM and DMADDM had much lower cytotoxicity than BisGMA. Therefore, DMADDM and DMAEDM are promising for use in bonding agents and other restorative/preventive materials to combat a variety of oral pathogens. Published by Elsevier Ltd.

  3. Bioactivity of essential oils extracted from Cupressus macrocarpa branchlets and Corymbia citriodora leaves grown in Egypt.

    PubMed

    Salem, Mohamed Z M; Elansary, Hosam O; Ali, Hayssam M; El-Settawy, Ahmed A; Elshikh, Mohamed S; Abdel-Salam, Eslam M; Skalicka-Woźniak, Krystyna

    2018-01-22

    Cupressus macrocarpa Hartw and Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson, widely grown in many subtropical areas, are used for commercial purposes, such as in perfumery, cosmetics, and room fresheners. Their potential as a source of antimicrobial compounds may be useful in different applications. The chemical composition of essential oils (EOs) from C. macrocarpa branchlets and C. citriodora leaves was analyzed by using gas chromatography-mass spectrometry (GC/MS). Antibacterial and antifungal activities were assessed by the micro-dilution method to determine the minimum inhibitory concentrations (MICs), and minimum fungicidal concentrations (MFCs), and minimum bactericidal concentrations (MBCs). Further, the antioxidant capacity of the EOs was determined via 2,2'-diphenypicrylhydrazyl (DPPH) and β-carotene-linoleic acid assays. Terpinen-4-ol (23.7%), α-phellandrene (19.2%), α-citronellol (17.3%), and citronellal were the major constituents of EO from C. macrocarpa branchlets, and α-citronellal (56%), α-citronellol (14.7%), citronellol acetate (12.3%), isopulegol, and eucalyptol were the primary constituents of EO from C. citriodora leaves. Antibacterial activity with MIC values of EO from C. citriodora leaves was ranged from 0.06 mg/mL to 0.20 mg/mL, and MBC from 0.12 mg/mL against E. coli to 0.41 mg/mL. EO from C. macrocarpa branchlets showed less activity against bacterial strains. The MIC values against tested fungi of the EO from C. citriodora ranged from 0.11 to 0.52 mg/mL while for EO from C. macrocarpa from 0.29 to 3.21 mg/mL. The MIC and MFC values of EOs against P. funiculosum were lower than those obtained from Ketoconazole (KTZ) (0.20; 0.45; 0.29 and 0.53 mg/mL, respectively, vs 0.21 and 0.41 mg/mL. Antioxidant activity of the EO from C. citriodora was higher than that of the positive control but lower than that of the standard butylhydroxytoluene (BHT) (IC 50  = 5.1 ± 0.1 μg/mL). The results indicate that the EO from Egyptian trees such as C. citriodora leaves may possesses strong bactericidal and fungicidal activities and can be used as an agrochemical for controlling plant pathogens and in human disease management which will add crop additive value.

  4. In vitro bactericidal activity of aminoglycosides, including the next-generation drug plazomicin, against Brucella spp.

    USDA-ARS?s Scientific Manuscript database

    Plazomicin is a next-generation aminoglycoside with a potentially improved safety profile compared to other aminoglycosides. This study assessed plazomicin MICs and MBCs in four Brucella spp. reference strains. Like other aminoglycosides and aminocyclitols, plazomicin MBC values equaled MIC values ...

  5. IS COPPER REQUIRED FOR EASTERN OYSTER SETTING AND METAMORPHOSIS?

    EPA Science Inventory

    Recent field research with eastern oysters demonstrated higher defense activities, including hemocyte numbers, locomotion and bactericidal ability, associated with locations exhibiting relatively high contamination. Copper and zinc, found in high concentrations in tissues of oyst...

  6. A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Vertelov, G. K.; Krutyakov, Yu A.; Efremenkova, O. V.; Olenin, A. Yu; Lisichkin, G. V.

    2008-09-01

    Silver nanoparticles stabilized by a well-known antibacterial surfactant benzyldimethyl[3-(myristoylamino)propyl]ammonium chloride (Myramistin®) were produced for the first time by borohydride reduction of silver chloride sol in water. Stable aqueous dispersions of silver nanoparticles without evident precipitation for several months could be obtained. In vitro bactericidal tests showed that Myramistin® capped silver NPs exhibited notable activity against six different microorganisms—gram-positive and gram-negative bacteria, yeasts and fungi. The activity was up to 20 times higher (against E. coli) compared to Myramistin® at the same concentrations and on average 2 times higher if compared with citrate-stabilized NPs.

  7. Antimicrobial activity of topically-applied soyaethyl morpholinium ethosulfate micelles against Staphylococcus species.

    PubMed

    Yang, Shih-Chun; Aljuffali, Ibrahim A; Sung, Calvin T; Lin, Chwan-Fwu; Fang, Jia-You

    2016-03-01

    Here we evaluated the antibacterial efficacy of soyaethyl morpholinium ethosulfate (SME) micelles as an inherent bactericide against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). The antimicrobial activity was examined by in vitro culture model and murine model of skin infection. Cationic micelles formed by benzalkonium chloride or cetylpyridinium chloride were used for comparison. The minimum inhibitory concentration and minimum bactericidal concentration against S. aureus and MRSA were 1.71-3.42 and 1.71-6.84 μg/ml, respectively. Topical administration of SME micelles significantly decreased the cutaneous infection and MRSA load in mice. The killing of bacteria was caused by direct cell wall/membrane rupture. SME micelles also penetrated into the bacteria to elicit a Fenton reaction and oxidative stress. SME micelles have potential as antimicrobial agents due to their lethal effect against S. aureus and MRSA with a low toxicity to mammalian cells.

  8. Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage.

    PubMed

    Belenky, Peter; Ye, Jonathan D; Porter, Caroline B M; Cohen, Nadia R; Lobritz, Michael A; Ferrante, Thomas; Jain, Saloni; Korry, Benjamin J; Schwarz, Eric G; Walker, Graham C; Collins, James J

    2015-11-03

    Understanding how antibiotics impact bacterial metabolism may provide insight into their mechanisms of action and could lead to enhanced therapeutic methodologies. Here, we profiled the metabolome of Escherichia coli after treatment with three different classes of bactericidal antibiotics (?-lactams, aminoglycosides, quinolones). These treatments induced a similar set of metabolic changes after 30 min that then diverged into more distinct profiles at later time points. The most striking changes corresponded to elevated concentrations of central carbon metabolites, active breakdown of the nucleotide pool, reduced lipid levels, and evidence of an elevated redox state. We examined potential end-target consequences of these metabolic perturbations and found that antibiotic-treated cells exhibited cytotoxic changes indicative of oxidative stress, including higher levels of protein carbonylation, malondialdehyde adducts, nucleotide oxidation, and double-strand DNA breaks. This work shows that bactericidal antibiotics induce a complex set of metabolic changes that are correlated with the buildup of toxic metabolic by-products. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. [Comparative effectiveness of antimicrobial action of antiseptics against pathogens of chronic purulent otitis media].

    PubMed

    Paliĭ, G K; Barilo, A S; Chesnokova, A A

    1992-12-01

    Comparable antimicrobial and disinfecting action of decamethoxine and silver preparations on pathogens of chronic purulent otitis media (CPOM) was studied. The clinical isolates of staphylococci proved to be most sensitive to decamethoxine whose MBcC conformed to 16.5 micrograms/ml. The antimicrobial action on Proteus spp. and Pseudomonas aeruginosa was less pronounced. The required concentrations for bactericidal action on these pathogens were 69 and 93.5 micrograms/ml, respectively. The antimicrobial activity of the silver preparations such as poviargol, collargol and protargol was low. Depending on the microbial species, the bactericidal effect of the silver preparations was 12-235 times lower than that of decamethoxin. It was also shown that decamethoxin had a high disinfecting action on CPOM pathogens. It was noted that decamethoxin had a marked ability to increase the bactericidal action of poviargol (by 2-14 times) and its disinfecting action (by 2 times) on Proteus spp., E. coli and Ps. aeruginosa.

  10. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates.

    PubMed

    Fahey, Jed W; Stephenson, Katherine K; Wade, Kristina L; Talalay, Paul

    2013-05-24

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 260-320 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Antimicrobial effect of Dinoponera quadriceps (Hymenoptera: Formicidae) venom against Staphylococcus aureus strains.

    PubMed

    Lima, D B; Torres, A F C; Mello, C P; de Menezes, R R P P B; Sampaio, T L; Canuto, J A; da Silva, J J A; Freire, V N; Quinet, Y P; Havt, A; Monteiro, H S A; Nogueira, N A P; Martins, A M C

    2014-08-01

    Dinoponera quadriceps venom (DqV) was examined to evaluate the antibacterial activity and its bactericidal action mechanism against Staphylococcus aureus. DqV was tested against a standard strain of methicillin-sensitive Staphylococcus aureus (MSSA), Staph. aureus ATCC 6538P and two standard strains of methicillin-resistant Staphylococcus aureus (MRSA), Staph. aureus ATCC 33591 and Staph. aureus CCBH 5330. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the rate of kill and pH sensitivity of the DqV were determined by microdilution tests. Bactericidal and inhibitory concentrations of DqV were tested to check its action on Staph. aureus membrane permeability and cell morphology. The MIC and MBC of DqV were 6·25 and 12·5 μg ml(-1) for Staph. aureus ATCC 6538P, 12·5 and 50 μg ml(-1) for Staph. aureus CCBH 5330 and 100 and 100 μg ml(-1) for Staph. aureus ATCC 33591, respectively. Complete bacterial growth inhibition was observed after 4 h of incubation with the MBC of DqV. A lowest MIC was observed in alkaline pH. Alteration in membrane permeability was observed through the increase in crystal violet uptake, genetic material release and morphology in atomic force microscopy. The results suggest antibacterial activity of DqV against Staph. aureus and that the venom acts in the cell membrane. Alteration in membrane permeability may be associated with the antimicrobial activity of hymenopteran venoms. © 2014 The Society for Applied Microbiology.

  12. Effects of three oxidizing biocides on Legionella pneumophila serogroup 1.

    PubMed Central

    Domingue, E L; Tyndall, R L; Mayberry, W R; Pancorbo, O C

    1988-01-01

    A study was conducted to determine the bactericidal effects of ozone and hydrogen peroxide relative to that of free chlorine on Legionella pneumophila serogroup 1. In laboratory batch-type experiments, organisms seeded at various densities were exposed to different concentrations of these biocides in demand-free buffers. Bactericidal effects were measured by determining the ability of L. pneumophila to grow on buffered charcoal-yeast extract agar supplemented with alpha-ketoglutarate. Ozone was the most potent of the three biocides, with a greater than 99% kill of L. pneumophila occurring during a 5-min exposure to 0.10 to 0.30 micrograms of O3 per ml. The bactericidal action of O3 was not markedly affected by changes in pH or temperature. Concentrations of 0.30 and 0.40 micrograms of free chlorine per ml killed 99% of the L. pneumophila after 30- and 5-min exposures, respectively. A 30-min exposure to 1,000 micrograms of H2O2 per ml was required to effect a 99% reduction of the viable L. pneumophila population. However, no viable L. pneumophila could be detected after a 24-h exposure to 100 or 300 micrograms of H2O2 per ml. Attempts were made to correlate the biocidal effects of O3 and H2O2 with the oxidation of L. pneumophila fatty acids. These tests indicated that certain biocidal concentrations of O3 and H2O2 resulted in a loss or severe reduction of L. pneumophila unsaturated fatty acids. PMID:3377492

  13. Influence of TEM-1 β-Lactamase on the Pharmacodynamic Activity of Simulated Total versus Free-Drug Serum Concentrations of Cefditoren (400 Milligrams) versus Amoxicillin-Clavulanic Acid (2,000/125 Milligrams) against Haemophilus influenzae Strains Exhibiting an N526K Mutation in the ftsI Gene▿

    PubMed Central

    Torrico, M.; Aguilar, L.; González, N.; Giménez, M. J.; Echeverría, O.; Cafini, F.; Sevillano, D.; Alou, L.; Coronel, P.; Prieto, J.

    2007-01-01

    The aim of this study was to explore bactericidal activity of total and free serum simulated concentrations after the oral administration of cefditoren (400 mg, twice daily [bid]) versus the oral administration of amoxicillin-clavulanic acid extended release formulation (2,000/125 mg bid) against Haemophilus influenzae. A computerized pharmacodynamic simulation was performed, and colony counts and β-lactamase activity were determined over 48 h. Three strains were used: ampicillin-susceptible, β-lactamase-negative ampicillin-resistant (BLNAR) (also resistant to amoxicillin-clavulanic acid) and β-lactamase-positive amoxicillin-clavulanic acid-resistant (BLPACR) strains, with cefditoren MICs of ≤0.12 μg/ml and amoxicillin-clavulanic acid MICs of 2, 8, and 8 μg/ml, respectively. Against the ampicillin-susceptible and BLNAR strains, bactericidal activity (≥3 log10 reduction) was obtained from 6 h on with either total and free cefditoren or amoxicillin-clavulanic acid. Against the BLPACR strain, free cefditoren showed bactericidal activity from 8 h on. In amoxicillin-clavulanic acid simulations the increase in colony counts from 4 h on occurred in parallel with the increase in β-lactamase activity for the BLPACR strain. Since both BLNAR and BLPACR strains exhibited the same MIC, this was due to the significantly lower (P ≤ 0.012) amoxicillin concentrations from 4 h on in simulations with β-lactamase positive versus negative strains, thus decreasing the time above MIC (T>MIC). From a pharmacodynamic point of view, the theoretical amoxicillin T>MIC against strains with elevated ampicillin/amoxicillin-clavulanic acid MICs should be considered with caution since the presence of β-lactamase inactivates the antibiotic, thus rendering inaccurate theoretical calculations. The experimental bactericidal activity of cefditoren is maintained over the dosing interval regardless of the presence of a mutation in the ftsI gene or β-lactamase production. PMID:17664320

  14. Composition and antimicrobial properties of essential oils of four Mediterranean Lamiaceae.

    PubMed

    Panizzi, L; Flamini, G; Cioni, P L; Morelli, I

    1993-08-01

    Essential oils from Satureja montana L., Rosmarinus officinalis L., Thymus vulgaris L., and Calamintha nepeta (L.) Savi, were chemically analysed and their antimicrobial and fungicide activities evaluated on the basis of their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). All four oils have a biotoxic effect, the most active being those from Calamintha and Thymus.

  15. The Anti-Staphylococcus aureus Effect of Combined Echinophora platyloba Essential Oil and Liquid Smoke in Beef

    PubMed Central

    Pilevar, Zahra; Hajimehdipoor, Homa; Shahraz, Farzaneh; Alizadeh, Leyla; Mahmoudzadeh, Maryam

    2017-01-01

    Summary In the current study, the antibacterial effect of Echinophora platyloba essential oil and common liquid smoke (individually and in combination) against Staphylococcus aureus in beef meat samples is investigated. Using an automated microbiological growth analyser and the turbidimetric technique, the minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC) of the essential oil and liquid smoke were determined. Anti-S. aureus activity of essential oil and liquid smoke (individually and in combination) was defined by disk diffusion assay, generation time and cell constituent release. Apart from that, the interactions between these two compounds were measured by the checkerboard assay and by calculating the fractional inhibitory concentration (FIC) indices. Related MIC values of essential oil and smoke were found to be 7200 and 5500 mg/L, and MBC values were 8500 and 8000 mg/L, respectively. The conducted organoleptic assay showed that the addition of 0.05 g of essential oil and 0.6 g of liquid smoke to 100 g of meat samples did not have adverse effect on the overall acceptance. Weaker antibacterial effect against Staphylococcus aureus was observed when only Echinophora platyloba essential oil was used than when it was used in combination with liquid smoke. PMID:28559740

  16. Antibacterial and Antibiofilm Activities of Makaluvamine Analogs

    PubMed Central

    Nijampatnam, Bhavitavya; Nadkarni, Dwayaja H.; Wu, Hui; Velu, Sadanandan E.

    2014-01-01

    Streptococcus mutans is a key etiological agent in the formation of dental caries. The major virulence factor is its ability to form biofilms. Inhibition of S. mutans biofilms offers therapeutic prospects for the treatment and the prevention of dental caries. In this study, 14 analogs of makaluvamine, a marine alkaloid, were evaluated for their antibacterial activity against S. mutans and for their ability to inhibit S. mutans biofilm formation. All analogs contained the tricyclic pyrroloiminoquinone core of makaluvamines. The structural variations of the analogs are on the amino substituents at the 7-position of the ring and the inclusion of a tosyl group on the pyrrole ring N of the makaluvamine core. The makaluvamine analogs displayed biofilm inhibition with IC50 values ranging from 0.4 μM to 88 μM. Further, the observed bactericidal activity of the majority of the analogs was found to be consistent with the anti-biofilm activity, leading to the conclusion that the anti-biofilm activity of these analogs stems from their ability to kill S. mutans. However, three of the most potent N-tosyl analogs showed biofilm IC50 values at least an order of magnitude lower than that of bactericidal activity, indicating that the biofilm activity of these analogs is more selective and perhaps independent of bactericidal activity. PMID:25767719

  17. The Activity of Cotinus coggygria Scop. Leaves on Staphylococcus aureus Strains in Planktonic and Biofilm Growth Forms.

    PubMed

    Rendeková, Katarína; Fialová, Silvia; Jánošová, Lucia; Mučaji, Pavel; Slobodníková, Lívia

    2015-12-30

    The purpose of this study was to detect the effectiveness of Cotinus coggygria Scop. leaves methanol extract against planktonic and biofilm growth forms of Staphylococcus aureus. The antimicrobial activity was determined by the broth microdilution test. Minimal inhibitory concentrations and minimal bactericidal concentrations were detected against two collection and ten clinical S. aureus strains. Anti-biofilm activity of the tested extract was detected using 24 h bacterial biofilm on the surface of microtiter plate wells. The biofilm inhibitory activity was evaluated visually after 24 h interaction of extract with biofilm, and the eradicating activity by a regrowth method. The tested extract showed bactericidal activity against all S. aureus strains (methicillin susceptible or methicillin resistant) in concentrations ranging from 0.313 to 0.625 mg·mL(-1). Biofilm inhibitory concentrations were 10-times higher and biofilm eradicating concentrations 100-times higher (8 and 32 mg·mL(-1), respectively). The phytochemical analysis of C. coggygria leaves 60% methanol extract performed by LC-DAD-MS/MS revealed quercetin rhamnoside, methyl gallate, and methyl trigallate as main constituents. Results of our study indicate that C. coggygria, rich in tannins and flavonoids, seems to be a prospective topical antibacterial agent with anti-biofilm activity.

  18. In vitro antiplaque activity of octenidine dihydrochloride (WIN 41464-2) against preformed plaques of selected oral plaque-forming microorganisms.

    PubMed Central

    Slee, A M; O'Connor, J R

    1983-01-01

    The antibacterial activity of octenidine dihydrochloride (WIN 41464-2) against intact preformed in vitro plaques of four indigenous oral plaque-forming microorganisms, Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, and Actinomyces naeslundii, was studied. Both absolute (plaque bactericidal index) and relative (chlorhexidine coefficient) indices of antiplaque efficacy were established. Octenidine dihydrochloride compared favorably with chlorhexidine digluconate with respect to overall antiplaque potency in this in vitro plaque bactericidal model. These data indicate that prudent selection of treatment concentration and duration and frequency of exposure should provide an effective means to aid in controlling dental caries and Actinomyces-associated disease in vivo. PMID:6847170

  19. Structure-function characterization and optimization of a plant-derived antibacterial peptide.

    PubMed

    Suarez, Mougli; Haenni, Marisa; Canarelli, Stéphane; Fisch, Florian; Chodanowski, Pierre; Servis, Catherine; Michielin, Olivier; Freitag, Ruth; Moreillon, Philippe; Mermod, Nicolas

    2005-09-01

    Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.

  20. Structure-Function Characterization and Optimization of a Plant-Derived Antibacterial Peptide

    PubMed Central

    Suarez, Mougli; Haenni, Marisa; Canarelli, Stéphane; Fisch, Florian; Chodanowski, Pierre; Servis, Catherine; Michielin, Olivier; Freitag, Ruth; Moreillon, Philippe; Mermod, Nicolas

    2005-01-01

    Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop. PMID:16127062

  1. Antibacterial activity of DLC films containing TiO2 nanoparticles.

    PubMed

    Marciano, F R; Lima-Oliveira, D A; Da-Silva, N S; Diniz, A V; Corat, E J; Trava-Airoldi, V J

    2009-12-01

    Diamond-like carbon (DLC) films have been the focus of extensive research in recent years due to their potential applications as surface coatings on biomedical devices. Titanium dioxide (TiO2) in the anatase crystalline form is a strong bactericidal agent when exposed to near-UV light. In this work we investigate the bactericidal activity of DLC films containing TiO2 nanoparticles. The films were grown on 316L stainless-steel substrates from a dispersion of TiO2 in hexane using plasma-enhanced chemical vapor deposition. The composition, bonding structure, surface energy, stress, and surface roughness of these films were also evaluated. The antibacterial tests were performed against Escherichia coli (E. coli) and the results were compared to the bacterial adhesion force to the studied surfaces. The presence of TiO2 in DLC bulk was confirmed by Raman spectroscopy. As TiO2 content increased, I(D)/I(G) ratio, hydrogen content, and roughness also increased; the films became more hydrophilic, with higher surface free energy and the interfacial energy of bacteria adhesion decreased. Experimental results show that TiO2 increased DLC bactericidal activity. Pure DLC films were thermodynamically unfavorable to bacterial adhesion. However, the chemical interaction between the E. coli and the studied films increased for the films with higher TiO2 concentration. As TiO2 bactericidal activity starts its action by oxidative damage to the bacteria wall, a decrease in the interfacial energy of bacteria adhesion causes an increase in the chemical interaction between E. coli and the films, which is an additional factor for the increasing bactericidal activity. From these results, DLC with TiO2 nanoparticles can be useful for producing coatings with antibacterial properties.

  2. The effectiveness of processed grapefruit-seed extract as an antibacterial agent: II. Mechanism of action and in vitro toxicity.

    PubMed

    Heggers, John P; Cottingham, John; Gusman, Jean; Reagor, Lee; McCoy, Lana; Carino, Edith; Cox, Robert; Zhao, Jian-Gang; Reagor, Lana

    2002-06-01

    Recent testimonials report grapefruit-seed extract, or GSE (Citricidal) to be effective against more than 800 bacterial and viral strains, 100 strains of fungus, and a large number of single and multicelled parasites. This study investigated GSE for antibacterial activity at varying time intervals and concentration levels and tissue toxicity at varying concentrations in an effort to determine if a concentration existed that was both microbicidal and nontoxic and in what period of time. Gram-negative and gram-positive isolates were introduced into graduated dilutions of GSE (twofold concentrations ranging from 1:1, through 1:512) for determination of bacterial activity. In vitro assays with human skin fibroblast cells were also performed at the same dilutions to determine toxicity. These tests indicated that from the 1:1 through the 1:128 concentrations, GSE remained toxic as well as bactericidal. However, test results indicated that at the 1:512 dilution, GSE remained bactericidal, but completely nontoxic. The initial data shows GSE to have antimicrobial properties against a wide range of gram-negative and gram-positive organisms at dilutions found to be safe. With the aid of scanning transmission electron microscopy (STEM), the mechanism of GSE's antibacterial activity was revealed. It was evident that GSE disrupts the bacterial membrane and liberates the cytoplasmic contents within 15 minutes after contact even at more dilute concentrations.

  3. The antibacterial activity and action mechanism of emodin from Polygonum cuspidatum against Haemophilus parasuis in vitro.

    PubMed

    Li, Li; Song, Xu; Yin, Zhongqiong; Jia, Renyong; Li, Zhengwen; Zhou, Xun; Zou, Yuanfeng; Li, Lixia; Yin, Lizi; Yue, Guizhou; Ye, Gang; Lv, Cheng; Shi, Wenjing; Fu, Yuping

    2016-01-01

    Haemophilus parasuis is the causative agent of Glässer's disease, which leads to serious economic loss to the swine industry. Although antibiotics are widely used to control infections, outbreaks of this disease repeatedly happen. In this study, emodin from Polygonum cuspidatum showed potent inhibitory effect against H. parasuis. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of emodin were 32 and 64μg/mL, respectively. The antibacterial kinetic curves indicated the antibacterial activity of emodin was in a concentration-dependent manner. Cell membrane permeability and flow cytometry assays proved that emodin could destroy cell membrane integrity and increase membrane permeability, and fluorescence spectra assay indicated emodin has influenced conformation of membrane protein. Under transmission electron microscopy, serious lesions of H. parasuis exposed to emodin (64μg/mL) were found, including irregular cell shape, plasmolysis, ruptured cell wall and membrane and cytoplasmic vacuolation. These results suggested that emodin could be used as candidate for treating Glässer's disease. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Lysozyme enhances the bactericidal effect of BP100 peptide against Erwinia amylovora, the causal agent of fire blight of rosaceous plants.

    PubMed

    Cabrefiga, Jordi; Montesinos, Emilio

    2017-02-17

    Fire blight is an important disease affecting rosaceous plants. The causal agent is the bacteria Erwinia amylovora which is poorly controlled with the use of conventional bactericides and biopesticides. Antimicrobial peptides (AMPs) have been proposed as a new compounds suitable for plant disease control. BP100, a synthetic linear undecapeptide (KKLFKKILKYL-NH 2 ), has been reported to be effective against E. amylovora infections. Moreover, BP100 showed bacteriolytic activity, moderate susceptibility to protease degradation and low toxicity. However, the peptide concentration required for an effective control of infections in planta is too high due to some inactivation by tissue components. This is a limitation beause of the high cost of synthesis of this compound. We expected that the combination of BP100 with lysozyme may produce a synergistic effect, enhancing its activity and reducing the effective concentration needed for fire blight control. The combination of a synhetic multifunctional undecapeptide (BP100) with lysozyme produces a synergistic effect. We showed a significant increase of the antimicrobial activity against E. amylovora that was associated to the increase of cell membrane damage and to the reduction of cell metabolism. Combination of BP100 with lysozyme reduced the time required to achieve cell death and the minimal inhibitory concentration (MIC), and increased the activity of BP100 in the presence of leaf extracts even when the peptide was applied at low doses. The results obtained in vitro were confirmed in leaf infection bioassays. The combination of BP100 with lysozyme showed synergism on the bactericidal activity against E. amylovora and provide the basis for developing better formulations of antibacterial peptides for plant protection.

  5. Bactericidal Effect of Calcium Oxide (Scallop-Shell Powder) Against Pseudomonas aeruginosa Biofilm on Quail Egg Shell, Stainless Steel, Plastic, and Rubber.

    PubMed

    Jung, Soo-Jin; Park, Shin Young; Kim, Seh Eun; Kang, Ike; Park, Jiyong; Lee, Jungwon; Kim, Chang-Min; Chung, Myung-Sub; Ha, Sang-Do

    2017-07-01

    The aim of this study was to evaluate the bactericidal effect of calcium oxide (CaO) against Pseudomonas aeruginosa biofilms on quail eggshells and major egg contacting surfaces (stainless steel, plastic, and rubber). The samples were subjected to CaO treatments (0%, 0.01%, 0.05%, 0.10%, 0.15%, 0.20%, 0.25%, and 0.30%) for 1 min. All the CaO treatments significantly reduced P. aeruginosa biofilms on all tested surfaces as compared to controls. In comparison of biofilm stability, the strongest and most resistant biofilm was formed on eggshell against the CaO treatment, followed by rubber, stainless steel, and plastic. In evaluation of bactericidal effect, the largest reduction (3.16 log CFU) was observed in plastic even at the lowest concentration of CaO (0.01%), whereas the least reduction was found in eggshells, regardless of CaO concentration. In addition, stainless steel showed a significant reduction in biofilm formation at all concentrations except 0.10% to 0.15% CaO. At 0.30% CaO, the reduction of P. aeruginosa in biofilms on stainless steel, plastic, rubber, and eggshell were 5.48, 6.37, 4.87, and 3.14 log CFU/cm 2 (CFU/egg), respectively. Biofilm reduction after CaO treatment was also observed by field emission scanning electron microscopy (FE-SEM). Based on the FE-SEM images, we observed that P. aeruginosa biofilms formed compact aggregations on eggshell surfaces with CaO treatments up to 0.30%. More specifically, a 0.20% CaO treatment resulted in the reductions of 3 to 6 log CFU in all materials. © 2017 Institute of Food Technologists®.

  6. Synthesis, Antimicrobial, and Antioxidant Activities of Chalcogen-Containing Nitrone Derivatives from (R)-citronellal

    PubMed Central

    Ferraz, Mariana C.; Mano, Renata A.; Oliveira, Daniela H.; Maia, Darla S. V.; Silva, Wladimir P.; Savegnago, Lucielli; Lenardão, Eder J.; Jacob, Raquel G.

    2017-01-01

    Background: The main constituents of Cymbopogonnardus (L) Rendle and C. citratus (DC) Stapfessential oils are (R)-citronellal and citral, respectively. Organochalcogen compounds can boost the biological activities of natural products. Methods: Several chalcogen-containing nitrones derived from (R)-citronellal and citral were prepared and evaluated for their antimicrobial and antioxidant activities. The antimicrobial activity was evaluated by the disc diffusion test and the antioxidant properties were evaluated in vitro by DPPH (1,1-diphenyl-2-picryl-hydrazyl), ABTS (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), and FRAP (ferric ion reducing antioxidant power) assays. Results: In the antimicrobial assay, (E)-N,3,7-trimethyl-3-(phenylthio)oct-6-en-1-imine oxide 5c exhibited halos between 21.5 mm (Escherichia coli O157:H7) and 26.0 mm (Listeria monocytogenes), while (E)-N,3,7-trimethyloct-6-en-1-imine oxide 5d presented halos between 22.5 mm (E. coli O157:H7) and 31.0 mm (L. monocytogenes). (E)-N,3,7-Trimethyl-2-(phenylthio)oct-6-en-1-imine oxide 5a showed the lowest minimal inhibitory concentration (MIC) value against Bacillus cereus (0.48 mM), and 5c was the most potent bactericide, with a minimal bactericidal concentration (MBC) of 0.52 mM for E. coli O157:H7. In the antioxidant assays, 5c, 5d, and 10 ((E)-3,7-dimethyl-2-(phenylselanyl)oct-6-enal oxime) were the most actives in the DPPH, ABTS, and FRAP assays, respectively. Conclusions: The presence of a phenylthio group in the nitrone increases its antimicrobial activity against Gram-positive and Gram-negative foodborne pathogens in the disk diffusion test and the antioxidant activity in vitro. PMID:28930254

  7. Antibiofilm Activity and Synergistic Inhibition of Staphylococcus aureus Biofilms by Bactericidal Protein P128 in Combination with Antibiotics

    PubMed Central

    Nair, Sandhya; Desai, Srividya; Poonacha, Nethravathi; Vipra, Aradhana

    2016-01-01

    P128 is an antistaphylococcal protein, comprising a cell wall-degrading enzymatic region and a Staphylococcus-specific binding region, which possesses specific and potent bactericidal activity against sensitive and drug-resistant strains of Staphylococcus aureus. To explore P128's ability to kill S. aureus in a range of environments relevant to clinical infection, we investigated the anti-S. aureus activity of P128 alone and in combination with standard-of-care antibiotics on planktonic and biofilm-embedded cells. P128 was found to have potent antibiofilm activity on preformed S. aureus biofilms as detected by CFU reduction and a colorimetric minimum biofilm inhibitory concentration (MBIC) assay. Scanning electron microscopic images of biofilms formed on the surfaces of microtiter plates and on catheters showed that P128 at low concentrations could destroy the biofilm structure and lyse the cells. When it was tested in combination with antibiotics which are known to be poor inhibitors of S. aureus in biofilms, such as vancomycin, gentamicin, ciprofloxacin, linezolid, and daptomycin, P128 showed highly synergistic antibiofilm activity that resulted in much reduced MBIC values for P128 and the individual antibiotics. The synergistic effect was seen for both sensitive and resistant isolates of S. aureus. Additionally, in an in vitro mixed-biofilm model mimicking the wound infection environment, P128 was able to prevent biofilm formation by virtue of its anti-Staphylococcus activity. The potent S. aureus biofilm-inhibiting activity of P128 both alone and in combination with antibiotics is an encouraging sign for the development of P128 for treatment of complicated S. aureus infections involving biofilms. PMID:27671070

  8. Antibacterial activity of Thai herbal extracts on acne involved microorganism.

    PubMed

    Niyomkam, P; Kaewbumrung, S; Kaewnpparat, S; Panichayupakaranant, P

    2010-04-01

    Ethyl acetate and methanol extracts of 18 Thai medicinal plants were investigated for their antibacterial activity against Propionibacterium acnes, Stapylococcus aureus, and S. epidermidis. Thirteen plant extracts were capable of inhibiting the growth of P. acnes and S. epidermidis, while 14 plant extracts exhibited an inhibitory effect on S. aureus. Based on the broth dilution method, the ethyl acetate extract of Alpinia galanga (L.) Wild. (Zingiberaceae) rhizome showed the strongest antibacterial effect against P. acnes, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 156.0 and 312.0 microg/mL, respectively. On the basis of bioassay-guided purification, the ethyl acetate extract was isolated to afford the antibacterial active compound, which was identified as 1'-acetoxychavicol acetate (1'-ACA). 1'-ACA had a strong inhibitory effect on P. acnes with MIC and MBC values of 62.0 and 250.0 microg/mL, respectively. Thus, 1'-ACA was used as an indicative marker for standardization of A. galanga extract using high performance liquid chromatography. These results suggest that A. galanga extract could be an interesting agent for further studies on an alternative treatment of acne.

  9. Microstructural, spectroscopic, and antibacterial properties of silver-based hybrid nanostructures biosynthesized using extracts of coriander leaves and seeds

    PubMed Central

    Luna, Carlos; Barriga-Castro, Enrique Díaz; Gómez-Treviño, Alberto; Núñez, Nuria O; Mendoza-Reséndez, Raquel

    2016-01-01

    Coriander leaves and seeds have been highly appreciated since ancient times, not only due to their pleasant flavors but also due to their inhibitory activity on food degradation and their beneficial properties for health, both ascribed to their strong antioxidant activity. Recently, it has been shown that coriander leaf extracts can mediate the synthesis of metallic nanoparticles through oxidation/reduction reactions. In the present study, extracts of coriander leaves and seeds have been used as reaction media for the wet chemical synthesis of ultrafine silver nanoparticles and nanoparticle clusters, with urchin- and tree-like shapes, coated by biomolecules (mainly, proteins and polyphenols). In this greener route of nanostructure preparation, the active biocompounds of coriander simultaneously play the roles of reducing and stabilizing agents. The morphological and microstructural studies of the resulting biosynthesized silver nanostructures revealed that the nanostructures prepared with a small concentration of the precursor Ag salt (AgNO3 =5 mM) exhibit an ultrafine size and a narrow size distribution, whereas particles synthesized with high concentrations of the precursor Ag salt (AgNO3 =0.5 M) are polydisperse and formation of supramolecular structures occurs. Fourier transform infrared and Raman spectroscopy studies indicated that the bioreduction of the Ag− ions takes place through their interactions with free amines, carboxylate ions, and hydroxyl groups. As a consequence of such interactions, residues of proteins and polyphenols cap the biosynthesized Ag nanoparticles providing them a hybrid core/shell structure. In addition, these biosynthesized Ag nanomaterials exhibited size-dependent plasmon extinction bands and enhanced bactericidal activities against both Gram-positive and Gram-negative bacteria, displaying minimal inhibitory Ag concentrations lower than typical values reported in the literature for Ag nanoparticles, probably due to the synergy of the bactericidal activities of the Ag nanoparticle cores and their capping ligands. PMID:27703347

  10. Bactericidal Effects of HVOF-Sprayed Nanostructured TiO2 on Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Jeffery, B.; Peppler, M.; Lima, R. S.; McDonald, A.

    2010-01-01

    Titanium dioxide (TiO2) has been shown to exhibit photocatalytic bactericidal activity. This preliminary study focused on examining the photocatalytic activity of high-velocity oxy-fuel (HVOF) sprayed nanostructured TiO2 coatings to kill Pseudomonas aeruginosa. The surfaces of the nanostructured TiO2 coatings were lightly polished before addition of the bacterial solution. Plates of P. aeruginosa were grown, and then suspended in a phosphate buffer saline (PBS) solution. The concentration of bacteria used was determined by a photo-spectrometer, which measured the amount of light absorbed by the bacteria-filled solution. This solution was diluted and pipetted onto the coating, which was exposed to white light in 30-min intervals, up to 120 min. It was found that on polished HVOF-sprayed coatings exposed to white light, 24% of the bacteria were killed after exposure for 120 min. On stainless steel controls, approximately 6% of the bacteria were not recovered. These preliminary results show that thermal-sprayed nanostructured TiO2 coatings exhibited photocatalytic bactericidal activity with P. aeruginosa.

  11. Graphene sponge decorated with copper nanoparticles as a novel bactericidal filter for inactivation of Escherichia coli.

    PubMed

    Deng, Can-Hui; Gong, Ji-Lai; Zeng, Guang-Ming; Zhang, Peng; Song, Biao; Zhang, Xue-Gang; Liu, Hong-Yu; Huan, Shuang-Yan

    2017-10-01

    Nanotechnology has great potential in water purification. However, the limitations such as aggregation and toxicity of nanomaterials have blocked their practical application. In this work, a novel copper nanoparticles-decorated graphene sponge (Cu-GS) was synthesized using a facile hydrothermal method. Cu-GS consisting of three-dimensional (3D) porous graphene network and well-dispersed Cu nanoparticles exhibited high antibacterial efficiency against Esherichia coli when used as a bactericidal filter. The morphological changes determined by scanning electron microscope and fluorescence images measured by flow cytometry confirmed the involvement of membrane damage induced by Cu-GS in their antibacterial process. The oxidative ability of Cu-GS and intercellular reactive oxygen species (ROS) were also determined to elucidate the possible antibacterial mechanism of Cu-GS. Moreover, the concentration of released copper ions from Cu-GS was far below the drinking water standard, and the copper ions also have an effect on the antibacterial activity of Cu-GS. Results suggested that Cu-GS as a novel bactericidal filter possessed a potential application of water disinfection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Bactericidal Activity of Micromolar N-Chlorotaurine: Evidence for Its Antimicrobial Function in the Human Defense System

    PubMed Central

    Nagl, Markus; Hess, Michael W.; Pfaller, Kristian; Hengster, Paul; Gottardi, Waldemar

    2000-01-01

    N-Chlorotaurine, the main representative of long-lived oxidants found in the supernatant of stimulated granulocytes, has been investigated systematically with regard to its antibacterial activity at different physiological concentrations for the first time. N-Chlorotaurine (12.5 to 50 μM) demonstrated a bactericidal effect i.e., a 2 to 4 log10 reduction in viable counts, after incubation at 37°C for 6 to 9 h at pH 7.0, which effect was significantly enhanced in an acidic milieu (at pH 5.0), with a 3 to 4 log10 reduction after 2 to 3 h. Moreover, bacteria were attenuated after being incubated in N-chlorotaurine for a sublethal time, as demonstrated with the mouse peritonitis model. The supernatant of stimulated granulocytes exhibited similar activity. Transmission electron microscopy revealed changes in the bacterial cell membrane and cytoplasmic disintegration with both reacting systems, even in the case of a mere attenuation. The results of this study suggest a significant bactericidal function of N-chlorotaurine and other chloramines during inflammation. PMID:10952603

  13. Antioxidant Effect of Melatonin on the Functional Activity of Colostral Phagocytes in Diabetic Women

    PubMed Central

    Fagundes, Danny L. G.; Calderon, Iracema M. P.; França, Eduardo L.

    2013-01-01

    Melatonin is involved in a number of physiological and oxidative processes, including functional regulation in human milk. The present study investigated the mechanisms of action of melatonin and its effects on the functional activity of colostral phagocytes in diabetic women. Colostrum samples were collected from normoglycemic (N = 38) and diabetic (N = 38) women. We determined melatonin concentration, superoxide release, bactericidal activity and intracellular Ca2+ release by colostral phagocytes treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) and incubated with melatonin and its precursor (N-acetyl-serotonin-NAS), antagonist (luzindole) and agonist (chloromelatonin-CMLT). Melatonin concentration was higher in colostrum samples from hyperglycemic than normoglycemic mothers. Melatonin stimulated superoxide release by colostral phagocytes from normoglycemic but not hyperglycemic women. NAS increased superoxide, irrespective of glycemic status, whereas CMTL increased superoxide only in cells from the normoglycemic group. Phagocytic activity in colostrum increased significantly in the presence of melatonin, NAS and CMLT, irrespective of glycemic status. The bactericidal activity of colostral phagocytes against enterophatogenic Escherichia coli (EPEC) increased in the presence of melatonin or NAS in the normoglycemic group, but not in the hyperglycemic group. Luzindole blocked melatonin action on colostrum phagocytes. Phagocytes from the normoglycemic group treated with melatonin exhibited an increase in intracellular Ca2+ release. Phagocytes treated with TMB-8 (intracellular Ca2+ inhibitor) decreased superoxide, bactericidal activity and intracellular Ca2+ release in both groups. The results obtained suggest an interactive effect of glucose metabolism and melatonin on colostral phagocytes. In colostral phagocytes from normoglycemic mothers, melatonin likely increases the ability of colostrum to protect against EPEC and other infections. In diabetic mothers, because maternal hyperglycemia modifies the functional activity of colostrum phagocytes, melatonin effects are likely limited to anti-inflammatory processes, with low superoxide release and bactericidal activity. PMID:23437270

  14. Innovative Plasma Disinfection Technique with the Reduced-pH Method and the Plasma-Treated Water (PTW) -Safety and Powerful Disinfection with Cryopreserved PTW-

    NASA Astrophysics Data System (ADS)

    Kitano, Katsuhisa; Ikawa, Satoshi; Nakashima, Yoichi; Tani, Atsushi; Yokoyama, Takashi; Ohshima, Tomoko

    2015-09-01

    Among the applications of the plasma disinfection to human body, plasma sterilization in liquid is crucial. We found that the plasma-treated water (PTW) has strong bactericidal activity under low pH condition and the half-lives of its activity depend on temperature. Lower temperature brings longer half-life and the bactericidal activity of PTW can be kept by cryopreservation. These physicochemical properties were in accordance with Arrhenius equation both in liquid and solid states. From the experimental results of ESR (Electron Spin Resonance) measurement of O2-in liquid against PTW with spin trapping method, half-lives of PTW were also in accordance with Arrhenius equation. It suggests that high concentration PTW as integrated value can be achieved by cooling of plasma apparatus. Pure PTW has disinfection power of 22 log reduction (B. subtilis). This corresponds to 65% H2O2, 14% hypochlorous acid and 0.33% peracetic acid, which are deadly poison for human. On the other hand, PTW is deactivated soon at body temperature. This indicates that toxicity to human body seems to be low. PTW, which is a sort of indirect plasma exposure, with pH and temperature controls could be applied for safety and powerful disinfection. MEXT (15H03583, 23340176, 25108505). NCCE (23-A-15).

  15. The Efficacy and Underlying Mechanism of Sulfone Derivatives Containing 1,3,4-oxadiazole on Citrus Canker.

    PubMed

    Li, Pei; Ma, Yuhua; Zhou, Junliang; Luo, Hui; Yan, Jiawen; Mao, Yongya; Wang, Zhuang

    2015-08-04

    The objectives of the current study were to isolate and identify the pathogen responsible for citrus canker and investigate the efficacy of sulfone derivatives containing 1,3,4-oxadiazole moiety on controlling citrus canker caused by Xanthomonas citri subsp. citri (Xcc) under in vitro and field conditions. In an in vitro study, we tested eight sulfone derivatives against Xcc and the results demonstrated that compound 3 exhibited the best antibacterial activity against Xcc, with a half-maximal effective concentration (EC50) value of 1.23 μg/mL, which was even better than those of commercial bactericides Kocide 3000 (58.21 μg/mL) and Thiodiazole copper (77.04 μg/mL), respectively. Meanwhile, under field experiments, compound 3 treatments demonstrated the highest ability to reduce the disease of citrus canker in leaves and fruits in two different places relative to an untreated control as well as the commercial bactericides Kocide 3000 and Thiodiazole copper. Meanwhile, compound 3 could stimulate the increase in peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia lyase (PAL) activities in the navel orange leaves, causing marked enhancement of plant resistance against citrus canker. Moreover, compound 3 could damage the cell membranes, destruct the biofilm formation, inhibit the production of extracellular polysaccharide (EPS), and affect the cell membrane permeability to restrain the growth of the bacteria.

  16. GREATER HEMOCYTE BACTERICIDAL ACTIVITY IN OYSTERS (CRASSOSTREA VIRGINICA) FROM A RELATIVELY CONTAMINATED SITE IN PENSACOLA BAY, FLORIDA.

    EPA Science Inventory

    Bivalve mollusks such as Crassostrea virginica inhabiting polluted estuaries and coastal areas may bioaccumulate high concentrations of contaminants without apparent ill effects. However, changes in putative internal defense activities have been associated with contaminant accumu...

  17. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections

    NASA Astrophysics Data System (ADS)

    Chu, Ming; Zhang, Ming-Bo; Liu, Yan-Chen; Kang, Jia-Rui; Chu, Zheng-Yun; Yin, Kai-Lin; Ding, Ling-Yu; Ding, Ran; Xiao, Rong-Xin; Yin, Yi-Nan; Liu, Xiao-Yan; Wang, Yue-Dan

    2016-04-01

    Berberine is an isoquinoline alkaloid widely used in the treatment of microbial infections. Recent studies have shown that berberine can enhance the inhibitory efficacy of antibiotics against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). However, the underlying mechanisms are poorly understood. Here, we demonstrated that sub-minimum inhibitory concentrations (MICs) of berberine exhibited no bactericidal activity against MRSA, but affected MRSA biofilm development in a dose dependent manner within the concentration ranging from 1 to 64 μg/mL. Further study indicated that berberine inhibited MRSA amyloid fibrils formation, which consist of phenol-soluble modulins (PSMs). Molecular dynamics simulation revealed that berberine could bind with the phenyl ring of Phe19 in PSMα2 through hydrophobic interaction. Collectively, berberine can inhibit MRSA biofilm formation via affecting PSMs’ aggregation into amyloid fibrils, and thereby enhance bactericidal activity of antibiotics. These findings will provide new insights into the multiple pharmacological properties of berberine in the treatment of microbial-generated amyloid involved diseases.

  19. Evaluation of the antibacterial potential of Petroselinum crispum and Rosmarinus officinalis against bacteria that cause urinary tract infections

    PubMed Central

    Petrolini, Fernanda Villas Boas; Lucarini, Rodrigo; de Souza, Maria Gorete Mendes; Pires, Regina Helena; Cunha, Wilson Roberto; Martins, Carlos Henrique Gomes

    2013-01-01

    In this study we evaluated the antibacterial activity of the crude hydroalcoholic extracts, fractions, and compounds of two plant species, namely Rosmarinus officinalis and Petroselinum crispum, against the bacteria that cause urinary tract infection. The microdilution method was used for determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The crude hydroalcoholic extract of R. officinalis displayed in vitro activity against Gram-positive bacteria, with satisfactory MBC for the clinical isolate S. saprophyticus. The fractions and the pure compound rosmarinic acid did not furnish promising results for Gram-negative bacteria, whereas fractions 2, 3, and 4 gave encouraging results for Gram-positive bacteria and acted as bactericide against S. epidermidis as well as E. faecalis (ATCC 29212) and its clinical isolate. R. officinalis led to promising results in the case of Gram-positive bacteria, resulting in a considerable interest in the development of reliable alternatives for the treatment of urinary infections. PMID:24516424

  20. Evaluation of the antibacterial potential of Petroselinum crispum and Rosmarinus officinalis against bacteria that cause urinary tract infections.

    PubMed

    Petrolini, Fernanda Villas Boas; Lucarini, Rodrigo; de Souza, Maria Gorete Mendes; Pires, Regina Helena; Cunha, Wilson Roberto; Martins, Carlos Henrique Gomes

    2013-01-01

    In this study we evaluated the antibacterial activity of the crude hydroalcoholic extracts, fractions, and compounds of two plant species, namely Rosmarinus officinalis and Petroselinum crispum, against the bacteria that cause urinary tract infection. The microdilution method was used for determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The crude hydroalcoholic extract of R. officinalis displayed in vitro activity against Gram-positive bacteria, with satisfactory MBC for the clinical isolate S. saprophyticus. The fractions and the pure compound rosmarinic acid did not furnish promising results for Gram-negative bacteria, whereas fractions 2, 3, and 4 gave encouraging results for Gram-positive bacteria and acted as bactericide against S. epidermidis as well as E. faecalis (ATCC 29212) and its clinical isolate. R. officinalis led to promising results in the case of Gram-positive bacteria, resulting in a considerable interest in the development of reliable alternatives for the treatment of urinary infections.

  1. Feasibility study of the sterilization of pigskin used as wound dressings by neutral electrolyzed water.

    PubMed

    Ge, Liangpeng; Zhang, Xiaochun; Cao, Chuan; Gu, Zhaobin; Liu, Zuohua; Liu, Lubin; Lin, Baozhong

    2012-06-01

    Neutral electrolyzed water (NEW) is considered to be a high-level biodegradable disinfectant with sporicidal, bactericidal, and virucidal activity. It has also been reported to accelerate wound healing; thus, it is particularly attractive for the elimination or minimization of the microbial population of skin grafts to be used as wound dressings. Pigskins were sterilized with different concentrations of NEW and with different methods. The feasibility of pigskin sterilization by NEW was evaluated through microbiological analyses, viability assays, histologic assessments, contact cytotoxicity assays, and extract cytotoxicity assays. NEW has strong bactericidal effects on pigskin microorganisms, does not change skin graft histologic properties, and has no cytotoxicity; however, skin viability was significantly reduced after NEW treatment. Although NEW treatment is a very safe and effective method for nonviable pigskin dressing sterilization, to obtain a complete sterilization of pigskin grafts, available chlorine concentration of NEW as well as sterilization time and methods should be optimized. Copyright © 2012 by Lippincott Williams & Wilkins.

  2. In vitro activity of novel anti-MRSA cephalosporins and comparator antimicrobial agents against staphylococci involved in prosthetic joint infections.

    PubMed

    Isnard, Christophe; Dhalluin, Anne; Malandain, Damasie; Bruey, Quentin; Auzou, Michel; Michon, Jocelyn; Giard, Jean-Christophe; Guérin, François; Cattoir, Vincent

    2018-02-05

    Ceftaroline and ceftobiprole are new parenteral cephalosporins with potent activity against methicillin-resistant (MR) staphylococci, which are the leading cause of prosthetic joint infections (PJIs). The aim of this study was to determine and compare the in vitro activities of both molecules against staphylococcal isolates recovered from clinically documented PJIs. A collection of 200 non-duplicate clinical isolates [100 Staphylococcus aureus and 100 coagulase-negative staphylococci (CoNS), including 19 and 27 MR isolates, respectively] was studied. Minimum inhibitory concentrations (MICs) of oxacillin, ceftaroline, ceftobiprole, vancomycin, teicoplanin, clindamycin, levofloxacin, linezolid and daptomycin were determined by the broth microdilution method. Bactericidal activity (at 4× MIC) of ceftaroline, ceftobiprole, vancomycin, teicoplanin, linezolid and daptomycin was assessed by time-kill assay. Among the S. aureus isolates, 100% were susceptible to ceftaroline (MIC 50/90 , 0.25/0.5μg/mL) and 98% were susceptible to ceftobiprole (MIC 50/90 , 0.5/1μg/mL), regardless of their methicillin resistance. The two ceftobiprole-non-susceptible strains (including one MRSA) showed MICs at 4mg/L. Against CoNS isolates, ceftaroline and ceftobiprole exhibited in vitro potency with MIC 50/90 values at 0.06/0.25μg/mL and 0.25/1μg/mL, respectively. At 4× MIC, ceftaroline and ceftobiprole showed rapid and marked bactericidal activity against both S. aureus and CoNS (after 24/12h and 12/6h of incubation, respectively), whilst none of the other molecules tested had a bactericidal effect by 24h. This study showed that ceftaroline and ceftobiprole have excellent in vitro activity against clinical isolates of staphylococci involved in PJIs. These molecules may therefore represent promising alternatives for the treatment of such infections. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  3. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance

    PubMed Central

    Valle, Demetrio L.; Cabrera, Esperanza C.; Puzon, Juliana Janet M.; Rivera, Windell L.

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID:26741962

  4. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    PubMed

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  5. Pharmacokinetics and bactericidal activities of one 800-milligram dose versus two 400-milligram doses of intravenously administered pefloxacin in healthy volunteers.

    PubMed Central

    Petitjean, O; Pangon, B; Brion, N; Tod, M; Chaplain, C; Le Gros, V; Louchahi, K; Allouch, P

    1993-01-01

    Pefloxacin pharmacokinetics and serum bactericidal activities (SBA) against Escherichia coli and Staphylococcus aureus were compared after intravenous infusion of either a single 800-mg dose or twice-daily 400-mg doses into 16 healthy volunteers. Plasma pefloxacin concentrations were measured for up to 60 h, and SBAs were determined 1, 12, and 24 h after the start of the infusion. The mean areas under the concentration-versus-time curve for plasma were not different (138 versus 136 h.mg/liter). The mean clearances, volumes of distribution, and half-lives were also comparable. The mean (+/- standard deviation) maximal concentration after the 800-mg infusion was 12.11 +/- 1.35 versus 6.51 +/- 0.73 mg/liter after the first 400-mg infusion and 7.42 +/- 0.76 mg/liter after the second 400-mg infusion. Mean trough concentrations at 24 h were significantly different: 2.77 +/- 0.63 (800 mg) versus 1.93 +/- 0.49 (400 mg twice) mg/liter (P = 0.0007). Mean SBAs against E. coli after 800 mg of pefloxacin were higher than 1/128 (1 h), 1/32 (12 h), and 1/16 (24 h). Mean SBAs against S. aureus under the same conditions were higher than 1/64 (1 h), 1/16 (12 h), and 1/8 (24 h). Mean SBAs at 1 and 12 h were significantly higher after the 800-mg infusion than after the 400-mg infusion but were similar at 24 h for both regimens. Comparison of SBAs according to National Committee for Clinical Laboratory Standards criteria showed a similar adequacy at 24 h for both regimens against both strains. Administration of 800 mg of pefloxacin once a day is bioequivalent to 400 mg twice a day, and bactericidal activity of the 800-mg infusion is not less than that of two 400-mg infusions. PMID:8494368

  6. Application of slightly acidic electrolyzed water for decontamination of stainless steel surfaces in animal transport vehicles.

    PubMed

    Ni, Li; Zheng, Weichao; Zhang, Qiang; Cao, Wei; Li, Baoming

    2016-10-01

    The effectiveness of slightly acidic electrolyzed water (SAEW) in reducing Escherichia coli, Salmonella typhimurim, Staphylococcus aureus or bacterial mixtures on stainless steel surfaces was evaluated and compared its efficacy with composite phenol solution for reducing total aerobic bacteria in animal transport vehicles. Stainless steel surfaces were inoculated with these strains individually or in a mixture, and sprayed with SAEW, composite phenol, or alkaline electrolyzed water for 0.5, 1, 1.5 and 2min. The bactericidal activity of SAEW increased with increasing available chlorine concentration and spraying duration. The SAEW solution of 50mgl -1 of available chlorine concentration showed significantly higher effectiveness than composite phenol in reducing the pathogens on stainless steel surfaces (P<0.05). Complete inactivation of pathogens on stainless steel surfaces were observed after treatment with alkaline electrolyzed water followed by SAEW at 50mgl -1 of available chlorine concentration for 2min or alkaline electrolyzed water treatment followed by SAEW treatment at 90mgl -1 of available chlorine concentration for 0.5min. The efficacy of SAEW in reducing total aerobic bacteria in animal transport vehicles was also determined. Vehicles in the disinfection booth were sprayed with the same SAEW, alkaline electrolyzed water and composite phenol solutions using the automatic disinfection system. Samples from vehicle surfaces were collected with sterile cotton swabs before and after each treatment. No significant differences in bactericidal efficiency were observed between SAEW and composite phenol for reducing total aerobic bacteria in the vehicles (P>0.05). SAEW was also found to be more effective when used in conjunction with alkaline electrolyzed water. Results suggest that the bactericidal efficiency of SAEW was higher than or equivalent to that of composite phenol and SAEW may be used as effective alternative for reducing microbial contamination of animal transport vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. KR-12-a5 is a non-cytotoxic agent with potent antimicrobial effects against oral pathogens.

    PubMed

    Caiaffa, Karina Sampaio; Massunari, Loiane; Danelon, Marcelle; Abuna, Gabriel Flores; Bedran, Telma Blanca Lombardo; Santos-Filho, Norival Alves; Spolidorio, Denise Madalena Palomari; Vizoto, Natalia Leal; Cilli, Eduardo Maffud; Duque, Cristiane

    2017-11-01

    This study evaluated the cytotoxicity and antimicrobial activity of analogs of cationic peptides against microorganisms associated with endodontic infections. L-929 fibroblasts were exposed to LL-37, KR-12-a5 and hBD-3-1C V and chlorhexidine (CHX, control), and cell metabolism was evaluated with MTT. The minimal inhibitory concentration (MIC) and the minimal bactericidal/fungicidal concentration (MBC/MFC) of the peptides and CHX were determined against oral pathogens associated with endodontic infections. Enterococcus faecalis and Streptococcus mutans biofilms were cultivated in bovine dentin blocks, exposed to different concentrations of the most efficient antimicrobial peptide and analyzed by confocal laser scanning microscopy. CHX and peptides affected the metabolism of L-929 at concentrations > 31.25 and 500 μg ml -1 , respectively. Among the peptides, KR-12-a5 inhibited growth of both the microorganisms tested with the lowest MIC/MBC/MFC values. In addition, KR-12-a5 significantly reduced E. faecalis and S. mutans biofilms inside dentin tubules. In conclusion, KR-12-a5 is a non-cytotoxic agent with potent antimicrobial and anti-biofilm activity against oral pathogens associated with endodontic infections.

  8. Survival and Filamentation of Salmonella enterica Serovar Enteritidis PT4 and Salmonella enterica Serovar Typhimurium DT104 at Low Water Activity

    PubMed Central

    Mattick, K. L.; Jørgensen, F.; Legan, J. D.; Cole, M. B.; Porter, J.; Lappin-Scott, H. M.; Humphrey, T. J.

    2000-01-01

    In this study we investigated the long-term survival of and morphological changes in Salmonella strains at low water activity (aw). Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 survived at low aw for long periods, but minimum humectant concentrations of 8% NaCl (aw, 0.95), 96% sucrose (aw, 0.94), and 32% glycerol (aw, 0.92) were bactericidal under most conditions. Salmonella rpoS mutants were usually more sensitive to bactericidal levels of NaCl, sucrose, and glycerol. At a lethal aw, incubation at 37°C resulted in more rapid loss of viability than incubation at 21°C. At aw values of 0.93 to 0.98, strains of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium formed filaments, some of which were at least 200 μm long. Filamentation was independent of rpoS expression. When the preparations were returned to high-aw conditions, the filaments formed septa, and division was complete within approximately 2 to 3 h. The variable survival of Salmonella strains at low aw highlights the importance of strain choice when researchers produce modelling data to simulate worst-case scenarios or conduct risk assessments based on laboratory data. The continued increase in Salmonella biomass at low aw (without a concomitant increase in microbial count) would not have been detected by traditional microbiological enumeration tests if the tests had been performed immediately after low-aw storage. If Salmonella strains form filaments in food products that have low aw values (0.92 to 0.98), there are significant implications for public health and for designing methods for microbiological monitoring. PMID:10742199

  9. Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice.

    PubMed

    Martínez Viedma, Pilar; Sobrino López, Angel; Ben Omar, Nabil; Abriouel, Hikmate; Lucas López, Rosario; Valdivia, Eva; Martín Belloso, Olga; Gálvez, Antonio

    2008-12-10

    The effect of the broad spectrum cyclic antimicrobial peptide enterocin AS-48 combination with high-intensity pulsed-electric field (HIPEF) treatment (35 kV/cm, 150 Hz, 4 micros and bipolar mode) was tested on Salmonella enterica CECT 915 in apple juice. A response surface methodology was applied to study the bactericidal effects of the combined treatment. The process variables were AS-48 concentration, temperature, and HIPEF treatment time. While treatment with enterocin AS-48 alone up to 60 microg/ml had no effect on the viability of S. enterica in apple juice, an increased bactericidal activity was observed in combination with HIPEF treatments. Survival fraction was affected by treatment time, enterocin AS48 concentration and treatment temperature. The combination of 100 micros of HIPEF treatment, 30 microg/ml of AS-48, and temperature of 20 degrees C resulted in the lowest inactivation, with only a 1.2-log reduction. The maximum inactivation of 4.5-log cycles was achieved with HIPEF treatment for 1000 micros in combination with 60 microg/ml of AS-48 and a treatment temperature of 40 degrees C. Synergism between enterocin AS-48 and HIPEF treatment depended on the sequence order application, since it was observed only when HIPEF was applied in the presence of previously-added bacteriocin. The combined treatment could improve the safety of freshly-made apple juice against S. enterica transmission.

  10. Controlled assembly of silver nano-fluid in Heliotropium crispum extract: A potent anti-biofilm and bactericidal formulation

    NASA Astrophysics Data System (ADS)

    Khan, Faria; Hashmi, Muhammad Uzair; Khalid, Nauman; Hayat, Muhammad Qasim; Ikram, Aamer; Janjua, Hussnain A.

    2016-11-01

    The study describes the optimized method for silver nanoparticle (AgNPs) synthesis using Heliotropium crispum (HC) plant extract. Optimization of physicochemical parameters resulted in stable and rapidly assembled AgNPs. FTIR results suggest presence of plant phytochemicals that helped in the reduction, stabilization and capping of AgNPs. The assembled Ag nano-composites displayed the peak surface plasmon resonance (SPR) around 428 nm. The presence of uniquely assembled Ag-biomolecule composites, cap and stabilize nanoparticles in aqueous plant suspension. Spherical, uniform-shaped AgNPs with low poly-dispersion and average particle size of 42 nm and was determined through dynamic light scattering (DLS) and scanning election microscopy (SEM) which present robust interaction with microbes. The study also evaluates the antimicrobial and anti-biofilm properties of biologically synthesized AgNPs on clinical isolates of MRSA, Pseudomonas aeruginosa and Acinetobacter baumannii. Minimum inhibitory concentration (0.5 mg mL-1) of nanoparticles that presented bactericidal effect was made through inhibition assays on bacterial strains. The concentration which presented potent bactericidal response was then evaluated through growth inhibition in liquid medium for anti-biofilm studies at 2.0 mg mL-1. HC-Ag nanoparticles mediated anti-biofilm effects on Pseudomonas aeruginosa was revealed through SEM. Complete breakdown of biofilm's extracellular polymeric substances resulted after incubation with AgNPs. Peptidoglycan cell wall destruction was also revealed on planktonic bacterial images after 24 h of incubation.

  11. Bactericidal activity of amoxicillin against non-susceptible Streptococcus pneumoniae in an in vitro pharmacodynamic model simulating the concentrations obtained with the 2000/125 mg sustained-release co-amoxiclav formulation.

    PubMed

    Sevillano, David; Calvo, Almudena; Giménez, María-José; Alou, Luis; Aguilar, Lorenzo; Valero, Eva; Carcas, Antonio; Prieto, José

    2004-12-01

    To investigate the bactericidal activity against Streptococcus pneumoniae of simulated amoxicillin serum concentrations obtained in humans after 2000/125 mg sustained-release (SR) and 875/125 mg co-amoxiclav administered twice and three times a day, respectively. An in vitro computerized pharmacodynamic simulation was carried out and colony counts were determined over 24 h. Ten strains non-susceptible to amoxicillin (four of them exhibiting an MIC of 4 mg/L, five strains with an MIC of 8 mg/L and one strain with an MIC of 16 mg/L) were used. With amoxicillin 2000 mg, an initial inoculum reduction >99.99% was obtained for strains with an MIC of 4 mg/L, > or =99% for strains with an MIC of 8 mg/L and 70.6% for the strain with an MIC of 16 mg/L at 24 h sampling time. At this sampling time, no reduction of initial inocula was obtained with amoxicillin 875 mg/8 h for two of the four strains with an MIC of 4 mg/L, three of the five strains with an MIC of 8 mg/L or for the strain with an MIC of 16 mg/L. The new co-amoxiclav 2000/125 mg SR formulation appears to offer advantages versus previous formulations with respect to bactericidal activity against current amoxicillin non-susceptible strains.

  12. New Isoflavonoids from the extract of Rhynchosia precatoria (Humb. & Bonpl. ex Willd.) DC. and their antimycobacterial activity.

    PubMed

    Coronado-Aceves, Enrique Wenceslao; Gigliarelli, Giulia; Garibay-Escobar, Adriana; Zepeda, Ramón Enrique Robles; Curini, Massimo; López Cervantes, Jaime; Inés Espitia-Pinzón, Clara Inés; Superchi, Stefano; Vergura, Stefania; Marcotullio, Maria Carla

    2017-07-12

    The evaluation of the antimycobacterial activity of extracts of medicinal plants used by Mayos against tuberculosis and respiratory problems, allowed the identification of Rhynchosia precatoria (Humb. & Bonpl. ex Willd.) DC (Fabaceae) as the best candidate to find new antimycobacterial compounds. To isolate and characterize the compounds of R. precatoria responsible for the inhibitory and bactericidal activity against Mycobacterium tuberculosis H37Rv and Mycobacterium smegmatis ATCC 700084. To determine antimycobacterial synergistic effect of pure compounds and their selectivity index towards Vero cells. A total of six flavonoids were purified by silica gel column chromatography. Structural elucidation of the isolated compounds was achieved by using 1D and 2D NMR spectroscopy techniques. The configuration at the C-3 chiral center was established by quantum mechanical calculation of the electronic circular dichroism (ECD) spectrum. In vitro inhibitory and bactericidal activity against M. tuberculosis and M. smegmatis were determined with the redox indicator Alamar Blue (resazurin). Synergy was determined by X/Y quotient. Cytotoxicity was measured by MTT assay. The isolated compounds were identified as precatorin A (1), precatorin B (2), precatorin C (3), lupinifolin (4), cajanone (5) and lupinifolinol (6). Compounds 1-3 are new. Compounds 1 to 5 inhibited the growth of M. tuberculosis (MIC ≥31.25µg/mL); compounds 1, 2, 4 and 5 killed the bacteria (MBC ≥31.25µg/mL) and also inhibited M. smegmatis (MIC ≥125µg/mL), while 1 and 4 also resulted bactericidal (MBC ≥125µg/mL). Compounds 4 and 5 presented synergistic effect (X/Y quotient value <0.5) at a concentration of 1/2 MIC of each compound in the combination. Cytotoxicity in murine macrophages (RAW 264.7 cells) gave IC 50 values of 13.3-46.98µM, for compounds 1-5. In this work we isolated two new isoflavanones (1 and 2), and one new isoflavone (3) with a weak antimycobacterial activity. The (3R) absolute configuration was assigned to 1 by computational analysis of its ECD spectrum and to 2 and 5 by similarity of their ECD spectra with that of 1. We are also reporting by first time, activity against virulent strain of M. tuberculosis for compounds 4 and 5 and their antimycobacterial synergistic effect. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Analyzing the antibacterial effects of food ingredients: model experiments with allicin and garlic extracts on biofilm formation and viability of Staphylococcus epidermidis

    PubMed Central

    Wu, Xueqing; Santos, Regiane R; Fink-Gremmels, Johanna

    2015-01-01

    To demonstrate different effects of garlic extracts and their main antibiotic substance allicin, as a template for investigations on the antibacterial activity of food ingredients. Staphylococcus epidermidis ATCC 12228 and the isogenic biofilm-forming strain ATCC 35984 were used to compare the activity of allicin against planktonic bacteria and bacterial biofilms. The minimal inhibitory concentration (MIC) and the minimum biofilm inhibitory concentration (MBIC) for pure allicin were identical and reached at a concentration of 12.5 μg/mL. MBICs for standardized garlic extracts were significantly lower, with 1.56 and 0.78 μg/mL allicin for garlic water and ethanol extract, respectively. Biofilm density was impaired significantly at a concentration of 0.78 μg/mL allicin. Viability staining followed by confocal laser scanning microscopy showed, however, a 100% bactericidal effect on biofilm-embedded bacteria at a concentration of 3.13 μg/mL allicin. qRT-PCR analysis provided no convincing evidence for specific effects of allicin on biofilm-associated genes. Extracts of fresh garlic are more potent inhibitors of Staphylococcus epidermidis biofilms than pure allicin, but allicin exerts a unique bactericidal effect on biofilm-embedded bacteria. The current experimental protocol has proven to be a valid approach to characterize the antimicrobial activity of traditional food ingredients. PMID:25838894

  14. Bactericidal activity of lemon juice and lemon derivatives against Vibrio cholerae.

    PubMed

    de Castillo, M C; de Allori, C G; de Gutierrez, R C; de Saab, O A; de Fernandez, N P; de Ruiz, C S; Holgado, A P; de Nader, O M

    2000-10-01

    Food products can be possible vectors of the agent responsible for cholera epidemics, because some of these products allow Vibrio cholerae O1 to develop to concentrations above the dangerous level. This study deals with the behaviour of essential oils, natural and concentrated lemon juice and fresh and dehydrated lemon peel against V. cholerae O1 biotype Eltor serotype Inaba tox+. Our aim was to evaluate whether these products, used at different dilutions, exhibit bactericidal or bacteriostatic activity against the microorganism, when present at concentrations of 10(2), 10(4), 10(6) and 10(8) colony forming units (CFU) ml(-1), and after different exposure times. 10(8) CFU ml(-1) was considered an infectious dose. Concentrated lemon juice and essential oils inhibited V. cholerae completely at all studied dilutions and exposure times. Fresh lemon peel and dehydrated lemon peel partially inhibited growth of V. cholerae. Freshly squeezed lemon juice, diluted to 10(-2), showed complete inhibition of V. cholerae at a concentration of 10(8) CFU ml(-1) after 5 min of exposure time; a dilution of 2 x 10(-3) produced inhibition after 15 min and a dilution of 10(-3) after 30 min. It can be concluded that lemon, a natural product which is easily obtained, acts as a biocide against V. cholerae, and is, therefore, an efficient decontaminant, harmless to humans.

  15. Ex vivo 12 h bactericidal activity of oral co-amoxiclav (1.125 g) against beta-lactamase-producing Haemophilus influenzae.

    PubMed

    Bronner, S; Pompei, D; Elkhaïli, H; Dhoyen, N; Monteil, H; Jehl, F

    2001-10-01

    The aim of the study was to evaluate the in vitro/ex vivo bactericidal activity of a new coamoxiclav single-dose sachet formulation (1 g amoxicillin + 0.125 g clavulanic acid) against a beta-lactamase-producing strain of Haemophilus influenzae. The evaluation covered the 12 h period after antibiotic administration. Serum specimens from the 12 healthy volunteers included in the pharmacokinetic study were pooled by time point and in equal volumes. Eight of 12 pharmacokinetic sampling time points were included in the study. At time points 0.5, 0.75, 1, 1.5, 2.5, 5, 8 and 12 h post-dosing, the kinetics of bactericidal activity were determined for each of the serial dilutions. Each specimen was serially diluted from 1:2 to 1:256. The index of surviving bacteria (ISB) was subsequently determined for each pharmacokinetic time point. For all the serum samples, bactericidal activity was fast (3-6 h), marked (3-6 log(10) reduction in the initial inoculum) and sustained over the 12 h between-dosing interval. The results obtained also confirmed that the potency of the amoxicillin plus clavulanic acid combination was time dependent against the species under study and that the time interval over which the concentrations were greater than the MIC (t > MIC) was 100% for the strain under study. The data thus generated constitute an interesting prerequisite with a view to using co-amoxiclav 1.125 g in a bd oral regimen.

  16. Effectiveness analyses may underestimate protection of infants after group C meningococcal immunization.

    PubMed

    Vu, David M; Kelly, Dominic; Heath, Paul T; McCarthy, Noel D; Pollard, Andrew J; Granoff, Dan M

    2006-07-15

    Group C meningococcal conjugate-vaccine effectiveness in the United Kingdom declines from ~90% in the first year to 0% between 1 and 4 years after immunization in infants immunized at 2, 3, and 4 months of age and to 61% in toddlers given a single dose. Confidence intervals are wide, and the extent of protection is uncertain. Serum samples were obtained from children 3-5 years of age who were participants in a preschool booster-vaccine trial. Serum bactericidal activity was measured with human complement. Group C anticapsular antibody concentrations were measured by a radioantigen binding assay. Passive protection was analyzed in an infant rat bacteremia model. Serum samples from UK children who had been immunized 2-3 years earlier as infants or toddlers had higher levels of radioantigen binding, bactericidal activity, and passive protection than did historical control serum samples from unimmunized children (P<.05). A higher proportion of children immunized as infants had serum bactericidal activity titers > or =1 : 4 (considered to be protective) than those immunized as toddlers (61% vs. 24%; P<.01), but there were no significant differences in the proportion of serum samples conferring passive protection (50% and 41%, respectively; P=.4). We found no evidence of lower immunity in children immunized as infants than as toddlers. On the basis of serum bactericidal activity and/or passive protection, 40%-50% of both age groups are protected at 2-3 years after immunization, which was significantly greater than in unimmunized historical controls (<5%).

  17. Pharmacodynamic effects of amoxicillin versus cefotaxime against penicillin-susceptible and penicillin-resistant pneumococcal strains: a phase I study.

    PubMed Central

    Aguilar, L; Rosendo, J; Balcabao, I P; Martín, M; Giménez, M J; Frías, J; Prieto, J

    1997-01-01

    Serum bactericidal activity against a penicillin-susceptible strain and a penicillin-resistant strain of Streptococcus pneumoniae (amoxicillin and cefotaxime MICs, 0.001 and 1 microg/ml, respectively, and MBCs, 0.01 and 2 microg/ml, respectively) was measured in 12 healthy volunteers who each received an oral 875-mg dose of amoxicillin and an intramuscular 1-g dose of cefotaxime in a crossover fashion. The areas under the bactericidal activity-time curves for the two strains were found to be similar for both antibiotics despite the significantly higher (P < 0.002) AUC/MIC and peak level/MIC values for cefotaxime. PMID:9174206

  18. Chemical and Antimicrobial Analyses of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood, an Endemic of the Western Balkan.

    PubMed

    Tadić, Vanja; Oliva, Alessandra; Božović, Mijat; Cipolla, Alessia; De Angelis, Massimiliano; Vullo, Vincenzo; Garzoli, Stefania; Ragno, Rino

    2017-08-23

    A comprehensive study on essential oil and different solvent extracts of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood (Lamiaceae) from Montenegro is reported. The gas chromatography-mass spectrometry analysis of the essential oil revealed a total of 43 components with bicyclogermacrene (23.8%), germacrene D (8%), ( E )-caryophyllene (7.9%) and spathulenol (5.5%) as the major ones. Sesquiterpenoid group was found to be the most dominant one (64.8%), with 19.9% of the oxygenated forms. In the crude methanol extract of the investigated plant, obtained by Sohhlet exraction, the total phenol content was 14.7 ± 0.4 mg of GA/g, the total flavonoids were 0.29 ± 0.03% expressed as hyperoside percentage, whereas the total tannins content was 0.22 ± 0.04% expressed as pyrogallol percentage. For the antimicrobial activity determination, the following microorganisms have been used: methicillin-susceptible Staphylococcus aureus (MSSA (American Type Culture Collection (ATCC) 29213)) and methicillin-resistant S. aureus (MRSA (clinical strain)), Escherichia coli (ATCC 25922), carbapenem-susceptible Klebsiella pneumoniae (clinical strain), carbapenem-resistant K. pneumoniae (clinical strain) and Candida albicans (ATCC 14053). The essential oil showed high potency against MSSA and MRSA, both at high (~5 × 10⁵ CFU/mL) and low (~5 × 10³ CFU/mL) inoculum. With respect to MSSA, the minimal inhibitory concentration (MIC) value was 0.307 mg/mL, with bactericidal activity obtained at 0.615 mg/mL, while, in the case of MRSA, the MIC and minimal bactericidal concentration (MBC) values were 0.076 and 0.153 mg/mL, respectively. Regarding anti- Candida albicans activity, the MIC value was 2.46 mg/mL without reaching fungicidal activity. In addition to the observed essential oil efficacy, different solvent extracts were analyzed for their antimicrobial activity. Similarly to the essential oil, thehighest efficacy was observed against both MSSA and MRSA strains, at high and low inoculums, in the case of the 1,2-dichloroethane and methanol extracts. A potent fungicidal activity has been also found for the n -hexane and 1,2-dichloroethane extracts. It can be concluded that Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood provides a wide range of application in different fields such as phytochemistry, pharmacology, toxicology or pharmacognosy.

  19. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms.

    PubMed

    Sánchez-Gómez, Susana; Ferrer-Espada, Raquel; Stewart, Philip S; Pitts, Betsey; Lohner, Karl; Martínez de Tejada, Guillermo

    2015-07-07

    Infections by Pseudomonas aeruginosa constitute a serious health threat because this pathogen -particularly when it forms biofilms - can acquire resistance to the majority of conventional antibiotics. This study evaluated the antimicrobial activity of synthetic peptides based on LF11, an 11-mer peptide derived from human lactoferricin against P. aeruginosa planktonic and biofilm-forming cells. We included in this analysis selected N-acylated derivatives of the peptides to analyze the effect of acylation in antimicrobial activity. To assess the efficacy of compounds against planktonic bacteria, microdilution assays to determine the minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill studies were conducted. The anti-biofilm activity of the agents was assessed on biofilms grown under static (on microplates) and dynamic (in a CDC-reactor) flow regimes. The antimicrobial activity of lipopeptides differed from that of non-acylated peptides in their killing mechanisms on planktonic and biofilm-forming cells. Thus, acylation enhanced the bactericidal activity of the parental peptides and resulted in lipopeptides that were uniformly bactericidal at their MIC. In contrast, acylation of the most potent anti-biofilm peptides resulted in compounds with lower anti-biofilm activity. Both peptides and lipopeptides displayed very rapid killing kinetics and all of them required less than 21 min to reduce 1,000 times the viability of planktonic cells when tested at 2 times their MBC. The peptides, LF11-215 (FWRIRIRR) and LF11-227 (FWRRFWRR), displayed the most potent anti-biofilm activity causing a 10,000 fold reduction in cell viability after 1 h of treatment at 10 times their MIC. At that concentration, these two compounds exhibited low citotoxicity on human cells. In addition to its bactericidal activity, LF11-227 removed more that 50 % of the biofilm mass in independent assays. Peptide LF11-215 and two of the shortest and least hydrophobic lipopeptides, DI-MB-LF11-322 (2,2-dimethylbutanoyl-PFWRIRIRR) and DI-MB-LF11-215, penetrated deep into the biofilm structure and homogenously killed biofilm-forming bacteria. We identified peptides derived from human lactoferricin with potent antimicrobial activity against P. aeruginosa growing either in planktonic or in biofilm mode. Although further structure-activity relationship analyses are necessary to optimize the anti-biofilm activity of these compounds, the results indicate that lactoferricin derived peptides are promising anti-biofilm agents.

  20. Comparative in vitro study of the antimicrobial activities of different commercial antibiotic products of vancomycin

    PubMed Central

    2011-01-01

    Background One of the most critical problems about antimicrobial therapy is the increasing resistance to antibiotics. Previous studies have shown that there is a direct relation between erroneous prescription, dosage, route, duration of the therapy and the antibiotics resistance. Other important point is the uncertainty about the quality of the prescribed medicines. Some physicians believe that generic drugs are not as effective as innovator ones, so it is very important to have evidence that shows that all commercialized drugs are suitable for therapeutic use. Methods Microbial assays were used to establish the potency, the Minimal Inhibitory Concentrations (MICs), the Minimal Bactericidal Concentration (MBCs), the critical concentrations, and the production of spontaneous mutants that are resistant to vancomycin. Results The microbial assay was validated in order to determine the Vancomycin potency of the tasted samples. All the products showed that have potency values between 90 - 115% (USP requirement). The products behave similarly because the MICs, The MBCs, the critical concentrations, the critical concentrations ratios between standard and samples, and the production of spontaneous mutants don't have significant differences. Conclusions All products analyzed by microbiological tests, show that both trademarks and generics do not have statistical variability and the answer of antimicrobial activity Show also that they are pharmaceutical equivalents. PMID:21777438

  1. Comparative in vitro study of the antimicrobial activities of different commercial antibiotic products of vancomycin.

    PubMed

    Diaz, Jorge A; Silva, Edelberto; Arias, Maria J; Garzón, María

    2011-07-21

    One of the most critical problems about antimicrobial therapy is the increasing resistance to antibiotics. Previous studies have shown that there is a direct relation between erroneous prescription, dosage, route, duration of the therapy and the antibiotics resistance. Other important point is the uncertainty about the quality of the prescribed medicines. Some physicians believe that generic drugs are not as effective as innovator ones, so it is very important to have evidence that shows that all commercialized drugs are suitable for therapeutic use. Microbial assays were used to establish the potency, the Minimal Inhibitory Concentrations (MICs), the Minimal Bactericidal Concentration (MBCs), the critical concentrations, and the production of spontaneous mutants that are resistant to vancomycin. The microbial assay was validated in order to determine the Vancomycin potency of the tasted samples. All the products showed that have potency values between 90 - 115% (USP requirement). The products behave similarly because the MICs, The MBCs, the critical concentrations, the critical concentrations ratios between standard and samples, and the production of spontaneous mutants don't have significant differences. All products analyzed by microbiological tests, show that both trademarks and generics do not have statistical variability and the answer of antimicrobial activity Show also that they are pharmaceutical equivalents.

  2. RX-P873, a Novel Protein Synthesis Inhibitor, Accumulates in Human THP-1 Monocytes and Is Active against Intracellular Infections by Gram-Positive (Staphylococcus aureus) and Gram-Negative (Pseudomonas aeruginosa) Bacteria

    PubMed Central

    Buyck, Julien M.; Peyrusson, Frédéric

    2015-01-01

    The pyrrolocytosine RX-P873, a new broad-spectrum antibiotic in preclinical development, inhibits protein synthesis at the translation step. The aims of this work were to study RX-P873's ability to accumulate in eukaryotic cells, together with its activity against extracellular and intracellular forms of infection by Staphylococcus aureus and Pseudomonas aeruginosa, using a pharmacodynamic approach allowing the determination of maximal relative efficacies (Emax values) and bacteriostatic concentrations (Cs values) on the basis of Hill equations of the concentration-response curves. RX-P873's apparent concentration in human THP-1 monocytes was about 6-fold higher than the extracellular one. In broth, MICs ranged from 0.125 to 0.5 mg/liter (S. aureus) and 2 to 8 mg/liter (P. aeruginosa), with no significant shift in these values against strains resistant to currently used antibiotics being noted. In concentration-dependent experiments, the pharmacodynamic profile of RX-P873 was not influenced by the resistance phenotype of the strains. Emax values (expressed as the decrease in the number of CFU from that in the initial inoculum) against S. aureus and P. aeruginosa reached more than 4 log units and 5 log units in broth, respectively, and 0.7 log unit and 2.7 log units in infected THP-1 cells, respectively, after 24 h. Cs values remained close to the MIC in all cases, making RX-P873 more potent than antibiotics to which the strains were resistant (moxifloxacin, vancomycin, and daptomycin for S. aureus; ciprofloxacin and ceftazidime for P. aeruginosa). Kill curves in broth showed that RX-P873 was more rapidly bactericidal against P. aeruginosa than against S. aureus. Taken together, these data suggest that RX-P873 may constitute a useful alternative for infections involving intracellular bacteria, especially Gram-negative species. PMID:26014952

  3. Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of Listeria monocytogenes and Salmonella Enteritidis

    USDA-ARS?s Scientific Manuscript database

    We studied the antimicrobial effects of berry extracts obtained from four cultivars (Elliott, Darrow, Bluecrop and Duke) of blueberry (Vaccinium corymbosum L.) on the growth of Listeria monocytogenes and Salmonella Enteritidis. The minimal inhibitory concentration (MIC) and minimal bactericidal conc...

  4. Efficacy of essential oils to reduce Salmonella in organic soil

    USDA-ARS?s Scientific Manuscript database

    Salmonella populations in soil were reduced by up to 5 log CFU/ml after 28 days of incubation using vinegar or eugenol. The bactericidal effect of Cinnamanaldehyde was not evident. S. negev was sensitive to oils resulting in significant reduction of this bacterium. Increase in oil concentration resu...

  5. Survival of bactericidal antibiotic treatment by tolerant persister cells of Klebsiella pneumoniae.

    PubMed

    Li, Ying; Zhang, Luhua; Zhou, Yingshun; Zhang, Zhikun; Zhang, Xinzhuo

    2018-03-01

    Persister cells, a subpopulation of tolerant cells within the bacterial culture, are commonly thought to be responsible for antibiotic therapy failure and infection recurrence. Klebsiella pneumoniae is a notorious human pathogen for its increasing resistance to antibiotics and wide involvement in severe infections. In this study, we aimed to investigate the persister subpopulation of K. pneumoniae. The presence of persisters in K. pneumoniae was determined by treatment with high concentrations of antibiotics, used alone or in combination. The effect of low level of antibiotics on persister formation was investigated by pre-exposure of cells to antibiotics with low concentrations followed by higher doses. The dependence of persister levels on growth phase was determined by measuring the survival ability of cells along the growth stages upon exposure to a high concentration of antibiotic. Analysis on persister type was carried out by persister elimination assays.Results/Key findings. We show that K. pneumoniae produces high levels of tolerant persister cells to survive treatment by a variety of high concentrations of bactericidal antibiotics and persister formation is prevalent among K. pneumoniae clinical strains. Besides, we find that persister cells can be induced by low concentrations of antibiotics. Finally, we provide evidence that persister formation is growth phase-dependent and Type II persisters dominate the persister subpopulation during the entire exponential phase of K. pneumoniae. Our study describes the formation of tolerant persister cells that allow survival of treatment by high concentrations of antibiotics in K. pneumoniae.

  6. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria.

    PubMed

    Cermak, Pavel; Olsovska, Jana; Mikyska, Alexandr; Dusek, Martin; Kadleckova, Zuzana; Vanicek, Jiri; Nyc, Otakar; Sigler, Karel; Bostikova, Vanda; Bostik, Pavel

    2017-11-01

    Anaerobic bacteria, such as Bacteroides fragilis or Clostridium perfringens, are part of indigenous human flora. However, Clostridium difficile represents also an important causative agent of nosocomial infectious antibiotic-associated diarrhoea. Treatment of C. difficile infection is problematic, making it imperative to search for new compounds with antimicrobial properties. Hops (Humulus lupulus L.) contain substances with antibacterial properties. We tested antimicrobial activity of purified hop constituents humulone, lupulone and xanthohumol against anaerobic bacteria. The antimicrobial activity was established against B. fragilis, C. perfringens and C. difficile strains according to standard testing protocols (CLSI, EUCAST), and the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were calculated. All C. difficile strains were toxigenic and clinically relevant, as they were isolated from patients with diarrhoea. Strongest antimicrobial effects were observed with xanthohumol showing MIC and MBC values of 15-107 μg/mL, which are close to those of conventional antibiotics in the strains of bacteria with increased resistance. Slightly higher MIC and MBC values were obtained with lupulone followed by higher values of humulone. Our study, thus, shows a potential of purified hop compounds, especially xanthohumol, as alternatives for treatment of infections caused by select anaerobic bacteria, namely nosocomial diarrhoea caused by resistant strains. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  7. Inhibitory and bactericidal action of the biocorrosion agents «INCORGAS» and «AMDOR».

    PubMed

    Tsygankova, L E; Vigdorovich, V I; Esina, M N; Nazina, T N; Dubinskaya, E V

    2014-06-01

    Inhibiting action of A, B and M-X compositions against hydrosulfide corrosion of carbon steel, hydrogen diffusion through the steel membrane has been studied along with their bactericidal effect with respect to sulfate-reducing bacteria of Desulfomicrobium type. Bactericidal properties of the compositions have been studied in the Postgate medium. Corrosion tests have been made in the NACE medium saturated by hydrogen sulfide and carbon dioxide separately and together by methods of gravimetrical measurements and linear polarization resistance (LRP). Potentiodynamic polarization and electrochemical diffusion method have been used. Steel protection is determined in the inhibited solutions by combined action of corrosion products film and inhibitor. Presence of sulfate-reducing bacteria in medium increases hydrogen diffusion flux through the steel membrane by 2-3 times and essentially stimulates effect of the inhibitors. The inhibiting compositions decrease quantity of sulfate-reducing bacteria (SRB) by 95-98%. The obtained results testify about predominately bacteriostatic action of the inhibiting compositions, which has influence on the enzymatic systems of SRB cells responsible directly for the sulfate reduction because of substantially decreasing the biogenic hydrogen sulfide concentration in the system. © 2013 Elsevier B.V. All rights reserved.

  8. 21 CFR 1240.10 - Effective bactericidal treatment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Effective bactericidal treatment. 1240.10 Section... DISEASES General Provisions § 1240.10 Effective bactericidal treatment. Whenever, under the provisions of this part, bactericidal treatment is required, it shall be accomplished by one or more of the following...

  9. Activity of amikacin against Mycobacterium avium complex under simulated in vivo conditions.

    PubMed Central

    Gangadharam, P R; Kesavalu, L; Rao, P N; Perumal, V K; Iseman, M D

    1988-01-01

    We studied the activity of amikacin against Mycobacterium avium complex strain 101 by using continuous-level, changing concentrations which simulated levels in serum in a patient, and pulsed exposures. Amikacin at a concentration of 5 or 15 micrograms/ml showed rapid bactericidal action following constant exposure of the organisms. With the in vitro model, using a peak concentration of 10 or 20 micrograms/ml, complete sterilization was obtained by day 7. In pulsed-exposure studies, a minimum period of contact of 72 or 96 h at a concentration of 10 micrograms/ml was needed for complete sterilization. PMID:3415209

  10. Bactericidal effects of various concentrations of enrofloxacin, florfenicol, tilmicosin phosphate, and tulathromycin on clinical isolates of Mannheimia haemolytica.

    PubMed

    Blondeau, Joseph M; Shebelski, Shantelle D; Hesje, Christine K

    2015-10-01

    To determine bactericidal effects of enrofloxacin, florfenicol, tilmicosin, and tulathromycin on clinical isolates of Mannheimia haemolytica at various bacterial densities and drug concentrations. 4 unique isolates of M haemolytica recovered from clinically infected cattle. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined for each drug and isolate. Mannheimia haemolytica suspensions (10(6) to 10(9) CFUs/mL) were exposed to the determined MIC and MPC and preestablished maximum serum and tissue concentrations of each drug. Log10 reduction in viable cells (percentage of cells killed) was measured at various points. Bacterial killing at the MIC was slow and incomplete. After 2 hours of isolate exposure to the MPC and maximum serum and tissue concentrations of the tested drugs, 91% to almost 100% cell killing was achieved with enrofloxacin, compared with 8% growth to 93% cell killing with florfenicol, 199% growth to 63% cell killing with tilmicosin, and 128% growth to 43% cell killing with tulathromycin over the range of inoculum tested. For all drugs, killing of viable organisms was evident at all bacterial densities tested; however, killing was more substantial at the MPC and maximum serum and tissue drug concentrations than at the MIC and increased with duration of drug exposure. Rank order of drugs by killing potency was enrofloxacin, florfenicol, tilmicosin, and tulathromycin. Findings suggested that antimicrobial doses that equaled or exceeded the MPC provided rapid killing of M haemolytica by the tested drugs, decreasing opportunities for antimicrobial-resistant subpopulations of bacteria to develop during drug exposure.

  11. In vitro antimicrobial activity of benzoyl peroxide against Propionibacterium acnes assessed by a novel susceptibility testing method.

    PubMed

    Okamoto, Kazuaki; Ikeda, Fumiaki; Kanayama, Shoji; Nakajima, Akiko; Matsumoto, Tatsumi; Ishii, Ritsuko; Umehara, Masatoshi; Gotoh, Naomasa; Hayashi, Naoki; Iyoda, Takako; Matsuzaki, Kaoru; Matsumoto, Satoru; Kawashima, Makoto

    2016-06-01

    Benzoyl peroxide (BPO), a therapeutic agent for acne vulgaris, was assessed for in vitro antimicrobial activity against Propionibacterium acnes using a novel broth microdilution testing that improved BPO solubility. We searched for a suitable culture medium to measure the minimum inhibitory concentration (MIC) of BPO against P. acnes and finally found the Gifu anaerobic medium (GAM) broth supplemented with 0.1(v/v)% glycerol and 2(v/v)% Tween 80, in which BPO dissolved up to 1250 μg/mL and P. acnes grew well. The MICs and minimum bactericidal concentrations (MBCs) of BPO against 44 clinical isolates of P. acnes collected from Japanese patients with acne vulgaris were determined by our testing method using the supplemented GAM broth. The MICs of BPO were 128 or 256 μg/mL against all isolates of P. acnes regardless of susceptibility to nadifloxacin or clindamycin. The MBCs of BPO were also 128 or 256 μg/mL against the same isolates. Moreover, BPO at the MIC showed a rapid bactericidal activity against P. acnes ATCC11827 in time-kill assay. In conclusion, we could develop a novel assay for the MIC and MBC determinations of BPO against P. acnes, which is reliable and reproducible as a broth microdilution testing and the present results suggest that BPO has a potent bactericidal activity against P. acnes. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. Antibacterial Potential of an Antimicrobial Agent Inspired by Peroxidase-Catalyzed Systems

    PubMed Central

    Tonoyan, Lilit; Fleming, Gerard T. A.; Mc Cay, Paul H.; Friel, Ruairi; O'Flaherty, Vincent

    2017-01-01

    Antibiotic resistance is an increasingly serious threat to global health. Consequently, the development of non-antibiotic based therapies and disinfectants, which avoid induction of resistance, or cross-resistance, is of high priority. We report the synthesis of a biocidal complex, which is produced by the reaction between ionic oxidizable salts—iodide and thiocyanate—in the presence of hydrogen peroxide as an oxidation source. The reaction generates bactericidal reactive oxygen and iodine species. In this study, we report that the iodo-thiocyanate complex (ITC) is an effective bactericidal agent with activity against planktonic and biofilm cells of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and methicillin-resistant S. aureus) bacteria. The minimum bactericidal concentrations and the minimum biofilm eradication concentrations of the biocidal composite were in the range of 7.8–31.3 and 31.3–250 μg ml−1, respectively. As a result, the complex was capable to cause a rapid cell death of planktonic test cultures at between 0.5 and 2 h, and complete eradication of dual and mono-species biofilms between 30 s and 10 min. Furthermore, the test bacteria, including a MRSA strain, exposed to the cocktail failed to develop resistance after serial passages. The antimicrobial activity of the ITC appears to derive from the combinational effect of the powerful species capable of oxidizing the essential biomolecules of bacteria. The use of this composition may provide an effective and efficient method for killing potential pathogens, as well as for disinfecting and removing biofilm contamination. PMID:28512449

  13. Aminoglycoside inhibition of Staphylococcus aureus biofilm formation is nutrient dependent

    PubMed Central

    Hess, Donavon J.; Wells, Carol L.

    2014-01-01

    Biofilms represent microbial communities, encased in a self-produced matrix or extracellular polymeric substance. Microbial biofilms are likely responsible for a large proportion of clinically significant infections and the multicellular nature of biofilm existence has been repeatedly associated with antibiotic resistance. Classical in vitro antibiotic-susceptibility testing utilizes artificial growth media and planktonic microbes, but this method may not account for the variability inherent in environments subject to biofilm growth in vivo. Experiments were designed to test the hypothesis that nutrient concentration can modulate the antibiotic susceptibility of Staphylococcus aureus biofilms. Developing S. aureus biofilms initiated on surgical sutures, and in selected experiments planktonic cultures, were incubated for 16 h in 66 % tryptic soy broth, 0.2 % glucose (1× TSBg), supplemented with bactericidal concentrations of gentamicin, streptomycin, ampicillin or vancomycin. In parallel experiments, antibiotics were added to growth medium diluted one-third (1/3× TSBg) or concentrated threefold (3× TSBg). Following incubation, viable bacteria were enumerated from planktonic cultures or suture sonicates, and biofilm biomass was assayed using spectrophotometry. Interestingly, bactericidal concentrations of gentamicin (5 µg gentamicin ml−1) and streptomycin (32 µg streptomycin ml−1) inhibited biofilm formation in samples incubated in 1/3× or 1× TSBg, but not in samples incubated in 3× TSBg. The nutrient dependence of aminoglycoside susceptibility is not only associated with biofilm formation, as planktonic cultures incubated in 3× TSBg in the presence of gentamicin also showed antibiotic resistance. These findings appeared specific for aminoglycosides because biofilm formation was inhibited in all three growth media supplemented with bactericidal concentrations of the cell wall-active antibiotics, ampicillin and vancomycin. Additional experiments showed that the ability of 3× TSBg to overcome the antibacterial effects of gentamicin was associated with decreased uptake of gentamicin by S. aureus. Uptake is known to be decreased at low pH, and the kinetic change in pH of growth medium from biofilms incubated in 5 µg gentamicin ml−1 in the presence of 3× TSBg was decreased when compared with pH determinations from biofilms formed in 1/3× or 1× TSBg. These studies underscore the importance of environmental factors, including nutrient concentration and pH, on the antibiotic susceptibility of S. aureus planktonic and biofilm bacteria. PMID:24696518

  14. Bactericidal Action of Fresh Rabbit Blood Against Brucella abortus

    PubMed Central

    Joos, Richard W.; Hall, Wendell H.

    1968-01-01

    A photometric method was used to measure the bactericidal kinetics for Brucella abortus of freshly drawn rabbit blood during the time before clotting. This antibrucellar activity varied between rabbits in different immunologic states. Nonimmunized rabbits had moderate bactericidal activity after a lag of about 2 min. The blood of some immunized rabbits gave an immediate and strong kill, but in certain other immunized rabbits, especially when hyperimmunized, the bactericidal activity was inhibited. It appeared that serum bactericidins and complement are sometimes as active in unclotted blood as they are in serum. However, this bactericidal activity can be either increased or neutralized by immunization. The prozone bactericidal inhibition phenomenon (Neisser-Wechsberg) found in immune serum may, in fact, reflect inhibition taking place in vivo. Inhibition of the bactericidal activity in blood can contribute to the persistence of chronic infections and individual variations in resistance. PMID:4971893

  15. Evaluation of the influence of sprinkling powdered slaked lime on microorganisms for the prevention of domestic animal infectious diseases.

    PubMed

    Mori, Miho; Sakagami, Yoshikazu; Hamazaki, Yousuke; Jojima, Toru

    2018-04-23

    When infectious diseases arise in domestic animals, a large amount of slaked lime is sprinkled on cattle sheds and their surroundings for disinfection and prevention. However, optimal sprinkling methods, standard and upper limit of slaked lime, and influence of slaked lime on non-target microorganisms remain unclear. In this study, we clarified detailed microbicidal effects of slaked lime via in vitro experiments and the influence of sprinkling powdered slaked lime (PSL) in field soil on microorganisms. In vitro disinfection tests assessing the appropriate amount of water and ventilation conditions were also performed in sterilized glass bottles with soil and Salmonella enterica subsp. enterica serovar Typhimurium. Under conditions with a small amount of water relative to the amount of PSL, the bactericidal effect and sustainability of powdered slaked lime (PSL) tended to be lower than those without spraying water. Moreover, the sterilization effect markedly decreased after 7 days under conditions with abundant water. These results indicate that the amount of sprayed water is very important for the bactericidal effect and persistence of PSL. A field experiment showed that the pH and exchange calcium (Ca) content of the soil sprinkled with over 1000 g m -2 PSL remained high even after a long period (≥1 year), with values of approximately 0.5-1.0 and approximately 3-11 times the level without PSL, respectively. However, sprinkling PSL did not influence viable microbial counts at any concentration.

  16. Enhanced bactericidal effect of enterocin A in combination with thyme essential oils against L. monocytogenes and E. coli O157:H7.

    PubMed

    Ghrairi, Taoufik; Hani, Khaled

    2015-04-01

    The combined effects of enterocin A with Thymus vulgaris essential oils (EOs) against Listeria monocytogenes and Escherichia coli O157:H7 were investigated in vitro by enumeration of surviving populations of testing pathogens and minimal inhibitory concentration (MIC) determination. Enterocin A was purified to homogeneity by RP-HPLC from the culture fluid of Enterococcus strain and thyme EOs were extracted from local Thymus vulgaris plants. The major constituent of thyme EOs oils determined by GC-MS was thymol (78.4 %). Combination of enterocin A with thyme EOs showed an enhanced bactericidal effect against Listeria monocytogenes. Checkerboard assay and isobologram construction displayed a synergistic interaction between these compounds against Listeria (FIC index <0.5). Moreover, the MIC value of enterocin A has fallen fivefold (from 4.57 to 0.9 μg/ml), while the MIC of thyme EOs decreased threefold (from 3.6 to 1.2 μg/ml). Treatments with enterocin A alone did not affect the growth of the enteric pathogen E. coli O157:H7. However, the addition of thyme EOs and enterocin A yielded a synergistic antimicrobial effect against E. coli (MIC thyme EOs decrease from 2.2 to 0.71 μg/ml). This is the first report on the combined effect of enterocin A and thyme EOs against food pathogen bacteria. This combination could be useful in food bio-preservation.

  17. Anti-Helicobacter pylori Potential of Artemisinin and Its Derivatives

    PubMed Central

    Goswami, Suchandra; Chinniah, Annalakshmi; Pal, Anirban; Kar, Sudip K.

    2012-01-01

    The antimalarial drug artemisinin from Artemisia annua demonstrated remarkably strong activity against Helicobacter pylori, the pathogen responsible for peptic ulcer diseases. In an effort to develop a novel antimicrobial chemotherapeutic agent containing such a sesquiterpene lactone endoperoxide, a series of analogues (2 natural and 15 semisynthetic molecules), including eight newly synthesized compounds, were investigated against clinical and standard strains of H. pylori. The antimicrobial spectrum against 10 H. pylori strains and a few other bacterial and fungal strains indicated specificity against the ulcer causing organism. Of five promising molecules, a newly synthesized ether derivative β-artecyclopropylmether was found to be the most potent compound, which exhibited MIC range, MIC90, and minimum bactericidal concentration range values of 0.25 to 1.0 μg/ml, 1.0 μg/ml, and 1 to 16 μg/ml, respectively, against both resistant and sensitive strains of H. pylori. The molecule demonstrated strong bactericidal kinetics with extensive morphological degeneration, retained functional efficacy at stomach acidic pH unlike clarithromycin, did not elicit drug resistance unlike metronidazole, and imparted sensitivity to resistant strains. It is not cytotoxic and exhibits in vivo potentiality to reduce the H. pylori burden in a chronic infection model. Thus, β-artecyclopropylmether could be a lead candidate for anti-H. pylori therapeutics. Since the recurrence of gastroduodenal ulcers is believed to be mainly due to antibiotic resistance of the commensal organism H. pylori, development of a candidate drug from this finding is warranted. PMID:22687518

  18. Water Filters

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A compact, lightweight electrolytic water filter generates silver ions in concentrations of 50 to 100 parts per billion in the water flow system. Silver ions serve as effective bactericide/deodorizers. Ray Ward requested and received from NASA a technical information package on the Shuttle filter, and used it as basis for his own initial development, a home use filter.

  19. Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae.

    PubMed

    Sequeiros, Cynthia; Garcés, Marisa E; Vallejo, Marisol; Marguet, Emilio R; Olivera, Nelda L

    2015-04-01

    Bacteriocin-producing Lactococcus lactis TW34 was isolated from marine fish. TW34 bacteriocin inhibited the growth of the fish pathogen Lactococcus garvieae at 5 AU/ml (minimum inhibitory concentration), whereas the minimum bactericidal concentration was 10 AU/ml. Addition of TW34 bacteriocin to L. garvieae cultures resulted in a decrease of six orders of magnitude of viable cells counts demonstrating a bactericidal mode of action. The direct detection of the bacteriocin activity by Tricine-SDS-PAGE showed an active peptide with a molecular mass ca. 4.5 kDa. The analysis by MALDI-TOF-MS detected a strong signal at m/z 2,351.2 that corresponded to the nisin leader peptide mass without the initiating methionine, whose sequence STKDFNLDLVSVSKKDSGASPR was confirmed by MS/MS. Sequence analysis of nisin structural gene confirmed that L. lactis TW34 was a nisin Z producer. This nisin Z-producing strain with probiotic properties might be considered as an alternative in the prevention of lactococcosis, a global disease in aquaculture systems.

  20. Combined use of Bacillus subtilis strain B-001 and bactericide for the control of tomato bacterial wilt.

    PubMed

    Peng, Di; Luo, Kun; Jiang, Huidan; Deng, Yanan; Bai, Lianyang; Zhou, Xiaomao

    2017-06-01

    Tomato bacterial wilt caused by Ralstonia solanacearum poses a serious threat to tomato production. However, no effective control measures are available. In this study, the bactericide Saisentong was combined with an effective biological control agent, Bacillus subtilis B-001, to control tomato bacterial wilt under greenhouse and field conditions. Growth of B-001 in vitro was unaffected by Saisentong. In greenhouse experiments, the combined application of B-001 and Saisentong via root irrigation or spray resulted in better disease control compared with either agent alone. In two field trials, at a Saisentong concentration of 400 or 500 mg kg -1 , the combined treatment was more effective than expected and showed a synergistic effect. A lower concentration of Saisentong (200 or 300 mg kg -1 ) in combination with B-001 resulted in an antagonistic effect. However, disease control was significantly greater compared with either treatment alone. The combination of Saisentong and B-001 effectively controls tomato bacterial wilt. The integrated strategy represents a promising new tool to control this disease. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Evaluation of robenidine analog NCL195 as a novel broad-spectrum antibacterial agent.

    PubMed

    Ogunniyi, Abiodun D; Khazandi, Manouchehr; Stevens, Andrew J; Sims, Sarah K; Page, Stephen W; Garg, Sanjay; Venter, Henrietta; Powell, Andrew; White, Karen; Petrovski, Kiro R; Laven-Law, Geraldine; Tótoli, Eliane G; Salgado, Hérida R; Pi, Hongfei; Coombs, Geoffrey W; Shinabarger, Dean L; Turnidge, John D; Paton, James C; McCluskey, Adam; Trott, Darren J

    2017-01-01

    The spread of multidrug resistance among bacterial pathogens poses a serious threat to public health worldwide. Recent approaches towards combating antimicrobial resistance include repurposing old compounds with known safety and development pathways as new antibacterial classes with novel mechanisms of action. Here we show that an analog of the anticoccidial drug robenidine (4,6-bis(2-((E)-4-methylbenzylidene)hydrazinyl)pyrimidin-2-amine; NCL195) displays potent bactericidal activity against Streptococcus pneumoniae and Staphylococcus aureus by disrupting the cell membrane potential. NCL195 was less cytotoxic to mammalian cell lines than the parent compound, showed low metabolic degradation rates by human and mouse liver microsomes, and exhibited high plasma concentration and low plasma clearance rates in mice. NCL195 was bactericidal against Acinetobacter spp and Neisseria meningitidis and also demonstrated potent activity against A. baumannii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and Enterobacter spp. in the presence of sub-inhibitory concentrations of ethylenediaminetetraacetic acid (EDTA) and polymyxin B. These findings demonstrate that NCL195 represents a new chemical lead for further medicinal chemistry and pharmaceutical development to enhance potency, solubility and selectivity against serious bacterial pathogens.

  2. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates.

    PubMed

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants' potential for developing new antimicrobials.

  3. Essential oils from Origanum vulgare and Salvia officinalis exhibit antibacterial and anti-biofilm activities against Streptococcus pyogenes.

    PubMed

    Wijesundara, Niluni M; Rupasinghe, H P Vasantha

    2018-04-01

    In the present study, essential oils (EOs) extracted from oregano, sage, cloves, and ginger were evaluated for the phytochemical profile, antibacterial, and anti-biofilm activities against Streptococcus pyogenes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of EOs. The minimum biofilm inhibitory concentrations (MBICs) were determined using MTT assay and fixed biofilms were observed through scan electron microscopy. The oregano and sage EOs showed the lowest MIC as well as MBC of 0.25-0.5 mg/mL. Time kill assay results showed that oregano and sage EOs exhibited bactericidal effects within 5 min and 4 h, respectively. Both oregano and sage extracts acts as a potent anti-biofilm agent with dual actions, preventing and eradicating the biofilm. The microscopic visualization of biofilms treated with EOs have shown morphological and density changes compared to the untreated control. Oregano EO was constituted predominantly carvacrol (91.6%) and in sage EO, higher levels of α-thujone (28.5%) and camphor (16.6%) were revealed. EOs of oregano and sage inhibit the growth and biofilm formation of S. pyogenes. Effective concentrations of oregano and sage EOs and their phytochemicals can be used in developing potential plant-derived antimicrobial agents in the management of streptococcal pharyngitis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Antimicrobial Potential of Momordica charantia L. against Multiresistant Standard Species and Clinical Isolates.

    PubMed

    Lucena Filho, José Hardman Sátiro de; Lima, Rennaly de Freitas; Medeiros, Ana Claudia Dantas de; Pereira, Jozinete Vieira; Granville-Garcia, Ana Flávia; Costa, Edja Maria Melo de Brito

    2015-11-01

    The aim of the present study was to evaluate the antibacterial and antifungal potential in vitro of Momordica charantia L. against the microorganisms of clinical interest (standard strains and multiresistant isolates) in order to aggregate scientific information in relation to its use as a therapeutic product. M. charantia L. plant material was acquired in municipality of Malta, Paraiba, Brazil. The extract was obtained through maceration, filtration and then concentrated under reduced pressure in a rotary evaporator, resulting in a dough, and was then dried in an oven for 72 hours at 40°C. Antimicrobial action of ethanolic extract of seed M. charantia L. was evaluated based on the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) against standard strains of bacteria, isolates multiresistant bacteria and Candida species, by microdilution in broth method. All organisms were sensitive to the extract, being considered strong antimicrobial activity (MIC and MBC/MFC < 0.125 mg/ml). The M. charantia L. showed strong antimicrobial potential, with bactericidal and fungicidal profile, there is the prospect to constitute a new therapeutic strategy for the control of infections, particularly in multiresistant strains. The use of medicinal plants in treatment of infectious processes have an important function nowadays, due to the limitations of the use of synthetic antibiotics available, related specifically to the microbial resistance emergence.

  5. Synthesis, anti-inflammatory, bactericidal activities and docking studies of novel 1,2,3-triazoles derived from ibuprofen using click chemistry.

    PubMed

    Angajala, Kishore Kumar; Vianala, Sunitha; Macha, Ramesh; Raghavender, M; Thupurani, Murali Krishna; Pathi, P J

    2016-01-01

    Nonsteroidal anti-inflammatory drugs are of vast therapeutic benefit in the treatment of different types of inflammatory conditions. 1,2,3-Triazoles and their derivatives have a wide range of applications as anti-bacterial, anti-fungal, anti-tubercular, cytostatic, anti-HIV, anti-allergic, anti-neoplastic and anti-inflammatory (AI) agents. Considering the individual biological and medicinal importance of ibuprofen and 1,2,3-triazoles, we wanted to explore novel chemical entities based on ibuprofen and triazole moieties towards their biological significance. Click chemistry has utilized as an ideal strategy to prepare novel ibuprofen-based 1,4-disubstituted 1,2,3-triazole containing molecules. These compounds were screened for their in vivo AI activity, among all the synthesized analogues 13o was shown potent effect than the reference AI drug ibuprofen at the same concentration (10 mg/kg body weight). Compounds 13l, 13g, 13c, 13k, 13i, 13n, 13m and 13j were shown significant AI activity. These triazole analogues were also screened for their bactericidal profile. Compounds 13c, 13i, 13l and 13o exhibited considerable bactericidal activity against gram positive and gram negative strains. In addition to this, molecular docking studies were also carried out into cyclooxygenase-2 active site to predict the affinity and orientation of these novel compounds (13a-q). In summary, we have designed and synthesized 1,2,3-triazole analogues of ibuprofen in good yields using Click chemistry approach. AI and bactericidal activities of these compounds were evaluated and shown remarkable results.

  6. Pharmacokinetic-Pharmacodynamic Modeling of Enrofloxacin Against Escherichia coli in Broilers.

    PubMed

    Sang, KaNa; Hao, HaiHong; Huang, LingLi; Wang, Xu; Yuan, ZongHui

    2015-01-01

    The purpose of the present study was to establish a pharmacokinetic/pharmacodynamic (PK/PD) modeling approach for the dosage schedule design and decreasing the emergence of drug-resistant bacteria. The minimal inhibitory concentration (MIC) of 929 Escherichia coli isolates from broilers to enrofloxacin and ciprofloxacin was determined following CLSI guidance. The MIC50 was calculated as the populational PD parameter for enrofloxacin against E. coli in broilers. The 101 E. coli strains with MIC closest to the MIC50 (0.05 μg/mL) were submitted for serotype identification. The 13 E. coli strains with O and K serotype were further utilized for determining pathogencity in mice. Of all the strains tested, the E. coli designated strain Anhui 112 was selected for establishing the disease model and PK/PD study. The PKs of enrofloxacin after oral administration at the dose of 10 mg/kg body weights (BW) in healthy and infected broilers was evaluated with high-performance liquid chromatography (HPLC) method. For intestinal contents after oral administration, the peak concentration (C max), the time when the maximum concentration reached (T max), and the area under the concentration-time curve (AUC) were 21.69-31.69 μg/mL, 1.13-1.23 h, and 228.97-444.86 μg h/mL, respectively. The MIC and minimal bactericidal concentration (MBC) of enrofloxacin against E. coli (Anhui 112) in Mueller-Hinton (MH) broth and intestinal contents were determined to be similar, 0.25 and 0.5 μg/mL respectively. In this study, the sum of concentrations of enrofloxacin and its metabolite (ciprofloxacin) was used for the PK/PD integration and modeling. The ex vivo growth inhibition data were fitted to the sigmoid E max (Hill) equation to provide values for intestinal contents of 24 h area under concentration-time curve/MIC ratios (AUC0-24 h/MIC) producing, bacteriostasis (624.94 h), bactericidal activity (1065.93 h) and bacterial eradication (1343.81 h). PK/PD modeling was established to simulate the efficacy of enrofloxacin for different dosage regimens. By model validation, the protection rate was 83.3%, demonstrating that the dosage regimen of 11.9 mg/kg BW every 24 h during 3 days provided great therapeutic significance. In summary, the purpose of the present study was to first design a dosage regimen for the treatment E. coli in broilers by enrofloxacin using PK/PD integrate model and confirm that this dosage regimen presents less risk for emergence of floroquinolone resistance.

  7. In vitro and in vivo activity of Manuka honey against NDM-1-producing Klebsiella pneumoniae ST11.

    PubMed

    Qamar, Muhammad Usman; Saleem, Sidrah; Toleman, Mark Alexander; Saqalein, Muhammad; Waseem, Muhammad; Nisar, Muhammad Atif; Khurshid, Mohsin; Taj, Zeeshan; Jahan, Shah

    2018-01-01

    To determine the therapeutic potential of Manuka honey against New Delhi metallo-β-lactamase-1-producing Klebsiella pneumoniae ST11 in vitro and in vivo. Carbapenamases and metallo-β-lactamases-producing K. pneumoniae ST11 isolated from blood culture was confirmed by VITEK-2 ® system, matrix-assisted laser desorption ionization-time of flight and multilocus sequence typing, followed by determination of minimum inhibitory concentration (μg/ml) using VITEK-2 system. Genetic analysis of bla NDM-1 was done by PCR, pulsed-field gel electrophoresis and DNA hybridization. In vitro and in vivo efficacy of Manuka honey was performed by microbroth dilution assay and BALB/c mice model respectively. K. pneumoniae ST11 displayed resistance to commonly used antibiotics. bla NDM-1 was located on 150 and 270kb plasmids. Minimum inhibitory concentration and minimum bactericidal concentration of Manuka honey was 30% (v/v) and substantial reduction of bacterial mean log value (>1 log) was observed in mice. Histological analysis of mice liver and kidneys demonstrated mild to moderate inflammation. Manuka honey can be used as an alternate therapeutic approach for management of New Delhi metallo-β-lactamase-producing pathogens.

  8. Antimicrobial and Genotoxicity Effects of Zero-valent Iron Nanoparticles

    PubMed Central

    Barzan, Elham; Mehrabian, Sedigheh; Irian, Saeed

    2014-01-01

    Background: In a world of nanotechnology, the first concern is the potential environmental impact of nanoparticles. An efficient way to estimate nanotoxicity is to monitor the responses of bacteria exposed to these particles. Objectives: The current study explored the antimicrobial properties of nZVI (zero-valent Iron nanoparticles) on the Gram-negative bacterial systems Erwinia amylovora, Xanthomonas oryzae and the Gram-positive bacterial systems Bacillus cereus and Streptomyces spp. The genotoxicity potential of nZVI was also assayed. Materials and Methods: The toxicity of nZVI was tested by two different methods: Growing bacteria in liquid (broth dilution) and agar media (challenge test) containing different nZVI concentrations for 24-72 hours. The genotoxicity of nZVI was assessed using the preincubation version of the Ames test. Results: The lowest concentrations of nZVI that inhibited the visible growth (MIC) of E. amylovora, X. oryzae, B. cereus and Streptomyces spp. were 625, 550, 1250 and 1280 ppm, respectively. The minimum bactericidal concentration (MBC) for E. amylovora and X. oryzae were 10,000 and 5,000 ppm of nZVI, respectively. MBC was not observed for the Gram positive bacteria. No bacteriostatic and bactericidal effects were observed for oxidized nZVI. Mutant frequency did not increase according to the vehicle control at the concentrations assayed, indicating a lack of mutagenicity associated with nZVI. Conclusions: nZVI nanoparticles are not mutagenic at low concentrations, therefore they can be used without detrimental effects on soil bacteria. PMID:25147712

  9. Antimicrobial Activity of Copaiba (Copaifera officinalis) and Pracaxi (Pentaclethra macroloba) Oils against Staphylococcus Aureus: Importance in Compounding for Wound Care.

    PubMed

    Guimarães, Anna Luísa Aguijar; Cunha, Elisa Alves; Matias, Fernanda Oliveira; Garcia, Patrícia Guedes; Danopoulos, Panagiota; Swikidisa, Rosita; Pinheiro, Vanessa Alves; Nogueira, Rodrigo José Lupatini

    2016-01-01

    The Amazon rainforest is the largest reserve of natural products in the world. Its rich biodiversity of medicinal plants has been utilized by local populations for hundreds of years for the prevention and treatment of various diseases and ailments. Oil extracts from plant species such as Copaifera officinalis and Pentaclethra macroloba are used in compounded formulations for their antiinflammatory, antimicrobial, emollient, moisturizing, and wound-healing activities. The objective of this study was to investigate the in vitro bacteriostatic effect of two Amazonian oils, Copaiba and Pracaxi, against Staphylococcus aureus, a clinically important microorganism responsible for wound infection, to support the use of these oils as novel natural products for compounded wound-treatment modalities. The antibacterial activity of Copaiba and Pracaxi oils against a standard strain of Staphylococcus aureus was assessed using broth microdilution to determine the Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of the oil extracts. Copaiba oil demonstrated antibacterial activity against Staphylococcus aureus, with a Minimum Inhibitory Concentration of 0.3125 mg/mL and a Minimum Bactericidal Concentration of 0.3125 mg/mL. Conversely, Pracaxi oil failed to inhibit Staphylococcus aureus growth. While additional studies are required to further evaluate the antimicrobial activity of Pracaxi oil, even low concentrations of Copaiba oil effectively inhibited Staphylococcus aureus growth, supporting its potential use as a promising adjuvant in compounded topical formulations for wound and scar healing.

  10. Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms.

    PubMed

    Ricart, Marta; Guasch, Helena; Alberch, Mireia; Barceló, Damià; Bonnineau, Chloé; Geiszinger, Anita; Farré, Marinel la; Ferrer, Josep; Ricciardi, Francesco; Romaní, Anna M; Morin, Soizic; Proia, Lorenzo; Sala, Lluís; Sureda, David; Sabater, Sergi

    2010-11-15

    Triclosan is a commonly used bactericide that survives several degradation steps in WWTP (wastewater treatment plants) and potentially reaches fluvial ecosystems. In Mediterranean areas, where water scarcity results in low dilution capacity, the potential environmental risk of triclosan is high. A set of experimental channels was used to examine the short-term effects of triclosan (from 0.05 to 500μgL⁻¹) on biofilm algae and bacteria. Environmentally relevant concentrations of triclosan caused an increase of bacterial mortality with a no effect concentration (NEC) of 0.21μgL⁻¹. Dead bacteria accounted for up to 85% of the total bacterial population at the highest concentration tested. The toxicity of triclosan was higher for bacteria than algae. Photosynthetic efficiency was inhibited with increasing triclosan concentrations (NEC=0.42μgL⁻¹), and non-photochemical quenching mechanisms decreased. Diatom cell viability was also affected with increasing concentrations of triclosan. Algal toxicity may be a result of indirect effects on the biofilm toxicity, but the clear and progressive reduction observed in all the algal-related endpoints suggest the existence of direct effects of the bactericide. The toxicity detected on the co-occurring non-target components of the biofilm community, the capacity of triclosan to survive through WWTP processes and the low dilution capacity that characterizes Mediterranean systems extend the relevance of triclosan toxicity beyond bacteria in aquatic habitats. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria.

    PubMed Central

    Weiss, J; Elsbach, P; Shu, C; Castillo, J; Grinna, L; Horwitz, A; Theofan, G

    1992-01-01

    The bactericidal/permeability-increasing protein (BPI) of neutrophils and BPI fragments neutralize the effects of isolated Gram-negative bacterial lipopolysaccharides both in vitro and in vivo. Since endotoxin most commonly enters the host as constituents of invading Gram-negative bacteria, we raised the question: Can BPI and its bioactive fragments also protect against whole bacteria? To determine whether the bactericidal and endotoxin-neutralizing activities of BPI/fragments are expressed when Gram-negative bacteria are introduced to the complex environment of whole blood we examined the effects of added BPI and proteolytically prepared and recombinant NH2-terminal fragments on: (a) the fate of serum-resistant encapsulated Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa that survive the antibacterial actions of whole blood and (b) the ability of these bacteria to trigger cytokine release. Added BPI in nanomolar concentrations killed each of three encapsulated strains of E. coli and in closely parallel fashion inhibited tumor necrosis factor (TNF) release. Holo-BPI and its NH2-terminal fragment were equipotent toward a rough LPS chemotype K1-encapsulated strain, but the fragment was substantially more potent than holo-BPI toward two encapsulated smooth LPS chemotype strains. TNF release induced by K. pneumoniae and P. aeruginosa was also inhibited by both holo-BPI and fragment but, at the protein concentrations tested, P. aeruginosa was killed only by the fragment and K. pneumoniae was not killed by either protein. The bactericidal action of BPI/fragment toward E. coli is inhibited by C7-depleted serum, but accelerated by normal serum, indicating that BPI, acting in synergy with late complement components, enhances extracellular killing of serum-resistant bacteria. Thus, BPI and an even more potent NH2-terminal fragment may protect against Gram-negative bacteria in the host by blocking bacterial proliferation as well as endotoxin-mediated effects, not only as components of the intracellular antibacterial arsenal of the neutrophil, but also as potentially therapeutic extracellular agents. PMID:1522221

  12. Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria.

    PubMed

    Weiss, J; Elsbach, P; Shu, C; Castillo, J; Grinna, L; Horwitz, A; Theofan, G

    1992-09-01

    The bactericidal/permeability-increasing protein (BPI) of neutrophils and BPI fragments neutralize the effects of isolated Gram-negative bacterial lipopolysaccharides both in vitro and in vivo. Since endotoxin most commonly enters the host as constituents of invading Gram-negative bacteria, we raised the question: Can BPI and its bioactive fragments also protect against whole bacteria? To determine whether the bactericidal and endotoxin-neutralizing activities of BPI/fragments are expressed when Gram-negative bacteria are introduced to the complex environment of whole blood we examined the effects of added BPI and proteolytically prepared and recombinant NH2-terminal fragments on: (a) the fate of serum-resistant encapsulated Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa that survive the antibacterial actions of whole blood and (b) the ability of these bacteria to trigger cytokine release. Added BPI in nanomolar concentrations killed each of three encapsulated strains of E. coli and in closely parallel fashion inhibited tumor necrosis factor (TNF) release. Holo-BPI and its NH2-terminal fragment were equipotent toward a rough LPS chemotype K1-encapsulated strain, but the fragment was substantially more potent than holo-BPI toward two encapsulated smooth LPS chemotype strains. TNF release induced by K. pneumoniae and P. aeruginosa was also inhibited by both holo-BPI and fragment but, at the protein concentrations tested, P. aeruginosa was killed only by the fragment and K. pneumoniae was not killed by either protein. The bactericidal action of BPI/fragment toward E. coli is inhibited by C7-depleted serum, but accelerated by normal serum, indicating that BPI, acting in synergy with late complement components, enhances extracellular killing of serum-resistant bacteria. Thus, BPI and an even more potent NH2-terminal fragment may protect against Gram-negative bacteria in the host by blocking bacterial proliferation as well as endotoxin-mediated effects, not only as components of the intracellular antibacterial arsenal of the neutrophil, but also as potentially therapeutic extracellular agents.

  13. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica.

    PubMed

    Friedman, Mendel; Henika, Philip R; Mandrell, Robert E

    2002-10-01

    An improved method of sample preparation was used in a microplate assay to evaluate the bactericidal activity levels of 96 essential oils and 23 oil compounds against Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica obtained from food and clinical sources. Bactericidal activity (BA50) was defined as the percentage of the sample in the assay mixture that resulted in a 50% decrease in CFU relative to a buffer control. Twenty-seven oils and 12 compounds were active against all four species of bacteria. The oils that were most active against C. jejuni (with BA50 values ranging from 0.003 to 0.009) were marigold, ginger root, jasmine, patchouli, gardenia, cedarwood, carrot seed, celery seed, mugwort, spikenard, and orange bitter oils; those that were most active against E. coli (with BA50 values ranging from 0.046 to 0.14) were oregano, thyme, cinnamon, palmarosa, bay leaf, clove bud, lemon grass, and allspice oils; those that were most active against L monocytogenes (with BA50 values ranging from 0.057 to 0.092) were gardenia, cedarwood, bay leaf, clove bud, oregano, cinnamon, allspice, thyme, and patchouli oils; and those that were most active against S. enterica (with BA50 values ranging from 0.045 to 0.14) were thyme, oregano, cinnamon, clove bud, allspice, bay leaf, palmarosa, and marjoram oils. The oil compounds that were most active against C. jejuni (with BA50 values ranging from 0.003 to 0.034) were cinnamaldehyde, estragole, carvacrol, benzaldehyde, citral, thymol, eugenol, perillaldehyde, carvone R, and geranyl acetate; those that were most active against E. coli (with BA50 values ranging from 0.057 to 0.28) were carvacrol, cinnamaldehyde, thymol, eugenol, salicylaldehyde, geraniol, isoeugenol, citral, perillaldehyde, and estragole; those that were most active against L monocytogenes (with BA50 values ranging from 0.019 to 0.43) were cinnamaldehyde, eugenol, thymol, carvacrol, citral, geraniol, perillaldehyde, carvone S, estragole, and salicylaldehyde; and those that were most active against S. enterica (with BA50 values ranging from 0.034 to 0.21) were thymol, cinnamaldehyde, carvacrol, eugenol, salicylaldehyde, geraniol, isoeugenol, terpineol, perillaldehyde, and estragole. The possible significance of these results with regard to food microbiology is discussed.

  14. Phenolic content, antibacterial and antioxidant activities of Erica herbacea L.

    PubMed

    Vucić, Dragana M; Petković, Miroslav R; Rodić-Grabovac, Branka B; Stefanović, Olgica D; Vasić, Sava M; Comić, Ljiljana R

    2013-01-01

    Antibacterial and antioxidant activity, total phenolic and flavonoid concentrations of aqueous, ethanol and ethyl acetate extracts from the leaves and flowers of Erica herbacea L. were studied. In vitro antibacterial activity of the extracts was determined by macrodilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) have been determined. Testing was performed on 30 clinical isolates, including different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris. The values for MIC were in the range from 2.5 mg/mL to 40 mg/mL. The most sensitive bacterial strains were Proteus vulgaris strains. The aqueous extract from E. herbacea was found the most active. The total phenolic content was determined using Folin-Ciocalteu reagent and ranged between 14.98 and 119.88 mg GA/g. The concentration of flavonoids in extracts was determined using spectrophotometric method with aluminium chloride and obtained results varied from 16.19 to 26.90 mg RU/g. Antioxidant activity was monitored spectrophotometrically using DPPH reagent. The highest capacity to neutralize DPPH radicals was found in the aqueous extract from E. herbacea. The results of the total phenolic content determination of the examined extracts indicate that E. herbacea extracts are a rich source of phenolic compounds and also possess a significant antioxidant activity and moderate antibacterial activity.

  15. Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serovar Typhimurium.

    PubMed

    Neethu, Sahadevan; Midhun, Sebastian Jose; Sunil, M A; Soumya, Soman; Radhakrishnan, E K; Jyothis, Mathew

    2018-03-01

    The green synthesis of silver nanoparticles (AgNPs) using biological systems such as fungi has evolved to become an important area of nanobiotechnology. Herein, we report for the first time the light-induced extracellular synthesis of silver nanoparticles using algicolous endophytic fungus Penicillium polonicum ARA 10, isolated from the marine green alga Chetomorpha antennina. Parametric optimization, including the concentration of AgNO 3 , fungal biomass, ratio of cell filtrate and AgNO 3 , pH, reaction time and presence of light, was done for rapid AgNPs production. The obtained silver nanoparticles (AgNPs) were characterized by UV-Visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and Transmission electron microscopy (HRTEM-EDAX). The AgNPs showed a characteristic UV-visible peak at 430 nm with an average size of 10-15 nm. The NH stretches in FTIR indicate the presence of protein molecules. The Raman vibrational bands suggest that the molecules responsible for the reduction and stability of AgNPs were extracellular proteins produced by P.polonicum. Antibacterial evaluation of AgNPs against the major foodborne bacterial pathogen Salmonella enterica serovar Typhimurium MTCC 1251, was assessed by well diffusion, Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assay. Killing kinetic studies revealed complete killing of the bacterial cells within 4 h and the bactericidal nature of synthesized nanoparticles was confirmed by fluorescent microscopy and scanning electron microscopy. Furthermore, the bactericidal studies with Transmission electron microscopy (TEM) at different time intervals explored the presence of AgNPs in the cell wall of S.Typhimurium at about 30 min and the complete bacterial lysis was found at 24 h. The current research opens an insight into the green synthesis of AgNPs and the mechanism of bacterial lysis by direct damage to the cell wall. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Inhibitory and bactericidal activities of levofloxacin, ofloxacin, erythromycin, and rifampin used singly and in combination against Legionella pneumophila.

    PubMed Central

    Baltch, A L; Smith, R P; Ritz, W

    1995-01-01

    The susceptibilities of 56 Legionella pneumophila isolates (43 clinical and 15 environmental isolates) to levofloxacin, ofloxacin, erythromycin, and rifampin were studied with buffered charcoal yeast extract (BCYE) agar (inoculum, 10(4) CFU per spot), and the susceptibilities of five isolates were studied with buffered yeast extract (BYE) broth (inoculum, 10(5) CFU/ml). The MICs inhibiting 90% of strains tested on BCYE agar were 0.125, 0.25, 1.0, and < or = 0.004 micrograms/ml for levofloxacin, ofloxacin, erythromycin, and rifampin, respectively. The MICs by the BYE broth dilution method were 1 to 3, 2, 1 to 2, and 1 tube lower than those by the agar dilution method for levofloxacin, ofloxacin, erythromycin, and rifampin, respectively. The MBCs were 1 to 2 tubes higher than the broth dilution MICs for levofloxacin, 1 to 3 tubes higher than the broth dilution MICs for ofloxacin, 1 to 3 tubes higher than the broth dilution MICs for erythromycin, and the same as the broth dilution MICs for rifampin. In kinetic time-kill curve studies, at drug concentrations of 1.0 and 2.0 times the MIC, the most active drugs were levofloxacin and rifampin. At 72 h, concentrations of levofloxacin and rifampin of 2.0 times the MIC demonstrated a bactericidal effect against L. pneumophila. In contrast, at concentrations of 1.0 and 2.0 times the MICs regrowth was observed with ofloxacin and only a gradual decrease in the numbers of CFU per milliliter was observed with erythromycin. Only a minor inhibitory effect was observed with 0.25 or 0.5 time the MICs of all drugs at 24 to 48 h, with regrowth occurring at 72 h. In contrast to erythromycin or ofloxacin plus rifampin at 0.25 time the MICs, only levofloxacin plus rifampin demonstrated synergy. Thus, levofloxacin demonstrated the best inhibitory and bactericidal effects against L. pneumophila when it was studied alone or in a combination with rifampin. PMID:7486896

  17. In vitro antimicrobial activity of a gel containing antimicrobial peptide AMP2041, chlorhexidine digluconate and Tris-EDTA on clinical isolates of Pseudomonas aeruginosa from canine otitis.

    PubMed

    Ghibaudo, Giovanni; Santospirito, Davide; Sala, Andrea; Flisi, Sara; Taddei, Simone; Cavirani, Sandro; Cabassi, Clotilde Silvia

    2016-10-01

    Pseudomonas aeruginosa (PA) may cause suppurative otitis externa with severe inflammation and ulceration in dogs. Multidrug resistance is commonly reported for this organism, creating a difficult therapeutic challenge. The aim of this study was to evaluate the in vitro antimicrobial activity of a gel containing 0.5 μg/mL of antimicrobial peptide AMP2041, 0.07% chlorhexidine digluconate (CLX), 0.4% Tris and 0.1% EDTA on 30 clinical isolates of PA from canine otitis externa. Antimicrobial activity was evaluated through minimal bactericidal concentration (MBC). Standardized bacterial suspensions were incubated with different concentrations of the gel at 37°C for 30 min and plated for colony forming unit (CFU) counts. Time-to-kill kinetics were evaluated with the undiluted product and at MBC for each PA strain at 30 s, 1, 5, 10, 15, 30 min, 24 and 48 h. The MBC was 1:64 for two of 30 strains, 1:128 for 15 of 30 strains and 1:256 for 13 of 30 strains. The geometric mean was 1:165, equivalent to a concentration of 0.003 μg/mL AMP2041 + 0.0004% CLX + 0.0024%Tris + 0.0006% EDTA. Time-to-kill assays with the undiluted product showed complete bactericidal effect within 30 s for all isolates, whereas at the MBC this effect was reached within 5 min for 20 of 30 isolates and within 30 min for all isolates. Bactericidal activity was maintained after 48 h for all isolates. This gel has shown rapid, complete and long-lasting activity against a panel of 30 PA isolates from cases of canine otitis externa. © 2016 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the ESVD and ACVD.

  18. Pharmacodynamic studies of vancomycin, metronidazole and fusidic acid against Clostridium difficile.

    PubMed

    Odenholt, Inga; Walder, Mats; Wullt, Marlene

    2007-01-01

    Pharmacodynamic studies of antibiotics have attracted great interest in recent years. However, studies on the pharmacodynamics of different antibiotics against Clostridium difficile are scarce. The postantibiotic effects (PAE) and the postantibiotic sub-minimum inhibitory concentration (MIC) effects (PA SME) of vancomycin, metronidazole and fusidic acid were investigated by viable counts against three different strains of C. difficile. The killing rate and extent of the three antibiotics against the same strains were also studied by adding 2, 4, 8, 16 and 32x MIC of the three antibiotics, respectively. Metronidazole exerted a very rapid bactericidal effect at concentrations of 8x MIC and above against all three strains investigated. Vancomycin gave overall less kill in comparison to metronidazole and was bacteriostatic against two of the three strains. Fusidic acid exerted a concentration-dependent killing against two of the strains. Vancomycin exerted short PAEs and PA SMEs against all three strains. Significantly longer PAEs and PA SMEs were noted for fusidic acid. Metronidazole gave similar short PAEs like vancomycin but longer PA SMEs were noted against two of the investigated strains. Metronidazole exerted the most prominent bactericidal effect greater than fusidic acid and greater than vancomycin. Fusidic acid gave overall the longest PAEs and PA SMEs greater than metronidazole and greater than vancomycin. Copyright 2007 S. Karger AG, Basel.

  19. Isolation of Abscisic Acid from Korean Acacia Honey with Anti-Helicobacter pylori Activity

    PubMed Central

    Kim, SeGun; Hong, InPyo; Woo, SoonOk; Jang, HyeRi; Pak, SokCheon; Han, SangMi

    2017-01-01

    Background: Helicobacter pylori (H. pylori) is linked to the development of the majority of peptic ulcers and some types of gastric cancers, and its antibiotic resistance is currently found worldwide. Objective: This study is aimed at evaluating the anti-H. pylori activity of Korean acacia honey and isolating the related active components using organic solvents. Material and Methods: The crude acacia honey was extracted with n-hexane, dichloromethane, ethyl acetate (EtOAc), and n-butanol. The EtOAc extract was subjected to octadecyl-silica chromatography. The extracts and fractions were then examined for anti-H. pylori activity using the agar well diffusion method. The antimicrobial activity of abscisic acid against H. pylori was investigated by determining the minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and by performing a time-kill assay. Results: Abscisic acid related to the botanical origins of acacia honey from Korea has been analyzed using ultra-performance liquid chromatography. The MICs and MBCs of abscisic acid were 2.7 ± 1.3 and 6.9 ± 1.9 μg/mL, respectively. The bactericidal activity of abscisic acid (at 10.8 μg/mL corresponding to 4 × MIC) killed the organism within 36–72 h. These results suggest that abscisic acid isolated from Korean acacia honey has antibacterial activity against H. pylori. Conclusion: Abscisic acid isolated from Korean acacia honey can be therapeutic and may be further exploited as a potential lead candidate for the development of treatments for H. pylori-induced infections. SUMMARY The crude acacia honey was extracted with n-hexane, dichloromethane, EtOAc, and n-butanolThe EtOAc extract yielded eight fractions and four subfractions were subsequently obtained chromatographicallyAbscisic acid was isolated from one subfractionAll the solvent extracts and fractions showed antibacterial activity against H. pyloriAbscisic acid exhibited antibacterial activity against H. pylori. Abbreviations used: MeOH: Methanol; EtOAc: Ethyl acetate; TSB: Trypticase soy broth; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; CFU: Colony-forming units; UPLC: Ultra-performance liquid chromatography; DAD: Diode array detector; UV: Ultraviolet; ODS: Octadecyl-silica; MS: Mass spectrometry; SE: Standard error. PMID:28808376

  20. Isolation of Abscisic Acid from Korean Acacia Honey with Anti-Helicobacter pylori Activity.

    PubMed

    Kim, SeGun; Hong, InPyo; Woo, SoonOk; Jang, HyeRi; Pak, SokCheon; Han, SangMi

    2017-07-01

    Helicobacter pylori ( H. pylori ) is linked to the development of the majority of peptic ulcers and some types of gastric cancers, and its antibiotic resistance is currently found worldwide. This study is aimed at evaluating the anti- H. pylori activity of Korean acacia honey and isolating the related active components using organic solvents. The crude acacia honey was extracted with n -hexane, dichloromethane, ethyl acetate (EtOAc), and n -butanol. The EtOAc extract was subjected to octadecyl-silica chromatography. The extracts and fractions were then examined for anti- H. pylori activity using the agar well diffusion method. The antimicrobial activity of abscisic acid against H. pylori was investigated by determining the minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and by performing a time-kill assay. Abscisic acid related to the botanical origins of acacia honey from Korea has been analyzed using ultra-performance liquid chromatography. The MICs and MBCs of abscisic acid were 2.7 ± 1.3 and 6.9 ± 1.9 μg/mL, respectively. The bactericidal activity of abscisic acid (at 10.8 μg/mL corresponding to 4 × MIC) killed the organism within 36-72 h. These results suggest that abscisic acid isolated from Korean acacia honey has antibacterial activity against H. pylori . Abscisic acid isolated from Korean acacia honey can be therapeutic and may be further exploited as a potential lead candidate for the development of treatments for H. pylori -induced infections. The crude acacia honey was extracted with n -hexane, dichloromethane, EtOAc, and n -butanolThe EtOAc extract yielded eight fractions and four subfractions were subsequently obtained chromatographicallyAbscisic acid was isolated from one subfractionAll the solvent extracts and fractions showed antibacterial activity against H. pylori Abscisic acid exhibited antibacterial activity against H. pylori . Abbreviations used: MeOH: Methanol; EtOAc: Ethyl acetate; TSB: Trypticase soy broth; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; CFU: Colony-forming units; UPLC: Ultra-performance liquid chromatography; DAD: Diode array detector; UV: Ultraviolet; ODS: Octadecyl-silica; MS: Mass spectrometry; SE: Standard error.

  1. Aqueous synthesis of ZnTe/dendrimer nanocomposites and their antimicrobial activity: implications in therapeutics

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Ghosh, D.; Bag, P. K.; Bhattacharya, S. C.; Saha, A.

    2011-03-01

    The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they have a good degree of crystallinity with a hexagonal crystal phase. The antibacterial activities of the ZnTe/dendrimer nanocomposites (ZnTe DNCs) as well other semiconductor nanocomposites were evaluated against enteropathogenic bacteria including multi-drug resistant Vibrio cholerae serogroup O1 and enterotoxigenic Escherichia coli (ETEC). ZnTe DNCs had significant antibacterial activity against strains of V. cholerae and ETEC with minimum inhibitory concentrations ranging from 64 to 512 μg ml-1 and minimum bactericidal concentrations ranging from 128 to 1000 μg ml-1. Thus, the observed results suggest that these water-soluble active nanocomposites have potential for the treatment of enteric diseases like diarrhoea and cholera.The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they have a good degree of crystallinity with a hexagonal crystal phase. The antibacterial activities of the ZnTe/dendrimer nanocomposites (ZnTe DNCs) as well other semiconductor nanocomposites were evaluated against enteropathogenic bacteria including multi-drug resistant Vibrio cholerae serogroup O1 and enterotoxigenic Escherichia coli (ETEC). ZnTe DNCs had significant antibacterial activity against strains of V. cholerae and ETEC with minimum inhibitory concentrations ranging from 64 to 512 μg ml-1 and minimum bactericidal concentrations ranging from 128 to 1000 μg ml-1. Thus, the observed results suggest that these water-soluble active nanocomposites have potential for the treatment of enteric diseases like diarrhoea and cholera. Electronic supplementary information (ESI) available: Dynamic light scattering, atomic force microscopy and hemolytic activity of the nanocomposites. See DOI: 10.1039/c0nr00610f

  2. [Bactericidal activity of serum and chemotherapy in sensitive and resistant exciter (author's transl)].

    PubMed

    Eyer, H; Metz, H; Preac-Mursic, V

    1975-11-21

    Comparing examinations with Ampicillin sensitive and resistant bacteria-strains show that the bactericidal activity of serum is dependent on the bacteria-strains, on the Ampicillin sensitivity of the particular exciter and on the number of bacteria/ml (germ count). Bactericide effect could always be obtained with sensitive strains as a result of additional chemotherapy. With several resistant strains a bactericide effect could not be obtained in this case the continuous optimal Ampicillin addition was the decisive factor. Because of the extremely complicated process of the bactericide one should not make general conclusions from the individual experimental results.

  3. Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation-reduction state.

    PubMed

    Torgomyan, Heghine; Trchounian, Armen

    2011-10-14

    Low-intensity electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies (flux capacity - 0.06 mW cm(-2)) had bactericidal effects on Escherichia coli. This EMI (1h) exposure suppressed the growth of E. coli K-12(λ). The pH value (6.0-8.0) did not significantly affect the growth. The lag-phase duration was prolonged, and the growth specific rate was inhibited, and these effects were more noticeable after 73 GHz irradiation. These effects were enhanced by the addition of DL-dithiothreitol (DTT), a strong reducer of disulfide bonds in surface membrane proteins, which in its turn also has bactericidal effect. Further, the number of accessible SH-groups in membrane vesicles was markedly decreased by EMI that was augmented by N,N'-dicyclohexycarbodiimide and DTT. These results indicate a change in the oxidation-reduction state of bacterial cell membrane proteins that could be the primary membranous mechanism in the bactericidal effects of low-intensity EMI of the 70.6 and 73 GHz frequencies. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Antibacterial potential assessment of jasmine essential oil against e. Coli.

    PubMed

    Rath, C C; Devi, S; Dash, S K; Mishra, R K

    2008-01-01

    The antibacterial activity of Jasmine (Jasminum sambac L.) flower hydro steam distilled essential oil, synthetic blends and six major individual components was assessed against Escherichia coli (MTCC-443) strain. The activity was bactericidal. Minimum inhibitory concentration was determined by tube dilution technique, and the Minimum inhibitory concentration ranged between 1.9-31.25 mul/ml. Phenolcoefficient of the oil, synthetic blends and components varied between 0.6-1.7. The activity of the chemicals was possibly due to the inhibition of cell membrane synthesis.

  5. The effect of growth rate on pyrazinamide activity in Mycobacterium tuberculosis - insights for early bactericidal activity?

    PubMed

    Pullan, Steven T; Allnutt, Jon C; Devine, Rebecca; Hatch, Kim A; Jeeves, Rose E; Hendon-Dunn, Charlotte L; Marsh, Philip D; Bacon, Joanna

    2016-05-17

    Pyrazinamide (PZA) plays an essential part in the shortened six-month tuberculosis (TB) treatment course due to its activity against slow-growing and non-replicating organisms. We tested whether PZA preferentially targets slow growing cells of Mycobacterium tuberculosis that could be representative of bacteria that remain after the initial kill with isoniazid (INH), by observing the response of either slow growing or fast growing bacilli to differing concentrations of PZA. M. tuberculosis H37Rv was grown in continuous culture at either a constant fast growth rate (Mean Generation Time (MGT) of 23.1 h) or slow growth rate (69.3 h MGT) at a controlled dissolved oxygen tension of 10 % and a controlled acidity at pH 6.3 ± 0.1. Cultures were exposed to step-wise increases in the concentration of PZA (25 to 500 μgml(-1)) every two MGTs, and bacterial survival was measured. PZA-induced global gene expression was explored for each increase in PZA-concentration, using DNA microarray. At a constant pH 6.3, actively dividing mycobacteria were susceptible to PZA, with similar responses to increasing concentrations of PZA at both growth rates. Three distinct phases of drug response could be distingished for both slow growing (69.3 h MGT) and fast growing (23.1 h MGT) bacilli. A bacteriostatic phase at a low concentration of PZA was followed by a recovery period in which the culture adapted to the presence of PZA and bacteria were actively dividing in steady-state. In contrast, there was a rapid loss of viability at bactericidal concentrations. There was a notable delay in the onset of the recovery period in quickly dividing cells compared with those dividing more slowly. Fast growers and slow growers adapted to PZA-exposure via very similar mechanisms; through reduced gene expression of tRNA, 50S, and 30S ribosomal proteins. PZA had an equivalent level of activity against fast growing and slow growing M. tuberculosis. At both growth rates drug-tolerance to sub-lethal concentrations may have been due to reduced expression of tRNA, 50S, and 30S ribosomal proteins. The findings from this study show that PZA has utility against more than one phenotypic sub-population of bacilli and could be re-assessed for its early bactericidal activity, in combination with other drugs, during TB treatment.

  6. Antimicrobial isothiocyanates from the seeds of Moringa oleifera Lam.

    PubMed

    Padla, Eleanor P; Solis, Ludivina T; Levida, Ruel M; Shen, Chien-Chang; Ragasa, Consolacion Y

    2012-01-01

    4-(alpha-L-Rhamnosyloxy)benzyl isothiocyanate (1) and 4-(4'-O-acetyl-alpha-L-rhamnosyloxy)-benzyl isothiocyanate (2) isolated from Moringa oleifera seeds were screened for their antibacterial activities against Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and for their antifungal activities against Candida albicans, Trichophyton rubrum, and Epidermophyton floccosum using the disk diffusion method. Isothiocyanates 1 and 2 were found active at the lowest inhibitory concentration of 1 mg/ml against all Gram-positive bacteria tested (S. aureus, S. epidermidis, B. subtilis) and against the dermatophytic fungi E. floccosum and T. rubrum. Statistically significant differences were found between the mean inhibition zones (IZ) of 1 and 2 and the standard drugs, ofloxacin and clotrimazole. The minimum inhibitory concentration (MIC) values confirmed the good antimicrobial activity of 1 and 2 against S. aureus, good to moderate activity against S. epidermidis, moderate activity against B. subtilis, and weak activity against E. floccosum and T. rubrum. The in vitro bactericidal effect of 1 and 2 against the Gram-positive bacterial strains tested is suggested by MBC:MIC ratios of 2:1.

  7. Anti-leptospiral activities of an endemic plant Glyptopetalum calocarpum (Kurz.) Prain used as a medicinal plant by Nicobarese of Andaman and Nicobar Islands.

    PubMed

    Chander, M Punnam; Kumar, K Vinod; Shriram, A N; Vijayachari, P

    2015-01-01

    Leaves of an endemic plant Glyptopetalum calocarpum are used by Nicobarese tribes of Andaman and Nicobar Islands, India, to prepare traditional medicine for treating fever. In the present investigation, pharmacologically active compounds were isolated from this plant and their antimicrobial efficacy was evaluated against the leptospiral strains. The anti-leptospiral activity of six plant-derived compounds was determined by both microdilution and macrodilution methods. Two out of six compounds, namely lupenone and stigmasterol, showed anti-leptospiral activity. The minimum inhibitory concentrations of the two compounds tested against pathogenic leptospiral strains belonging to 10 serovars were in the range of 100-200 μg/mL. The range of minimum bactericidal concentrations was 400-800 μg/mL. Compounds lupenone, stigmasterol, lupeol, β-amyrin and β-amyrin acetate had negligible or no haemolytic activity, exhibiting IC50 values of greater than 5 mg/mL. Further in vivo studies are needed to investigate the pharmacological and toxicological properties of G. calocarpum before it can be considered as a new anti-leptospiral agent.

  8. Activity of Aristolochia bracteolata against Moraxella catarrhalis

    PubMed Central

    Khedr, Amgad I. M.; Abd AlGadir, Haidar; Takeshita, Satoshi; Shah, Mohammad Monir; Ichinose, Yoshio; Maki, Toshihide

    2014-01-01

    A bioassay-guided fractionation of methanol extract of Aristolochia bracteolata whole plant was carried out in order to evaluate its antimicrobial activity and to identify the active compounds in this extract. Antibacterial and antifungal activities of methanol extract against gram-positive, gram-negative, and fungal strains were investigated by the agar disk diffusion method. Among the strains tested, Moraxella catarrhalis and sea urchin-derived Bacillus sp. showed the highest sensitivity towards the methanol extract and hence they are used as test organisms for the bioassay-guided fractionation. From this extract, aristolochic acid 1 (AA-1) has been isolated and has showed the greatest antibacterial activity against both standard strain and clinical isolates of Moraxella catarrhalis with equal minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 25 and 50 μg/mL. Modification of the AA-1 to AA-1 methyl ester completely abolished the antibacterial activity of the compound and the piperonylic acid moiety of AA-1 which suggested that the coexistence of phenanthrene ring and free carboxylic acid is essential for AA-1 antibacterial activity. PMID:26904734

  9. Antibacterial abietane-type diterpenoid, taxodone from Metasequoia glyptostroboides Miki ex Hu.

    PubMed

    Bajpai, Vivek K; Kang, Sun Chul

    2010-12-01

    In an attempt to isolate bioactive constituents, ethyl acetate cone extract of Metasequoia glyptostroboides was subjected to a column chromatographic analysis that resulted in isolation of an abietane-type diterpenoid, taxodone. Its structure was elucidated by spectroscopic means. Further, taxodone showed potential antibacterial effect as diameters of zones of inhibition against foodborne pathogenic bacteria, such as Listeria monocytogenes ATCC 19166, Salmonella typhimurium KCTC 2515, S. enteritidis KCTC 2021, Escherichia coli ATCC 8739, E. coli O157:H7 ATCC 43888, Enterobacter aerogenes KCTC 2190, Staphylococcus aureus ATCC 6538 and S. aureus KCTC 1916, were found in the range of 9.4 to 14.2 mm. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of taxodone against the employed bacterial pathogens were found in the range of 250 to 1000 and 250 to less than 2000 microg/ml, respectively. Also the compound had a strong antibacterial effect on the viable counts of the tested bacteria. These findings indicate that the bioactive compound taxodone present in M. glyptostroboides could be used as an antibacterial agent in food industry to inhibit the growth of certain important foodborne pathogens.

  10. In vitro activity of salicylamide derivatives against vancomycin-resistant enterococci.

    PubMed

    Pospisilova, Sarka; Michnova, Hana; Kauerova, Tereza; Pauk, Karel; Kollar, Peter; Vinsova, Jarmila; Imramovsky, Ales; Cizek, Alois; Jampilek, Josef

    2018-07-01

    A series of 13 salicylamide derivatives was assessed for antibacterial activity against three isolates of vancomycin-resistant Enterococcus faecalis (VRE) and Enterococcus faecalis ATCC 29212 as a quality standard. The minimum inhibitory concentration was determined by the broth microdilution method with subsequent subcultivation of aliquots to assess minimum bactericidal concentration. The growth kinetics was established by the time-kill assay. Ampicillin, ciprofloxacin, tetracycline and vancomycin were used as the reference antibacterial drugs. Three of the investigated compounds showed strong bacteriostatic activity against VRE (0.199-25 µM) comparable to or more potent than ampicillin and ciprofloxacin. In addition, these compounds were tested for synergistic effect with vancomycin, ciprofloxacin and tetracycline, while 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)phenyl]benzamide showed the highest potency as well as synergistic activity with vancomycin against VRE 368. Screening of the cytotoxicity of the most effective compounds was performed using human monocytic leukemia THP-1 cells, and based on LD 50 values, it can be stated that the compounds have insignificant toxicity against human cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms.

    PubMed

    Dosler, Sibel; Mataraci, Emel

    2013-11-01

    Antibiotic therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections is becoming more difficult in hospitals and communities because of strong biofilm-forming properties and multidrug resistance. Biofilm-associated MRSA is not affected by therapeutically achievable concentrations of antibiotics. Therefore, we investigated the in vitro pharmacokinetic activities of antimicrobial cationic peptides (AMPs; indolicidin, cecropin [1-7]-melittin A [2-9] amide [CAMA], and nisin), either alone or in combination with antibiotics (daptomycin, linezolid, teicoplanin, ciprofloxacin, and azithromycin), against standard and 2 clinically obtained MRSA biofilms. The minimum inhibitory concentrations (MIC) and minimum biofilm-eradication concentrations (MBEC) were determined by microbroth dilution technique. The time-kill curve (TKC) method was used to determine the bactericidal activities of the AMPs alone and in combination with the antibiotics against standard and clinically obtained MRSA biofilms. The MIC values of the AMPs and antibiotics ranged between 2 to 16 and 0.25 to 512 mg/L, and their MBEC values were 640 and 512 to 5120 mg/L, respectively. The TKC studies demonstrated that synergistic interactions occurred most frequently when using nisin+daptomycin/ciprofloxacin, indolicidin+teicoplanin, and CAMA+ciprofloxacin combinations. No antagonism was observed with any combination. AMPs appear to be good candidates for the treatment of MRSA biofilms, as they act as both enhancers of anti-biofilm activities and help to prevent or delay the emergence of resistance when used either alone or in combination with antibiotics. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Potency of marbofloxacin for pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida: Comparison of growth media.

    PubMed

    Dorey, L; Hobson, S; Lees, P

    2017-04-01

    Pharmacodynamic properties of marbofloxacin were established for six isolates each of the pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Three in vitro indices of potency were determined; Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Mutant Prevention Concentration (MPC). For MIC determination Clinical Laboratory Standards Institute guidelines were modified in three respects: (1) comparison was made between two growth media, an artificial broth and pig serum; (2) a high inoculum count was used to simulate heavy clinical bacteriological loads; and (3) five overlapping sets of two-fold dilutions were used to improve accuracy of determinations. Similar methods were used for MBC and MPC estimations. MIC and MPC serum:broth ratios for A. pleuropneumoniae were 0.79:1 and 0.99:1, respectively, and corresponding values for P. multocida were 1.12:1 and 1.32:1. Serum protein binding of marbofloxacin was 49%, so that fraction unbound (fu) serum MIC values were significantly lower than those predicted by correction for protein binding; fu serum:broth MIC ratios were 0.40:1 (A. pleuropneumoniae) and 0.50:1 (P. multocida). For broth, MPC:MIC ratios were 13.7:1 (A. pleuropneumoniae) and 14.2:1 (P. multocida). Corresponding ratios for serum were similar, 17.2:1 and 18.8:1, respectively. It is suggested that, for dose prediction purposes, serum data might be preferable to potency indices measured in broths. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination.

    PubMed

    Brandt, Alex L; Castillo, Alejandro; Harris, Kerri B; Keeton, Jimmy T; Hardin, Margaret D; Taylor, Thomas M

    2010-01-01

    Combining food antimicrobials can enhance inhibition of Listeria monocytogenes in ready-to-eat (RTE) meats. A broth dilution assay was used to compare the inhibition of L. monocytogenes resulting from exposure to nisin, acidic calcium sulfate, ε-poly-L-lysine, and lauric arginate ester applied singly and in combination. Minimum inhibitory concentrations (MICs) were the lowest concentrations of single antimicrobials producing inhibition following 24 h incubation at 35 °C. Minimum bactericidal concentrations (MBCs) were the lowest concentrations that decreased populations by ≥3.0 log(10) CFU/mL. Combinations of nisin with acidic calcium sulfate, nisin with lauric arginate ester, and ɛ-poly-L-lysine with acidic calcium sulfate were prepared using a checkerboard assay to determine optimal inhibitory combinations (OICs). Fractional inhibitory concentrations (FICs) were calculated from OICs and were used to create FIC indices (FIC(I)s) and isobolograms to classify combinations as synergistic (FIC(I) < 1.00), additive/indifferent (FIC(I)= 1.00), or antagonistic (FIC(I) > 1.00). MIC values for nisin ranged from 3.13 to 6.25 μg/g with MBC values at 6.25 μg/g for all strains except for Natl. Animal Disease Center (NADC) 2045. MIC values for ε-poly-L-lysine ranged from 6.25 to 12.50 μg/g with MBCs from 12.50 to 25.00 μg/g. Lauric arginate ester at 12.50 μg/g was the MIC and MBC for all strains; 12.50 mL/L was the MIC and MBC for acidic calcium sulfate. Combining nisin with acidic calcium sulfate synergistically inhibited L. monocytogenes; nisin with lauric arginate ester produced additive-type inhibition, while ε-poly-L-lysine with acidic calcium sulfate produced antagonistic-type inhibition. Applying nisin along with acidic calcium sulfate should be further investigated for efficacy on RTE meat surfaces. © 2010 Institute of Food Technologists®

  14. Influence of ethylenediamine-n,n’-disuccinic acid (EDDS) concentration on the bactericidal activity of fatty acids in vitro

    USDA-ARS?s Scientific Manuscript database

    The antibacterial activity of mixtures of ethylenediamine-N,N’-disuccinic acid (EDDS) and antibacterial fatty acids (FA) was examined using the agar diffusion assay. Solutions of caproic, caprylic, capric, and lauric acids dissolved in potassium hydroxide (KOH) were supplemented with 0, 5, or 10 mM ...

  15. Bactericidal activity of alkaline salts of fatty acids towards bacteria associated with poultry processing

    USDA-ARS?s Scientific Manuscript database

    Antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids were determined using the agar diffusion assay. A 0.5M concentration of each fatty acid (FA) was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric aci...

  16. Anticariogenic activity of some tropical medicinal plants against Streptococcus mutans.

    PubMed

    Hwang, Jae-Kwan; Shim, Jae-Seok; Chung, Jae-Youn

    2004-09-01

    The methanol extracts of five tropical plants, Baeckea frutescens, Glycyrrhiza glabra, Kaempferia pandurata, Physalis angulata and Quercus infectoria, exhibited potent antibacterial activity against the cariogenic bacterium Streptococcus mutans. In particular, G. glabra, K. pandurata and P. angulata conferred fast killing bactericidal effect against S. mutans in 2 min at 50 microg/ml of extract concentration.

  17. Effects of freezing on the bactericidal activity of human milk.

    PubMed

    Takci, Sahin; Gulmez, Dolunay; Yigit, Sule; Dogan, Ozlem; Dik, Kezban; Hascelik, Gulsen

    2012-08-01

    Storage of human milk by freezing has been recommended for long-term storage. The present study analyzed the bactericidal activity of human milk on Escherichia coli and Pseudomonas aeruginosa and determined the changes in bactericidal activity following freezing at -20°C and -80°C for 1 month and 3 months. Forty-eight milk samples were collected from 48 lactating mothers. Each sample was divided into 10 aliquots. Two of the samples were processed immediately and the others were stored at both -20°C and -80°C until analysis after 1 month and 3 months of freezing. All of the fresh milk samples showed bactericidal activity against E coli and P aeruginosa. Freezing at -20°C for 1 month did not cause statistically significant alteration in bactericidal activity (P > 0.017), whereas storage for 3 months lowered the degree of bactericidal activity significantly (P < 0.017) against E coli. Bactericidal activity was protected when the samples were stored at -80°C. There was no statistically significant difference in the bactericidal activity of human milk against E coli between freezing at -20°C and -80°C for 1 month (P > 0.017); however, when milk was stored for 3 months, -80°C was significantly more protective (P < 0.017). Freezing at -20°C and -80°C for 1 month and 3 months did not cause any significant change in bactericidal activity against P aeruginosa (P > 0.05). Storage by freezing at -80°C is more appropriate to keep bactericidal capacity of stored human milk >1 month if affordable and available, especially in intensive care settings.

  18. In Vitro Synergistic Effects of Double and Triple Combinations of β-Lactams, Vancomycin, and Netilmicin against Methicillin-Resistant Staphylococcus aureus Strains

    PubMed Central

    Rochon-Edouard, Stéphanie; Pestel-Caron, Martine; Lemeland, Jean-François; Caron, François

    2000-01-01

    Several studies have previously reported synergistic effects between vancomycin and a given β-lactam or a given aminoglycoside against methicillin-resistant Staphylococcus aureus (MRSA) strains. The aim of our study was to exhaustively compare the effects of different combinations of a β-lactam, vancomycin, and/or an aminoglycoside against 32 clinical MRSA strains with different aminoglycoside susceptibility patterns. The effects of 26 different β-lactam–vancomycin and 8 different aminoglycoside-vancomycin combinations were first studied using a disk diffusion screening method. The best interactions with vancomycin were observed with either imipenem, cefazolin, or netilmicin. By checkerboard studies, imipenem-vancomycin and cefazolin-vancomycin each provided a synergistic bacteriostatic effect against 22 strains; the mean fractional inhibitory concentration (FIC) indexes were 0.35 and 0.46 for imipenem-vancomycin and cefazolin-vancomycin, respectively. The vancomycin-netilmicin combination provided an indifferent effect against all of the 32 strains tested; the mean of FIC index was 1.096. The mean concentrations of imipenem, cefazolin, netilmicin, and vancomycin at which FIC indexes were calculated were clinically achievable. Killing experiments were then performed using imipenem, cefazolin, netilmicin, and vancomycin at one-half of the MIC, alone and in different combinations, against 10 strains. The vancomycin-netilmicin regimen was rarely bactericidal, even against strains susceptible to netilmicin. The imipenem-vancomycin and cefazolin-vancomycin combinations were strongly bactericidal against six and five strains, respectively. The addition of netilmicin markedly enhanced the killing activity of the combination of cefazolin or imipenem plus vancomycin, but only for the MRSA strains against which the β-lactam–vancomycin combinations had no bactericidal effect. It is noteworthy that the latter strains were both susceptible to netilmicin and heterogeneously resistant to methicillin. PMID:11036022

  19. Antibiotic efficacy is linked to bacterial cellular respiration

    PubMed Central

    Lobritz, Michael A.; Belenky, Peter; Porter, Caroline B. M.; Gutierrez, Arnaud; Yang, Jason H.; Schwarz, Eric G.; Dwyer, Daniel J.; Khalil, Ahmad S.; Collins, James J.

    2015-01-01

    Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes—the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy. PMID:26100898

  20. Cyanide, Peroxide and Nitric Oxide Formation in Solutions of Hydroxyurea Causes Cellular Toxicity and May Contribute to its Therapeutic Potency

    PubMed Central

    Kuong, Kawai J.; Kuzminov, Andrei

    2009-01-01

    Hydroxyurea is a potent remedy against a variety of ailments and an efficient inhibitor of DNA synthesis, yet its pharmacology is unclear. Hydroxyurea acts in Escherichia coli by the same mechanism as it does in eukaryotes, via inhibition of ribonucleotide reductase. When examining a controversy about concentrations of hydroxyurea that prevent thymineless death in E. coli, we found instability in hydroxyurea solutions which avoided prior detection due to its peculiar nature. In contrast to freshly dissolved hydroxyurea, which did not affect respiration and was bacteriostatic, one-day-old hydroxyurea solutions inhibited respiration and were immediately bactericidal. Respiration was inhibited by two gasses, hydrogen cyanide (HCN) and nitric oxide (NO), whose appearance we detected in “aged” hydroxyurea stocks by GC-MS; however, neither gas was bactericidal. While determining the cause of toxicity, we found that hydroxyurea damages DNA directly. We also demonstrated accumulation of peroxides in hydroxyurea solutions by enzymatic assays, which explains the toxicity, as both NO and HCN are known to kill bacteria when combined with hydrogen peroxide. Remarkably, we found that bactericidal effects of NO + H2O2 and HCN + H2O2 mixtures were further synergistic. Accumulation of decomposition products in solutions of hydroxyurea may explain the broad therapeutic effects of this drug. PMID:19467244

  1. Three-year antibody persistence and safety after a single dose of combined haemophilus influenzae type b (Hib)-Neisseria meningitidis serogroup C-tetanus toxoid conjugate vaccine in Hib-primed toddlers.

    PubMed

    Booy, Robert; Richmond, Peter; Nolan, Terry; McVernon, Jodie; Marshall, Helen; Nissen, Michael; Reynolds, Graham; Ziegler, John B; Stoney, Tanya; Heron, Leon; Lambert, Stephen; Mesaros, Narcisa; Peddiraju, Kavitha; Miller, Jacqueline M

    2013-02-01

    Persistence of seroprotective bactericidal antibody titers is important for long-term protection against meningococcal serogroup C disease in young children. Antibody persistence values were determined in children up to 3 years after vaccination with a single dose of the combined Haemophilus influenzae type b (Hib)-Neisseria meningitidis serogroup C (MenC)-tetanus toxoid (TT) conjugate vaccine (Hib-MenC-TT; www.ClinicalTrials.gov: NCT00326118). The children had been randomized at ages 12-18 months to receive either 1 dose of Hib-MenC-TT (Hib-MenC group) or separately administered Hib-TT conjugate vaccine and MenC-CRM197 (MCC) vaccine (Hib plus MCC group). All children had been primed in infancy with a Hib vaccine. Antibodies against MenC were measured by a serum bactericidal assay using rabbit complement (rSBA-MenC) and antibodies against Hib polyribosylribitol phosphate were assessed by enzyme-linked immunosorbent assay. The rSBA-MenC titers ≥1:8 were demonstrated 3 years after vaccination in 64.2% and 53.2% of participants in the Hib-MenC group and in the Hib plus MCC group, respectively. Antipolyribosylribitol phosphate concentrations ≥0.15 µg/mL persisted in >98% of participants in both groups. The rSBA-MenC geometric mean titers and antipolyribosylribitol phosphate geometric mean concentrations remained higher 3 years after vaccination than before vaccination. No serious adverse events assessed by the investigator as being related to vaccination were reported. In this antibody persistence study of Hib-primed but MenC-naïve toddlers who received a single dose of Hib-MenC-TT, protective antibody levels against Hib and MenC were maintained in the majority of children 3 years after vaccination.

  2. Antibacterial properties studies of trunk barks of Terminalia ivorensis, a commercial and medicinal species on some methicillin-resistant Staphylococci species strains.

    PubMed

    Coulibaly, K; Zirihi, G N; Guessennd-Kouadio, N; Oussou, K R; Dosso, M

    2014-09-01

    Methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis and coagulase-negative Staphylococcus infections are a worldwide concern. Terminalia ivorensis, of Combretaceae family plant, is widely used traditional medicinal in Côte d'Ivoire to treat dermal diseases (affection in which Staphylococci are implied) including local inflammation and also to treat voice-loss. This study focused to investigate the effect in vitro of the extracts of trunk barks of Terminalia ivorensis on some methicillin/oxacillin-resistant strains of Staphylococcus aureus, S. epidermidis, coagulase-negative S. and reference strain of S. aureus ATCC 25923. Antibacterial activity of aqueous, 70% ethanolic 70% and aqueous residue extracts was assessed using agar disc-diffusion method and liquid medium microdilution method in 96 multi-well micro-titer plates. This method led us to determine minimum inhibition concentration (M.I.C.) and minimum bactericidal concentration (M.B.C.). The presence of chemical groups major was detected qualitatively. Aqueous and 70% ethanolic 70% extracts showed significant activity against all the bacteria except aqueous residue when compared with the standard antibiotic oxacillin (5 µg/ml). M.I.C. for aqueous and 70% ethanolic 70% extracts ranged from 0,83-16,67 mg/ml and 0,156-13,33 mg/ml respectively. Viable cell determination revealed the bactericidal nature of the two barks extracts. The 70% ethanolic 70% extract exhibited the highest activity according to the M.B.C. values. The phytochemical analysis indicates the presence of tannins, saponins, flavonoids, terpen/sterols, coumarins, polyphenols and traces of alkaloid. The in-vitro antibacterial efficacy shown by the barks of this plant and his lushness in chimical compounds, would justify use of this one in the traditional treatment of some diseases of microbial origin. These compounds could be suggested to provide alternative solution to the development of new therapeutic agents.

  3. A screening for antimicrobial activities of Caribbean herbal remedies

    PubMed Central

    2013-01-01

    Background The TRAMIL program aims to understand, validate and expand health practices based on the use of medicinal plants in the Caribbean, which is a “biodiversity hotspot” due to high species endemism, intense development pressure and habitat loss. The antibacterial activity was examined for thirteen plant species from several genera that were identified as a result of TRAMIL ethnopharmacological surveys or were reported in ethnobotanical accounts from Puerto Rico. The aim of this study was to validate the traditional use of these plant species for the treatment of bacterial infections, such as conjunctivitis, fever, otitis media and furuncles. Methods An agar disc diffusion assay was used to examine five bacterial strains that are associated with the reported infections, including Staphylococcus saprophyticus (ATCC 15305), S. aureus (ATCC 6341), Escherichia coli (ATCC 4157), Haemophilus influenzae (ATCC 8142), Pseudomonas aeruginosa (ATCC 7700) and Proteus vulgaris (ATCC 6896), as well as the fungus Candida albicans (ATCC 752). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined for each of the extracts that showed inhibitory activity. Results The decoctions of Pityrogramma calomelanos, Tapeinochilus ananassae, and Syzygium jambos, as well as the juice of Gossypium barbadense, showed > 20% growth inhibition against several bacteria relative to the positive control, which was the antibiotic Streptomycin. Extracts with the best antimicrobial activities were S. jambos that showed MIC = 31 μg/mL and MBC = 1.0 mg/mL against P. vulgaris and T. ananassae that showed MIC = 15 μg/mL against S. aureus. Conclusion This report confirms the traditional use of P. calomelanos for the treatment of kidney infections that are associated with stones, as well as the antimicrobial and bactericidal effects of T. ananassae against P. vulgaris and S. saprophyticus and the effects of S. jambos against S. aureus and S. saprophyticus. PMID:23731467

  4. Development and Use of a Serum Bactericidal Assay Using Pooled Human Complement To Assess Responses to a Meningococcal Group A Conjugate Vaccine in African Toddlers

    PubMed Central

    Lynn, Freyja; Mocca, Brian; Borrow, Ray; Findlow, Helen; Hassan-King, Musa; Preziosi, Marie-Pierre; Idoko, Olubukola; Sow, Samba; Kulkarni, Prasad; LaForce, F. Marc

    2014-01-01

    A meningococcal group A polysaccharide (PS) conjugate vaccine (PsA-TT) has been developed for African countries affected by epidemic meningitis caused by Neisseria meningitidis. Complement-mediated serum bactericidal antibody (SBA) assays are used to assess protective immune responses to meningococcal vaccination. Human complement (hC′) was used in early studies demonstrating antibody-mediated protection against disease, but it is difficult to obtain and standardize. We developed and evaluated a method for sourcing hC′ and then used the SBA assay with hC′ (hSBA) to measure bactericidal responses to PsA-TT vaccination in 12- to 23-month-old African children. Sera with active complement from 100 unvaccinated blood donors were tested for intrinsic bactericidal activity, SBA titer using rabbit complement (rSBA), and anti-group A PS antibody concentration. Performance criteria and pooling strategies were examined and then verified by comparisons of three independently prepared hC′ lots in two laboratories. hSBA titers of clinical trial sera were then determined using this complement sourcing method. Two different functional antibody tests were necessary for screening hC′. hSBA titers determined using three independent lots of pooled hC′ were within expected assay variation among lots and between laboratories. In African toddlers, PsA-TT elicited higher hSBA titers than meningococcal polysaccharide or Hib vaccines. PsA-TT immunization or PS challenge of PsA-TT-primed subjects resulted in vigorous hSBA memory responses, and titers persisted in boosted groups for over a year. Quantifying SBA using pooled hC′ is feasible and showed that PsA-TT was highly immunogenic in African toddlers. PMID:24671551

  5. Superior bactericidal activity of N-bromine compounds compared to their N-chlorine analogues can be reversed under protein load.

    PubMed

    Gottardi, W; Klotz, S; Nagl, M

    2014-06-01

    To investigate and compare the bactericidal activity (BA) of active bromine and chlorine compounds in the absence and presence of protein load. Quantitative killing tests against Escherichia coli and Staphylococcus aureus were performed both in the absence and in the presence of peptone with pairs of isosteric active chlorine and bromine compounds: hypochlorous and hypobromous acid (HOCl and HOBr), dichloro- and dibromoisocyanuric acid, chlorantine and bromantine (1,3-dibromo- and 1,3 dichloro-5,5-dimethylhydantoine), chloramine T and bromamine T (N-chloro- and N-bromo-4-methylbenzenesulphonamide sodium), and N-chloro- and N-bromotaurine sodium. To classify the bactericidal activities on a quantitative basis, an empirical coefficient named specific bactericidal activity (SBA), founded on the parameters of killing curves, was defined: SBA= mean log reductions/(mean exposure times x concentration) [mmol 1(-1) min (-1)]. In the absence of peptone, tests with washed micro-organisms revealed a throughout higher BA of bromine compounds with only slight differences between single substances. This was in contrast to chlorine compounds, whose killing times differed by a factor of more than four decimal powers. As a consequence, also the isosteric pairs showed according differences. In the presence of peptone, however, bromine compounds showed an increased loss of BA, which partly caused a reversal of efficacy within isosteric pairs. In medical practice, weakly oxidizing active chlorine compounds like chloramines have the highest potential as topical anti-infectives in the presence of proteinaceous material (mucous membranes, open wounds). Active bromine compounds, on the other hand, have their chance at insensitive body regions with low organic matter, for example skin surfaces. The expected protein load is one of the most important parameters for selection of a suited active halogen compound. © 2014 The Society for Applied Microbiology.

  6. Interaction of metronidazole with DNA repair mutants of Escherichia coli.

    PubMed

    Yeung, T C; Beaulieu, B B; McLafferty, M A; Goldman, P

    1984-01-01

    It has been proposed that one of metronidazole's partially reduced intermediates interacts either with DNA to exert a bactericidal effect or with water to form acetamide. To test this hypothesis we have examined the effect of metronidazole on several mutants of Escherichia coli that are defective in DNA repair. UV-susceptible RecA- and UvrB- point mutants have an increased susceptibility to metronidazole as manifested by both a decreased minimal inhibitory concentration and a greater bactericidal response to metronidazole in resting cultures. By these criteria, however, we find that UvrB- deletion mutants, which lack the ability to reduce nitrate and chlorate, are no more susceptible to metronidazole than is the wild type. We find, however, that these deletion mutants also lack the ability to reduce metronidazole and thus possibly to form its reactive species. When metronidazole's bactericidal effect is expressed in terms of the concurrent accumulation of acetamide derived from metronidazole, then all RecA- and UvrB- mutants are killed more efficiently than their wild types. The data are consistent, therefore, with metronidazole's lethal effect being mediated by a partially reduced intermediate on the metabolic pathway between metronidazole and acetamide. Defects in other aspects of the DNA repair system do not confer this increased susceptibility to the proposed intermediate. A Tag- mutant, for example, which is defective in 3-methyl-adenine-DNA glycosylase, does not have this increased susceptibility to the presumed precursor of acetamide. Thus, these results provide further support for the hypothesis that the bactericidal effect of metronidazole is mediated by a partially reduced intermediate in the metabolic conversion of metronidazole to acetamide and suggest that this intermediate interacts with DNA to produce a lesion similar to that caused by UV light.

  7. Interaction of metronidazole with DNA repair mutants of Escherichia coli.

    PubMed Central

    Yeung, T C; Beaulieu, B B; McLafferty, M A; Goldman, P

    1984-01-01

    It has been proposed that one of metronidazole's partially reduced intermediates interacts either with DNA to exert a bactericidal effect or with water to form acetamide. To test this hypothesis we have examined the effect of metronidazole on several mutants of Escherichia coli that are defective in DNA repair. UV-susceptible RecA- and UvrB- point mutants have an increased susceptibility to metronidazole as manifested by both a decreased minimal inhibitory concentration and a greater bactericidal response to metronidazole in resting cultures. By these criteria, however, we find that UvrB- deletion mutants, which lack the ability to reduce nitrate and chlorate, are no more susceptible to metronidazole than is the wild type. We find, however, that these deletion mutants also lack the ability to reduce metronidazole and thus possibly to form its reactive species. When metronidazole's bactericidal effect is expressed in terms of the concurrent accumulation of acetamide derived from metronidazole, then all RecA- and UvrB- mutants are killed more efficiently than their wild types. The data are consistent, therefore, with metronidazole's lethal effect being mediated by a partially reduced intermediate on the metabolic pathway between metronidazole and acetamide. Defects in other aspects of the DNA repair system do not confer this increased susceptibility to the proposed intermediate. A Tag- mutant, for example, which is defective in 3-methyl-adenine-DNA glycosylase, does not have this increased susceptibility to the presumed precursor of acetamide. Thus, these results provide further support for the hypothesis that the bactericidal effect of metronidazole is mediated by a partially reduced intermediate in the metabolic conversion of metronidazole to acetamide and suggest that this intermediate interacts with DNA to produce a lesion similar to that caused by UV light. PMID:6367636

  8. Algerian propolis extracts: Chemical composition, bactericidal activity and in vitro effects on gilthead seabream innate immune responses.

    PubMed

    Soltani, El-Khamsa; Cerezuela, Rebeca; Charef, Noureddine; Mezaache-Aichour, Samia; Esteban, Maria Angeles; Zerroug, Mohamed Mihoub

    2017-03-01

    Propolis has been used as a medicinal agent for centuries. The chemical composition of four propolis samples collected from four locations of the Sétif region, Algeria, using gas chromatography-mass spectrometry was determined. More than 20 compounds and from 30 to 35 compounds were identified in the aqueous and ethanolic extracts, respectively. Furthermore, the antimicrobial activity of the propolis extracts against two marine pathogenic bacteria was evaluated. Finally, the in vitro effects of propolis on gilthead seabream (Sparus aurata L.) leucocyte activities were measured. The bactericidal activity of ethanolic extracts was very high against Shewanella putrefaciens, average against Photobacterium damselae and very low against Vibrio harveyi. The lowest bactericidal activity was always that found for the aqueous extracts. When the viability of gilthead seabream head-kidney leucocytes was measured after 30 min' incubation with the different extracts, both the ethanolic and aqueous extracts of one of the propolis samples (from Babor) and the aqueous extract of another (from Ain-Abbassa) provoked a significant decrease in cell viability when used at concentrations of 100 and 200 μg ml -1 . Furthermore, significant inhibitory effects were recorded on leucocyte respiratory burst activity when isolated leucocytes where preincubated with the extracts. This effect was dose-dependent in all cases except when extracts from a third propolis sample (from Boutaleb) were used. Our findings suggest that some of Algerian propolis extracts have bactericidal activity against important bacterial pathogens in seabream and significantly modulate in vitro leucocyte activities, confirming their potential as a source of new natural biocides and/or immunomodulators in aquaculture practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Bactericidal effects of triclosan in soap both in vitro and in vivo.

    PubMed

    Kim, S A; Moon, H; Lee, K; Rhee, M S

    2015-12-01

    On December 2013, the US FDA proposed a rule stating that manufacturers must provide data to demonstrate that antibacterial soap is more effective than plain soap or water. The objective of the present study was to examine the in vitro and in vivo bactericidal effect of triclosan (the most widely used antiseptic agent in soap) in soap. Twenty bacterial strains (proposed by the FDA) were exposed to plain and antibacterial soaps (the same formulation as plain soap, but containing 0.3% triclosan) for 20 s at 22°C (room temperature) and 40°C (warm temperature). The temperature and time were selected to simulate the hand washing conditions and procedures used by consumers. The triclosan concentration of 0.3% is the maximum allowed by law. The decontamination efficacy of plain soap and antibacterial soap was also examined in vivo: the hands of volunteers were artificially inoculated with Serratia marcescens. There was no significant difference (P > 0.05) in bactericidal activity between plain soap and antibacterial soap at either test temperature. However, antibacterial soap showed significantly greater bactericidal effects after 9 h. These results suggest that although triclosan-containing soap does have antibacterial activity, the effects are not apparent during the short time required for hand washing. Antibacterial soap containing triclosan (0.3%) was no more effective than plain soap at reducing bacterial contamination when used under 'real-life' conditions. The present study provides practical information that may prove useful for both industry and governments. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. A novel chimeric phage lysin with high in vitro and in vivo bactericidal activity against Streptococcus pneumoniae.

    PubMed

    Díez-Martínez, Roberto; De Paz, Héctor D; García-Fernández, Esther; Bustamante, Noemí; Euler, Chad W; Fischetti, Vincent A; Menendez, Margarita; García, Pedro

    2015-01-01

    Streptococcus pneumoniae is becoming increasingly antibiotic resistant worldwide and new antimicrobials are urgently needed. Our aim was new chimeric phage endolysins, or lysins, with improved bactericidal activity by swapping the structural components of two pneumococcal phage lysozymes: Cpl-1 (the best lysin tested to date) and Cpl-7S. The bactericidal effects of four new chimeric lysins were checked against several bacteria. The purified enzymes were added at different concentrations to resuspended bacteria and viable cells were measured after 1 h. Killing capacity of the most active lysin, Cpl-711, was tested in a mouse bacteraemia model, following mouse survival after injecting different amounts (25-500 μg) of enzyme. The capacity of Cpl-711 to reduce pneumococcal biofilm formation was also studied. The chimera Cpl-711 substantially improved the killing activity of the parental phage lysozymes, Cpl-1 and Cpl-7S, against pneumococcal bacteria, including multiresistant strains. Specifically, 5 μg/mL Cpl-711 killed ≥7.5 log of pneumococcal R6 strain. Cpl-711 also reduced pneumococcal biofilm formation and killed 4 log of the bacterial population at 1 μg/mL. Mice challenged intraperitoneally with D39_IU pneumococcal strain were protected by treatment with a single intraperitoneal injection of Cpl-711 1 h later, resulting in about 50% greater protection than with Cpl-1. Domain swapping among phage lysins allows the construction of new chimeric enzymes with high bactericidal activity and a different substrate range. Cpl-711, the most powerful endolysin against pneumococci, offers a promising therapeutic perspective for the treatment of multiresistant pneumococcal infections. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. In Vitro Pharmacodynamic Activities of ABT-492, a Novel Quinolone, Compared to Those of Levofloxacin against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis

    PubMed Central

    Gunderson, Shana M.; Hayes, Robert A.; Quinn, John P.; Danziger, Larry H.

    2004-01-01

    ABT-492 is a novel quinolone with potent activity against gram-positive, gram-negative, and atypical pathogens, making this compound an ideal candidate for the treatment of community-acquired pneumonia. We therefore compared the in vitro pharmacodynamic activity of ABT-492 to that of levofloxacin, an antibiotic commonly used for the treatment of pneumonia, through MIC determination and time-kill kinetic analysis. ABT-492 demonstrated potent activity against penicillin-sensitive, penicillin-resistant, and levofloxacin-resistant Streptococcus pneumoniae strains (MICs ranging from 0.0078 to 0.125 μg/ml); β-lactamase-positive and β-lactamase-negative Haemophilus influenzae strains (MICs ranging from 0.000313 to 0.00125 μg/ml); and β-lactamase-positive and β-lactamase-negative Moraxella catarrhalis strains (MICs ranging from 0.001 to 0.0025 μg/ml), with MICs being much lower than those of levofloxacin. Both ABT-492 and levofloxacin demonstrated concentration-dependent bactericidal activities in time-kill kinetics studies at four and eight times the MIC with 10 of 12 bacterial isolates exposed to ABT-492 and with 12 of 12 bacterial isolates exposed to levofloxacin. Sigmoidal maximal-effect models support concentration-dependent bactericidal activity. The model predicts that 50% of maximal activity can be achieved with concentrations ranging from one to two times the MIC for both ABT-492 and levofloxacin and that near-maximal activity (90% effective concentration) can be achieved at concentrations ranging from two to five times the MIC for ABT-492 and one to six times the MIC for levofloxacin. PMID:14693540

  12. In vitro pharmacodynamic activities of ABT-492, a novel quinolone, compared to those of levofloxacin against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis.

    PubMed

    Gunderson, Shana M; Hayes, Robert A; Quinn, John P; Danziger, Larry H

    2004-01-01

    ABT-492 is a novel quinolone with potent activity against gram-positive, gram-negative, and atypical pathogens, making this compound an ideal candidate for the treatment of community-acquired pneumonia. We therefore compared the in vitro pharmacodynamic activity of ABT-492 to that of levofloxacin, an antibiotic commonly used for the treatment of pneumonia, through MIC determination and time-kill kinetic analysis. ABT-492 demonstrated potent activity against penicillin-sensitive, penicillin-resistant, and levofloxacin-resistant Streptococcus pneumoniae strains (MICs ranging from 0.0078 to 0.125 micro g/ml); beta-lactamase-positive and beta-lactamase-negative Haemophilus influenzae strains (MICs ranging from 0.000313 to 0.00125 micro g/ml); and beta-lactamase-positive and beta-lactamase-negative Moraxella catarrhalis strains (MICs ranging from 0.001 to 0.0025 micro g/ml), with MICs being much lower than those of levofloxacin. Both ABT-492 and levofloxacin demonstrated concentration-dependent bactericidal activities in time-kill kinetics studies at four and eight times the MIC with 10 of 12 bacterial isolates exposed to ABT-492 and with 12 of 12 bacterial isolates exposed to levofloxacin. Sigmoidal maximal-effect models support concentration-dependent bactericidal activity. The model predicts that 50% of maximal activity can be achieved with concentrations ranging from one to two times the MIC for both ABT-492 and levofloxacin and that near-maximal activity (90% effective concentration) can be achieved at concentrations ranging from two to five times the MIC for ABT-492 and one to six times the MIC for levofloxacin.

  13. White Light-Activated Antimicrobial Paint using Crystal Violet.

    PubMed

    Hwang, Gi Byoung; Allan, Elaine; Parkin, Ivan P

    2016-06-22

    Crystal violet (CV) was incorporated into acrylic latex to produce white-light-activated antimicrobial paint (WLAAP). Measurement of the water contact angle of the WLAAP showed that the water contact angle increased with increasing CV concentration. In a leaching test over 120 h, the amount of CV that leached from the WLAAPs was close to the detection limit (<0.03%). The WLAAPs were used to coat samples of polyurethane, and these showed bactericidal activity against Escherichia coli, which is a key causative agent of healthcare-associated infections (HAIs). A reduction in the numbers of viable bacteria was observed on the painted coated polyurethane after 6 h in the dark, and the bactericidal activity increased with increasing CV concentration (P < 0.1). After 6 h of white light exposure, all of coated polyurethanes demonstrated a potent photobactericidal activity, and it was statistically confirmed that the WLAAP showed better activity in white light than in the dark (P < 0.05). At the highest CV concentration, the numbers of viable bacteria fell below the detection limit (<10(3) CFU/mL) after 6 h of white light exposure. The difference in antimicrobial activity between the materials in the light and dark was 0.48 log at CV 250 ppm, and it increased by 0.43 log at each increment of CV 250 ppm. The difference was the highest (>1.8 log) at the highest CV concentration (1000 ppm). These WLAAPs are promising candidates for use in healthcare facilities to reduce HAIs.

  14. Monohalogenated maleimides as potential agents for the inhibition of Pseudomonas aeruginosa biofilm.

    PubMed

    Carteau, David; Soum-Soutéra, Emmanuelle; Faÿ, Fabienne; Dufau, Chrystèle; Cérantola, Stéphane; Vallée-Réhel, Karine

    2010-01-01

    New monohalogenated maleimide derivatives (with bromine, chlorine or iodine) were synthesized to test the effect of halogen atoms in inhibiting the formation of Pseudomonas aeruginosa biofilm. The evaluation of their biological activities clearly defines a structure-activity relationship. In this study, the bactericidal action of the three compounds was observed at the concentration range 0.3-5.0 mM on Luria-Bertani agar plates. The halogen atom of these molecules was critical in modulating the antibacterial activity, with a slightly higher effectiveness for chlorine. Confocal laser scanning microscopy was used to examine P. aeruginosa biofilms cultivated in flow cells. At concentration as low as 40 microM, the bromine and iodine compounds displayed a total inhibition towards the formation of bacterial biofilm. At this concentration, the bacterial attachment to glass surfaces was strongly affected by the presence of bromine and iodine whereas the chlorine derivative behaved as a bactericidal compound. A bioluminescent reporter strain was then used to detect the effect of the chemically synthesized maleimides on quorum sensing (QS) in P. aeruginosa. At the concentration range 10-100 microM, bioluminescence assays reveal that halogenated maleimides were able to interfere with the QS of the bacterium. Although the relationship between the weak inhibition of cell-to-cell communication (15-55% of the signal) and the high inhibition of biofilm formation has not been elucidated clearly, the results demonstrate that bromo- and iodo-N-substituted maleimides bromine and iodine may be used as new potent inhibitors that control bacterial biofilms.

  15. Effects of Enrofloxacin on Porcine Phagocytic Function

    PubMed Central

    Schoevers, E. J.; van Leengoed, L. A. M. G.; Verheijden, J. H. M.; Niewold, T. A.

    1999-01-01

    The interaction between enrofloxacin and porcine phagocytes was studied with clinically relevant concentrations of enrofloxacin. Enrofloxacin accumulated in phagocytes, with cellular concentration/extracellular concentration ratios of 9 for polymorphonuclear leukocytes (PMNs) and 5 for alveolar macrophages (AMs). Cells with accumulated enrofloxacin brought into enrofloxacin-free medium released approximately 80% (AMs) to 90% (PMNs) of their enrofloxacin within the first 10 min, after which no further release was seen. Enrofloxacin affected neither the viability of PMNs and AMs nor the chemotaxis of PMNs at concentrations ranging from 0 to 10 μg/ml. Enrofloxacin (0.5 μg/ml) did not alter the capability of PMNs and AMs to phagocytize fluorescent microparticles or Actinobacillus pleuropneumoniae, Pasteurella multocida, and Staphylococcus aureus. Significant differences in intracellular killing were seen with enrofloxacin at 5× the MIC compared with that for controls not treated with enrofloxacin. PMNs killed all S. aureus isolates in 3 h with or without enrofloxacin. Intracellular S. aureus isolates in AMs were less susceptible than extracellular S. aureus isolates to the bactericidal effect of enrofloxacin. P. multocida was not phagocytosed by PMNs. AMs did not kill P. multocida, and similar intra- and extracellular reductions of P. multocida isolates by enrofloxacin were found. Intraphagocytic killing of A. pleuropneumoniae was significantly enhanced by enrofloxacin at 5× the MIC in both PMNs and AMs. AMs are very susceptible to the A. pleuropneumoniae cytotoxin. This suggests that in serologically naive pigs the enhancing effect of enrofloxacin on the bactericidal action of PMNs may have clinical relevance. PMID:10471554

  16. Synergy of antibacterial and antioxidant activities from crude extracts and peptides of selected plant mixture

    PubMed Central

    2013-01-01

    Background A plant mixture containing indigenous Australian plants was examined for synergistic antimicrobial activity using selected test microorganisms. This study aims to investigate antibacterial activities, antioxidant potential and the content of phenolic compounds in aqueous, ethanolic and peptide extracts of plant mixture. Methods Well diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were used to test antibacterial activity against four pathogenic bacteria namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa. DPPH (2, 2-diphenyl-1- picrylhydrazyl) and superoxide dismutase (SOD) assays were used to evaluate antioxidant activity. HPLC and gel filtration were used for purification of the peptides. Scanning electron microscope was applied to investigate the mode of attachment of the peptides on target microbial membranes. Results Aqueous extraction of the mixture showed no inhibition zones against all the test bacteria. Mean diameter of inhibition zones for ethanol extraction of this mixture attained 8.33 mm, 7.33 mm, and 6.33 mm against S. aureus at corresponding concentrations of 500, 250 and 125 mg/ml while E .coli showed inhibition zones of 9.33 mm, 8.00 mm and 6.66 mm at the same concentrations. B. cereus exhibited inhibition zones of 11.33 mm, 10.33 mm and 10.00 mm at concentrations of 500, 250 and 125 mg/ml respectively. The peptide extract demonstrated antibacterial activity against S. aureus, E. coli and B. cereus. The MIC and MBC values for ethanol extracts were determined at 125 mg/ml concentration against S. aureus and E. coli and B. cereus value was 31.5 mg/ml. MIC and MBC values showed that the peptide extract was significantly effective at low concentration of the Australian plant mixture (APM). Phenolic compounds were detected in hot aqueous and ethanolic extracts of the plant mixture. Hot aqueous, ethanol and peptides extracts also exhibited antioxidant activities. Conclusions It was concluded that APM possessed good antibacterial and antioxidant activities following extraction with different solvents. The results suggest that APM provide a new source with antibacterial agents and antioxidant activity for nutraceutical or medical applications. PMID:24330547

  17. A Risk Assessment Model for Bacterial Leaf Spot of Pepper (Capsicum annuum), Caused by Xanthomonas euvesicatoria, Based on Concentrations of Macronutrients, Micronutrients, and Micronutrient Ratios.

    PubMed

    Dutta, B; Langston, D B; Luo, X; Carlson, S; Kichler, J; Gitaitis, R

    2017-11-01

    The phytopathogenic bacterium Xanthomonas euvesicatoria causes bacterial leaf spot (BLS) of pepper and has a worldwide distribution. BLS is difficult to control and an integrated management strategy that incorporates crop rotation, use of clean seed and clean plants, weed control, resistant varieties, applications of bactericides, biocontrol agents, and systemic acquired resistance (SAR) inducers is generally recommended. However, even with that arsenal of weapons, BLS can still be responsible for severe losses under favorable environmental conditions. Thus, additional tools need to be added to an overall integrated management strategy to combat BLS. In this article, we developed several models from 2012 to 2014 that were based on how macronutrients, micronutrients, and micronutrient ratios affect BLS severity. Factors used to select a model for validation included highly significant P values, high adjusted R 2 values, low variance inflation factor values (<5), root mean square error, Mallow's Cp, and high Akaike's information criterion correction values. In addition, salicylic acid (SA) concentrations and relative expression of nonexpresser pathogenesis-related gene1 (NPR1) and pathogenesis-related protein 1 (PR1) in pepper tissues were also considered in model selection. A model (ECGA1) consisting of concentrations of copper, manganese, potassium, and the iron/zinc ratio as independent variables was used for validation in three different commercial pepper fields in Georgia: Colquitt County and Worth County in 2015 and Tift County in 2016. When area under the disease progress curve (AUDPC) values for two field sites (Colquitt and Worth Counties) in 2015 were pulled together and plotted against ECGA1-predicted values for both sites, the resulting relationship was highly significant (P = 0.0001) with an R 2 value of 0.92. A significant relationship between observed AUDPC versus predicted values was also observed in Tift County in 2016 (P < 0.001; adjusted R 2 = 0.98). Relative gene expression of both NPR1 and PR1 genes was significantly (P < 0.01) higher in pepper grown in predicted low-risk sites compared with pepper from high-risk sites in Colquitt, Worth, and Tift Counties. Although BLS severity will fluctuate depending on environmental conditions, the data indicate that the level of risk at a particular location may be influenced by how macronutrient and micronutrient concentrations affect plant disease resistance genes in the SAR pathway.

  18. Susceptibility of Escherichia coli to Bactericidal Action of Lactoperoxidase, Peroxide, and Iodide or Thiocyanate

    PubMed Central

    Thomas, Edwin L.; Aune, Thomas M.

    1978-01-01

    The bactericidal action that results from lactoperoxidase-catalyzed oxidation of iodide or thiocyanate was studied, using Escherichia coli as the test organism. The susceptibility of intact cells to bactericidal action was compared with that of cells with altered cell envelopes. Exposure to ethylenediaminetetraacetic acid, to lysozyme and ethylenediaminetetraacetic acid, or to osmotic shock were used to alter the cell envelope. Bactericidal action was greatly increased when the cells were exposed to the lactoperoxidase-peroxide-iodide system at low temperatures, low cell density, or after alteration of the cell envelope. When thiocyanate was substituted for iodide, bactericidal activity was observed only at low cell density or after osmotic shock. Low temperature and low cell density lowered the rate of destruction of peroxide by the bacteria. Therefore, competition for peroxide between the bacteria and lactoperoxidase may influence the extent of bactericidal action. Alteration of the cell envelope had only a small effect on the rate of destruction of peroxide. Instead, the increased susceptibility of these altered cells suggested that bactericidal action required permeation of a reagent through the cell envelope. In addition to altering the cell envelope, these procedures partly depleted cells of oxidizable substrates and sulfhydryl components. Adding an oxidizable substrate did not decrease the susceptibility of the altered cells. On the other hand, mild reducing agents such as sulfhydryl compounds did partly reverse bactericidal action when added after exposure of cells to the peroxidase systems. These studies indicate that alteration of the metabolism, structure, or composition of bacterial cells can greatly increase their susceptibility to peroxidase bactericidal action. PMID:348097

  19. Bactericidal Activity of Octenidine to Various Genospecies of Borrelia burgdorferi, Sensu Lato Spirochetes in Vitro and in Vivo.

    PubMed

    Tylewska-Wierzbanowska, Stanisława; Rogulska, Urszula; Lewandowska, Grażyna; Chmielewski, Tomasz

    2017-07-06

    The aim of our studies was to invent a reliable method for detection of the bactericidal activity of disinfectants against Borrelia burgdorferi in suspension (in vitro) and in cell line cultures (in vivo). In the suspension method, 0.01% octenidine at 20°C and 35°C was bactericidal to Borrelia afzeli; Borrelia garini, B. burgdorferi sensu stricto after 5 minutes treatment. Increase of the temperature to 35°C speed up the bactericidal effect to 1 minute. The bactericidal action of octenidine towards B. burgdorferi spirochetes growing in fibroblasts was less effective and needed a longer time to kill them than in the suspension.

  20. Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes.

    PubMed

    Chen, Xiaojin; Wang, Ting; Lu, Mengmeng; Zhu, Luyan; Wang, Yan; Zhou, WenZhong

    2014-01-01

    Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development.

  1. Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes

    PubMed Central

    Chen, Xiaojin; Wang, Ting; Lu, Mengmeng; Zhu, Luyan; Wang, Yan; Zhou, WenZhong

    2014-01-01

    Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development. PMID:24920902

  2. Antibacterial Properties of Nonwoven Wound Dressings Coated with Manuka Honey or Methylglyoxal

    PubMed Central

    Bulman, Sophie E. L.; Carr, Chris; Russell, Stephen J.

    2017-01-01

    Manuka honey (MH) is used as an antibacterial agent in bioactive wound dressings via direct impregnation onto a suitable substrate. MH provides unique antibacterial activity when compared with conventional honeys, owing partly to one of its constituents, methylglyoxal (MGO). Aiming to investigate an antibiotic-free antimicrobial strategy, we studied the antibacterial activity of both MH and MGO (at equivalent MGO concentrations) when applied as a physical coating to a nonwoven fabric wound dressing. When physically coated on to a cellulosic hydroentangled nonwoven fabric, it was found that concentrations of 0.0054 mg cm−2 of MGO in the form of MH and MGO were sufficient to achieve a 100 colony forming unit % bacteria reduction against gram-positive Staphylococcus aureus and gram-negative Klebsiella pneumoniae, based on BS EN ISO 20743:2007. A 3- to 20-fold increase in MGO concentration (0.0170–0.1 mg cm−2) was required to facilitate a good antibacterial effect (based on BS EN ISO 20645:2004) in terms of zone of inhibition and lack of growth under the sample. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was also assessed for MGO in liquid form against three prevalent wound and healthcare-associated pathogens, i.e., Staphylococcus aureus, gram-negative Pseudomonas aeruginosa and gram-positive Enterococcus faecalis. Other than the case of MGO-containing fabrics, solutions with much higher MGO concentrations (128 mg L−1–1024 mg L−1) were required to provide either a bacteriostatic or bactericidal effect. The results presented in this study therefore demonstrate the relevance of an MGO-based coating as an environmentally friendly strategy for the design of functional dressings with antibiotic-free antimicrobial chemistries. PMID:28813014

  3. Sustained release of bactericidal concentrations of penicillin in the pleural space via an antibiotic-eluting pigtail catheter coated with electrospun nanofibers: results from in vivo and in vitro studies.

    PubMed

    Chao, Yin-Kai; Lee, Cheng-Hung; Liu, Kuo-Sheng; Wang, Yi-Chuan; Wang, Chih-Wei; Liu, Shih-Jung

    2015-01-01

    Inadequate intrapleural drug concentrations caused by poor penetration of systemic antibiotics into the pleural cavity is a major cause of treatment failure in empyema. Herein, we describe a novel antibiotic-eluting pigtail catheter coated with electrospun nanofibers used for the sustained release of bactericidal concentrations of penicillin in the pleural space. Electrospun nanofibers prepared using polylactide-polyglycolide copolymer and penicillin G sodium dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol were used to coat the surface of an Fr6 pigtail catheter. The in vitro patterns of drug release were tested by placing the catheter in phosphate-buffered saline. In vivo studies were performed using rabbits treated with penicillin either intrapleurally (Group 1, 20 mg delivered through the catheter) or systemically (Group 2, intramuscular injection, 10 mg/kg). Penicillin concentrations in the serum and pleural fluid were then measured and compared. In vitro studies revealed a burst release of penicillin (10% of the total dose) occurring in the first 24 hours, followed by a sustained release in the subsequent 30 days. Intrapleural drug levels were significantly higher in Group 1 than in Group 2 (P<0.001). In the former, penicillin concentrations remained above the minimum inhibitory concentration breakpoint throughout the entire study period. In contrast, serum penicillin levels were significantly higher in Group 2 than in Group 1 (P<0.001). Notably, all Group 2 rabbits showed signs of systemic toxicity (paralytic ileus and weight loss). We conclude that our antibiotic-eluting catheter may serve as a novel therapeutic option to treat empyema.

  4. Bioactive Constituents, Radical Scavenging, and Antibacterial Properties of the Leaves and Stem Essential Oils from Peperomia pellucida (L.) Kunth.

    PubMed

    Okoh, Sunday O; Iweriebor, Benson C; Okoh, Omobola O; Okoh, Anthony I

    2017-10-01

    Peperomia pellucida is an annual herbaceous ethnomedicinal plant used in the treatment of a variety of communicable and noncommunicable diseases in the Amazon region. The study aimed at profiling the bioactive constituents of the leaves and stem essential oils (LEO and SEO) of P. pellucida , their in vitro antibacterial and radical scavenging properties as probable lead constituents in the management of oxidative stress and infectious diseases. Materials and. The EOs were obtained from the leaves and stem P. pellucida using modified Clevenger apparatus and characterized by a high-resolution gas chromatography-mass spectrometry, while the radicals scavenging and antibacterial effects on four oxidants and six reference bacteria strains were examined by spectrophotometric and agar diffusion techniques, respectively. The EOs exhibited strong antibacterial activities against six bacteria ( Escherichia coli [180], Enterobacter cloacae, Mycobacterium smegmatis, Listeria ivanovii , Staphylococcus aureus, Streptococcus uberis , and Vibrio paraheamolyticus ) strains. The SEO antibacterial activities were not significantly different ( P < 0.05) from the LEO against most of the test bacteria with minimum inhibitory concentration ranging between 0.15 and 0.20 mg/mL for both EOs. The two oils were bactericidal at 0.20 mg/mL against S. aureus while the minimum bactericidal concentration (0.15 mg/mL) of LEO against L. ivanovii was lower than of SEO (0.20 mg/mL) after 24 h. The LEO IC 50 value (1.67 mg/mL) revealed more radical scavenging activity than the SEO (2.83 mg/mL) and reference compounds against 2,2-diphenyl-1-picrylhydrazyl radical. The EOs also scavenged three other different radicals (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical, lipid peroxyl radical, and nitric oxide radical) in concentration-dependent manner. Our results suggest that apart from the indigenous uses of the plant extracts, the EO contains strong bioactive compounds with antibacterial and radicals scavenging properties and may be good alternative candidates in the search for novel potent antibiotics in this present era of increasing multidrug-resistant bacterial strains as well as effective antioxidants agents. Established gas chromatography-mass spectrometry technique was applied to quantitatively and qualitatively analyze the volatile constituents in Peperomia pellucida essential oil (EO)The Clinical and Laboratory Standards Institute (2014) guidelines were employed to evaluate the antibacterial effects of the EOsAmong the known prominent bioactive terpenoids, linalool 17.09%, limonene 14.25%, β-caryophyllene 12.52%, and linalyl acetate 10.15% were the main constituents of the EOs in this current studyThe leaf and stem EOs were bactericidal at a concentration below 0.23 mg/mL against three multidrug-resistant bacteria and significantly scavenged known free radicals reported to be associated with contagious and oxidative stress-related disorders. Abbreviations used: GC-MS: Gas chromatography-mass spectrometry, DPPH: 2,2-diphenyl-1-picrylhydrazyl, ABTS: 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, DMSO: Dimethyl sulfoxide, LP • : Lipid peroxide radical, NO • : Nitric oxide radical, LEO: Leaf essential oil, SEO: Stem essential oil, RC: Reference compound, TBARS: Thiobarbituric acid.

  5. Bioactive Constituents, Radical Scavenging, and Antibacterial Properties of the Leaves and Stem Essential Oils from Peperomia pellucida (L.) Kunth

    PubMed Central

    Okoh, Sunday O.; Iweriebor, Benson C.; Okoh, Omobola O.; Okoh, Anthony I.

    2017-01-01

    Background: Peperomia pellucida is an annual herbaceous ethnomedicinal plant used in the treatment of a variety of communicable and noncommunicable diseases in the Amazon region. Objective: The study aimed at profiling the bioactive constituents of the leaves and stem essential oils (LEO and SEO) of P. pellucida, their in vitro antibacterial and radical scavenging properties as probable lead constituents in the management of oxidative stress and infectious diseases. Materials and Methods: The EOs were obtained from the leaves and stem P. pellucida using modified Clevenger apparatus and characterized by a high-resolution gas chromatography-mass spectrometry, while the radicals scavenging and antibacterial effects on four oxidants and six reference bacteria strains were examined by spectrophotometric and agar diffusion techniques, respectively. Results: The EOs exhibited strong antibacterial activities against six bacteria (Escherichia coli [180], Enterobacter cloacae, Mycobacterium smegmatis, Listeria ivanovii, Staphylococcus aureus, Streptococcus uberis, and Vibrio paraheamolyticus) strains. The SEO antibacterial activities were not significantly different (P < 0.05) from the LEO against most of the test bacteria with minimum inhibitory concentration ranging between 0.15 and 0.20 mg/mL for both EOs. The two oils were bactericidal at 0.20 mg/mL against S. aureus while the minimum bactericidal concentration (0.15 mg/mL) of LEO against L. ivanovii was lower than of SEO (0.20 mg/mL) after 24 h. The LEO IC50 value (1.67 mg/mL) revealed more radical scavenging activity than the SEO (2.83 mg/mL) and reference compounds against 2,2-diphenyl-1-picrylhydrazyl radical. The EOs also scavenged three other different radicals (2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical, lipid peroxyl radical, and nitric oxide radical) in concentration-dependent manner. Conclusion: Our results suggest that apart from the indigenous uses of the plant extracts, the EO contains strong bioactive compounds with antibacterial and radicals scavenging properties and may be good alternative candidates in the search for novel potent antibiotics in this present era of increasing multidrug-resistant bacterial strains as well as effective antioxidants agents. SUMMARY Established gas chromatography-mass spectrometry technique was applied to quantitatively and qualitatively analyze the volatile constituents in Peperomia pellucida essential oil (EO)The Clinical and Laboratory Standards Institute (2014) guidelines were employed to evaluate the antibacterial effects of the EOsAmong the known prominent bioactive terpenoids, linalool 17.09%, limonene 14.25%, β-caryophyllene 12.52%, and linalyl acetate 10.15% were the main constituents of the EOs in this current studyThe leaf and stem EOs were bactericidal at a concentration below 0.23 mg/mL against three multidrug-resistant bacteria and significantly scavenged known free radicals reported to be associated with contagious and oxidative stress-related disorders. Abbreviations used: GC-MS: Gas chromatography-mass spectrometry, DPPH: 2,2-diphenyl-1-picrylhydrazyl, ABTS: 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, DMSO: Dimethyl sulfoxide, LP•: Lipid peroxide radical, NO•: Nitric oxide radical, LEO: Leaf essential oil, SEO: Stem essential oil, RC: Reference compound, TBARS: Thiobarbituric acid PMID:29142389

  6. Detection of Carbendazim Residues with a Colorimetric Sensor Based on Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Jiang, H.; Shen, C.; Hou, Ch.; Huo, D.; Wu, H.; Yang, M.

    2017-07-01

    Carbendazim is among the most popular benzimidazole bactericides that are widely used to boost food production, and its residue poses a great threat to human health and the environment. In this paper, we presented a colorimetric sensor based on gold nanoparticles (Au-NPs) for the detection of carbendazim residues. The Au-NPs were stabilized by citric acid synthesized by chloroauric acid and sodium citrate with a diameter of about 13 nm. Upon reaction with carbendazim, the sensor gave a clear color change that could be distinguished with the naked eye. Thus we elaborated a new method for rapid determination of this benzimidazole bactericide. After optimization of the detection conditions, the sensor showed a very good linear relationship with the carbendazim concentrations varying from 10 to 600 ppb with a detection limit down to 3.4 ppb (S/N = 3). These preliminary results demonstrate that the presented sensor is promising for fast carbendazim analysis.

  7. Development of nitrocellulose membrane filters impregnated with different biosynthesized silver nanoparticles applied to water purification.

    PubMed

    Fernández, Jorge G; Almeida, César A; Fernández-Baldo, Martín A; Felici, Emiliano; Raba, Julio; Sanz, María I

    2016-01-01

    Bactericidal water filters were developed. For this purpose, nitrocellulose membrane filters were impregnated with different biosynthesized silver nanoparticles. Silver nanoparticles (AgNPs) from Aspergillus niger (AgNPs-Asp), Cryptococcus laurentii (AgNPs-Cry) and Rhodotorula glutinis (AgNPs-Rho) were used for impregnating nitrocellulose filters. The bactericidal properties of these nanoparticles against Escherichia coli, Enterococcus faecalis and Pseudomona aeruginosa were successfully demonstrated. The higher antimicrobial effect was observed for AgNPs-Rho. This fact would be related not only to the smallest particles, but also to polysaccharides groups that surrounding these particles. Moreover, in this study, complete inhibition of bacterial growth was observed on nitrocellulose membrane filters impregnated with 1 mg L(-1) of biosynthesized AgNPs. This concentration was able to reduce the bacteria colony count by over 5 orders of magnitude, doing suitable for a water purification device. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Antimicrobial effects of electrolytic products of sodium chloride--comparative evaluation with sodium hypochlorite solution and efficacy in handwashing.

    PubMed

    Hitomi, S; Baba, S; Yano, H; Morisawa, Y; Kimura, S

    1998-11-01

    We examined the in vitro bactericidal effects and efficacy on handwashing of water containing electrolytic products of sodium chloride (electrolytic water). The electrolytic water, whose pH and concentration of free residual chlorine were 6.7-6.9 and 20-22 ppm, respectively, showed equal reduction of both Staphylococcus aureus and Escherichia coli to dilution of commercially available sodium hypochlorite containing 60 ppm of free residual chlorine. This bactericidal effect was calculated to be due to hypochlorous acid, based on the pH and the amount of chlorine in solution. Handwashing with the electrolytic water reduced the numbers of S. aureus on hands by 1/10(2), while running water and 0.2% benzalkonium chloride with 80% ethanol gave a 1/10 and 1/10(5) reduction, respectively. We conclude that electrolytic water might be applicable for handwashing in place of running water.

  9. Activity of Medicinal Plant Extracts on Multiplication of Mycobacterium tuberculosis under Reduced Oxygen Conditions Using Intracellular and Axenic Assays

    PubMed Central

    Bhatter, Purva D.; Gupta, Pooja D.; Birdi, Tannaz J.

    2016-01-01

    Aim. Test the activity of selected medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen concentration which represents nonreplicating conditions. Material and Methods. Acetone, ethanol and aqueous extracts of the plants Acorus calamus L. (rhizome), Ocimum sanctum L. (leaf), Piper nigrum L. (seed), and Pueraria tuberosa DC. (tuber) were tested on Mycobacterium tuberculosis H37Rv intracellularly using an epithelial cell (A549) infection model. The extracts found to be active intracellularly were further studied axenically under reducing oxygen concentrations. Results and Conclusions. Intracellular multiplication was inhibited ≥60% by five of the twelve extracts. Amongst these 5 extracts, in axenic culture, P. nigrum (acetone) was active under aerobic, microaerophilic, and anaerobic conditions indicating presence of multiple components acting at different levels and P. tuberosa (aqueous) showed bactericidal activity under microaerophilic and anaerobic conditions implying the influence of anaerobiosis on its efficacy. P. nigrum (aqueous) and A. calamus (aqueous and ethanol) extracts were not active under axenic conditions but only inhibited intracellular growth of Mycobacterium tuberculosis, suggesting activation of host defense mechanisms to mediate bacterial killing rather than direct bactericidal activity. PMID:26941797

  10. Evaluation of robenidine analog NCL195 as a novel broad-spectrum antibacterial agent

    PubMed Central

    Sims, Sarah K.; Page, Stephen W.; Garg, Sanjay; Venter, Henrietta; Powell, Andrew; White, Karen; Petrovski, Kiro R.; Laven-Law, Geraldine; Tótoli, Eliane G.; Salgado, Hérida R.; Pi, Hongfei; Coombs, Geoffrey W.; Shinabarger, Dean L.; Turnidge, John D.; Paton, James C.; McCluskey, Adam; Trott, Darren J.

    2017-01-01

    The spread of multidrug resistance among bacterial pathogens poses a serious threat to public health worldwide. Recent approaches towards combating antimicrobial resistance include repurposing old compounds with known safety and development pathways as new antibacterial classes with novel mechanisms of action. Here we show that an analog of the anticoccidial drug robenidine (4,6-bis(2-((E)-4-methylbenzylidene)hydrazinyl)pyrimidin-2-amine; NCL195) displays potent bactericidal activity against Streptococcus pneumoniae and Staphylococcus aureus by disrupting the cell membrane potential. NCL195 was less cytotoxic to mammalian cell lines than the parent compound, showed low metabolic degradation rates by human and mouse liver microsomes, and exhibited high plasma concentration and low plasma clearance rates in mice. NCL195 was bactericidal against Acinetobacter spp and Neisseria meningitidis and also demonstrated potent activity against A. baumannii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and Enterobacter spp. in the presence of sub-inhibitory concentrations of ethylenediaminetetraacetic acid (EDTA) and polymyxin B. These findings demonstrate that NCL195 represents a new chemical lead for further medicinal chemistry and pharmaceutical development to enhance potency, solubility and selectivity against serious bacterial pathogens. PMID:28873428

  11. Antimicrobial mortar surfaces for the improvement of hygienic conditions.

    PubMed

    De Muynck, W; De Belie, N; Verstraete, W

    2010-01-01

    To evaluate the effectiveness of various antimicrobial mortar formulations in inhibiting the growth of a selection of pathogens of environmental and hygienic concern. Mortar prisms containing triclosan-incorporated fibres or different concentrations of silver copper zeolites were incubated with Escherichia coli, Listeria monocytogenes, Salmonella enterica or Staphylococcus aureus at 4 or 20 degrees C for 24 h. From plate counting, a substantial bactericidal effect (>4 log units) could only be observed for the mortar specimens containing more than 3% zeolites on cement weight base, the effect being more pronounced at 20 degrees C compared to 4 degrees C. No inhibitory effect could be observed for mortar specimens containing antimicrobial fibres. Adenosinetriphosphate (ATP) measurements allowed for a rapid indication of the occurrence of antimicrobial activity. In order to obtain a bactericidal effect on mortar surfaces, concentrations of silver copper zeolites of more then 3% are required. To our knowledge, this is the first study in which the effectiveness of various antimicrobial mortar mixtures towards the inhibition of pathogens has been evaluated in a quantitative way. Antimicrobial concrete mixtures can be used for the improvement of the hygienic conditions in a variety of environments.

  12. The Siderophore Product Ornibactin Is Required for the Bactericidal Activity of Burkholderia contaminans MS14.

    PubMed

    Deng, Peng; Foxfire, Adam; Xu, Jianhong; Baird, Sonya M; Jia, Jiayuan; Delgado, Keren H; Shin, Ronald; Smith, Leif; Lu, Shi-En

    2017-04-15

    Burkholderia contaminans MS14 was isolated from soil in Mississippi. When it is cultivated on nutrient broth-yeast extract agar, the colonies exhibit bactericidal activity against a wide range of plant-pathogenic bacteria. A bacteriostatic compound with siderophore activity was successfully purified and was determined by nuclear magnetic resonance spectroscopy to be ornibactin. Isolation of the bactericidal compound has not yet been achieved; therefore, the exact nature of the bactericidal compound is still unknown. During an attempt to isolate the bactericidal compound, an interesting relationship between the production of ornibactin and the bactericidal activity of MS14 was characterized. Transposon mutagenesis resulted in two strains that lost bactericidal activity, with insertional mutations in a nonribosomal peptide synthetase (NRPS) gene for ornibactin biosynthesis and a luxR family transcriptional regulatory gene. Coculture of these two mutant strains resulted in restoration of the bactericidal activity. Furthermore, the addition of ornibactin to the NRPS mutant restored the bactericidal phenotype. It has been demonstrated that, in MS14, ornibactin has an alternative function, aside from iron sequestration. Comparison of the ornibactin biosynthesis genes in Burkholderia species shows diversity among the regulatory elements, while the gene products for ornibactin synthesis are conserved. This is an interesting observation, given that ornibactin is thought to have the same defined function within Burkholderia species. Ornibactin is produced by most Burkholderia species, and its role in regulating the production of secondary metabolites should be investigated. IMPORTANCE Identification of the antibacterial product from strain MS14 is not the key feature of this study. We present a series of experiments that demonstrate that ornibactin is directly involved in the bactericidal phenotype of MS14. This observation provides evidence for an alternative function for ornibactin, aside from iron sequestration. Ornibactin should be further evaluated for its role in regulating the biosynthesis of secondary metabolites in other Burkholderia species. Copyright © 2017 American Society for Microbiology.

  13. The Siderophore Product Ornibactin Is Required for the Bactericidal Activity of Burkholderia contaminans MS14

    PubMed Central

    Deng, Peng; Foxfire, Adam; Xu, Jianhong; Baird, Sonya M.; Jia, Jiayuan; Delgado, Keren H.; Shin, Ronald

    2017-01-01

    ABSTRACT Burkholderia contaminans MS14 was isolated from soil in Mississippi. When it is cultivated on nutrient broth-yeast extract agar, the colonies exhibit bactericidal activity against a wide range of plant-pathogenic bacteria. A bacteriostatic compound with siderophore activity was successfully purified and was determined by nuclear magnetic resonance spectroscopy to be ornibactin. Isolation of the bactericidal compound has not yet been achieved; therefore, the exact nature of the bactericidal compound is still unknown. During an attempt to isolate the bactericidal compound, an interesting relationship between the production of ornibactin and the bactericidal activity of MS14 was characterized. Transposon mutagenesis resulted in two strains that lost bactericidal activity, with insertional mutations in a nonribosomal peptide synthetase (NRPS) gene for ornibactin biosynthesis and a luxR family transcriptional regulatory gene. Coculture of these two mutant strains resulted in restoration of the bactericidal activity. Furthermore, the addition of ornibactin to the NRPS mutant restored the bactericidal phenotype. It has been demonstrated that, in MS14, ornibactin has an alternative function, aside from iron sequestration. Comparison of the ornibactin biosynthesis genes in Burkholderia species shows diversity among the regulatory elements, while the gene products for ornibactin synthesis are conserved. This is an interesting observation, given that ornibactin is thought to have the same defined function within Burkholderia species. Ornibactin is produced by most Burkholderia species, and its role in regulating the production of secondary metabolites should be investigated. IMPORTANCE Identification of the antibacterial product from strain MS14 is not the key feature of this study. We present a series of experiments that demonstrate that ornibactin is directly involved in the bactericidal phenotype of MS14. This observation provides evidence for an alternative function for ornibactin, aside from iron sequestration. Ornibactin should be further evaluated for its role in regulating the biosynthesis of secondary metabolites in other Burkholderia species. PMID:28188204

  14. Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features.

    PubMed

    Kelleher, S M; Habimana, O; Lawler, J; O' Reilly, B; Daniels, S; Casey, E; Cowley, A

    2016-06-22

    Recently, the surface of the wings of the Psaltoda claripennis cicada species has been shown to possess bactericidal properties and it has been suggested that the nanostructure present on the wings was responsible for the bacterial death. We have studied the surface-based nanostructure and bactericidal activity of the wings of three different cicadas (Megapomponia intermedia, Ayuthia spectabile and Cryptotympana aguila) in order to correlate the relationship between the observed surface topographical features and their bactericidal properties. Atomic force microscopy and scanning electron microscopy performed in this study revealed that the tested wing species contained a highly uniform, nanopillar structure on the surface. The bactericidal properties of the cicada wings were investigated by assessing the viability of autofluorescent Pseudomonas fluorescens cells following static adhesion assays and targeted dead/live fluorescence staining through direct microscopic counting methods. These experiments revealed a 20-25% bacterial surface coverage on all tested wing species; however, significant bactericidal properties were observed in the M. intermedia and C. aguila species as revealed by the high dead:live cell ratio on their surfaces. The combined results suggest a strong correlation between the bactericidal properties of the wings and the scale of the nanotopography present on the different wing surfaces.

  15. Antimicrobial Effects of Blueberry, Raspberry, and Strawberry Aqueous Extracts and their Effects on Virulence Gene Expression in Vibrio cholerae.

    PubMed

    Khalifa, Hazim O; Kamimoto, Maki; Shimamoto, Toshi; Shimamoto, Tadashi

    2015-11-01

    The antimicrobial effects of aqueous extracts of blueberry, raspberry, and strawberry on 13 pathogenic bacteria were evaluated. The minimum inhibitory concentrations and minimum bactericidal concentrations of the extracts were determined before and after neutralization to pH 7.03 ± 0.15. Both Gram-positive and Gram-negative pathogenic bacteria were selectively inhibited by the non-neutralized berries. Blueberry was the best inhibitor, and Vibrio and Listeria were the most sensitive bacteria. After neutralization, blueberry affected only Vibrio and Listeria, whereas the antimicrobial activities of raspberry and strawberry were abolished. The total contents of phenolics, flavonoids, and proanthocyanidins in the extracts were measured with colorimetric methods and were highest in strawberry, followed by raspberry, and then blueberry. We also studied the effects of sub-bactericidal concentrations of the three berry extracts on virulence gene expression in Vibrio cholerae. Real-time quantitative reverse transcription-polymerase chain reaction revealed that the three berry extracts effectively repressed the transcription of the tcpA gene. Raspberry also repressed the transcription of the ctxA gene, whereas blueberry and strawberry did not. However, the three berry extracts did not affect the transcription of toxT. These results suggest that the three berry extracts exert potent antimicrobial effects and inhibit the expression of the virulence factors of V. cholerae. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Evaluation of the antibacterial activity of Piperaceae extracts and nisin on Alicyclobacillus acidoterrestris.

    PubMed

    Ruiz, Suelen P; Anjos, Márcia Maria Dos; Carrara, Vanessa S; Delima, Juliana N; Cortez, Diógenes Aparício G; Nakamura, Tânia U; Nakamura, Celso V; de Abreu Filho, Benício A

    2013-11-01

    Alicyclobacillus acidoterrestris is a gram-positive aerobic bacterium. This bacterium resists pasteurization temperatures and low pH and is usually involved in the spoilage of juices and acidic drinks. The objective of this study was to evaluate the antibacterial activities of nisin and the species Piper (Piperaceae) on A. acidoterrestris. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined by the broth microdilution method. The species Piper aduncum had the lowest MIC and an MBC of 15.6 μg/mL and was selected for fractionation. Six fractions were obtained, and the dichloromethane fraction (F.3) had the lowest MIC/MBC (7.81 μg/mL). The dichloromethane fraction was again fractionized, and a spectral analysis revealed that the compound was prenylated chromene (F.3.7). The checkerboard method demonstrated that the crude extract (CE) of P. aduncum plus nisin had a synergistic interaction (fractional inhibitory concentration [FIC] = 0.24). The bactericidal activity of (F.3.7) was confirmed by the time-kill curve. P. aduncum, nisin, and prenylated chromene exhibited strong antibacterial activity against the spores and vegetative cells of A. acidoterrestris. The results of this study suggest that extracts of the genus Piper may provide an alternative to the use of thermal processing for controlling A. spoilage. © 2013 Institute of Food Technologists®

  17. Artemisia princeps Inhibits Biofilm Formation and Virulence-Factor Expression of Antibiotic-Resistant Bacteria

    PubMed Central

    Kang, Sun-Young; Kim, Kang-Ju

    2015-01-01

    In this study, we used ethanol extract of A. princeps and investigated its antibacterial effects against MRSA. Ethanol extract of A. princeps significantly inhibited MRSA growth and organic acid production during glucose metabolism at concentrations greater than 1 mg/mL (P < 0.05). MRSA biofilm formation was observed using scanning electron microscopy (SEM) and safranin staining. A. princeps extract was found to inhibit MRSA biofilm formation at concentrations higher than 2 mg/mL significantly (P < 0.05). Bactericidal effects of the A. princeps were observed using confocal laser microscopy, which showed that A. princeps was bactericidal in a dose-dependent manner. Using real-time PCR, expression of mecA, an antibiotic-resistance gene of MRSA, was observed, along with that of sea, agrA, and sarA. A. princeps significantly inhibited mecA, sea, agrA, and sarA, mRNA expression at the concentrations greater than 1 mg/mL (P < 0.05). The phytochemical analysis of A. princeps showed a relatively high content of organic acids and glycosides. The results of this study suggest that the ethanol extract of A. princeps may inhibit proliferation, acid production, biofilm formation, and virulence gene expressions of MRSA, which may be related to organic acids and glycosides, the major components in the extract. PMID:26247012

  18. Artemisia princeps Inhibits Biofilm Formation and Virulence-Factor Expression of Antibiotic-Resistant Bacteria.

    PubMed

    Choi, Na-Young; Kang, Sun-Young; Kim, Kang-Ju

    2015-01-01

    In this study, we used ethanol extract of A. princeps and investigated its antibacterial effects against MRSA. Ethanol extract of A. princeps significantly inhibited MRSA growth and organic acid production during glucose metabolism at concentrations greater than 1 mg/mL (P < 0.05). MRSA biofilm formation was observed using scanning electron microscopy (SEM) and safranin staining. A. princeps extract was found to inhibit MRSA biofilm formation at concentrations higher than 2 mg/mL significantly (P < 0.05). Bactericidal effects of the A. princeps were observed using confocal laser microscopy, which showed that A. princeps was bactericidal in a dose-dependent manner. Using real-time PCR, expression of mecA, an antibiotic-resistance gene of MRSA, was observed, along with that of sea, agrA, and sarA. A. princeps significantly inhibited mecA, sea, agrA, and sarA, mRNA expression at the concentrations greater than 1 mg/mL (P < 0.05). The phytochemical analysis of A. princeps showed a relatively high content of organic acids and glycosides. The results of this study suggest that the ethanol extract of A. princeps may inhibit proliferation, acid production, biofilm formation, and virulence gene expressions of MRSA, which may be related to organic acids and glycosides, the major components in the extract.

  19. Comparison of the cidal activity of tea tree oil and terpinen-4-ol against clinical bacterial skin isolates and human fibroblast cells.

    PubMed

    Loughlin, R; Gilmore, B F; McCarron, P A; Tunney, M M

    2008-04-01

    The aim of this study was to compare both the antimicrobial activity of terpinen-4-ol and tea tree oil (TTO) against clinical skin isolates of meticillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) and their toxicity against human fibroblast cells. Antimicrobial activity was compared by using broth microdilution and quantitative in vitro time-kill test methods. Terpinen-4-ol exhibited significantly greater bacteriostatic and bactericidal activity, as measured by minimum inhibitory and bactericidal concentrations, respectively, than TTO against both MRSA and CoNS isolates. Although not statistically significant, time-kill studies also clearly showed that terpinen-4-ol exhibited greater antimicrobial activity than TTO. Comparison of the toxicity of terpinen-4-ol and TTO against human fibroblasts revealed that neither agent, at the concentrations tested, were toxic over the 24-h test period. Terpinen-4-ol is a more potent antibacterial agent against MRSA and CoNS isolates than TTO with neither agent exhibiting toxicity to fibroblast cells at the concentrations tested. Terpinen-4-ol should be considered for inclusion as a single agent in products formulated for topical treatment of MRSA infection. However, further work would initially be required to ensure that resistance would not develop with the use of terpinen-4-ol as a single agent.

  20. Antibacterial and Antibiofilm Activities of a Novel Synthetic Cyclic Lipopeptide against Cariogenic Streptococcus mutans UA159

    PubMed Central

    Min, Kyung R.; Galvis, Adriana; Williams, Brandon; Rayala, Ramanjaneyulu; Cudic, Predrag

    2017-01-01

    ABSTRACT Despite continuous efforts to control cariogenic dental biofilms, very few effective antimicrobial treatments exist. In this study, we characterized the activity of the novel synthetic cyclic lipopeptide 4 (CLP-4), derived from fusaricidin, against the cariogenic pathogen Streptococcus mutans UA159. We determined CLP-4's MIC, minimum bactericidal concentration (MBC), and spontaneous resistance frequency, and we performed time-kill assays. Additionally, we assessed CLP-4's potential to inhibit biofilm formation and eradicate preformed biofilms. Our results demonstrate that CLP-4 has strong antibacterial activity in vitro and is a potent bactericidal agent with low spontaneous resistance frequency. At a low concentration of 5 μg/ml, CLP-4 completely inhibited S. mutans UA159 biofilm formation, and at 50 μg/ml, it reduced the viability of established biofilms by >99.99%. We also assessed CLP-4's cytotoxicity and stability against proteolytic digestion. CLP-4 withstood trypsin or chymotrypsin digestion even after treatment for 24 h, and our toxicity studies showed that CLP-4 effective concentrations had negligible effects on hemolysis and the viability of human oral fibroblasts. In summary, our findings showed that CLP-4 is a potent antibacterial and antibiofilm agent with remarkable stability and low nonspecific cytotoxicity. Hence, CLP-4 is a promising novel antimicrobial peptide with potential for clinical application in the prevention and treatment of dental caries. PMID:28533236

  1. Antibacterial activities of the methanol extracts of Albizia adianthifolia, Alchornea laxiflora, Laportea ovalifolia and three other Cameroonian plants against multi-drug resistant Gram-negative bacteria.

    PubMed

    Tchinda, Cedric F; Voukeng, Igor K; Beng, Veronique P; Kuete, Victor

    2017-05-01

    In the last 10 years, resistance in Gram-negative bacteria has been increasing. The present study was designed to evaluate the in vitro antibacterial activities of the methanol extracts of six Cameroonian medicinal plants Albizia adianthifolia , Alchornea laxiflora , Boerhavia diffusa , Combretum hispidum , Laportea ovalifolia and Scoparia dulcis against a panel of 15 multidrug resistant Gram-negative bacterial strains. The broth microdilution was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts. The preliminary phytochemical screening of the extracts was conducted according to the reference qualitative phytochemical methods. Results showed that all extracts contained compounds belonging to the classes of polyphenols and triterpenes, other classes of chemicals being selectively distributed. The best antibacterial activities were recorded with bark and root extracts of A. adianthifolia as well as with L. ovalifolia extract, with MIC values ranging from 64 to 1024 μg/mL on 93.3% of the fifteen tested bacteria. The lowest MIC value of 64 μg/mL was recorded with A. laxiflora bark extract against Enterobacter aerogenes EA289. Finally, the results of this study provide evidence of the antibacterial activity of the tested plants and suggest their possible use in the control of multidrug resistant phenotypes.

  2. Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: a potential application in food stuffs as a natural preservative.

    PubMed

    Mokarizadeh, Manijeh; Kafil, Hossein Samadi; Ghanbarzadeh, Saeed; Alizadeh, Ainaz; Hamishehkar, Hamed

    2017-10-01

    At the present time, utilization of essential oils in food preservation to prevent bacterial and fungal growth and improve shelf life and safety of the food products has notably gained increased interest. The aim of the present study was to improve the antimicrobial efficacy of citral as a natural preservative using nanostructured lipid carriers (NLCs). Formulations of NLCs were characterized using particle size analysis and scanning electron microscopy methods. Possible citral-carrier interaction and citral encapsulation efficiency percent (EE%) were assessed by Fourier transform infrared (FTIR) spectroscopy and gas chromatography techniques, respectively. Antimicrobial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of citral-loaded NLCs were evaluated and compared with the conventional citral emulsion against various gram-positive bacteria ( Staphylococcus aureus , Bacillus cereus ), gram-negative bacteria ( Escherichia coli ), and fungi ( Candida albicans ). Citral-loaded NLCs were spherically shaped nanosized (74.8 nm) particles with narrow size distribution, high EE% (99.84%), and appropriate physical stability during 90 days of storage period. FTIR spectra indicated the interaction between citral and formulation ingredients, which justified the obtained high EE% value. The MIC and MBC values of citral-loaded NLCs were lower than those of citral emulsion for all microorganisms. NLCs formulation showed remarkable capability of encapsulating essential oil and increasing antimicrobial properties to offer effective preservation in food industry.

  3. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates

    PubMed Central

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. Results: The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. PMID:27366345

  4. Antibacterial Activity of 7-Epiclusianone and Its Novel Copper Metal Complex on Streptococcus spp. Isolated from Bovine Mastitis and Their Cytotoxicity in MAC-T Cells.

    PubMed

    de Barros, Mariana; Perciano, Pedro Griffo; Dos Santos, Marcelo Henrique; De Oliveira, Leandro Licursi; Costa, Éderson D'Martin; Moreira, Maria Aparecida Scatamburlo

    2017-05-17

    Mastitis is an inflammation of mammary gland parenchyma that adversely affects bovine health and dairy production worldwide despite significant efforts to eradicate it. The aim of this work was to characterize the antimicrobial activity of 7-epiclusianone (7-epi), a compound extracted from the Rheedia brasiliensis fruit, its complex with copper against Streptococcus spp. isolated from bovine mastitis, and to assess their cytotoxicity to bovine mammary alveolar cells (MAC-T). The complex 7-epiclusianone-Cu (7-epi-Cu) was an amorphous green solid with optical activity. Its vibrational spectrum in the infrared region showed absorption bands in the high-frequency region, as well as bands that can be attributed to the unconjugated and conjugated stretching of the free ligand. The complex was anhydrous. One of the tested bacterial strains was not sensitive to the compounds, while the other three had MIC values of 7.8 µg mL -1 and minimum bactericidal concentration (MBC) values between 15.6 and 31.3 µg mL -1 . These two compounds are bacteriostatic, did not cause damage to the cell wall and, at sub-inhibitory concentrations, did not induce bacterial adhesion. The compounds were not cytotoxic. Based on these results, 7-epi and 7-epi-Cu exhibited desirable antimicrobial properties and could potentially be used in bovine mastitis treatment.

  5. Antibacterial Potential Assessment of Jasmine Essential Oil Against E. Coli

    PubMed Central

    Rath, C. C.; Devi, S.; Dash, S. K.; Mishra, R. K.

    2008-01-01

    The antibacterial activity of Jasmine (Jasminum sambac L.) flower hydro steam distilled essential oil, synthetic blends and six major individual components was assessed against Escherichia coli (MTCC-443) strain. The activity was bactericidal. Minimum inhibitory concentration was determined by tube dilution technique, and the Minimum inhibitory concentration ranged between 1.9-31.25 μl/ml. Phenolcoefficient of the oil, synthetic blends and components varied between 0.6-1.7. The activity of the chemicals was possibly due to the inhibition of cell membrane synthesis. PMID:20046722

  6. Molecular mechanism of plasma sterilization in solution with the reduced pH method: importance of permeation of HOO radicals into the cell membrane

    NASA Astrophysics Data System (ADS)

    Takai, Eisuke; Ikawa, Satoshi; Kitano, Katsuhisa; Kuwabara, Junpei; Shiraki, Kentaro

    2013-07-01

    Sterilization of certain infected areas of the human body surface is necessary for dental and surgical therapies. Because the blood is filled with body fluid, sterilization in solution is essential. In vitro solution sterilization has been successively carried out using a combination of low-temperature atmospheric-pressure plasma and the reduced pH method, where the solution is sufficiently acidic. Here, we show the molecular mechanism of such plasma sterilization in solution based on microbiology. Three kinds of bacteria were inactivated by plasma treatment under various pH conditions. The theoretical and experimental models revealed that the sterilization was characterized by the concentration of hydroperoxy radicals (HOO·), which were dependent on the pH value. Bacterial inactivation rates were proportional to the HOO· concentrations calculated by the theoretical model. To evaluate the penetration of radicals into the cell membrane, a bacterial model using dye-included micelles was used. Decolouration rates of the model were also in proportion with the calculated HOO· concentrations. These results indicate that the key species for plasma sterilization were hydroperoxy radicals. More importantly, the high permeation of hydroperoxy radicals into the cell membrane plays a key role for efficient bactericidal inactivation using the reduced pH method.

  7. Antibacterial Activity of Ethanolic Extract of Cinnamon Bark, Honey, and Their Combination Effects against Acne-Causing Bacteria

    PubMed Central

    Julianti, Elin; Rajah, Kasturi K.; Fidrianny, Irda

    2017-01-01

    Propionibacterium acnes and Staphylococcus epidermidis are the major skin bacteria that cause the formation of acne. The present study was conducted to investigate antibacterial activity of ethanolic extract of cinnamon bark, honey, and their combination against acne bacteria. The antibacterial activity of extract of cinnamon bark and honey were investigated against P. acnes and S. epidermidis using disc diffusion. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were attained using Clinical and Laboratory Standard Institute (CLSI) methods. The interaction between cinnamon bark extract and honey was determined using a checkerboards method. The results showed that the MICs of cinnamon bark extract and honey against P. acne were 256 µg/mL and 50% v/v, respectively, while those against S. epidermidis were 1024 µg/mL and 50% v/v, respectively. The MBC of cinnamon bark extract against P. acnes and S. epidermidis were more than 2048 µg/mL, whereas the MBC for honey against P. acnes and S. epidermidis were 100%. The combination of cinnamon bark extract and honey against P. acnes and S. epidermidis showed additive activity with a fractional inhibitory concentration index (FICI) value of 0.625. Therefore, the combination of cinnamon bark extract and honey has potential activity against acne-causing bacteria. PMID:28398231

  8. Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection

    PubMed Central

    Karuppiah, Ponmurugan; Mustaffa, Muhammed

    2013-01-01

    Objective To investigate different Musa sp. leave extracts of hexane, ethyl acetate and methanol were evaluated for antibacterial activity against multi-drug resistant pathogens causing nosocomial infection by agar well diffusion method and also antioxidant activities. Methods The four different Musa species leaves were extracted with hexane, ethyl acetate and methanol. Antibacterial susceptibility test, minimum inhibitory concentration and minimum inhibitory bacterial concentration were determined by agar well diffusion method. Total phenolic content and in vitro antioxidant activity was determined. Results All the Musa sp. extracts showed moderate antibacterial activities expect Musa paradisiaca with the inhibition zone ranging from 8.0 to 18.6 mm. Among four species ethyl acetate extracts of Musa paradisiaca showed highest activity against tested pathogens particularly E. coli, P. aeruginosa and Citrobacter sp. The minimum inhibitory concentrations were within the value of 15.63- 250 µg/mL and minimum bactericidal concentrations were ranging from 31.25- 250 µg/mL. Antioxidant activity of Musa acuminate exhibited maximum activity among other three Musa species. Conclusions The present study concluded that among the different Musa species, Musa paradisiaca displayed efficient antibacterial activity followed by Musa acuminata against multi-drug resistant nosocomial infection causing pathogens. Further, an extensive study is needed to identify the bioactive compounds, mode of action and toxic effect in vivo of Musa sp. PMID:23998016

  9. Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection.

    PubMed

    Karuppiah, Ponmurugan; Mustaffa, Muhammed

    2013-09-01

    To investigate different Musa sp. leave extracts of hexane, ethyl acetate and methanol were evaluated for antibacterial activity against multi-drug resistant pathogens causing nosocomial infection by agar well diffusion method and also antioxidant activities. The four different Musa species leaves were extracted with hexane, ethyl acetate and methanol. Antibacterial susceptibility test, minimum inhibitory concentration and minimum inhibitory bacterial concentration were determined by agar well diffusion method. Total phenolic content and in vitro antioxidant activity was determined. All the Musa sp. extracts showed moderate antibacterial activities expect Musa paradisiaca with the inhibition zone ranging from 8.0 to 18.6 mm. Among four species ethyl acetate extracts of Musa paradisiaca showed highest activity against tested pathogens particularly E. coli, P. aeruginosa and Citrobacter sp. The minimum inhibitory concentrations were within the value of 15.63- 250 µg/mL and minimum bactericidal concentrations were ranging from 31.25- 250 µg/mL. Antioxidant activity of Musa acuminate exhibited maximum activity among other three Musa species. The present study concluded that among the different Musa species, Musa paradisiaca displayed efficient antibacterial activity followed by Musa acuminata against multi-drug resistant nosocomial infection causing pathogens. Further, an extensive study is needed to identify the bioactive compounds, mode of action and toxic effect in vivo of Musa sp.

  10. Comparative antimicrobial activity, in vitro and in vivo, of soft N-chloramine systems and chlorhexidine.

    PubMed Central

    Selk, S H; Pogány, S A; Higuchi, T

    1982-01-01

    Antimicrobial activity of the following four new N-chloramine compounds was evaluated: two chlorinated simple amino acids, a chlorinated half-ester of succinic acid, and a chlorinated half-ester of glutaric acid. For comparison, the known bactericidal agents 3-chloro-4,4-dimethyl-2-oxazolidinone and chlorhexidine were evaluated by the same procedure. The contact germicidal efficiency screen was used to examine the in vitro bactericidal activity of all six compounds in the absence and presence of 5% horse serum or 5% Triton X-100. The four new compounds were found to have greater germicidal activity than the other compounds tested and to exhibit low toxicity and skin irritation values. The in vivo bactericidal activity was evaluated in two studies. In the occlusion test, three of the four new compounds plus chlorhexidine diacetate were tested. The N-chloramines were significantly superior to chlorhexidine in preventing the expansion of the normal flora under occlusion. In the scrub test, a gloved-hand wash method was used to compare the antimicrobial effect of a 1% solution of the chlorinated half-ester of succinic acid in triacetin with that of a commercial germicidal hand wash containing 4% chlorhexidine gluconate. The two preparations exhibited essentially the same hand-degerming activity. PMID:6805433

  11. Gepotidacin (GSK2140944) In Vitro Activity against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Farrell, D. J.; Rhomberg, P. R.; Scangarella-Oman, N. E.; Sader, H. S.

    2017-01-01

    ABSTRACT Gepotidacin is a first-in-class, novel triazaacenaphthylene antibiotic that inhibits bacterial DNA replication and has in vitro activity against susceptible and drug-resistant pathogens. Reference in vitro methods were used to investigate the MICs and minimum bactericidal concentrations (MBCs) of gepotidacin and comparator agents for Staphylococcus aureus, Streptococcus pneumoniae, and Escherichia coli. Gepotidacin in vitro activity was also evaluated by using time-kill kinetics and broth microdilution checkerboard methods for synergy testing and for postantibiotic and subinhibitory effects. The MIC90 of gepotidacin for 50 S. aureus (including methicillin-resistant S. aureus [MRSA]) and 50 S. pneumoniae (including penicillin-nonsusceptible) isolates was 0.5 μg/ml, and for E. coli (n = 25 isolates), it was 4 μg/ml. Gepotidacin was bactericidal against S. aureus, S. pneumoniae, and E. coli, with MBC/MIC ratios of ≤4 against 98, 98, and 88% of the isolates tested, respectively. Time-kill curves indicated that the bactericidal activity of gepotidacin was observed at 4× or 10× MIC at 24 h for all of the isolates. S. aureus regrowth was observed in the presence of gepotidacin, and the resulting gepotidacin MICs were 2- to 128-fold higher than the baseline gepotidacin MICs. Checkerboard analysis of gepotidacin combined with other antimicrobials demonstrated no occurrences of antagonism with agents from multiple antimicrobial classes. The most common interaction when testing gepotidacin was indifference (fractional inhibitory concentration index of >0.5 to ≤4; 82.7% for Gram-positive isolates and 82.6% for Gram-negative isolates). The postantibiotic effect (PAE) of gepotidacin was short when it was tested against S. aureus (≤0.6 h against MRSA and MSSA), and the PAE–sub-MIC effect (SME) was extended (>8 h; three isolates at 0.5× MIC). The PAE of levofloxacin was modest (0.0 to 2.4 h), and the PAE-SME observed varied from 1.2 to >9 h at 0.5× MIC. These in vitro data indicate that gepotidacin is a bactericidal agent that exhibits a modest PAE and an extended PAE-SME against Gram-positive and -negative bacteria and merits further study for potential use in treating infections caused by these pathogens. PMID:28483959

  12. Studies on the Antibacterial Effects of Statins - In Vitro and In Vivo

    PubMed Central

    Bergman, Peter; Linde, Charlotte; Pütsep, Katrin; Pohanka, Anton; Normark, Staffan; Henriques-Normark, Birgitta; Andersson, Jan; Björkhem-Bergman, Linda

    2011-01-01

    Background Statin treatment has been associated with a beneficial outcome on respiratory tract infections. In addition, previous in vitro and in vivo experiments have indicated favorable effects of statins in bacterial infections. Aim The aim of the present study was to elucidate possible antibacterial effects of statins against primary pathogens of the respiratory tract. Methods MIC-values for simvastatin, fluvastatin and pravastatin against S. pneumoniae, M. catarrhalis and H. influenzae were determined by traditional antibacterial assays. A BioScreen instrument was used to monitor effects of statins on bacterial growth and to assess possible synergistic effects with penicillin. Bacterial growth in whole blood and serum from healthy volunteers before and after a single dose of simvastatin, fluvastatin and penicillin (positive control) was determined using a blood culture system (BactAlert). Findings The MIC-value for simvastatin against S pneumoniae and M catarrhalis was 15 µg/mL (36 mmol/L). Fluvastatin and Pravastatin showed no antibacterial effect in concentrations up to 100 µg/mL (230 µmol/L). Statins did not affect growth or viability of H influenzae. Single doses of statins given to healthy volunteers did not affect growth of pneumococci, whereas penicillin efficiently killed all bacteria. Conclusions Simvastatin at high concentrations 15 µg/mL (36 µmol/L) rapidly kills S pneumoniae and M catarrhalis. However, these concentrations by far exceed the concentrations detected in human blood during simvastatin therapy (1–15 nmol/L) and single doses of statins given to healthy volunteers did not improve antibacterial effects of whole blood. Thus, a direct bactericidal effect of statins in vivo is probably not the mechanism behind the observed beneficial effect of statins against various infections. PMID:21912631

  13. In vitro combined effect of co-amoxiclav concentrations achievable in serum after a 2000/125 mg oral dose, and polymorphonuclear neutrophils against strains of Streptococcus pneumoniae exhibiting decreased susceptibility to amoxicillin.

    PubMed

    Amores, Raquel; Alou, Luis; Giménez, María José; Sevillano, David; Gómez-Lus, María Luisa; Aguilar, Lorenzo; Prieto, José

    2004-07-01

    The in vitro effect that the presence of components of non-specific immunity (serum plus polymorphonuclear neutrophils) has on the bactericidal activity of co-amoxiclav was explored against Streptococcus pneumoniae strains exhibiting an amoxicillin MIC > or =4 mg/L. Eight penicillin-resistant clinical isolates non-susceptible to co-amoxiclav with MICs of 4 (two strains), 8 (four strains) and 16 mg/L (two strains) were used. Values of MBC were identical to MIC values in all cases. Time-kill curves were performed with co-amoxiclav concentrations achievable in serum after a single oral dose administration of the new 2000/125 mg sustained-release formulation. Results were expressed as percentage of reduction of initial inocula after 3 h incubation. Control curves showed growth with no reduction of initial inocula. Against strains with MIC of 4 and 8 mg/L, the results obtained with the antibiotic alone or with the presence of factors of non-specific immunity were similar, with a weak combined effect due to the intrinsic activity of co-amoxiclav (reductions of initial inocula ranging from 70 to 99.16%). Against strains with MIC of 16 mg/L, the addition of PMN in the presence of serum increased the reduction of bacterial load provided by the aminopenicillin, even at sub-inhibitory concentrations (25.8% versus 51.1% at 0.5 x MIC concentration--8/0.5 mg/L). This combined activity against strains with an amoxicillin MIC of 16 mg/L which decreased the bacterial load may be important in preventing bacterial proliferation within the host and the transmission of resistant clones to others.

  14. Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation-reduction state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torgomyan, Heghine; Trchounian, Armen, E-mail: Trchounian@ysu.am

    2011-10-14

    Highlights: {yields} Low intensity 70.6 and 73 GHz electromagnetic irradiation (EMI) strongly suppressed Escherichia coli growth at 73 GHz and pH 7.3. {yields} Reducer DL-dithiothreitol had bactericidal effect and disturbed the SH-groups number. {yields} EMI enhanced E. coli sensitivity toward dithiothreitol. {yields} EMI decreased the SH-groups number of membrane disturbed by ATP and N,N'-dicyclohexycarbodiimide. {yields} The changed membrane oxidation-reduction state could be the primary mechanisms in EMI effects. -- Abstract: Low-intensity electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies (flux capacity - 0.06 mW cm{sup -2}) had bactericidal effects on Escherichia coli. This EMI (1 h) exposure suppressed themore » growth of E. coli K-12({lambda}). The pH value (6.0-8.0) did not significantly affect the growth. The lag-phase duration was prolonged, and the growth specific rate was inhibited, and these effects were more noticeable after 73 GHz irradiation. These effects were enhanced by the addition of DL-dithiothreitol (DTT), a strong reducer of disulfide bonds in surface membrane proteins, which in its turn also has bactericidal effect. Further, the number of accessible SH-groups in membrane vesicles was markedly decreased by EMI that was augmented by N,N'-dicyclohexycarbodiimide and DTT. These results indicate a change in the oxidation-reduction state of bacterial cell membrane proteins that could be the primary membranous mechanism in the bactericidal effects of low-intensity EMI of the 70.6 and 73 GHz frequencies.« less

  15. Pharmacokinetic–Pharmacodynamic Modeling of Enrofloxacin Against Escherichia coli in Broilers

    PubMed Central

    Sang, KaNa; Hao, HaiHong; Huang, LingLi; Wang, Xu; Yuan, ZongHui

    2016-01-01

    The purpose of the present study was to establish a pharmacokinetic/pharmacodynamic (PK/PD) modeling approach for the dosage schedule design and decreasing the emergence of drug-resistant bacteria. The minimal inhibitory concentration (MIC) of 929 Escherichia coli isolates from broilers to enrofloxacin and ciprofloxacin was determined following CLSI guidance. The MIC50 was calculated as the populational PD parameter for enrofloxacin against E. coli in broilers. The 101 E. coli strains with MIC closest to the MIC50 (0.05 μg/mL) were submitted for serotype identification. The 13 E. coli strains with O and K serotype were further utilized for determining pathogencity in mice. Of all the strains tested, the E. coli designated strain Anhui 112 was selected for establishing the disease model and PK/PD study. The PKs of enrofloxacin after oral administration at the dose of 10 mg/kg body weights (BW) in healthy and infected broilers was evaluated with high-performance liquid chromatography (HPLC) method. For intestinal contents after oral administration, the peak concentration (Cmax), the time when the maximum concentration reached (Tmax), and the area under the concentration-time curve (AUC) were 21.69–31.69 μg/mL, 1.13–1.23 h, and 228.97–444.86 μg h/mL, respectively. The MIC and minimal bactericidal concentration (MBC) of enrofloxacin against E. coli (Anhui 112) in Mueller–Hinton (MH) broth and intestinal contents were determined to be similar, 0.25 and 0.5 μg/mL respectively. In this study, the sum of concentrations of enrofloxacin and its metabolite (ciprofloxacin) was used for the PK/PD integration and modeling. The ex vivo growth inhibition data were fitted to the sigmoid Emax (Hill) equation to provide values for intestinal contents of 24 h area under concentration-time curve/MIC ratios (AUC0–24 h/MIC) producing, bacteriostasis (624.94 h), bactericidal activity (1065.93 h) and bacterial eradication (1343.81 h). PK/PD modeling was established to simulate the efficacy of enrofloxacin for different dosage regimens. By model validation, the protection rate was 83.3%, demonstrating that the dosage regimen of 11.9 mg/kg BW every 24 h during 3 days provided great therapeutic significance. In summary, the purpose of the present study was to first design a dosage regimen for the treatment E. coli in broilers by enrofloxacin using PK/PD integrate model and confirm that this dosage regimen presents less risk for emergence of floroquinolone resistance. PMID:26779495

  16. Assessment of immune response to meningococcal disease: comparison of a whole-blood assay and the serum bactericidal assay.

    PubMed

    Ison, C A; Anwar, N; Cole, M J; Galassini, R; Heyderman, R S; Klein, N J; West, J; Pollard, A J; Morley, S; Levin and the Meningococcal, R e

    1999-10-01

    A whole-blood assay (WBA), which assesses the complete bactericidal activity of blood, was compared with the serum bactericidal assay (SBA), which measures antibody and complement mediated cell lysis. Twenty children infected with serogroup B strains and 25 infected with serogroup C strains were studied 8-12 weeks after disease, and 29 healthy children were used as controls. The infecting strain (convalescent children only) and two reference strains, MC58 (B:15:P1.7, 16) and NCTC 8554 (C:NT:P1.5) were used. In children previously infected with a serogroup B strain, bactericidal activity was detected in 95% and 85% to their infecting strain by the WBA (>50% killing) and the SBA (s), respectively. Bactericidal activity to the reference serogroup B and C strain was detected by WBA in 70 and 75% of children, respectively, and the SBA in 45% and 20%. In contrast bactericidal activity was detected to both serogroup C strains in >80% of children previously infected with a serogroup C strain using either assay and in 48% (WBA) and 20% (SBA) to the reference serogroup B strain. Levels of bactericidal activity were detectable in fewer control children. Children convalescing from meningococcal disease develop an immune response to their infecting strain, detectable by both the WBA and SBA, which is independent of age. However, the WBA appears to be a more sensitive measure of bactericidal activity to heterologous strains than the SBA. Copyright 1999 Academic Press.

  17. Pharmacokinetic behavior of enrofloxacin and its metabolite ciprofloxacin in urutu pit vipers (Bothrops alternatus) after intramuscular administration.

    PubMed

    Waxman, Samanta; Prados, Ana Paula; de Lucas, José Julio; San Andrés, Manuel Ignacion; Regner, Pablo; de Oliveira, Vanesa Costa; de Roodt, Adolfo; Rodríguez, Casilda

    2014-03-01

    Enrofloxacin is widely used in veterinary medicine and is an important alternative to treating bacterial infections, which play an important role as causes of disease and death in captive snakes. Its extralabel use in nontraditional species has been related to its excellent pharmacokinetic and antimicrobial characteristics. This can be demonstrated by its activity against gram-negative organisms implicated in serious infectious diseases of reptile species with a rapid and concentration-dependent bactericidal effect and a large volume of distribution. Pharmacokinetic parameters for enrofloxacin were investigated in seven urutu pit vipers (Bothrops alternatus), following intramuscular injections of 10 mg/kg. The plasma concentrations of enrofloxacin and its metabolite, ciprofloxacin, were measured using high-performance liquid chromatography. Blood samples were collected from the ventral coccygeal veins at 0.5, 1, 2, 4, 8, 12, 24, 36, 48, 72, 96, 108, and 168 hr. The kinetic behavior was characterized by a relatively slow absorption (time of maximal plasma concentration = 4.50 +/- 3.45 hr) with peak plasma concentration of 4.81 +/- 1.12 microg/ml. The long half-life during the terminal elimination phase (t1/2 lambda = 27.91 +/- 7.55 hr) of enrofloxacin after intramuscular administration, calculated in the present study, could suggest that the antibiotic is eliminated relatively slowly and/or the presence of a slow absorption in urutu pit vipers. Ciprofloxacin reached a peak plasma concentration of 0.35 microg/ml at 13.45 hr, and the fraction of enrofloxacin metabolized to ciprofloxacin was 13.06%. If enrofloxacin's minimum inhibitory concentration (MIC90) values of 0.5 microg/ml were used, the ratios AUC(e+c): MIC90 (276 +/- 67 hr) and Cmax(e+c): MIC90 (10 +/- 2) reach the proposed threshold values (125 hr and 10, respectively) for optimized efficacy and minimized resistance development when treating infections caused by Pseudomonas. The administration of 10 mg/kg of enrofloxacin by the i.m. route should be considered to be a judicious choice in urutu pit vipers against infections caused by microorganisms with MIC values < or = 0.5 microg/ml. For less susceptible bacteria, a dose increase and/or an interval reduction should be evaluated.

  18. Effect of Catechins, Green tea Extract and Methylxanthines in Combination with Gentamicin Against Staphylococcus aureus and Pseudomonas aeruginosa

    PubMed Central

    Fazly Bazzaz, Bibi Sedigheh; Sarabandi, Sahar; Khameneh, Bahman; Hosseinzadeh, Hossein

    2016-01-01

    Objectives: Bacterial resistant infections have become a global health challenge and threaten the society’s health. Thus, an urgent need exists to find ways to combat resistant pathogens. One promising approach to overcoming bacterial resistance is the use of herbal products. Green tea catechins, the major green tea polyphenols, show antimicrobial activity against resistant pathogens. The present study aimed to investigate the effect of catechins, green tea extract, and methylxanthines in combination with gentamicin against standard and clinical isolates of Staphylococcus aureus (S. aureus) and the standard strain of Pseudomonas aeruginosa (P. aeruginosa). Methods: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values of different agents against bacterial strains were determined. The interactions of green tea extract, epigallate catechin, epigallocatechin gallate, two types of methylxanthine, caffeine, and theophylline with gentamicin were studied in vitro by using a checkerboard method and calculating the fraction inhibitory concentration index (FICI). Results: The MICs of gentamicin against bacterial strains were in the range of 0.312 - 320 μg/mL. The MIC values of both types of catechins were 62.5 - 250 μg/ mL. Green tea extract showed insufficient antibacterial activity when used alone. Methylxanthines had no intrinsic inhibitory activity against any of the bacterial strains tested. When green tea extract and catechins were combined with gentamicin, the MIC values of gentamicin against the standard strains and a clinical isolate were reduced, and synergistic activities were observed (FICI < 1). A combination of caffeine with gentamicin did not alter the MIC values of gentamicin. Conclusion: The results of the present study revealed that green tea extract and catechins potentiated the antimicrobial action of gentamicin against some clinical isolates of S. aureus and standard P. aeruginosa strains. Therefore, combinations of gentamicin with these natural compounds might be a promising approach to combat microbial resistance. PMID:28097041

  19. Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract

    NASA Astrophysics Data System (ADS)

    Seralathan, Janani; Stevenson, Priscilla; Subramaniam, Shankar; Raghavan, Rachana; Pemaiah, Brindha; Sivasubramanian, Aravind; Veerappan, Anbazhagan

    2014-01-01

    Nanosized silver have been widely used in many applications, such as catalysis, photonics, sensors, medicine etc. Thus, there is an increasing need to develop high-yield, low cost, non-toxic and eco-friendly procedures for the synthesis of nanoparticles. Herein, we report an efficient, green synthesis of silver nanoparticles utilizing the aqueous extract of Salicornia brachiata, a tropical plant of the Chenopodiaceae family. Silver nanoparticles have been characterized by ultraviolet-visible spectroscopy, scanning electron microscopy and transmission electron microscopy. The morphology of the particles formed consists of highly diversified shapes like spherical, rod-like, prism, triangular, pentagonal and hexagonal pattern. However, addition of sodium hydroxide to the extract produces mostly spherical particles. The stable nanoparticles obtained using this green method show remarkable catalytic activity in the reduction of 4-nitro phenol to 4-amino phenol. The reduction catalyzed by silver nanoparticles followed the first-order kinetics, with a rate constant of, 0.6 × 10-2 s-1. The bactericidal activity of the synthesized silver nanoparticles against the pathogenic bacteria, Staphylococcus aureus, Staphylococcus aureus E, Bacillus subtilis and Escherichia coli, was also explored using REMA. The obtained results showed that the minimum inhibitory concentration required to induce bactericidal effect is lower than the control antibiotic, ciprofloxacin. In addition to these, the biogenic synthesized nanoparticles also exhibited excellent free radical scavenging activity.

  20. Use of agar diffusion assay to measure bactericidal activity of alkaline salts of fatty acids against bacteria associated with poultry processing

    USDA-ARS?s Scientific Manuscript database

    The agar diffusion assay was used to examine antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids. A 0.5M concentration of each fatty acid was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric acid. Solu...

  1. Influence of ethylenediaminetetraacetic acid (EDTA) on the on the ability of fatty acids to inhibit the growth of bacteria associated with poultry processing.

    USDA-ARS?s Scientific Manuscript database

    The effect of ethylenediaminetetraacetic acid (EDTA) on the bactericidal activity of alkaline salts of fatty acids was examined. A 0.5 M concentration of caproic, caprylic, capric, and lauric acids was dissolved in 1.0 M potassium hydroxide (KOH), and then supplemented with 0, 5, or 10 mM of EDTA. T...

  2. Bactericidal catechins damage the lipid bilayer.

    PubMed

    Ikigai, H; Nakae, T; Hara, Y; Shimamura, T

    1993-04-08

    The mode of antibacterial action of, the green tea (Camellia sinensis) extracts, (-)-epigallocatechin gallate (EGCg) and (-)-epicatechin (EC) was investigated. Strong bactericidal EGCg caused leakage of 5,6-carboxyfluorescein from phosphatidylcholine liposomes (PC), but EC with very weak bactericidal activity caused little damage to the membrane. Phosphatidylserine and dicetyl phosphate partially protected the membrane from EGCg-mediated damage when reconstituted into the liposome membrane with PC. EGCg, but not EC, caused strong aggregation and NPN-fluorescence quenching of PC-liposomes and these actions were markedly lowered in the presence of negatively charged lipids. These results show that bactericidal catechins primarily act on and damage bacterial membranes. The observation that Gram-negative bacteria are more resistant to bactericidal catechins than Gram-positive bacteria can be explained to some extent by the presence of negatively charged lipopolysaccharide.

  3. The distribution of triclosan and methyl-triclosan in marine sediments of Barker Inlet, South Australia.

    PubMed

    Fernandes, Milena; Shareef, Ali; Kookana, Rai; Gaylard, Sam; Hoare, Sonja; Kildea, Tim

    2011-04-01

    In this work, we investigated the transport and burial of triclosan and its methylated derivative, in surface sediments near the mouth of Barker Inlet in South Australia. The most likely source of this commonly used bactericide to the area is a wastewater outfall discharging at the confluence of the inlet with marine waters. Triclosan was detected in all samples, at concentrations (5-27 μg kg(-1)) comparable to values found in other surface sediments under the influence of marine wastewater outfalls. Its dispersal was closely associated with fine and organic-rich fractions of the sediments. Methyl-triclosan was detected in approximately half of the samples at concentrations <11 μg kg(-1). The occurrence of this compound was linked to both wastewater discharges and biological methylation of the parent compound. Wastewater-borne methyl-triclosan had a smaller spatial footprint than triclosan and was mostly deposited in close proximity to the outfall. In situ methylation of triclosan likely occurs at deeper depositional sites, whereas the absence of methyl-triclosan from shallower sediments was potentially explained by photodegradation of the parent compound. Based on partition equilibrium, a concentration of triclosan in the order of 1 μg L(-1) was estimated in sediment porewaters, a value lower than the threshold reported for harmful effects to occur in the couple of species of marine phytoplankton investigated to date. Methyl-triclosan presents a greater potential for bioaccumulation than triclosan, but the implications of its occurrence to aquatic ecosystem health are difficult to predict given the lack of ecotoxicological data in the current literature.

  4. The Effects of Allium sativum Extracts on Biofilm Formation and Activities of Six Pathogenic Bacteria.

    PubMed

    Mohsenipour, Zeinab; Hassanshahian, Mehdi

    2015-08-01

    Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms.

  5. Experimental Research on the Sterilization of Escherichia Coli and Bacillus Subtilis in Drinking Water by Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Li, Yang; Yi, Chengwu; Li, Jingjing; Yi, Rongjie; Wang, Huijuan

    2016-02-01

    The bactericidal effect on the representative type of Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis in drinking water was investigated in this paper by using dielectric barrier discharge (DBD) advanced oxidation technology. The sterilizing rates under different conditions of reaction time t, input voltage V, pH value, and initial concentration of bacteria C0 were investigated to figure out the optimum sterilization conditions. Our observations and comparisons of cell morphology alteration by scanning electron microscopy and transmission electron microscopy revealed the sterilization mechanisms. The results showed that the sterilizing rate increased obviously with the extension of reaction time t and the rise of input voltage V. The optimal sterilization effect was achieved when the pH value was 7.1. As the initial concentration of bacteria rose, the sterilizing rate decreased. When the input voltage was 2.2 kV and the initial concentration of bacteria was relatively low, the sterilizing rate almost reached 100% after a certain treatment time in neutral aqueous solution. The reasons for the great damage of cell structure and the killing of bacteria are the oxidation of O3, OH and the accumulation of active species produced by DBD. The article provides a certain theoretical and experimental basis for DBD application in water pollution treatment. supported by the Science and Technology Support Project Plan and Social Development of Jiangsu Province, China (No. BE2011732), the Science and Technology Support Project Plan and Social Development of Zhenjiang, Jiangsu Province, China (No. SH2012013)

  6. Pseudomonas fluorescens' view of the periodic table.

    PubMed

    Workentine, Matthew L; Harrison, Joe J; Stenroos, Pernilla U; Ceri, Howard; Turner, Raymond J

    2008-01-01

    Growth in a biofilm modulates microbial metal susceptibility, sometimes increasing the ability of microorganisms to withstand toxic metal species by several orders of magnitude. In this study, a high-throughput metal toxicity screen was initiated with the aim of correlating biological toxicity data in planktonic and biofilm cells to the physiochemical properties of metal ions. To this end, Pseudomonas fluorescens ATCC 13525 was grown in the Calgary Biofilm Device (CBD) and biofilms and planktonic cells of this microorganism were exposed to gradient arrays of different metal ions. These arrays included 44 different metals with representative compounds that spanned every group of the periodic table (except for the halogens and noble gases). The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) values were obtained after exposing the biofilms to metal ions for 4 h. Using these values, metal ion toxicity was correlated to the following ion-specific physicochemical parameters: standard reduction-oxidation potential, electronegativity, the solubility product of the corresponding metal-sulfide complex, the Pearson softness index, electron density and the covalent index. When the ions were grouped according to outer shell electron structure, we found that heavy metal ions gave the strongest correlations to these parameters and were more toxic on average than the other classes of the ions. Correlations were different for biofilms than for planktonic cells, indicating that chemical mechanisms of metal ion toxicity differ between the two modes of growth. We suggest that biofilms can specifically counter the toxic effects of certain physicochemical parameters, which may contribute to the increased ability of biofilms to withstand metal toxicity.

  7. Determination of concentration and molar absorptivity of hypochlorous acid and hypobromous acid species by hydrogen peroxide titration

    NASA Astrophysics Data System (ADS)

    Uehara, H.; Arakaki, T.

    2017-12-01

    Hypochlorous acid and hypobromous acid (abbreviated as "HypoX acids") are the main ingredients of bleaching and bactericides. The HypoX acids change their chemical forms depending on environmental factors such as pH and various chemical reactions. For example, it has been reported that hypobromite ion in water changes to carcinogenic bromate by photochemical reaction with ultraviolet light. In this study, concentrations of HypoX acids were determined by UV-VIS absorbance measurement utilizing the fact that HypoX acids react with hydrogen peroxide and do not co-exist in the solution. The method for determining the concentration by titration with hydrogen peroxide can be carried out simpler and more efficiently than the DPD method or the current titration method generally used for chlorine concentration measurement. Molar absorptivity between 250 - 500 nm of HypoX acids, including their conjugate base species, was determined by solving theoretical acid-base formula including molar fraction of each chemical species at various pHs. Molar absorptivity of OCl- and OBr- between 250 - 500 nm was determined based on the concentrations obtained from titration with hydrogen peroxide and absorbance at pH > 10, where OCl- and OBr- dominate. Furthermore, the HypoX acids solutions were irradiated with a solar simulator, and the photolysis rate constants were obtained. Based on those values, the half-lives were calculated and the behavior of HypoX acids in the environment was elucidated.

  8. Evaluation of the Antibacterial Activity of Green Propolis Extract and Meadowsweet Extract Against Staphylococcus aureus Bacteria: Importance in Would Care Compounding Preparations.

    PubMed

    Lupatini, Nogueira Rodrigo José; Danopoulos, Panagiota; Swikidisa, Rosita; Alves, Pinheiro Vanessa

    2016-01-01

    The use of natural products in compounded wound care formulas is an exciting avenue to pursue for compounding pharmacists since these natural products may contain compounds that promote healing on their own. The use of these natural extracts as an alternative therapy for wound care may also provide several benefits, such as decreased inflammation, infection, side effects, and treatment costs. Thus far, several studies have demonstrated antimicrobial activity for various natural product extracts, including green propolis and meadowsweet. The antimicrobial properties of these extracts make them particularly interesting for wound care because the healing process is significantly delayed by bacterial infection and colonization at the site of injury. Therefore, to further investigate the antimicrobial properties of green propolis and meadowsweet extracts, we performed minimum inhibitory concentration and minimum bactericidal concentration assays against Staphylococcus aureus, a microorganism known to cause wound infections. The antimicrobial activity of green propolis and meadowsweet extracts was tested in vitro against a standard strain of Staphylococcus aureus in brain heart infusion broth and Mueller-Hinton agar plates. Green propolis extract demonstrated antimicrobial activity against Staphylococcus aureus with a minimum inhibitory concentration of 1.25 mg/mL and a minimum bactericidal concentration of 1.25 mg/mL. In contrast, meadowsweet extract failed to inhibit Staphylococcus aureus growth at the highest concentration tested (30 mg/mL). Green propolis was more effective than meadowsweet extract at inhibiting the growth of Staphylococcus aureus, suggesting that the addition of green propolis extract in wound care formulas might be more beneficial for the treatment of wounds. Therefore, we propose that green propolis extract is a promising natural product for wound care formulations. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  9. The Effect of Brief Exposure to Sub-Therapeutic Concentrations of Chlorhexidine Digluconate on the Susceptibility of Staphylococci to Platelet Microbicidal Protein.

    PubMed

    Ivanov, Iuri B; Gritsenko, Viktor A; Kuzmin, Michael D

    2015-06-01

    Antiseptic agents are widely used in hospitals and are essential when prevention and control of nosocomial infections is required. It is necessary to consider several aspects that affect the biocide activity because they have direct impact on the nosocomial infection rate. Organisms belonging to the Staphylococcus genus are involved in such infections and chlorhexidine digluconate (CHXD) is one of the most used antiseptic agents for human and animal health. In the context of such infections, anti-bacterial peptides have been isolated from platelets and have been termed platelet microbicidal proteins (PMP). Platelet microbicidal proteins have been shown to enhance the bacterial inhibitory activities of sub-therapeutic concentrations of antibiotics. The main objective of this study was to investigate the effect of brief exposure to different sub-therapeutic concentrations of CHXD on the susceptibility of staphylococci to PMP. The influence of brief exposure to three different sub-therapeutic concentrations of CHXD (0.005%, 0.0025%, and 0.00125%) on the subsequent staphylocidal effect of PMP was evaluated. Among all clinical staphylococcal strains studied, all isolates were considered to be resistant to the bactericidal action of PMP. Exposure of staphylococci to CHXD prior to PMP resulted in significantly increased staphylococcal killing compared with the killing achieved with PMP alone. This enhanced effect was most marked for concentrations of CHXD of 0.005%. The combined data indicate that PMP exerts cooperative bactericidal effect with CHXD. The anti-staphylococcal PMP and CHXD synergistic activity in vitro demonstrated in the present study make these molecules potentially useful for preventing endovascular catheter-associated infections. Future research based on animal and human models is needed to elucidate the in vivo efficacies and toxicities and utility in clinical practice.

  10. Effects of Intracanal Irrigant MTAD Combined with Nisin at Sub-Minimum Inhibitory Concentration Levels on Enterococcus faecalis Growth and the Expression of Pathogenic Genes

    PubMed Central

    Ling, Junqi; Mao, Xueli; Ning, Yang; Deng, Dongmei

    2014-01-01

    Exposure to antibiotics is considered to be the major driver in the selection of antibiotic-resistant bacteria and may induce diverse biological responses in bacteria. MTAD is a common intracanal irrigant, but its bactericidal activity remains to be improved. Previous studies have indicated that the antimicrobial peptide nisin can significantly improve the bactericidal activity of MTAD against Enterococcus faecalis. However, the effects of MTAD and its modification at sub-minimum inhibitory concentration (sub-MIC) levels on Enterococcus faecalis growth and the expression of pathogenic genes still need to be explored. In this study, the results of post-antibiotic effects (PAE) and post-antibiotic sub-MIC effects (PASME) showed that MTADN (nisin in combination with MTAD) had the best post-antibiotic effect. E. faecalis after challenge with MTAD was less sensitive to alkaline solutions compared with MTAN (nisin in place of doxycycline in MTAD) and MTADN. E. faecalis induced with sub-MIC of MTAD generated resistance to the higher concentration, but induction of E. faecalis with MTAN did not cause resistance to higher concentrations. Furthermore, real-time polymerase chain reaction (RT-PCR) showed that the stress caused by sub-MIC exposure to MTAD, MTAN, or MTADN resulted in up- or down-regulation of nine stress genes and four virulence-associated genes in E. faecalis and resulted in different stress states. These findings suggested that nisin improved the post-antibacterial effect of MTAD at sub-MIC levels and has considerable potential for use as a modification of MTAD. PMID:24603760

  11. In vitro evaluation of Augmentin by broth microdilution and disk diffusion susceptibility testing: regression analysis, tentative interpretive criteria, and quality control limits.

    PubMed Central

    Fuchs, P C; Barry, A L; Thornsberry, C; Gavan, T L; Jones, R N

    1983-01-01

    Augmentin (Beecham Laboratories, Bristol, Tenn.), a combination drug consisting of two parts amoxicillin to one part clavulanic acid and a potent beta-lactamase inhibitor, was evaluated in vitro in comparison with ampicillin or amoxicillin or both for its inhibitory and bactericidal activities against selected clinical isolates. Regression analysis was performed and tentative disk diffusion susceptibility breakpoints were determined. A multicenter performance study of the disk diffusion test was conducted with three quality control organisms to determine tentative quality control limits. All methicillin-susceptible staphylococci and Haemophilus influenzae isolates were susceptible to Augmentin, although the minimal inhibitory concentrations for beta-lactamase-producing strains of both groups were, on the average, fourfold higher than those for enzyme-negative strains. Among the Enterobacteriaceae, Augmentin exhibited significantly greater activity than did ampicillin against Klebsiella pneumoniae, Citrobacter diversus, Proteus vulgaris, and about one-third of the Escherichia coli strains tested. Bactericidal activity usually occurred at the minimal inhibitory concentration. There was a slight inoculum concentration effect on the Augmentin minimal inhibitory concentrations. On the basis of regression and error rate-bounded analyses, the suggested interpretive disk diffusion susceptibility breakpoints for Augmentin are: susceptible, greater than or equal to 18 mm; resistant, less than or equal to 13 mm (gram-negative bacilli); and susceptible, greater than or equal to 20 mm (staphylococci and H. influenzae). The use of a beta-lactamase-producing organism, such as E. coli Beecham 1532, is recommended for quality assurance of Augmentin susceptibility testing. PMID:6625554

  12. Antimicrobial and seasonal evaluation of the carvacrol-chemotype oil from Lippia origanoides kunth.

    PubMed

    Sarrazin, Sandra Layse F; da Silva, Leomara Andrade; de Assunção, Ana Paula F; Oliveira, Ricardo B; Calao, Victor Y P; da Silva, Rodrigo; Stashenko, Elena E; Maia, José Guilherme S; Mourão, Rosa Helena V

    2015-01-23

    This study evaluated the influence of seasonal variation on the yield and composition of essential oil of Lippia origanoides occurring in the Middle Rio Amazonas, Brazil, and the impact on its antimicrobial potential. The average oil yield was 1.7% ± 0.2% in the rainy season and 1.6% ± 0.3% in the dry season. Some correlations with climatic parameters were observed. The major components were carvacrol (rainy, 43.5% ± 1.9%; dry, 41.4% ± 2.04%), thymol (rainy, 10.7% ± 1.1%; dry, 10.6% ± 0.9%), p-cymene (rainy, 9.8% ± 0.7%; dry, 10.0% ± 1.4%) and p-methoxythymol (rainy, 9.6% ± 0.8%; dry, 10.4% ± 1.4%). It was found that the antibacterial activity of L. origanoides against Staphylococcus aureus and Escherichia coli was little influenced by the changes in oil composition due to seasonal variation. Against S. aureus, the oil Minimum Inhibitory Concentration (MIC) value was 1.25 μL/mL over ten months. Against E. coli, the oil MIC values ranged from 0.15 μL/mL to 0.31 μL/mL in different months of the year. The Minimum Bactericidal Concentration (MBC) value was 2.5 μL/mL against S. aureus and 1.25 μL/mL against E. coli. The results suggest that the antimicrobial activity identified in the oil remain unchanged for the full year, allowing its medicinal use without any risk of loss or absence of the active principles of the plant.

  13. Preliminary phytochemical and antibacterial screening of Sesuvium portulacastrum in the United Arab Emirates.

    PubMed

    Al-Azzawi, Amad; Alguboori, Alyaa; Hachim, Mahmoud Y; Najat, M; Al Shaimaa, A; Sad, Maryam

    2012-10-01

    The present study describes the phytochemical profile and antimicrobial activity of Sesuvium portulacastrum. Three extracts of S. portulacastrum obtained by extraction in aqueous, ethanolic and dichloromethane solvents, respectively, were compared for their antimicrobial activity and ethanolic extract further subjected to gas chromatography-mass spectrometry (GC-MS) analysis to find out the nature of the compounds responsible for the antimicrobial activity. The antibacterial activities were assessed by measuring the diameter of the inhibition zones, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. Compared to the aqueous and dichloromethane extract, the ethanolic extract showed better antimicrobial activity against Staphylococcus aureus and E. coli, indicating its potential application related to noscomial infections. GC-MS results revealed 22, 23-Dihydrostigmasterol, Benzoic acid, 3,4,5-trihydroxy-(Gallic acid), (2R,3R)-(-)-Epicatechin and Capsaicin in the ethanolic extract to be the molecules responsible for the antimicrobial activity of S. portulacastrum. To the best of our knowledge, this is the first report on analysis of antimicrobial components from S. portulacastrum in United Arab Emirates (UAE), and our results confer the utility of this plant extract in developing a novel broad spectrum antimicrobial agent.

  14. Evaluation of the antimicrobial efficacy of Minthostachys verticillata essential oil and limonene against Streptococcus uberis strains isolated from bovine mastitis.

    PubMed

    Montironi, Ivana D; Cariddi, Laura N; Reinoso, Elina B

    Bovine mastitis is a disease that causes great economic losses per year, being Streptococcus uberis the main environmental pathogen involved. The aim of the present study was to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Minthostachys verticillata essential oil and limonene for S. uberis strains isolated from bovine mastitis. In addition, the effect of MIC on biofilm formation was analyzed. MIC values for the essential oil ranged from 14.3 to 114.5mg/ml (1.56-12.5%v/v) and MBC between 114.5 and 229mg/ml (12.5-25%v/v). MICs for limonene ranged from 3.3 to 52.5mg/ml (0.39-6.25%v/v) and MBC was 210mg/ml (25%v/v). Both compounds showed antibacterial activity and affected the biofilm formation of most of the strains tested. In conclusion, these compounds could be used as an alternative and/or complementary therapy for bovine mastitis caused by S. uberis. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Antibacterial activity, thermal stability and ab initio study of copolymer containing sulfobetaine and carboxybetaine groups

    NASA Astrophysics Data System (ADS)

    Tarannum, Nazia; Singh, Meenakshi; Yadav, Anil K.

    2017-10-01

    Here, we have explored the antibacterial activity, thermal stability and theoretical study of two copolymers that contain sulfobetaine and carboetaine moiety. Copolymers were synthesized based on Schiff base chemistry with generation of zwitterionic centres by nucleophilic addition of sultone/lactone. To predict and confirm the molecular structure of zwitterionic polyelectrolyte molecule, the theoretical study of structural features and other thermodynamic characteristics of copolymer constituents was obtained by ab initio calculations. Various parameters such as geometry optimization, energy calculations, frequency calculations and intrinsic reaction coefficient (IRC) are simulated using Hartree Fock (HF) method. The geometry optimizations are analyzed at HF/3-21 G default level of theory. The vibrational frequency is calculated via density functional theory (DFT)/B3LYP 6-31G*(d) level whose values are in accord with the experimental observed frequency. Both copolymers have been successfully assessed for antibacterial activity against Staphylococcus aureus and Pseudomonas aeuroginosa bacterial strains by disc diffusion method. The antibacterial study helped in evaluating zone of inhibition, minimum inhibitory concentration and minimum bactericidal concentration. Sulfobetaine copolymer is found to be more effective in curtailing the infection caused by bacteria as compared to carbobetaine.

  16. Antimicrobial and Antiproliferative Potential of Anadenanthera colubrina (Vell.) Brenan

    PubMed Central

    Lima, Rennaly de Freitas; Alves, Érika Ponchet; Rosalen, Pedro Luiz; Ruiz, Ana Lúcia Tasca Gois; Teixeira Duarte, Marta Cristina; Góes, Vivian Fernandes Furletti; de Medeiros, Ana Cláudia Dantas; Pereira, Jozinete Vieira; Godoy, Gustavo Pina; Melo de Brito Costa, Edja Maria

    2014-01-01

    The aim of the present study was to perform an in vitro analysis of the antimicrobial and antiproliferative potential of an extract from Anadenanthera colubrina (Vell.) Brenan (angico) and chemically characterize the crude extract. Antimicrobial action was evaluated based on the minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration, and the inhibition of formation to oral biofilm. Cell morphology was determined through scanning electron microscopy (SEM). Six strains of tumor cells were used for the determination of antiproliferative potential. The extract demonstrated strong antifungal activity against Candida albicans ATCC 18804 (MIC = 0.031 mg/mL), with similar activity found regarding the ethyl acetate fraction. The extract and active fraction also demonstrated the capacity to inhibit the formation of Candida albicans to oral biofilm after 48 hours, with median values equal to or greater than the control group, but the difference did not achieve statistical significance (P > 0.05). SEM revealed alterations in the cell morphology of the yeast. Regarding antiproliferative activity, the extract demonstrated cytostatic potential in all strains tested. The present findings suggest strong antifungal potential for Anadenanthera colubrina (Vell.) Brenan as well as a tendency toward diminishing the growth of human tumor cells. PMID:25093029

  17. Andrographolide: antibacterial activity against common bacteria of human health concern and possible mechanism of action.

    PubMed

    Banerjee, Malabika; Parai, Debaprasad; Chattopadhyay, Subrata; Mukherjee, Samir Kumar

    2017-05-01

    Increasing bacterial resistance to common drugs is a major public health concern for the treatment of infectious diseases. Certain naturally occurring compounds of plant sources have long been reported to possess potential antimicrobial activity. This study was aimed to investigate the antibacterial activity and possible mechanism of action of andrographolide (Andro), a diterpenoid lactone from a traditional medicinal herb Andrographis paniculata. Extent of antibacterial action was assessed by minimal bactericidal concentration method. Radiolabeled N-acetyl glucosamine, leucine, thymidine, and uridine were used to determine the effect of Andro on the biosyntheses of cell wall, protein, DNA, and RNA, respectively. In addition, anti-biofilm potential of this compound was also tested. Andro showed potential antibacterial activity against most of the tested Gram-positive bacteria. Among those, Staphylococcus aureus was found to be most sensitive with a minimal inhibitory concentration value of 100 μg/mL. It was found to be bacteriostatic. Specific inhibition of intracellular DNA biosynthesis was observed in a dose-dependent manner in S. aureus. Andro mediated inhibition of biofilm formation by S. aureus was also found. Considering its antimicrobial potency, Andro might be accounted as a promising lead for new antibacterial drug development.

  18. Ag/CuO nanoparticles prepared from a novel trinuclear compound [Cu(Imdz)4(Ag(CN)2)2] (Imdz = imidazole) by a pyrolysis display excellent antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Adhikary, Jaydeep; Das, Balaram; Chatterjee, Sourav; Dash, Sandeep Kumar; Chattopadhyay, Sourav; Roy, Somenath; Chen, Jeng-Wei; Chattopadhyay, Tanmay

    2016-06-01

    One copper and two silver containing one hetero tri-nuclear precursor compound [Cu(Imdz)4(Ag(CN)2)2] (1) (Imdz = Imidazole) has been synthesized and characterized by single crystal X-ray diffraction. Simple pyrolysis of the complex at 550 °C for 4 h afforded Ag/CuO nanoparticles (NPs). The synthesized nanoparticles were characterized by ultraviolet-visible (UV-Vis), Fourier transform infrared (FT-IR), X-ray powder diffraction (XRPD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photo electron spectroscopy (XPS). Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) have been employed as model microbial species to study the anti-microbial activity of the synthesized NPs. The NPs showed potent anti-microbial activity evidenced from the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values. Very high level of cell uptake and then generation of reactive oxygen species (ROS) are the origin of such strong antimicrobial activity for the NPs. However, the cytotoxicity level of the NPs towards normal human cell is very low.

  19. In vitro activity of chloramphenicol, florfenicol and enrofloxacin against Chlamydia pecorum isolated from koalas (Phascolarctos cinereus).

    PubMed

    Black, L A; Higgins, D P; Govendir, M

    2015-11-01

    To determine the in vitro susceptibilities of koala isolates of Chlamydia pecorum to enrofloxacin and chloramphenicol, which are frequently used to treat koalas with chlamydiosis, and florfenicol, a derivative of chloramphenicol. The in vitro susceptibilities were determined by culturing three stored isolates and seven clinical swabs of C. pecorum. Susceptibility testing was undertaken using cycloheximide-treated buffalo green monkey kidney cells in 96 well microtitre plates. The minimum inhibitory concentrations (MICs) for all isolates were 0.25-0.50 µg/mL (enrofloxacin), 1-2 µg/mL (chloramphenicol), and 1-2 µg/mL (florfenicol). Minimum bactericidal concentration (MBC) values for five isolates were also determined and were within one two-fold dilution of MICs. The MICs and MBCs of these antimicrobials were within ranges previously reported for other chlamydial species. When combined with previously published pharmacokinetic data, the in vitro susceptibility results support chloramphenicol as a more appropriate treatment option than enrofloxacin for koalas with chlamydiosis. The susceptibility results also indicate florfenicol may be an appropriate treatment option for koalas with chlamydiosis, warranting further investigation. © 2015 Australian Veterinary Association.

  20. Comparative Inactivation of Murine Norovirus and MS2 Bacteriophage by Peracetic Acid and Monochloramine in Municipal Secondary Wastewater Effluent.

    PubMed

    Dunkin, Nathan; Weng, ShihChi; Schwab, Kellogg J; McQuarrie, James; Bell, Kati; Jacangelo, Joseph G

    2017-03-07

    Chlorination has long been used for disinfection of municipal wastewater (MWW) effluent while the use peracetic acid (PAA) has been proposed more recently in the United States. Previous work has demonstrated the bactericidal effectiveness of PAA and monochloramine in wastewater, but limited information is available for viruses, especially ones of mammalian origin (e.g., norovirus). Therefore, a comparative assessment was performed of the virucidal efficacy of PAA and monochloramine against murine norovirus (MNV) and MS2 bacteriophage in secondary effluent MWW and phosphate buffer (PB). A suite of inactivation kinetic models was fit to the viral inactivation data. Predicted concentration-time (CT) values for 1-log 10 MS2 reduction by PAA and monochloramine in MWW were 1254 and 1228 mg-min/L, respectively. The 1-, 2-, and 3-log 10 model predicted CT values for MNV viral reduction in MWW were 32, 47, and 69 mg-min/L for PAA and 6, 13, and 28 mg-min/L for monochloramine, respectively. Wastewater treatment plant disinfection practices informed by MS2 inactivation data will likely be protective for public health but may overestimate CT values for reduction of MNV. Additionally, equivalent CT values in PB resulted in greater viral reduction which indicate that viral inactivation data in laboratory grade water may not be generalizable to MWW applications.

  1. Silver ion bactericide system. [for Space Shuttle Orbiter potable water

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1974-01-01

    Description of a preliminary flight prototype system which uses silver ions as the bactericide to preserve sterility of the water used for human consumption and hygiene in the Space Shuttle Orbiter. The performance of silver halide columns for passively dosing fuel cell water with silver ions is evaluated. Tests under simulated Orbiter mission conditions show that silver ion doses of 0.05 ppm are bactericidal for Pseudomonas aeruginosa and Type IIIa, the two bacteria found in Apollo potable water systems. The design of the Advance Prototype Silver Ion Water Bactericide System now under development is discussed.

  2. Antimicrobial 2-hydroxyisocaproic acid and chlorhexidine resist inactivation by dentine.

    PubMed

    Sakko, M; Tjäderhane, L; Sorsa, T; Hietala, P; Rautemaa, R

    2016-04-01

    To compare the antibacterial activity of 2-hydroxyisocaproic acid (HICA) with currently used root canal medicaments and to examine their interactions with potential inhibitors in nutrient-deficient and nutrient-rich conditions. First, the antibacterial activity of single concentrations of HICA, calcium hydroxide solution or slurry, chlorhexidine digluconate or acetate was tested against Enterococcus faecalis with and without potential inhibitors: dentine powder (DP), hydroxyapatite or bovine serum albumin, in a low concentration of peptone water. Relative viable counts were determined by culture at 1, 24 and 48 h. In the second set of experiments, the activity of three concentrations of HICA was evaluated against two isolates of E. faecalis with and without potential inhibitors in nutrient-rich thioglycollate broth using a modification of a standard microdilution method. The minimum bactericidal concentration was determined by culture at 1, 24 and 48 h. Concentrations of ≥33 mg mL(-1) of HICA were found to be bactericidal against E. faecalis in both nutrient-deficient and nutrient-rich environments at 24- to 48-h incubation, whereas the initial activity of Ca(OH)2 slurry was lost at 48-h incubation. HICA tolerated well all tested potential inhibitors up to 19 mg mL(-1) . DP concentrations higher than this inhibited its activity in a dose-dependent manner in both environments. DP demonstrated moderate antibacterial activity, and it enhanced the otherwise limited activity of Ca(OH)2 slurry and solution. DP did not impact on the activity of chlorhexidine. These results support the long-term antibacterial activity of HICA and indicate its tolerance to clinically relevant concentrations of dentine and other inhibitors commonly present in the root canal system. Therefore, HICA may have potential as an interappointment medication in the treatment of root canal infections. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. THE BACTERICIDAL ACTIVITY OF NORMAL GUINEA PIG SERUM AGAINST LISTERIA MONOCYTOGENES AND ITS INHIBITION BY A LISTERIAL CELL EXTRACT,

    DTIC Science & Technology

    Normal guinea pig serum contains bactericidins active against Listeria monocytogenes. The listeriocidal activity of the serum did not increase after...factor. Lysozyme was not implicated in the bactericidal system. It was suggested that the bactericidal activity of guinea pig serum might be due either to

  4. Antibacterial activity of the lactoperoxidase system combined with edible Laminaria hot-water extract as a source of halide ions.

    PubMed

    Shin, Kouichirou; Nakano, Manabu; Yamauchi, Koji; Toida, Tomohiro; Iwatsuki, Keiji

    2012-01-01

    Hot-water extracts prepared from nine out of 12 samples of dried edible Laminaria reduced the viable numbers of Aggregatibacter actinomycetemcomitans, Staphylococcus aureus, and Esherichia coli below the detection limit after incubation for 5 min when combined with lactoperoxidase, glucose oxidase, and glucose. Some extracts showed higher bactericidal activity and a higher OI(-) concentration in the assay mixture after ultrafiltration.

  5. The Influence of Interfering Substances on the Antimicrobial Activity of Selected Quaternary Ammonium Compounds

    PubMed Central

    Araújo, Paula A.; Lemos, Madalena; Mergulhão, Filipe; Melo, Luís; Simões, Manuel

    2013-01-01

    Standard cleaning processes may not remove all the soiling typically found in food industry, such as carbohydrates, fats, or proteins. Contaminants have a high impact in disinfection as their presence may reduce the activity of disinfectants. The influence of alginic acid, bovine serum albumin, yeast extract, and humic acids was assessed on the antimicrobial activities of benzalkonium chloride and cetyltrimethyl ammonium bromide against Bacillus cereus vegetative cells and Pseudomonas fluorescens. The bacteria (single and consortium) were exposed to surfactants (single and combined) in the absence and presence of potential disinfection interfering substances. The antimicrobial effects of the surfactants were assessed based on the bacterial respiratory activity measured by oxygen uptake rate due to glucose oxidation. The tested surfactants were efficient against both bacteria (single and consortium) with minimum bactericidal concentrations ranging from 3 to 35 mg·L−1. The strongest effect was caused by humic acids that severely quenched antimicrobial action, increasing the minimum bactericidal concentration of the surfactants on P. fluorescens and the consortium. The inclusion of the other interfering substances resulted in mild interferences in the antibacterial activity. This study clearly demonstrates that humic acids should be considered as an antimicrobial interfering substance in the development of disinfection strategies. PMID:26904590

  6. Bioactive packaging using antioxidant extracts for the prevention of microbial food-spoilage.

    PubMed

    Moreira, Diana; Gullón, Beatriz; Gullón, Patricia; Gomes, Ana; Tavaria, Freni

    2016-07-13

    Bioactive food packaging is an innovative approach for the prevention of the growth of food-spoilage microorganisms. Four active extracts from agroindustrial subproducts (Eucalyptus wood, almond shells, corn cobs and grape pomace) with demonstrated antioxidant activity have been investigated for bestowing antimicrobial activity to bioactive packaging. To carry out this evaluation, the antioxidant extracts were tested against five food pathogenic bacteria, namely, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus and Salmonella spp. The results obtained showed that all the tested extracts inhibited the growth of all five pathogenic bacteria. From the analysis of the minimal bactericidal concentrations (MBCs), the Eucalyptus wood extract was the most active, being necessary only 2% (v/v) to inhibit Pseudomonas aeruginosa, Listeria monocytogenes, and Staphylococcus aureus, whereas almond shells extract were less active requiring 4% (w/v) to inhibit the growth of Escherichia coli and Pseudomonas aeruginosa and the extract from corn cobs was bactericidal against Escherichia coli and Staphylococcus aureus at a concentration of 4% (w/v). After checking their antimicrobial activity, the antioxidant extracts have been incorporated into sodium alginate films and the maintenance of their antimicrobial properties was confirmed. This work showed that the antioxidant extracts from agroindustrial byproducts exhibited antimicrobial activity and were suitable for incorporation into edible films that could be used in bioactive packaging systems.

  7. Auranofin-loaded nanoparticles as a new therapeutic tool to fight streptococcal infections.

    PubMed

    Díez-Martínez, Roberto; García-Fernández, Esther; Manzano, Miguel; Martínez, Ángel; Domenech, Mirian; Vallet-Regí, María; García, Pedro

    2016-01-18

    Drug-loaded nanoparticles (NPs) can improve infection treatment by ensuring drug concentration at the right place within the therapeutic window. Poly(lactic-co-glycolic acid) (PLGA) NPs are able to enhance drug localization in target site and to sustainably release the entrapped molecule, reducing the secondary effects caused by systemic antibiotic administration. We have loaded auranofin, a gold compound traditionally used for treatment of rheumatoid arthritis, into PLGA NPs and their efficiency as antibacterial agent against two Gram-positive pathogens, Streptococcus pneumoniae and Streptococcus pyogenes was evaluated. Auranofin-PLGA NPs showed a strong bactericidal effect as cultures of multiresistant pneumococcal strains were practically sterilized after 6 h of treatment with such auranofin-NPs at 0.25 μM. Moreover, this potent bactericidal effect was also observed in S. pneumoniae and S. pyogenes biofilms, where the same concentration of auranofin-NPs was capable of decreasing the bacterial population about 4 logs more than free auranofin. These results were validated using a zebrafish embryo model demonstrating that treatment with auranofin loaded into NPs achieved a noticeable survival against pneumococcal infections. All these approaches displayed a clear superiority of loaded auranofin PLGA nanocarriers compared to free administration of the drug, which supports their potential application for the treatment of streptococcal infections.

  8. Electrochemical inactivation kinetics of boron-doped diamond electrode on waterborne pathogens.

    PubMed

    Yao, Yanyan; Kubota, Yoshinobu; Murakami, Taketoshi; Ochiai, Tsuyoshi; Ishiguro, Hitoshi; Nakata, Kazuya; Fujishima, Akira

    2011-09-01

    A boron-doped diamond (BDD) electrode was constructed as a water disinfector for the inactivation of water borne pathogens. The bactericidal effect of the disinfector was evaluated on artificially contaminated waters containing, respectively, Escherichia coli, Pseudomonas aeruginosa and Legionella pneumophila at high density. By treating the bacterial suspensions with 4 V of constant voltage between the BDD and the counter-electrode for 50 min, the population of E. coli and P. aeruginosa decreased from (10E + 7-8 colony-forming unit mL(-1)) to below the detection limits of the colony-formation method. Meanwhile, L. pneumophila were reduced to virtually zero when analyzed by fluorescence-based staining. The influences of production parameters (voltage, NaCl concentration and flow rate) on the disinfection kinetics of the BDD disinfector were examined with respect to operational conditions. Voltage was the most significant factor for adjusting the extent of electrolysis, followed by NaCl concentration and flow rate, to influence the disinfection efficiency. The disinfection of natural river water samples containing numerous microbes was performed for a practicability investigation of the BDD electrode. Approximately 99.99% bactericidal efficiency was confirmed by viability detection for E. coli and common germs in treated water. The results showed that the BDD electrode is a promising tool for various wastewater disinfections to combat waterborne diseases.

  9. Bacteria, biofilm and honey: a study of the effects of honey on 'planktonic' and biofilm-embedded chronic wound bacteria.

    PubMed

    Merckoll, Patricia; Jonassen, Tom Øystein; Vad, Marie Elisabeth; Jeansson, Stig L; Melby, Kjetil K

    2009-01-01

    Chronically infected wounds are a costly source of suffering. An important factor in the failure of a sore to heal is the presence of multiple species of bacteria, living cooperatively in highly organized biofilms. The biofilm protects the bacteria from antibiotic therapy and the patient's immune response. Honey has been used as a wound treatment for millennia. The components responsible for its antibacterial properties are now being elucidated. The study aimed to determine the effects of different concentrations of 'Medihoney' therapeutic honey and Norwegian Forest Honey 1) on the real-time growth of typical chronic wound bacteria; 2) on biofilm formation; and 3) on the same bacteria already embedded in biofilm. Reference strains of MRSE, MRSA, ESBL Klebsiella pneumoniae and Pseudomonas aeruginosa were incubated with dilution series of the honeys in microtitre plates for 20 h. Growth of the bacteria was assessed by measuring optical density every 10 min. Growth curves, biofilm formation and minimum bactericidal concentrations are presented. Both honeys were bactericidal against all the strains of bacteria. Biofilm was penetrated by biocidal substances in honey. Reintroduction of honey as a conventional wound treatment may help improve individual wound care, prevent invasive infections, eliminate colonization, interrupt outbreaks and thereby preserve current antibiotic stocks.

  10. Antimicrobial activity and synergy of antibiotics with two biphenyl compounds, protosappanins A and B from Sappan Lignum against methicillin-resistant Staphylococcus aureus strains.

    PubMed

    Zuo, Guo-Ying; Han, Zong-Qi; Han, Jun; Hao, Xiao-Yan; Tang, Hua-Shu; Wang, Gen-Chun

    2015-10-01

    This study aims to investigate antimicrobial ingredients from Sappan Lignum and to evaluate their synergy on methicillin-resistant Staphylococcus aureus strains with antibiotics. Bioactivity-guided phytochemical procedures were used to screen the active compounds. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were assayed by broth microdilution. The synergy was evaluated through checkerboard microdilution and loss of viability assays. Protosappanins A (PsA) and B (PsB) were identified from Sappan Lignum extracts. They showed active against both S. aureus and MRSA with MIC or MIC50 at 64 (PsA) and 128 (PsB) mg/L alone. When they were used in combination with antibiotics, they showed best synergy with amikacin and gentamicin with MIC50 (mg/L) of amikacin reduced more significantly from 32 to four (with PsA) and eight (with PsB), and the fractional inhibitory concentration index (FICI) ranged between 0.078 and 0.500 (FICI50  = 0.375). Moreover, the resistance of MRSA towards amikacin and gentamicin could be reversed by the Clinical and Laboratory Standards Institute criteria. The combined bactericidal mode could as well be synergy. PsA and PsB showed very low cytotoxicity in comparison with their promising activity against MRSA. Protosappanins A and B showed both alone activities and resistance reversal effects of amikacin and gentamicin against MRSA, which warrant further investigations for potential combinatory therapy of MRSA infection. © 2015 Royal Pharmaceutical Society.

  11. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains

    PubMed Central

    Kim, Nam Hee

    2015-01-01

    The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA. PMID:26637600

  12. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains.

    PubMed

    Kim, Nam Hee; Rhee, Min Suk

    2016-02-15

    The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Antimicrobial flavonoids from Tridax procumbens.

    PubMed

    Jindal, Alka; Kumar, Padma

    2012-01-01

    Callus culture of Tridax procumbens has been established on Murashige and Skoog's medium supplemented with NAA and BAP from nodal segments. Free and bound flavonoids were extracted from 2, 4, 6 and 8 weeks old calli by a well-established method. These free flavonoids were then screened against Staphylococcus aureus (bacteria) and Candida albicans (yeast) for their antimicrobial potential. Minimum inhibitory concentration, minimum bactericidal/fungicidal concentrations and total activity were also evaluated. Apigenin, quercetin and kaempferol were identified from free flavonoids of 4 weeks old callus (most active) through, thin layer chromatography, (TLC) preparative TLC, MP and IR spectral studies.

  14. Subtle Variations in Surface Properties of Black Silicon Surfaces Influence the Degree of Bactericidal Efficiency

    NASA Astrophysics Data System (ADS)

    Bhadra, Chris M.; Werner, Marco; Baulin, Vladimir A.; Truong Khanh, Vi; Kobaisi, Mohammad Al; Nguyen, Song Ha; Balcytis, Armandas; Juodkazis, Saulius; Wang, James Y.; Mainwaring, David E.; Crawford, Russell J.; Ivanova, Elena P.

    2018-06-01

    One of the major challenges faced by the biomedical industry is the development of robust synthetic surfaces that can resist bacterial colonization. Much inspiration has been drawn recently from naturally occurring mechano-bactericidal surfaces such as the wings of cicada ( Psaltoda claripennis) and dragonfly ( Diplacodes bipunctata) species in fabricating their synthetic analogs. However, the bactericidal activity of nanostructured surfaces is observed in a particular range of parameters reflecting the geometry of nanostructures and surface wettability. Here, several of the nanometer-scale characteristics of black silicon (bSi) surfaces including the density and height of the nanopillars that have the potential to influence the bactericidal efficiency of these nanostructured surfaces have been investigated. The results provide important evidence that minor variations in the nanoarchitecture of substrata can substantially alter their performance as bactericidal surfaces.[Figure not available: see fulltext.

  15. Efficient synthesis of new 2,3-dihydrooxazole-spirooxindoles hybrids as antimicrobial agents.

    PubMed

    Tiwari, Shailendra; Pathak, Poonam; Sagar, Ram

    2016-05-15

    Two series of new 2,3-dihydrooxazole-spirooxindole derivatives were efficiently synthesized starting from N'-(2-oxoindolin-3-ylidene) benzohydrazide/N'-(2-oxoindolin-3-ylidene)-2-phenoxyacetohydrazide using designed synthetic route. Newly synthesized 2,3-dihydrooxazole-spirooxindole derivatives were screened for their antibacterial and antifungal activity against different pathogenic strain of bacteria and fungi. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) were determined for the test compounds as well as for reference standards. Compounds 4e, 4g, 7g have shown good antibacterial activity whereas compounds 4f, 7b, 7d have displayed better antifungal activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The germicidal effect of the open air in different parts of The Netherlands.

    PubMed Central

    de Mik, G.; de Groot, I.

    1977-01-01

    Using the microthread technique the survival of Escherichia coli MRE 162 in open air was measured in different parts of The Netherlands. The presence of bactericidal compounds (open air factor = OAF) could be demonstrated on several days and quantitated in relative units of OAF concentration. In the absence of ozone the OAF concentration was always low. In the presence of ozone the OAF concentration was dependent on wind direction. At the selected microthread exposure sites air from areas with high traffic intensity contributed more to OAF production than air from industrial areas. OAF production is probably related to the nature of hydrocarbons in the air. Images Fig. 4 Fig. 5 PMID:321676

  17. Efficacy of amoxycillin-clavulanate in an experimental model of murine pneumonia caused by AmpC-non-hyperproducing clinical isolates of Escherichia coli resistant to cefoxitin.

    PubMed

    Docobo-Pérez, F; Fernández-Cuenca, F; Pachón-Ibáñez, M E; Pascual, A; Pichardo, C; Martínez-Martínez, L; Pachón, J

    2008-06-01

    The algorithms included in most automated systems used for antimicrobial susceptibility testing (e.g., Vitek 2) consider that Escherichia coli isolates resistant to cefoxitin are AmpC-hyperproducers and, consequently, resistant also to amoxycillin-clavulanate. However, a recent study revealed that 30% of E. coli clinical isolates resistant to cefoxitin remained susceptible in vitro to amoxycillin-clavulanate. The aim of the present study was to evaluate the in-vivo efficacy of amoxycillin-clavulanate in the treatment of an experimental model of pneumonia, using two clonally related isolates (with identical repetitive extragenic palindromic sequence (REP)-PCR patterns) of AmpC-non-hyperproducing and OmpF-lacking E. coli (Ec985 and Ec571) that were resistant to cefoxitin and susceptible to cefotaxime and amoxycillin-clavulanate. MICs were determined using a microdilution technique, and in-vitro bactericidal activity was tested using time-kill assays. The in-vivo efficacy of amoxycillin, amoxycillin-clavulanate and cefotaxime against both isolates was tested in a murine pneumonia model using immunocompetent C57BL/6 mice. Ec571 (a TEM-1/2 producer) was resistant to amoxycillin, whereas Ec985 (a TEM-1/2 non-producer) was susceptible. Amoxycillin, amoxycillin-clavulanate and cefotaxime were bactericidal for Ec985, and amoxycillin-clavulanate and cefotaxime were bactericidal for Ec571 at different concentrations and time-points, as determined using time-kill assays. Treatment with amoxycillin, amoxycillin-clavulanate and cefotaxime reduced the bacterial lung concentration of Ec985 compared with non-treated controls (p <0.05), whereas amoxycillin-clavulanate and cefotaxime showed efficacy against Ec571 when compared with the control and amoxycillin groups (p <0.05). Regardless of the exact underlying mechanism(s) of resistance, amoxycillin-clavulanate was effective in the experimental murine model in the treatment of pneumonia caused by AmpC-non-hyperproducing strains of E. coli resistant to cefoxitin.

  18. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding.

    PubMed

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2011-09-01

    Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.

  19. Systemic hypoxia enhances exercise-mediated bactericidal and subsequent apoptotic responses in human neutrophils.

    PubMed

    Wang, Jong-Shyan; Chiu, Ya-Ting

    2009-10-01

    Phagocytosis and oxidative burst are critical host defense mechanisms in which neutrophils clear invading pathogens. Clearing phagocytic neutrophils by triggering apoptosis is an essential process for controlling inflammation. This study elucidates how various exercise bouts with/without hypoxia affected neutrophil bactericidal activity and subsequent apoptosis in humans. Fifteen sedentary males performed six distinct experimental tests in an air-conditioned normobaric hypoxia chamber: two normoxic exercises [strenuous exercise (SE; up to maximal O2 consumption) and moderate exercise (ME; 50% maximal O2 consumption for 30 min) while exposed to 21% O2], two hypoxic exercises (ME for 30 min while exposed to 12% and 15% O2), and two hypoxic exposures (resting for 30 min while exposed to 12% and 15% O2). The results showed that 1) plasma complement-C3a desArg/C4a desArg/C5a concentrations were increased, 2) expressions of L-selectin/lymphocyte functin-associated antigen-1/Mac-1/C5aR on neutrophils were enhanced, 3) phagocytosis of neutrophils to Esherichia coli and release of neutrophil oxidant products by E. coli were elevated, and 4) E. coli-induced phosphotidylserine exposure or caspase-3 activation of neutrophils were promoted immediately and 2 h after both 12% O2 exposure at rest and with ME as well as normoxic SE. Although neither normoxic ME nor breathing 15% O2 at rest influenced these complement- and neutrophil-related immune responses, ME at both 12% and 15% O2 resulted in enhanced complement activation in the blood, expressions of opsonic/complement receptors on neutrophils, or the bactericidal activity and apoptosis of neutrophils. Moreover, the increased neutrophil oxidant production and apoptosis by normoxic SE and hypoxic ME were ameliorated by treating neutrophils with diphenylene iodonium (a NADPH oxidase inhibitor). Therefore, we conclude that ME at 12-15% O2 enhances bactericidal capacity and facilitates the subsequent apoptosis of neutrophils.

  20. Effect of food processing organic matter on photocatalytic bactericidal activity of titanium dioxide (TiO2).

    PubMed

    Yemmireddy, Veerachandra K; Hung, Yen-Con

    2015-07-02

    The purpose of this study was to determine the effect of food processing organic matter on photocatalytic bactericidal activity of titanium dioxide (TiO2) nanoparticles (NPs). Produce and meat processing wash solutions were prepared using romaine lettuce and ground beef samples. Physico-chemical properties such as pH, turbidity, chemical oxygen demand (COD), total phenolics (for produce) and protein (for meat) content of the extracts were determined using standard procedures. The photocatalytic bactericidal activity of TiO2 (1 mg/mL) in suspension with or without organic matter against Escherichia coli O157:H7 (5-strain) was determined over a period of 3h. Increasing the concentration of organic matter (either produce or meat) from 0% to 100% resulted in 85% decrease in TiO2 microbicidal efficacy. 'Turbidity, total phenolics, and protein contents in wash solutions had significant effect on the log reduction. Increasing the total phenolics content in produce washes from 20 to 114 mg/L decreased the log reduction from 2.7 to 0.38 CFU/mL, whereas increasing the protein content in meat washes from 0.12 to 1.61 mg/L decreased the log reduction from and 5.74 to 0.87 CFU/mL. Also, a linear correlation was observed between COD and total phenolics as well as COD and protein contents. While classical disinfection kinetic models failed to predict, an empirical equation in the form of "Y=me(nX)" (where Y is log reduction, X is COD, and m and n are reaction rate constants) predicted the disinfection kinetics of TiO2 in the presence of organic matter (R(2)=94.4). This study successfully identified an empirical model with COD as a predictor variable to predict the bactericidal efficacy of TiO2 when used in food processing environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Preparation of bio-deep eutectic solvent triggered cephalopod shaped silver chloride-DNA hybrid material having antibacterial and bactericidal activity.

    PubMed

    Bhatt, Jitkumar; Mondal, Dibyendu; Bhojani, Gopal; Chatterjee, Shruti; Prasad, Kamalesh

    2015-11-01

    2.5% w/w DNA (Salmon testes) was solubilized in a bio-deep eutectic solvent [(bio-DES), obtained by the complexation of choline chloride and ethylene glycol at 1:2 molar ratio] containing 1% w/w of silver chloride (AgCl) to yield a AgCl decorated DNA based hybrid material. Concentration dependent formation of AgCl crystals in the DES was observed and upon interaction with DNA it gave formation of a cephalopod shaped hybrid material. DNA was found to maintain its chemical and structural stability in the material. Further, AgCl microstructures were found to have orderly self assembled on the DNA helices indicating the electrostatic interaction between Ag(+) and phosphate side chain of DNA as a driving force for the formation of the material with ordered microstructural distribution of AgCl. Furthermore, the functionalized material exhibited excellent antibacterial and bactericidal activity against both Gram negative and Gram positive pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium

    NASA Astrophysics Data System (ADS)

    Alshareef, A.; Laird, K.; Cross, R. B. M.

    2017-12-01

    Silver nanoparticles (AgNPs) have been shown to exhibit strong antibacterial activity against both Gram-positive bacteria and Gram-negative bacteria including antibiotic resistant strains. This study aims to compare the bactericidal effect of different shaped AgNPs (spherical and truncated octahedral) against Escherichia coli and Enterococcus faecium. The antimicrobial activity of a range of concentrations (50, 100, 1000 μg/ml) was determined over 24 h using both optical density and viable counts. Truncated octahedral AgNPs (AgNOct) were found to be more active when compared with spherical AgNPs (AgNS). The difference in shape resulted in differences in efficacy which may be due to the higher surface area of AgNOct compared to AgNS, and differences in active facets and surface energies, with AgNPs having a bacteriostatic effect and AgNOct being bactericidal after 4 h. The results suggest that AgNPs can be used as effective growth inhibitors in different microorganisms, rendering them applicable to various medical devices and antimicrobial control systems.

  3. Surface plasmon resonance-induced photoactivation of gold nanoparticles as bactericidal agents against methicillin-resistant Staphylococcus aureus

    PubMed Central

    Mocan, Lucian; Ilie, Ioana; Matea, Cristian; Tabaran, Flaviu; Kalman, Ersjebet; Iancu, Cornel; Mocan, Teodora

    2014-01-01

    Systemic infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and other bacteria are responsible for millions of deaths worldwide, and much of this mortality is due to the rise of antibiotic-resistant organisms as a result of natural selection. Gold nanoparticles synthesized using the standard wet chemical procedure were photoexcited using an 808 nm 2 W laser diode and further administered to MRSA bacteria. Flow cytometry, transmission electron microscopy, contrast phase microscopy, and fluorescence microscopy combined with immunochemical staining were used to examine the interaction of the photoexcited gold nano-particles with MRSA bacteria. We show here that phonon–phonon interactions following laser photoexcitation of gold nanoparticles exhibit increased MRSA necrotic rates at low concentrations and short incubation times compared with MRSA treated with gold nanoparticles alone. These unique data may represent a step forward in the study of bactericidal effects of various nanomaterials, with applications in biology and medicine. PMID:24711697

  4. Antimicrobial potential of flavoring ingredients against Bacillus cereus in a milk-based beverage.

    PubMed

    Pina-Pérez, Maria C; Rodrigo, Dolores; Martínez-López, Antonio

    2013-11-01

    Natural ingredients--cinnamon, cocoa, vanilla, and anise--were assessed based on Bacillus cereus vegetative cell growth inhibition in a mixed liquid whole egg and skim milk beverage (LWE-SM), under different conditions: ingredient concentration (1, 2.5, and 5% [wt/vol]) and incubation temperature (5, 10, and 22 °C). According to the results obtained, ingredients significantly (p<0.05) reduced bacterial growth when supplementing the LWE-SM beverage. B. cereus behavior was mathematically described for each substrate by means of a modified Gompertz equation. Kinetic parameters, lag time, and maximum specific growth rate were obtained. Cinnamon was the most bacteriostatic ingredient and cocoa the most bactericidal one when they were added at 5% (wt/vol) and beverages were incubated at 5 °C. The bactericidal effect of cocoa 5% (wt/vol) reduced final B. cereus log10 counts (log Nf, log10 (colony-forming units/mL)) by 4.10 ± 0.21 log10 cycles at 5 °C.

  5. Development of device producing electrolyzed water for home care

    NASA Astrophysics Data System (ADS)

    Umimoto, K.; Nagata, S.; Yanagida, J.

    2013-06-01

    When water containing ionic substances is electrolyzed, electrolyzed water with strong bactericidal ability due to the available chlorine(AC) is generated on the anode side. Slightly acidic to neutral electrolyzed water (pH 6.5 to 7.5) is physiological pH and is suitable for biological applications. For producing slightly acidic to neutral electrolyzed water simply, a vertical-type electrolytic tank with an asymmetric structure was made. As a result, a small amount of strongly alkaline water was generated in the upper cathodic small chamber, and a large amount of weakly acidic water generated in the lower anodic large chamber. The pH and AC concentration in solutin mixed with both electrolyzed water were 6.3 and 39.5 ppm, respectively, This solution was slightly acidic to neutral electrolyzed water and had strong bactericidal activity. This device is useful for producing slightly acidic to neutral electrolyzed water as a disinfectant to employ at home care, when considering economic and environmental factors, since it returns to ordinary water after use.

  6. Bactericidal efficacy of glycine-type amphoteric surfactant as a denture cleaner and its influence on properties of denture base resins.

    PubMed

    Hashiguchi, Makiko; Nishi, Yasuhiro; Kanie, Takahito; Ban, Seiji; Nagaoka, Eiichi

    2009-05-01

    The bactericidal efficacy of 1.00-4.50% glycine-type amphoteric surfactant (Gly) was evaluated by measuring its microorganism removal rate in denture plaque. Physical and mechanical properties such as surface roughness, color difference, and bending strength of two different denture base resins were determined before and after cleaning in Gly solutions, a commercial denture cleaner, and tap water. The microorganism removal rates of all the Gly solutions were higher than those of a commercial enzymatic denture cleaner (Polident) (p>0.05). The removal rate of Candida spp. by Polident was not significantly different from the removal rate using water. Changes in the surface roughness and color difference among the specimens were slight. There were no significant differences in the bending strengths of the two resins for all concentrations of Gly solution (p>0.05). These results suggested that glycine-type amphoteric surfactant solution may be effective as a denture cleaner in conjunction with an ultrasonic cleaning device.

  7. Bactericidal activity of biomimetic diamond nanocone surfaces.

    PubMed

    Fisher, Leanne E; Yang, Yang; Yuen, Muk-Fung; Zhang, Wenjun; Nobbs, Angela H; Su, Bo

    2016-03-17

    The formation of biofilms on implant surfaces and the subsequent development of medical device-associated infections are difficult to resolve and can cause considerable morbidity to the patient. Over the past decade, there has been growing recognition that physical cues, such as surface topography, can regulate biological responses and possess bactericidal activity. In this study, diamond nanocone-patterned surfaces, representing biomimetic analogs of the naturally bactericidal cicada fly wing, were fabricated using microwave plasma chemical vapor deposition, followed by bias-assisted reactive ion etching. Two structurally distinct nanocone surfaces were produced, characterized, and the bactericidal ability examined. The sharp diamond nanocone features were found to have bactericidal capabilities with the surface possessing the more varying cone dimension, nonuniform array, and decreased density, showing enhanced bactericidal ability over the more uniform, highly dense nanocone surface. Future research will focus on using the fabrication process to tailor surface nanotopographies on clinically relevant materials that promote both effective killing of a broader range of microorganisms and the desired mammalian cell response. This study serves to introduce a technology that may launch a new and innovative direction in the design of biomaterials with capacity to reduce the risk of medical device-associated infections.

  8. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells.

    PubMed

    Kalghatgi, Sameer; Spina, Catherine S; Costello, James C; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S; Collins, James J

    2013-07-03

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics-quinolones, aminoglycosides, and β-lactams-cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic-induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-l-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people.

  9. Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells

    PubMed Central

    Costello, James C.; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S.; Collins, James J.

    2013-01-01

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics—quinolones, aminoglycosides, and β-lactams—cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic–induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-L-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people. PMID:23825301

  10. A comparison of bactericidal/permeability-increasing protein variant versus recombinant endotoxin-neutralizing protein for the treatment of Escherichia coli sepsis in rats .

    PubMed

    Stack, A M; Saladino, R A; Siber, G R; Thompson, C; Marra, M N; Novitsky, T J; Fleisher, G R

    1997-01-01

    To compare a recombinant bactericidal/permeability-increasing protein variant and a recombinant endotoxin-neutralizing protein. Randomized, blinded, controlled study, using a rat model of sepsis. Animal research facility. Male Wistar rats. An inoculum of 1.5 x 10(7) to 1.8 x 10(8) Escherichia coli O18ac K1, implanted in the peritoneum, produced bacteremia in 95% of animals after 1 hr. One hour after E. coli challenge, animals received recombinant bactericidal/permeability-increasing protein variant, recombinant endotoxin-neutralizing protein, or saline intravenously, followed by ceftriaxone and gentamicin intramuscularly. Twenty-four (85.7%) of 28 animals receiving recombinant endotoxin-neutralizing protein (p < .001 vs. control) survived 7 days compared with nine (33.3%) of 27 recombinant bactericidal/permeability-increasing protein variant-treated (p < .001 vs. control) and two (6.5%) of 31 control animals. Both recombinant endotoxin-neutralizing protein and recombinant bactericidal/permeability-increasing protein variant improved survival. Recombinant endotoxin-neutralizing protein was superior to recombinant bactericidal/permeability-increasing protein variant in its protective effect at the doses tested. Our results suggest that both proteins may be useful in the treatment of human Gram-negative sepsis.

  11. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action

    PubMed Central

    Roy, Ranita; Tiwari, Monalisa; Donelli, Gianfranco; Tiwari, Vishvanath

    2018-01-01

    ABSTRACT Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby investigating its effective delivery in the host. It should also be ensured that minimum effective concentration of these molecules must be capable of eradicating biofilm infections with maximum potency without posing any adverse side effects on the host. PMID:28362216

  12. Nutrients and clam contamination by Escherichia coli in a meso-tidal coastal lagoon: Seasonal variation in counter cycle to external sources.

    PubMed

    Botelho, Maria João; Soares, Florbela; Matias, Domitília; Vale, Carlos

    2015-07-15

    The clam Ruditapes decussatus was transplanted from a natural recruitment area of Ria Formosa to three sites, surveyed for nutrients in water and sediments. Specimens were sampled monthly for determination of Escherichia coli, condition index and gonadal index. Higher nutrient values in low tide reflect drainage, anthropogenic sources or sediment regeneration, emphasising the importance of water mixing in the entire lagoon driven by the tide. Despite the increase of effluent discharges in summer due to tourism, nutrient concentrations and E. coli in clams were lower in warmer periods. The bactericide effect of temperature and solar radiation was better defined in clams from the inlet channel site than from sites closer to urban effluents. High temperature in summer and torrential freshwater inputs to Ria Formosa may anticipate climate change scenarios for south Europe. Seasonal variation of nutrients and clam contamination may thus point to possible alterations in coastal lagoons and their ecosystem services. Copyright © 2015. Published by Elsevier Ltd.

  13. Antimicrobial peptides containing unnatural amino acid exhibit potent bactericidal activity against ESKAPE pathogens.

    PubMed

    Hicks, R P; Abercrombie, J J; Wong, R K; Leung, K P

    2013-01-01

    A series of 36 synthetic antimicrobial peptides containing unnatural amino acids were screened to determine their effectiveness to treat Enterococcus faecium, Staphylococcus aureus, Klebsiella pnemoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE) pathogens, which are known to commonly infect chronic wounds. The primary amino acid sequences of these peptides incorporate either three or six dipeptide units consisting of the unnatural amino acids Tetrahydroisoquinolinecarboxylic acid (Tic) and Octahydroindolecarboxylic acid (Oic). The Tic-Oic dipeptide units are separated by SPACER amino acids with specific physicochemical properties that control how these peptides interact with bacterial cell membranes of different chemical compositions. These peptides exhibited minimum inhibitory concentrations (MIC) against these pathogens in the range from >100 to 6.25 μg/mL. The observed diversity of MIC values for these peptides against the various bacterial strains are consistent with our hypothesis that the complementarity of the physicochemical properties of the peptide and the lipid of the bacteria's cell membrane determines the resulting antibacterial activity of the peptide. Published by Elsevier Ltd.

  14. Air-supplied pinhole discharge in aqueous solution for the inactivation of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Suganuma, Ryota; Yasuoka, Koichi

    2018-04-01

    An air-supplied pinhole discharge in aqueous solution has been developed to provide a short-lived and odorless bactericide to replace current conventional disinfectants such as O3, ClO-, HClO, and ClO2. The pinhole discharge that was initiated inside a water bubble generated hydrogen peroxide (H2O2) and nitrous acid (HNO2) simultaneously. The concentrations of H2O2, HNO2, and HNO3 were 16.3, 13.9, and 17.4 mg/L, respectively when flow rates of NaCl solution and air were 72 and 12.5 mL/min, respectively. The pH value of the solution was 3.87, and HO2 radicals were generated from the reaction of H2O2 with HNO2. The efficacy of sterilization of discharge-treated water was evaluated by changing the acetic solutions. A 4-orders-of-magnitude decrease in Escherichia coli survival rate was observed after treatment with a sodium citrate solution of pH 3.2 for 60 s.

  15. Potential of chitosan from Mucor rouxxi UCP064 as alternative natural compound to inhibit Listeria monocytogenes.

    PubMed

    Bento, Roberta A; Stamford, Tânia L M; de Campos-Takaki, Galba M; Stamford, Thayza C M; de Souza, Evandro L

    2009-07-01

    Listeria monocytogenes is widely distributed in nature and the infection listeriosis is recognized as a potential threat for human health because of its mortality rate. The objective of this study was to evaluate the growth profile and chitosan production by Mucor rouxxi UCP 064 grown in yam bean (Pachyrhizus erosus L. Urban) medium. It was also to assess the anti-L. monocytogenes efficacy of the obtained chitosan. Higher values of biomass of M. rouxxi (16.9 g.L(-1)) and best yield of chitosan (62 mg.g(-1)) were found after 48 h of cultivation. Residual glucose and nitrogen in the growth media were 4.1 and 0.02 g.L(-1) after 96 h, respectively. Obtained chitosan presented 85 % of degree of deacetylation and 2.60 x 10(4) g.mol(-1) of viscosimetric molecular weight. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values of chitosan against L. monocytogenes ATCC 7644 were, respectively, 2.5 and 5.0 mg.mL(-1). At 2.5 and 5.0 mg.mL(-1) chitosan caused cidal effect in a maximum time of 4 h. Bacterial count below 2 log cfu.mL(-1) were found from 2 h onwards and no recovery in bacterial growth was noted in the remainder period. These results show the biotechnological potential of yam bean medium for chitosan production by Mucor rouxxi and support the possible rational use of chitosan from fungi as natural antimicrobial to control L. monocytogenes.

  16. Potential of chitosan from Mucor rouxxi UCP064 as alternative natural compound to inhibit Listeria monocytogenes

    PubMed Central

    Bento, Roberta A.; Stamford, Tânia L.M.; de Campos-Takaki, Galba M.; Stamford, Thayza C.M.; de Souza, Evandro L.

    2009-01-01

    Listeria monocytogenes is widely distributed in nature and the infection listeriosis is recognized as a potential threat for human health because of its mortality rate. The objective of this study was to evaluate the growth profile and chitosan production by Mucor rouxxi UCP 064 grown in yam bean (Pachyrhizus erosus L. Urban) medium. It was also to assess the anti-L. monocytogenes efficacy of the obtained chitosan. Higher values of biomass of M. rouxxi (16.9 g.L-1) and best yield of chitosan (62 mg.g-1) were found after 48 h of cultivation. Residual glucose and nitrogen in the growth media were 4.1 and 0.02 g.L-1 after 96 h, respectively. Obtained chitosan presented 85 % of degree of deacetylation and 2.60 x 104 g.mol-1 of viscosimetric molecular weight. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values of chitosan against L. monocytogenes ATCC 7644 were, respectively, 2.5 and 5.0 mg.mL-1. At 2.5 and 5.0 mg.mL-1 chitosan caused cidal effect in a maximum time of 4 h. Bacterial count below 2 log cfu.mL-1 were found from 2 h onwards and no recovery in bacterial growth was noted in the remainder period. These results show the biotechnological potential of yam bean medium for chitosan production by Mucor rouxxi and support the possible rational use of chitosan from fungi as natural antimicrobial to control L. monocytogenes. PMID:24031403

  17. Anti-biofilm and bactericidal effects of magnolia bark-derived magnolol and honokiol on Streptococcus mutans.

    PubMed

    Sakaue, Yuuki; Domon, Hisanori; Oda, Masataka; Takenaka, Shoji; Kubo, Miwa; Fukuyama, Yoshiyasu; Okiji, Takashi; Terao, Yutaka

    2016-01-01

    Dental caries affects people of all ages and is a worldwide health concern. Streptococcus mutans is a major cariogenic bacterium because of its ability to form biofilm and induce an acidic environment. In this study, the antibacterial activities of magnolol and honokiol, the main constituents of the bark of magnolia plants, toward planktonic cell and biofilm of S. mutans were examined and compared with those of chlorhexidine. The minimal inhibitory concentrations of magnolol, honokiol and chlorhexidine for S. mutans were 10, 10 and 0.25 µg/mL, respectively. In addition, each agent showed bactericidal activity against S. mutans planktonic cells and inhibited biofilm formation in a dose- and time-dependent manner. Magnolol (50 µg/mL) had greater bactericidal activity against S. mutans biofilm than honokiol (50 µg/mL) and chlorhexidine (500 µg/mL) at 5 min after exposure, while all showed scant activity against biofilm at 30 s. Furthermore; chlorhexidine (0.5-500 µg/mL) exhibited high cellular toxicity for the gingival epithelial cell line Ca9-22 at 1 hr, whereas magnolol (50 µg/mL) and honokiol (50 µg/mL) did not. Thus; it was found that magnolol has antimicrobial activities against planktonic and biofilm cells of S. mutans. Magnolol may be a candidate for prevention and management of dental caries. © 2015 The Societies and John Wiley & Sons Australia, Ltd.

  18. Effect of diesel leakage in circulating cooling water system on preponderant bacteria diversity and bactericidal effect of biocides.

    PubMed

    Zhong, Huiyun; Liu, Fang; Lu, Jinjin; Yang, Wei; Zhao, Chaocheng

    2015-01-01

    Petroleum products leakage results in adverse effect on the normal operation of a circulating cooling water system. However, relatively little research has been done to explore the effect of petroleum products leakage on circulating cooling water quality and biofilm preponderant bacteria diversity. Also, normal biocides application modes cannot fulfil the need for biofilm control. In this study, diesel oil was used as the experimental subject representing leaking petroleum products; the effect of diesel addition on biofilm preponderant bacteria diversity and the bactericidal effect of chlorine dioxide and tetradecyl dimethyl benzyl ammonium chloride (1427) was investigated. Bacterial community structures were examined by PCR-denaturing gradient gel electrophoresis and PCR cloning of 16S rDNA genes. Except for 100 mg/L diesel, increasing diesel concentration enhanced the biofilm detachment ratio compared with the control test. The microstructure of biofilm samples with 0, 300 and 900 mg/L diesel addition was observed. The species of preponderant bacteria in the biofilm sample with 300 mg/L diesel addition were more and the bacterial distribution was more uniform than those in the biofilm sample with 900 mg/L diesel addition. With ClO2 and 1427 addition, chemical oxygen demand increased, lipid phosphorus and bacterial count first decreased and then remained stable, and the bactericidal ratio first increased and then remained stable. Diesel addition variation has more obvious effect on ClO2 than 1427.

  19. Surface functionalization of Cu-Ni alloys via grafting of a bactericidal polymer for inhibiting biocorrosion by Desulfovibrio desulfuricans in anaerobic seawater.

    PubMed

    Yuan, S J; Liu, C K; Pehkonen, S O; Bai, R B; Neoh, K G; Ting, Y P; Kang, E T

    2009-01-01

    A novel surface modification technique was developed to provide a copper nickel alloy (M) surface with bactericidal and anticorrosion properties for inhibiting biocorrosion. 4-(chloromethyl)-phenyl tricholorosilane (CTS) was first coupled to the hydroxylated alloy surface to form a compact silane layer, as well as to confer the surface with chloromethyl functional groups. The latter allowed the coupling of 4-vinylpyridine (4VP) to generate the M-CTS-4VP surface with biocidal functionality. Subsequent surface graft polymerization of 4VP, in the presence of benzoyl peroxide (BPO) initiator, from the M-CTS-4VP surface produced the poly(4-vinylpyridine) (P(4VP)) grafted surface, or the M-CTS-P(4VP) surface. The pyridine nitrogen moieties on the M-CTS-P(4VP) surface were quaternized with hexylbromide to produce a high concentration of quaternary ammonium groups. Each surface functionalization step was ascertained by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurements. The alloy with surface-quaternized pyridinium cation groups (N+) exhibited good bactericidal efficiency in a Desulfovibrio desulfuricans-inoculated seawater-based modified Barr's medium, as indicated by viable cell counts and fluorescence microscopy (FM) images of the surface. The anticorrosion capability of the organic layers was verified by the polarization curve and electrochemical impedance spectroscopy (EIS) measurements. In comparison, the pristine (surface hydroxylated) Cu-Ni alloy was found to be readily susceptible to biocorrosion under the same environment.

  20. Low Temperature Atmospheric Argon Plasma: Diagnostics and Medical Applications

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Svetlana; Petrov, Oleg; Zigangirova, Nailya; Vasiliev, Mikhail; Sysolyatina, Elena; Antipov, Sergei; Alyapyshev, Maxim; Kolkova, Natalia; Mukhachev, Andrei; Naroditsky, Boris; Shimizu, Tetsuji; Grigoriev, Anatoly; Morfill, Gregor; Fortov, Vladimir; Gintsburg, Alexander

    This study was devoted to diagnostic of low temperature plasma produced by microwave generator and investigation of its bactericidal effect against bacteria in biofilms and within eukaryotic cells. The profile of gas temperature near the torch outlet was measured. The spectrum in a wide range of wavelengths was derived by the method of optical emission spec-troscopy. Probe measurements of the floating potential of plasma were car-ried out. The estimation and adaptation of parameters of plasma flow (tem-perature, velocity, ion number density) according to medico-technical requirements were produced. The model of immersed surface-associated biofilms formed by Gram-negative bacteria, Pseudomonas aeruginosa and Burkholderia cenocepacia, and Gram-positive bacteria, Staphylococcus aureus, was used to assess bactericidal effects of plasma treatment. Reduction in the concentration of live bacteria in biofilms treated with plasma for 5 min was demonstrated by measuring Live/Dead fluorescent labeling and using direct plating. The intracellular infection model with the pathogenic bacterium, Chlamydia trachomatis, was used to study the efficacy of microwave argon plasma against intracellular parasites. A 2 min plasma treatment of mouse cells infected with C. trachomatis reduced infectious bacteria by a factor of 2×106. Plasma treatment diminished the number of viable host cells by about 20%. When the samples were covered with MgF2 glass to obstruct active particles and UV alone was applied, the bactericidal effect was re-duced by 5×104 fold compared to the whole plasma.

  1. Antimicrobial-induced endotoxin and cytokine activity in an in vitro model of septicemia in foals.

    PubMed

    Bentley, Adrienne P; Barton, Michelle H; Lee, Margie D; Norton, Natalie A; Moore, James N

    2002-05-01

    To determine which antimicrobials that are used to treat neonatal foals with septicemia attributable to Escherichia coli will minimize endotoxin release from bacteria and subsequent activity of inflammatory mediators while maintaining bactericidal efficacy. Blood samples from 10 healthy foals. Escherichia coli isolates A and B were isolated from 2 septicemic foals, and minimal inhibitory concentrations (MIC) were determined for 9 antimicrobials. Five of these antimicrobials were tested in vitro at 2 and 20 times their respective MIC. Whole blood or mononuclear cells grown in tissue-culture media were incubated with 105 colony-forming units of E. coli and each antimicrobial or saline (0.9% NaCl) solution. After 6 hours, number of viable bacteria remaining was determined, and supernatant was tested for endotoxin and tumor necrosis activity. Testing in whole blood was compromised by bactericidal effects of the blood itself. In mononuclear cell suspensions, each antimicrobial significantly reduced the number of viable bacteria to low or undetectable amounts. Antimicrobials did not differ significantly in efficacy of bacterial killing. Amikacin used alone or in combination with ampicillin resulted in significantly less endotoxin activity than did ampicillin, imipenem, or ceftiofur alone. There was a correlation between TNF-alpha and endotoxin activity. Aminoglycosides appear less likely to induce endotoxemia and TNF-alpha synthesis during bactericidal treatment of E. coli septicemia, compared with beta-lactam antimicrobials. Use of ampicillin, imipenem, or ceftiofur in the treatment of septicemic neonatal foals should be accompanied by appropriate treatment for endotoxemia.

  2. ent-Copalic acid antibacterial and anti-biofilm properties against Actinomyces naeslundii and Peptostreptococcus anaerobius.

    PubMed

    Souza, Maria Gorete Mendes de; Leandro, Luís Fernando; Moraes, Thaís da Silva; Abrão, Fariza; Veneziani, Rodrigo Cassio Sola; Ambrosio, Sergio Ricardo; Martins, Carlos Henrique Gomes

    2018-05-28

    Diterpenes are an important class of plant metabolites that can be used in the search for new antibacterial agents. ent-Copalic acid (CA), the major diterpene in Copaifera species exudates, displays several pharmacological properties. This study evaluates the CA antibacterial potential against the anaerobic bacteria Peptostreptococcus anaerobius and Actinomyces naeslundii. Antimicrobial assays included time-kill and biofilm inhibition and eradication assays. Time-kill assays conducted for CA concentrations between 6.25 and 12.5 μg/mL evidenced bactericidal activity within 72 h. CA combined with chlorhexidine dihydrochloride (CHD) exhibited bactericidal action against P. anaerobius within 6 h of incubation. As for A. naeslundii, the same combination reduced the number of microorganisms by over 3 log10 at 24 h and exerted a bactericidal effect at 48 h of incubation. CA at 500 and 2000 μg/mL inhibited P. anaerobius and A. naeslundii biofilm formation by at least 50%, respectively. CA at 62.5 and 1.000 μg/mL eradicated 99.9% of pre-formed P. anaerobius and A. naeslundii biofilms, respectively. These results indicated that CA presents in vitro antibacterial activity and is a potential biofilm inhibitory agent. This diterpene may play an important role in the search for novel sources of agents that can act against anaerobic bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Polyethylenimine mediated silver nanoparticle-decorated magnetic graphene as a promising photothermal antibacterial agent

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Hu, Bo; Chen, Ming-Li; Wang, Jian-Hua

    2015-05-01

    A novel bactericidal material, Ag@rGO-Fe3O4-PEI composite is prepared by in situ growth of silver nanoparticles onto the polyethylenimine (PEI)-mediated magnetic reduced graphene oxide (GO). The antibacterial performances of the composite are investigated by using the gram-negative bacteria Escherichia coli O157:H7 (E. coli O157:H7) as a model. The results indicate that the Ag@rGO-Fe3O4-PEI composite exhibits excellent antibacterial performance against E. coli O157:H7, with an antibacterial performance superior to those for the ever-reported photothermal materials. The bactericidal capability or the inhibition capability for bacteria growth is found to depend on the dosage of the Ag@rGO-Fe3O4-PEI and Ag/rGO-Fe3O4-PEI mass ratio within a certain range. By using a dosage of 0.1 μg mL-1, a killing rate of 99.9% is achieved for the E. coli O157:H7 (1 × 107 cfu mL-1) under a 0.5 min NIR laser irradiation (785 nm/50 mW cm-2). In addition, a minimum bactericidal concentration (MBC) of 0.100 μg mL-1 is achieved under near infrared (NIR) laser irradiation for 10 min, for which case there is absolutely no colony of E. coli O157:H7 found in the broth agar plate.

  4. Pharmacodynamics of moxifloxacin and levofloxacin against Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli: simulation of human plasma concentrations after intravenous dosage in an in vitro kinetic model.

    PubMed

    Odenholt, Inga; Cars, Otto

    2006-11-01

    To compare in an in vitro kinetic model the pharmacodynamics of moxifloxacin and levofloxacin with a concentration-time profile simulating the human free non-protein bound concentrations of 400 mg moxifloxacin intravenous (iv) once daily, 500 mg levofloxacin iv once daily and 750 mg levofloxacin iv once daily against strains of Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli with variable susceptibility to fluoroquinolones. The strains used in the study included S. pneumoniae ATCC 6306 (native strain), S. pneumoniae 19397 (double mutation; gyrA and parC), S. pneumoniae 4241 (single mutation; parC), S. aureus ATCC 13709 (native strain), S. aureus MB5 (single mutation; gyrA), E. coli M12 (single mutation; gyrA), E. coli ATCC 25922 (native strain) and K. pneumoniae ATCC 29655 (native strain). The strains were exposed to moxifloxacin and levofloxacin in an in vitro kinetic model simulating the free human serum concentration-time profile of moxifloxacin 400 mg once daily, levofloxacin 500 mg once daily and 750 mg once daily. Repeated samples were taken regularly during 24 h and viable counts were carried out. A correlation was seen between both the area under the serum concentration curve and MIC (AUC/MIC) and the peak concentration/MIC (Cmax/MIC) versus area under the bactericidal killing curve (AUBKC) or Deltalog0-24 cfu/mL. Compiling all data, an AUC/MIC of approximately 100 and a Cmax/MIC of 10 gave a maximal bactericidal effect for both levofloxacin and moxifloxacin. In accordance with the results from others, our study indicated that a lower AUC/MIC was needed for S. pneumoniae in comparison with the Gram-negative bacteria studied. Moxifloxacin yielded higher AUC/MIC and Cmax/MIC against the investigated Gram-positive bacteria in comparison with levofloxacin 500 mg once daily and 750 mg once daily.

  5. In vitro antimicrobial activity and chemical composition of the essential oil of Foeniculum vulgare Mill.

    PubMed

    Aprotosoaie, Ana Clara; Hăncianu, Monica; Poiată, Antonia; Tuchiluş, Cristina; Spac, A; Cioană, Oana; Gille, Elvira; Stănescu, Ursula

    2008-01-01

    In our study, four samples of volatile oil from Foeniculum vulgare, cultivated in different pedoclimatic conditions, were investigated for their antimicrobial activity and chemical composition. Organisms. Staphylococcus aureus ATCC 25923, Bacillus cereus, Pseudomonas aeruginosa, Escherichia coli ATCC 25922, Candida albicans were included in the report. Antimicrobial susceptibility tests. The comparative inhibitory activity of volatile oil samples with other antimicrobial agents was quantitative determined by minimum inhibitory concentration (MIC). Oil samples are the volatile oils extracted by steam distillation, from two ecological vegetative populations of Foeniculum vulgare. Gas chromatography coupled to mass spectrometry (GC-MS) was used to determine the chemical composition of the essential oils. All oil samples have a good activity against E. coli and S. aureus at low concentrations. Against B. cereus and P. aeruginosa these oil samples are less active. The oil samples were generally bactericidal at a concentration up to twofold or fourfold higher than the MIC value. Significantly synergic activity with amoxicillin or tetracycline showed all fennel samples against E. coli, Sarcina lutea and B. subtilis strains. Fennel oil samples have shown high activity against Candida albicans. No significant antimicrobial activity variations were observed for Foeniculum vulgare volatile oil samples obtained after two or three years cultivation period. The most important identified compounds in all samples of fennel volatile oils were trans-anethole, estragole, fenchone, limonene, alpha-pinene and gamma-terpinene.

  6. Brine shrimp cytotoxicity of Caesalpinia pulcherrima aerial parts, antimicrobial activity and characterisation of isolated active fractions.

    PubMed

    Chanda, Sumitra; Baravalia, Yogesh

    2011-12-01

    Caesalpinia pulcherrima Swartz. is an ornamental plant, shrub or a small tree belonging to the family Caesalpiniaceae. The plant has been used for the treatment of inflammatory disorders, skin diseases and so on. In this study, the cytotoxicity of the methanol extract of the aerial parts of C. pulcherrima was tested using an Artemia salina (brine shrimp) bioassay. Further, the methanol extract was fractionated by silica gel column chromatography using a solvent gradient of hexane:ethyl acetate:methanol in different ratios and 56 fractions were collected. On the basis of thin layer chromatography profiles, 13 major fractions were obtained, which were tested for antimicrobial activity against 14 microorganisms using the agar disc diffusion method and also tested for their minimal inhibitory concentration and minimal bactericidal concentration values. In terms of cytotoxicity, the extract caused 26% mortality of brine shrimp larvae after 24 h at a concentration of 1000 µg mL(-1). Fractions 3, 9 and 10 showed significant antimicrobial activities. Phytochemical analysis of these three fractions led to the identification of 11 compounds, and their structures were established by means of gas chromatography-mass spectroscopy techniques. These findings suggest that these bioactive compounds may be useful as potential antimicrobials. Further investigation is needed to establish the mode of action of these bioactive compounds.

  7. Green synthesis of silver nanoparticles as antibacterial agent using Rhodomyrtus tomentosa acetone extract

    NASA Astrophysics Data System (ADS)

    Voravuthikunchai, Supayang P.; Chorachoo, Julalak; Jaiswal, Lily; Shankar, Shiv

    2013-12-01

    The capability of Rhodomyrtus tomentosa acetone extract (RAE) for the production of silver nanoparticles (AgNPs) has been explored for the first time. Silver nanoparticles with a surface plasmon resonance band centered at 420-430 nm were synthesized by reacting RAE with AgNO3. Reaction time, temperature, concentration of AgNO3 and RAE could accelerate the reduction rate of Ag+ and affect AgNPs size. The nanoparticles were found to be 10-30 nm in size and spherical in shape. XRD data demonstrated crystalline nature of AgNPs dominated by (200) facets. FTIR results showed decrease in intensity of peaks at 3394, 1716 and 1618 cm-1 indicating the involvement of O-H, carbonyl group and C=C stretching with the formation of AgNPs with RAE, respectively. The C-O-C and C-N stretching suggested the presence of many phytochemicals on the surface of the nanoparticles. High negative zeta potential values confirmed the stability of AgNPs in water. In vitro antibacterial activity of AgNPs was tested against Staphylococcus aureus using broth microdilution method. AgNPs capped with RAE demonstrated profound antibacterial activity against the organisms with minimum inhibitory concentration and minimum bactericidal concentration in the range between 3.1-6.2 and 6.2-50 μgmL-1, respectively. The synthesized nanoparticles could be applied as an effective antimicrobial agent against staphylococcal infections.

  8. Silver Sucrose Octasulfate (IASOS™) as a Valid Active Ingredient into a Novel Vaginal Gel against Human Vaginal Pathogens: In Vitro Antimicrobial Activity Assessment

    PubMed Central

    Marianelli, Cinzia; Petrucci, Paola; Comelli, Maria Cristina; Calderini, Gabriella

    2014-01-01

    This in vitro study assessed the antimicrobial properties of a novel octasilver salt of Sucrose Octasulfate (IASOS) as well as of an innovative vaginal gel containing IASOS (SilSOS Femme), against bacterial and yeast pathogens isolated from human clinical cases of symptomatic vaginal infections. In BHI and LAPT culture media, different ionic silver concentrations and different pHs were tested. IASOS exerted a strong antimicrobial activity towards all the pathogens tested in both culture media. The results demonstrated that salts and organic compounds present in the culture media influenced IASOS efficacy only to a moderate extent. Whereas comparable MBCs (Minimal Bactericidal Concentrations) were observed for G. vaginalis (10 mg/L Ag+), E. coli and E. aerogenes (25 mg/L Ag+) in both media, higher MBCs were found for S. aureus and S. agalactiae in LAPT cultures (50 mg/L Ag+ versus 25 mg/L Ag+). No minimal concentration totally inhibiting the growth of C. albicans was found. Nevertheless, in both media at the highest ionic silver concentrations (50–200 mg/L Ag+), a significant 34–52% drop in Candida growth was observed. pH differently affected the antimicrobial properties of IASOS against bacteria or yeasts; however, a stronger antimicrobial activity at pH higher than the physiological pH was generally observed. It can be therefore concluded that IASOS exerts a bactericidal action against all the tested bacteria and a clear fungistatic action against C. albicans. The antimicrobial activity of the whole vaginal gel SilSOS Femme further confirmed the antimicrobial activity of IASOS. Overall, our findings support IASOS as a valid active ingredient into a vaginal gel. PMID:24897299

  9. New non-alcoholic formulation for hand disinfection.

    PubMed

    Biagi, Marco; Giachetti, Daniela; Miraldi, Elisabetta; Figura, Natale

    2014-04-01

    Hand washing is considered as the single most important strategy to prevent infections. World health organization (WHO) defines hand hygiene as a primary issue of personal care with particular reference to hospital personnel and health facility workers. In this work, we investigated a new combination for hand disinfection as an alternative to alcohol-based and chlorhexidine products. The new combination of 5-pyrrolidone-2-carboxylic acid (PCA) and copper sulphate pentahydrate (CS) was tested upon different bacterial species that normally colonize hands, including Staphylococcus aureus, methicillin resistant S. aureus (MR S. aureus), Staphylococcus epidermidis, multidrug resistant S. epidermidis (MDR S. epidermidis), Streptococcus pyogenes, Streptococcus agalactiae, Escherichia coli, Candida albicans and three clinical isolates: MR S. aureus, MDR S. epidermidis, and an E. coli strain. Minimal inhibitory concentrations (MICs), Minimal bactericidal concentrations (MBCs), fractional inhibitory concentration (FIC) indices, and fractional bactericidal concentration (FBC) indices were evaluated. Ethanol 70% V/V, isopropanol 60% V/V, and 4% w/V chlorhexidine solution were used as reference hand disinfectants. Copper sulphate pentahydrate was very effective against all tested microorganisms: The MIC and MBC for CS ranged from 781 mg/l against S. pyogenes to 12500 mg/l against E. coli strains and C. albicans. In addition, PCA exhibited a good antimicrobial activity, in particular, against S. pyogenes and S. agalactiae. The combination of CS and PCA showed a strong synergistic effect and all FIC indices were ≤0·500. The combination of CS and PCA were more effective than ethanol 70% V/V and isopropanol 60% V/V. In addition to antimicrobial activity, the new formulation possesses peculiar features such as residual activity and moisturizing effect. This work identifies a new strategy for hand disinfection.

  10. Bacterial susceptibility to and chemical composition of essential oils from Thymus kotschyanus and Thymus persicus.

    PubMed

    Rasooli, Iraj; Mirmostafa, Seyed Akbar

    2003-04-09

    Susceptibility of Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia, and Pseudomonas aeroginosa to the essential oils extracted from two varieties of Thyme, i.e., Thymus kotschyanus Boiss. and Hohen. and Thymus persicus L. at preflowering and flowering stages were studied. The disk diffusion method was used to evaluate the zone of microbial growth inhibition at various concentrations of the oils. Minimal inhibitory concentration and minimal bactericidal concentration of the oils were determined and compared with each other. The oils from the above plants were found to be strongly bactericidal with that of T. kotschyanus being more effective. T. kotschyanusand T. persicus oils analyzed by gas chromatography (GC) and GC/mass spectrometry (MS) lead to identification of 33 and 26 components, respectively. The profile of the oil components from T. persicuswas similar to that of T. kotschyanus in almost all of the compounds but at different concentrations. The major components of T. kotschyanus oil before and at the flowering stages were carvacrol (35.06, 22.75%), thymol (26.60, 16.52%), gamma-terpinene (7.81, 0.34%), gamma-terpinene (4.34, 0%), borneol (2.29, 4.52%), myrcene (0.26, 12.65%), thymolquinone (0, 11.39%), nerol (0, 6.10%), and beta-caryophyllene (0, 5.54%), respectively, and those of T. persicus at the same stages were carvacrol (38.96, 27.07%), thymol (6.48, 11.86%), P-cymene (7.51, 10.16%), gamma-terpineol (0, 9.51%), nerol (15.66, 9.41%), gamma-terpinene (6.11, 6.51%), and thymol acetate (5.29, 5.30%), respectively. The contribution of oil components to its antibacterial property is discussed. High aromatic compound content of the phenol-rich oils seems to account for strong antibacterial activity.

  11. In vitro activity and in vivo animal model efficacy of IB-367 alone and in combination with imipenem and colistin against Gram-negative bacteria.

    PubMed

    Simonetti, Oriana; Cirioni, Oscar; Ghiselli, Roberto; Orlando, Fiorenza; Silvestri, Carmela; Mazzocato, Susanna; Kamysz, Wojciech; Kamysz, Elzbieta; Provinciali, Mauro; Giacometti, Andrea; Guerrieri, Mario; Offidani, Annamaria

    2014-05-01

    The aim of our study was to evaluate the in vitro activity of IB-367 and its bactericidal effect for Pseudomonas aeruginosa and Escherichia coli, associated to a synergic study to test the antibiotic combinations between the peptide and colistin or imipenem. Minimum inhibitory concentrations (MICs), the minimum bactericidal concentrations (MBCs), the synergy test and killing study were carried out to evaluate the IB-367 activity. In the in vivo model, a wound was incised through the panniculus carnosus of BALB/c mice, and then inoculated with 5 × 107 colony-forming units of P. aeruginosa and E. coli. For each strain, the study included an infected or not infected group that did not receive any treatment, and five contaminated groups treated with local IB- 367, intraperitoneal imipenem, intraperitoneal colistin, topical IB-367 local plus intraperitoneal imipenem or intraperitoneal colistin. All isolates were inhibited by IB-367 at concentrations of 4-64 mg/l. Killing by IB-367 was shown to be very rapid: its activity on all Gram-negative bacteria was completed within a 40 min exposure period at a concentration of 2 × MIC/l. Synergy was demonstrated when IB-367 was combined with colistin or imipenem. In in vivo studies, the groups treated with topical IB-367 and intraperitoneal colistin showed the best results in terms of bacterial load inhibition either for Pseudomonas or for E. coli. The good in vitro activity and in vivo efficacy, as well as, the synergic interactions with antibiotics suggest that IB-367 is a promising candidate for potential application in the treatment of wound Gram-negative infections. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Antibacterial Effect of Copaifera duckei Dwyer Oleoresin and Its Main Diterpenes against Oral Pathogens and Their Cytotoxic Effect

    PubMed Central

    Abrão, Fariza; Alves, Jessica A.; Andrade, Gessica; de Oliveira, Pollyanna F.; Ambrósio, Sérgio R.; Veneziani, Rodrigo C. S.; Tavares, Denise C.; Bastos, Jairo K.; Martins, Carlos H. G.

    2018-01-01

    This study evaluates the antibacterial activity of the Copaifera duckei Dwyer oleoresin and two isolated compounds [eperu-8(20)-15,18-dioic acid and polyalthic acid] against bacteria involved in primary endodontic infections and dental caries and assesses the cytotoxic effect of these substances against a normal cell line. MIC and MBC assays pointed out the most promising metabolites for further studies on bactericidal kinetics, antibiofilm activity, and synergistic antibacterial action. The oleoresin and polyalthic acid but not eperu-8(20)-15,18-dioic provided encouraging MIC and MBC results at concentrations lower than 100 μg mL−1. The oleoresin and polyalthic acid activities depended on the evaluated strain. A bactericidal effect on Lactobacillus casei (ATCC 11578 and clinical isolate) emerged before 8 h of incubation. For all the tested bacteria, the oleoresin and polyalthic acid inhibited biofilm formation by at least 50%. The oleoresin and polyalthic acid gave the best activity against Actinomyces naeslundii (ATCC 19039) and L. casei (ATCC 11578), respectively. The synergistic assays combining the oleoresin or polyalthic acid with chlorhexidine did not afford interesting results. We examined the cytotoxicity of C. duckei oleoresin, eperu-8(20)-15,18-dioic acid, and polyalthic acid against Chinese hamster lung fibroblasts. The oleoresin and polyalthic acid were cytotoxic at concentrations above 78.1 μg mL−1, whereas eperu-8(20)-15,18-dioic displayed cytotoxicity at concentrations above 312.5 μg mL−1. In conclusion, the oleoresin and polyalthic acid are potential sources of antibacterial agents against bacteria involved in primary endodontic infections and dental caries in both the sessile and the planktonic modes at concentrations that do not cause cytotoxicity. PMID:29515530

  13. Sensitive Microplate Assay for Detection of Bactericidal Antibodies to Vibrio cholerae O139

    PubMed Central

    Attridge, Stephen R.; Johansson, Camilla; Trach, Dang D.; Qadri, Firdausi; Svennerholm, Ann-Mari

    2002-01-01

    A microplate assay for the detection of bactericidal antibodies to Vibrio cholerae O139 is described. The assay is sensitive, highly reproducible, specific, and convenient to perform. It has been used to demonstrate the induction of serum bactericidal antibodies in Vietnamese recipients of an oral, inactivated, bivalent O1/O139 vaccine, as well as in Bangladeshi patients with O139 disease. In both study groups there was a significant inverse correlation between the preexposure level of antibodies in serum and the magnitude of the subsequent bactericidal response. Although infection generated stronger responses than vaccination, the proportion of responders was similar among individuals with low background titers. PMID:11874883

  14. The Effects of Allium sativum Extracts on Biofilm Formation and Activities of Six Pathogenic Bacteria

    PubMed Central

    Mohsenipour, Zeinab; Hassanshahian, Mehdi

    2015-01-01

    Background: Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. Objectives: The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Materials and Methods: Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. Results: The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Conclusions: Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms. PMID:26464762

  15. Antibacterial, antibiofilm and antioxidant screening of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid

    NASA Astrophysics Data System (ADS)

    Bukonjić, Andriana M.; Tomović, Dušan Lj.; Nikolić, Miloš V.; Mijajlović, Marina Ž.; Jevtić, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Bogdanović, Goran A.; Radojević, Ivana D.; Maksimović, Jovana Z.; Vasić, Sava M.; Čomić, Ljiljana R.; Trifunović, Srećko R.; Radić, Gordana P.

    2017-01-01

    The spectroscopically predicted structure of the obtained copper(II)-complex with S-propyl derivative of thiosalicylic acid was confirmed by X-ray structural study. The binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid crystallized in two polymorphic forms with main structural difference in the orientation of phenyl rings relative to corresponding carboxylate groups. The antibacterial activity was tested determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) by using microdilution method. The influence on bacterial biofilm formation was determined by tissue culture plate method. In general, the copper(II)-complexes manifested a selective and moderate activity. The most sensitive bacteria to the effects of Cu(II)-complexes was a clinical isolate of Pseudomonas aeruginosa. For this bacteria MIC and biofilm inhibitory concentration (BIC) values for all tested complexes were in the range or better than the positive control, doxycycline. Also, for the established biofilm of clinical isolate Staphylococcus aureus, BIC values for the copper(II)-complex with S-ethyl derivative of thiosalicylic acid,[Cu2(S-et-thiosal)4(H2O)2] (C3) and copper(II)-complex with S-butyl derivative of thiosalicylic acid, [Cu2(S-bu-thiosal)4(H2O)2] (C5) were in range or better than the positive control. All the complexes acted better against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus aureus ATCC 25923) than Gram-negative bacteria (Proteus mirabilis ATCC 12453, Pseudomonas aeruginosa, and P. aeruginosa ATCC 27855). The complexes showed weak antioxidative properties tested by two methods (1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing power assay).

  16. Probiotic-mediated blueberry (Vaccinium corymbosum L.) fruit fermentation to yield functionalized products for augmented antibacterial and antioxidant activity.

    PubMed

    Oh, Byung-Taek; Jeong, Seong-Yeop; Velmurugan, Palanivel; Park, Jung-Hee; Jeong, Do-Youn

    2017-11-01

    The aim of this study was to investigate the fermentation of blueberry fruit with selected probiotic bacteria (Bacillus amyloliquefaciens and Lactobacillus brevis) and yeast (Starmerella bombicola) isolated from fermented starfish for the extraction of functionalized products for biomedical applications. All probiotic-based fermented extracts showed augmented antibacterial and antioxidant activity compared to the control. Biochemical parameters of viable cell count, titratable acidity, total phenol, total anthocyanin, total flavonoids, total sugar, and reducing sugar were analyzed during a 0-96 h fermentation period. In addition, Fourier transform infrared (FTIR) spectroscopy was performed to determine the functional groups in the control and fermented extracts and it signifies the presence of alcohol groups, phenol groups, carboxylic acids, and aliphatic amines, respectively. The well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays determined that the S. bombicola-mediated fermented extract has excellent activity, followed by B. amyloliquefaciens and L. brevis, at a high concentration of 1.0 g/mL fermented extract. The ABTS and DPPH showed significant scavenging activity with IC 50 values of (30.52 ± 0.08)/(155.10 ± 0.06) μg/mL, (24.82 ± 0.16)/(74.21 ± 1.26) μg/mL, and (21.81 ± 0.08)/(125.11 ± 0.04) μg/mL for B. amyloliquefaciens, L. brevis, and S. bombicola, respectively. Developing a value-added fermented blueberry product will help circumvent losses because of the highly perishable nature of the fruit. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms.

    PubMed

    Bersan, Salete M F; Galvão, Livia C C; Goes, Vivian F F; Sartoratto, Adilson; Figueira, Glyn M; Rehder, Vera L G; Alencar, Severino M; Duarte, Renata M T; Rosalen, Pedro L; Duarte, Marta C T

    2014-11-18

    Essential oils (EO) obtained from twenty medicinal and aromatic plants were evaluated for their antimicrobial activity against the oral pathogens Candida albicans, Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus sanguis and Streptococcus mitis. The antimicrobial activity of the EO was evaluates by microdilution method determining Minimal Inhibitory Concentration. Chemical analysis of the oils compounds was performed by Gas chromatography-mass spectrometry (CG-MS). The most active EO were also investigated as to their actions on the biolfilm formation. The most of the essential oils (EO) presented moderate to strong antimicrobial activity against the oral pathogens (MIC--Minimal Inhibitory Concentrations values between 0.007 and 1.00 mg/mL). The essential oil from Coriandrum sativum inhibited all oral species with MIC values from 0.007 to 0.250 mg/mL, and MBC/MFC (Minimal Bactericidal/Fungicidal Concentrations) from 0.015 to 0.500 mg/mL. On the other hand the essential oil of C. articulatus inhibited 63.96% of S. sanguis biofilm formation. Through Scanning Eletronic Microscopy (SEM) images no changes were observed in cell morphology, despite a decrease in biofilm formation and changes on biofilm structure. Chemical analysis by Gas Chromatography-Mass Spectrometry (GC-MS) of the C. sativum essential oil revealed major compounds derivatives from alcohols and aldehydes, while Cyperus articulatus and Aloysia gratissima (EOs) presented mono and sesquiterpenes. In conclusion, the crude oil from C. articulatus exhibited the best results of antimicrobial activity e ability to control biofilm formation. The chemical analysis showed the presence of terpenes and monoterpenes such as a-pinene, a-bulnesene and copaene. The reduction of biofilms formation was confirmed from SEM images. The results of this research shows a great potential from the plants studied as new antimicrobial sources.

  18. Phytochemical profiles and antimicrobial activity of aromatic Malaysian herb extracts against food-borne pathogenic and food spoilage microorganisms.

    PubMed

    Aziman, Nurain; Abdullah, Noriham; Noor, Zainon Mohd; Kamarudin, Wan Saidatul Syida Wan; Zulkifli, Khairusy Syakirah

    2014-04-01

    Preliminary phytochemical and flavonoid compounds of aqueous and ethanolic extracts of 6 aromatic Malaysian herbs were screened and quantified using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). The herbal extracts were tested for their antimicrobial activity against 10 food-borne pathogenic and food spoilage microorganisms using disk diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) of herbal extracts were determined. In the phytochemical screening process, both aqueous and ethanolic extracts of P. hydropiper exhibited presence of all 7 tested phytochemical compounds. Among all herbal extracts, the aqueous P. hydropiper and E. elatior extracts demonstrated the highest antibacterial activity against 7 tested Gram-positive and Gram-negative bacteria with diameter ranging from 7.0 to 18.5 mm and 6.5 to 19 mm, respectively. The MIC values for aqueous and ethanolic extracts ranged from 18.75 to 175 mg/mL and 0.391 to 200 mg/mL, respectively while the MBC/MFC values for aqueous and ethanolic extracts ranged from 25 to 200 mg/mL and 3.125 to 50 mg/mL, respectively. Major types of bioactive compounds in aqueous P. hydropiper and E. elatior extracts were identified using RP-HPLC instrument. Flavonoids found in these plants were epi-catechin, quercetin, and kaempferol. The ability of aqueous Persicaria hydropiper (L.) H. Gross and Etlingera elatior (Jack) R.M. Sm. extracts to inhibit the growth of bacteria is an indication of its broad spectrum antimicrobial potential. Hence these herbal extracts may be used as natural preservative to improve the safety and shelf-life of food and pharmaceutical products. © 2014 Institute of Food Technologists®

  19. Antistaphylococcal activity of DX-619, a new des-F(6)-quinolone, compared to those of other agents.

    PubMed

    Bogdanovich, Tatiana; Esel, Duygu; Kelly, Linda M; Bozdogan, Bülent; Credito, Kim; Lin, Gengrong; Smith, Kathy; Ednie, Lois M; Hoellman, Dianne B; Appelbaum, Peter C

    2005-08-01

    The in vitro activity of DX-619, a new des-F(6)-quinolone, was tested against staphylococci and compared to those of other antimicrobials. DX-619 had the lowest MIC ranges/MIC(50)s/MIC(90)s (microg/ml) against 131 Staphylococcus aureus strains (32), and ciprofloxacin (>32/>32). Raised quinolone MICs were associated with mutations in GyrA (S84L) and single or double mutations in GrlA (S80F or Y; E84K, G, or V) in all S. aureus strains tested. A recent vancomycin-resistant S. aureus (VRSA) strain (Hershey) was resistant to available quinolones and was inhibited by DX-619 at 0.25 microg/ml and sitafloxacin at 1.0 microg/ml. Vancomycin (except VRSA), linezolid, ranbezolid, tigecycline, and quinupristin-dalfopristin were active against all strains, and teicoplanin was active against S. aureus but less active against coagulase-negative staphylococci. DX-619 produced resistant mutants with MICs of 1 to >32 microg/ml after <50 days of selection compared to 16 to >32 microg/ml for ciprofloxacin, sitafloxacin, moxifloxacin, and gatifloxacin. DX-619 and sitafloxacin were also more active than other tested drugs against selected mutants and had the lowest mutation frequencies in single-step resistance selection. DX-619 and sitafloxacin were bactericidal against six quinolone-resistant (including the VRSA) and seven quinolone-susceptible strains tested, whereas gatifloxacin, moxifloxacin, levofloxacin, and ciprofloxacin were bactericidal against 11, 10, 7, and 5 strains at 4x MIC after 24 h, respectively. DX-619 was also bactericidal against one other VRSA strain, five vancomycin-intermediate S. aureus strains, and four vancomycin-intermediate coagulase-negative staphylococci. Linezolid, ranbezolid, and tigecycline were bacteriostatic and quinupristin-dalfopristin, teicoplanin, and vancomycin were bactericidal against two, eight, and nine strains, and daptomycin and oritavancin were rapidly bactericidal against all strains, including the VRSA. DX-619 has potent in vitro activity against staphylococci, including methicillin-, ciprofloxacin-, and vancomycin-resistant strains.

  20. LED array designing and its bactericidal effect researching on Pseudomonas aeruginosa in vitro

    NASA Astrophysics Data System (ADS)

    Fang, Jing; Xing, Jin; Gao, Liucun; Shen, Benjian; Kang, Hongxiang; Jie, Liang; Peng, Chen

    2015-10-01

    Lights with some special waveband and output power density have a bactericidal effect to some special bacteria. In this paper, the bactericidal effect of light at wavelength of 470 nm on P. aeruginosa (ATCC 27853) is researched with different irradiation dose. The light source is a LED array which is obtained by incoherent combine of 36 LEDs with emitting wavelength of 470 nm. The P. aeruginosa suspension is exposed with the LED array at the light power density of 100 mW/cm2 with exposures time of 0, 5, 10, 20, 40, and 80 min, respectively. The numbers of CFU are then determined by serial dilutions on LB agar plates. The bactericidal effect research results of 470 nm LED on P. aeruginosa show that the killing ratio increases with increasing of the exposure time. For the 80 min irradiation, as much as 92.4% reduction of P. aeruginosa is achieved. The results indicate that, in vitro, 470-nm lights produce dose dependent bactericidal effects on P. aeruginosa.

  1. Bactericidal activity of glutaraldehyde-like compounds from olive products.

    PubMed

    Medina, Eduardo; Brenes, Manuel; García, Aranzazu; Romero, Concepción; de Castro, Antonio

    2009-12-01

    The bactericidal effects of several olive compounds (nonenal, oleuropein, tyrosol, the dialdehydic form of decarboxymethyl elenolic acid either free [EDA] or linked to tyrosol [TyEDA] or to hydroxytyrosol [HyEDA]), other food phenolic compounds (catechin, epicatechin, eugenol, thymol, carvacrol, and carnosic acid), and commercial disinfectants (glutaraldehyde [GTA] and ortho-phthalaldehyde [OPA]), were tested against strains of Pseudomonas fluorescens, Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli. It was found that the bactericidal activities of olive GTA-like compounds (EDA, HyEDA, and TyEDA) were greater than those exerted by several food phenolic substances. Surprisingly, these olive antimicrobials were as active as the synthetic biocides GTA and OPA against the four bacteria studied. Thus, it has been proposed that the bactericidal activity of the main olive antimicrobials is primarily due to their dialdehydic structure, which is similar to that of the commercial biocides GTA and OPA. Our results clearly reveal that olive GTA-like compounds possess a strong bactericidal activity even greater than that of other food phenolic compounds or synthetic biocides.

  2. Influence of nanoscale topology on bactericidal efficiency of black silicon surfaces

    NASA Astrophysics Data System (ADS)

    Linklater, Denver P.; Khuong Duy Nguyen, Huu; Bhadra, Chris M.; Juodkazis, Saulius; Ivanova, Elena P.

    2017-06-01

    The nanostructuring of materials to create bactericidal and antibiofouling surfaces presents an exciting alternative to common methods of preventing bacterial adhesion. The fabrication of synthetic bactericidal surfaces has been inspired by the anti-wetting and anti-biofouling properties of insect wings, and other topologies found in nature. Black silicon is one such synthetic surfaces which has established bactericidal properties. In this study we show that time-dependent plasma etching of silicon wafers using 15, 30, and 45 min etching intervals, is able to produce different surface geometries with linearly increasing heights of approximately 280, 430, and 610 nm, respectively. After incubation on these surfaces with Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacterial cells it was established that smaller, more densely packed pillars exhibited the greatest bactericidal activity with 85% and 89% inactivation of bacterial cells, respectively. The decrease in the pillar heights, pillar cap diameter and inter-pillar spacing corresponded to a subsequent decrease in the number of attached cells for both bacterial species.

  3. Antibacterial activity of selected Malaysian honey

    PubMed Central

    2013-01-01

    Background Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa. Methods Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were performed for semi-quantitative evaluation. Agar well diffusion assay was used to investigate peroxide and non-peroxide activities of honey. Results The results showed that gelam honey possessed lowest MIC value against S. aureus with 5% (w/v) MIC and MBC of 6.25% (w/v). Highest MIC values were shown by pineapple honey against E. coli and P. aeruginosa as well as acacia honey against E. coli with 25% (w/v) MIC and 50% (w/v) MBC values. Agar inhibition assay showed kelulut honey to possess highest total antibacterial activity against S. aureus with 26.49 equivalent phenol concentrations (EPC) and non-peroxide activity of 25.74 EPC. Lowest antibacterial activity was observed in acacia honey against E. coli with total activity of 7.85 EPC and non-peroxide activity of 7.59 EPC. There were no significant differences (p > 0.05) between the total antibacterial activities and non-peroxide activities of Malaysian honey. The intraspecific correlation between MIC and EPC of E. coli (r = -0.8559) was high while that between MIC and EPC of P. aeruginosa was observed to be moderate (r = -0.6469). S. aureus recorded a smaller correlation towards the opposite direction (r = 0.5045). In contrast, B.cereus showed a very low intraspecific correlation between MIC and EPC (r = -0.1482). Conclusions Malaysian honey, namely gelam, kelulut and tualang, have high antibacterial potency derived from total and non-peroxide activities, which implies that both peroxide and other constituents are mutually important as contributing factors to the antibacterial property of honey. PMID:23758747

  4. Antibacterial activity of selected Malaysian honey.

    PubMed

    Zainol, Mohd Izwan; Mohd Yusoff, Kamaruddin; Mohd Yusof, Mohd Yasim

    2013-06-10

    Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were performed for semi-quantitative evaluation. Agar well diffusion assay was used to investigate peroxide and non-peroxide activities of honey. The results showed that gelam honey possessed lowest MIC value against S. aureus with 5% (w/v) MIC and MBC of 6.25% (w/v). Highest MIC values were shown by pineapple honey against E. coli and P. aeruginosa as well as acacia honey against E. coli with 25% (w/v) MIC and 50% (w/v) MBC values. Agar inhibition assay showed kelulut honey to possess highest total antibacterial activity against S. aureus with 26.49 equivalent phenol concentrations (EPC) and non-peroxide activity of 25.74 EPC. Lowest antibacterial activity was observed in acacia honey against E. coli with total activity of 7.85 EPC and non-peroxide activity of 7.59 EPC. There were no significant differences (p > 0.05) between the total antibacterial activities and non-peroxide activities of Malaysian honey. The intraspecific correlation between MIC and EPC of E. coli (r = -0.8559) was high while that between MIC and EPC of P. aeruginosa was observed to be moderate (r = -0.6469). S. aureus recorded a smaller correlation towards the opposite direction (r = 0.5045). In contrast, B.cereus showed a very low intraspecific correlation between MIC and EPC (r = -0.1482). Malaysian honey, namely gelam, kelulut and tualang, have high antibacterial potency derived from total and non-peroxide activities, which implies that both peroxide and other constituents are mutually important as contributing factors to the antibacterial property of honey.

  5. Antibacterial activities of the methanol extracts, fractions and compounds from Fagara tessmannii.

    PubMed

    Tankeo, Simplice B; Damen, Francois; Awouafack, Maurice D; Mpetga, James; Tane, Pierre; Eloff, Jacobus N; Kuete, Victor

    2015-07-01

    Fagara tessmannii is a shrub of the African rainforests used to treat bacterial infections, cancers, swellings and inflammation. In the present study, the methanol extract from the leaves (FTL), bark (FTB), and roots (FTR) of this plant as well as fractions (FTR1-5) and compounds isolated from FTR namely β-sitosterol-3-O-β-d-glucopyranoside (1), nitidine chloride (2) and buesgenine (3), were tested for their antimicrobial activities against a panel of Gram-negative bacteria including multidrug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the above samples; Column chromatography was used for the fractionation and purification of the roots extract whilst the chemical structures of compounds were determined using spectroscopic techniques. Results of the MIC determinations indicated that the crude extracts from the roots as well as fraction FTRa4 were active on all the 26 tested bacterial strains. MIC values below 100µg/mL were obtained with roots, leaves and bark extract respectively against 30.8%, 15.4% and 11.5% tested bacteria. The lowest MIC value below of 8µg/mL was obtained with extract from the roots against Escherichia coli MC100 strain. The lowest MIC value of 4µg/mL was also obtained with compound 3 against E. coli AG102 and Klebsiella pneumoniae ATCC11296 CONCLUSIONS: The present study demonstrates that F. tessmannii is a potential source of antimicrobial drugs to fight against MDR bacteria. Benzophenanthrine alkaloids 2 and 3 are the main antibacterial consituents of the roots of the plant. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Antimicrobial activities of some Thai traditional medical longevity formulations from plants and antibacterial compounds from Ficus foveolata.

    PubMed

    Meerungrueang, W; Panichayupakaranant, P

    2014-09-01

    Medicinal plants involved in traditional Thai longevity formulations are potential sources of antimicrobial compounds. To evaluate the antimicrobial activities of some extracts from medicinal plants used in traditional Thai longevity formulations against some oral pathogens, including Streptococcus pyogenes, Streptococcus mitis, Streptococcus mutans, and Candida albicans. An extract that possessed the strongest antimicrobial activity was fractionated to isolate and identify the active compounds. Methanol and ethyl acetate extracts of 25 medicinal plants used as Thai longevity formulations were evaluated for their antimicrobial activity using disc diffusion (5 mg/disc) and broth microdilution (1.2-2500 µg/mL) methods. The ethyl acetate extract of Ficus foveolata Wall. (Moraceae) stems that exhibited the strongest antibacterial activity was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract of F. foveolata showed the strongest antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 19.5-39.0 and 39.0-156.2 µg/mL, respectively. On the basis of an antibacterial assay-guided isolation, seven antibacterial compounds, including 2,6-dimethoxy-1,4-benzoquinone (1), syringaldehyde (2), sinapaldehyde (3), coniferaldehyde (4), 3β-hydroxystigmast-5-en-7-one (5), umbelliferone (6), and scopoletin (7), were purified. Among these isolated compounds, 2,6-dimethoxy-1,4-benzoquinone (1) exhibited the strongest antibacterial activities against S. pyogenes, S. mitis, and S. mutans with MIC values of 7.8, 7.8, and 15.6 µg/mL, and MBC values of 7.8, 7.8, and 31.2 µg/mL, respectively. In addition, this is the first report of these antibacterial compounds in the stems of F. foveolata.

  7. Susceptibility of Meningococcal Strains Responsible for Two Serogroup B Outbreaks on U.S. University Campuses to Serum Bactericidal Activity Elicited by the MenB-4C Vaccine.

    PubMed

    Rossi, Raffaella; Beernink, Peter T; Giuntini, Serena; Granoff, Dan M

    2015-12-01

    In 2013 and 2014, two U.S. universities had meningococcal serogroup B outbreaks (a total of 14 cases) caused by strains from two different clonal complexes. To control the outbreaks, students were immunized with a serogroup B meningococcal vaccine (Novartis) that was not yet licensed in the United States. The vaccine (referred to as MenB-4C) contains four components capable of eliciting bactericidal activity. Both outbreak strains had high expression levels of two of the vaccine antigens (subfamily B factor H binding protein [FHbp] and neisserial heparin binding antigen [NHba]); the university B outbreak strain also had moderate expression of a third antigen, NadA. We investigated the bactericidal activity of sera from mice immunized with FHbp, NHba, or NadA and sera from MenB-4C-immunized infant macaques and an adult human. The postimmunization bactericidal activity of the macaque or human serum against isolates from university B with FHbp identification (ID) 1 that exactly matched the vaccine FHbp sequence variant was 8- to 21-fold higher than that against isolates from university A with FHbp ID 276 (96% identity to the vaccine antigen). Based on the bactericidal activity of mouse antisera to FHbp, NadA, or NHba and macaque or human postimmunization serum that had been depleted of anti-FHbp antibody, the bactericidal activity against both outbreak strains largely or entirely resulted from antibodies to FHbp. Thus, despite the high level of strain expression of FHbp from a subfamily that matched the vaccine antigen, there can be large differences in anti-FHbp bactericidal activity induced by MenB-4C vaccination. Further, strains with moderate to high NadA and/or NHba expression can be resistant to anti-NadA or anti-NHba bactericidal activity elicited by MenB-4C vaccination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Time-kill kinetic analysis of antimicrobial chemotherapy based on hydrogen peroxide photolysis against Streptococcus mutans biofilm.

    PubMed

    Shirato, Midori; Nakamura, Keisuke; Kanno, Taro; Lingström, Peter; Niwano, Yoshimi; Örtengren, Ulf

    2017-08-01

    A recently developed antimicrobial technique utilizing hydroxyl radicals generated by hydrogen peroxide (H 2 O 2 ) photolysis represents a promising new therapy for preventing and treating dental caries. The present study compared the antimicrobial time-kill kinetics of H 2 O 2 photolysis, conventional antiseptics, and antimicrobial photodynamic therapy (aPDT) against biofilm-forming Streptococcus mutans (cariogenic bacteria) grown on hydroxyapatite disks. H 2 O 2 photolysis was performed by irradiating the biofilm immersed in 3% H 2 O 2 with 365-nm light-emitting diode (LED) light at an irradiance of 1000mW/cm 2 for up to 1.5min. Antiseptic treatments consisted of 0.2% chlorhexidine gluconate, 0.5% povidone-iodine, and 3% H 2 O 2 . The biofilm was immersed in each antiseptic for up to 4min. aPDT was performed by irradiating the biofilm immersed in 100μM methylene blue or toluidine blue O with 655-nm laser light at 1000mW/cm 2 for up to 4min. Based on the time-kill assay, the decimal reduction value (D-value) of each treatment was determined. With a D-value of 0.06min, H 2 O 2 photolysis exhibited the highest bactericidal effect against biofilm-forming S. mutans. In contrast, antiseptics and aPDT exerted a slower bactericidal effect, with D-values of 0.9-2.7min. In conclusion, the antimicrobial technique based on H 2 O 2 photolysis using 365-nm LED represents a strong adjunctive chemotherapy for dental caries treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Studies on the antibacterial activity of two new acylureidopenicillins, mezlocillin and azlocillin.

    PubMed

    Soares, L A; Trabulsi, L R

    1979-01-01

    The antimicrobial activity of 6-[(R)-2[3-methylsulfonyl-2-oxo-imidazolidine-1-carboxamido]-2-phenylacetamido]-penicillanic acid sodium salt (mezlocillin, Baypen) and 6-[(R)-2-(2-oxo-imidazolidine-1-carboxamido)-2-phenylacetamido-a1-penicillanic acid sodium salt (azlocillin, Securopen) was measured against 545 clinical isolates, including gram-negative rods, gram-positive cocci and Bacteroides. Mezlocillin was more effective than azlocillin against the majority of the strains studied, but azlocillin was more effective against Pseudomonas strains. The minimal bactericidal concentration was equal to the minimal inhibitory concentration for the strains tested, but it was twice or four-fold as high for Staphylococcus.

  10. Microarray Bactericidal Testing of Natural Products Against Yersinia intermedia and Bacillus anthracis

    DTIC Science & Technology

    2002-01-01

    Based Preservation Systems and Probiotic Bacteria. In Food Microbiology: Fundamentals and Frontiers. M. P. Doyle, L.R. Beuchat and T.J. Montville...Microarray Bactericidal Testing of Natural Products Against Yersinia intermedia and Bacillus anthracis I.J. Fry1, F.K. Lee2, A. Turetsky2 and J.J...effective protection against biological warfare agents (BWA’s), natural products with a historical record of bactericidal efficacy such as

  11. Antibacterial Effects of Glycyrrhetinic Acid and Its Derivatives on Staphylococcus aureus

    PubMed Central

    Oyama, Kentaro; Kawada-Matsuo, Miki; Oogai, Yuichi; Hayashi, Tetsuya; Nakamura, Norifumi; Komatsuzawa, Hitoshi

    2016-01-01

    Staphylococcus aureus is a major pathogen in humans and causes serious problems due to antibiotic resistance. We investigated the antimicrobial effect of glycyrrhetinic acid (GRA) and its derivatives against 50 clinical S. aureus strains, including 18 methicillin-resistant strains. The minimum inhibitory concentrations (MICs) of GRA, dipotassium glycyrrhizate, disodium succinoyl glycyrrhetinate (GR-SU), stearyl glycyrrhetinate and glycyrrhetinyl stearate were evaluated against various S. aureus strains. Additionally, we investigated the bactericidal effects of GRA and GR-SU against two specific S. aureus strains. DNA microarray analysis was also performed to clarify the mechanism underlying the antibacterial activity of GR-SU. We detected the antimicrobial activities of five agents against S. aureus strains. GRA and GR-SU showed strong antibacterial activities compared to the other three agents tested. At a higher concentration (above 2x MIC), GRA and GR-SU showed bactericidal activity, whereas at a concentration of 1x MIC, they showed a bacteriostatic effect. Additionally, GRA and GR-SU exhibited a synergistic effect with gentamicin. The expression of a large number of genes (including transporters) and metabolic factors (carbohydrates and amino acids) was altered by the addition of GR-SU, suggesting that the inhibition of these metabolic processes may influence the degree of the requirement for carbohydrates or amino acids. In fact, the requirement for carbohydrates or amino acids was increased in the presence of either GRA or GR-SU. GRA and GR-SU exhibited strong antibacterial activity against several S. aureus strains, including MRSA. This activity may be partly due to the inhibition of several pathways involved in carbohydrate and amino acid metabolism. PMID:27820854

  12. High Concentrations of Sodium Chloride Improve Microbicidal Activity of Ibuprofen against Common Cystic Fibrosis Pathogens.

    PubMed

    Muñoz, Adrián J; Alasino, Roxana V; Garro, Ariel G; Heredia, Valeria; García, Néstor H; Cremonezzi, David C; Beltramo, Dante M

    2018-05-17

    Ibuprofen (IBU-H), a widely used anti-inflammatory, also shows a marked antimicrobial effect against several bacterial species, including those involved in cystic fibrosis such as Pseudomona aeruginosa , methicillin resistant Staphylococcus aureus and Burkholderia cepacia complex. Additionally, our results show significant synergy between water soluble Na-ibuprofen (IBU-Na) and ionic strength. Salt concentrations above 0.5 M modify the zeta potential promoting the action of Na-IBU; thus, with 1 M sodium chloride, IBU-Na is ten times more efficient than in the absence of ionic strength, and the minimum effective contact time is reduced from hours to minutes. In short time periods, where neither IBU-Na nor controls with 1 M NaCl show activity, the combination of both leads to a reduction in the bacterial load. We also analyzed whether the changes caused by salt on the bacterial membrane also promoted the activity of other microbicide compounds used in cystic fibrosis like gentamicin, tobramycin and phosphomycin. The results show that the presence of ionic strength only enhanced the bactericidal activity of the amphipathic molecule of IBU-Na. In this respect, the effect of saline concentration was also reflected in the surface properties of IBU-Na, where, in addition to the clear differences observed between 145 mM and 1 M, singular behaviors were also found, different in each condition. The combination of anti-inflammatory activity and this improved bactericidal effect of Na-IBU in hypertonic solution provides a new alternative for the treatment of respiratory infections of fibrotic patients based on known and widely used compounds.

  13. Pharmacokinetics (PK), Pharmacodynamics (PD), and PK-PD Integration of Danofloxacin in Sheep Biological Fluids

    PubMed Central

    Aliabadi, F. Shojaee; Landoni, M. F.; Lees, P.

    2003-01-01

    The fluoroquinolone antimicrobial drug danofloxacin was administered to sheep intravenously (i.v.) and intramuscularly (i.m.) at a dose of 1.25 mg/kg of body weight in a two-period crossover study. The pharmacokinetic properties of danofloxacin in serum, inflamed tissue cage fluid (exudate), and noninflamed tissue cage fluid (transudate) were established by using a tissue cage model. The in vitro and ex vivo activities of danofloxacin in serum, exudate, and transudate against a pathogenic strain of Mannheimia haemolytica were established. Integration of in vivo pharmacokinetic data with the in vitro MIC provided mean values for the area under the curve (AUC)/MIC for serum, exudate, and transudate of 60.5, 85.6, and 45.7 h, respectively, after i.v. dosing and 55.9, 77.9, and 49.1 h, respectively, after i.m. dosing. After i.m. dosing, the maximum concentration/MIC ratios for serum, exudate, and transudate were 10.8, 3.0, and 1.6, respectively. The ex vivo growth inhibition data after i.m. dosing were fitted to the inhibitory sigmoid Emax equation to provide the values of AUC/MIC required to produce bacteriostasis, bactericidal activity, and elimination of bacteria. The respective values for serum were 17.8, 20.2, and 28.7 h, and slightly higher values were obtained for transudate and exudate. It is proposed that use of these data might provide a novel approach to the rational design of dosage schedules. PMID:12543670

  14. Silver-Ion-Exchanged Nanostructured Zeolite X as Antibacterial Agent with Superior Ion Release Kinetics and Efficacy against Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Chen, Shaojiang; Popovich, John; Iannuzo, Natalie; Haydel, Shelley E; Seo, Dong-Kyun

    2017-11-15

    As antibiotic resistance continues to be a major public health problem, antimicrobial alternatives have become critically important. Nanostructured zeolites have been considered as an ideal host for improving popular antimicrobial silver-ion-exchanged zeolites, because with very short diffusion path lengths they offer advantages in ion diffusion and release over their conventional microsized zeolite counterparts. Herein, comprehensive studies are reported on materials characteristics, silver-ion release kinetics, and antibacterial properties of silver-ion-exchanged nanostructured zeolite X with comparisons to conventional microsized silver-ion-exchanged zeolite (∼2 μm) as a reference. The nanostructured zeolites are submicrometer-sized aggregates (100-700 nm) made up of primary zeolite particles with an average primary particle size of 24 nm. The silver-ion-exchanged nanostructured zeolite released twice the concentration of silver ions at a rate approximately three times faster than the reference. The material exhibited rapid antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values ranging from 4 to 16 μg/mL after 24 h exposure in various growth media and a minimum bactericidal concentration (MBC; >99.9% population reduction) of 1 μg/mL after 2 h in water. While high concentrations of silver-ion-exchanged nanostructured zeolite X were ineffective at reducing MRSA biofilm cell viability, efficacy increased at lower concentrations. In consideration of potential medical applications, cytotoxicity of the silver-ion-exchanged nanostructured zeolite X was also investigated. After 4 days of incubation, significant reduction in eukaryotic cell viability was observed only at concentrations 4-16-fold greater than the 24 h MIC, indicating low cytotoxicity of the material. Our results establish silver-ion-exchanged nanostructured zeolites as an effective antibacterial material against dangerous antibiotic-resistant bacteria.

  15. Antimicrobial evaluation of diterpenes from Copaifera langsdorffii oleoresin against periodontal anaerobic bacteria.

    PubMed

    Souza, Ariana B; de Souza, Maria G M; Moreira, Maísa A; Moreira, Monique R; Furtado, Niege A J C; Martins, Carlos H G; Bastos, Jairo K; dos Santos, Raquel A; Heleno, Vladimir C G; Ambrosio, Sergio Ricardo; Veneziani, Rodrigo C S

    2011-11-18

    The antimicrobial activity of four labdane-type diterpenes isolated from the oleoresin of Copaifera langsdorffii as well as of two commercially available diterpenes (sclareol and manool) was investigated against a representative panel of microorganisms responsible for periodontitis. Among all the evaluated compounds, (-)-copalic acid (CA) was the most active, displaying a very promising MIC value (3.1 µg mL-1; 10.2 µM) against the key pathogen (Porphyromonas gingivalis) involved in this infectious disease. Moreover, CA did not exhibit cytotoxicity when tested in human fibroblasts. Time-kill curve assays performed with CA against P. gingivalis revealed that this compound only inhibited the growth of the inoculums in the first 12 h (bacteriostatic effect). However, its bactericidal effect was clearly noted thereafter (between 12 and 24 h). It was also possible to verify an additive effect when CA and chlorhexidine dihydrochloride (CHD, positive control) were associated at their MBC values. The time curve profile resulting from this combination showed that this association needed only six hours for the bactericidal effect to be noted. In summary, CA has shown to be an important metabolite for the control of periodontal diseases. Moreover, the use of standardized extracts based on copaiba oleoresin with high CA contents can be an important strategy in the development of novel oral care products.

  16. [Experimental study of bacteriostatic activity of Chinese herbal medicines on primary cariogenic bacteria in vitro].

    PubMed

    Wang, S; Fan, M; Bian, Z

    2001-09-01

    To screen some Chinese herbal medicines for their inhibitory activity on cariogenic bacteria, and investigate their active ingredients, and measure their minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC). Active components were isolated from every tested Chinese herbal medicine by means of aqueous extraction and ethanolic extraction. Berberine was purified from Coptis chinensis Fra. Disk agar diffusion method was employed in screening herbs with inhibiting effect on cariogenic bacteria. MIC and MBC were determined by broth dilution method. Against Streptococcus mutans Ingbritt, MBCs of Magnolia officinalis ethanolic extract, Berberine, Coptis chinensis Fra aqueous extract and Coptis chinensis Fra ethanolic extract were 0.488, 0.625, 7.800 and 1.950 g/L respectively. Against Streptococcus sobrinus 6715, MBCs of Magnolia extract, Coptis chinensis Fra ethanolic extract, Rhus chinensis Mill ethanolic extract and Phellodendron chinen ethanolic extract were 0.488, 0.625, 1.950, 3.900, 3.900 and 3.900 g/L respectively. Against Actinomyces viscosus ATCC 19246, MBCs of Berberine, Coptis chinensis Fra aqueous extract, Coptis chinensis Fra ethanolic extract, Rheum palmatum L aqueous extract and Rheum palmatum L ethanolic extract were 1.250, 3.900, 3.900, 15.600 and 31.250 g/L respectively. Magnolia officinalis, Coptis chinensis Fran, Rheum palmatum L aqueous extracts exhibit strong inhibition on cariogenic bacteria. Magnolia officinalis ethanolic extract has the strongest bactericidal effects on Streptococcus mutans and Streptococcus sobrinus.

  17. Evaluation of medicinal plants and colloidal silver efficiency against Vibrio parahaemolyticus infection in Litopenaeus vannamei cultured at low salinity.

    PubMed

    Morales-Covarrubias, María Soledad; García-Aguilar, Noemí; Bolan-Mejía, María Del; Puello-Cruz, Ana Carmela

    2016-11-22

    In shrimp aquaculture, reduction in the use of synthetic antibiotics is a priority due to the high incidence of resistant bacteria (Vibrio) in the white shrimp Litopenaeus vannamei. An increasing number of studies show bactericidal activity of natural treatments in aquaculture. The effectiveness of neem (Azadirachta indica) and oregano (Lippia berlandieri) aqueous extracts and colloidal silver against V. parahaemolyticus were evaluated in low salinity shrimp culture. Results show that aqueous extracts of oregano and neem each present a minimum inhibitory concentration (MIC) of 62.50 mg ml-1 and inhibitory halos of 12.0 to 19.0 mm. Colloidal silver gave a MIC of 2 mg ml-1, and the inhibitory halos were found to be between 11.8 and 18.8 mm, depending on treatment concentrations. An in vivo challenge test was conducted on white shrimp postlarvae cultured at low salinity (5 practical salinity units, PSU), and a significant increase (p < 0.05) in survival was demonstrated in the presence of the aqueous extracts (oregano 64%, neem 76% and colloidal silver 90%), when compared to the control (0%) in the challenge test. However, no significant differences were observed between treatments, suggesting that they all act as alternative bactericidal source agents against V. parahaemolyticus infections for L. vannamei postlarvae when cultured at 5 PSU.

  18. Rapid Eradication of Listeria monocytogenes by Moxifloxacin in a Murine Model of Central Nervous System Listeriosis▿

    PubMed Central

    Grayo, Solène; Lott-Desroches, Marie-Catherine; Dussurget, Olivier; Respaud, Renaud; Fontanet, Arnaud; Join-Lambert, Olivier; Singlas, Eric; Le Monnier, Alban

    2008-01-01

    Listeriosis is a rare but life-threatening infection. A favorable outcome is greatly aided by early administration of antibiotics with rapid bactericidal activity against Listeria monocytogenes. Moxifloxacin, a new-generation fluoroquinolone with extended activity against gram-positive bacteria, has proved its effectiveness in vitro against intracellular reservoirs of bacteria. The efficacies of moxifloxacin and amoxicillin were compared in vivo by survival curve assays and by studying the kinetics of bacterial growth in blood and organs in a murine model of central nervous system (CNS) listeriosis. We combined pharmacokinetic and pharmacodynamic approaches to correlate the observed efficacy in vivo with plasma and tissue moxifloxacin concentrations. Death was significantly delayed for animals treated with a single dose of moxifloxacin compared to a single dose of amoxicillin. We observed rapid bacterial clearance from blood and organs of animals treated with moxifloxacin. The decrease in the bacterial counts in blood and brain correlated with plasma and cerebral concentrations of antibiotic. Moxifloxacin peaked in the brain at 1.92 ± 0.32 μg/g 1 hour after intraperitoneal injection. This suggests that moxifloxacin rapidly crosses the blood-brain barrier and diffuses into the cerebral parenchyma. Moreover, no resistant strains were selected during in vivo experiments. Our results indicate that moxifloxacin combines useful pharmacokinetic properties and rapid bactericidal activity and that it may be a valuable alternative for the treatment of CNS listeriosis. PMID:18573932

  19. Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gram-Positive Staphylococci.

    PubMed

    Boda, Sunil Kumar; Broda, Janine; Schiefer, Frank; Weber-Heynemann, Josefine; Hoss, Mareike; Simon, Ulrich; Basu, Bikramjit; Jahnen-Dechent, Willi

    2015-07-01

    The emergence of multidrug resistant bacteria, especially biofilm-associated Staphylococci, urgently requires novel antimicrobial agents. The antibacterial activity of ultrasmall gold nanoparticles (AuNPs) is tested against two gram positive: S. aureus and S. epidermidis and two gram negative: Escherichia coli and Pseudomonas aeruginosa strains. Ultrasmall AuNPs with core diameters of 0.8 and 1.4 nm and a triphenylphosphine-monosulfonate shell (Au0.8MS and Au1.4MS) both have minimum inhibitory concentration (MIC) and minimum bactericidal concentration of 25 × 10(-6) m [Au]. Disc agar diffusion test demonstrates greater bactericidal activity of the Au0.8MS nanoparticles over Au1.4MS. In contrast, thiol-stabilized AuNPs with a diameter of 1.9 nm (AuroVist) cause no significant toxicity in any of the bacterial strains. Ultrasmall AuNPs cause a near 5 log bacterial growth reduction in the first 5 h of exposure, and incomplete recovery after 21 h. Bacteria show marked membrane blebbing and lysis in biofilm-associated bacteria treated with ultrasmall AuNP. Importantly, a twofold MIC dosage of Au0.8MS and Au1.4MS each cause around 80%-90% reduction in the viability of Staphylococci enveloped in biofilms. Altogether, this study demonstrates potential therapeutic activity of ultrasmall AuNPs as an effective treatment option against staphylococcal infections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Visualization of the Charcoal Agar Resazurin Assay for Semi-quantitative, Medium-throughput Enumeration of Mycobacteria.

    PubMed

    Gold, Ben; Roberts, Julia; Ling, Yan; Lopez Quezada, Landys; Glasheen, Jou; Ballinger, Elaine; Somersan-Karakaya, Selin; Warrier, Thulasi; Nathan, Carl

    2016-12-14

    There is an urgent need to discover and progress anti-infectives that shorten the duration of tuberculosis (TB) treatment. Mycobacterium tuberculosis, the etiological agent of TB, is refractory to rapid and lasting chemotherapy due to the presence of bacilli exhibiting phenotypic drug resistance. The charcoal agar resazurin assay (CARA) was developed as a tool to characterize active molecules discovered by high-throughput screening campaigns against replicating and non-replicating M. tuberculosis. Inclusion of activated charcoal in bacteriologic agar medium helps mitigate the impact of compound carry-over, and eliminates the requirement to pre-dilute cells prior to spotting on CARA microplates. After a 7-10 day incubation period at 37 °C, the reduction of resazurin by mycobacterial microcolonies growing on the surface of CARA microplate wells permits semi-quantitative assessment of bacterial numbers via fluorometry. The CARA detects approximately a 2-3 log10 difference in bacterial numbers and predicts a minimal bactericidal concentration leading to ≥99% bacterial kill (MBC≥99). The CARA helps determine whether a molecule is active on bacilli that are replicating, non-replicating, or both. Pilot experiments using the CARA facilitate the identification of which concentration of test agent and time of compound exposure require further evaluation by colony forming unit (CFU) assays. In addition, the CARA can predict if replicating actives are bactericidal or bacteriostatic.

  1. Activity of Brazilian propolis against Aeromonas hydrophila and its effect on Nile tilapia growth, hematological and non-specific immune response under bacterial infection.

    PubMed

    Orsi, Ricardo O; Santos, Vivian G Dos; Pezzato, Luiz E; Carvalho, Pedro L P F DE; Teixeira, Caroline P; Freitas, Jakeline M A; Padovani, Carlos R; Sartori, Maria M P; Barros, Margarida M

    2017-01-01

    The effect of the ethanolic extract of propolis (EEP) on Aeromonas hydrophila was analyzed by determination of minimum inhibitory concentration (MIC). Then, the effects of crude propolis powder (CPP) on growth, hemato-immune parameters of the Nile tilapia, as well as its effects on resistance to A. hydrophila challenge were investigated. The CPP (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0%) was added to the diet of 280 Nile tilapia (50.0 ± 5.7 g fish-1). Hemato-immune parameters were analyzed before and after the bacterial challenge. Red blood cell, hematocrit, hemoglobin, mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), and hydrogen peroxide (H2O2) and nitric oxide (NO) were evaluated. The MIC of the EEP was 13% (v/v) with a bactericidal effect after 24 hours. Growth performance was significantly lower for those fish fed diets containing 2.5 and 3% of CPP compared to the control diet. Differences in CPP levels affected fish hemoglobin, neutrophils number and NO following the bacterial challenge. For others parameters no significant differences were observed. Our results show that although propolis has bactericidal properties in vitro, the addition of crude propolis powder to Nile tilapia extruded diets does not necessarily lead to an improvement of fish health.

  2. Morphological bactericidal fast-acting effects of peracetic acid, a high-level disinfectant, against Staphylococcus aureus and Pseudomonas aeruginosa biofilms in tubing.

    PubMed

    Chino, T; Nukui, Y; Morishita, Y; Moriya, K

    2017-01-01

    The bactericidal effect of disinfectants against biofilms is essential to reduce potential endoscopy-related infections caused by contamination. Here, we investigated the bactericidal effect of a high-level disinfectant, peracetic acid (PAA), against Staphylococcus aureus and Pseudomonas aeruginosa biofilm models in vitro. S. aureus and P. aeruginosa biofilms were cultured at 35 °C for 7 days with catheter tubes. The following high-level disinfectants (HLDs) were tested: 0.3% PAA, 0.55% ortho-phthalaldehyde (OPA), and 2.0% alkaline-buffered glutaraldehyde (GA). Biofilms were exposed to these agents for 1-60 min and observed after 5 min and 30 min by transmission and scanning electron microscopy. A Student's t test was performed to compare the exposure time required for bactericidal effectiveness of the disinfectants. PAA and GA were active within 1 min and 5 min, respectively, against S. aureus and P. aeruginosa biofilms. OPA took longer than 10 min and 30 min to act against S. aureus and P. aeruginosa biofilms, respectively ( p  < 0.01). Treatment with PAA elicited changes in cell shape after 5 min and structural damage after 30 min. Amongst the HLDs investigated, PAA elicited the most rapid bactericidal effects against both biofilms. Additionally, treatment with PAA induced morphological alterations in the in vitro biofilm models, suggesting that PAA exerts fast-acting bactericidal effects against biofilms associated with endoscopy-related infections. These findings indicate that the exposure time for bactericidal effectiveness of HLDs for endoscope reprocessing in healthcare settings should be reconsidered.

  3. Approach to Cultural Asset Preservation "Enzyme Filter Media Has Bactericidal Effect and Bacteriostasis Effect in Air Phase"

    NASA Astrophysics Data System (ADS)

    Isomae, Kazuro

    Enzyme air-filter media according to the bactericidal effect as an environmental green technology acquired the high appraisal and the result in the domestic and foreign clean room and the air conditioning field. The mechanism of this enzyme technology, safety, and the bactericidal effect in the real environment are discussed by using the electron microscopic picture etc. And it proposes to apply these technologies to the cultural asset preservation.

  4. Antioxidant and antimicrobial activities of solvent fractions of Vernonia cinerea (L.) Less leaf extract.

    PubMed

    Sonibare, Mubo A; Aremu, Oluwafunmilola T; Okorie, Patricia N

    2016-06-01

    Vernonia cinerea (L.) Less is used in folk medicine as a remedy for various diseases. The present study reports antioxidant and antimicrobial activities of solvent fractions of Vernonia cinerea. The antioxidant properties of solvent fractions of V. cinerea were evaluated by determining radicals scavenging activity, total flavonoid and phenolic contents measured with the 2,2-diphenyl-1-picryl hydrazyl (DPPH) test, the aluminum chloride and the Folin-ciocalteau methods, respectively. Antimicrobial activities were tested against human pathogenic microorganisms using agar diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of each active extract were determined. The ethyl acetate fraction having the IC50 value of 6.50 µg/mL demonstrated comparable DPPH radical-scavenging activity with standard antioxidants, gallic acid and quercetin included in the study. All fractions displayed moderate antimicrobial potential against the tested pathogens with the zone of inhibition that ranged from 9.0 to 13.5 mm. The MIC (1.56 mg/mL) and MBC (3.13 mg/mL) indicated highest susceptibility of Candida albicans in all fractions. The results of this study showed that the solvent fractions of V. cinerea possess antioxidant and antimicrobial activities, hence justifying the folkloric use of the plant for the treatment of various ailments in traditional medicine.

  5. Antibacterial and antibiofilm effects of iron chelators against Prevotella intermedia.

    PubMed

    Moon, Ji-Hoi; Kim, Cheul; Lee, Hee-Su; Kim, Sung-Woon; Lee, Jin-Yong

    2013-09-01

    Prevotella intermedia, a major periodontopathogen, has been shown to be resistant to many antibiotics. In the present study, we examined the effect of the FDA-approved iron chelators deferoxamine (DFO) and deferasirox (DFRA) against planktonic and biofilm cells of P. intermedia in order to evaluate the possibility of using these iron chelators as alternative control agents against P. intermedia. DFRA showed strong antimicrobial activity (MIC and MBC values of 0.16 mg ml(-1)) against planktonic P. intermedia. At subMICs, DFRA partially inhibited the bacterial growth and considerably prolonged the bacterial doubling time. DFO was unable to completely inhibit the bacterial growth in the concentration range tested and was not bactericidal. Crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that DFRA significantly decreased the biofilm-forming activity as well as the biofilm formation, while DFO was less effective. DFRA was chosen for further study. In the ATP-bioluminescent assay, which reflects viable cell counts, subMICs of DFRA significantly decreased the bioactivity of biofilms in a concentration-dependent manner. Under the scanning electron microscope, P. intermedia cells in DFRA-treated biofilm were significantly elongated compared to those in untreated biofilm. Further experiments are necessary to show that iron chelators may be used as a therapeutic agent for periodontal disease.

  6. Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus.

    PubMed

    Pereda-Miranda, Rogelio; Kaatz, Glenn W; Gibbons, Simon

    2006-03-01

    Twenty-two convolvulaceous oligosaccharides selected from the tricolorin (1-7), scammonin (8, 9), and orizabin (10-22) series were evaluated for activity against a panel of Staphylococcus aureus strains possessing or lacking specific efflux pumps. The minimum inhibitory concentrations (MIC values) for most of the amphipatic compounds ranged from 4 to 32 microg/mL against XU-212 (possessing the TetK multidrug efflux pump) and SA-1199B (overexpressing the NorA multidrug efflux pump), compared with 64 and 0.25 microg/mL, respectively, for tetracycline. This activity was shown to be bactericidal. Two microbiologically inactive members of the orizabin series (10, 20) increased norfloxacin susceptibility of strain SA-1199B. At low concentrations, compound 10 was a more potent inhibitor of multidrug pump-mediated EtBr efflux than reserpine. The wide range of antimicrobial activity displayed by these compounds is an example of synergy between related components occurring in the same medicinal crude drug extract, i.e., microbiologically inactive components disabling a resistance mechanism, potentiating the antibiotic properties of the active substances. These results provide an insight into the antimicrobial potential of these complex macrocyclic lactones and open the possibility of using these compounds as starting points for the development of potent inhibitors of S. aureus multidrug efflux pumps.

  7. The role of bioactive substances in controlling foodborne pathogens derived from Metasequoia glyptostroboides Miki ex Hu.

    PubMed

    Bajpai, Vivek K; Na, Minkyun; Kang, Sun Chul

    2010-07-01

    In an attempt to isolate bioactive substances, ethyl acetate cone extract of Metasequoia glyptostroboides was subjected to a column chromatographic analysis that resulted in isolation of an abietane type diterpenoid, taxoquinone. Its structure was elucidated by spectroscopic means. In further, taxoquinone showed potential antibacterial effect as diameters of zones of inhibition against foodborne pathogenic bacteria such as Listeria monocytogenes ATCC 19166, Salmonella typhimurium KCTC 2515, Salmonella enteritidis KCTC 2021, Escherichia coli ATCC 8739, E. coli O157:H7 ATCC 43888, Enterobacter aerogenes KCTC2190, Staphylococcus aureus ATCC 6538 and S. aureus KCTC 1916, which were found in the range of 10.6-15.8mm. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of taxoquinone against the employed bacterial pathogens were found in the range of 62.5-250 and 125-500 microg/ml. Also the compound had strong antibacterial effect on the viable counts of the tested bacteria. Further, scanning electron microscopic study demonstrated potential detrimental effect of taxoquinone on the morphology of E. coli ATCC 8739. These findings indicate that bioactive compound taxoquinone present in M. glyptostroboides could be used as a promising antibacterial agent in food industry to inhibit the growth of certain important foodborne pathogens. 2010 Elsevier Ltd. All rights reserved.

  8. Modification of TiO(2) nanotube surfaces by electro-spray deposition of amoxicillin combined with PLGA for bactericidal effects at surgical implantation sites.

    PubMed

    Lee, Jung-Hwan; Moon, Seung-Kyun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2013-01-01

    To fabricate the antibiotic-releasing coatings on TiO(2) nanotube surfaces for wide applications of implant and bone plate in medical and dental surgery, the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures was found. FE-SEM, ESD and FT-IR were used for confirming deposition of amoxicillin/PLGA on the TiO(2) surface. Also, the elution of amoxicillin/PLGA in a TiO(2) nanotube surface was measured by a UV-VIS spectrophotometer. The bactericidal effect of amoxicillin on the TiO(2) nanotube surface was evaluated by using Staphylococcus aureus (S. aureus). The cytotoxicity and cell proliferation were observed by WST assay using MC3T3-E1 osteoblast cells. The results indicated that the TiO(2) nanotube surface controlled by electro-spray deposition time with amoxicillin/PLGA solution could provide a high bactericidal effect against S. aureus by the bactericidal effect of amoxicillin, as well as good osteoblast cell proliferation at the TiO(2) nanotube surface without toxicity. This study used electro-spray deposition (ESD) methodology to obtain amoxicillin deposition in nanotube structures of TiO(2) and found the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures.

  9. Bactericidal and anti-adhesive properties of culinary and medicinal plants against Helicobacter pylori.

    PubMed

    O'Mahony, Rachel; Al-Khtheeri, Huda; Weerasekera, Deepaka; Fernando, Neluka; Vaira, Dino; Holton, John; Basset, Christelle

    2005-12-21

    To investigate the bactericidal and anti-adhesive properties of 25 plants against Helicobacter pylori (H. pylori). Twenty-five plants were boiled in water to produce aqueous extracts that simulate the effect of cooking. The bactericidal activity of the extracts was assessed by a standard kill-curve with seven strains of H. pylori. The anti-adhesive property was assessed by the inhibition of binding of four strains of FITC-labeled H. pylori to stomach sections. Of all the plants tested, eight plants, including Bengal quince, nightshade, garlic, dill, black pepper, coriander, fenugreek and black tea, were found to have no bactericidal effect on any of the isolates. Columbo weed, long pepper, parsley, tarragon, nutmeg, yellow-berried nightshade, threadstem carpetweed, sage and cinnamon had bactericidal activities against H. pylori, but total inhibition of growth was not achieved in this study. Among the plants that killed H. pylori, turmeric was the most efficient, followed by cumin, ginger, chilli, borage, black caraway, oregano and liquorice. Moreover, extracts of turmeric, borage and parsley were able to inhibit the adhesion of H. pylori strains to the stomach sections. Several plants that were tested in our study had bactericidal and/or anti-adhesive effects on H. pylori. Ingestion of the plants with anti-adhesive properties could therefore provide a potent alternative therapy for H. pylori infection, which overcomes the problem of resistance associated with current antibiotic treatment.

  10. Tris-EDTA significantly enhances antibiotic efficacy against multidrug-resistant Pseudomonas aeruginosa in vitro.

    PubMed

    Buckley, Laura M; McEwan, Neil A; Nuttall, Tim

    2013-10-01

    Multidrug-resistant Pseudomonas aeruginosa commonly complicates chronic bacterial otitis in dogs. The aim of this in vitro study was to determine the effect of ethylenediaminetetraacetic acid-tromethamine (Tris-EDTA) on the minimal bactericidal concentrations (MBCs) and minimal inhibitory concentrations (MICs) of marbofloxacin and gentamicin for multidrug-resistant P. aeruginosa isolates from cases of canine otitis. Eleven isolates were identified as multidrug resistant on disc diffusion; 10 were resistant to marbofloxacin and two were resistant to gentamicin. Isolates were incubated for 90 min with each antibiotic alone and in combination with Tris-EDTA at concentrations of 0.075 μg/mL to 5 mg/mL for marbofloxacin, 0.001 μg/mL to 10 mg/mL for gentamicin and 17.8:4.7 to 0.14:0.04 mg/mL for Tris-EDTA. Positive and negative controls were included. Aliquots of each antibiotic and/or Tris-EDTA concentration were subsequently transferred to sheep blood agar to determine the MBCs, and tryptone soy broth was added to the remaining suspensions to determine the MICs. Tris-EDTA alone was bacteriostatic but not bactericidal at any concentration. The addition of Tris-EDTA significantly reduced the median MBC (from 625 to 468.8 μg/mL; P < 0.001) and MIC (from 29.3 to 2.4 μg/mL; P = 0.008) of marbofloxacin, and the median MBC (from 625 to 39.1 μg/mL) and MIC (from 19.5 to 1.2 μg/mL) of gentamicin (both P < 0.001). Tris-EDTA significantly reduced the MBCs and MICs of marbofloxacin and gentamicin for multidrug-resistant P. aeruginosa in vitro. This may be of use to clinicians managing these infections in dogs. © 2013 ESVD and ACVD.

  11. Immunity to Escherichia coli in pigs: Serum Gamma Globulin Levels, Indirect Hemagglutinating Antibody Titres and Bactericidal Activity Against E. coli in pigs up to five Weeks of Age

    PubMed Central

    Wilson, M. R.; Svendsen, J.

    1972-01-01

    Serum gamma globulin levels, indirect hemagglutinating antibody titres and bactericidal activity against the 0149:K91;K88ac:H10 Serotype of Escherichia coli were determined in pigs up to five weeks of age from vaccinated and non-vaccinated sows. Gamma globulin levels at two days of age were approximately twice adult levels, by three weeks of age they were one quarter of adult levels and remained so until five weeks of age. Indirect hemagglutinating antibody activity was highest at two days of age, fell until three weeks of age and then rose. Little or no indirect hemagglutinating antibody activity was detected in sera taken at two days of age from pigs from non-vaccinated sows. Only three of 26 two day old pigs had demonstrable bactericidal activity; by three weeks of age 16 of 26 had bactericidal activity. Serum from piglets of vaccinated sows had no more bactericidal activity than did sera from non-vaccinated sows. PMID:4110608

  12. Evaluation of the effectiveness of peracetic acid in the sterilization of dental equipment.

    PubMed

    Ceretta, R; Paula, M M S; Angioletto, Ev; Méier, M M; Mitellstädt, F G; Pich, C T; Junior, S A; Angioletto, E

    2008-01-01

    To evaluate the effectiveness of peracetic acid in the microbiological sterilisation of dental materials. Peracetic acid solution was evaluated at concentrations of 800, 1500 and 2500 ppm. At these concentrations, it was determined whether peracetic acid caused corrosion to dental instruments and induced cellular mutagenicity and cytotoxicity. In addition, the minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC), agar diffusion and diffusion by well method, were also verified. The corrosion rate, calculated from potentiodynamic assays was 10(-6) cm/year, indicating that the product does not damage equipment. The sterilisation capacity of peracetic acid at 2500 ppm was the best. The comet assay indicated genotoxic activity at 2500 ppm. This study demonstrated the effectiveness of peracetic acid for sterilizing dental equipment, providing another alternative for the prevention of infections in clinics.

  13. Antioxidant, antibacterial, and anti-inflammatory activities of standardized brazilin-rich Caesalpinia sappan extract.

    PubMed

    Nirmal, Nilesh Prakash; Panichayupakaranant, Pharkphoom

    2015-01-01

    Brazilin is a major active principle of Caesalpinia sappan L. (Leguminosae or Fabaceae). For industry aspects, brazilin-rich extract (BRE) has been prepared and standardized to contain 39% w/w brazilin. BRE may have more advantages than brazilin in term of a lower-cost production process. To investigate the antioxidant, antibacterial, and anti-inflammatory activities of BRE. BRE was prepared by a simple one-step purification of the crude ethanol extract of C. sappan heartwood (CSE) using a Diaion® HP-20 column. The antioxidant activities were determined using three methods, including DPPH radical scavenging, reducing power, and β-carotene bleaching assays, at concentration ranges of 1-10, 10-100, and 10-100 µg/mL, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of BRE (15.6-1000 µg/mL) against Gram-positive and Gram-negative bacteria were determined by the broth microdilution method. Anti-inflammatory activity of BRE (0.1-5 µg/mL) was evaluated as anti-denaturation activity using bovine serum albumin as a substrate. On the basis of β-carotene bleaching assay, BRE showed antioxidant activity with an EC50 value of 60.5 µg/mL, which was almost equal to that of pure brazilin (52.1 µg/mL). Gram-positive bacteria were more sensitive to all tested samples than Gram-negative bacteria. BRE possessed higher antibacterial activities than CSE, but lower than brazilin. MIC/MBC values of 62.5-125/125 and 250-500/250-500 µg/mL were obtained for BRE against Gram-positive and Gram-negative bacteria, respectively. A low concentration (0.1 µg/mL) of brazilin, BRE, and CSE showed anti-inflammatory activity by inhibiting protein denaturation up to 46.8, 54.1, and 61.9%, respectively.

  14. Metronidazole Activation Is Mutagenic and Causes DNA Fragmentation in Helicobacter pylori and in Escherichia coli Containing a Cloned H. pylori rdxA+ (Nitroreductase) Gene

    PubMed Central

    Sisson, Gary; Jeong, Jin-Yong; Goodwin, Avery; Bryden, Louis; Rossler, Norma; Lim-Morrison, Sabrina; Raudonikiene, Ausra; Berg, Douglas E.; Hoffman, Paul S.

    2000-01-01

    Much of the normal high sensitivity of wild-type Helicobacter pylori to metronidazole (Mtz) depends on rdxA (HP0954), a gene encoding a novel nitroreductase that catalyzes the conversion of Mtz from a harmless prodrug to a bactericidal agent. Here we report that levels of Mtz that partially inhibit growth stimulate forward mutation to rifampin resistance in rdxA+ (Mtzs) and also in rdxA (Mtzr) H. pylori strains, and that expression of rdxA in Escherichia coli results in equivalent Mtz-induced mutation. A reversion test using defined lac tester strains of E. coli carrying rdxA+ indicated that CG-to-GC transversions and AT-to-GC transitions are induced more frequently than other base substitutions. Alkaline gel electrophoretic tests showed that Mtz concentrations near or higher than the MIC for growth also caused DNA breakage in H. pylori and in E. coli carrying rdxA+, suggesting that this damage may account for most of the bactericidal action of Mtz. Coculture of Mtzs H. pylori with E. coli (highly resistant to Mtz) in the presence of Mtz did not stimulate forward mutation in E. coli, indicating that the mutagenic and bactericidal products of Mtz metabolism do not diffuse significantly to neighboring (bystander) cells. Our results suggest that the widespread use of Mtz against other pathogens in people chronically infected with H. pylori may stimulate mutation and recombination in H. pylori, thereby speeding host-specific adaptation, the evolution of virulence, and the emergence of resistance against Mtz and other clinically useful antimicrobials. PMID:10960092

  15. In Vitro Antibacterial Activity of AZD0914, a New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-Positive, Fastidious Gram-Negative, and Atypical Bacteria

    PubMed Central

    Bradford, Patricia A.; Otterson, Linda G.; Basarab, Gregory S.; Kutschke, Amy C.; Giacobbe, Robert A.; Patey, Sara A.; Alm, Richard A.; Johnstone, Michele R.; Potter, Marie E.; Miller, Paul F.; Mueller, John P.

    2014-01-01

    AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development. PMID:25385112

  16. Immune memory in children previously vaccinated with an experimental quadrivalent meningococcal polysaccharide diphtheria toxoid conjugate vaccine.

    PubMed

    Pichichero, Michael; Papa, Thomas; Blatter, Mark; Mitchell, Douglas; Kratz, Richard; Sneed, Jane; Bassily, Ehab; Casey, Janet; Gilmet, Gregory

    2006-11-01

    In a previous study, a meningococcal diphtheria toxoid conjugate vaccine (MCV-4) triggered robust bactericidal antibody responses against serogroups A, C, Y, and W-135 in 2- to 10-year-old children. A subset of participants, 2 to 3 years of age at the initial vaccination, was evaluated for persistence of antibody, immune memory, and antibody avidity. Participants were healthy children vaccinated 23 to 36 months earlier with MCV-4 (primed) or newly recruited meningococcal vaccine-naive 4-year-olds. Participants in both groups were alternately allocated to provide sera 8 or 28 days after administration of one tenth of the recommended dose of a meningococcal polysaccharide vaccine (PSV-4). Immune responses were assessed in sera obtained at baseline and either 8 or 28 days after reduced-dose PSV-4 administration. Safety was monitored. Before PSV-4 challenge, serum bactericidal antibody geometric mean titers (SBA GMTs) were higher for all 4 serogroups in the MCV-4-primed group than in the vaccine-naive group. SBA GMTs, geometric mean concentrations of immunoglobulin G (IgG) and geometric mean avidity indices for all 4 serogroups were significantly higher among MCV-4-primed versus vaccine-naive participants in the cohorts evaluated at 8 or 28 days after PSV-4 challenge. Adverse events were generally mild, self-limited, and comparable in all groups of children. Persistence of bactericidal antibody was seen for 23 to 36 months after a primary dose of MCV-4 in young children. Booster responses and avidity maturation were evident after a challenge with reduced-dose polysaccharide vaccine.

  17. Fungi and bacteria. [fungicide and bactericide measures for spacecraft in tropical regions

    NASA Technical Reports Server (NTRS)

    Daniels, G. E.

    1973-01-01

    Spacecraft equipment is usually protected from fungi and bacteria by incorporating a fungicide-bactericide in the material, by a fungicide-bactericide spray, or by reducing the relative humidity to a degree where growth will not take place. A unique method to protect delicate, expensive bearings in equipment was to maintain a pressure (with dry air or nitrogen) slightly above the outside atmosphere (few millibars) within the working parts of the equipment, thus preventing fungi from entering equipment.

  18. Bactericidal activity of TiO[sub 2] photocatalyst in aqueous media. Toward a solar-assisted water disinfection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, C.; Lin, W.Y.; Zainal, Z.

    Irradiation of suspensions of Escherichia coli ([approximately] 10[sup 6] cells/mL) and TiO[sub 2] (anatase) with UV-visible light of wave-lengths longer than 380 nm resulted in the killing of the bacteria within minutes. Oxygen was found to be a prerequisite for the bactericidal properties of the photocatalyst. Bacterial killing was found to adhere to first-order kinetics. The rate constant was proportional to the square root of the concentration of TiO[sub 2] and proportional to the incident light intensity in the range [approximately] 180- [approximately] 1660 [mu]E s[sup [minus]1] m[sup [minus]2]. The trends in these simulated laboratory experiments were mimicked by outdoormore » tests conducted under the summer noonday sun in Texas. The implications of these results as well as those of previous investigations in terms of practical applicability to solar-assisted water treatment and disinfection at remote sites are discussed relative to water technologies currently considered as viable as alternatives to chlorination. 24 refs., 8 figs.« less

  19. The Human Antimicrobial Protein Bactericidal/Permeability-Increasing Protein (BPI) Inhibits the Infectivity of Influenza A Virus

    PubMed Central

    Pinkenburg, Olaf; Meyer, Torben; Bannert, Norbert; Norley, Steven; Bolte, Kathrin; Czudai-Matwich, Volker; Herold, Susanne; Gessner, André; Schnare, Markus

    2016-01-01

    In addition to their well-known antibacterial activity some antimicrobial peptides and proteins (AMPs) display also antiviral effects. A 27 aa peptide from the N-terminal part of human bactericidal/permeability-increasing protein (BPI) previously shown to harbour antibacterial activity inhibits the infectivity of multiple Influenza A virus strains (H1N1, H3N2 and H5N1) the causing agent of the Influenza pneumonia. In contrast, the homologous murine BPI-peptide did not show activity against Influenza A virus. In addition human BPI-peptide inhibits the activation of immune cells mediated by Influenza A virus. By changing the human BPI-peptide to the sequence of the mouse homologous peptide the antiviral activity was completely abolished. Furthermore, the human BPI-peptide also inhibited the pathogenicity of the Vesicular Stomatitis Virus but failed to interfere with HIV and measles virus. Electron microscopy indicate that the human BPI-peptide interferes with the virus envelope and at high concentrations was able to destroy the particles completely. PMID:27273104

  20. Monoclonal antibodies to meningococcal factor H binding protein with overlapping epitopes and discordant functional activity.

    PubMed

    Giuntini, Serena; Beernink, Peter T; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity. Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, which inhibited fH binding, had human complement-mediated bactericidal activity. The lack of human complement-mediated bactericidal activity by anti-fHbp mAb502 appeared to result from an inability to inhibit binding of fH. These results underscore the importance of inhibition of fH binding for anti-fHbp mAb bactericidal activity.

Top