Sample records for bacteriophage k1f tailspike

  1. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parent, Kristin N., E-mail: kparent@msu.edu; Tang, Jinghua; Cardone, Giovanni

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphologymore » of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. - Highlights: • Asymmetric and symmetric three-dimensional reconstructions of phage CUS-3 are presented. • CUS-3 major capsid protein has a conserved I-domain, which is found in all three categories of “P22-like phage”. • CUS-3 has very different tailspike receptor binding domain from those of P22 and Sf6. • The CUS-3 tailspike likely was acquired by horizontal gene transfer.« less

  2. Bacteriophage SP6 encodes a second tailspike protein that recognizes Salmonella enterica serogroups C{sub 2} and C{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhart, Dana; Williams, Steven R.; Scholl, Dean,

    SP6 is a salmonella phage closely related to coliphage K1-5. K1-5 is notable in that it encodes two polysaccharide-degrading tailspike proteins, an endosialidase that allows it to infect E. coli K1, and a lyase that enables it to infect K5 strains. SP6 is similar to K1-5 except that it encodes a P22-like endorhamnosidase tailspike, gp46, allowing it to infect group B Salmonella. We show here that SP6 can also infect Salmonella serogroups C{sub 2} and C{sub 3} and that a mutation in a putative second tailspike, gp47, eliminates this specificity. Gene 47 was fused to the coding region of themore » N-terminal portion of the Pseudomonas aeruginosa R2 pyocin tail fiber and expressed in trans such that the fusion protein becomes incorporated into pyocin particles. These pyocins, termed AvR2-SP47, killed serogroups C{sub 2} and C{sub 3}Salmonella. We conclude that SP6 encodes two tail proteins providing it a broad host range among Salmonella enterica. - Highlights: • SP6 is a “dual specificity” bacteriophage that encodes two different receptor binding proteins giving it a broad host range. • These receptor binding proteins can be used to re-target the spectrum of R-type bacteriocins to Salmonella enterica. • Both SP6 and the engineered R-type bacteriocins can kill the Salmonella serovars most associated with human disease making them attractive for development as antimicrobial agents.« less

  3. Dual host specificity of phage SP6 is facilitated by tailspike rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Jiagang

    Bacteriophage SP6 exhibits dual-host adsorption specificity. The SP6 tailspikes are recognized as important in host range determination but the mechanisms underlying dual host specificity are unknown. Cryo-electron tomography and sub-tomogram classification were used to analyze the SP6 virion with a particular focus on the interaction of tailspikes with host membranes. The SP6 tail is surrounded by six V-shaped structures that interconnect in forming a hand-over-hand hexameric garland. Each V-shaped structure consists of two trimeric tailspike proteins: gp46 and gp47, connected through the adaptor protein gp37. SP6 infection of Salmonella enterica serovars Typhimurium and Newport results in distinguishable changes in tailspikemore » orientation, providing the first direct demonstration how tailspikes can confer dual host adsorption specificity. SP6 also infects S. Typhimurium strains lacking O antigen; in these infections tailspikes have no apparent specific role and the phage tail must therefore interact with a distinct host receptor to allow infection. - Highlights: •Cryo-electron tomography reveals the structural basis for dual host specificity. •Sub-tomogram classification reveals distinct orientations of the tailspikes during infection of different hosts. •Tailspike-adaptor modules rotate as they bind different O antigens. •In the absence of any O antigen, tailspikes bind weakly and without specificity to LPS. •Interaction of the phage tail with LPS is essential for infection.« less

  4. Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein-Polysaccharide Interactions.

    PubMed

    Kang, Yu; Gohlke, Ulrich; Engström, Olof; Hamark, Christoffer; Scheidt, Tom; Kunstmann, Sonja; Heinemann, Udo; Widmalm, Göran; Santer, Mark; Barbirz, Stefanie

    2016-07-27

    Understanding interactions of bacterial surface polysaccharides with receptor protein scaffolds is important for the development of antibiotic therapies. The corresponding protein recognition domains frequently form low-affinity complexes with polysaccharides that are difficult to address with experimental techniques due to the conformational flexibility of the polysaccharide. In this work, we studied the tailspike protein (TSP) of the bacteriophage Sf6. Sf6TSP binds and hydrolyzes the high-rhamnose, serotype Y O-antigen polysaccharide of the Gram-negative bacterium Shigella flexneri (S. flexneri) as a first step of bacteriophage infection. Spectroscopic analyses and enzymatic cleavage assays confirmed that Sf6TSP binds long stretches of this polysaccharide. Crystal structure analysis and saturation transfer difference (STD) NMR spectroscopy using an enhanced method to interpret the data permitted the detailed description of affinity contributions and flexibility in an Sf6TSP-octasaccharide complex. Dodecasaccharide fragments corresponding to three repeating units of the O-antigen in complex with Sf6TSP were studied computationally by molecular dynamics simulations. They showed that distortion away from the low-energy solution conformation found in the octasaccharide complex is necessary for ligand binding. This is in agreement with a weak-affinity functional polysaccharide-protein contact that facilitates correct placement and thus hydrolysis of the polysaccharide close to the catalytic residues. Our simulations stress that the flexibility of glycan epitopes together with a small number of specific protein contacts provide the driving force for Sf6TSP-polysaccharide complex formation in an overall weak-affinity interaction system.

  5. Two T7-like Bacteriophages, K5-2 and K5-4, Each Encodes Two Capsule Depolymerases: Isolation and Functional Characterization.

    PubMed

    Hsieh, Pei-Fang; Lin, Hsiao-Hsuan; Lin, Tzu-Lung; Chen, Yi-Yin; Wang, Jin-Town

    2017-07-04

    Two Klebsiella bacteriophages K5-2 and K5-4, which are able to infect and grow on either capsular types K30/K69 and K5 or K8 and K5 of Klebsiella strains, were isolated and characterized. Each phage contained two open reading frames (ORFs), which encoded two putative capsule depolymerases, respectively. The first ORF encoded tail fiber proteins, which have K30/K69 depolymerase and K8 depolymerase activities. The second ORF encoded hypothetical proteins, which are almost identical in amino acid sequences, and have K5 depolymerase activity. Alcian blue staining of enzyme-treated capsular polysaccharides (CPS) showed that purified depolymerases can cleave purified Klebsiella CPS in vitro and liberate monosaccharaides. Capsule K5 deletion mutants were not lysed by either phage, suggesting that the capsule was essential for phage infection. Bacterial killing was observed when incubated Klebsiella strains with phages but not with purified depolymerases. Treatment with the K5-4 phage significantly increased the survival of mice infected with a K. pneumoniae K5 strain. In conclusion, two dual host-specific Klebsiella phages and their tailspikes exhibit capsule depolymerase activity were characterized. Each phage and phage-encoded depolymerase has specificity for capsular type K30/K69, K8 or K5, and could be used for the typing and treatment of K. pneumoniae infection.

  6. A genetic analysis of an important hydrophobic interaction at the P22 tailspike protein N-terminal domain.

    PubMed

    Williams, Jeremie; Venkatesan, Karthikeya; Ayariga, Joseph Atia; Jackson, Doba; Wu, Hongzhuan; Villafane, Robert

    2018-06-01

    P22 bacteriophage has been studied extensively and has served as a model for many important processes such as in vivo protein folding, protein aggregation and protein-protein interactions. The trimeric tailspike protein (TSP) serves as the receptor-binding protein for the P22 bacteriophage to the bacterial host. The homotrimeric P22 tail consists of three chains of 666aa in which the first 108aa form a trimeric dome-like structure which is called the N-terminal domain (NTD) and is responsible for attachment of the tailspike protein to the rest of the phage particle structure in the phage assembly pathway. Knowledge of this interaction requires information on what amino acids are interacting in the interface and how the NTD structure is maintained. The first 23aa form the "stem peptide" which originates at the dome top and terminates at the dome bottom. It contains a hydrophobic valine patch (V8-V9-V10) located within the dome structure. It is hypothesized that the interaction between the hydrophobic valine patch located on stem peptide and the adjacent polypeptide is critical for the interchain interaction which should be important for the stability of the P22 TSP NTD itself. To test this hypothesis, each amino acid in the valine residues is substituted by an acid, a basic, and a hydrophobic amino acid. The results of such substitutions are presented as well as associated studies. The data strongly suggest that the valine patch is of critical importance in the hydrophobic interaction between stem peptide valine patch and an adjacent chain.

  7. Monitoring refolding of tailspike endorhamnosidase using capillary electrophoresis-laser induced tryptophan fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, P.K.; Lee, Cheng S.; King, J.A.

    1997-12-31

    The use of capillary electrophoresis equipped with laser-induced tryptophan fluorescence detection is presented for monitoring the refolding pathway of phage P22 tailspike endorhamnosidase. Upon initiation of refolding, tailspike polypeptides rapidly fold into structured monomeric intermediates with a high content of secondary structure. These monomeric species associate to form the triple-chain defined folding intermediates, the protrimers. Conversion of the protrimer into the native, sodium dodecyl sulfate (SDS) resistant tailspike protein is the rate-limiting step in the refolding pathway. Refolding kinetics and yield measured by capillary electrophoresis are in good agreement with those obtained via native gel electrophoresis, SDS polyacrylamide gel electrophoresismore » (SDS-PAGE) and fluorescence spectrophotometry. To enhance separation resolution between protrimer and native protein in capillary electrophoresis, the use of poly(ethylene oxide) is investigated for the introduction of a sieving separation mechanism. The increased viscosity of the electrophoresis buffer may also play a role in resolution enhancement.« less

  8. Structure of a group A streptococcal phage-encoded virulence factor reveals a catalytically active triple-stranded beta-helix.

    PubMed

    Smith, Nicola L; Taylor, Edward J; Lindsay, Anna-Marie; Charnock, Simon J; Turkenburg, Johan P; Dodson, Eleanor J; Davies, Gideon J; Black, Gary W

    2005-12-06

    Streptococcus pyogenes (group A Streptococcus) causes severe invasive infections including scarlet fever, pharyngitis (streptococcal sore throat), skin infections, necrotizing fasciitis (flesh-eating disease), septicemia, erysipelas, cellulitis, acute rheumatic fever, and toxic shock. The conversion from nonpathogenic to toxigenic strains of S. pyogenes is frequently mediated by bacteriophage infection. One of the key bacteriophage-encoded virulence factors is a putative "hyaluronidase," HylP1, a phage tail-fiber protein responsible for the digestion of the S. pyogenes hyaluronan capsule during phage infection. Here we demonstrate that HylP1 is a hyaluronate lyase. The 3D structure, at 1.8-angstroms resolution, reveals an unusual triple-stranded beta-helical structure and provides insight into the structural basis for phage tail assembly and the role of phage tail proteins in virulence. Unlike the triple-stranded beta-helix assemblies of the bacteriophage T4 injection machinery and the tailspike endosialidase of the Escherichia coli K1 bacteriophage K1F, HylP1 possesses three copies of the active center on the triple-helical fiber itself without the need for an accessory catalytic domain. The triple-stranded beta-helix is not simply a structural scaffold, as previously envisaged; it is harnessed to provide a 200-angstroms-long substrate-binding groove for the optimal reduction in hyaluronan viscosity to aid phage penetration of the capsule.

  9. Genetic evolution of bacteriophage. I. Hybrids between unrelated bacteriophages P22 and Fels 2.

    PubMed

    Yamamoto, N

    1969-01-01

    A new bacteriophage species, designated F22, was isolated from phage P22 stocks grown on Salmonella typhimurium Q1 lysogenic for Fels 2 at a frequency of less than 10(-11). P22 has a very short tail with a hexagonal base plate and six spikes. Phage Fels 2 is morphologically similar to E. coli T-even phages, having a long tail with a contractile sheath and carrying no genetic region related to P22. Phage F22 is morphologically and serologically indistinguishable from Fels 2, but carries the c(c(1), c(2), and c(3)) markers of P22. The color markers h(21), g, and m(3) of P22 do not appear in F22. Thus, F22 is evidently a recombinant between the unrelated bacteriophages P22 and Fels 2. The recombination between unrelated bacteriophages could play an important role in the evolution of bacteriophages.

  10. Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ϕR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF.

    PubMed

    Leon-Velarde, Carlos G; Happonen, Lotta; Pajunen, Maria; Leskinen, Katarzyna; Kropinski, Andrew M; Mattinen, Laura; Rajtor, Monika; Zur, Joanna; Smith, Darren; Chen, Shu; Nawaz, Ayesha; Johnson, Roger P; Odumeru, Joseph A; Griffiths, Mansel W; Skurnik, Mikael

    2016-09-01

    Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in detail, with the aim of

  11. Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ϕR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF

    PubMed Central

    Happonen, Lotta; Pajunen, Maria; Leskinen, Katarzyna; Kropinski, Andrew M.; Mattinen, Laura; Rajtor, Monika; Zur, Joanna; Smith, Darren; Chen, Shu; Nawaz, Ayesha; Johnson, Roger P.; Odumeru, Joseph A.; Griffiths, Mansel W.

    2016-01-01

    ABSTRACT Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica. To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. IMPORTANCE Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in

  12. GENETIC EVOLUTION OF BACTERIOPHAGE, I. HYBRIDS BETWEEN UNRELATED BACTERIOPHAGES P22 AND FELS 2*

    PubMed Central

    Yamamoto, Nobuto

    1969-01-01

    A new bacteriophage species, designated F22, was isolated from phage P22 stocks grown on Salmonella typhimurium Q1 lysogenic for Fels 2 at a frequency of less than 10-11. P22 has a very short tail with a hexagonal base plate and six spikes. Phage Fels 2 is morphologically similar to E. coli T-even phages, having a long tail with a contractile sheath and carrying no genetic region related to P22. Phage F22 is morphologically and serologically indistinguishable from Fels 2, but carries the c(c1, c2, and c3) markers of P22. The color markers h21, g, and m3 of P22 do not appear in F22. Thus, F22 is evidently a recombinant between the unrelated bacteriophages P22 and Fels 2. The recombination between unrelated bacteriophages could play an important role in the evolution of bacteriophages. Images PMID:4890254

  13. UPTAKE OF BACTERIOPHAGE F2 THROUGH PLANT ROOTS

    EPA Science Inventory

    A model system was designed to measure viral uptake through the roots of plants and translocation to distal plant parts. For this study, uptake of bacteriophage f2 was measured in corn and bean plants growing in hydroponic solutions. Few phage were detected in plants with uncut r...

  14. A novel bacteriophage KSL-1 of 2-Keto-gluconic acid producer Pseudomonas fluorescens K1005: isolation, characterization and its remedial action

    PubMed Central

    2012-01-01

    Background Bacteriophages have the destructive damage on the industrial bioprocess. 2-Keto-gluconic acid (2KGA) producing bacteria had also been attacked and lysed by bacteriophages which lowered the glucose consumption and 2KGA yield and even stopped the fermentation process. In this study, we presented the characteristics of a novel virulent bacteriophage specifically infecting Pseudomonas fluorescens K1005 and proposed an efficient remedial action for this phage infection to reduce the production loss. Results The phage KSL-1 of Pseudomonas fluorescens K1005 was isolated from abnormal 2KGA fermentation broth. It belonged to the Siphoviridae family with a hexagonal head diameter of about 99 nm and a non-contractile tail of about 103 nm × 39 nm. The genome size of phage KSL-1 was estimated to be approximately 53 kbp. Its optimal MOI to infect P. fluorescens K1005 was about 0.001. One-step growth curve gave its latent and burst periods of 90 min and 75 min with a burst size of 52 phage particles per infected cell. This phage was stable with a pH range of 7.0–10.0, and sensitive to thermal treatment. Finally, a simple remedial action was proposed by feeding fresh seed culture. Compared with the infected 2KGA fermentation, the remedial experiments restored 2KGA fermentation performance by increasing the produced 2KGA concentration to 159.89 g/L and shortening the total fermentation time of 80 h with the productivity and yield of 2.0 g/L.h and 0.89 g/g. The obtained data proved that this method was effective to combat the phage infections problems during the 2KGA fermentation. Conclusion The phage KSL-1 was a novel bacteriophage specifically infecting Pseudomonas fluorescens K1005. The remedial action of feeding fresh seed culture to the infected broth was an easily-operating and effective method to maintain a high 2KGA yield and avoid the draft of infected broth. PMID:22747634

  15. Inactivation of F-specific bacteriophages during flocculation with polyaluminum chloride - a mechanistic study.

    PubMed

    Kreißel, Katja; Bösl, Monika; Hügler, Michael; Lipp, Pia; Franzreb, Matthias; Hambsch, Beate

    2014-03-15

    Bacteriophages are often used as surrogates for enteric viruses in spiking experiments to determine the efficiencies of virus removal of certain water treatment measures, like e.g. flocculation or filtration steps. Such spiking experiments with bacteriophages are indispensable if the natural virus concentrations in the raw water of water treatment plants are too low to allow the determination of elimination levels over several orders of magnitude. In order to obtain reliable results from such spiking tests, it is essential that bacteriophages behave comparable to viruses and remain stable during the experiments. To test this, the influence of flocculation parameters on the bacteriophages MS2, Qβ and phiX174 was examined. Notably, the F-specific phages MS2 and Qβ were found to be inactivated in flocculation processes with polyaluminum chloride (PACl). In contrast, other aluminum coagulants like AlCl3 or Al2(SO4)3 did not show a comparable effect on MS2 in this study. In experiments testing the influence of different PACl species on MS2 and Qβ inactivation during flocculation, it could be shown that cationic dissolved PACl species (Al13) interacted with the MS2 surface and hereby reduced the surviving phage fraction to c/c0 values below 1*10(-4) even at very low PACl concentrations of 7 μmol Al/L. Other inactivation mechanisms like the irreversible adsorption of phages to the floc structure or the damage of phage surfaces due to entrapment into the floc during coagulation and floc formation do not seem to contribute to the low surviving fraction found for both F-specific bacteriophages. Furthermore, no influence of phage agglomeration or pH drops during the flocculation process on phage inactivation could be observed. The somatic coliphage phiX174 in contrast did not show sensitivity to chemical stress and in accordance only slight interaction between Al13 and the phage surface was observed. Consequently, F-specific phages like MS2 should not be used as

  16. Structural changes of bacteriophage [phi]29 upon DNA packaging and release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Y.; Morais, M.C.; Battisti, A.J.

    2008-04-24

    Cryo-electron microscopy three-dimensional reconstructions have been made of mature and of emptied bacteriophage {phi}29 particles without making symmetry assumptions. Comparisons of these structures with each other and with the {phi}29 prohead indicate how conformational changes might initiate successive steps of assembly and infection. The 12 adsorption capable 'appendages' were found to have a structure homologous to the bacteriophage P22 tailspikes. Two of the appendages are extended radially outwards, away from the long axis of the virus, whereas the others are around and parallel to the phage axis. The appendage orientations are correlated with the symmetry-mismatched positions of the five-fold relatedmore » head fibers, suggesting a mechanism for partial cell wall digestion upon rotation of the head about the tail when initiating infection. The narrow end of the head-tail connector is expanded in the mature virus. Gene product 3, bound to the 5-foot ends of the genome, appears to be positioned within the expanded connector, which may potentiate the release of DNA-packaging machine components, creating a binding site for attachment of the tail.« less

  17. Effectiveness of cooking to reduce norovirus and infectious F-specific RNA bacteriophage concentrations in Mytilus edulis.

    PubMed

    Flannery, J; Rajko-Nenow, P; Winterbourn, J B; Malham, S K; Jones, D L

    2014-08-01

    The aim of this study was to determine if domestic cooking practices can reduce concentrations of norovirus (NoV) and F-specific RNA (FRNA) bacteriophage in experimentally contaminated mussels. Mussels (n = 600) contaminated with NoV and FRNA bacteriophage underwent four different cooking experiments performed in triplicate at ~70°C and >90°C. Concentrations of infectious FRNA bacteriophage (using a plaque assay) were compared with concentrations of FRNA bacteriophage and NoV determined using a standardised RT-qPCR. Initial concentrations of infectious FRNA bacteriophage (7·05 log10  PFU g(-1) ) in mussels were not significantly reduced in simmering water (~70°C); however, cooking at higher temperatures (>90°C) reduced infectious FRNA bacteriophage to undetected levels within 3 min. Further investigation determined the time required for a 1-log reduction of infectious FRNA bacteriophage at 90°C to be 42 s therefore a >3-log reduction in infectious virus can be obtained by heating mussel digestive tissue to 90°C for 126 s. Domestic cooking practices based on shell opening alone do not inactivate infectious virus in mussels, however, cooking mussels at high temperatures is effective to reduce infectious virus concentrations and the risk of illness in consumers. The data will contribute towards evidence-based cooking recommendations for shellfish to provide a safe product for human consumption. © 2014 The Society for Applied Microbiology.

  18. Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions.

    PubMed

    Esteban, Patricia Perez; Alves, Diana R; Enright, Mark C; Bean, Jessica E; Gaudion, Alison; Jenkins, A T A; Young, Amber E R; Arnot, Tom C

    2014-01-01

    Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic-resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil-in-water nano-emulsion. Nano-emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano-emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage-loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18-20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage-emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano-emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti-microbial wound management strategies. © 2014 American Institute of Chemical Engineers.

  19. Genomics of Three New Bacteriophages Useful in the Biocontrol of Salmonella

    PubMed Central

    Bardina, Carlota; Colom, Joan; Spricigo, Denis A.; Otero, Jennifer; Sánchez-Osuna, Miquel; Cortés, Pilar; Llagostera, Montserrat

    2016-01-01

    Non-typhoid Salmonella is the principal pathogen related to food-borne diseases throughout the world. Widespread antibiotic resistance has adversely affected human health and has encouraged the search for alternative antimicrobial agents. The advances in bacteriophage therapy highlight their use in controlling a broad spectrum of food-borne pathogens. One requirement for the use of bacteriophages as antibacterials is the characterization of their genomes. In this work, complete genome sequencing and molecular analyses were carried out for three new virulent Salmonella-specific bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) able to infect a broad range of Salmonella strains. Sequence analysis of the genomes of UAB_Phi20, UAB_Phi78, and UAB_Phi87 bacteriophages did not evidence the presence of known virulence-associated and antibiotic resistance genes, and potential immunoreactive food allergens. The UAB_Phi20 genome comprised 41,809 base pairs with 80 open reading frames (ORFs); 24 of them with assigned function. Genome sequence showed a high homology of UAB_Phi20 with Salmonella bacteriophage P22 and other P22likeviruses genus of the Podoviridae family, including ST64T and ST104. The DNA of UAB_Phi78 contained 44,110 bp including direct terminal repeats (DTR) of 179 bp and 58 putative ORFs were predicted and 20 were assigned function. This bacteriophage was assigned to the SP6likeviruses genus of the Podoviridae family based on its high similarity not only with SP6 but also with the K1-5, K1E, and K1F bacteriophages, all of which infect Escherichia coli. The UAB_Phi87 genome sequence consisted of 87,669 bp with terminal direct repeats of 608 bp; although 148 ORFs were identified, putative functions could be assigned to only 29 of them. Sequence comparisons revealed the mosaic structure of UAB_Phi87 and its high similarity with bacteriophages Felix O1 and wV8 of E. coli with respect to genetic content and functional organization. Phylogenetic analysis of large

  20. Therapeutic Application of Phage Capsule Depolymerases against K1, K5, and K30 Capsulated E. coli in Mice.

    PubMed

    Lin, Han; Paff, Matthew L; Molineux, Ian J; Bull, James J

    2017-01-01

    Capsule depolymerase enzymes offer a promising class of new antibiotics. In vivo studies are encouraging but it is unclear how well this type of phage product will generalize in therapeutics, or whether different depolymerases against the same capsule function similarly. Here, in vivo efficacy was tested using cloned bacteriophage depolymerases against Escherichia coli strains with three different capsule types: K1, K5, and K30. When treating infections with the cognate capsule type in a mouse thigh model, the previously studied K1E depolymerase rescued poorly, whereas K1F, K1H, K5, and K30 depolymerases rescued well. K30 gp41 was identified as the catalytically active protein. In contrast to the in vivo studies, K1E enzyme actively degraded K1 capsule polysaccharide in vitro and sensitized K1 bacteria to serum killing. The only in vitro correlate of poor K1E performance in vivo was that the purified enzyme did not form the expected trimer. K1E appeared as an 18-mer which might limit its in vivo distribution. Overall, depolymerases were easily identified, cloned from phage genomes, and as purified proteins they proved generally effective.

  1. Genomic diversity of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum.

    PubMed

    Castillo, Daniel; Middelboe, Mathias

    2016-12-01

    Bacteriophages infecting the fish pathogen Flavobacterium psychrophilum can potentially be used to prevent and control outbreaks of this bacterium in salmonid aquaculture. However, the application of bacteriophages in disease control requires detailed knowledge on their genetic composition. To explore the diversity of F. pyschrophilum bacteriophages, we have analyzed the complete genome sequences of 17 phages isolated from two distant geographic areas (Denmark and Chile), including the previously characterized temperate bacteriophage 6H. Phage genome size ranged from 39 302 to 89 010 bp with a G+C content of 27%-32%. None of the bacteriophages isolated in Denmark contained genes associated with lysogeny, whereas the Chilean isolates were all putative temperate phages and similar to bacteriophage 6H. Comparative genome analysis showed that phages grouped in three different genetic clusters based on genetic composition and gene content, indicating a limited genetic diversity of F. psychrophilum-specific bacteriophages. However, amino acid sequence dissimilarity (25%) was found in putative structural proteins, which could be related to the host specificity determinants. This study represents the first analysis of genomic diversity and composition among bacteriophages infecting the fish pathogen F. psychrophilum and discusses the implications for the application of phages in disease control. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus

    NASA Astrophysics Data System (ADS)

    Jiang, Wen; Chang, Juan; Jakana, Joanita; Weigele, Peter; King, Jonathan; Chiu, Wah

    2006-02-01

    The critical viral components for packaging DNA, recognizing and binding to host cells, and injecting the condensed DNA into the host are organized at a single vertex of many icosahedral viruses. These component structures do not share icosahedral symmetry and cannot be resolved using a conventional icosahedral averaging method. Here we report the structure of the entire infectious Salmonella bacteriophage epsilon15 (ref. 1) determined from single-particle cryo-electron microscopy, without icosahedral averaging. This structure displays not only the icosahedral shell of 60 hexamers and 11 pentamers, but also the non-icosahedral components at one pentameric vertex. The densities at this vertex can be identified as the 12-subunit portal complex sandwiched between an internal cylindrical core and an external tail hub connecting to six projecting trimeric tailspikes. The viral genome is packed as coaxial coils in at least three outer layers with ~90 terminal nucleotides extending through the protein core and the portal complex and poised for injection. The shell protein from icosahedral reconstruction at higher resolution exhibits a similar fold to that of other double-stranded DNA viruses including herpesvirus, suggesting a common ancestor among these diverse viruses. The image reconstruction approach should be applicable to studying other biological nanomachines with components of mixed symmetries.

  3. Bacteriophages as Potential Treatment for Urinary Tract Infections

    PubMed Central

    Sybesma, Wilbert; Zbinden, Reinhard; Chanishvili, Nino; Kutateladze, Mzia; Chkhotua, Archil; Ujmajuridze, Aleksandre; Mehnert, Ulrich; Kessler, Thomas M.

    2016-01-01

    Background: Urinary tract infections (UTIs) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming so that well-tolerated, highly effective therapeutic alternatives are urgently needed. Objective: To investigate the effect of bacteriophages on Escherichia coli and Klebsiella pneumoniae strains isolated from the urine of patients suffering from UTIs. Material and methods: Forty-one E. coli and 9 K. pneumoniae strains, isolated from the urine of patients suffering from UTIs, were tested in vitro for their susceptibility toward bacteriophages. The bacteriophages originated from either commercially available bacteriophage cocktails registered in Georgia or from the bacteriophage collection of the George Eliava Institute of Bacteriophage, Microbiology and Virology. In vitro screening of bacterial strains was performed by use of the spot-test method. The experiments were implemented three times by different groups of scientists. Results: The lytic activity of the commercial bacteriophage cocktails on the 41 E. coli strains varied between 66% (Pyo bacteriophage) and 93% (Enko bacteriophage). After bacteriophage adaptation of the Pyo bacteriophage cocktail, its lytic activity was increased from 66 to 93% and only one E. coli strain remained resistant. One bacteriophage of the Eliava collection could lyse all 9 K. pneumoniae strains. Conclusions: Based on the high lytic activity and the potential of resistance optimization by direct adaption of bacteriophages as reported in this study, and in view of the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a promising treatment option for UTIs highly warranting randomized controlled trials. PMID:27148173

  4. Bacteriophages as Potential Treatment for Urinary Tract Infections.

    PubMed

    Sybesma, Wilbert; Zbinden, Reinhard; Chanishvili, Nino; Kutateladze, Mzia; Chkhotua, Archil; Ujmajuridze, Aleksandre; Mehnert, Ulrich; Kessler, Thomas M

    2016-01-01

    Urinary tract infections (UTIs) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming so that well-tolerated, highly effective therapeutic alternatives are urgently needed. To investigate the effect of bacteriophages on Escherichia coli and Klebsiella pneumoniae strains isolated from the urine of patients suffering from UTIs. Forty-one E. coli and 9 K. pneumoniae strains, isolated from the urine of patients suffering from UTIs, were tested in vitro for their susceptibility toward bacteriophages. The bacteriophages originated from either commercially available bacteriophage cocktails registered in Georgia or from the bacteriophage collection of the George Eliava Institute of Bacteriophage, Microbiology and Virology. In vitro screening of bacterial strains was performed by use of the spot-test method. The experiments were implemented three times by different groups of scientists. The lytic activity of the commercial bacteriophage cocktails on the 41 E. coli strains varied between 66% (Pyo bacteriophage) and 93% (Enko bacteriophage). After bacteriophage adaptation of the Pyo bacteriophage cocktail, its lytic activity was increased from 66 to 93% and only one E. coli strain remained resistant. One bacteriophage of the Eliava collection could lyse all 9 K. pneumoniae strains. Based on the high lytic activity and the potential of resistance optimization by direct adaption of bacteriophages as reported in this study, and in view of the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a promising treatment option for UTIs highly warranting randomized controlled trials.

  5. Penetration of E. coli and F2 bacteriophage into fish tissues.

    PubMed

    Fattal, B; Dotan, A; Tchorsh, Y; Parpari, L; Shuval, H I

    1988-01-01

    Throughout the world, fish thrive in rivers, lakes and seawater polluted with wastewater. Furthermore, in some countries, wastewater-enriched fishponds are used for fish cultivation. One of the major constraints in using wastewater for aquaculture is the possible contamination of the fish by enteric pathogens (bacteria and viruses), which may penetrate and accumulate in fish tissue, and constitute a potential public health hazard, especially in countries in which raw fish are consumed. In order to evaluate the infection of fish cultivated in wastewater, controlled experiments were performed to study the penetration of bacteria and bacteriophage inoculated into water tanks in which the fish were maintained. Twenty to thirty Tilapia hybrids (Sarotherodon aureus x S. niloticus), of 100 gr average weight and some 20 cm long were introduced into a 1 m3 plastic tank, containing about 500 l tap water at a temperature of 20 degrees C. High protein fish feed was added at a rate of about 1% of body weight per day. Four experiments were performed using an inoculum of an E. coli strain resistant to streptomycin and nalidixic acid. One hour after inoculation, bacterial concentration was 10(5)-10(6)/ml tank water. Four experiments were carried out with F2 male-specific bacteriophage 10(3)-10(5)/ml tank water. In each experiment two fish were sacrificed at zero time (prior to introduction of inocula), and 1, 5, 24, 48 and 72 or more hours after inoculation. Water samples were withdrawn at the same intervals. The level of microorganisms was tested in the following tissues: digestive tract, skin, spleen, liver and muscle. E. coli assays were performed using the membrane filtration technique; phages were assayed, using E. coli host cells in a plaque assay. The results of the experiments indicate that notwithstanding the high E. coli concentration in the tank water, its level in the edible tissue (muscle) was low, and in no instance higher than the acceptable standard of 400 cfu

  6. X-ray photoelectron spectroscopy as detection tool for coordinated or uncoordinated fluorine atoms demonstrated on fluoride systems NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7

    NASA Astrophysics Data System (ADS)

    Boča, Miroslav; Barborík, Peter; Mičušík, Matej; Omastová, Mária

    2012-07-01

    While systems K3TaF8 and K3ZrF7 were prepared by modified molten salt method modified wet pathway was used for reproducible preparation of Na7Zr6F31. Its congruently melting character was demonstrated on simultaneous TG/DSC measurements and XRD patterns. X-ray photoelectron spectroscopy was applied for identification of differently bonded fluorine atoms in series of compounds NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7. Three different types of fluorine atoms were described qualitatively and quantitatively. Uncoordinated fluorine atoms (F-) provide signals at lowest binding energies, followed by signals from terminally coordinated fluorine atoms (M-F) and then bridging fluorine atoms (M-F-M) at highest energy. Based on XPS F 1s signals assigned to fluorine atoms in compounds with correctly determined structure it was suggested that fluorine atoms in K3ZrF7 have partially bridging character.

  7. Characterization of a Thermophilic Bacteriophage for Bacillus stearothermophilus1

    PubMed Central

    Saunders, Grady F.; Campbell, L. Leon

    1966-01-01

    Saunders, Grady F. (University of Illinois, Urbana), and L. Leon Campbell. Characterization of a thermophilic bacteriophage for Bacillus stearothermophilus. J. Bacteriol. 91:340–348. 1965.—The biological and physical-chemical properties of the thermophilic bacteriophage TP-84 were investigated. TP-84 was shown to be lytic for 3 of 24 strains of Bacillus stearothermophilus tested over the temperature range of 43 to 76 C. The latent period of TP-84 on B. stearothermophilus strain 10 was 22 to 24 min. TP-84 has a hexagonal head, 53 mμ in diameter and 30 mμ on a side; its tail is 130 mμ long and 3 to 5 mμ wide. The phage has an S5020,w of 436, and bands at a density of 1.508 g/cc in CsCl (pH 8.5). The diffusion coefficient of TP-84 was calculated to be 6.19 × 10−8 cm2/sec. From the sedimentation and diffusion data, a particle molecular weight of 50 million daltons was calculated for TP-84. The phage DNA has a base composition of 42% guanine + cytosine, deduced from buoyant density and melting temperature measurements. Images PMID:5903101

  8. Genomic and proteomic characterization of a thermophilic Geobacillus bacteriophage GBSV1.

    PubMed

    Liu, Bin; Zhou, Fengfeng; Wu, Suijie; Xu, Ying; Zhang, Xiaobo

    2009-03-01

    Phages are present wherever life is found, and play roles in many biogeochemical and ecological processes. The thermophilic bacteriophages, however, have not been well studied. In this study, phage GBSV1 was obtained from a thermophilic bacterium Geobacillus sp. 6k51 isolated from a hot spring. GBSV1 contains a double-stranded linear DNA of 34,683bp, which encodes 54 putative open reading frames (ORFs). Thirty three of these 54 ORFs exhibit sequence similarities to genes from 7 species of Geobacillus or Bacillus bacteria, as well as of bacteriophages infecting these bacteria. Twenty-two ORFs have been functionally annotated based on both their sequence similarities to known genes and predicted Pfam protein domains. Five structural proteins of the purified GBSV1 virion have been identified by proteomic analyses. Surprisingly, 7 of the GBSV1 ORFs share sequence similarities with genes from bacteria relevant to human diseases. This is the first report that genes of human disease-inducing bacteria are found in a thermophilic phage. It is suggested that thermophilic phages may be the potential evolutionary link between thermophiles and human pathogens. The characterization of GBSV1 may possibly lead to new insights into virus-host interactions and to a better understanding of gene transfers and evolution of life on earth in general.

  9. Cold rescue of the thermolabile tailspike intermediate at the junction between productive folding and off-pathway aggregation.

    PubMed Central

    Betts, S. D.; King, J.

    1998-01-01

    Off-pathway intermolecular interactions between partially folded polypeptide chains often compete with correct intramolecular interactions, resulting in self-association of folding intermediates into the inclusion body state. Intermediates for both productive folding and off-pathway aggregation of the parallel beta-coil tailspike trimer of phage P22 have been identified in vivo and in vitro using native gel electrophoresis in the cold. Aggregation of folding intermediates was suppressed when refolding was initiated and allowed to proceed for a short period at 0 degrees C prior to warming to 20 degrees C. Yields of refolded tailspike trimers exceeding 80% were obtained using this temperature-shift procedure, first described by Xie and Wetlaufer (1996, Protein Sci 5:517-523). We interpret this as due to stabilization of the thermolabile monomeric intermediate at the junction between productive folding and off-pathway aggregation. Partially folded monomers, a newly identified dimer, and the protrimer folding intermediates were populated in the cold. These species were electrophoretically distinguished from the multimeric intermediates populated on the aggregation pathway. The productive protrimer intermediate is disulfide bonded (Robinson AS, King J, 1997, Nat Struct Biol 4:450-455), while the multimeric aggregation intermediates are not disulfide bonded. The partially folded dimer appears to be a precursor to the disulfide-bonded protrimer. The results support a model in which the junctional partially folded monomeric intermediate acquires resistance to aggregation in the cold by folding further to a conformation that is activated for correct recognition and subunit assembly. PMID:9684883

  10. The Effectiveness of Bacteriophages against Methicillin-Resistant Staphylococcus aureus ST398 Nasal Colonization in Pigs.

    PubMed

    Verstappen, Koen M; Tulinski, Pawel; Duim, Birgitta; Fluit, Ad C; Carney, Jennifer; van Nes, Arie; Wagenaar, Jaap A

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important colonizer in animals and an opportunistic pathogen in humans. In humans, MRSA can cause infections that might be difficult to treat because of antimicrobial resistance. The use of bacteriophages has been suggested as a potential approach for the control of MRSA colonization to minimize the-often occupational-exposure of humans. The aim of this study was to assess the efficacy of bacteriophage treatment on porcine nasal colonization with MRSA in vitro, in vivo, and ex vivo. The effectiveness of a bacteriophage combination of phage K*710 and P68 was assessed in vitro by incubating them with MRSA V0608892/1 (ST398) measuring the OD600 hourly. To study the in vivo effect, bacteriophages were administered in a gel developed for human application, which contain 109 plaque-forming units (pfu)/mL (K and P68 in a 19.25:1 ratio) for 5 days to piglets (N = 8) that were experimentally colonized with the MRSA strain. Eight piglets experimentally colonized were used as a negative control. The MRSA strain was also used to colonize porcine nasal mucosa explants and bacteriophages were applied to assess the ex vivo efficacy of treatment. Bacteriophages were effective in vitro. In vivo, sixteen piglets were colonized with MRSA but the number of CFU recovered after the application of the bacteriophages in 8 piglets was not reduced compared to the control animals (approx. 105 CFU/swab). In the ex vivo model, 108 CFU were used to establish colonization with MRSA; a reduction of colonization was not observed after application of bacteriophages. However, application of mupirocin both in vivo and ex vivo resulted in a near eradication of MRSA. i) The MRSA strain was killed in the presence of the bacteriophages phage K*710 and P68 in vitro. ii) Bacteriophages did not reduce porcine nasal colonization in vivo or ex vivo. Physiological in vivo and ex vivo conditions may explain these observations. Efficacy in the ex vivo

  11. The Effectiveness of Bacteriophages against Methicillin-Resistant Staphylococcus aureus ST398 Nasal Colonization in Pigs

    PubMed Central

    Duim, Birgitta; Fluit, Ad C; Carney, Jennifer; van Nes, Arie; Wagenaar, Jaap A

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important colonizer in animals and an opportunistic pathogen in humans. In humans, MRSA can cause infections that might be difficult to treat because of antimicrobial resistance. The use of bacteriophages has been suggested as a potential approach for the control of MRSA colonization to minimize the—often occupational—exposure of humans. The aim of this study was to assess the efficacy of bacteriophage treatment on porcine nasal colonization with MRSA in vitro, in vivo, and ex vivo. The effectiveness of a bacteriophage combination of phage K*710 and P68 was assessed in vitro by incubating them with MRSA V0608892/1 (ST398) measuring the OD600 hourly. To study the in vivo effect, bacteriophages were administered in a gel developed for human application, which contain 109 plaque-forming units (pfu)/mL (K and P68 in a 19.25:1 ratio) for 5 days to piglets (N = 8) that were experimentally colonized with the MRSA strain. Eight piglets experimentally colonized were used as a negative control. The MRSA strain was also used to colonize porcine nasal mucosa explants and bacteriophages were applied to assess the ex vivo efficacy of treatment. Bacteriophages were effective in vitro. In vivo, sixteen piglets were colonized with MRSA but the number of CFU recovered after the application of the bacteriophages in 8 piglets was not reduced compared to the control animals (approx. 105 CFU/swab). In the ex vivo model, 108 CFU were used to establish colonization with MRSA; a reduction of colonization was not observed after application of bacteriophages. However, application of mupirocin both in vivo and ex vivo resulted in a near eradication of MRSA. In conclusion: i) The MRSA strain was killed in the presence of the bacteriophages phage K*710 and P68 in vitro. ii) Bacteriophages did not reduce porcine nasal colonization in vivo or ex vivo. Physiological in vivo and ex vivo conditions may explain these observations. Efficacy

  12. Comparative genome analysis of novel Podoviruses lytic for hypermucoviscous Klebsiella pneumoniae of K1, K2, and K57 capsular types.

    PubMed

    Solovieva, Ekaterina V; Myakinina, Vera P; Kislichkina, Angelina A; Krasilnikova, Valentina M; Verevkin, Vladimir V; Mochalov, Vladimir V; Lev, Anastasia I; Fursova, Nadezhda K; Volozhantsev, Nikolay V

    2018-01-02

    Hypermucoviscous (HV) strains of capsular types K1, K2 and K57 are the most virulent representatives of the Klebsiella pneumoniae species. Eight novel bacteriophages lytic for HV K. pneumoniae were isolated and characterized. Three bacteriophages, KpV41, KpV475, and KpV71 were found to have a lytic activity against mainly K. pneumoniae of capsular type K1. Two phages, KpV74, and KpV763 were lytic for K2 capsular type K. pneumoniae, and the phage KpV767 was specific to K57-type K. pneumoniae only. Two more phages, KpV766, and KpV48 had no capsular specificity. The phage genomes consist of a linear double-stranded DNA of 40,395-44,623bp including direct terminal repeats of 180-246 bp. The G + C contents are 52.3-54.2 % that is slightly lower than that of genomes of K. pneumoniae strains being used for phage propagation. According to the genome structures, sequence similarity and phylogenetic data, the phages are classified within the genus Kp32virus and Kp34virus of subfamily Autographivirinae, family Podoviridae. In the phage genomes, genes encoding proteins with putative motifs of polysaccharide depolymerase were identified. Depolymerase genes of phages KpV71 and KpV74 lytic for hypermucoviscous K. pneumoniae of K1 and K2 capsular type, respectively, were cloned and expressed in Escherichia coli, and the recombinant gene products were purified. The specificity and polysaccharide-degrading activity of the recombinant depolymerases were demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Bacteriophages as indicators of faecal pollution and enteric ...

    EPA Pesticide Factsheets

    Bacteriophages are an attractive alternative to fecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport due to their closer morphological and biological properties compared to FIB. Based on a meta-analysis of published data, we summarize concentrations of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in human waste, non-human waste, fresh and marine waters as well as removal through wastewater treatment processes. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the environment and provide an overview of the methods available for detection and enumeration of bacteriophages. In summary, concentrations of FIB bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Our investigation supports use of bacteriophages as viral surrogates especially for wastewater treatment processes, while additional research is needed to clarify their utility as indicators of viral fate and transport in the ambient water. Describes concentrations and removal through environmental and engineered systems of bacteriophages, fecal indicator bacteria and viral pathogens.

  14. Campylobacter bacteriophages and bacteriophage therapy.

    PubMed

    Connerton, P L; Timms, A R; Connerton, I F

    2011-08-01

    Members of the genus Campylobacter are frequently responsible for human enteric disease with occasionally very serious outcomes. Much of this disease burden is thought to arise from consumption of contaminated poultry products. More than 80% of poultry in the UK harbour Campylobacter as a part of their intestinal flora. To address this unacceptably high prevalence, various interventions have been suggested and evaluated. Among these is the novel approach of using Campylobacter-specific bacteriophages, which are natural predators of the pathogen. To optimize their use as therapeutic agents, it is important to have a comprehensive understanding of the bacteriophages that infect Campylobacter, and how they can affect their host bacteria. This review will focus on many aspects of Campylobacter-specific bacteriophages including: their first isolation in the 1960s, their use in bacteriophage typing schemes, their isolation from the different biological sources and genomic characterization. As well as their use as therapeutic agents to reduce Campylobacter in poultry their future potential, including their use in bio-sanitization of food, will be explored. The evolutionary consequences of naturally occurring bacteriophage infection that have come to light through investigations of bacteriophages in the poultry ecosystem will also be discussed. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  15. Isolation and characterization of bacteriophages of Salmonella enterica serovar Pullorum.

    PubMed

    Bao, H; Zhang, H; Wang, R

    2011-10-01

    In this study, 2 bacteriophages of Salmonella Pullorum were isolated using an enrichment protocol and the double agar layer method. They were named PSPu-95 and PSPu-4-116, respectively, against clinical isolates of Salmonella Pullorum SPu-95 and SPu-116. The host ranges of the 2 bacteriophages were determined by performing spot tests with 20 bacteria strains. Both bacteriophages had wide host ranges. Bacteriophage PSPu-95 had a lytic effect on 17 of the 20 isolates (85%), and PSPu-4-116 produced a lytic effect on 14 isolates (70%) and was the only bacteriophage that produced a clear plaque on enterotoxigenic Escherichia coli K88. Transmission electron microscopy revealed the bacteriophages belonged to the order Caudovirales. Bacteriophage PSPu-95 was a member of the family Siphoviridae, but bacteriophage PSPu-4-116 belonged to the family Myoviridae. Both had a double-stranded DNA, which was digested with HindIII or EcoRI, that was estimated to be 58.3 kbp (PSPu-95) and 45.2 kbp (PSPu-4-116) by 1% agar electrophoresis. One-step growth kinetics showed that the latent periods were all less than 20 min, and the burst size was 77.5 pfu/cell for PSPu-95 and 86 pfu/cell for PSPu-4-116. The bacteriophages were able to survive in a pH range between 4 and 10, and they were able to survive in a treatment of 70°C for 60 min. The characterizations of these 2 bacteriophages were helpful in establishing a basis for adopting the most effective bacteriophage to control bacteria in the poultry industry.

  16. Characterization and genome sequence of Dev2, a new T7-like bacteriophage infecting Cronobacter turicensis.

    PubMed

    Kajsík, Michal; Oslanecová, Lucia; Szemes, Tomáš; Hýblová, Michalea; Bilková, Andrea; Drahovská, Hana; Turňa, Ján

    2014-11-01

    Cronobacter spp. are opportunistic pathogenic bacteria that are responsible for severe infections in neonates. Powdered infant formula was confirmed to be the source in some cases. Bacteriophages offer a safe means for eliminating this pathogen. In the present study, we investigated the growth parameters and genome organization of a new bacteriophage, Dev2, isolated from sewage. The Dev2 phage contains DNA with a length of 39 kb and belongs to the T7 branch of the subfamily Autographivirinae, with the highest degree of identity to the phage K1F. The host specificity of Dev2 is limited to C. turicensis strains of the CT O:1 serotype. With a lower efficiency, this phage also infects some Salmonella and E. coli strains. The Dev2 phage can inactivate sensitive Cronobacter strains in reconstituted milk formula. The results obtained in this study are an important prerequisite for application of Dev2 in food control.

  17. Bacteriophage-based nanoprobes for rapid bacteria separation

    NASA Astrophysics Data System (ADS)

    Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.

    2015-10-01

    The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying

  18. Bacteriophage cocktail and multi-strain probiotics in the feed for weanling pigs: effects on intestine morphology and targeted intestinal coliforms and Clostridium.

    PubMed

    Kim, J S; Hosseindoust, A; Lee, S H; Choi, Y H; Kim, M J; Lee, J H; Kwon, I K; Chae, B J

    2017-01-01

    Two experiments were conducted to investigate the effects of dietary supplementation of bacteriophage cocktail, probiotics and a combination of these two supplements on performance and gut health of weanling pigs. In Experiment 1, 150 weaned piglets were randomly allotted to three treatments on the basis of BW. The dietary treatments included a basal diet supplemented with 0 (control), 1.0 and 1.5 g/kg bacteriophage cocktail. Pigs fed 1.0 and 1.5 g/kg bacteriophage product had greater (P<0.05) average daily gain (ADG), apparent total tract digestibility of dry matter from day 22 to 35, ileal Lactobacillus spp., villus height (duodenum and jejunum), and fewer coliforms (ileum) and Clostridium spp. (ileum). In Experiment 2, 200 weaned piglets were randomly allotted to four treatments. Dietary treatments included basal diet, basal diet supplemented with 3.0 g/kg fermented probiotic product (P), 1.0 g/kg bacteriophage cocktail (B) and combination of 1.0 g/kg bacteriophage cocktail and 3.0 g/kg fermented probiotic product. Pigs fed bacteriophage cocktail diets had greater (P<0.05) overall ADG, gain to feed ratio (G : F), fecal score from day 8 to day 21, and pigs fed bacteriophage cocktail diets had fewer coliforms (ileum) Clostridium spp. (ileum and cecum). Probiotics significantly increased G : F, colonization of Lactobacillus spp. in ileum. At day 35, bacteriophage treatment group showed greater (P<0.05) villus height of the duodenum, but a deeper crypt in duodenum. The present results indicate that the bacteriophage cocktail had a potential to enhance the performance and gut health of weanling pigs, however their combination with probiotics did not show an interaction.

  19. A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast.

    PubMed

    Jaschke, Paul R; Lieberman, Erica K; Rodriguez, Jon; Sierra, Adrian; Endy, Drew

    2012-12-20

    The 5386 nucleotide bacteriophage øX174 genome has a complicated architecture that encodes 11 gene products via overlapping protein coding sequences spanning multiple reading frames. We designed a 6302 nucleotide synthetic surrogate, øX174.1, that fully separates all primary phage protein coding sequences along with cognate translation control elements. To specify øX174.1f, a decompressed genome the same length as wild type, we truncated the gene F coding sequence. We synthesized DNA encoding fragments of øX174.1f and used a combination of in vitro- and yeast-based assembly to produce yeast vectors encoding natural or designer bacteriophage genomes. We isolated clonal preparations of yeast plasmid DNA and transfected E. coli C strains. We recovered viable øX174 particles containing the øX174.1f genome from E. coli C strains that independently express full-length gene F. We expect that yeast can serve as a genomic 'drydock' within which to maintain and manipulate clonal lineages of other obligate lytic phage. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. [Determination of Azospirillum Brasilense Cells With Bacteriophages via Electrooptical Analysis of Microbial Suspensions].

    PubMed

    Gulii, O I; Karavayeva, O A; Pavlii, S A; Sokolov, O I; Bunin, V D; Ignatov, O V

    2015-01-01

    The dependence-of changes in the electrooptical properties of Azospirillum brasilense cell suspension Sp7 during interaction with bacteriophage ΦAb-Sp7 on the number and time of interactions was studied. Incubation of cells with bacteriophage significantly changed the electrooptical signal within one minute. The selective effect of bacteriophage ΦAb on 18 strains of bacteria of the genus Azospirillum was studied: A. amazonense Ami4, A. brasilense Sp7, Cd, Sp107, Sp245, Jm6B2, Brl4, KR77, S17, S27, SR55, SR75, A. halopraeferans Au4, A. irakense KBC1, K A3, A. lipoferum Sp59b, SR65 and RG20a. We determined the limit of reliable determination of microbial cells infected with bacteriophage: - 10(4) cells/mL. The presence of foreign cell cultures of E. coli B-878 and E. coli XL-1 did not complicate the detection of A brasilense Sp7 cells with the use of bacteriophage ΦAb-Sp7. The results demonstrated that bacteriophage (ΦAb-Sp7 can be used for the detection of Azospirillum microbial cells via t electrooptical analysis of cell suspensions.

  1. Comparison of two filtration-elution procedures to improve the standard methods ISO 10705-1 & 2 for bacteriophage detection in groundwater, surface water and finished water samples.

    PubMed

    Helmi, K; Jacob, P; Charni-Ben-Tabassi, N; Delabre, K; Arnal, C

    2011-09-01

    To select a reliable method for bacteriophage concentration prior detection by culture from surface water, groundwater and drinking water to enhance the sensitivity of the standard methods ISO 10705-1 & 2. Artificially contaminated (groundwater and drinking water) and naturally contaminated (surface water) 1-litre samples were processed for bacteriophages detection. The spiked samples were inoculated with about 150 PFU of F-specific RNA bacteriophages and somatic coliphages using wastewater. Bacteriophage detection in the water samples was achieved using the standard method without and with a concentration step (electropositive Anodisc membrane or a pretreated electronegative Micro Filtration membrane, MF). For artificially contaminated matrices (drinking and ground waters), recovery rates using the concentration step were superior to 70% whilst analyses without concentration step mainly led to false negative results. Besides, the MF membrane presented higher performances compared with the Anodisc membrane. The concentration of a large volume of water (up to one litre) on a filter membrane avoids false negative results obtained by direct analysis as it allows detecting low number of bacteriophages in water samples. The addition of concentration step before applying the standard method could be useful to enhance the reliability of bacteriophages monitoring in water samples as bio-indicators to highlight faecal pollution. © No claim to French Government works. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. Contribution of hydrological data to the understanding of the spatio-temporal dynamics of F-specific RNA bacteriophages in river water during rainfall-runoff events.

    PubMed

    Fauvel, Blandine; Cauchie, Henry-Michel; Gantzer, Christophe; Ogorzaly, Leslie

    2016-05-01

    Heavy rainfall events were previously reported to bring large amounts of microorganisms in surface water, including viruses. However, little information is available on the origin and transport of viral particles in water during such rain events. In this study, an integrative approach combining microbiological and hydrological measurements was investigated to appreciate the dynamics and origins of F-specific RNA bacteriophage fluxes during two distinct rainfall-runoff events. A high frequency sampling (automatic sampler) was set up to monitor the F-specific RNA bacteriophages fluxes at a fine temporal scale during the whole course of the rainfall-runoff events. A total of 276 rainfall-runoff samples were collected and analysed using both infectivity and RT-qPCR assays. The results highlight an increase of 2.5 log10 and 1.8 log10 of infectious F-specific RNA bacteriophage fluxes in parallel of an increase of the water flow levels for both events. Faecal pollution was characterised as being mainly from anthropic origin with a significant flux of phage particles belonging to the genogroup II. At the temporal scale, two successive distinct waves of phage pollution were established and identified through the hydrological measurements. The first arrival of phages in the water column was likely to be linked to the resuspension of riverbed sediments that was responsible for a high input of genogroup II. Surface runoff contributed further to the second input of phages, and more particularly of genogroup I. In addition, an important contribution of infectious phage particles has been highlighted. These findings imply the existence of a close relationship between the risk for human health and the viral contamination of flood water. Copyright © 2016 Luxembourg institute of Science and Technology. Published by Elsevier Ltd.. All rights reserved.

  3. Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models.

    PubMed

    Dabrowska, Krystyna; Opolski, Adam; Wietrzyk, Joanna; Switala-Jelen, Kinga; Godlewska, Joanna; Boratynski, Janusz; Syper, Danuta; Weber-Dabrowska, Beata; Gorski, Andrzej

    2004-01-01

    Previously, we have shown the ability of the bacteriophage T4 and its substrain HAP1 (selected for a higher affinity to melanoma cells) to reveal antimetastatic activity in a mouse melanoma model. Here, we investigated the potential phage anticancer activity in primary tumour models. Mice were inoculated subcutaneously with B16 or LLC cells (collected from in vitro culture). Bacteriophages T4 and HAP1 were injected intraperitoneally daily (8 x 10(8)pfu/mouse, except the experiment concerning the dose-dependence). Treatment with purified preparations of bacteriophage T4 resulted in significant reduction of tumour size, the effect being dose-dependent. HAP1 was more effective than T4 and its activity was also dose-dependent. Parallel experiments with non-purified bacteriophage lysates resulted in significant stimulation of tumour growth. These data suggest that purified bacteriophages may inhibit tumour growth, a phenomenon with potentially important clinical implications in oncology.

  4. Quality-Controlled Small-Scale Production of a Well-Defined Bacteriophage Cocktail for Use in Human Clinical Trials

    PubMed Central

    Merabishvili, Maya; Pirnay, Jean-Paul; Verbeken, Gilbert; Chanishvili, Nina; Tediashvili, Marina; Lashkhi, Nino; Glonti, Thea; Krylov, Victor; Mast, Jan; Van Parys, Luc; Lavigne, Rob; Volckaert, Guido; Mattheus, Wesley; Verween, Gunther; De Corte, Peter; Rose, Thomas; Jennes, Serge; Zizi, Martin; De Vos, Daniel; Vaneechoutte, Mario

    2009-01-01

    We describe the small-scale, laboratory-based, production and quality control of a cocktail, consisting of exclusively lytic bacteriophages, designed for the treatment of Pseudomonas aeruginosa and Staphylococcus aureus infections in burn wound patients. Based on succesive selection rounds three bacteriophages were retained from an initial pool of 82 P. aeruginosa and 8 S. aureus bacteriophages, specific for prevalent P. aeruginosa and S. aureus strains in the Burn Centre of the Queen Astrid Military Hospital in Brussels, Belgium. This cocktail, consisting of P. aeruginosa phages 14/1 (Myoviridae) and PNM (Podoviridae) and S. aureus phage ISP (Myoviridae) was produced and purified of endotoxin. Quality control included Stability (shelf life), determination of pyrogenicity, sterility and cytotoxicity, confirmation of the absence of temperate bacteriophages and transmission electron microscopy-based confirmation of the presence of the expected virion morphologic particles as well as of their specific interaction with the target bacteria. Bacteriophage genome and proteome analysis confirmed the lytic nature of the bacteriophages, the absence of toxin-coding genes and showed that the selected phages 14/1, PNM and ISP are close relatives of respectively F8, φKMV and phage G1. The bacteriophage cocktail is currently being evaluated in a pilot clinical study cleared by a leading Medical Ethical Committee. PMID:19300511

  5. Comparative Study of Multiplet Structures of Mn4+ in K2SiF6, K2GeF6, and K2TiF6 Based on First-Principles Configuration-Interaction Calculations

    NASA Astrophysics Data System (ADS)

    Novita, Mega; Ogasawara, Kazuyoshi

    2012-02-01

    We performed first-principles configuration-interaction calculations of multiplet energies for Mn4+ in K2SiF6, K2GeF6, and K2TiF6 crystals. The results indicate that corrections based on a single-electron calculation are effective for the prediction of 4A2 → 4T2 and 4A2 → 4T1a transition energies, while such corrections are not necessary for the prediction of the 4A2 → 2E transition energy. The cluster size dependence of the multiplet energies is small. However, the 4A2 → 2E transition energy is slightly improved by using larger clusters including K ions. The theoretical multiplet energies are improved further by considering the lattice relaxation effect. As a result, the characteristic multiplet energy shifts depending on the host crystal are well reproduced without using any empirical parameters. Although K2GeF6 and K2TiF6 have lower symmetry than K2SiF6, the results indicate that the variation of the multiplet energy is mainly determined by the Mn-F bond length.

  6. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex.

    PubMed

    Golshahi, Laleh; Seed, Kimberley D; Dennis, Jonathan J; Finlay, Warren H

    2008-12-01

    Antibiotic-resistant bacterial infections have renewed interest in finding substitute methods of treatment. The purpose of the present in vitro study was to investigate the possibility of respiratory delivery of a Burkholderia cepacia complex (BCC) bacteriophage by nebulized aerosol administration. Bacteriophages in isotonic saline were aerosolized with Pari LC star and eFlow nebulizers, at titers with mean value (standard deviation) of 2.15 x 10(8) (1.63 x 10(8)) plaque-forming unit (PFU)/mL in 2.5-mL nebulizer fills. The breathing pattern of an adult was simulated using a pulmonary waveform generator. During breath simulation, the size distributions of the nebulized aerosol were measured using phase doppler anemometry (PDA). Efficiency of nebulizer delivery was subsequently determined by collection of aerosol on low resistance filters and measurement of bacteriophage titers. These filter titers were used as input data to a mathematical lung deposition model to predict regional deposition of bacteriophages in the lung and initial bacteriophage titers in the liquid surface layer of each conducting airway generation. The results suggest that BCC bacteriophages can be nebulized successfully within a reasonable delivery time and predicted titers in the lung indicate that this method may hold potential for treatment of bacterial lung infections common among cystic fibrosis patients.

  7. Methods for Bacteriophage Preservation.

    PubMed

    Łobocka, Małgorzata B; Głowacka, Aleksandra; Golec, Piotr

    2018-01-01

    In a view of growing interest in bacteriophages as the most abundant members of microbial communities and as antibacterial agents, reliable methods for bacteriophage long-term preservation, that warrant the access to original or mutant stocks of unchanged properties, have become of crucial importance. A storage method that retains the infectivity of any kind of bacteriophage virions, either in a cell lysate or in a purified suspension, does not exist, due to the enormous diversity of bacteriophages and hence the differentiation of their sensitivity to various storage conditions. Here, we describe a method of long-term bacteriophage preservation, which is based on freezing of freshly infected susceptible bacteria at early stages of bacteriophage development. The infected bacteria release mature bacteriophages upon melting enabling the recovery of bacteriophage virions with high efficiency. The only limitation of this method is the sensitivity of bacteriophage host to deep-freezing, and thus it can be used for the long-term preservation of the vast majority of bacteriophages.

  8. [TL, the new bacteriophage of Pseudomonas aeruginosa and its application for the search of halo-producing bacteriophages].

    PubMed

    Pleteneva, E A; Burkal'tseva, M V; Shaburova, O V; Krylov, S V; Pechnikova, E V; Sokolova, O S; Krylov, V N

    2011-01-01

    The properties of new virulent bacteriophage TL of Pseudomonas aeruginosa belonging to the family Podoviridae (genome size of 46 kb) were investigated. This bacteriophage is capable of lysogenizing the bacterial lawn in halo zones around negative colonies (NC) of other bacteriophages. TL forms large NC, that are hardly distinguishable on the lawn of P. aeruginisa PAO1. At the same time, on the lawns of some phage-resistant PAO1 mutants, as well as on those produced by a number of clinical isolates, TL forms more transparent NC. It is suggested that more effective growth of the bacteriophage TL NC is associated with the differences in outer lipopolysaccharide (LPS) layer of the cell walls of different bacterial strains, as well as of the bacteria inside and outside of the halos. This TL property was used to optimize selection of bacteriophages producing halos around NC on the lawn of P. aeruginosa PAO1. As a result, a group of bacteriophages differing in the patterns of interaction between their halos and TL bacteriophage, as well as in some characters was identified. Taking into consideration the importance of cell-surfaced structures of P. aeruginosa in manifestation of virulence and pathogenicity, possible utilization of specific phage enzymes, polysacchadide depolymerases, for more effective treatment of P. aeruginosa infections is discussed.

  9. Decontamination of materials contaminated with Francisella philomiragia or MS2 bacteriophage using PES-Solid, a solid source of peracetic acid.

    PubMed

    Buhr, T L; Young, A A; Johnson, C A; Minter, Z A; Wells, C M

    2014-08-01

    The aim of the study was to develop test methods and evaluate survival of Francisella philomiragia cells and MS2 bacteriophage after exposure to PES-Solid (a solid source of peracetic acid) formulations with or without surfactants. Francisella philomiragia cells (≥7·6 log10 CFU) or MS2 bacteriophage (≥6·8 log10 PFU) were deposited on seven different test materials and treated with three different PES-Solid formulations, three different preneutralized samples and filter controls at room temperature for 15 min. There were 0-1·3 log10 CFU (<20 cells) of cell survival, or 0-1·7 log10 (<51 PFU) of bacteriophage survival in all 21 test combinations (organism, formulation and substrate) containing reactive PES-Solid. In addition, the microemulsion (Dahlgren Surfactant System) showed ≤2 log10 (100 cells) of viable F. philomiragia cells, indicating the microemulsion achieved <2 log10 CFU on its own. Three PES-Solid formulations and one microemulsion system (DSS) inactivated F. philomiragia cells and/or MS2 bacteriophage that were deposited on seven different materials. A test method was developed to show that reactive PES-Solid formulations and a microemulsion system (DSS) inactivated >6 log10 CFU/PFU F. philomiragia cells and/or MS2 bacteriophage on different materials. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  10. Characterization of a novel bacteriophage, Phda1, infecting the histamine-producing Photobacterium damselae subsp. damselae.

    PubMed

    Yamaki, S; Kawai, Y; Yamazaki, K

    2015-06-01

    Photobacterium damselae subsp. damselae is a potent histamine-producing micro-organism. The aim of this study was to isolate and characterize a bacteriophage Phda1 that infected P. damselae subsp. damselae to inhibit its growth and histamine accumulation. Phda1 was isolated from a raw oyster, and the host range, morphology and the bacteriophage genome size were analysed. Phda1 formed a clear plaque only against P. damselae subsp. damselae JCM8969 among five Gram-positive and 32 Gram-negative bacterial strains tested. Phda1 belongs to the family Myoviridae, and its genome size was estimated as 35·2-39·5 kb. According to the one-step growth curve analysis, the latent period, rise period and burst size of Phda1 were 60 min, 50 min and 19 plaque-forming units per infected cell, respectively. Divalent cations, especially Ca(2+) and Mg(2+) , strongly improved Phda1 adsorption to the host cells and its propagation. Phda1 treatment delayed the growth and histamine production of P. damselae subsp. damselae in an in vitro challenge test. The bacteriophage Phda1 might serve as a potential antimicrobial agent to inhibit the histamine poisoning caused by P. damselae subsp. damselae. This is the first description of a bacteriophage specifically infecting P. damselae subsp. damselae and its potential applications. Bacteriophage therapy could prove useful in the prevention of histamine poisoning. © 2015 The Society for Applied Microbiology.

  11. Bacteriophages as indicators of faecal pollution and enteric virus removal.

    PubMed

    McMinn, B R; Ashbolt, N J; Korajkic, A

    2017-07-01

    Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. Bacteriophage are alternative fecal indicators that may be better surrogates for viral pathogens than fecal indicator bacteria (FIB). This report offers a summary of the existing literature concerning the utility of bacteriophage as indicators of viral presence (fecal sources and surface waters) and persistence (in built infrastructure and aquatic environments). Our findings indicate that bacteriophage levels in all matrices examined are consistently lower than FIB, but similar to viral pathogens. Furthermore, in built infrastructure (e.g. wastewater treatment systems) bacteriophage closely mimic viral pathogen persistence suggesting they may be adequate sentinels of enteric virus removal. © 2017 The Society for Applied Microbiology.

  12. Leptonic-decay-constant ratio f(K+)/f(π+) from lattice QCD with physical light quarks.

    PubMed

    Bazavov, A; Bernard, C; DeTar, C; Foley, J; Freeman, W; Gottlieb, Steven; Heller, U M; Hetrick, J E; Kim, J; Laiho, J; Levkova, L; Lightman, M; Osborn, J; Qiu, S; Sugar, R L; Toussaint, D; Van de Water, R S; Zhou, R

    2013-04-26

    A calculation of the ratio of leptonic decay constants f(K+)/f(π+) makes possible a precise determination of the ratio of Cabibbo-Kobayashi-Maskawa (CKM) matrix elements |V(us)|/|V(ud)| in the standard model, and places a stringent constraint on the scale of new physics that would lead to deviations from unitarity in the first row of the CKM matrix. We compute f(K+)/f(π+) numerically in unquenched lattice QCD using gauge-field ensembles recently generated that include four flavors of dynamical quarks: up, down, strange, and charm. We analyze data at four lattice spacings a ≈ 0.06, 0.09, 0.12, and 0.15 fm with simulated pion masses down to the physical value 135 MeV. We obtain f(K+)/f(π+) = 1.1947(26)(37), where the errors are statistical and total systematic, respectively. This is our first physics result from our N(f) = 2+1+1 ensembles, and the first calculation of f(K+)/f(π+) from lattice-QCD simulations at the physical point. Our result is the most precise lattice-QCD determination of f(K+)/f(π+), with an error comparable to the current world average. When combined with experimental measurements of the leptonic branching fractions, it leads to a precise determination of |V(us)|/|V(ud)| = 0.2309(9)(4) where the errors are theoretical and experimental, respectively.

  13. Escherichia coli K-12 and B contain functional bacteriophage P2 ogr genes.

    PubMed Central

    Slettan, A; Gebhardt, K; Kristiansen, E; Birkeland, N K; Lindqvist, B H

    1992-01-01

    The bacteriophage P2 ogr gene encodes an essential 72-amino-acid protein which acts as a positive regulator of P2 late transcription. A P2 ogr deletion phage, which depends on the supply of Ogr protein in trans for lytic growth on Escherichia coli C, has previously been constructed. E. coli B and K-12 were found to support the growth of the ogr-defective P2 phage because of the presence of functional ogr genes located in cryptic P2-like prophages in these strains. The cryptic ogr genes were cloned and sequenced. Compared with the P2 wild-type ogr gene, the ogr genes in the B and K-12 strains are conserved, containing mostly silent base substitutions. One of the base substitutions in the K-12 ogr gene results in replacement of an alanine with valine at position 57 in the Ogr protein but does not seem to affect the function of Ogr as a transcriptional activator. The cryptic ogr genes are constitutively transcribed, apparently at a higher level than the wild-type ogr gene in a P2 lysogen. Images PMID:1597424

  14. Identification of the origin of faecal contamination in estuarine oysters using Bacteroidales and F-specific RNA bacteriophage markers.

    PubMed

    Mieszkin, S; Caprais, M P; Le Mennec, C; Le Goff, M; Edge, T A; Gourmelon, M

    2013-09-01

    The aim of this study was to identify the origin of faecal pollution impacting the Elorn estuary (Brittany, France) by applying microbial source tracking (MST) markers in both oysters and estuarine waters. The MST markers used were as follows: (i) human-, ruminant- and pig-associated Bacteroidales markers by real-time PCR and (ii) human genogroup II and animal genogroup I of F-specific RNA bacteriophages (FRNAPH) by culture/genotyping and by direct real-time reverse-transcriptase PCR. The higher occurrence of the human genogroup II of F-specific RNA bacteriophages using a culture/genotyping method, and human-associated Bacteroidales marker by real-time PCR, allowed the identification of human faecal contamination as the predominant source of contamination in oysters (total of 18 oyster batches tested) and waters (total of 24 water samples tested). The importance of using the intravalvular liquids instead of digestive tissues, when applying host-associated Bacteroidales markers in oysters, was also revealed. This study has shown that the application of a MST toolbox of diverse bacterial and viral methods can provide multiple lines of evidence to identify the predominant source of faecal contamination in shellfish from an estuarine environment. Application of this MST toolbox is a useful approach to understand the origin of faecal contamination in shellfish harvesting areas in an estuarine setting. © 2013 The Society for Applied Microbiology.

  15. Differential bacteriophage mortality on exposure to copper.

    PubMed

    Li, Jinyu; Dennehy, John J

    2011-10-01

    Many studies report that copper can be used to control microbial growth, including that of viruses. We determined the rates of copper-mediated inactivation for a wide range of bacteriophages. We used two methods to test the effect of copper on bacteriophage survival. One method involved placing small volumes of bacteriophage lysate on copper and stainless steel coupons. Following exposure, metal coupons were rinsed with lysogeny broth, and the resulting fluid was serially diluted and plated on agar with the corresponding bacterial host. The second method involved adding copper sulfate (CuSO(4)) to bacteriophage lysates to a final concentration of 5 mM. Aliquots were removed from the mixture, serially diluted, and plated with the appropriate bacterial host. Significant mortality was observed among the double-stranded RNA (dsRNA) bacteriophages Φ6 and Φ8, the single-stranded RNA (ssRNA) bacteriophage PP7, the ssDNA bacteriophage ΦX174, and the dsDNA bacteriophage PM2. However, the dsDNA bacteriophages PRD1, T4, and λ were relatively unaffected by copper. Interestingly, lipid-containing bacteriophages were most susceptible to copper toxicity. In addition, in the first experimental method, the pattern of bacteriophage Φ6 survival over time showed a plateau in mortality after lysates dried out. This finding suggests that copper's effect on bacteriophage is mediated by the presence of water.

  16. Modeling removal of bacteriophages MS2 and PRD1 by dune recharge at Castricum, Netherlands

    NASA Astrophysics Data System (ADS)

    Schijven, Jack F.; Hoogenboezem, Wim; Hassanizadeh, S. Majid; Peters, Jos H.

    1999-04-01

    Removal of model viruses by dune recharge was studied at a field site in the dune area of Castricum, Netherlands. Recharge water was dosed with bacteriophages MS2 and PRD1 for 11 days at a constant concentration in a 10- by 15-m compartment that was isolated in a recharge basin. Breakthrough was monitored for 120 days at six wells with their screens along a flow line. Concentrations of both phages were reduced about 3 log10 within the first 2.4 m and another 5 log10 in a linear fashion within the following 27 m. A model accounting for one-site kinetic attachment as well as first-order inactivation was employed to simulate the bacteriophage breakthrough curves. The major removal process was found to be attachment of the bacteriophages. Detachment was very slow. After passage of the pulse of dosed bacteriophages, there was a long tail whose slope corresponds to the inactivation rate coefficient of 0.07-0.09 day-1 for attached bacteriophages. The end of the rising and the start of the declining limbs of the breakthrough curves could not be simulated completely, probably because of an as yet unknown process.

  17. First steps of bacteriophage SPP1 entry into Bacillus subtilis.

    PubMed

    Jakutytė, Lina; Lurz, Rudi; Baptista, Catarina; Carballido-Lopez, Rut; São-José, Carlos; Tavares, Paulo; Daugelavičius, Rimantas

    2012-01-20

    The mechanism of genome transfer from the virion to the host cytoplasm is critical to understand and control the beginning of viral infection. The initial steps of bacteriophage SPP1 infection of the Gram-positive bacterium Bacillus subtilis were monitored by following changes in permeability of the cytoplasmic membrane (CM). SPP1 leads to a distinctively faster CM depolarization than the one caused by podovirus ϕ29 or myovirus SP01 during B. subtilis infection. Depolarization requires interaction of SPP1 infective virion to its receptor protein YueB. The amplitude of depolarization depends on phage input and concentration of YueB at the cell surface. Sub-millimolar concentrations of Ca(2+) are necessary and sufficient for SPP1 reversible binding to the host envelope and thus to trigger depolarization while DNA delivery to the cytoplasm depends on millimolar concentrations of this divalent cation. A model describing the early events of bacteriophage SPP1 infection is presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Structural determination of the capsular polysaccharide produced by Klebsiella pneumoniae serotype K40. NMR studies of the oligosaccharide obtained upon depolymerisation of the polysaccharide with a bacteriophage-associated endoglycanase.

    PubMed

    Cescutti, P; Toffanin, R; Kvam, B J; Paoletti, S; Dutton, G G

    1993-04-01

    The Klebsiella pneumoniae K40 capsular polysaccharide has been isolated and investigated by use of methylation analysis, specific degradations and NMR spectroscopy. The polysaccharide was depolymerised by a bacteriophage-associated endogalactosidase, and the resulting oligosaccharide was characterised by one-dimensional and two-dimensional NMR spectroscopy and direct chemical ionisation MS. The repeating unit of the K40 capsular polysaccharide was shown to be a linear hexasaccharide with the composition-->3)- alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->4)-alpha-D-GlcpA++ +-(1-->2-)- alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->3)-alpha-D-Galp-(1--> (Rha, rhamnose).

  19. Hyperexpansion of RNA Bacteriophage Diversity

    PubMed Central

    Krishnamurthy, Siddharth R.; Janowski, Andrew B.; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-01-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. PMID:27010970

  20. Occurrence and numbers of bacteriophages and bacterial indicators in faeces of yellow-legged seagull (Larus cachinnans).

    PubMed

    Muniesa, M; Jofre, J; Lucena, F

    1999-12-01

    Faeces from feral populations of yellow-legged seagulls from the northern coastal area of Catalonia (North-eastern Spain) contained variable amounts of faecal coliforms, faecal streptococci, somatic coliphages, F-specific bacteriophages and Bacteroides fragilis bacteriophages. Occurrence and numbers of bacterial indicators and bacteriophages in the faeces of yellow-legged seagulls are in the ranges described in the faeces of different animals. The ratios between numbers of bacterial indicators and numbers of bacteriophages are much higher in faeces of seagulls than in treated or raw sewage contributed by out-falls of the same area.

  1. Computational Determination of the Effects of Bacteriophage Bacteriophage Interactions in Human body.

    PubMed

    Mostafa, Marwa Mostafa; Nassef, Mohammad; Badr, Amr

    2017-10-19

    Chronic diseases are becoming more serious and widely spreading and this carries a heavy burden on doctors to deal with such patients. Although many of these diseases can be treated by bacteriophages, the situation is significantly dangerous in patients having concomitant more than one chronic disease, where conflicts between phages used in treating these diseases are very closer to happen. This research paper presents a method to detecting the Bacteriophage-Bacteriophage Interaction. This method is implemented based on Domain-Domain Interactions model and it was used to infer Domain-Domain Interactions between the bacteriophages injected in the human body at the same time. By testing the method over bacteriophages that are used to treat tuberculosis, salmonella and virulent E.coli, many interactions have been inferred and detected between these bacteriophages. Several effects were detected for the resulted interactions such as: playing a role in DNA repair such as non-homologous end joining, playing a role in DNA replication, playing a role in the interaction between the immune system and the tumor cells and playing a role in the stiff man syndrome. We revised all patents relating to bacteriophage bacteriophage interactions and phage therapy. The proposed method is developed to help doctors to realize the effect of simultaneously injecting different bacteriophages into the human body to treat different diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Norovirus and FRNA bacteriophage determined by RT-qPCR and infectious FRNA bacteriophage in wastewater and oysters.

    PubMed

    Flannery, John; Keaveney, Sinéad; Rajko-Nenow, Paulina; O'Flaherty, Vincent; Doré, William

    2013-09-15

    Norovirus (NoV), the leading cause of adult non-bacterial gastroenteritis can be commonly detected in wastewater but the extent of NoV removal provided by wastewater treatment plants (WWTPs) is unclear. We monitored a newly commissioned WWTP with UV disinfection on a weekly basis over a six month period for NoV using RT-qPCR and for FRNA bacteriophage GA using both RT-qPCR (total concentration) and a plaque assay (infectious concentration). Mean concentrations of NoV GI and GII in influent wastewater were reduced by 0.25 and 0.41 log10 genome copies 100 ml(-1), respectively by the WWTP. The mean concentration of total FRNA bacteriophage GA was reduced by 0.35 log genome copies 100 ml(-1) compared to a reduction of infectious FRNA bacteriophage GA of 2.13 log PFU 100 ml(-1). A significant difference between concentrations of infectious and total FRNA bacteriophage GA was observed in treated, but not in untreated wastewaters. We conclude that RT-qPCR in isolation underestimates the reduction of infectious virus during wastewater treatment. We further compared the concentrations of infectious virus in combined sewer overflow (CSO) and UV treated effluents using FRNA bacteriophage GA. A greater percentage (98%) of infectious virus is released in CSO discharges than UV treated effluent (44%). Following a CSO discharge, concentrations of NoV GII and infectious FRNA bacteriophage GA in oysters from less than the limit of detection to 3150 genome copies 100 g(-1) and 1050 PFU 100 g(-1) respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The Genome Sequence of Bacteriophage CPV1 Virulent for Clostridium perfringens

    USDA-ARS?s Scientific Manuscript database

    Application of bacteriophages and their lytic enzymes to control Clostridium perfringens is one potential approach to reduce the pathogen on poultry farms and in poultry-processing facilities. Bacteriophages lytic for C. perfringens were isolated from sewage, feces and broiler intestinal contents. P...

  4. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale.

    PubMed

    Boudaud, Nicolas; Machinal, Claire; David, Fabienne; Fréval-Le Bourdonnec, Armelle; Jossent, Jérôme; Bakanga, Fanny; Arnal, Charlotte; Jaffrezic, Marie Pierre; Oberti, Sandrine; Gantzer, Christophe

    2012-05-15

    The removal of MS2, Qβ and GA, F-specific RNA bacteriophages, potential surrogates for pathogenic waterborne viruses, was investigated during a conventional drinking water treatment at pilot scale by using river water, artificially and independently spiked with these bacteriophages. The objective of this work is to develop a standard system for assessing the effectiveness of drinking water plants with respect to the removal of MS2, Qβ and GA bacteriophages by a conventional pre-treatment process (coagulation-flocculation-settling-sand filtration) followed or not by an ultrafiltration (UF) membrane (complete treatment process). The specific performances of three UF membranes alone were assessed by using (i) pre-treated water and (ii) 0.1 mM sterile phosphate buffer solution (PBS), spiked with bacteriophages. These UF membranes tested in this work were designed for drinking water treatment market and were also selected for research purpose. The hypothesis serving as base for this study was that the interfacial properties for these three bacteriophages, in terms of electrostatic charge and the degree of hydrophobicity, could induce variations in the removal performances achieved by drinking water treatments. The comparison of the results showed a similar behaviour for both MS2 and Qβ surrogates whereas it was particularly atypical for the GA surrogate. The infectious character of MS2 and Qβ bacteriophages was mostly removed after clarification followed by sand filtration processes (more than a 4.8-log reduction) while genomic copies were removed at more than a 4.0-log after the complete treatment process. On the contrary, GA bacteriophage was only slightly removed by clarification followed by sand filtration, with less than 1.7-log and 1.2-log reduction, respectively. After the complete treatment process achieved, GA bacteriophage was removed with less than 2.2-log and 1.6-log reduction, respectively. The effectiveness of the three UF membranes tested in terms of

  5. Bacteriophages and Biofilms

    PubMed Central

    Harper, David R.; Parracho, Helena M. R. T.; Walker, James; Sharp, Richard; Hughes, Gavin; Werthén, Maria; Lehman, Susan; Morales, Sandra

    2014-01-01

    Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce) enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  6. Growing Bacteriophage M13 in Liquid Culture.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2017-11-01

    Stocks of bacteriophage M13 are usually grown in liquid culture. The infected bacteria do not lyse but, instead, grow at a slower than normal rate to form a dilute suspension. The inoculum of bacteriophage is almost always a freshly picked plaque or a suspension of bacteriophage particles obtained from a single plaque, as described here. Infected cells contain up to 200 copies of double-stranded, replicative-form DNA and extrude several hundred bacteriophage particles per generation. Thus, a 1-mL culture of infected cells can produce enough double-stranded viral DNA (1-2 mg) for restriction mapping and recovery of cloned DNA inserts and sufficient single-stranded DNA (∼5-10 mg) for site-directed mutagenesis, DNA sequencing, or synthesis of radiolabeled probes. The titer of bacteriophages in the supernatant from infected cells is so high (∼10 12 pfu/mL) that a small aliquot serves as a permanent stock of the starting plaque. © 2017 Cold Spring Harbor Laboratory Press.

  7. Development of a novel and highly efficient method of isolating bacteriophages from water.

    PubMed

    Liu, Weili; Li, Chao; Qiu, Zhi-Gang; Jin, Min; Wang, Jing-Feng; Yang, Dong; Xiao, Zhong-Hai; Yuan, Zhao-Kang; Li, Jun-Wen; Xu, Qun-Ying; Shen, Zhi-Qiang

    2017-08-01

    Bacteriophages are widely used to the treatment of drug-resistant bacteria and the improvement of food safety through bacterial lysis. However, the limited investigations on bacteriophage restrict their further application. In this study, a novel and highly efficient method was developed for isolating bacteriophage from water based on the electropositive silica gel particles (ESPs) method. To optimize the ESPs method, we evaluated the eluent type, flow rate, pH, temperature, and inoculation concentration of bacteriophage using bacteriophage f2. The quantitative detection reported that the recovery of the ESPs method reached over 90%. The qualitative detection demonstrated that the ESPs method effectively isolated 70% of extremely low-concentration bacteriophage (10 0 PFU/100L). Based on the host bacteria composed of 33 standard strains and 10 isolated strains, the bacteriophages in 18 water samples collected from the three sites in the Tianjin Haihe River Basin were isolated by the ESPs and traditional methods. Results showed that the ESPs method was significantly superior to the traditional method. The ESPs method isolated 32 strains of bacteriophage, whereas the traditional method isolated 15 strains. The sample isolation efficiency and bacteriophage isolation efficiency of the ESPs method were 3.28 and 2.13 times higher than those of the traditional method. The developed ESPs method was characterized by high isolation efficiency, efficient handling of large water sample size and low requirement on water quality. Copyright © 2017. Published by Elsevier B.V.

  8. Bacteriophages of methanotrophic bacteria.

    PubMed Central

    Tyutikov, F M; Bespalova, I A; Rebentish, B A; Aleksandrushkina, N N; Krivisky, A S

    1980-01-01

    Bacteriophages of methanotrophic bacteria have been found in 16 out of 88 studied samples (underground waters, pond water, soil, gas and oil installation waters, fermentor cultural fluids, bacterial paste, and rumen of cattle) taken in different geographic zones of the Soviet Union. Altogether, 23 phage strains were isolated: 10 strains that specifically lysed only Methylosinus sporium strains, 2 strains that each lysed 1 of 5 Methylosinus trichosporium strains studied, and 11 strains that lysed Flavobacterium gasotypicum and, at the same time, 1 M. sporium strain. By fine structure, the phages were divided into two types (with very short or long noncontractile tails); by host range and serological properties, they fell into three types. One-step growth characteristics of the phages differed only slightly; the latent period varied from 6 to 8 h, the rise period varied from 4 to 6 h, and the average burst size was 100. All phages had guanine- and cytosine-rich double-stranded deoxyribonucleic acid consisting of common nitrogen bases. The molecular mass of the deoxyribonucleic acid as determined by restriction endonuclease analysis was 29.4 X 10(6) for M. sporium phages and 44 X 10(6) for F. gasotypicum phages. By all of the above-mentioned properties, all phages within each of the groups were completely identical to one another, but differed from phages of other groups. Bacteriophages lysing M. sporium and M. trichosporium GB2 were identical to phages M1 and M4, respectively, which were isolated earlier in the German Democratic Republic on the same methanotrophic species. Images PMID:6774962

  9. Interaction of Bacteriophages with the Immune System: Induction of Bacteriophage-Specific Antibodies.

    PubMed

    Dąbrowska, Krystyna

    2018-01-01

    In all cases when a bacteriophage makes direct contact with a mammalian organism, it may challenge the mammalian immunological system. Its major consequence is production of antibodies specific to the bacteriophage. Here we present protocols applicable in studies of bacteriophage ability to induce specific antibodies. The protocols have been divided into three parts: purification, immunization, and detection (ELISA).

  10. Lytic bacteriophages

    PubMed Central

    Sharma, Manan

    2013-01-01

    Foodborne illnesses resulting from the consumption of produce commodities contaminated with enteric pathogens continue to be a significant public health issue. Lytic bacteriophages may provide an effective and natural intervention to reduce bacterial pathogens on fresh and fresh-cut produce commodities. The use of multi-phage cocktails specific for a single pathogen has been most frequently assessed on produce commodities to minimize the development of bacteriophage insensitive mutants (BIM) in target pathogen populations. Regulatory approval for the use of several lytic phage products specific for bacterial pathogens such as Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes in foods and on food processing surfaces has been granted by various agencies in the US and other countries, possibly allowing for the more widespread use of bacteriophages in the decontamination of fresh and minimally processed produce. Research studies have shown lytic bacteriophages specific for E. coli O157:H7, Salmonella spp. and Listeria monocytogenes have been effective in reducing pathogen populations on leafy greens, sprouts and tomatoes. PMID:24228223

  11. Convection-enhanced delivery of M13 bacteriophage to the brain

    PubMed Central

    Ksendzovsky, Alexander; Walbridge, Stuart; Saunders, Richard C.; Asthagiri, Ashok R.; Heiss, John D.; Lonser, Russell R.

    2013-01-01

    Object Recent studies indicate that M13 bacteriophage, a very large nanoparticle, binds to β-amyloid and α-synuclein proteins, leading to plaque disaggregation in models of Alzheimer and Parkinson disease. To determine the feasibility, safety, and characteristics of convection-enhanced delivery (CED) of M13 bacteriophage to the brain, the authors perfused primate brains with bacteriophage. Methods Four nonhuman primates underwent CED of M13 bacteriophage (900 nm) to thalamic gray matter (4 infusions) and frontal white matter (3 infusions). Bacteriophage was coinfused with Gd-DTPA (1 mM), and serial MRI studies were performed during infusion. Animals were monitored for neurological deficits and were killed 3 days after infusion. Tissues were analyzed for bacteriophage distribution. Results Real-time T1-weighted MRI studies of coinfused Gd-DTPA during infusion demonstrated a discrete region of perfusion in both thalamic gray and frontal white matter. An MRI-volumetric analysis revealed that the mean volume of distribution (Vd) to volume of infusion (Vi) ratio of M13 bacteriophage was 2.3 ± 0.2 in gray matter and 1.9 ± 0.3 in white matter. The mean values are expressed ± SD. Immunohistochemical analysis demonstrated mean Vd:Vi ratios of 2.9 ± 0.2 in gray matter and 2.1 ± 0.3 in white matter. The Gd-DTPA accurately tracked M13 bacteriophage distribution (the mean difference between imaging and actual bacteriophage Vd was insignificant [p > 0.05], and was −2.2% ± 9.9% in thalamic gray matter and 9.1% ± 9.5% in frontal white matter). Immunohistochemical analysis revealed evidence of additional spread from the initial delivery site in white matter (mean Vd:Vi, 16.1 ± 9.1). All animals remained neurologically intact after infusion during the observation period, and histological studies revealed no evidence of toxicity. Conclusions The CED method can be used successfully and safely to distribute M13 bacteriophage in the brain. Furthermore, additional white

  12. Convection-enhanced delivery of M13 bacteriophage to the brain.

    PubMed

    Ksendzovsky, Alexander; Walbridge, Stuart; Saunders, Richard C; Asthagiri, Ashok R; Heiss, John D; Lonser, Russell R

    2012-08-01

    Recent studies indicate that M13 bacteriophage, a very large nanoparticle, binds to β-amyloid and α-synuclein proteins, leading to plaque disaggregation in models of Alzheimer and Parkinson disease. To determine the feasibility, safety, and characteristics of convection-enhanced delivery (CED) of M13 bacteriophage to the brain, the authors perfused primate brains with bacteriophage. Four nonhuman primates underwent CED of M13 bacteriophage (900 nm) to thalamic gray matter (4 infusions) and frontal white matter (3 infusions). Bacteriophage was coinfused with Gd-DTPA (1 mM), and serial MRI studies were performed during infusion. Animals were monitored for neurological deficits and were killed 3 days after infusion. Tissues were analyzed for bacteriophage distribution. Real-time T1-weighted MRI studies of coinfused Gd-DTPA during infusion demonstrated a discrete region of perfusion in both thalamic gray and frontal white matter. An MRI-volumetric analysis revealed that the mean volume of distribution (Vd) to volume of infusion (Vi) ratio of M13 bacteriophage was 2.3 ± 0.2 in gray matter and 1.9 ± 0.3 in white matter. The mean values are expressed ± SD. Immunohistochemical analysis demonstrated mean Vd:Vi ratios of 2.9 ± 0.2 in gray matter and 2.1 ± 0.3 in white matter. The Gd-DTPA accurately tracked M13 bacteriophage distribution (the mean difference between imaging and actual bacteriophage Vd was insignificant [p > 0.05], and was -2.2% ± 9.9% in thalamic gray matter and 9.1% ± 9.5% in frontal white matter). Immunohistochemical analysis revealed evidence of additional spread from the initial delivery site in white matter (mean Vd:Vi, 16.1 ± 9.1). All animals remained neurologically intact after infusion during the observation period, and histological studies revealed no evidence of toxicity. The CED method can be used successfully and safely to distribute M13 bacteriophage in the brain. Furthermore, additional white matter spread after infusion cessation

  13. [RATIONAL ASPECTS OF BACTERIOPHAGES USE].

    PubMed

    Vakarina, A A; Kataeva, L V; Karpukhina, N F

    2015-01-01

    Analysis of existing aspects of bacteriophage use and study features of their lytic activity by using various techniques. Effect of monophages and associated bacteriophages (staphylococci, piopolyvalent and piocombined, intestiphage, pneumonia klebsiella and polyvalent klebsiella produced by "Microgen") was studied with 380 strains of Staphylococcus aureus and 279 cultures of Klebsiella pneumoniae in liquid and solid nutrient media. From patients with intestinal disorder, sensitivity was analyzed to 184 strains of Salmonella genus bacteria 18 serological variants to salmonella bacteriophages, 137 strains of Escherichia coli (lactose-negative, hemolytic), as well as some members of OKA groups (21 serovars) to coli-proteic and piopolyvalent bacteriophages. Lytic ability of the piobacteriophage against Klebsiella and Proteus genus bacteria was determined. Staphylococcus aureus was sensitive to staphylococcus bacteriophage in 71.6% of cases and to piobacteriophage--in 86.15% of cases. A 100% lytic ability of salmonella bacteriophage against Salmonella spp. was established. Sensitivity of E. coli of various serogroups to coli-proteic and piobacteriophage was 66 - 100%. Klebsiella, Proteus genus bacteria were sensitive to piobacteriophage in only 35% and 43.15% of cases, respectively. A more rational use of bacteriophages is necessary: development of a technique, evaluation of sensitivity of bacteria to bacteriophage, introduction of corrections into their production (expansion of bacteriophage spectra, determination and indication of their concentration in accompanying documents).

  14. The serotype-specific glucose side chain of rhamnose-glucose polysaccharides is essential for adsorption of bacteriophage M102 to Streptococcus mutans.

    PubMed

    Shibata, Yukie; Yamashita, Yoshihisa; van der Ploeg, Jan R

    2009-05-01

    Bacteriophage M102 is a virulent siphophage that propagates in some serotype c Streptococcus mutans strains, but not in S. mutans of serotype e, f or k. The serotype of S. mutans is determined by the glucose side chain of rhamnose-glucose polysaccharide (RGP). Because the first step in the bacteriophage infection process is adsorption of the phage, it was investigated whether the serotype specificity of phage M102 was determined by adsorption. M102 adsorbed to all tested serotype c strains, but not to strains of different serotypes. Streptococcus mutans serotype c mutants defective in the synthesis of the glucose side chain of RGP failed to adsorb phage M102. These results suggest that the glucose side chain of RGP acts as a receptor for phage M102.

  15. Structure of a Reptilian Adenovirus Reveals a Phage Tailspike Fold Stabilizing a Vertebrate Virus Capsid.

    PubMed

    Menéndez-Conejero, Rosa; Nguyen, Thanh H; Singh, Abhimanyu K; Condezo, Gabriela N; Marschang, Rachel E; van Raaij, Mark J; San Martín, Carmen

    2017-10-03

    Although non-human adenoviruses (AdVs) might offer solutions to problems posed by human AdVs as therapeutic vectors, little is known about their basic biology. In particular, there are no structural studies on the complete virion of any AdV with a non-mammalian host. We combine mass spectrometry, cryo-electron microscopy, and protein crystallography to characterize the composition and structure of a snake AdV (SnAdV-1, Atadenovirus genus). SnAdV-1 particles contain the genus-specific proteins LH3, p32k, and LH2, a previously unrecognized structural component. Remarkably, the cementing protein LH3 has a trimeric β helix fold typical of bacteriophage host attachment proteins. The organization of minor coat proteins differs from that in human AdVs, correlating with higher thermostability in SnAdV-1. These findings add a new piece to the intriguing puzzle of virus evolution, hint at the use of cell entry pathways different from those in human AdVs, and will help development of new, thermostable SnAdV-1-based vectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Bacteriophages Infecting Propionibacterium acnes

    PubMed Central

    2013-01-01

    Viruses specifically infecting bacteria, or bacteriophages, are the most common biological entity in the biosphere. As such, they greatly influence bacteria, both in terms of enhancing their virulence and in terms of killing them. Since the first identification of bacteriophages in the beginning of the 20th century, researchers have been fascinated by these microorganisms and their ability to eradicate bacteria. In this review, we will cover the history of the Propionibacterium acnes bacteriophage research and point out how bacteriophage research has been an important part of the research on P. acnes itself. We will further discuss recent findings from phage genome sequencing and the identification of phage sequence signatures in clustered regularly interspaced short palindromic repeats (CRISPRs). Finally, the potential to use P. acnes bacteriophages as a therapeutic strategy to combat P. acnes-associated diseases will be discussed. PMID:23691509

  17. Nonleptonic decays of B →(f1(1285 ),f1(1420 ))V in the perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Xiao, Zhen-Jun; Zou, Zhi-Tian

    2016-12-01

    We investigate the branching ratios, the polarization fractions, the direct C P -violating asymmetries, and the relative phases in 20 nonleptonic decay modes of B →f1V within the framework of the perturbative QCD approach at leading order with f1 including two 3P1-axial-vector states f1(1285 ) and f1(1420 ) . Here, B denotes B+, B0, and Bs0 mesons and V stands for the lightest vector mesons ρ , K*, ω , and ϕ , respectively. The Bs0→f1V decays are studied theoretically for the first time in the literature. Together with the angle ϕf1≈(24-2.7+3.2)∘ extracted from the measurement through Bd /s→J /ψ f1(1285 ) modes for the f1(1285 )-f1(1420 ) mixing system, it is of great interest to find phenomenologically some modes such as the tree-dominated B+→f1ρ+ and the penguin-dominated B+,0→f1K*+,0 , Bs0→f1ϕ with large branching ratios around O (10-6) or even O (10-5), which are expected to be measurable at the LHCb and/or the Belle-II experiments in the near future. The good agreement (sharp contrast) of branching ratios and decay pattern for B+→f1ρ+ , B+,0→f1(1285 )K*+,0[B+,0→f1(1420 )K*+,0] decays between QCD factorization and perturbative QCD factorization predictions can help us to distinguish these two rather different factorization approaches via precision measurements, which would also be helpful for us in exploring the annihilation decay mechanism through its important roles for the considered B →f1V decays.

  18. Sol-gel synthesis of K{sub 3}InF{sub 6} and structural characterization of K{sub 2}InC{sub 10}O{sub 10}H{sub 6}F{sub 9}, K{sub 3}InC{sub 12}O{sub 14}H{sub 4}F{sub 18} and K{sub 3}InC{sub 12}O{sub 12}F{sub 18}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labeguerie, Jessica; Gredin, Patrick; Marrot, Jerome

    2005-10-15

    K{sub 3}InF{sub 6} is synthesized by a sol-gel route starting from indium and potassium acetates dissolved in isopropanol in the stoichiometry 1:3, with trifluoroacetic acid as fluorinating agent. The crystal structures of the organic precursors were solved by X-ray diffraction methods on single crystals. Three organic compounds were isolated and identified: K{sub 2}InC{sub 10}O{sub 10}H{sub 6}F{sub 9}, K{sub 3}InC{sub 12}O{sub 14}H{sub 4}F{sub 18} and K{sub 3}InC{sub 12}O{sub 12}F{sub 18}. The first one, deficient in potassium in comparison with the initial stoichiometry, is unstable. In its crystal structure, acetate as well as trifluoroacetate anions are coordinated to the indium atom. Themore » two other precursors are obtained, respectively, by quick and slow evaporation of the solution. They correspond to the final organic compounds, which give K{sub 3}InF{sub 6} by decomposition at high temperature. The crystal structure of K{sub 3}InC{sub 12}O{sub 14}H{sub 4}F{sub 18} is characterized by complex anions [In(CF{sub 3}COO){sub 4}(OH{sub x}){sub 2}]{sup (5-2x)-} and isolated [CF{sub 3}COOH{sub 2-x}]{sup (x-1)-} molecules with x=2 or 1, surrounded by K{sup +} cations. The crystal structure of K{sub 3}InC{sub 12}O{sub 12}F{sub 18} is only constituted by complex anions [In(CF{sub 3}COO){sub 6}]{sup 3-} and K{sup +} cations. For all these compounds, potassium cations ensure only the electroneutrality of the structure. IR spectra of K{sub 2}InC{sub 10}O{sub 10}H{sub 6}F{sub 9} and K{sub 3}InC{sub 12}O{sub 12}F{sub 18} were also performed at room temperature on pulverized crystals.« less

  19. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    NASA Astrophysics Data System (ADS)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  20. Characterization of a novel lytic bacteriophage from an industrial Escherichia coli fermentation process and elimination of virulence using a heterologous CRISPR-Cas9 system.

    PubMed

    Halter, Mathew C; Zahn, James A

    2018-03-01

    Bacterial-bacteriophage interactions are a well-studied and ecologically-important aspect of microbiology. Many commercial fermentation processes are susceptible to bacteriophage infections due to the use of high-density, clonal cell populations. Lytic infections of bacterial cells in these fermentations are especially problematic due to their negative impacts on product quality, asset utilization, and fouling of downstream equipment. Here, we report the isolation and characterization of a novel lytic bacteriophage, referred to as bacteriophage DTL that is capable of rapid lytic infections of an Escherichia coli K12 strain used for commercial production of 1,3-propanediol (PDO). The bacteriophage genome was sequenced and annotated, which identified 67 potential open-reading frames (ORF). The tail fiber ORF, the largest in the genome, was most closely related to bacteriophage RTP, a T1-like bacteriophage reported from a commercial E. coli fermentation process in Germany. To eliminate virulence, both a fully functional Streptococcus thermophilus CRISPR3 plasmid and a customized S. thermophilus CRISPR3 plasmid with disabled spacer acquisition elements and seven spacers targeting the bacteriophage DTL genome were constructed. Both plasmids were separately integrated into a PDO production strain, which was subsequently infected with bacteriophage DTL. The native S. thermophilus CRISPR3 operon was shown to decrease phage susceptibility by approximately 96%, while the customized CRISPR3 operon provided complete resistance to bacteriophage DTL. The results indicate that the heterologous bacteriophage-resistance system described herein is useful in eliminating lytic infections of bacteriophage DTL, which was prevalent in environment surrounding the manufacturing facility.

  1. Genome Sequence of the Enterohemorrhagic Escherichia coli Bacteriophage UFV-AREG1

    PubMed Central

    Batalha, Laís Silva; Albino, Luiz Augusto A.; Boggione, Delaine Meireles Gouveia; Gontijo, Marco Tulio Pardini; Bazzolli, Denise M. Soares; Mendonca, Regina C. Santos

    2016-01-01

    Here, we present the genome sequence of the Escherichia coli bacteriophage UFV-AREG1. This phage was isolated from cowshed wastewater and showed specificity for enterohemorrhagic E. coli O157:H7 (ATCC 43895), E. coli 0111 (CDC O11ab) and E. coli (ATCC 23229). PMID:27738021

  2. Bacteriophage in polar inland waters

    USGS Publications Warehouse

    Säwström, Christin; Lisle, John; Anesio, A.M.; Priscu, John C.; Laybourn-Parry, J.

    2008-01-01

    Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in polar inland waters are scant but the indications are that they play an active and dynamic role in these microbially dominated polar ecosystems. This review summarises what is presently known about polar inland bacteriophages, ranging from subglacial Antarctic lakes to glacial ecosystems in the Arctic. The review examines interactions between bacteriophages and their hosts and the abiotic and biotic variables that influence these interactions in polar inland waters. In addition, we consider the proportion of the bacteria in Arctic and Antarctic lake and glacial waters that are lysogenic and visibly infected with viruses. We assess the relevance of bacteriophages in the microbial loop in the extreme environments of Antarctic and Arctic inland waters with an emphasis on carbon cycling.

  3. Nanoscale bacteriophage biosensors beyond phage display.

    PubMed

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology.

  4. Nanoscale bacteriophage biosensors beyond phage display

    PubMed Central

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology. PMID:24143096

  5. The endolysins of bacteriophages CMP1 and CN77 are specific for the lysis of Clavibacter michiganensis strains.

    PubMed

    Wittmann, Johannes; Eichenlaub, Rudolf; Dreiseikelmann, Brigitte

    2010-08-01

    Putative endolysin genes of bacteriophages CMP1 and CN77, which infect Clavibacter michiganensis subsp. michiganensis and C. michiganensis subsp. nebraskensis, respectively, were cloned and expressed in Escherichia coli. The His-tagged endolysin of CMP1 consists of 306 amino acids and has a calculated molecular mass of 34.8 kDa, while the His-tagged endolysin of CN77 has 290 amino acids with a molecular mass of 31.9 kDa. The proteins were purified and their bacteriolytic activity was demonstrated. The bacteriolytic activity of both enzymes showed a host range which was limited to the respective C. michiganensis subspecies and did not affect other bacteria, even those closely related to Clavibacter. Due to the high specificity of the CMP1 and CN77 endolysins they may be useful tools for biocontrol of plant-pathogenic C. michiganensis without affecting other bacteria in the soil.

  6. Multiplex PCR to detect bacteriophages from natural whey cultures of buffalo milk and characterisation of two phages active against Lactococcus lactis, ΦApr-1 and ΦApr-2.

    PubMed

    Aprea, Giuseppe; Mullan, William Michael; Murru, Nicoletta; Fitzgerald, Gerald; Buonanno, Marialuisa; Cortesi, Maria Luisa; Prencipe, Vincenza Annunziata; Migliorati, Giacomo

    2017-09-30

    This work investigated bacteriophage induced starter failures in artisanal buffalo Mozzarella production plants in Southern Italy. Two hundred and ten samples of whey starter cultures were screened for bacteriophage infection. Multiplex polymerase chain reaction (PCR) revealed phage infection in 28.56% of samples, all showing acidification problems during cheese making. Based on DNA sequences, bacteriophages for Lactococcus lactis (L. lactis), Lactobacillus delbruekii (L. delbruekii) and Streptococcus thermophilus (S. thermophilus) were detected. Two phages active against L. lactis, ΦApr-1 and ΦApr-2, were isolated and characterised. The genomes, approximately 31.4 kb and 31 kb for ΦApr-1 and ΦApr-2 respectively, consisted of double-stranded linear DNA with pac-type system. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‑PAGE) showed one major structural protein of approximately 32.5 kDa and several minor proteins. This is the first report of phage isolation in buffalo milk and of the use of multiplex PCR to screen and study the diversity of phages against Lactic Acid Bacteria (LAB) strains in artisanal Water Buffalo Mozzarella starters.

  7. MetaPhinder-Identifying Bacteriophage Sequences in Metagenomic Data Sets.

    PubMed

    Jurtz, Vanessa Isabell; Villarroel, Julia; Lund, Ole; Voldby Larsen, Mette; Nielsen, Morten

    Bacteriophages are the most abundant biological entity on the planet, but at the same time do not account for much of the genetic material isolated from most environments due to their small genome sizes. They also show great genetic diversity and mosaic genomes making it challenging to analyze and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e.contigs) of phage origin in metagenomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic genome structure of many bacteriophages. The method is demonstrated to out-perform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder.

  8. A Bacteriophage-Encoded J-Domain Protein Interacts with the DnaK/Hsp70 Chaperone and Stabilizes the Heat-Shock Factor σ32 of Escherichia coli

    PubMed Central

    Perrody, Elsa; Cirinesi, Anne-Marie; Desplats, Carine; Keppel, France; Schwager, Françoise; Tranier, Samuel; Georgopoulos, Costa; Genevaux, Pierre

    2012-01-01

    The universally conserved J-domain proteins (JDPs) are obligate cochaperone partners of the Hsp70 (DnaK) chaperone. They stimulate Hsp70's ATPase activity, facilitate substrate delivery, and confer specific cellular localization to Hsp70. In this work, we have identified and characterized the first functional JDP protein encoded by a bacteriophage. Specifically, we show that the ORFan gene 057w of the T4-related enterobacteriophage RB43 encodes a bona fide JDP protein, named Rki, which specifically interacts with the Escherichia coli host multifunctional DnaK chaperone. However, in sharp contrast with the three known host JDP cochaperones of DnaK encoded by E. coli, Rki does not act as a generic cochaperone in vivo or in vitro. Expression of Rki alone is highly toxic for wild-type E. coli, but toxicity is abolished in the absence of endogenous DnaK or when the conserved J-domain of Rki is mutated. Further in vivo analyses revealed that Rki is expressed early after infection by RB43 and that deletion of the rki gene significantly impairs RB43 proliferation. Furthermore, we show that mutations in the host dnaK gene efficiently suppress the growth phenotype of the RB43 rki deletion mutant, thus indicating that Rki specifically interferes with DnaK cellular function. Finally, we show that the interaction of Rki with the host DnaK chaperone rapidly results in the stabilization of the heat-shock factor σ32, which is normally targeted for degradation by DnaK. The mechanism by which the Rki-dependent stabilization of σ32 facilitates RB43 bacteriophage proliferation is discussed. PMID:23133404

  9. Isolation and characterization of a bacteriophage F20 virulent to Enterobacter aerogenes.

    PubMed

    Mishra, Charitra Kumar; Choi, Tae Jin; Kang, Sun Chul

    2012-10-01

    An aquatic phage, designated F20, was characterized and its physico-chemical characteristics studied. F20 was specifically virulent to only two strains of Enterobacter aerogenes (ATCC 13048 and the multi-drug-resistant strain K113) among other species tested (n = 15). It was classified in the family Siphoviridae of T1-like viruses and contained a linear dsDNA genome estimated to be 51.5 kbp enclosed by an isometric capsid of 50±2 nm in diameter and a tail of 150±3 nm in length. F20 was able to survive in a broad pH range between 4 and 11, showed potential for future animal trials using oral solution and resisted chloroform and ethanol. It exhibited remarkable stability between room temperature and 70 °C for up to 150 min, and even up to 6 months at room temperature. Knowledge of this phage belonging to the widespread T1-like viruses might be helpful for adopting therapeutic strategies against E. aerogenes.

  10. Bacteriophage Mediated Killing of Staphylococcus aureus In Vitro on Orthopaedic K Wires in Presence of Linezolid Prevents Implant Colonization

    PubMed Central

    Kaur, Sandeep; Harjai, Kusum; Chhibber, Sanjay

    2014-01-01

    Background Infections of bone and joint tissues following arthroplasty surgeries remain a major challenge in orthopaedic settings. Methicillin resistant Staphylococcus aureus (MRSA) is recognised as an established pathogen in such infections. Combination therapy using linezolid and bacteriophage impregnated in biopolymer was investigated in the present study as an alternative strategy to prevent MRSA colonisation on the orthopaedic implant surface. Methodology Coating of stainless steel orthopaedic grade K-wires was achieved using hydroxypropylmethlycellulose (HPMC) mixed with phage alone, linezolid alone and phage and linezolid together. The potential of these agents to inhibit adhesion of S.aureus (MRSA) 43300 on K-wires was assessed. Coated and naked wires were analysed by scanning electron microscopy (SEM) and fluorescent staining. Result Significant reduction in bacterial adhesion was achieved on phage/linezolid wires in comparison to naked as well as HPMC coated wires. However, maximum reduction in bacterial adherence (∼4 log cycles) was observed on the wires coated with phage-linezolid combination. The frequency of emergence of resistant mutants was also negligible in presence of both the agents. Conclusion This study provides evidence to confirm that local delivery system employing linezolid (a potent protein synthesis inhibitor) along with a broad spectrum lytic bacteriophage (capable of self-multiplication) is able to attack the adhered as well as surrounding bacteria present near the implant site. Unlike other antibiotic based therapies, this combination has the potential to significantly restrict the emergence of resistant mutants, thus paving the way for effective treatment of MRSA associated infection of medical implants. PMID:24594764

  11. Identification and Characterization of T5-Like Bacteriophages Representing Two Novel Subgroups from Food Products

    PubMed Central

    Sváb, Domonkos; Falgenhauer, Linda; Rohde, Manfred; Szabó, Judit; Chakraborty, Trinad; Tóth, István

    2018-01-01

    During recent years, interest in the use of bacteriophages as biocontrol agents against foodborne pathogens has increased, particularly for members of the family Enterobacteriaceae, with pathogenic Escherichia coli, Shigella, and Salmonella strains among them. Here, we report the isolation and characterisation of 12 novel T5-like bacteriophages from confiscated food samples. All bacterophages effectively lysed E. coli K-12 strains and were able to infect pathogenic E. coli strains representing enterohaemorrhagic (EHEC), enteropathogenic (EPEC), enterotoxigenic (ETEC), and enteroinvasive (EIEC) pathotypes, Shigella dysenteriae, S. sonnei strains, as well as multidrug-resistant (MDR) E. coli and multiple strains representing different Salmonella enterica serovars. All the bacteriophages exhibited Siphoviridae morphology. Whole genome sequencing of the novel T5-like bacteriophages showed that they represent two distinct groups, with the genome-based grouping correlating to the different host spectra. As these bacteriophages are of food origin, their stability and lack of any virulence genes, as well as their broad and mutually complementary host spectrum makes these new T5-like bacteriophages valuable candidates for use as biocontrol agents against foodborne pathogenic enterobacteria. PMID:29487585

  12. [Strategies to prevent bacteriophage infection in industrial fermentation].

    PubMed

    Shen, Juntao; Xiu, Zhilong

    2017-12-25

    During the development of bacteria-based biotechnology, bacteriophage infection is one of the constant threats and troublesome problems in industrial fermentation. The core of puzzled bacteriophage infection is a complex arm race of coevolution between bacteriophages and their hosts where bacteriophage has evolved lots of escaped ways against bacterial resistance mechanisms. The strategies of rationally designing factories and rotation of starter strains could reduce the risk of bacteriophage infection, but often fail to avoid. Genetic engineering to increase bacterial resistance is one of the strategies to prevent bacteriophage infection and more knowledge about bacteriophage and its host is needed. Recently, there are some new findings on bacterial resistance mechanisms which provide new solutions for bacteriophage infection. For example, it is possible for a rational design of resistant strains to use CRISPR-Cas based technologies just based on the sequences of bacteriophages. Moreover, it is also possible to avoid the escape of bacteriophage by iteratively building up resistance levels to generate robust industrial starter cultures. Quorum-sensing signal molecules have recently been proved to be involved in the interactions between bacteria and bacteriophages, which provides a possible way to solve bacteriophage infection from a population level. Finally, the rapid development of bacteriophage genome editing and synthetic biology will bring some new cues for preventing bacteriophage infection in industrial fermentation.

  13. Isoscalar π π , K K ¯ , η η scattering and the σ , f0, f2 mesons from QCD

    NASA Astrophysics Data System (ADS)

    Briceño, Raul A.; Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.; Hadron Spectrum Collaboration

    2018-03-01

    We present the first lattice QCD study of coupled isoscalar π π ,K K ¯ ,η η S - and D -wave scattering extracted from discrete finite-volume spectra computed on lattices which have a value of the light quark mass corresponding to mπ˜391 MeV . In the JP=0+ sector we find analogues of the experimental σ and f0(980 ) states, where the σ appears as a stable bound-state below π π threshold, and, similar to what is seen in experiment, the f0(980 ) manifests itself as a dip in the π π cross section in the vicinity of the K K ¯ threshold. For JP=2+ we find two states resembling the f2(1270 ) and f2'(1525 ), observed as narrow peaks, with the lighter state dominantly decaying to π π and the heavier state to K K ¯. The presence of all these states is determined rigorously by finding the pole singularity content of scattering amplitudes, and their couplings to decay channels are established using the residues of the poles.

  14. Encapsulation Strategies of Bacteriophage (Felix O1) for Oral Therapeutic Application.

    PubMed

    Islam, Golam S; Wang, Qi; Sabour, Parviz M

    2018-01-01

    Due to emerging antibiotic-resistant strains among the pathogens, a variety of strategies, including therapeutic application of bacteriophages, have been suggested as a possible alternative to antibiotics in food animal production. As pathogen-specific biocontrol agents, bacteriophages are being studied intensively. Primarily their applications in the food industry and animal production have been recognized in the USA and Europe, for pathogens including Salmonella, Campylobacter, Escherichia coli, and Listeria. However, the viability of orally administered phage may rapidly reduce under the harsh acidic conditions of the stomach, presence of enzymes and bile. It is evident that bacteriophages, intended for phage therapy by oral administration, require efficient protection from the acidic environment of the stomach and should remain active in the animal's gastrointestinal tract where pathogen colonizes. Encapsulation of phages by spray drying or extrusion methods can protect phages from the simulated hostile gut conditions and help controlled release of phages to the digestive system when appropriate formulation strategy is implemented.

  15. Elucidation of the mechanisms of action of Bacteriophage K/nano-emulsion formulations against S. aureus via measurement of particle size and zeta potential.

    PubMed

    Esteban, Patricia Perez; Jenkins, A Toby A; Arnot, Tom C

    2016-03-01

    In earlier work we have demonstrated the effect that nano-emulsions have on bacterial growth, and most importantly the enhanced bacteriophage infectivity against Staphylococcus aureus in planktonic culture when phage are carried in nano-emulsions. However, the mechanisms of enhancement of the bacteriophage killing effect are not specifically understood. This work focuses on the investigation of the possible interactions between emulsion droplets and bacterial cells, between emulsion droplets and bacteriophages, and finally interactions between all three components: nano-emulsion droplets, bacteria, and bacteriophages. The first approach consists of simple calculations to determine the spatial distribution of the components, based on measurements of particle size. It was found that nano-emulsion droplets are much more numerous than bacteria or bacteriophage, and due to their size and surface area they must be covering the surface of both cells and bacteriophage particles. Stabilisation of bacteriophages due to electrostatic forces and interaction with nano-emulsion droplets is suspected, since bacteriophages may be protected against inactivation due to 'charge shielding'. Zeta potential was measured for the individual components in the system, and for all of them combined. It was concluded that the presence of nano-emulsions could be reducing electrostatic repulsion between bacterial cells and bacteriophage, both of which are very negatively 'charged'. Moreover, nano-emulsions lead to more favourable interaction between bacteriophages and bacteria, enhancing the anti-microbial or killing effect. These findings are relevant since the physicochemical properties of nano-emulsions (i.e. particle size distribution and zeta potential) are key in determining the efficacy of the formulation against infection in the context of responsive burn wound dressings-which is the main target for this work. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Standardised evaluation of the performance of a simple membrane filtration-elution method to concentrate bacteriophages from drinking water.

    PubMed

    Méndez, Javier; Audicana, Ana; Isern, Ana; Llaneza, Julián; Moreno, Belén; Tarancón, María Luisa; Jofre, Juan; Lucena, Francisco

    2004-04-01

    The bacteriophage elution procedure described further after adsorption to acetate-nitrate cellulose membrane filters allows better recovery of phages concentrated from 1l of water than elution procedures used previously. The improvement is due to the combined effect of the eluent (3% (w/v) beef extract, 3% (v/v) Tween 80, 0.5M NaCl, pH 9.0) and the application of ultrasound instead of agitation or swirling. Average recovery of somatic coliphages, 82 +/- 7%, was the greatest, and that of phages infecting Bacteroides fragilis, 56 +/- 8%, the lowest, with intermediate values for F-specific and F-specific RNA bacteriophages. Thus, the method allowed recovery of over 56% for all the phages suggested as surrogate indicators. The method was then validated according to an International Standardisation Organisation validation standard procedure and implemented in routine laboratories, which obtained reproducible results.

  17. Prevalence of antibiotic resistance genes in bacteriophage DNA fraction from Funan River water in Sichuan, China.

    PubMed

    Yang, Yanxian; Shi, Wenjin; Lu, Shao-Yeh; Liu, Jinxin; Liang, Huihui; Yang, Yifan; Duan, Guowei; Li, Yunxia; Wang, Hongning; Zhang, Anyun

    2018-06-01

    To better understand the role that bacteriophages play in antibiotic resistance genes (ARGs) dissemination in the aquatic environment, 36 water samples were collected from the Funan River in Sichuan, China. The occurrence of 15 clinically relevant ARGs and one class 1 integron gene int1 in phage-particle DNA were evaluated by PCR. The abundance of ARGs (bla CTX-M , sul1, and aac-(6')-1b-cr) was determined by quantitative PCR (qPCR). High prevalence of the int1 gene (66.7%) was found in the phage-particle DNA of tested samples, followed by sul1 (41.7%), sul2 (33.3%), bla CTX-M (33.3%), aac-(6')-lb-cr (25%), aph(3')-IIIa (16.7%), and ermF (8.3%). The qPCR data showed higher gene copy (GC) numbers in samples collected near a hospital (site 7) and a wastewater treatment plant (WWTP) (site 10) (P < .05). Particularly the absolute abundance of aac-(6')-lb-cr gene was significantly higher than the bla CTX-M and sul1 genes with the gene copy (GC) numbers of 5.73 log 10  copy/mL for site 7 and 4.99 log 10  copy/mL for site 10. To our best knowledge, this is the first study to report the presence of sul2, aac-(6')-lb-cr, ermF and aph(3')-IIIa genes in bacteriophage DNA derived from aquatic environments. Our findings highlight the potential of ARGs to be transmitted via bacteriophages in the aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Bacteriophages as indicators of human and animal faecal contamination in raw and treated wastewaters from Tunisia.

    PubMed

    Yahya, M; Hmaied, F; Jebri, S; Jofre, J; Hamdi, M

    2015-05-01

    We aimed at quantifying bacteriophages in raw and treated wastewaters of human and animal origin in Tunisia to assess their usefulness for tracking the origin of faecal pollution and in the follow-up of effectiveness of water treatments process. The concentrations of bacteriophages in wastewater samples were determined by double layer agar technique. Somatic coliphages and F-specific RNA bacteriophages were present in all types of samples in high concentrations. The values of Escherichia coli were variable depending on geographical location. On the other hand, bacteriophages infecting strain GA17 were detected preferably when human faecal contamination was occurred. Bacteriophages appear as a feasible and widely applicable manner to detect faecal contamination in Tunisia. On the other hand, phages infecting GA17 could be good markers for tracking the origin of faecal pollution in the area studied. The reuse of treated wastewaters can be a solution to meet the needs of water in the geographical area of study. Bacteriophages seem to predict differently the presence of faecal contamination in water than bacterial indicators. Consequently, they can be a valuable additional tool to improve water resources management for minimizing health risks. © 2015 The Society for Applied Microbiology.

  19. Incorporation of T4 bacteriophage in electrospun fibres.

    PubMed

    Korehei, R; Kadla, J

    2013-05-01

    Antibacterial food packaging materials, such as bacteriophage-activated electrospun fibrous mats, may address concerns triggered by waves of bacterial food contamination. To address this, we investigated several efficient methods for incorporating T4 bacteriophage into electrospun fibrous mats. The incorporation of T4 bacteriophage using simple suspension electrospinning led to more than five orders of magnitude decrease in bacteriophage activity. To better maintain bacteriophage viability, emulsion electrospinning was developed where the T4 bacteriophage was pre-encapsulated in an alginate reservoir via an emulsification process and subsequently electrospun into fibres. This resulted in an increase in bacteriophage viability, but there was still two orders of magnitude drop in activity. Using a coaxial electrospinning process, full bacteriophage activity could be maintained. In this process, a core/shell fibre structure was formed with the T4 bacteriophage being directly incorporated into the fibre core. The core/shell fibre encapsulated bacteriophage exhibited full bacteriophage viability after storing for several weeks at +4°C. Coaxial electrospinning was shown to be capable of encapsulating bacteriophages with high loading capacity, high viability and long storage time. These results are significant in the context of controlling and preventing bacterial infections in perishable foods during storage. © 2013 The Society for Applied Microbiology.

  20. Genetic Map of Bacteriophage φX174

    PubMed Central

    Benbow, R. M.; Hutchison, C. A.; Fabricant, J. D.; Sinsheimer, R. L.

    1971-01-01

    Bacteriophage φX174 temperature-sensitive and nonsense mutations in eight cistrons were mapped by using two-, three-, and four-factor genetic crosses. The genetic map is circular with a total length of 24 × 10−4wt recombinants per progeny phage. The cistron order is D-E-F-G-H-A-B-C. High negative interference is seen, consistent with a small closed circular deoxyribonucleic acid molecule as a genome. PMID:16789129

  1. Isoscalar π π , K K ¯ , η η scattering and the σ , f 0 , f 2 mesons from QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul A.; Dudek, Jozef J.; Edwards, Robert G.

    We present the first lattice QCD study of coupled isoscalarmore » $$\\pi\\pi,K\\overline{K},\\eta\\eta$$ $S$- and $D$-wave scattering extracted from discrete finite-volume spectra computed on lattices which have a value of the quark mass corresponding to $$m_\\pi\\sim391$$ MeV. In the $J^P=0^+$ sector we find analogues of the experimental $$\\sigma$$ and $$f_0(980)$$ states, where the $$\\sigma$$ appears as a stable bound-state below $$\\pi\\pi$$ threshold, and, similar to what is seen in experiment, the $$f_0(980)$$ manifests itself as a dip in the $$\\pi\\pi$$ cross section in the vicinity of the $$K\\overline{K}$$ threshold. For $J^P=2^+$ we find two states resembling the $$f_2(1270)$$ and $$f_2'(1525)$$, observed as narrow peaks, with the lighter state dominantly decaying to $$\\pi\\pi$$ and the heavier state to $$K\\overline{K}$$. The presence of all these states is determined rigorously by finding the pole singularity content of scattering amplitudes, and their couplings to decay channels are established using the residues of the poles.« less

  2. Isoscalar π π , K K ¯ , η η scattering and the σ , f 0 , f 2 mesons from QCD

    DOE PAGES

    Briceno, Raul A.; Dudek, Jozef J.; Edwards, Robert G.; ...

    2018-03-23

    We present the first lattice QCD study of coupled isoscalarmore » $$\\pi\\pi,K\\overline{K},\\eta\\eta$$ $S$- and $D$-wave scattering extracted from discrete finite-volume spectra computed on lattices which have a value of the quark mass corresponding to $$m_\\pi\\sim391$$ MeV. In the $J^P=0^+$ sector we find analogues of the experimental $$\\sigma$$ and $$f_0(980)$$ states, where the $$\\sigma$$ appears as a stable bound-state below $$\\pi\\pi$$ threshold, and, similar to what is seen in experiment, the $$f_0(980)$$ manifests itself as a dip in the $$\\pi\\pi$$ cross section in the vicinity of the $$K\\overline{K}$$ threshold. For $J^P=2^+$ we find two states resembling the $$f_2(1270)$$ and $$f_2'(1525)$$, observed as narrow peaks, with the lighter state dominantly decaying to $$\\pi\\pi$$ and the heavier state to $$K\\overline{K}$$. The presence of all these states is determined rigorously by finding the pole singularity content of scattering amplitudes, and their couplings to decay channels are established using the residues of the poles.« less

  3. Effect of bacterial growth rate on bacteriophage population growth rate.

    PubMed

    Nabergoj, Dominik; Modic, Petra; Podgornik, Aleš

    2018-04-01

    It is important to understand how physiological state of the host influence propagation of bacteriophages (phages), due to the potential higher phage production needs in the future. In our study, we tried to elucidate the effect of bacterial growth rate on adsorption constant (δ), latent period (L), burst size (b), and bacteriophage population growth rate (λ). As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host was used. Bacteria were grown in a continuous culture operating at dilution rates in the range between 0.06 and 0.98 hr -1 . It was found that the burst size increases linearly from 8 PFU·cell -1 to 89 PFU·cell -1 with increase in bacteria growth rate. On the other hand, adsorption constant and latent period were both decreasing from 2.6∙10 -9  ml·min -1 and 80 min to reach limiting values of 0.5 × 10 -9  ml·min -1 and 27 min at higher growth rates, respectively. Both trends were mathematically described with Michaelis-Menten based type of equation and reasons for such form are discussed. By applying selected equations, a mathematical equation for prediction of bacteriophage population growth rate as a function of dilution rate was derived, reaching values around 8 hr -1 at highest dilution rate. Interestingly, almost identical description can be obtained using much simpler Monod type equation and possible reasons for this finding are discussed. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria.

    PubMed

    Nakonieczna, A; Cooper, C J; Gryko, R

    2015-09-01

    Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage-derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram-positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors. © 2015 The Society for Applied Microbiology.

  5. MetaPhinder—Identifying Bacteriophage Sequences in Metagenomic Data Sets

    PubMed Central

    Villarroel, Julia; Lund, Ole; Voldby Larsen, Mette; Nielsen, Morten

    2016-01-01

    Bacteriophages are the most abundant biological entity on the planet, but at the same time do not account for much of the genetic material isolated from most environments due to their small genome sizes. They also show great genetic diversity and mosaic genomes making it challenging to analyze and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e.contigs) of phage origin in metagenomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic genome structure of many bacteriophages. The method is demonstrated to out-perform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder. PMID:27684958

  6. Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part I: Isolation and lytic activity estimation of bacteriophages.

    PubMed

    Bicalho, R C; Santos, T M A; Gilbert, R O; Caixeta, L S; Teixeira, L M; Bicalho, M L S; Machado, V S

    2010-01-01

    The objective of this study was to isolate bacteriophages from environmental samples of 2 large commercial dairy farms using Escherichia coli isolated from the uteri of postpartum Holstein dairy cows as hosts. A total of 11 bacteriophage preparations were isolated from manure systems of commercial dairy farms and characterized for in vitro antimicrobial activity. In addition, a total of 57 E. coli uterine isolates from 5 dairy cows were phylogenetically grouped by triplex PCR. Each E. coli bacterial host from the uterus was inoculated with their respective bacteriophage preparation at several different multiplicities of infections (MOI) to determine minimum inhibitory MOI. The effect of a single dose (MOI=10(2)) of bacteriophage on the growth curve of all 57 E. coli isolates was assessed using a microplate technique. Furthermore, genetic diversity within and between the different bacteriophage preparations was assessed by bacteriophage purification followed by DNA extraction, restriction, and agarose gel electrophoresis. Phylogenetic grouping based on triplex PCR showed that all isolates of E. coli belonged to phylogroup B1. Bacterial growth was completely inhibited at considerably low MOI, and the effect of a single dose (MOI=10(2)) of bacteriophage preparations on the growth curve of all 57 E. coli isolates showed that all bacteriophage preparations significantly decreased the growth rate of the isolates. Bacteriophage preparation 1230-10 had the greatest antimicrobial activity and completely inhibited the growth of 71.7% (n=57) of the isolates. The combined action of bacteriophage preparations 1230-10, 6375-10, 2540-4, and 6547-2, each at MOI=10(2), had the broadest spectrum of action and completely inhibited the growth (final optical density at 600 nm 1) of 80% of the E. coli isolates and considerably inhibited the growth (final optical density at 600 nm

  7. Bacteriophage ecology in a small community sewer system related to their indicative role in sewage pollution of drinking water.

    PubMed

    Gino, Efrat; Starosvetsky, Jeana; Armon, Robert

    2007-10-01

    In view of various studies looking for the merit of coliphages as indicators of water pollution with viruses originating from faecal material, a small agricultural community (population of approximately 1500 inhabitants of all ages, 2-3 km from Haifa) was selected in order to understand these bacteriophage ecology (F-RNA and somatic coliphages) in its sewer and oxidation pond system. Along the sewer lines, it was possible to isolate constantly both bacteriophage types (F-RNA and somatic coliphages) at 10(2)-10(4) plaque-forming units (pfu) ml(-1). The average numbers of somatic and F-RNA phages isolated from oxidation pond were 10(3)-10(4) pfu ml(-1); however, somatic coliphages were undetectable for several months (April-August). Significant high correlation (0.944 < R(2) < 0.99) was found between increased anionic detergent concentrations and F-RNA coliphage numbers. Infants less than 1 year old excreted both phage types and few only F-RNA coliphages (at high numbers > 10(5) pfu g(-1)) for up to 1 year. The excretion of F-RNA coliphages was highly linked to Escherichia coli F(+) harborage in the intestinal track as found in their faecal content. Finally, three bacterial hosts E. coli F(+), F(-) and CN(13) tested for survivability in sewage filtrate revealed that E. coli F(+) had the highest survivability under these conditions. Presence of somatic and F male-specific phages in sewer lines of a small community are influenced by several factors such as: anionic detergents, nutrients, temperature, source (mainly infants), shedding and survival capability of the host strain. Better understanding of coliphages ecology in sewer systems can enhance our evaluation of these proposed indicator/index microorganisms used in tracking environmental pollution of water, soil and crop contamination with faecal material containing enteric viruses.

  8. Genomic Diversity of Type B3 Bacteriophages of Caulobacter crescentus.

    PubMed

    Ash, Kurt T; Drake, Kristina M; Gibbs, Whitney S; Ely, Bert

    2017-07-01

    The genomes of the type B3 bacteriophages that infect Caulobacter crescentus are among the largest phage genomes thus far deposited into GenBank with sizes over 200 kb. In this study, we introduce six new bacteriophage genomes which were obtained from phage collected from various water systems in the southeastern United States and from tropical locations across the globe. A comparative analysis of the 12 available genomes revealed a "core genome" which accounts for roughly 1/3 of these bacteriophage genomes and is predominately localized to the head, tail, and lysis gene regions. Despite being isolated from geographically distinct locations, the genomes of these bacteriophages are highly conserved in both genome sequence and gene order. We also identified the insertions, deletions, translocations, and horizontal gene transfer events which are responsible for the genomic diversity of this group of bacteriophages and demonstrated that these changes are not consistent with the idea that modular reassortment of genomes occurs in this group of bacteriophages.

  9. Bacteriophage cocktail for biocontrol of Salmonella in dried pet food.

    PubMed

    Heyse, Serena; Hanna, Leigh Farris; Woolston, Joelle; Sulakvelidze, Alexander; Charbonneau, Duane

    2015-01-01

    Human salmonellosis has been associated with contaminated pet foods and treats. Therefore, there is interest in identifying novel approaches for reducing the risk of Salmonella contamination within pet food manufacturing environments. The use of lytic bacteriophages shows promise as a safe and effective way to mitigate Salmonella contamination in various food products. Bacteriophages are safe, natural, highly targeted antibacterial agents that specifically kill bacteria and can be targeted to kill food pathogens without affecting other microbiota. In this study, we show that a cocktail containing six bacteriophages had a broadspectrum activity in vitro against a library of 930 Salmonella enterica strains representing 44 known serovars. The cocktail was effective against 95% of the strains in this tested library. In liquid culture dose-ranging experiments, bacteriophage cocktail concentrations of ≥10(8) PFU/ml inactivated more than 90% of the Salmonella population (10(1) to 10(3) CFU/ml). Dried pet food inoculated with a mixture containing equal proportions of Salmonella serovars Enteritidis (ATCC 4931), Montevideo (ATCC 8387), Senftenberg (ATCC 8400), and Typhimurium (ATCC 13311) and then surface treated with the six-bacteriophage cocktail (≥2.5 ± 1.5 × 10(6) PFU/g) achieved a greater than 1-log (P < 0.001) reduction compared with the phosphate-buffered saline-treated control in measured viable Salmonella within 60 min. Moreover, this bacteriophage cocktail reduced natural contamination in samples taken from an undistributed lot of commercial dried dog food that tested positive for Salmonella. Our results indicate that bacteriophage biocontrol of S. enterica in dried pet food is technically feasible.

  10. Dehydration of bacteriophages in electrospun nanofibers: effect of excipients in polymeric solutions

    NASA Astrophysics Data System (ADS)

    Koo, Charmaine K. W.; Senecal, Kris; Senecal, Andre; Nugen, Sam R.

    2016-12-01

    Bacteriophages are viruses capable of infecting and lysing target bacterial cells; as such they have potential applications in agriculture for decontamination of foods, food contact surfaces and food rinse water. Although bacteriophages can retain infectivity long-term using lyophilized storage, the process of freeze-drying can be time consuming and expensive. In this study, electrospinning was used for dehydrating bacteriophages in polyvinylpyrrolidone polymer solutions with addition of excipients (sodium chloride, magnesium sulfate, Tris-HCl, sucrose) in deionized water. The high voltage dehydration reduced the infectivity of bacteriophages following electrospinning, with the damaging effect abated with addition of storage media (SM) buffer and sucrose. SM buffer and sucrose also provided the most protection over extended storage (8 weeks; 20 °C 1% relative humidity) by mitigating environmental effects on the dried bacteriophages. Magnesium sulfate however provided the least protection due to coagulation effects of the ion, which can disrupt the native conformation of the bacteriophage protein coat. Storage temperatures (20 °C, 4 °C and -20 °C 1% relative humidity) had a minimal effect while relative humidity had substantial effect on the infectivity of bacteriophages. Nanofibers stored in higher relative humidity (33% and 75%) underwent considerable damage due to extensive water absorption and disruption of the fibers. Overall, following storage of nanofiber mats for eight weeks at ambient temperatures, high infective phage concentrations (106-107 PFU ml-1) were retained. Therefore, this study provided valuable insights on preservation and dehydration of bacteriophages by electrospinning in comparison to freeze drying and liquid storage, and the influence of excipients on the viability of bacteriophages.

  11. Insulin Inhibits Nrf2 Gene Expression via Heterogeneous Nuclear Ribonucleoprotein F/K in Diabetic Mice

    PubMed Central

    Ghosh, Anindya; Abdo, Shaaban; Zhao, Shuiling; Wu, Chin-Han; Shi, Yixuan; Lo, Chao-Sheng; Chenier, Isabelle; Alquier, Thierry; Filep, Janos G.; Ingelfinger, Julie R.; Zhang, Shao-Ling

    2017-01-01

    Oxidative stress induces endogenous antioxidants via nuclear factor erythroid 2–related factor 2 (Nrf2), potentially preventing tissue injury. We investigated whether insulin affects renal Nrf2 expression in type 1 diabetes (T1D) and studied its underlying mechanism. Insulin normalized hyperglycemia, hypertension, oxidative stress, and renal injury; inhibited renal Nrf2 and angiotensinogen (Agt) gene expression; and upregulated heterogeneous nuclear ribonucleoprotein F and K (hnRNP F and hnRNP K) expression in Akita mice with T1D. In immortalized rat renal proximal tubular cells, insulin suppressed Nrf2 and Agt but stimulated hnRNP F and hnRNP K gene transcription in high glucose via p44/42 mitogen-activated protein kinase signaling. Transfection with small interfering RNAs of p44/42 MAPK, hnRNP F, or hnRNP K blocked insulin inhibition of Nrf2 gene transcription. Insulin curbed Nrf2 promoter activity via a specific DNA-responsive element that binds hnRNP F/K, and hnRNP F/K overexpression curtailed Nrf2 promoter activity. In hyperinsulinemic-euglycemic mice, renal Nrf2 and Agt expression was downregulated, whereas hnRNP F/K expression was upregulated. Thus, the beneficial actions of insulin in diabetic nephropathy appear to be mediated, in part, by suppressing renal Nrf2 and Agt gene transcription and preventing Nrf2 stimulation of Agt expression via hnRNP F/K. These findings identify hnRNP F/K and Nrf2 as potential therapeutic targets in diabetes. PMID:28324005

  12. Novel bacteriophages containing a genome of another bacteriophage within their genomes.

    PubMed

    Swanson, Maud M; Reavy, Brian; Makarova, Kira S; Cock, Peter J; Hopkins, David W; Torrance, Lesley; Koonin, Eugene V; Taliansky, Michael

    2012-01-01

    A novel bacteriophage infecting Staphylococus pasteuri was isolated during a screen for phages in Antarctic soils. The phage named SpaA1 is morphologically similar to phages of the family Siphoviridae. The 42,784 bp genome of SpaA1 is a linear, double-stranded DNA molecule with 3' protruding cohesive ends. The SpaA1 genome encompasses 63 predicted protein-coding genes which cluster within three regions of the genome, each of apparently different origin, in a mosaic pattern. In two of these regions, the gene sets resemble those in prophages of Bacillus thuringiensis kurstaki str. T03a001 (genes involved in DNA replication/transcription, cell entry and exit) and B. cereus AH676 (additional regulatory and recombination genes), respectively. The third region represents an almost complete genome (except for the short terminal segments) of a distinct bacteriophage, MZTP02. Nearly the same gene module was identified in prophages of B. thuringiensis serovar monterrey BGSC 4AJ1 and B. cereus Rock4-2. These findings suggest that MZTP02 can be shuttled between genomes of other bacteriophages and prophages, leading to the formation of chimeric genomes. The presence of a complete phage genome in the genome of other phages apparently has not been described previously and might represent a 'fast track' route of virus evolution and horizontal gene transfer. Another phage (BceA1) nearly identical in sequence to SpaA1, and also including the almost complete MZTP02 genome within its own genome, was isolated from a bacterium of the B. cereus/B. thuringiensis group. Remarkably, both SpaA1 and BceA1 phages can infect B. cereus and B. thuringiensis, but only one of them, SpaA1, can infect S. pasteuri. This finding is best compatible with a scenario in which MZTP02 was originally contained in BceA1 infecting Bacillus spp, the common hosts for these two phages, followed by emergence of SpaA1 infecting S. pasteuri.

  13. Lysogenic bacteriophage isolated from acidophilium

    DOEpatents

    Ward, Thomas W.; Bruhn, Debby F.; Bulmer, Deborah K.

    1992-01-01

    A bacteriophage identified as .phi.Ac1 capable of infecting acidophilic heterotropic bacteria (such as Acidiphilium sp.) and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phase having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element form ore or coal.

  14. Comparison of bacteriophage and enteric virus removal in pilot scale activated sludge plants.

    PubMed

    Arraj, A; Bohatier, J; Laveran, H; Traore, O

    2005-01-01

    The aim of this experimental study was to determine comparatively the removal of two types of bacteriophages, a somatic coliphage and an F-specific RNA phage and of three types of enteric viruses, hepatitis A virus (HAV), poliovirus and rotavirus during sewage treatment by activated sludge using laboratory pilot plants. The cultivable simian rotavirus SA11, the HAV HM 175/18f cytopathic strain and poliovirus were quantified by cell culture. The bacteriophages were quantified by plaque formation on the host bacterium in agar medium. In each experiment, two pilots simulating full-scale activated sludge plants were inoculated with viruses at known concentrations, and mixed liquor and effluent samples were analysed regularly. In the mixed liquor, liquid and solid fractions were analysed separately. The viral behaviour in both the liquid and solid phases was similar between pilots of each experiment. Viral concentrations decreased rapidly following viral injection in the pilots. Ten minutes after the injections, viral concentrations in the liquid phase had decreased from 1.0 +/- 0.4 log to 2.2 +/- 0.3 log. Poliovirus and HAV were predominantly adsorbed on the solid matters of the mixed liquor while rotavirus was not detectable in the solid phase. In our model, the estimated mean log viral reductions after 3-day experiment were 9.2 +/- 0.4 for rotavirus, 6.6 +/- 2.4 for poliovirus, 5.9 +/- 3.5 for HAV, 3.2 +/- 1.2 for MS2 and 2.3 +/- 0.5 for PhiX174. This study demonstrates that the pilots are useful models to assess the removal of infectious enteric viruses and bacteriophages by activated sludge treatment. Our results show the efficacy of the activated sludge treatment on the five viruses and suggest that coliphages could be an acceptable indicator of viral removal in this treatment system.

  15. STUDIES ON THE PURIFICATION OF BACTERIOPHAGE

    PubMed Central

    Kalmanson, G.; Bronfenbrenner, J.

    1939-01-01

    A simple method of concentrating and purifying bacteriophage has been described. The procedure consisted essentially in collecting the active agent on a reinforced collodion membrane of a porosity that would just retain all the active agent and permit extraneous material to pass through. Advantage was taken of the fact that B. coli will proliferate and regenerate bacteriophage in a completely diffusible synthetic medium with ammonia as the only source of nitrogen, which permitted the purification of the bacteriophage by copious washing. The material thus obtained was concentrated by suction and after thorough washing possessed all the activity of the original filtrate. It was labile, losing its activity in a few days on standing, and was quickly and completely inactivated upon drying. This material contained approximately 15 per cent of nitrogen and with 2 or 3 mg. samples of inactive dry residue it was possible to obtain positive protein color tests. The concentrated and purified bacteriophage has about 10–14 mg. of nitrogen, or 6 x 10–17 gm. of protein per unit of lytic activity. Assuming that each unit of activity represents a molecule, the calculated maximum average molecular weight would be approximately 36,000,000, and on the assumption of a spherical shape of particles and a density of 1.3, the calculated radius would be about 22 millimicra. By measurement of the diffusion rate, the average radius of particle of the fraction of the purified bacteriophage which diffuses most readily through a porous plate was found to be of the order of magnitude of 9 millimicra, or of a calculated molecular weight of 2,250,000. Furthermore, when this purified bacteriophage was fractionated by forcing it through a thin collodion membrane, which permits the passage of only the smaller particles, it was possible to demonstrate in the ultrafiltrate active particles of about 2 millimicra in radius, and of a calculated molecular weight of 25,000. It was of interest to apply

  16. Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Jun, E-mail: Jun.Liu.1@uth.tmc.edu; Chen Chengyen; Shiomi, Daisuke

    2011-09-01

    Bacteriophage P1 has a contractile tail that targets the conserved lipopolysaccharide on the outer membrane surface of the host for initial adsorption. The mechanism by which P1 DNA enters the host cell is not well understood, mainly because the transient molecular interactions between bacteriophage and bacteria have been difficult to study by conventional approaches. Here, we engineered tiny E. coli host cells so that the initial stages of P1-host interactions could be captured in unprecedented detail by cryo-electron tomography. Analysis of three-dimensional reconstructions of frozen-hydrated specimens revealed three predominant configurations: an extended tail stage with DNA present in the phagemore » head, a contracted tail stage with DNA, and a contracted tail stage without DNA. Comparative analysis of various conformations indicated that there is uniform penetration of the inner tail tube into the E. coli periplasm and a significant movement of the baseplate away from the outer membrane during tail contraction.« less

  17. Evolution and the complexity of bacteriophages.

    PubMed

    Serwer, Philip

    2007-03-13

    The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the presence of cellular gene homologs, (3) determine

  18. Two New Lytic Bacteriophages of the Myoviridae Family Against Carbapenem-Resistant Acinetobacter baumannii

    PubMed Central

    Zhou, Weilong; Feng, Yu; Zong, Zhiyong

    2018-01-01

    Two lytic bacteriophages, WCHABP1 and WCHABP12, were recovered from hospital sewage and were able to infect 9 and 12 out of 18 carbapenem-resistant Acinetobacter baumannii clinical strains, which belonged to different clones. Electron microscopy scan showed that both bacteriophages had the similar morphology as those of the Myoviridae family. Whole genomic sequencing revealed 45.4- or 45.8-kb genome with a 37.6% GC content for WCHABP1 and WCHABP12, both of which showed significant DNA sequence similarity with bacteriophages of the Ap22virus genus within the Myoviridae family. Taxonomic analysis was therefore performed following the proposal approved by the International Committee on Taxonomy of Viruses, which confirmed that WCHABP1 and WCHABP12 represented two new species of the Ap22virus genus. No tRNAs but 88 and 89 open reading frames (ORFs) were predicted for the two bacteriophages, among which 22 and 21 had known function and encoded proteins for morphogenesis, packaging, lysis, and nucleiotide metabolism. The C-terminal amino acids of the large unit of fiber tail proteins varied between the bacteriophages, which may explain their different host ranges. For most lytic bacteriophages, a set of holin and endolysin are required for lysis. However, no known holin-encoding genes were identified in WCHABP1 and WCHABP12, suggesting that they may use alternative, yet-to-be-identified, novel holins for host cell membrane lysis. To test the efficacy of the bacteriophages in protecting against A. baumannii infection, a Galleria mellonella larva model was used. Only <20% G. mellonella larvae survived at 96 h after being infected by carbapenem-resistant A. baumannii strains, from which the two bacteriophages were recovered. With the administration of WCHABP1 and WCHABP12, the survival of larvae increased to 75%, while the treatment of polymyxin B only slightly increased the survival rate to 25%. The isolation of two new lytic bacteriophages in this study could expand our

  19. Optimizing the European regulatory framework for sustainable bacteriophage therapy in human medicine.

    PubMed

    Verbeken, Gilbert; Pirnay, Jean-Paul; De Vos, Daniel; Jennes, Serge; Zizi, Martin; Lavigne, Rob; Casteels, Minne; Huys, Isabelle

    2012-06-01

    For practitioners at hospitals seeking to use natural (not genetically modified, as appearing in nature) bacteriophages for treatment of antibiotic-resistant bacterial infections (bacteriophage therapy), Europe's current regulatory framework for medicinal products hinders more than it facilitates. Although many experts consider bacteriophage therapy to be a promising complementary (or alternative) treatment to antibiotic therapy, no bacteriophage-specific framework for documentation exists to date. Decades worth of historical clinical data on bacteriophage therapy (from Eastern Europe, particularly Poland, and the former Soviet republics, particularly Georgia and Russia, as well as from today's 27 EU member states and the US) have not been taken into account by European regulators because these data have not been validated under current Western regulatory standards. Consequently, applicants carrying out standard clinical trials on bacteriophages in Europe are obliged to initiate clinical work from scratch. This paper argues for a reduced documentation threshold for Phase 1 clinical trials of bacteriophages and maintains that bacteriophages should not be categorized as classical medicinal products for at least two reasons: (1) such a categorization is scientifically inappropriate for this specific therapy and (2) such a categorization limits the marketing authorization process to industry, the only stakeholder with sufficient financial resources to prepare a complete dossier for the competent authorities. This paper reflects on the current regulatory framework for medicines in Europe and assesses possible regulatory pathways for the (re-)introduction of bacteriophage therapy in a way that maintains its effectiveness and safety as well as its inherent characteristics of sustainability and in situ self-amplification and limitation.

  20. Charmless hadronic B →(f1(1285 ),f1(1420 ))P decays in the perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Xiao, Zhen-Jun; Li, Jing-Wu; Zou, Zhi-Tian

    2015-01-01

    We study 20 charmless hadronic B →f1P decays in the perturbative QCD (pQCD) formalism with B denoting Bu, Bd, and Bs mesons; P standing for the light pseudoscalar mesons; and f1 representing axial-vector mesons f1(1285 ) and f1(1420 ) that result from a mixing of quark-flavor f1 q[u/u ¯ +d d ¯ √{2 } ] and f1 s[s s ¯ ] states with the angle ϕf1.The estimations of C P -averaged branching ratios and C P asymmetries of the considered B →f1P decays, in which the Bs→f1P modes are investigated for the first time, are presented in the pQCD approach with ϕf 1˜24 ° from recently measured Bd /s→J /ψ f1(1285 ) decays. It is found that (a) the tree (penguin) dominant B+→f1π+(K+) decays with large branching ratios [O (10-6) ] and large direct C P violations (around 14%-28% in magnitude) simultaneously are believed to be clearly measurable at the LHCb and Belle II experiments; (b) the Bd→f1KS0 and Bs→f1(η ,η') decays with nearly pure penguin contributions and safely negligible tree pollution also have large decay rates in the order of 10-6- 10-5 , which can be confronted with the experimental measurements in the near future; (c) as the alternative channels, the B+→f1(π+,K+) and Bd→f1KS0 decays have the supplementary power in providing more effective constraints on the Cabibbo-Kobayashi-Maskawa weak phases α , γ , and β , correspondingly, which are explicitly analyzed through the large decay rates and the direct and mixing-induced C P asymmetries in the pQCD approach and are expected to be stringently examined by the measurements with high precision; (d) the weak annihilation amplitudes play important roles in the B+→f1(1420 )K+ , Bd→f1(1420 )KS0 , Bs→f1(1420 )η' decays, and so on, which would offer more evidence, once they are confirmed by the experiments, to identify the soft-collinear effective theory and the pQCD approach on the evaluations of annihilation diagrams and to help further understand the annihilation mechanism in the heavy

  1. Potential usefulness of bacteriophages that infect Bacteroides fragilis as model organisms for monitoring virus removal in drinking water treatment plants.

    PubMed Central

    Jofre, J; Ollé, E; Ribas, F; Vidal, A; Lucena, F

    1995-01-01

    The presence of bacteriophages at different stages in three drinking water treatment plants was evaluated to study the usefulness of phages as model organisms for assessing the efficiency of the processes. The bacteriophages tested were somatic coliphages, F-specific coliphages, and phages infecting Bacteroides fragilis. The presence of enteroviruses and currently used bacterial indicators was also determined. Most bacteriophages were removed during the prechlorination-flocculation-sedimentation step. In these particular treatment plants, which include prechlorination, phages were, in general, more resistant to the treatment processes than present bacterial indicators, with the exception, in some cases, of clostridia. Bacteriophages infecting B. fragilis were found to be more resistant to water treatment than either somatic or F-specific coliphages or even clostridia. Enteric viruses were found only in untreated water in low numbers, and consequently, the efficiency of the plants in the removal of viruses could not be evaluated with precision. The numbers and frequencies of detection of the various microorganisms in water samples taken in the distribution network served by the three plants confirm the results found in the finished water at the plants. PMID:7574632

  2. Predicting In Vivo Efficacy of Therapeutic Bacteriophages Used To Treat Pulmonary Infections

    PubMed Central

    Henry, Marine; Lavigne, Rob

    2013-01-01

    The potential of bacteriophage therapy to treat infections caused by antibiotic-resistant bacteria has now been well established using various animal models. While numerous newly isolated bacteriophages have been claimed to be potential therapeutic candidates on the basis of in vitro observations, the parameters used to guide their choice among billions of available bacteriophages are still not clearly defined. We made use of a mouse lung infection model and a bioluminescent strain of Pseudomonas aeruginosa to compare the activities in vitro and in vivo of a set of nine different bacteriophages (PAK_P1, PAK_P2, PAK_P3, PAK_P4, PAK_P5, CHA_P1, LBL3, LUZ19, and PhiKZ). For seven bacteriophages, a good correlation was found between in vitro and in vivo activity. While the remaining two bacteriophages were active in vitro, they were not sufficiently active in vivo under similar conditions to rescue infected animals. Based on the bioluminescence recorded at 2 and 8 h postinfection, we also define for the first time a reliable index to predict treatment efficacy. Our results showed that the bacteriophages isolated directly on the targeted host were the most efficient in vivo, supporting a personalized approach favoring an optimal treatment. PMID:24041900

  3. Plating Bacteriophage M13.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2017-10-03

    A plaque of bacteriophage M13 derives from infection of a single bacterium by a single virus particle. The progeny particles infect neighboring bacteria, which, in turn, release another generation of daughter virus particles. If the bacteria are growing in semisolid medium (e.g., containing agar or agarose), then the diffusion of the progeny particles is limited. Cells infected with bacteriophage M13 are not killed, but have a longer generation time than uninfected Escherichia coli In consequence, plaques appear as areas of slower-growing cells on a faster-growing lawn of bacterial cells. This protocol describes plating of bacteriophage M13 stocks. Plaques are readily detectable on top agar after 4-8 h of incubation at 37°C. © 2017 Cold Spring Harbor Laboratory Press.

  4. Evaluation of aerosol spray and intramuscular injection of bacteriophage to treat an Escherichia coli respiratory infection.

    PubMed

    Huff, W E; Huff, G R; Rath, N C; Balog, J M; Donoghue, A M

    2003-07-01

    Two studies were conducted to determine the efficacy of either aerosol or i.m. injection of bacteriophage to treat an Escherichia coli respiratory infection in broiler chickens. An additional two studies were conducted to enumerate the bacteriophage in the blood of birds at 1, 2, 3, 4, 5, 6, 24, and 48 h after being sprayed or injected i.m. with bacteriophage. Five birds were bled at each period. In study 1, there were 10 treatments with three replicate pens of 10 birds. The treatments consisted of an untreated control, heat-killed bacteriophage spray, active bacteriophage spray, E. coli challenge at 7 d of age, and E. coli challenge followed by spraying the birds with heat-killed bacteriophage or active bacteriophage at 2, 24, or 48 h after challenge. In study 2 there were 11 treatments with three replicate pens of 10 birds per pen. The treatments were untreated controls, birds injected i.m. in the thigh with heat-killed or active bacteriophage, E. coli challenge at 7 d of age, PBS challenge, E. coli challenge followed by injection of heat-killed or active bacteriophage immediately after challenge or at 24 or 48 h after challenge. In both studies the E. coli challenge consisted of injecting 10(4) cfu into the thoracic air sac. Treatment of this severe E. coli infection with the bacteriophage aerosol spray significantly reduced mortality from 50 to 20% when given immediately after the challenge but had little treatment efficacy when administered 24 or 48 h after challenge. The i.m. injection of bacteriophage significantly reduced mortality from 53 to 17%, 46 to 10%, and 44 to 20% when given immediately, 24, or 48 h after challenge, respectively. Only a few birds sprayed with bacteriophage had detectable bacteriophage in their blood with an average of 96 pfu/mL 1 h after bacteriophage administration, and no bacteriophage was detected 24 and 48 h after bacteriophage administration. All birds injected i.m. with bacteriophage had detectable levels of bacteriophage in

  5. A first step toward liposome-mediated intracellular bacteriophage therapy.

    PubMed

    Nieth, Anita; Verseux, Cyprien; Barnert, Sabine; Süss, Regine; Römer, Winfried

    2015-01-01

    The emergence of antibiotic-resistant bacteria presents a severe challenge to medicine and public health. While bacteriophage therapy is a promising alternative to traditional antibiotics, the general inability of bacteriophages to penetrate eukaryotic cells limits their use against resistant bacteria, causing intracellular diseases like tuberculosis. Bacterial vectors show some promise in carrying therapeutic bacteriophages into cells, but also bring a number of risks like an overload of bacterial antigens or the acquisition of virulence genes from the pathogen. As a first step in the development of a non-bacterial vector for bacteriophage delivery into pathogen-infected cells, we attempted to encapsulate bacteriophages into liposomes. Here we report effective encapsulation of the model bacteriophage λeyfp and the mycobacteriophage TM4 into giant liposomes. Furthermore, we show that liposome-associated bacteriophages are taken up into eukaryotic cells more efficiently than free bacteriophages. These are important milestones in the development of an intracellular bacteriophage therapy that might be useful in the fight against multi-drug-resistant intracellular pathogens like Mycobacterium tuberculosis.

  6. Simulated hatchery system to assess bacteriophage efficacy against Vibrio harveyi.

    PubMed

    Raghu Patil, J; Desai, Srividya Narayanamurthy; Roy, Panchali; Durgaiah, Murali; Saravanan, R Sanjeev; Vipra, Aradhana

    2014-12-02

    Vibriosis caused by luminous Vibrio harveyi commonly contributes to poor survival in shrimp hatcheries and aquaculture ponds. Lytic bacteriophages pathogenic for V. harveyi are currently being investigated as an alternative to antibiotics to prevent vibriosis. Here, 8 bacteriophages were isolated from oysters and clams using V. harveyi strains as baiting hosts. Among these bacteriophages, 1 strain (VHP6b) identified as broadly pathogenic for 27 V. harveyi strains examined was further characterized by electron microscopy and genome sequence analysis. Phage VHP6b possessed a tail and morphology consistent with it being a member of the family Siphoviridae, and its genome and proteome were most closely related to the Vibrio phages SSP02 and MAR10. An integrase gene essential for lysogeny was not evident. The ability of bacteriophage VHP6b to protect shrimp postlarvae against vibriosis caused by V. harveyi strain VH6 was demonstrated in a model system designed to simulate typical hatchery conditions. Bacteriophage treatment improved survival of postlarvae by 40 to 60% under these conditions, so therapies based on this or other bacteriophages may be useful in shrimp hatcheries.

  7. Structural studies demonstrating a bacteriophage-like replication cycle of the eukaryote-infecting Paramecium bursaria chlorella virus-1

    PubMed Central

    Shimoni, Eyal; Dadosh, Tali; Rechav, Katya; Unger, Tamar

    2017-01-01

    A fundamental stage in viral infection is the internalization of viral genomes in host cells. Although extensively studied, the mechanisms and factors responsible for the genome internalization process remain poorly understood. Here we report our observations, derived from diverse imaging methods on genome internalization of the large dsDNA Paramecium bursaria chlorella virus-1 (PBCV-1). Our studies reveal that early infection stages of this eukaryotic-infecting virus occurs by a bacteriophage-like pathway, whereby PBCV-1 generates a hole in the host cell wall and ejects its dsDNA genome in a linear, base-pair-by-base-pair process, through a membrane tunnel generated by the fusion of the virus internal membrane with the host membrane. Furthermore, our results imply that PBCV-1 DNA condensation that occurs shortly after infection probably plays a role in genome internalization, as hypothesized for the infection of some bacteriophages. The subsequent perforation of the host photosynthetic membranes presumably enables trafficking of viral genomes towards host nuclei. Previous studies established that at late infection stages PBCV-1 generates cytoplasmic organelles, termed viral factories, where viral assembly takes place, a feature characteristic of many large dsDNA viruses that infect eukaryotic organisms. PBCV-1 thus appears to combine a bacteriophage-like mechanism during early infection stages with a eukaryotic-like infection pathway in its late replication cycle. PMID:28850602

  8. Activity measurements of the radionuclides 18F and 64Cu for the NIST, USA in the ongoing comparisons BIPM.RI(II)-K4.F-18 and BIPM.RI(II)-K4.Cu-64

    NASA Astrophysics Data System (ADS)

    Michotte, C.; Nonis, M.; Bergeron, D.; Cessna, J.; Fitzgerald, R.; Pibida, L.; Zimmerman, B.; Fenwick, A.; Ferreira, K.; Keightley, J.; Da Silva, I.

    2017-01-01

    In 2016, comparisons of activity measurements of 18F and 64Cu using the Transfer Instrument of the International Reference System (SIRTI) took place at the National Institute of Standards and Technology (NIST, USA). This is the first SIRTI comparison for 64Cu. Ampoules containing about 27 kBq of 18F and 100 kBq of 64Cu solutions were measured in the SIRTI for about 5 and 1.5 half-lives, respectively. The NIST standardized the activity in the ampoules by ionization chamber measurements traceable to 4π(LS)β-γ anticoincidence measurements. The comparisons, identifiers BIPM.RI(II)-K4.F-18 and BIPM.RI(II)-K4.Cu-64, are linked to the corresponding BIPM.RI(II)-K1.F-18 and BIPM.RI(II)-K1.Cu-64 comparisons and degrees of equivalence with the respective key comparison reference values have been evaluated. The NIST replaces its earlier degree of equivalence for 18F obtained in the frame of the CCRI(II)-K3.F-18 comparison in 2001. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Critical Temperature of Randomly Diluted Two-Dimensional Heisenberg Ferromagnet, K2CuxZn(1-x)F4

    NASA Astrophysics Data System (ADS)

    Okuda, Yuichi; Tohi, Yasuto; Yamada, Isao; Haseda, Taiichiro

    1980-09-01

    The susceptibility of randomly diluted two-dimensional Heisenberg-like ferromagnet K2CuxZn(1-x)F4 was measured down to 50 mK, using the 3He-4He dilution refrigerator and a SQUID magnetometer. The ferromagnetic critical temperature Tc(x) was obtained for x{=}0.98, 0.94, 0.85, 0.82, 0.68, 0.60, 0.54, 0.50 and 0.42. The value of [1/Tc(1)][(d/dx)Tc(x)]x=1 was approximately 3.0. The critical temperature versus x curve exhibits a noticeable tail near the critical concentration, which may stem from the second nearest-neighbor interaction. The critical concentration xc, below which concentration there is no long range order down to T{=}0 K, was estimated to be 0.45˜0.50. The susceptibility of sample with x{=}0.42 behaves as if it obeys the Curie law down to 50 mK.

  10. Relevance of Bacteroidales and F-Specific RNA Bacteriophages for Efficient Fecal Contamination Tracking at the Level of a Catchment in France

    PubMed Central

    Mauffret, Aourell; Caprais, Marie-Paule

    2012-01-01

    The relevance of three host-associated Bacteroidales markers (HF183, Rum2Bac, and Pig2Bac) and four F-specific RNA bacteriophage genogroups (FRNAPH I to IV) as microbial source tracking markers was assessed at the level of a catchment (Daoulas, France). They were monitored together with fecal indicators (Escherichia coli and enterococci) and chemophysical parameters (rainfall, temperature, salinity, pH, and turbidity) by monthly sampling over 2 years (n = 240 water samples) and one specific sampling following an accidental pig manure spillage (n = 5 samples). During the 2-year regular monitoring, levels of E. coli, enterococci, total F-specific RNA bacteriophages, and the general Bacteroidales marker AllBac were strongly correlated with one another and with Rum2Bac (r = 0.37 to 0.50, P < 0.0001). Their correlations with HF183 and FRNAPH I and II were lower (r = 0.21 to 0.29, P < 0.001 to P < 0.0001), and HF183 and enterococci were associated rather than correlated (Fisher's exact test, P < 0.01). Rum2Bac and HF183 enabled 73% of water samples that had ≥2.7 log10 most probably number (MPN) of E. coli/100 ml to be classified. FRNAPH I and II enabled 33% of samples at this contamination level to be classified. FRNAPH I and II complemented the water sample classification obtained with the two Bacteroidales markers by an additional 8%. Pig2Bac and FRNAPH III and IV were observed in a small number of samples (n = 0 to 4 of 245). The present study validates Rum2Bac and HF183 as relevant tools to trace fecal contamination originating from ruminant or human waste, respectively, at the level of a whole catchment. PMID:22610433

  11. Taking Bacteriophage Therapy Seriously: A Moral Argument

    PubMed Central

    Verbeken, Gilbert; Huys, Isabelle; Jennes, Serge; Chanishvili, Nina; Górski, Andrzej; De Vos, Daniel

    2014-01-01

    The excessive and improper use of antibiotics has led to an increasing incidence of bacterial resistance. In Europe the yearly number of infections caused by multidrug resistant bacteria is more than 400.000, each year resulting in 25.000 attributable deaths. Few new antibiotics are in the pipeline of the pharmaceutical industry. Early in the 20th century, bacteriophages were described as entities that can control bacterial populations. Although bacteriophage therapy was developed and practiced in Europe and the former Soviet republics, the use of bacteriophages in clinical setting was neglected in Western Europe since the introduction of traditional antibiotics. Given the worldwide antibiotic crisis there is now a growing interest in making bacteriophage therapy available for use in modern western medicine. Despite the growing interest, access to bacteriophage therapy remains highly problematic. In this paper, we argue that the current state of affairs is morally unacceptable and that all stakeholders (pharmaceutical industry, competent authorities, lawmakers, regulators, and politicians) have the moral duty and the shared responsibility towards making bacteriophage therapy urgently available for all patients in need. PMID:24868534

  12. Prevalence of genes encoding virulence factors among Escherichia coli with K1 antigen and non-K1 E. coli strains.

    PubMed

    Kaczmarek, Agnieszka; Budzynska, Anna; Gospodarek, Eugenia

    2012-10-01

    Multiplex PCR was used to detect genes encoding selected virulence determinants associated with strains of Escherichia coli with K1 antigen (K1(+)) and non-K1 E. coli (K1(-)). The prevalence of the fimA, fimH, sfa/foc, ibeA, iutA and hlyF genes was studied for 134 (67 K1(+) and 67 K1(-)) E. coli strains isolated from pregnant women and neonates. The fimA gene was present in 83.6 % of E. coli K1(+) and in 86.6 % of E. coli K1(-) strains. The fimH gene was present in all tested E. coli K1(+) strains and in 97.0 % of non-K1 strains. E. coli K1(+) strains were significantly more likely to possess the following genes than E. coli K1(-) strains: sfa/foc (37.3 vs 16.4 %, P = 0.006), ibeA (35.8 vs 4.5 %, P<0.001), iutA (82.1 vs 35.8 %, P<0.001) and hlyF (28.4 vs 6.0 %, P<0.001). In conclusion, E. coli K1(+) seems to be more virulent than E. coli K1(-) strains in developing severe infections, thereby increasing possible sepsis or neonatal bacterial meningitis.

  13. Bacteriophages in dairy products: pros and cons.

    PubMed

    Mc Grath, Stephen; Fitzgerald, Gerald F; van Sinderen, Douwe

    2007-04-01

    Since the time bacteriophages were first identified as a major cause of fermentation failure in the dairy industry, researchers have been struggling to develop strategies to exclude them from the dairy environment. Over 70 years of research has led to huge improvements in the consistency and quality of fermented dairy products, while also facilitating an appreciation of the beneficial properties of bacteriophages with respect to dairy product development. With specific reference to Lactococcus lactis and cheese production, this review outlines some recently reported novel methods aimed at limiting the bacteriophage infection as well as highlighting some beneficial aspects of bacteriophage activity.

  14. Performance of viruses and bacteriophages for fecal source determination in a multi-laboratory, comparative study.

    PubMed

    Harwood, Valerie J; Boehm, Alexandria B; Sassoubre, Lauren M; Vijayavel, Kannappan; Stewart, Jill R; Fong, Theng-Theng; Caprais, Marie-Paule; Converse, Reagan R; Diston, David; Ebdon, James; Fuhrman, Jed A; Gourmelon, Michele; Gentry-Shields, Jennifer; Griffith, John F; Kashian, Donna R; Noble, Rachel T; Taylor, Huw; Wicki, Melanie

    2013-11-15

    An inter-laboratory study of the accuracy of microbial source tracking (MST) methods was conducted using challenge fecal and sewage samples that were spiked into artificial freshwater and provided as unknowns (blind test samples) to the laboratories. The results of the Source Identification Protocol Project (SIPP) are presented in a series of papers that cover 41 MST methods. This contribution details the results of the virus and bacteriophage methods targeting human fecal or sewage contamination. Human viruses used as source identifiers included adenoviruses (HAdV), enteroviruses (EV), norovirus Groups I and II (NoVI and NoVII), and polyomaviruses (HPyVs). Bacteriophages were also employed, including somatic coliphages and F-specific RNA bacteriophages (FRNAPH) as general indicators of fecal contamination. Bacteriophage methods targeting human fecal sources included genotyping of FRNAPH isolates and plaque formation on bacterial hosts Enterococcus faecium MB-55, Bacteroides HB-73 and Bacteroides GB-124. The use of small sample volumes (≤50 ml) resulted in relatively insensitive theoretical limits of detection (10-50 gene copies or plaques × 50 ml(-1)) which, coupled with low virus concentrations in samples, resulted in high false-negative rates, low sensitivity, and low negative predictive values. On the other hand, the specificity of the human virus methods was generally close to 100% and positive predictive values were ∼40-70% with the exception of NoVs, which were not detected. The bacteriophage methods were generally much less specific toward human sewage than virus methods, although FRNAPH II genotyping was relatively successful, with 18% sensitivity and 85% specificity. While the specificity of the human virus methods engenders great confidence in a positive result, better concentration methods and larger sample volumes must be utilized for greater accuracy of negative results, i.e. the prediction that a human contamination source is absent. Copyright

  15. Transport of Escherichia coli and F-RNA bacteriophages in a 5 m column of saturated pea gravel

    NASA Astrophysics Data System (ADS)

    Sinton, Lester W.; Mackenzie, Margaret L.; Karki, Naveena; Braithwaite, Robin R.; Hall, Carollyn H.; Flintoft, Mark J.

    2010-09-01

    The relative transport and attenuation of bacteria, bacteriophages, and bromide was determined in a 5 m long × 0.3 m diameter column of saturated pea gravel. The velocity ( V), longitudinal dispersivity ( αx) and total removal rate ( λ) were calculated from the breakthrough curves at 1 m, 3 m, and 5 m, at a flow rate of 32 L h - 1 . Inactivation ( μ) rates were determined in survival chambers. Two pure culture experiments with Escherichia coli J6-2 and F-RNA phage MS2 produced an overall V ranking of E. coli J6-2 > MS2 > bromide, consistent with velocity enhancement, whereby larger particles progressively move into faster, central streamlines of saturated pores. Removal rates were near zero for MS2, but were higher for E. coli J6-2. In two sewage experiments, E. coli and F-RNA phage Vs were similar (but > bromide). This was attributed to phage adsorption to colloids similar in size to E. coli cells. Sewage phage removal rates were higher than for the pure MS2 cultures. The application of filtration theory suggested that, whereas free phage were unaffected by settling, this was the primary removal mechanism for the colloid-associated phage. However, cultured and sewage E. coli removal rates were similar, suggesting the dominance of free E. coli cells in the sewage. When MS2 was attached to kaolin particles, it was transported faster than free MS2, but at similar rates to sewage phage. The μ values indicated little contribution of inactivation to removal of either cultured or sewage microorganisms. The results showed the importance of association with colloids in determining the relative transport of bacteria and viruses in gravels.

  16. Crack growth behavior of 2219-T87 aluminum alloy from 20 K (-423 F) to 422 K (300 F)

    NASA Technical Reports Server (NTRS)

    Witzell, W. E.

    1973-01-01

    The aluminum alloy 2219-T87 has great potential for use as a cryogenic material for various manned and unmanned aerospace vehicles. Although its properties are generally known, toughness characteristics in various grain directions when the material is machined from thick plates and subjected to various environments have not been documented. This program, sponsored by the NASA Johnson Space Center, was designed to determine these properties between 20 K (-423 F) and 423 K (300 F).

  17. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F.W.; Rosenberg, A.H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest. 1 fig.

  18. Mössbauer study on a two-dimensional random mixture with competing spin anisotropies K2Ni1- x Fe x F4

    NASA Astrophysics Data System (ADS)

    Ito, A.; Anma, T.

    1987-03-01

    Mössbauer measurements have been made on a two-dimensional (2D) random mixture K2Ni1- x Fe x F4 with competing spin anisotropies. The concentration versus temperature phase diagram predicted by Oguchi and Ishikawa for mixed systems with competition between orthorhombic anisotropies has been shown to exist in K2Ni1- x Fe x F4. The coexistence of two kinds of Mössbauer spectra is seen in the transition regions, and is believed to be an intrinsic property of this system.

  19. Isolation and Characterization of Lytic Properties of Bacteriophages Specific for M. haemolytica Strains.

    PubMed

    Urban-Chmiel, Renata; Wernicki, Andrzej; Stęgierska, Diana; Dec, Marta; Dudzic, Anna; Puchalski, Andrzej

    2015-01-01

    The objective of this study was isolation and morphological characterization of temperate bacteriophages obtained from M. haemolytica strains and evaluation of their lytic properties in vitro against M. haemolytica isolated from the respiratory tract of calves. The material for the study consisted of the reference strain M. haemolytica serotype 1 (ATCC®) BAA-410™, reference serotypes A1, A2, A5, A6, A7, A9 and A11, and wild-type isolates of M. haemolytica. Bacteriophages were induced from an overnight bacterial starter culture of all examined M. haemolytica strains treated with mitomycin C. The lytic properties and host ranges were determined by plaque assays. The morphology of the bacteriophages was examined in negative-stained smears with 5% uranyl acetate solution using a transmission electron microscope. The genetic analysis of the bacteriophages was followed by restriction analysis of bacteriophage DNA. This was followed by analysis of genetic material by polymerase chain reaction (PCR). Eight bacteriophages were obtained, like typical of the families Myoviridae, Siphoviridae and Podoviridae. Most of the bacteriophages exhibited lytic properties against the M. haemolytica strains. Restriction analysis revealed similarities to the P2-like phage obtained from the strain M. haemolytica BAA-410. The most similar profiles were observed in the case of bacteriophages φA1 and φA5. All of the bacteriophages obtained were characterized by the presence of additional fragments in the restriction profiles with respect to the P2-like reference phage. In the analysis of PCR products for the P2-like reference phage phi-MhaA1-PHL101 (DQ426904) and the phages of the M. haemolytica serotypes, a 734-bp phage PCR product was obtained. The primers were programmed in Primer-Blast software using the structure of the sequence DQ426904 of reference phage PHL101. The results obtained indicate the need for further research aimed at isolating and characterizing bacteriophages

  20. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  1. Interpretation of f({epsilon}) measurements by T. Kimura, K. Akatsuka and K. Ohe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, M.

    1996-11-26

    This note describes my analysis of the measurement of the electron energy distribution function in a DC glow discharge reported by T. Kimura, K. Akatsuka, and K. Ohe, in `Experimental and theoretical investigations of DC glow discharges in argon-nitrogen mixtures,`J. Phys. D: Appl. Phys. 27 (1994) 1664-1671. T. Kimura of the Department of Systems Engineering at the Nagoya Institute of Technology sent me this paper in 1994, as well as `Electron Energy Distribution Function in Neon-Nitrogen Mixture Positive Column,` T. Kimura, and K. Ohe, Jpn. J. Appl. Phys. Vol. 3 1, Part 1, No. 12A, December 1992, pp. 4051- 4052.more » I base my analysis on the data for a pure N{sub 2} discharge at p=1 torr in the 1994 paper. Figures 2 and 3 in that paper show a discrepancy between f({epsilon}) as measured by Langmuir probing and f({epsilon}) as calculated from E/N based on the measured axial field. Kimura et. al. explain their observation of hotter than expected electrons on superelastic collisions with vibrationally excited nitrogen. My fundamental point is that the radial field generated by ambipolar diffusion significantly augments E/N above the contribution from the axial field in this experiment, and creates a higher than expected radially averaged electron energy.« less

  2. Expression of chimeric ras protein with OmpF signal peptide in Escherichia coli: localization of OmpF fusion protein in the inner membrane.

    PubMed

    Yamamoto, T; Okawa, N; Endo, T; Kaji, A

    1991-08-01

    The ras gene was fused with the DNA sequence of OmpF signal peptide or with the DNA sequence of OmpF signal peptide plus the amino terminal portion of the OmpF gene. They were placed in plasmids together with the bacteriophage lambda PL promoter. These plasmids were introduced into Escherichia coli strain K-12 and the OmpF signal peptide fusion proteins were expressed. These fusion proteins were identified as 29.0 and 30.0 kDa proteins. However, processed products of these proteins were not found in the extract. The fusion proteins were localized mostly in the cytoplasm and the inner membrane, but none of them was secreted into the periplasmic space. On the other hand, the ras protein alone was found in the cytoplasm and not in the inner membrane. Viable counts of E. coli harbouring these plasmids decreased when these fused proteins were induced. Induction of the ras protein alone did not harm cells. These observations suggest that insertion of the heterologous proteins into the inner membrane may cause the bactericidal effect.

  3. JAK2-V617F-induced MAPK activity is regulated by PI3K and acts synergistically with PI3K on the proliferation of JAK2-V617F-positive cells

    PubMed Central

    Wolf, Alexandra; Eulenfeld, René; Gäbler, Karoline; Rolvering, Catherine; Haan, Serge; Behrmann, Iris; Denecke, Bernd; Haan, Claude; Schaper, Fred

    2013-01-01

    The identification of a constitutively active JAK2 mutant, namely JAK2-V617F, was a milestone in the understanding of Philadelphia chromosome-negative myeloproliferative neoplasms. The JAK2-V617F mutation confers cytokine hypersensitivity, constitutive activation of the JAK-STAT pathway, and cytokine-independent growth. In this study we investigated the mechanism of JAK2-V617F-dependent signaling with a special focus on the activation of the MAPK pathway. We observed JAK2-V617F-dependent deregulated activation of the multi-site docking protein Gab1 as indicated by constitutive, PI3K-dependent membrane localization and tyrosine phosphorylation of Gab1. Furthermore, we demonstrate that PI3K signaling regulates MAPK activation in JAK2-V617F-positve cells. This cross-regulation of the MAPK pathway by PI3K affects JAK2-V617F-specific target gene induction, erythroid colony formation, and regulates proliferation of JAK2-V617F-positive patient cells in a synergistically manner. PMID:24069558

  4. The de novo Q167K mutation in the POU1F1 gene leads to combined pituitary hormone deficiency in an Italian patient.

    PubMed

    Malvagia, Sabrina; Poggi, Giovanni Maria; Pasquini, Elisabetta; Donati, Maria Alice; Pela, Ivana; Morrone, Amelia; Zammarchi, Enrico

    2003-11-01

    The POU1F1 gene encodes a transcription factor that is important for the development and differentiation of the cells producing GH, prolactin, and TSH in the anterior pituitary gland. Patients with POU1F1 mutations show a combined pituitary hormone deficiency with low or absent levels of GH, prolactin, and TSH. Fourteen mutations have been reported in the POU1F1 gene up to now. These genetic lesions can be inherited either in an autosomal dominant or an autosomal recessive mode. We report on the first Italian patient, a girl, affected by combined pituitary hormone deficiency. The patient was found to be positive for congenital hypothyroidism (with low TSH levels) at neonatal screening. Substitutive therapy was started, but subsequent growth was very poor, although psychomotor development was substantially normal. Hospitalized at 10 mo she showed hypotonic crises, growth retardation, delayed bone age, and facial dysmorphism. In addition to congenital hypothyroidism, GH and prolactin deficiencies were found. Mutation DNA analysis of the patient's POU1F1 gene identified the novel Q167K amino acid change at the heterozygous level. The highly conserved Q167 residue is located in the POU-specific domain. No mutation was detected in the other allele. DNA analysis in the proband's parents did not identify this amino acid substitution, suggesting a de novo genetic lesion. From these data it can be hypothesized that the Q167K mutation has a dominant negative effect.

  5. Construction of genetically engineered M13K07 helper phage for simultaneous phage display of gold binding peptide 1 and nuclear matrix protein 22 ScFv antibody.

    PubMed

    Fatemi, Farnaz; Amini, Seyed Mohammad; Kharrazi, Sharmin; Rasaee, Mohammad Javad; Mazlomi, Mohammad Ali; Asadi-Ghalehni, Majid; Rajabibazl, Masoumeh; Sadroddiny, Esmaeil

    2017-11-01

    The most common techniques of antibody phage display are based on the use of M13 filamentous bacteriophages. This study introduces a new genetically engineered M13K07 helper phage displaying multiple copies of a known gold binding peptide on p8 coat proteins. The recombinant helper phages were used to rescue a phagemid vector encoding the p3 coat protein fused to the nuclear matrix protein 22 (NMP22) ScFv antibody. Transmission electron microscopy (TEM), UV-vis absorbance spectroscopy, and field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDX) analysis revealed that the expression of gold binding peptide 1 (GBP1) on major coat protein p8 significantly enhances the gold-binding affinity of M13 phages. The recombinant bacteriophages at concentrations above 5×10 4 pfu/ml red-shifted the UV-vis absorbance spectra of gold nanoparticles (AuNPs); however, the surface plasmon resonance of gold nanoparticles was not changed by the wild type bacteriophages at concentrations up to 10 12 pfu/ml. The phage ELISA assay demonstrated the high affinity binding of bifunctional bacteriophages to NMP22 antigen at concentrations of 10 5 and 10 6 pfu/ml. Thus, the p3 end of the bifunctional bacteriophages would be able to bind to specific target antigen, while the AuNPs were assembled along the coat of virus for signal generation. Our results indicated that the complex of antigen-bacteriophages lead to UV-vis spectral changes of AuNPs and NMP22 antigen in concentration range of 10-80μg/ml can be detected by bifunctional bacteriophages at concentration of 10 4 pfu/ml. The ability of bifunctional bacteriophages to bind to antigen and generate signal at the same time, makes this approach applicable for identifying different antigens in immunoassay techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Assessment of drinking water quality using indicator bacteria and bacteriophages.

    PubMed

    Méndez, Javier; Audicana, Ana; Cancer, Mercedes; Isern, Anna; Llaneza, Julian; Moreno, Belén; Navarro, Mercedes; Tarancón, M Lluisa; Valero, Fernando; Ribas, Ferran; Jofre, Juan; Lucena, Francisco

    2004-09-01

    Bacterial indicators and bacteriophages suggested as potential indicators of water quality were determined by public laboratories in water from springs, household water wells, and rural and metropolitan water supplies in north-eastern Spain. Indicator bacteria were detected more frequently than bacteriophages in springs, household water wells and rural water supplies. In contrast, positive bacteriophage detections were more numerous than those of bacteria in metropolitan water supplies. Most of the metropolitan water supply samples containing indicators had concentrations of chlorine below 0.1 mg l(-1), their indicator loads resembling more closely those of rural water supplies than any other samples taken from metropolitan water supplies. The number of samples from metropolitan water supplies containing more than 0.1 mg l(-1) of chlorine that contained phages clearly outnumbered those containing indicator bacteria. Some association was observed between rainfall and the presence of indicators. Sediments from service reservoirs and water from dead ends in the distribution network of one of the metropolitan water supplies were also tested. Bacterial indicators and phages were detected in a higher percentage than in samples of tap water from the same network. Additionally, indicator bacteria were detected more frequently than bacteriophages in sediments of service reservoirs and water from dead end samples. We conclude that naturally occurring indicator bacteria and bacteriophages respond differently to chlorination and behave differently in drinking water distribution networks. Moreover, this study has shown that testing for the three groups of phages in routine laboratories is easy to implement and feasible without the requirement for additional material resources for the laboratories.

  7. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display.

    PubMed

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-11-14

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.

  8. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display

    PubMed Central

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-01-01

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840

  9. Photoproduction of the f 1 ( 1285 ) meson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, Ryan; Schumacher, Reinhard A.; Adhikari, K. P.

    Themore » $$f_1(1285)$$ meson with mass $$1281.0 \\pm 0.8$$ MeV/$c^2$ and width $$18.4 \\pm 1.4$$ MeV (FWHM) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the $$\\eta\\pi^{+}\\pi^{-}$$, $$K^+\\bar{K}^0\\pi^-$$, and $$K^-K^0\\pi^+$$ decay channels from threshold up to a center-of-mass energy of 2.8 GeV. mass, width, and an amplitude analysis of the $$\\eta\\pi^{+}\\pi^{-}$$ final-state Dalitz distribution are consistent with the axial-vector $J^P=1^+$ $$f_1(1285)$$ identity, rather than the pseudoscalar $0^-$ $$\\eta(1295)$$. production mechanism is more consistent with $s$-channel decay of a high-mass $N^*$ state, and not with $t$-channel meson exchange. Decays to $$\\eta\\pi\\pi$$ go dominantly via the intermediate $$a_0^\\pm(980)\\pi^\\mp$$ states, with the branching ratio $$\\Gamma(a_0\\pi \\text{ (no} \\bar{K} K\\text{)}) / \\Gamma(\\eta\\pi\\pi \\text{(all)}) = 0.74\\pm0.09$$. branching ratios $$\\Gamma(K \\bar{K} \\pi)/\\Gamma(\\eta\\pi\\pi) = 0.216\\pm0.033$$ and $$\\Gamma(\\gamma\\rho^0)/\\Gamma(\\eta\\pi\\pi) = 0.047\\pm0.018$$ were also obtained. first is in agreement with previous data for the $$f_1(1285)$$, while the latter is lower than the world average.« less

  10. Photoproduction of the f 1 ( 1285 ) meson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, R.; Schumacher, R. A.; Adhikari, K. P.

    The f(1)(1285) meson withmass 1281.0 +/- 0.8MeV/c(2) and width 18.4 +/- 1.4MeV (full width at half maximum) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the eta pi(+)pi(-), K+(K) over bar (0) pi(-), and (K-K0)pi(+) decay channels from threshold up to a center-of-mass energy of 2.8 GeV. The mass, width, and an amplitude analysis of the eta pi(+)pi(-) final-state Dalitz distribution are consistent with the axial-vector J(P) = 1(+) f(1)(1285) identity, rather than the pseudoscalar 0(-) eta(1295). The production mechanism is more consistent with s-channelmore » decay of a high-mass N* state and not with t-channel meson exchange. Decays to eta pi pi go dominantly via the intermediate a(0)(+/-) (980)pi(-/+) states, with the branching ratio Gamma [a(0)pi (no (K) over barK)]/Gamma[eta pi pi (all)] = 0.74 +/- 0.09. The branching ratios Gamma (K (K) over bar pi)/Gamma(eta pi pi) = 0.216 +/- 0.033 and Gamma (gamma rho(0))/Gamma(eta pi pi) = 0.047 +/- 0.018 were also obtained. The first is in agreement with previous data for the f(1)(1285), while the latter is lower than the world average.« less

  11. Evidence for a lineage of virulent bacteriophages that target Campylobacter.

    PubMed

    Timms, Andrew R; Cambray-Young, Joanna; Scott, Andrew E; Petty, Nicola K; Connerton, Phillippa L; Clarke, Louise; Seeger, Kathy; Quail, Mike; Cummings, Nicola; Maskell, Duncan J; Thomson, Nicholas R; Connerton, Ian F

    2010-03-30

    Our understanding of the dynamics of genome stability versus gene flux within bacteriophage lineages is limited. Recently, there has been a renewed interest in the use of bacteriophages as 'therapeutic' agents; a prerequisite for their use in such therapies is a thorough understanding of their genetic complement, genome stability and their ecology to avoid the dissemination or mobilisation of phage or bacterial virulence and toxin genes. Campylobacter, a food-borne pathogen, is one of the organisms for which the use of bacteriophage is being considered to reduce human exposure to this organism. Sequencing and genome analysis was performed for two Campylobacter bacteriophages. The genomes were extremely similar at the nucleotide level (> or = 96%) with most differences accounted for by novel insertion sequences, DNA methylases and an approximately 10 kb contiguous region of metabolic genes that were dissimilar at the sequence level but similar in gene function between the two phages. Both bacteriophages contained a large number of radical S-adenosylmethionine (SAM) genes, presumably involved in boosting host metabolism during infection, as well as evidence that many genes had been acquired from a wide range of bacterial species. Further bacteriophages, from the UK Campylobacter typing set, were screened for the presence of bacteriophage structural genes, DNA methylases, mobile genetic elements and regulatory genes identified from the genome sequences. The results indicate that many of these bacteriophages are related, with 10 out of 15 showing some relationship to the sequenced genomes. Two large virulent Campylobacter bacteriophages were found to show very high levels of sequence conservation despite separation in time and place of isolation. The bacteriophages show adaptations to their host and possess genes that may enhance Campylobacter metabolism, potentially advantaging both the bacteriophage and its host. Genetic conservation has been shown to extend to other

  12. Enhanced hydrogen storage properties of MgH2 co-catalyzed with K2NiF6 and CNTs.

    PubMed

    Sulaiman, N N; Ismail, M

    2016-12-06

    The composite of MgH 2 /K 2 NiF 6 /carbon nanotubes (CNTs) is prepared by ball milling, and its hydrogenation properties are studied for the first time. MgH 2 co-catalyzed with K 2 NiF 6 and CNTs exhibited an improvement in the onset dehydrogenation temperature and isothermal de/rehydrogenation kinetics compared with the MgH 2 -K 2 NiF 6 composite. The onset dehydrogenation temperature of MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs is 245 °C, which demonstrated a reduction of 25 °C compared with the MgH 2 + 10 wt% K 2 NiF 6 composite. In terms of rehydrogenation kinetics, MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs samples absorbed 3.4 wt% of hydrogen in 1 min at 320 °C, whereas the MgH 2 + 10 wt% K 2 NiF 6 sample absorbed 2.6 wt% of hydrogen under the same conditions. For dehydrogenation kinetics at 320 °C, the MgH 2 + 10 wt% K 2 NiF 6 + 5 wt% CNTs sample released 3.3 wt% hydrogen after 5 min of dehydrogenation. By contrast, MgH 2 doped with 10 wt% K 2 NiF 6 released 3.0 wt% hydrogen in the same time period. The apparent activation energy, E a , for the dehydrogenation of MgH 2 doped with 10 wt% K 2 NiF 6 reduced from 100.0 kJ mol -1 to 70.0 kJ mol -1 after MgH 2 was co-doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs. Based on the experimental results, the hydrogen storage properties of the MgH 2 /K 2 NiF 6 /CNTs composite is enhanced because of the catalytic effects of the active species of KF, KH and Mg 2 Ni that are formed in situ during dehydrogenation, as well as the unique structure of CNTs.

  13. A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis.

    PubMed

    Burchard, R P; Dworkin, M

    1966-03-01

    Burchard, Robert P. (University of Minnesota, Minneapolis), and M. Dworkin. A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis. J. Bacteriol. 91:1305-1313. 1966.-A bacteriophage (MX-1) infecting Myxococcus xanthus FB(t) has been isolated from cow dung. The bacteriophage particle is approximately 175 mmu long. A tail about 100 mmu in length is encased in a contractile sheath and terminates in a tail plate. The head is polyhedral with a width of about 75 mmu. The nucleic acid of the bacteriophage is deoxyribonucleic acid and has a guanine plus cytosine content of 55.5%. The bacteriophage requires 10(-3)m Ca(++) and 10(-2)m monovalent cation for optimal adsorption. Grown on vegetative cells of M. xanthus FB(t) at 30 C in 2% Casitone medium, the bacteriophage has a latent period of 120 min and a burst size of approximately 100. Host range studies indicate that three strains of M. xanthus including a morphogenetic mutant are sensitive to the bacteriophage, whereas M. fulvus, Cytophaga, Sporocytophaga myxococcoides, and a fourth strain of M. xanthus are not. Of the two cellular forms characteristic of the Myxococcus life cycle, the bacteriophage infect only the vegetative cells; they do not adsorb to microcysts. Ability to adsorb bacteriophage is lost between 65 and 75 min after initiation of the relatively synchronous conversion of vegetative cells to microcysts. The bacteriophage does not adsorb to spheroplasts. After the appearance of visible morphogenesis and before the loss of bacteriophage receptor sites, addition of bacteriophage results in the formation of microcysts which give rise to infective centers only upon germination. The possibility that the infected microcysts are harboring intact bacteriophages has been eliminated.

  14. Call for a dedicated European legal framework for bacteriophage therapy.

    PubMed

    Verbeken, Gilbert; Pirnay, Jean-Paul; Lavigne, Rob; Jennes, Serge; De Vos, Daniel; Casteels, Minne; Huys, Isabelle

    2014-04-01

    The worldwide emergence of antibiotic resistances and the drying up of the antibiotic pipeline have spurred a search for alternative or complementary antibacterial therapies. Bacteriophages are bacterial viruses that have been used for almost a century to combat bacterial infections, particularly in Poland and the former Soviet Union. The antibiotic crisis has triggered a renewed clinical and agricultural interest in bacteriophages. This, combined with new scientific insights, has pushed bacteriophages to the forefront of the search for new approaches to fighting bacterial infections. But before bacteriophage therapy can be introduced into clinical practice in the European Union, several challenges must be overcome. One of these is the conceptualization and classification of bacteriophage therapy itself and the extent to which it constitutes a human medicinal product regulated under the European Human Code for Medicines (Directive 2001/83/EC). Can therapeutic products containing natural bacteriophages be categorized under the current European regulatory framework, or should this framework be adapted? Various actors in the field have discussed the need for an adapted (or entirely new) regulatory framework for the reintroduction of bacteriophage therapy in Europe. This led to the identification of several characteristics specific to natural bacteriophages that should be taken into consideration by regulators when evaluating bacteriophage therapy. One important consideration is whether bacteriophage therapy development occurs on an industrial scale or a hospital-based, patient-specific scale. More suitable regulatory standards may create opportunities to improve insights into this promising therapeutic approach. In light of this, we argue for the creation of a new, dedicated European regulatory framework for bacteriophage therapy.

  15. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections.

    PubMed

    Pallavali, Roja Rani; Degati, Vijaya Lakshmi; Lomada, Dakshayani; Reddy, Madhava C; Durbaka, Vijaya Raghava Prasad

    2017-01-01

    that these bacteriophages could be potential therapeutic options for treating septic wounds caused by P. aeruginosa, S. aureus, K. pneumoniae and E. coli.

  16. Bacteriophage T5 DNA ejection under pressure.

    PubMed

    Leforestier, A; Brasilès, S; de Frutos, M; Raspaud, E; Letellier, L; Tavares, P; Livolant, F

    2008-12-19

    The transfer of the bacteriophage genome from the capsid into the host cell is a key step of the infectious process. In bacteriophage T5, DNA ejection can be triggered in vitro by simple binding of the phage to its purified Escherichia coli receptor FhuA. Using electrophoresis and cryo-electron microscopy, we measure the extent of DNA ejection as a function of the external osmotic pressure. In the high pressure range (7-16 atm), the amount of DNA ejected decreases with increasing pressure, as theoretically predicted and observed for lambda and SPP1 bacteriophages. In the low and moderate pressure range (2-7 atm), T5 exhibits an unexpected behavior. Instead of a unique ejected length, multiple populations coexist. Some phages eject their complete genome, whereas others stop at some nonrandom states that do not depend on the applied pressure. We show that contrarily to what is observed for the phages SPP1 and lambda, T5 ejection cannot be explained as resulting from a simple pressure equilibrium between the inside and outside of the capsid. Kinetics parameters and/or structural characteristics of the ejection machinery could play a determinant role in T5 DNA ejection.

  17. Photoproduction of the f1(1285 ) meson

    NASA Astrophysics Data System (ADS)

    Dickson, R.; Schumacher, R. A.; Adhikari, K. P.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Badui, R. A.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dugger, M.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Holtrop, M.; Hicks, K.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mattione, P.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Markov, N.; Mokeev, V.; Moriya, K.; Munevar, E.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Roy, P.; Salgado, C.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, E. S.; Smith, G. D.; Sober, D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Stankovic, I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weygand, D.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2016-06-01

    The f1(1285 ) meson with mass 1281.0 ±0.8 MeV/c2 and width 18.4 ±1.4 MeV (full width at half maximum) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the η π+π-,K+K¯0π- , and K-K0π+ decay channels from threshold up to a center-of-mass energy of 2.8 GeV. The mass, width, and an amplitude analysis of the η π+π- final-state Dalitz distribution are consistent with the axial-vector JP=1+ f1(1285 ) identity, rather than the pseudoscalar 0- η (1295 ) . The production mechanism is more consistent with s -channel decay of a high-mass N* state and not with t -channel meson exchange. Decays to η π π go dominantly via the intermediate a0±(980 ) π∓ states, with the branching ratio Γ [a0π (noK ¯K )] /Γ [η π π (all)] =0.74 ±0.09 . The branching ratios Γ (K K ¯π ) /Γ (η π π ) =0.216 ±0.033 and Γ (γ ρ0) /Γ (η π π ) =0.047 ±0.018 were also obtained. The first is in agreement with previous data for the f1(1285 ) , while the latter is lower than the world average.

  18. Activation of K-ras by codon 13 mutations in C57BL/6 X C3H F1 mouse tumors induced by exposure to 1,3-butadiene.

    PubMed

    Goodrow, T; Reynolds, S; Maronpot, R; Anderson, M

    1990-08-01

    1,3-Butadiene has been detected in urban air, gasoline vapors, and cigarette smoke. It has been estimated that 65,000 workers are exposed to this chemical in occupational settings in the United States. Lymphomas, lung, and liver tumors were induced in female and male C57BL/6 X C3H F1 (hereafter called B6C3F1) mice by inhalation of 6.25 to 625 ppm 1,3-butadiene for 1 to 2 years. The objective of this study was to examine these tumors for the presence of activated protooncogenes by the NIH 3T3 transfection and nude mouse tumorigenicity assays. Transfection of DNA isolated from 7 of 9 lung tumors and 7 of 12 liver tumors induced morphological transformation of NIH 3T3 cells. Southern blot analysis indicated that the transformation induced by 6 lung and 3 liver tumor DNA samples was due to transfer of a K-ras oncogene. Four of the 7 liver tumors that were positive upon transfection contained an activated H-ras gene. The identity of the transforming gene in one of the lung tumors has not been determined but was not a member of the ras family or a met or raf gene. Eleven 1,3-butadiene-induced lymphomas were examined for transforming genes using the nude mouse tumorigenicity assay. Activated K-ras genes were detected in 2 of the 11 lymphomas assayed. DNA sequencing of polymerase chain reaction-amplified ras gene exons revealed that 9 of 11 of the activating K-ras mutations were G to C transversions in codon 13. One liver tumor contained an activated K-ras gene with mutations in both codons 60 and 61. The activating mutation in one of the K-ras genes from a lymphoma was not identified but DNA sequence analysis of amplified regions in proximity to codons 12, 13, and 61 demonstrated that the mutation was not located in or near these codons. Activation of K-ras genes by codon 13 mutations has not been found in any lung or liver tumors or lymphomas from untreated B6C3F1 mice. Thus, the K-ras activation found in 1,3-butadiene-induced B6C3F1 mouse tumors probably occurred as a

  19. 26 CFR 1.401(k)-2 - ADP test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 5 2012-04-01 2011-04-01 true ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual...(k)(3)(F), the ADP test is performed under the plan (determined without regard to disaggregation...

  20. 26 CFR 1.401(k)-2 - ADP test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual...(k)(3)(F), the ADP test is performed under the plan (determined without regard to disaggregation...

  1. Effects of bacteriophage on the quality and shelf life of Paralichthys olivaceus during chilled storage.

    PubMed

    Li, Meng; Lin, Hong; Khan, Muhammad Naseem; Wang, Jingxue; Kong, Linghong

    2014-06-01

    The microbiological spoilage of fishery foods is mainly due to specific spoilage organisms (SSOs), with Shewanella putrefaciens being the SSO of most chilled marine fish. Bacteriophages have shown excellent capability to control micro-organisms. The aim of this study was to determine a specific bacteriophage to prevent spoilage by reducing SSO (S. putrefaciens) levels in the marine fish Paralichthys olivaceus (olive flounder) under chilled storage. Chilled flounder fillets were inoculated with S. putrefaciens and treated with different concentrations of bacteriophage Spp001 ranging from 10(4) to 10(8) plaque-forming units (pfu) mL(-1) . Bacterial growth (including total viable count and SSO) of the bacteriophage-treated groups was significantly inhibited compared with that of the negative control group (P < 0.05). Sensory evaluation and biochemical parameters revealed that the bacteriophage could extend the shelf life of chilled flounder fillets (from <4 to 14 days) with good esthetic quality, even at low temperature (4 °C). Furthermore, bacteriophage concentrations of 10(6) and 10(8) pfu mL(-1) were more effective than the chemical preservative potassium sorbate (5 g L(-1) ). The bacteriophage Spp001 offered effective biocontrol of S. putrefaciens under chilled conditions, retaining the quality characteristics of spiked fish fillets, and thus could be a potential candidate for use in chilled fish fillet biopreservation. © 2013 Society of Chemical Industry.

  2. Mutated and Bacteriophage T4 Nanoparticle Arrayed F1-V Immunogens from Yersinia pestis as Next Generation Plague Vaccines

    PubMed Central

    Tao, Pan; Mahalingam, Marthandan; Kirtley, Michelle L.; van Lier, Christina J.; Sha, Jian; Yeager, Linsey A.; Chopra, Ashok K.; Rao, Venigalla B.

    2013-01-01

    Pneumonic plague is a highly virulent infectious disease with 100% mortality rate, and its causative organism Yersinia pestis poses a serious threat for deliberate use as a bioterror agent. Currently, there is no FDA approved vaccine against plague. The polymeric bacterial capsular protein F1, a key component of the currently tested bivalent subunit vaccine consisting, in addition, of low calcium response V antigen, has high propensity to aggregate, thus affecting its purification and vaccine efficacy. We used two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, to construct new plague vaccines that provided complete protection against pneumonic plague. The NH2-terminal β-strand of F1 was transplanted to the COOH-terminus and the sequence flanking the β-strand was duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 was fused to the V antigen, a key virulence factor that forms the tip of the type three secretion system (T3SS). The F1mut-V protein showed a dramatic switch in solubility, producing a completely soluble monomer. The F1mut-V was then arrayed on phage T4 nanoparticle via the small outer capsid protein, Soc. The F1mut-V monomer was robustly immunogenic and the T4-decorated F1mut-V without any adjuvant induced balanced TH1 and TH2 responses in mice. Inclusion of an oligomerization-deficient YscF, another component of the T3SS, showed a slight enhancement in the potency of F1-V vaccine, while deletion of the putative immunomodulatory sequence of the V antigen did not improve the vaccine efficacy. Both the soluble (purified F1mut-V mixed with alhydrogel) and T4 decorated F1mut-V (no adjuvant) provided 100% protection to mice and rats against pneumonic plague evoked by high doses of Y. pestis CO92. These novel platforms might lead to efficacious and easily manufacturable next generation plague vaccines. PMID:23853602

  3. Measured performance of a 1089 K (1500 deg F) heat storage device for sun-shade orbital missions

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1972-01-01

    Tubes designed for a solar heat receiver to serve as an energy source for a Brayton power system were tested for 2002 hours and 1251 sun-shade cycles. The tubes were designed to transfer a constant thermal input to the Brayton system during an orbit. Excess solar energy during a sun period is stored as heat of fusion of lithium fluoride. The niobium - 1% zirconium tubes accommodate the 23 percent volume decrease of LiF during freezing. Test results showed slight, local distortions. The gas discharge temperature varied from 16 K (29 F) below to 28 K (50 F) above the nominal value of 1089 K (1500 F). The tube surface temperatures ranged from 1039 K (1410 F) to 1183 K (1670 F).

  4. Polymer-based delivery systems for support and delivery of bacteriophages

    NASA Astrophysics Data System (ADS)

    Brown, Alyssa Marie

    One of the most urgent problems in the fields of medicine and agriculture is the decreasing effectiveness of antibiotics. Once a miracle drug, antibiotics have recently become associated with the creation of antibiotic-resistant bacteria. The main limitations of these treatments include lack of both adaptability and specificity. To overcome these shortcomings of current antibiotic treatments, there has been a renewed interest in bacteriophage research. Bacteriophages are naturally-occurring viruses that lyse bacteria. They are highly specific, with each bacteriophage type lysing a narrow range of bacteria strains. Bacteriophages are also ubiquitous biological entities, populating environments where bacterial growth is supported. Just as humans are exposed to bacteria in their daily lives, we are exposed to bacteriophages as well. To use bacteriophages in practical applications, they must be delivered to the site of an infection in a controlled-release system. Two systems were studied to observe their support of bacteriophage lytic activity, as well as investigate the possibility of controlling bacteriophage release rates. First, hydrogels were studied, using crosslinking and blending techniques to achieve a range of release profiles. Second, polyanhydride microparticles were studied, evaluating release rates as a function of monomer chemistries.

  5. M13 bacteriophage purification using poly(ionic liquids) as alternative separation matrices.

    PubMed

    Jacinto, Maria João; Patinha, David J S; Marrucho, Isabel M; Gonçalves, João; Willson, Richard C; Azevedo, Ana M; Aires-Barros, M Raquel

    2018-01-12

    M13 is a filamentous, non-lytic bacteriophage that infects Escherichia coli via the F pilus. Currently, phage M13 is widely used in phage display technology and bio-nanotechnology, and is considered a possible antibacterial therapeutic agent, among other applications. Conventional phage purification involves 5-7 operational steps, with high operational costs and significant product loss (approximately 60%). In this work, we propose a scalable purification process for M13 bacteriophage using a novel stationary phase based on a polymeric ionic liquid (PIL) with a positively charged backbone structure. Poly (1-vinyl-3-ethyl imidazolium bis(trifluoromethylsulfonyl) imide) - poly(VEIM-TFSI) predominantly acted as an anion exchanger under binding-elution mode. This revealed to be a rapid and simple method for the recovery of phage M13 with an overall separation yield of over 70% after a single downstream step. To the best of our knowledge, PILs have never been used as separation matrices for biological products and the results obtained, together with the large number of cations and anions available to prepare PILs, illustrate well the large potential of the proposed methodology. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bacteriophage Applications for Food Production and Processing

    PubMed Central

    Moye, Zachary D.; Woolston, Joelle; Sulakvelidze, Alexander

    2018-01-01

    Foodborne illnesses remain a major cause of hospitalization and death worldwide despite many advances in food sanitation techniques and pathogen surveillance. Traditional antimicrobial methods, such as pasteurization, high pressure processing, irradiation, and chemical disinfectants are capable of reducing microbial populations in foods to varying degrees, but they also have considerable drawbacks, such as a large initial investment, potential damage to processing equipment due to their corrosive nature, and a deleterious impact on organoleptic qualities (and possibly the nutritional value) of foods. Perhaps most importantly, these decontamination strategies kill indiscriminately, including many—often beneficial—bacteria that are naturally present in foods. One promising technique that addresses several of these shortcomings is bacteriophage biocontrol, a green and natural method that uses lytic bacteriophages isolated from the environment to specifically target pathogenic bacteria and eliminate them from (or significantly reduce their levels in) foods. Since the initial conception of using bacteriophages on foods, a substantial number of research reports have described the use of bacteriophage biocontrol to target a variety of bacterial pathogens in various foods, ranging from ready-to-eat deli meats to fresh fruits and vegetables, and the number of commercially available products containing bacteriophages approved for use in food safety applications has also been steadily increasing. Though some challenges remain, bacteriophage biocontrol is increasingly recognized as an attractive modality in our arsenal of tools for safely and naturally eliminating pathogenic bacteria from foods. PMID:29671810

  7. Comparative Genomics of Bacteriophage of the Genus Seuratvirus

    PubMed Central

    Sazinas, Pavelas; Redgwell, Tamsin; Rihtman, Branko; Grigonyte, Aurelija; Michniewski, Slawomir; Scanlan, David J; Hobman, Jon

    2018-01-01

    Abstract Despite being more abundant and having smaller genomes than their bacterial host, relatively few bacteriophages have had their genomes sequenced. Here, we isolated 14 bacteriophages from cattle slurry and performed de novo genome sequencing, assembly, and annotation. The commonly used marker genes polB and terL showed these bacteriophages to be closely related to members of the genus Seuratvirus. We performed a core-gene analysis using the 14 new and four closely related genomes. A total of 58 core genes were identified, the majority of which has no known function. These genes were used to construct a core-gene phylogeny, the results of which confirmed the new isolates to be part of the genus Seuratvirus and expanded the number of species within this genus to four. All bacteriophages within the genus contained the genes queCDE encoding enzymes involved in queuosine biosynthesis. We suggest these genes are carried as a mechanism to modify DNA in order to protect these bacteriophages against host endonucleases. PMID:29272407

  8. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1.

    PubMed

    Jakutyte-Giraitiene, Lina; Gasiunas, Giedrius

    2016-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) together with CRISPR-associated (cas) genes form an adaptive prokaryotic immune system which provides acquired resistance against viruses and plasmids. Bacillus subtilis presently is the best-characterized laboratory model for Gram-positive bacteria and also widely used for industrial production of enzymes, vitamins and antibiotics. In this study, we show that type II-A CRISPR-Cas system from Streptococcus thermophilus can be transferred into B. subtilis and provides heterologous protection against phage infection. We engineered a heterologous host by cloning S. thermophilus Cas9 and a spacer targeting bacteriophage SPP1 into the chromosome of B. subtilis, which does not harbor its own CRISPR-Cas systems. We found that the heterologous CRISPR-Cas system is functionally active in B. subtilis and provides resistance against bacteriophage SPP1 infection. The high efficiency of the acquired immunity against phage could be useful in generation of biotechnologically important B. subtilis strains with engineered chromosomes.

  9. Removal of adenovirus, calicivirus, and bacteriophages by conventional drinking water treatment.

    PubMed

    Abbaszadegan, Morteza; Monteiro, Patricia; Nwachuku, Nena; Alum, Absar; Ryu, Hodon

    2008-02-01

    This study was conducted to evaluate the removal of adenovirus, feline calicivirus (FCV), and bacteriophages MS-2, fr, PRD-1, and Phi X-174 during conventional drinking water treatment using ferric chloride as a coagulant. Adenovirus and FCV were removed to a greater extent than PRD-1 and Phi X-174, indicating that these bacteriophages may be appropriate surrogates for both adenovirus and FCV. Of the four bacteriophages studied in the pilot plant, MS-2 was removed to the greatest extent (5.1 log), followed by fr (4.9 log), PRD-1 (3.5 log), and Phi X-174 (1.3 log). The virus removal trend in the pilot-scale testing was similar to the bench-scale testing; however, the bench-scale testing seemed to provide a conservative estimate of the pilot plant performance. In the pilot-scale testing, MS-2 and fr were removed with the greatest efficiency during filtration, whereas PRD-1 and Phi X-174 showed the greatest removal during sedimentation.

  10. Infrared spectroscopy of solid normal hydrogen doped with CH3F and O2 at 4.2 K: CH3F:O2 complex and CH3F migration

    NASA Astrophysics Data System (ADS)

    Abouaf-Marguin, L.; Vasserot, A.-M.

    2011-04-01

    Double doping of solid normal hydrogen with CH3F and O2 at about 4.2 K gives evidence of (ortho-H2)n:CH3F clusters and of O2:CH3F complex formation. FTIR analysis of the time evolution of the spectra in the region of the v3 C-F stretching mode indicates that these clusters behave very differently from (ortho-H2)n:H2O clusters. The main point is the observed migration of CH3F molecules in solid para-H2 at 4.2 K which differs from that of H2O under identical experimental conditions. This is confirmed by an increase over time of the integrated intensity of the CH3F:O2 complex with a rate constant K = 2.7(2) . 10-4 s-1.

  11. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection.

    PubMed

    Khawaldeh, A; Morales, S; Dillon, B; Alavidze, Z; Ginn, A N; Thomas, L; Chapman, S J; Dublanchet, A; Smithyman, A; Iredell, J R

    2011-11-01

    We describe the success of adjunctive bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection in the context of bilateral ureteric stents and bladder ulceration, after repeated failure of antibiotics alone. No bacteriophage-resistant bacteria arose, and the kinetics of bacteriophage and bacteria in urine suggest self-sustaining and self-limiting infection.

  12. Receptor Diversity and Host Interaction of Bacteriophages Infecting Salmonella enterica Serovar Typhimurium

    PubMed Central

    Kim, Hyeryen; Choi, Younho; Heu, Sunggi; Ryu, Sangryeol

    2012-01-01

    Background Salmonella enterica subspecies enterica serovar Typhimurium is a Gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated. Methodology/Principal Findings Twenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages), vitamin B12 uptake outer membrane protein, BtuB (7 phages) and lipopolysaccharide-related O-antigen (7 phages). TEM observation revealed that the phages using flagella (group F) or BtuB (group B) as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L) belong to Podoviridae family. Interestingly, while some of group F phages (F-I) target FliC host receptor, others (F-II) target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain. Conclusions/Significance In this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella. PMID:22927964

  13. Triangle mechanism in τ → f1(1285)πντ decay

    NASA Astrophysics Data System (ADS)

    Oset, E.; Roca, L.

    2018-07-01

    We show that the τ- decay into f1 (1285)π-ντ is dominated by a triangle loop mechanism with K*, Kbar* and K (or K bar) as internal lines, which manifests a strong enhancement reminiscent of a nearby singularity present in the narrow K* limit and the near Kbar*K* threshold of the internal K* propagators. The f1 (1285) is then produced by its coupling to the K* K bar and Kbar* K which is obtained from a previous model where this resonance was dynamically generated as a molecular K* K bar (or Kbar* K) state using the techniques of the chiral unitary approach. We make predictions for the f1 π mass distribution which significantly deviates from the phase-space shape, due to the distortion caused by the triangle mechanism and the K* K bar threshold. We find a good agreement with the experimental value within uncertainties for the integrated partial decay width, which is a clear indication of the importance of the triangle mechanism in this decay and supports the dynamical origin of the f1 (1285) as a K* K bar and Kbar* K molecular state.

  14. Genetic diversity of K-antigen gene clusters of Escherichia coli and their molecular typing using a suspension array.

    PubMed

    Yang, Shuang; Xi, Daoyi; Jing, Fuyi; Kong, Deju; Wu, Junli; Feng, Lu; Cao, Boyang; Wang, Lei

    2018-04-01

    Capsular polysaccharides (CPSs), or K-antigens, are the major surface antigens of Escherichia coli. More than 80 serologically unique K-antigens are classified into 4 groups (Groups 1-4) of capsules. Groups 1 and 4 contain the Wzy-dependent polymerization pathway and the gene clusters are in the order galF to gnd; Groups 2 and 3 contain the ABC-transporter-dependent pathway and the gene clusters consist of 3 regions, regions 1, 2 and 3. Little is known about the variations among the gene clusters. In this study, 9 serotypes of K-antigen gene clusters (K2ab, K11, K20, K24, K38, K84, K92, K96, and K102) were sequenced and correlated with their CPS chemical structures. On the basis of sequence data, a K-antigen-specific suspension array that detects 10 distinct CPSs, including the above 9 CPSs plus K30, was developed. This is the first report to catalog the genetic features of E. coli K-antigen variations and to develop a suspension array for their molecular typing. The method has a number of advantages over traditional bacteriophage and serum agglutination methods and lays the foundation for straightforward identification and detection of additional K-antigens in the future.

  15. Isolation of bacteriophages from air using vacuum filtration technique: an improved and novel method.

    PubMed

    Magare, B; Nair, A; Khairnar, K

    2017-10-01

    Development of a simple and economical air sampler for isolation and enrichment of bacteriophages from air samples. A vacuum filtration unit with simple modifications was used for isolation of bacteriophages from air sampled in the lavatory. Air was sampled at the rate of 62 l min -1 by bubbling into Mcllvaine buffer for 30 min, which was used as bacteriophage solution for enrichment and plaque assessment against individual hosts. Alternatively, the aforementioned phage solution was enriched using a host consortium before plaque assessment. Phages were isolated in the range of 1-12 PFU per ml by the first method, whereas enrichment with host consortium gave phages around 10- to 1000-folds higher in number. Combining with established enrichment method, an improvement of about 10 times in phage isolation efficiency was attained. The method is very useful for studying the natural bacteriophages of air, requiring only a basic microbiological laboratory setup making it simple and economical. This study brings out a simple, economical air sampler for assessing air bacteriophages that can be employed by any microbial laboratory. Although various methods are available for studying bacteriophages in water and soil, very limited are available for air. To the best of our knowledge, the method developed in this study is unique in its design and concept for studying bacteriophages in air. The sampler is sterilizable by autoclaving and maintains a healthy rate of airflow provided by conventional vacuum pumps. The use of a nonspecific 'trapping solution' allows for the qualitative and quantitative study of air bacteriophages. © 2017 The Society for Applied Microbiology.

  16. Newly Isolated Bacteriophages from the Podoviridae, Siphoviridae, and Myoviridae Families Have Variable Effects on Putative Novel Dickeya spp.

    PubMed

    Alič, Špela; Naglič, Tina; Tušek-Žnidarič, Magda; Ravnikar, Maja; Rački, Nejc; Peterka, Matjaž; Dreo, Tanja

    2017-01-01

    Soft rot pathogenic bacteria from the genus Dickeya cause severe economic losses in orchid nurseries worldwide, and there is no effective control currently available. In the last decade, the genus Dickeya has undergone multiple changes as multiple new taxa have been described, and just recently a new putative Dickeya species was reported. This study reports the isolation of three bacteriophages active against putative novel Dickeya spp. isolates from commercially produced infected orchids that show variable host-range profiles. Bacteriophages were isolated through enrichment from Dickeya -infected orchid tissue. Convective interaction media monolith chromatography was used to isolate bacteriophages from wastewaters, demonstrating its suitability for the isolation of infective bacteriophages from natural sources. Based on bacteriophage morphology, all isolated bacteriophages were classified as being in the order Caudovirales , belonging to three different families, Podoviridae , Myoviridae , and Siphoviridae . The presence of three different groups of bacteriophages was confirmed by analyzing the bacteriophage specificity of bacterial hosts, restriction fragment length polymorphism and plaque morphology. Bacteriophage BF25/12, the first reported Podoviridae bacteriophage effective against Dickeya spp., was selected for further characterization. Its genome sequence determined by next-generation sequencing showed limited similarity to other characterized Podoviridae bacteriophages. Interactions among the bacteriophages and Dickeya spp. were examined using transmission electron microscopy, which revealed degradation of electron-dense granules in response to bacteriophage infection in some Dickeya strains. The temperature stability of the chosen Podoviridae bacteriophage monitored over 1 year showed a substantial decrease in the survival of bacteriophages stored at -20°C over longer periods. It showed susceptibility to low pH and UV radiation but was stable in neutral

  17. Newly Isolated Bacteriophages from the Podoviridae, Siphoviridae, and Myoviridae Families Have Variable Effects on Putative Novel Dickeya spp.

    PubMed Central

    Alič, Špela; Naglič, Tina; Tušek-Žnidarič, Magda; Ravnikar, Maja; Rački, Nejc; Peterka, Matjaž; Dreo, Tanja

    2017-01-01

    Soft rot pathogenic bacteria from the genus Dickeya cause severe economic losses in orchid nurseries worldwide, and there is no effective control currently available. In the last decade, the genus Dickeya has undergone multiple changes as multiple new taxa have been described, and just recently a new putative Dickeya species was reported. This study reports the isolation of three bacteriophages active against putative novel Dickeya spp. isolates from commercially produced infected orchids that show variable host-range profiles. Bacteriophages were isolated through enrichment from Dickeya-infected orchid tissue. Convective interaction media monolith chromatography was used to isolate bacteriophages from wastewaters, demonstrating its suitability for the isolation of infective bacteriophages from natural sources. Based on bacteriophage morphology, all isolated bacteriophages were classified as being in the order Caudovirales, belonging to three different families, Podoviridae, Myoviridae, and Siphoviridae. The presence of three different groups of bacteriophages was confirmed by analyzing the bacteriophage specificity of bacterial hosts, restriction fragment length polymorphism and plaque morphology. Bacteriophage BF25/12, the first reported Podoviridae bacteriophage effective against Dickeya spp., was selected for further characterization. Its genome sequence determined by next-generation sequencing showed limited similarity to other characterized Podoviridae bacteriophages. Interactions among the bacteriophages and Dickeya spp. were examined using transmission electron microscopy, which revealed degradation of electron-dense granules in response to bacteriophage infection in some Dickeya strains. The temperature stability of the chosen Podoviridae bacteriophage monitored over 1 year showed a substantial decrease in the survival of bacteriophages stored at -20°C over longer periods. It showed susceptibility to low pH and UV radiation but was stable in neutral and

  18. Evaluation of the broad-spectrum lytic capability of bacteriophage cocktails against various Salmonella serovars and their effects on weaned pigs infected with Salmonella Typhimurium.

    PubMed

    Seo, Byoung-Joo; Song, Eu-Tteum; Lee, Kichan; Kim, Jong-Won; Jeong, Chang-Gi; Moon, Sung-Hyun; Son, Jee Soo; Kang, Sang Hyeon; Cho, Ho-Seong; Jung, Byeong Yeal; Kim, Won-Il

    2018-06-06

    The broad-spectrum lytic capability of Salmonella bacteriophages against various Salmonella species was evaluated to determine their potential as an alternative for antibiotics, and the safety and preventive effects of the bacteriophages were assessed on mice and pigs. Four bacteriophage cocktails were prepared using 13 bacteriophages, and the lytic capability of the four bacteriophage cocktails was tested using Salmonella reference strains and field isolates. Bacteriophage cocktail C (SEP-1, SGP-1, STP-1, SS3eP-1, STP-2, SChP-1, SAP-1, SAP-2; ≥10 9 pfu/ml) showed the best lytic activity against the Salmonella reference strains (100% of 34) and field isolates (92.5% of 107). Fifty mice were then orally inoculated with bacteriophage cocktail C to determine the distribution of bacteriophages in various organs, blood and feces. The effects of bacteriophages on Salmonella infection in weaned pigs (n=15) were also evaluated through an experimental challenge with Salmonella Typhimurium after treatment with bacteriophage cocktail C. All mice exhibited distribution of the bacteriophages in all organs, blood and feces until 15 days post infection (dpi). After 35 dpi, bacteriophages were not detected in any of these specimens. As demonstrated in a pig challenge study, treatment with bacteriophage cocktail C reduced the level of Salmonella shedding in feces. The metagenomic analyses of these pig feces also revealed that bacteriophage treatment decreased the number of species of the Enterobacteriaceae family without significant disturbance to the normal fecal flora. This study showed that bacteriophages effectively controlled Salmonella in a pig challenge model and could be a good alternative for antibiotics to control Salmonella infection.

  19. Occurrence of Propionibacterium freudenreichii bacteriophages in swiss cheese.

    PubMed Central

    Gautier, M; Rouault, A; Sommer, P; Briandet, R

    1995-01-01

    We isolated bacteriophages active against Propionibacterium freudenreichii from 16 of 32 swiss cheese samples. Bacteriophage concentrations ranged from 14 to 7 x 10(5) PFU/g, depending on the sample and the sensitive strain used for detection. Only a few strains, 8 of the 44 strains of P. freudenreichii in our collection, were sensitive. We observed that multiplication of bacteriophages occurred in the cheese loaf during multiplication of propionibacteria in a warm curing room, but it seems that these bacteriophages have no adverse effect on the development of the propionic flora. We also found that sensitive cells, originating from either the starter or the cheese-making milk, were present at a high level (10(9) CFU/g) in the cheese. PMID:7618869

  20. Optimization of single crystals of solid electrolytes with tysonite-type structure (LaF3) for conductivity at 293 K: 2. Nonstoichiometric phases R 1- y M y F3- y ( R = La-Lu, Y; M = Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Sobolev, B. P.; Krivandina, E. A.; Zhmurova, Z. I.

    2015-01-01

    Single crystals of fluorine-conducting solid electrolytes R 1 - y Sr y F3 - y and R 1 - y Ba y F3 - y ( R = La-Lu, Y) with a tysonite-type structure (LaF3) have been optimized for room-temperature conductivity σ293 K. The optimization is based on high-temperature measurements of σ( T) in two-component nonstoichiometric phases R 1 - y M y F3 - y ( M = Sr, Ba) as a function of the MF2 content. Optimization for thermal stability is based on studying the phase diagrams of MF2- RF3 systems ( M = Sr, Ba) and the behavior of nonstoichiometric crystals upon heating when measuring temperature dependences σ( T). Single crystals of many studied R 1 - y Sr y F3 - y and R 1 - y Ba y F3 - y phases have σ293 K values large enough to use these materials in solid-state electrochemical devices (chemical sensors, fluorine-ion batteries, accumulators, etc.) operating at room temperature.

  1. Reduction of Salmonella in ground chicken using a bacteriophage.

    PubMed

    Grant, Ar'Quette; Parveen, Salina; Schwarz, Jurgen; Hashem, Fawzy; Vimini, Bob

    2017-08-01

    This study's goal was to ascertain the effectiveness of a commercially available Salmonella bacteriophage during ground chicken production focusing on: water source, different Salmonella serovars, and time. Salmonella-free boneless, skinless chicken meat was inoculated with 4.0 Log CFU/cm2 of either a cocktail of 3 Salmonella isolates derived from ground chicken (GC) or a cocktail of 3 Salmonella strains not isolated from ground chicken (non-GC). Bacteriophages were spread onto the chicken using sterile tap or filtered water for 30 min or 8 h. Salmonella was recovered using standard plating method. Greater Salmonella reduction was observed when the bacteriophage was diluted in sterile tap water than in sterile filtered water: 0.39 Log CFU/cm2 and 0.23 Log CFU/cm2 reduction after 30 min, respectively (P < 0.05). The non-GC isolates showed reductions of 0.71 Log CFU/cm2 and 0.90 Log CFU/cm2 after 30 min and 8 h, respectively (P < 0.05). The GC isolates were less sensitive to the bacteriophage: 0.39 Log CFU/cm2 and 0.67 Log CFU/cm2 reductions after 30 min and 8 h, respectively (P < 0.05). In conclusion, bacteriophage reduction was dependent on water used to dilute the bacteriophage, Salmonella's susceptibility to the bacteriophage, and treatment time. © 2017 Poultry Science Association Inc.

  2. Bacteriophage removal efficiency as a validation and operational monitoring tool for virus reduction in wastewater reclamation: Review.

    PubMed

    Amarasiri, Mohan; Kitajima, Masaaki; Nguyen, Thanh H; Okabe, Satoshi; Sano, Daisuke

    2017-09-15

    The multiple-barrier concept is widely employed in international and domestic guidelines for wastewater reclamation and reuse for microbiological risk management, in which a wastewater reclamation system is designed to achieve guideline values of the performance target of microbe reduction. Enteric viruses are one of the pathogens for which the target reduction values are stipulated in guidelines, but frequent monitoring to validate human virus removal efficacy is challenging in a daily operation due to the cumbersome procedures for virus quantification in wastewater. Bacteriophages have been the first choice surrogate for this task, because of the well-characterized nature of strains and the presence of established protocols for quantification. Here, we performed a meta-analysis to calculate the average log 10 reduction values (LRVs) of somatic coliphages, F-specific phages, MS2 coliphage and T4 phage by membrane bioreactor, activated sludge, constructed wetlands, pond systems, microfiltration and ultrafiltration. The calculated LRVs of bacteriophages were then compared with reported human enteric virus LRVs. MS2 coliphage LRVs in MBR processes were shown to be lower than those of norovirus GII and enterovirus, suggesting it as a possible validation and operational monitoring tool. The other bacteriophages provided higher LRVs compared to human viruses. The data sets on LRVs of human viruses and bacteriophages are scarce except for MBR and conventional activated sludge processes, which highlights the necessity of investigating LRVs of human viruses and bacteriophages in multiple treatment unit processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Direct interaction of the bacteriophage SPP1 packaging ATPase with the portal protein.

    PubMed

    Oliveira, Leonor; Cuervo, Ana; Tavares, Paulo

    2010-03-05

    DNA packaging in tailed bacteriophages and other viruses requires assembly of a complex molecular machine at a specific vertex of the procapsid. This machine is composed of the portal protein that provides a tunnel for DNA entry, an ATPase that fuels DNA translocation (large terminase subunit), and most frequently, a small terminase subunit. Here we characterized the interaction between the terminase ATPase subunit of bacteriophage SPP1 (gp2) and the procapsid portal vertex. We found, by affinity pulldown assays with purified proteins, that gp2 interacts with the portal protein, gp6, independently of the terminase small subunit gp1, DNA, or ATP. The gp2-procapsid interaction via the portal protein depends on gp2 concentration and requires the presence of divalent cations. Competition experiments showed that isolated gp6 can only inhibit gp2-procapsid interactions and DNA packaging at gp6:procapsid molar ratios above 10-fold. Assays with gp6 carrying mutations in distinct regions of its structure that affect the portal-induced stimulation of ATPase and DNA packaging revealed that none of these mutations impedes gp2-gp6 binding. Our results demonstrate that the SPP1 packaging ATPase binds directly to the portal and that the interaction is stronger with the portal embedded in procapsids. Identification of mutations in gp6 that allow for assembly of the ATPase-portal complex but impair DNA packaging support an intricate cross-talk between the two proteins for activity of the DNA translocation motor.

  4. Treatment of Highly Virulent Extraintestinal Pathogenic Escherichia coli Pneumonia With Bacteriophages.

    PubMed

    Dufour, Nicolas; Debarbieux, Laurent; Fromentin, Mélanie; Ricard, Jean-Damien

    2015-06-01

    To study the effect of bacteriophage treatment on highly virulent extraintestinal Escherichia coli pneumonia in mice and compare it with conventional antimicrobial treatment. Animal investigation. University research laboratory. Pathogen-free 8-week-old Balb/cJRj male mice. Two bacteriophages (536_P1 and 536_P7) were isolated from sewage using strain 536, a highly virulent extraintestinal E. coli. Their in vitro and in vivo efficacy against strain 536 and a ventilator-associated pneumonia E. coli were tested. The first group of mice were infected by intranasal instillation of bioluminescent strain 536 and received 536_P1 intranasally, ceftriaxone, or control. The second group of mice was infected with the ventilator-associated pneumonia strain and received 536_P7. Adaptation of 536_P7 to this clinical isolate was also evaluated in vitro and in vivo. In vivo efficacy of bacteriophage and antibiotic treatment were assessed by recording bioluminescence for short-time periods and by recording body weight and survival of mice for longer periods. Both treatments improved survival compared with control (100% vs 0%), and in vivo bioluminescence recordings showed a similar rapid decrease of emitted light, suggesting prompt bacterial clearance. The majority of mice infected by the ventilator-associated pneumonia strain were not rescued by treatment with 536_P7; however, in vitro adaptation of this bacteriophage toward the ventilator-associated pneumonia strain led to isolate a variant which significantly improved in vivo treatment efficacy (animal survival increased from 20% to 75%). Bacteriophage treatment was as effective as antibiotherapy to provide 100% survival rate in a lethal model of highly virulent E. coli pneumonia. Adaptation of a bacteriophage is a rapid solution to improve its efficacy toward specific strains. These results suggest that phage therapy could be a promising therapeutic strategy for ventilator-associated pneumonia.

  5. Isolation, characterization, and application of bacteriophages for Salmonella spp. biocontrol in pigs.

    PubMed

    Albino, Luiz A A; Rostagno, Marcos H; Húngaro, Humberto M; Mendonça, Regina C S

    2014-08-01

    Foodborne illness due to Salmonella-contaminated pork products is an important public health problem, causing significant economic losses worldwide. The use of bacteriophages is a potential intervention tool that has attracted interest for the control of foodborne pathogens. The objective of this study was to detect the presence of Salmonella in commercial pig farms and to isolate specific autochthonous bacteriophages against Salmonella Typhimurium, to characterize them and to evaluate their lytic capacity against Salmonella Typhimurium in vivo and in vitro. Salmonella was isolated on 50% (4/8) of the farms, with serotype Typhimurium being the most prevalent, detected in 48.2% of samples (13/27). The isolated Salmonella Typhimurium bacteriophages belong to the Podoviridae family, were active against serotypes Abony, Enteritidis, Typhi, and Typhimurium, but not against serotypes Arizonae, Cholerasuis, Gallinarum, and Pullorum. In in vitro tests, bacteriophage at 10(7) PFU/mL and 10(9) PFU/mL significantly reduced (p<0.05) Salmonella Typhimurium counts in 1.6 and 2.5 log10 colony-forming units (CFU)/mL, respectively, after 24 h. Before the in vivo treatment with bacteriophages, Salmonella was identified in 93.3% (28/30) of the fecal samples from the pigs inoculated with 10(6) CFU/mL, and only in 56.6% (17/30) after the treatment consisting of oral administration of the pool of the bacteriophages after the fasting period, simulating a common preslaughter practice. These results indicate that the pool of bacteriophages administered was capable of reducing the colonization of Salmonella in pigs.

  6. Significance of the Bacteriophage Treatment Schedule in Reducing Salmonella Colonization of Poultry

    PubMed Central

    Bardina, Carlota; Spricigo, Denis A.; Cortés, Pilar

    2012-01-01

    Salmonella remains the major cause of food-borne diseases worldwide, with chickens known to be the main reservoir for this zoonotic pathogen. Among the many approaches to reducing Salmonella colonization of broilers, bacteriophage offers several advantages. In this study, three bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) obtained from our collection that exhibited a broad host range against Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium were characterized with respect to morphology, genome size, and restriction patterns. A cocktail composed of the three bacteriophages was more effective in promoting the lysis of S. Enteritidis and S. Typhimurium cultures than any of the three bacteriophages alone. In addition, the cocktail was able to lyse the Salmonella enterica serovars Virchow, Hadar, and Infantis. The effectiveness of the bacteriophage cocktail in reducing the concentration of S. Typhimurium was tested in two animal models using different treatment schedules. In the mouse model, 50% survival was obtained when the cocktail was administered simultaneously with bacterial infection and again at 6, 24, and 30 h postinfection. Likewise, in the White Leghorn chicken specific-pathogen-free (SPF) model, the best results, defined as a reduction of Salmonella concentration in the chicken cecum, were obtained when the bacteriophage cocktail was administered 1 day before or just after bacterial infection and then again on different days postinfection. Our results show that frequent treatment of the chickens with bacteriophage, and especially prior to colonization of the intestinal tract by Salmonella, is required to achieve effective bacterial reduction over time. PMID:22773654

  7. Development of a 1K x 1K GaAs QWIP Far IR Imaging Array

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Goldberg, A.; La, A.; Gunapala, S.

    2003-01-01

    In the on-going evolution of GaAs Quantum Well Infrared Photodetectors (QWIPs) we have developed a 1,024 x 1,024 (1K x1K), 8.4-9 microns infrared focal plane array (FPA). This 1 megapixel detector array is a hybrid using the Rockwell TCM 8050 silicon readout integrated circuit (ROIC) bump bonded to a GaAs QWIP array fabricated jointly by engineers at the Goddard Space Flight Center (GSFC) and the Army Research Laboratory (ARL). The finished hybrid is thinned at the Jet Propulsion Lab. Prior to this development the largest format array was a 512 x 640 FPA. We have integrated the 1K x 1K array into an imaging camera system and performed tests over the 40K-90K temperature range achieving BLIP performance at an operating temperature of 76K (f/2 camera system). The GaAs array is relatively easy to fabricate once the superlattice structure of the quantum wells has been defined and grown. The overall arrays costs are currently dominated by the costs associated with the silicon readout since the GaAs array fabrication is based on high yield, well-established GaAs processing capabilities. In this paper we will present the first results of our 1K x 1K QWIP array development including fabrication methodology, test data and our imaging results.

  8. Bacteriophage application on red meats and poultry: Effects on Salmonella population in final ground products.

    PubMed

    Yeh, Y; Purushothaman, P; Gupta, N; Ragnone, M; Verma, S C; de Mello, A S

    2017-05-01

    This research was conducted to study the effects of bacteriophage application during tumbling on Salmonella populations in ground meat and poultry. Red meat trim and poultry were inoculated with a Salmonella cocktail to result in a contamination level of 7logCFU/g in ground products. A commercial preparation containing bacteriophages S16 and Felix-O1a (FO1a) was applied during tumbling at 10 7 and 10 8 PFU/ml. Samples were held at 4°C for 6h and 18h (red meat) and 30min and 6h (poultry). Overall, bacteriophage application on trim reduced 1 and 0.8logCFU/g of Salmonella in ground beef and ground pork, respectively. For ground chicken and ground turkey, Salmonella was reduced by 1.1 and 0.9logCFU/g, respectively. This study shows that bacteriophage application during tumbling of red meat trim and poultry can provide additional Salmonella control in ground products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Elucidating the pH-Dependent Structural Transition of T7 Bacteriophage Endolysin.

    PubMed

    Sharma, Meenakshi; Kumar, Dinesh; Poluri, Krishna Mohan

    2016-08-23

    Bacteriophages are the most abundant and diverse biological entities on earth. Bacteriophage endolysins are unique peptidoglycan hydrolases and have huge potential as effective enzybiotics in various infectious models. T7 bacteriophage endolysin (T7L), also known as N-acetylmuramoyl-l-alanine amidase or T7 lysozyme, is a 17 kDa protein that lyses a range of Gram-negative bacteria by hydrolyzing the amide bond between N-acetylmuramoyl residues and the l-alanine of the peptidoglycan layer. Although the activity profiles of several of the T7 family members have been known for many years, the molecular basis for their pH-dependent differential activity is not clear. In this study, we explored the pH-induced structural, stability, and activity characteristics of T7L by applying a variety of biophysical techniques and protein nuclear magnetic resonance (NMR) spectroscopy. Our studies established a reversible structural transition of T7L below pH 6 and the formation of a partially denatured conformation at pH 3. This low-pH conformation is thermally stable and exposed its hydrophobic pockets. Further, NMR relaxation measurements and structural analysis unraveled that T7L is highly dynamic in its native state and a network of His residues are responsible for the observed pH-dependent conformational dynamics and transitions. As bacteriophage chimeric and engineered endolysins are being developed as novel therapeutics against multiple drug resistance pathogens, we believe that our results are of great help in designing these entities as broadband antimicrobial and/or antibacterial agents.

  10. K(3)TaF(8) from laboratory X-ray powder data.

    PubMed

    Smrcok, Lubomír; Cerný, Radovan; Boca, Miroslav; Macková, Iveta; Kubíková, Blanka

    2010-02-01

    The crystal structure of tripotassium octafluoridotantalate, K(3)TaF(8), determined from laboratory powder diffraction data by the simulated annealing method and refined by total energy minimization in the solid state, is built from discrete potassium cations, fluoride anions and monocapped trigonal-prismatic [TaF(7)](2-) ions. All six atoms in the asymmetric unit are in special positions of the P6(3)mc space group: the Ta and one F atom in the 2b (3m) sites, the K and two F atoms in the 6c (m) sites, and one F atom in the 2a (3m) site. The structure consists of face-sharing K(6) octahedra with a fluoride anion at the center of each octahedron, forming chains of composition [FK(3)](2+) running along [001] with isolated [TaF(7)](2-) trigonal prisms in between. The structure of the title compound is different from the reported structure of Na(3)TaF(8) and represents a new structure type.

  11. Clostridium perfringens bacteriophages FCP39O and FCP26F: genomic organization and proteomic analysis of the virions

    USDA-ARS?s Scientific Manuscript database

    Initial screening for bacteriophages lytic for Clostridium perfringens was performed utilizing filtered samples obtained from poultry (intestinal material), soil, sewage and poultry processing drainage water. Lytic phage preparations were initially characterized by transmission electron microscopy ...

  12. Natural mummification of the human gut preserves bacteriophage DNA.

    PubMed

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Dowd, Scot E; Toranzos, Gary A; Marota, Isolina; Cano, Raul J

    2016-01-01

    The natural mummification process of the human gut represents a unique opportunity to study the resulting microbial community structure and composition. While results are providing insights into the preservation of bacteria, fungi, pathogenic eukaryotes and eukaryotic viruses, no studies have demonstrated that the process of natural mummification also results in the preservation of bacteriophage DNA. We characterized the gut microbiome of three pre-Columbian Andean mummies, namely FI3, FI9 and FI12, and found sequences homologous to viruses. From the sequences attributable to viruses, 50.4% (mummy FI3), 1.0% (mummy FI9) and 84.4% (mummy FI12) were homologous to bacteriophages. Sequences corresponding to the Siphoviridae, Myoviridae, Podoviridae and Microviridae families were identified. Predicted putative bacterial hosts corresponded mainly to the Firmicutes and Proteobacteria, and included Bacillus, Staphylococcus, Clostridium, Escherichia, Vibrio, Klebsiella, Pseudomonas and Yersinia. Predicted functional categories associated with bacteriophages showed a representation of structural, replication, integration and entry and lysis genes. The present study suggests that the natural mummification of the human gut results in the preservation of bacteriophage DNA, representing an opportunity to elucidate the ancient phageome and to hypothesize possible mechanisms of preservation. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in B+→ρ0K*+ and B+→f0(980)K*+ decays

    NASA Astrophysics Data System (ADS)

    Del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Karbach, T. M.; Petzold, A.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Renga, F.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Guttman, N.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2011-03-01

    We present measurements of the branching fractions, longitudinal polarization, and direct CP-violation asymmetries for the decays B+→ρ0K*+ and B+→f0(980)K*+ with a sample of (467±5)×106BB¯ pairs collected with the BABAR detector at the PEP-II asymmetric-energy e+e- collider at the SLAC National Accelerator Laboratory. We observe B+→ρ0K*+ with a significance of 5.3σ and measure the branching fraction B(B+→ρ0K*+)=(4.6±1.0±0.4)×10-6, the longitudinal polarization fL=0.78±0.12±0.03, and the CP-violation asymmetry ACP=0.31±0.13±0.03. We observe B+→f0(980)K*+ and measure the branching fraction B(B+→f0(980)K*+)×B(f0(980)→π+π-)=(4.2±0.6±0.3)×10-6 and the CP-violation asymmetry ACP=-0.15±0.12±0.03. The first uncertainty quoted is statistical and the second is systematic.

  14. Mapping the Tail Fiber as the Receptor Binding Protein Responsible for Differential Host Specificity of Pseudomonas aeruginosa Bacteriophages PaP1 and JG004

    PubMed Central

    Le, Shuai; He, Xuesong; Tan, Yinling; Huang, Guangtao; Zhang, Lin; Lux, Renate; Shi, Wenyuan; Hu, Fuquan

    2013-01-01

    The first step in bacteriophage infection is recognition and binding to the host receptor, which is mediated by the phage receptor binding protein (RBP). Different RBPs can lead to differential host specificity. In many bacteriophages, such as Escherichia coli and Lactococcal phages, RBPs have been identified as the tail fiber or protruding baseplate proteins. However, the tail fiber-dependent host specificity in Pseudomonas aeruginosa phages has not been well studied. This study aimed to identify and investigate the binding specificity of the RBP of P. aeruginosa phages PaP1 and JG004. These two phages share high DNA sequence homology but exhibit different host specificities. A spontaneous mutant phage was isolated and exhibited broader host range compared with the parental phage JG004. Sequencing of its putative tail fiber and baseplate region indicated a single point mutation in ORF84 (a putative tail fiber gene), which resulted in the replacement of a positively charged lysine (K) by an uncharged asparagine (N). We further demonstrated that the replacement of the tail fiber gene (ORF69) of PaP1 with the corresponding gene from phage JG004 resulted in a recombinant phage that displayed altered host specificity. Our study revealed the tail fiber-dependent host specificity in P. aeruginosa phages and provided an effective tool for its alteration. These contributions may have potential value in phage therapy. PMID:23874674

  15. ChpK and MazF of the toxin-antitoxin modules are involved in the virulence of Leptospira interrogans during infection.

    PubMed

    Komi, Komi Koukoura; Ge, Yu-Mei; Xin, Xiao-Yang; Ojcius, David M; Sun, Dexter; Hu, Wei-Lin; Zhao, Xin; Lin, Xu'ai; Yan, Jie

    2015-01-01

    Pathogenic Leptospira species are the causative agents of leptospirosis, a global zoonotic infectious disease. Toxin-antitoxin (TA) modules have been confirmed as stress-response elements that induce prokaryotic and eukaryotic cell-growth arrest or death, but their role in the virulence of Leptospira has not been reported. Here, we confirmed that all the tested leptospiral strains had the chpIK and mazEF TA modules with highly-conserved sequences. The transcription and expression of the chpI, chpK, mazE, and mazF genes of Leptospira interrogans strain Lai were significantly increased during infection of phorbol 12-myristate 13-acetate-induced human THP-1 macrophages. The toxic ChpK and MazF but not the antitoxic ChpI and MazE proteins were detectable in the cytoplasmic fraction of leptospire-infected THP-1 cells, indicating the external secretion of ChpK and MazF during infection. Transfection of the chpK or mazF gene caused decreased viability and necrosis in THP-1 cells, whereas the chpI or mazE gene transfection did not affect the viability of THP-1 cells but blocked the ChpK or MazF-induced toxicity. Deletion of the chpK or mazF gene also decreased the late-apoptotic and/or necrotic ratios of THP-1 cells at the late stages of infection. The recombinant protein MazF (rMazF) cleaved the RNAs but not the DNAs from Leptospira and THP-1 cells, and this RNA cleavage was blocked by rMazE. However, the rChpK had no RNA or DNA-degrading activity. All these findings indicate that the ChpK and MazF proteins in TA modules are involved in the virulence of L. interrogans during infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. The effects of bacteriophage and nanoparticles on microbial processes

    NASA Astrophysics Data System (ADS)

    Moody, Austin L.

    There are approximately 1031 tailed phages in the biosphere, making them the most abundant organism. Bacteriophages are viruses that infect bacteria. Due to the large diversity and abundance, no two bacteriophages that have been isolated are genetically the same. Phage products have potential in disease therapy to solve bacteria-related problems, such as infections resulting from resistant strains of Staphylococcus aureus. A bacteriophage capable of infecting methicillin-resistant S. aureus (MRSA) was isolated from bovine hair. The bacteriophage, named JB phage, was characterized using purification, amplification, cesium chloride banding, scanning electron microscopy, and transmission electron microscopy. JB phage and nanoparticles were used in various in vitro and in vivo models to test their effects on microbial processes. Scanning and transmission electron microscopy studies revealed strong interactions between JB phage and nanoparticles, which resulted in increased bacteriophage infectivity. JB phage and nanoparticle cocktails were used as a therapeutic to treat skin and systemic infections in mice caused by MRSA.

  17. Kwangju, K-57, Korea. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1974-03-06

    JtTHER I 5fU -17 o CLSS HOURS (L S T. SPEED Mi..EAN (KNTS) 1 -3 4 6 7. 10 11 16 17 - 21 22 - 27 28 33 34 - 40 41 47 48- 55 56 % WIND DIR. S _ _ PEED E .3...the summary consists of a bivariate percentage frequency distribution of wet-bulb depression in 17 classes spread horizontally; by 2-degree intervals...AC 4)25f. K4{bNC() ILIA K-57 3-59,A 4 .72 ALL N STATION NAME YEARS., PArF I ~R ALL-- T5 L .T. WET BULB TEMPERATURE DEPRESSION (F) I_ TOTAL TOTAL (F

  18. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    PubMed Central

    Scarascia, Giantommaso; Yap, Scott A.; Kaksonen, Anna H.; Hong, Pei-Ying

    2018-01-01

    Pseudomonas aeruginosa is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of P. aeruginosa in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P. aeruginosa exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to P. aeruginosa-enriched biofilm and were determined to lower the relative abundance of Pseudomonas-related taxa from 0.17 to 5.58% in controls to 0.01–0.61% in treated microbial communities. The relative abundance of Alphaproteobacteria, Pseudoalteromonas, and Planococcaceae decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable P. aeruginosa-associated problems in seawater applications. PMID:29770130

  19. Microneedle-mediated transdermal bacteriophage delivery

    PubMed Central

    Ryan, Elizabeth; Garland, Martin J.; Singh, Thakur Raghu Raj; Bambury, Eoin; O’Dea, John; Migalska, Katarzyna; Gorman, Sean P.; McCarthy, Helen O.; Gilmore, Brendan F.; Donnelly, Ryan F.

    2012-01-01

    Interest in bacteriophages as therapeutic agents has recently been reawakened. Parenteral delivery is the most routinely-employed method of administration. However, injection of phages has numerous disadvantages, such as the requirement of a health professional for administration and the possibility of cross-contamination. Transdermal delivery offers one potential means of overcoming many of these problems. The present study utilized a novel poly (carbonate) (PC) hollow microneedle (MN) device for the transdermal delivery of Escherichia coli-specific T4 bacteriophages both in vitro and in vivo. MN successfully achieved bacteriophage delivery in vitro across dermatomed and full thickness skin. A concentration of 2.67 × 106 PFU/ml (plaque forming units per ml) was detected in the receiver compartment when delivered across dermatomed skin and 4.0 × 103 PFU/ml was detected in the receiver compartment when delivered across full thickness skin. An in vivo study resulted in 4.13 × 103 PFU/ml being detected in blood 30 min following initial MN-mediated phage administration. Clearance occurred rapidly, with phages being completely cleared from the systemic circulation within 24 h, which was expected in the absence of infection. We have shown here that MN-mediated delivery allows successful systemic phage absorption. Accordingly, bacteriophage-based therapeutics may now have an alternative route for systemic delivery. Once fully-investigated, this could lead to more widespread investigation of these interesting therapeutic viruses. PMID:22750416

  20. Predicting bacteriophage proteins located in host cell with feature selection technique.

    PubMed

    Ding, Hui; Liang, Zhi-Yong; Guo, Feng-Biao; Huang, Jian; Chen, Wei; Lin, Hao

    2016-04-01

    A bacteriophage is a virus that can infect a bacterium. The fate of an infected bacterium is determined by the bacteriophage proteins located in the host cell. Thus, reliably identifying bacteriophage proteins located in the host cell is extremely important to understand their functions and discover potential anti-bacterial drugs. Thus, in this paper, a computational method was developed to recognize bacteriophage proteins located in host cells based only on their amino acid sequences. The analysis of variance (ANOVA) combined with incremental feature selection (IFS) was proposed to optimize the feature set. Using a jackknife cross-validation, our method can discriminate between bacteriophage proteins located in a host cell and the bacteriophage proteins not located in a host cell with a maximum overall accuracy of 84.2%, and can further classify bacteriophage proteins located in host cell cytoplasm and in host cell membranes with a maximum overall accuracy of 92.4%. To enhance the value of the practical applications of the method, we built a web server called PHPred (〈http://lin.uestc.edu.cn/server/PHPred〉). We believe that the PHPred will become a powerful tool to study bacteriophage proteins located in host cells and to guide related drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Frequency-Wavenumber (F-K) Processing for Infrasound Distributed Arrays

    DTIC Science & Technology

    2012-10-01

    UNCLASSIFIED Approved for public release; distribution is unlimited (U) Frequency-Wavenumber (F-K) Processing for Infrasound Distributed...have conventionally been used to detect infrasound . Pipe arrays, used in conjunction with microbarometers, provide noise reduction by averaging wind...signals. This is especially true for infrasound and low-frequency acoustic sources of tactical interest in the 1 to 100 Hz range. The work described

  2. Stabilization of T4 bacteriophage at acidic and basic pH by adsorption on paper.

    PubMed

    Meyer, Abigail; Greene, Melissa; Kimmelshue, Chad; Cademartiri, Rebecca

    2017-12-01

    Bacteriophages find applications in agriculture, medicine, and food safety. Many of these applications can expose bacteriophages to stresses that inactivate them including acidic and basic pH. Bacteriophages can be stabilized against these stresses by materials including paper, a common material in packaging and consumer products. Combining paper and bacteriophages creates antibacterial materials, which can reduce the use of antibiotics. Here we show that adsorption on paper protects T4, T5, and T7 bacteriophage from acidic and basic pH. We added bacteriophages to filter paper functionalized with carboxylic acid (carboxyl methyl cellulose) or amine (chitosan) groups, and exposed them to pH from 5.6 to 14. We determined the number of infective bacteriophages after exposure directly on the paper. All papers extended the lifetime of infective bacteriophage by at least a factor of four with some papers stabilizing bacteriophages for up to one week. The degree of stabilization depended on five main factors (i) the family of the bacteriophage, (ii) the charge of the paper and bacteriophages, (iii) the location of the bacteriophages within the paper, (iv) the ability of the paper to prevent bacteriophage-bacteriophage aggregation, and (v) the sensitivity of the bacteriophage proteins to the tested pH. Even when adsorbed on paper the bacteriophages were able to remove E. coli in milk. Choosing the right paper modification or material will protect bacteriophages adsorbed on that material against detrimental pH and other environmental challenges increasing the range of applications of bacteriophages on materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. TF1, the bacteriophage SPO1-encoded type II DNA-binding protein, is essential for viral multiplication.

    PubMed

    Sayre, M H; Geiduschek, E P

    1988-09-01

    The lytic Bacillus subtilis bacteriophage SPO1 encodes an abundant, 99-amino-acid type II DNA-binding protein, transcription factor 1 (TF1). TF1 is special in this family of procaryotic chromatin-forming proteins in its preference for hydroxymethyluracil-containing DNA, such as SPO1 DNA, and in binding with high affinity to specific sites in the SPO1 chromosome. We constructed recessive null alleles of the TF1 gene and introduced them into SPO1 chromosomes. Segregation analysis with partially diploid phage heterozygous for TF1 showed that phage bearing only these null alleles was inviable. Deletion of the nine C-proximal amino acids of TF1 prohibited phage multiplication in vivo and abolished its site-specific DNA-binding activity in vitro.

  4. Air puff-induced 22-kHz calls in F344 rats.

    PubMed

    Inagaki, Hideaki; Sato, Jun

    2016-03-01

    Air puff-induced ultrasonic vocalizations in adult rats, termed "22-kHz calls," have been applied as a useful animal model to develop psychoneurological and psychopharmacological studies focusing on human aversive affective disorders. To date, all previous studies on air puff-induced 22-kHz calls have used outbred rats. Furthermore, newly developed gene targeting technologies, which are essential for further advancement of biomedical experiments using air puff-induced 22-kHz calls, have enabled the production of genetically modified rats using inbred rat strains. Therefore, we considered it necessary to assess air puff-induced 22-kHz calls in inbred rats. In this study, we assessed differences in air puff-induced 22-kHz calls between inbred F344 rats and outbred Wistar rats. Male F344 rats displayed similar total (summed) duration of air puff-induced 22 kHz vocalizations to that of male Wistar rats, however, Wistar rats emitted fewer calls of longer duration, while F344 rats emitted higher number of vocalizations of shorter duration. Additionally, female F344 rats emitted fewer air puff-induced 22-kHz calls than did males, thus confirming the existence of a sex difference that was previously reported for outbred Wistar rats. The results of this study could confirm the reliability of air puff stimulus for induction of a similar amount of emissions of 22-kHz calls in different rat strains, enabling the use of air puff-induced 22-kHz calls in inbred F344 rats and derived genetically modified animals in future studies concerning human aversive affective disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Control of Listeria monocytogenes growth in soft cheeses by bacteriophage P100.

    PubMed

    Silva, Elaine Nóbrega Gibson; Figueiredo, Ana Cláudia Leite; Miranda, Fernanda Araújo; de Castro Almeida, Rogeria Comastri

    2014-01-01

    The purpose of this study was to determine the effect of bacteriophage P100 on strains of Listeria monocytogenes in artificially inoculated soft cheeses. A mix of L. monocytogenes 1/2a and Scott A was inoculated in Minas Frescal and Coalho cheeses (approximately 10(5) cfu/g) with the bacteriophage added thereafter (8.3 × 10(7) PFU/g). Samples were analyzed immediately, and then stored at 10 °C for seven days. At time zero, 30 min post-infection, the bacteriophage P100 reduced L. monocytogenes counts by 2.3 log units in Minas Frescal cheese and by 2.1 log units in Coalho cheese, compared to controls without bacteriophage. However, in samples stored under refrigeration for seven days, the bacteriophage P100 was only weakly antilisterial, with the lowest decimal reduction (DR) for the cheeses: 1.0 log unit for Minas Frescal and 0.8 log units for Coalho cheese. The treatment produced a statistically significant decrease in the counts of viable cells (p < 0.05) and in all assays performed, we observed an increase of approximately one log cycle in the number of viable cells of L. monocytogenes in the samples under refrigeration for seven days. Moreover, a smaller effect of phages was observed. These results, along with other published data, indicate that the effectiveness of the phage treatment depends on the initial concentration of L. monocytogenes, and that a high concentration of phages per unit area is required to ensure sustained inactivation of target pathogens on food surfaces.

  6. Survival studies of a temperate and lytic bacteriophage in bovine faeces and slurry.

    PubMed

    Nyambe, S; Burgess, C; Whyte, P; Bolton, D

    2016-10-01

    Cattle are the main reservoir of verocytotoxigenic Escherichia coli (VTEC), food-borne pathogens that express verocytotoxins (vtx) encoded by temperate bacteriophage. Bovine faeces and unturned manure heaps can support the survival of VTEC and may propagate and transmit VTEC. This study investigated the survival of a vtx2 bacteriophage, φ24B ::Kan, in bovine faeces and slurry. The survival of an anti-Escherichia coli O157:H7 lytic bacteriophage, e11/2, was examined in the same matrices, as a possible bio-control option for VTEC. Samples were inoculated with φ24B ::Kan and/or e11/2 bacteriophage at a concentration of 7-8 log10  PFU g(-1)  (faeces) or ml(-1) (slurry), stored at 4 and 14°C and examined every 2 days for 36 days. The ability of φ24B ::Kan to transduce E. coli cells was examined. Moreover, E. coli concentrations in the faeces and slurry were monitored throughout the experiment as were the pH and aw (faeces only). Both bacteriophages survived well in faeces and slurry. In addition, φ24B ::Kan was able to form lysogens. φ24B ::Kan and e11/2 phage can survive and remain infective in bovine faeces and slurry for at least 30 days under representative Irish temperatures. Bovine faeces and slurry may act as a reservoir for vtx bacteriophages. The survival of the anti-O157 phage suggests it may be a suitable bio-control option in these matrices. © 2016 The Society for Applied Microbiology.

  7. Theoretical descriptions of novel triplet germylenes M1-Ge-M2-M3 (M1 = H, Li, Na, K; M2 = Be, Mg, Ca; M3 = H, F, Cl, Br).

    PubMed

    Kassaee, Mohamad Zaman; Ashenagar, Samaneh

    2018-02-06

    In a quest to identify new ground-state triplet germylenes, the stabilities (singlet-triplet energy differences, ΔE S-T ) of 96 singlet (s) and triplet (t) M 1 -Ge-M 2 -M 3 species were compared and contrasted at the B3LYP/6-311++G**, QCISD(T)/6-311++G**, and CCSD(T)/6-311++G** levels of theory (M 1  = H, Li, Na, K; M 2  = Be, Mg, Ca; M 3  = H, F, Cl, Br). Interestingly, F-substituent triplet germylenes (M 3  = F) appear to be more stable and linear than the corresponding Cl- or Br-substituent triplet germylenes (M 3  = Cl or Br). Triplets with M 1  = K (i.e., the K-Ge-M 2 -M 3 series) seem to be more stable than the corresponding triplets with M 1  = H, Li, or Na. This can be attributed to the higher electropositivity of potassium. Triplet species with M 3  = Cl behave similarly to those with M 3  = Br. Conversely, triplets with M 3  = H show similar stabilities and linearities to those with M 3  = F. Singlet species of formulae K-Ge-Ca-Cl and K-Ge-Ca-Br form unexpected cyclic structures. Finally, the triplet germylenes M 1 -Ge-M 2 -M 3 become more stable as the electropositivities of the α-substituents (M 1 and M 2 ) and the electronegativity of the β-substituent (M 3 ) increase.

  8. Temperature and radiation effects at the fluorine K-edge in LiF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Craig P.; Ponce, Francisco; Friedrich, Stephan

    Here, the fluorine K-edge of LiF is studied both experimentally and theoretically as a function of temperature. Instantaneous thermal fluctuations in atomic positions are shown in molecular dynamics simulations to increase in amplitude from 0.029 to 0.064 nm in the temperature range from 40 to 298 K. This is sufficient to cause instantaneous deviations from local octahedral atomic symmetry in this rock-salt crystal, resulting in altered electronic structure. The lowered symmetry of the lowest core-excited states of fluorine atoms is evident in X-ray absorption spectra at the F K-edge. In addition, sufficient radiation exposure produces a new X-ray absorption peak,more » below the F K-edge of LiF, which is assigned to defects in LiF based on both calculations and comparison to previous experiments.« less

  9. Temperature and radiation effects at the fluorine K-edge in LiF

    DOE PAGES

    Schwartz, Craig P.; Ponce, Francisco; Friedrich, Stephan; ...

    2017-05-30

    Here, the fluorine K-edge of LiF is studied both experimentally and theoretically as a function of temperature. Instantaneous thermal fluctuations in atomic positions are shown in molecular dynamics simulations to increase in amplitude from 0.029 to 0.064 nm in the temperature range from 40 to 298 K. This is sufficient to cause instantaneous deviations from local octahedral atomic symmetry in this rock-salt crystal, resulting in altered electronic structure. The lowered symmetry of the lowest core-excited states of fluorine atoms is evident in X-ray absorption spectra at the F K-edge. In addition, sufficient radiation exposure produces a new X-ray absorption peak,more » below the F K-edge of LiF, which is assigned to defects in LiF based on both calculations and comparison to previous experiments.« less

  10. Bacteriophages of Yersinia pestis.

    PubMed

    Zhao, Xiangna; Skurnik, Mikael

    2016-01-01

    Bacteriophage play many varied roles in microbial ecology and evolution. This chapter collates a vast body of knowledge and expertise on Yersinia pestis phages, including the history of their isolation and classical methods for their isolation and identification. The genomic diversity of Y. pestis phage and bacteriophage islands in the Y. pestis genome are also discussed because all phage research represents a branch of genetics. In addition, our knowledge of the receptors that are recognized by Y. pestis phage, advances in phage therapy for Y. pestis infections, the application of phage in the detection of Y. pestis, and clustered regularly interspaced short palindromic repeats (CRISPRs) sequences of Y. pestis from prophage DNA are all reviewed here.

  11. Application of bacteriophages to reduce Salmonella contamination on workers' boots in rendering-processing environment.

    PubMed

    Gong, C; Jiang, X; Wang, J

    2017-10-01

    Workers' boots are considered one of the re-contamination routes of Salmonella for rendered meals in the rendering-processing environment. This study was conducted to evaluate the efficacy of a bacteriophage cocktail for reducing Salmonella on workers' boots and ultimately for preventing Salmonella re-contamination of rendered meals. Under laboratory conditions, biofilms of Salmonella Typhimurium avirulent strain 8243 formed on rubber templates or boots were treated with a bacteriophage cocktail of 6 strains (ca. 9 log PFU/mL) for 6 h at room temperature. Bacteriophage treatments combined with sodium hypochlorite (400 ppm) or 30-second brush scrubbing also were investigated for a synergistic effect on reducing Salmonella biofilms. Sodium magnesium (SM) buffer and sodium hypochlorite (400 ppm) were used as controls. To reduce indigenous Salmonella on workers' boots, a field study was conducted to apply a bacteriophage cocktail and other combined treatments 3 times within one wk in a rendering-processing environment. Prior to and after bacteriophage treatments, Salmonella populations on the soles of rubber boots were swabbed and enumerated on XLT-4, Miller-Mallinson or CHROMagar™ plates. Under laboratory conditions, Salmonella biofilms formed on rubber templates and boots were reduced by 95.1 to 99.999% and 91.5 to 99.2%, respectively. In a rendering-processing environment (ave. temperature: 19.3°C; ave. relative humidity: 48%), indigenous Salmonella populations on workers' boots were reduced by 84.2, 92.9, and 93.2% after being treated with bacteriophages alone, bacteriophages + sodium hypochlorite, and bacteriophages + scrubbing for one wk, respectively. Our results demonstrated the effectiveness of bacteriophage treatments in reducing Salmonella contamination on the boots in both laboratory and the rendering-processing environment. © 2017 Poultry Science Association Inc.

  12. Bacteriophage-based synthetic biology for the study of infectious diseases

    PubMed Central

    Lu, Timothy K.

    2014-01-01

    Since their discovery, bacteriophages have contributed enormously to our understanding of molecular biology as model systems. Furthermore, bacteriophages have provided many tools that have advanced the fields of genetic engineering and synthetic biology. Here, we discuss bacteriophage-based technologies and their application to the study of infectious diseases. New strategies for engineering genomes have the potential to accelerate the design of novel phages as therapies, diagnostics, and tools. Though almost a century has elapsed since their discovery, bacteriophages continue to have a major impact on modern biological sciences, especially with the growth of multidrug-resistant bacteria and interest in the microbiome. PMID:24997401

  13. Isolation and characterization of bacteriophages specific to hydrogen-sulfide-producing bacteria.

    PubMed

    Gong, Chao; Heringa, Spencer; Singh, Randhir; Kim, Jinkyung; Jiang, Xiuping

    2013-01-01

    The objectives of this study were to isolate and characterize bacteriophages specific to hydrogen-sulfide-producing bacteria (SPB) from raw animal materials, and to develop a SPB-specific bacteriophage cocktail for rendering application. Meat, chicken offal, and feather samples collected from local supermarkets and rendering processing plants were used to isolate SPB (n = 142). Bacteriophages (n = 52) specific to SPB were isolated and purified from the above samples using 18 of those isolated SPB strains as hosts. The host ranges of bacteriophages against 5 selected SPB strains (Escherichia coli, Citrobacter freundii, and Hafnia alvei) were determined. Electron microscopy observation of 9 phages selected for the phage cocktail revealed that 6 phages belonged to the family of Siphoviridae and 3 belonged to the Myoviridae family. Restriction enzyme digestion analysis with endonuclease DraI detected 6 distinguished patterns among the 9 phages. Phage treatment prevented the growth of SPB for up to 10 h with multiplicity of infection ratios of 1, 10, 100, and 1000 in tryptic soy broth at 30 °C, and extended the lag phase of SPB growth for 2 h at 22 °C with multiplicities of infection of 10, 100, and 1000. These results suggest that the selected bacteriophage cocktail has a high potential for phage application to control SPB in raw animal materials destined for the rendering process.

  14. In Situ Dynamics of F-Specific RNA Bacteriophages in a Small River: New Way to Assess Viral Propagation in Water Quality Studies.

    PubMed

    Fauvel, Blandine; Gantzer, Christophe; Cauchie, Henry-Michel; Ogorzaly, Leslie

    2017-03-01

    The occurrence and propagation of enteric viruses in rivers constitute a major public health issue. However, little information is available on the in situ transport and spread of viruses in surface water. In this study, an original in situ experimental approach using the residence time of the river water mass was developed to accurately follow the propagation of F-specific RNA bacteriophages (FRNAPHs) along a 3-km studied river. Surface water and sediment of 9 sampling campaigns were collected and analyzed using both infectivity and RT-qPCR assays. In parallel, some physico-chemical variables such as flow rate, water temperature, conductivity and total suspended solids were measured to investigate the impact of environmental conditions on phage propagation. For campaigns with low flow rate and high temperature, the results highlight a decrease of infectious phage concentration along the river, which was successfully modelled according to a first-order negative exponential decay. The monitoring of infectious FRNAPHs belonging mainly to the genogroup II was confirmed with direct phage genotyping and total phage particle quantification. Reported k decay coefficients according to exponential models allowed for the determination of the actual in situ distance and time necessary for removing 90 % of infectious phage particles. This present work provides a new way to assess the true in situ viral propagation along a small river. These findings can be highly useful in water quality and risk assessment studies to determine the viral contamination spread from a point contamination source to the nearest recreational areas.

  15. [Susceptibilities of multidrug-resistant pathogens responsible for complicated skin and soft tissue infections to standard bacteriophage cocktails].

    PubMed

    Gündoğdu, Aycan; Kılıç, Hüseyin; Ulu Kılıç, Ayşegül; Kutateladze, Mzia

    2016-04-01

    Skin and soft tissue infections (SSTIs) may represent a wide clinical spectrum from cellulitis to high-mortality associated necrotizing fasciitis. Limitations in therapy due to the multiple drug resistance, leads to increase in the morbidity and mortality rates, especially in complicated SSTIs such as diabetic foot, decubitus, and surgical wound infections. Therefore, alternative treatment strategies other than antibiotics are needed in appropriate clinical conditions. "Bacteriophage therapy", which is an old method and has been used as part of standard treatment in some countries such as Georgia and Russia, has again become popular worldwide. The aim of this study was to investigate the in vitro susceptibilities of multidrug-resistant (MDR) pathogens isolated from patients with complicated SSTIs, against standard bacteriophage (phage) cocktails. Six different ready-made phage preparations [Pyophage, Intestiphage, ENKO, SES, Fersisi and Staphylococcal Bacteriophage (Sb)] used in this study have been provided by G. Eliava Institute, Georgia. Because of the absence of ready-made phage preparations for Acinetobacter baumannii and Klebsiella pneumoniae, Φ1-Φ7 and ΦKL1- ΦKL3 phages were used provided from the same institute's phage library, respectively. Isolation and identification of the pathogens from abscess and wound samples of patients with SSTIs were performed by conventional methods and automatized VITEK(®)-2 (bioMerieux, ABD) system. Antimicrobial susceptibility testing was conducted complying CLSI standards' and the bacteria that were resistant to at least two different antibiotic groups were considered as MDR. Accordingly, a total of 33 isolates, nine of them were E.coli (8 ESBL and 1 ESBL + carbapenemase positive); nine were MDR P.aeruginosa; nine were MDR A.baumannii; three were methicillin-resistant Staphylococcus aureus (MRSA) and three were K.pneumoniae (1 ESBL, 1 carbapenemase and 1 ESBL + carbapenemase positive) were included in the study. The

  16. Ultrastructure and Viral Metagenome of Bacteriophages from an Anaerobic Methane Oxidizing Methylomirabilis Bioreactor Enrichment Culture

    PubMed Central

    Gambelli, Lavinia; Cremers, Geert; Mesman, Rob; Guerrero, Simon; Dutilh, Bas E.; Jetten, Mike S. M.; Op den Camp, Huub J. M.; van Niftrik, Laura

    2016-01-01

    With its capacity for anaerobic methane oxidation and denitrification, the bacterium Methylomirabilis oxyfera plays an important role in natural ecosystems. Its unique physiology can be exploited for more sustainable wastewater treatment technologies. However, operational stability of full-scale bioreactors can experience setbacks due to, for example, bacteriophage blooms. By shaping microbial communities through mortality, horizontal gene transfer, and metabolic reprogramming, bacteriophages are important players in most ecosystems. Here, we analyzed an infected Methylomirabilis sp. bioreactor enrichment culture using (advanced) electron microscopy, viral metagenomics and bioinformatics. Electron micrographs revealed four different viral morphotypes, one of which was observed to infect Methylomirabilis cells. The infected cells contained densely packed ~55 nm icosahedral bacteriophage particles with a putative internal membrane. Various stages of virion assembly were observed. Moreover, during the bacteriophage replication, the host cytoplasmic membrane appeared extremely patchy, which suggests that the bacteriophages may use host bacterial lipids to build their own putative internal membrane. The viral metagenome contained 1.87 million base pairs of assembled viral sequences, from which five putative complete viral genomes were assembled and manually annotated. Using bioinformatics analyses, we could not identify which viral genome belonged to the Methylomirabilis- infecting bacteriophage, in part because the obtained viral genome sequences were novel and unique to this reactor system. Taken together these results show that new bacteriophages can be detected in anaerobic cultivation systems and that the effect of bacteriophages on the microbial community in these systems is a topic for further study. PMID:27877158

  17. 77 FR 3319 - TapSlide, Inc., TTC Technology Corp. (f/k/a SmarTire Systems Inc.), TWL Corp., TXP Corp...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] TapSlide, Inc., TTC Technology Corp. (f/k/a SmarTire Systems Inc.), TWL Corp., TXP Corp., Valentec Systems, Inc. (f/k/a Acorn Holdings Corp... current and accurate information concerning the securities of TTC Technology Corp. (f/k/a SmarTire Systems...

  18. Probing new physics in B→f0(980)K decays

    NASA Astrophysics Data System (ADS)

    Giri, A. K.; Mawlong, B.; Mohanta, R.

    2006-12-01

    We study the hadronic decay modes B±(0)→f0(980)K±(0), involving a scalar and a pseudoscalar meson in the final state. These decay modes are dominated by the loop induced b→sq¯q(q=s,u,d) penguins along with a small b→u tree level transition (for B+→f0K+) and annihilation diagrams. Therefore, the standard model expectation of direct CP violation is negligibly small and the mixing-induced CP violation parameter in the mode B0→f0KS is expected to give the same value of sin⁡(2β), as extracted from B0→J/ψKS but with opposite sign. Using the generalized factorization approach we find the direct CP violation in the decay mode B+→f0K+ to be of the order of few percent. We then study the effect of the R-parity violating supersymmetric model and show that the direct CP violating asymmetry in B+→f0(980)K+ could be as large as ˜80% and the mixing-induced CP asymmetry in B0→f0KS (i.e., -Sf0KS) could deviate significantly from that of sin⁡(2β)J/ψKS.

  19. Bacteriophage sensitivity patterns among bacteria isolated from marine waters

    NASA Astrophysics Data System (ADS)

    Moebus, K.; Nattkemper, H.

    1981-09-01

    Phage-host cross-reaction tests were performed with 774 bacterial strains and 298 bacteriophages. The bacteria (bacteriophages) were isolated at different times from water samples collected in the Atlantic Ocean between the European continental shelf and the Sargasso Sea: 733 (258) strains; in the North Sea near Helgoland: 31 (31) strains; and in the Bay of Biscay: 10 (9) strains. Of the Atlantic Ocean bacteria 326 were found to be susceptible to one or more Atlantic Ocean bacteriophage(s). The bacteriophage sensitivity patterns of these bacteria vary considerably, placing 225 of them in two large clusters of bacteriophage-host systems. Taking all into account, 250 of the 326 Atlantic Ocean bacteria are different from each other. This high degree of variation among the bacteria distinguishes microbial populations derived from widely separated eastern and western regions of the Atlantic Ocean. It also sets apart from each other the populations derived from samples collected at successive stations some 200 miles apart, although to a lesser degree. With bacterial populations found from samples collected on the way back and forth between Europe and the Sargasso Sea a gradual change was observed from "western" phage sensitivity patterns to "eastern" ones. Sixty-nine Atlantic Ocean bacteria are sensitive to bacteriophages isolated from the North Sea and the Bay of Biscay; of these only 26 strains are also susceptible to Atlantic Ocean phages. The interpretation of the results is based on the hydrographical conditions prevailing in the northern Atlantic Ocean including the North Sea, and on the assumption that the microbial populations investigated have undergone genetic changes while being transported within water masses from west to east.

  20. [Study of fusion of bacteriophage f2 double-stranded RNA, poly(A).poly(U), and poly(G).poly(C) in the presence of tetraethylammonium bromide].

    PubMed

    Permogorov, V I; Tiaglov, B V; Minaev, V E

    1980-01-01

    The data on the dependence of the melting curve parameters of double-stranded RNA (replicative form of RNA of f2 bacteriophage) poly(A) times poly(U) and poly(G) times poly(C) on the concentration of (C2H5)4NBr were obtained. The RNA melting range width is shown to pass through the minimum value T =2.1+/-0.1degrees at the point of inversion of relative stability of GC and AU pairs that corresponds to 4.0+/-0.1 M concentration of (C2H5)4NBr. Using the melting temperatures of poly(A) times poly(U) and poly(G) times poly(C) the rependence of Tgc-Tau parameter on (C2H5)4NBr concentration was shown. It was concluded from these data that the effect of the double-stranded RNA stacking heterogeneity was negligible in the 0-3 M range of (C2H5)4NBr concentration. Melting curves of RNA were obtained at various values of Tgc-Tau parameter. It was shown that the profile of fine structure of melting curves depends on the value of Tgc-Tau parameter.

  1. T4 bacteriophage conjugated magnetic particles for E. coli capturing: Influence of bacteriophage loading, temperature and tryptone.

    PubMed

    Liana, Ayu Ekajayanthi; Marquis, Christopher P; Gunawan, Cindy; Gooding, J Justin; Amal, Rose

    2017-03-01

    This work demonstrates the use of bacteriophage conjugated magnetic particles (Fe 3 O 4 ) for the rapid capturing and isolation of Escherichia coli. The investigation of T4 bacteriophage adsorption to silane functionalised Fe 3 O 4 with amine (NH 2 ), carboxylic (COOH) and methyl (CH 3 ) surface functional groups reveals the domination of net electrostatic and hydrophobic interactions in governing bacteriophage adsorption. The bare Fe 3 O 4 and Fe 3 O 4 -NH 2 with high T4 loading captured 3-fold more E. coli (∼70% capturing efficiency) compared to the low loading T4 on Fe 3 O 4 -COOH, suggesting the significance of T4 loading in E. coli capturing efficiency. Importantly, it is further revealed that E. coli capture is highly dependent on the incubation temperature and the presence of tryptone in the media. Effective E. coli capturing only occurs at 37°C in tryptone-containing media with the absence of either conditions resulted in poor bacteria capture. The incubation temperature dictates the capturing ability of Fe 3 O 4 /T4, whereby T4 and E. coli need to establish an irreversible binding that occurred at 37°C. The presence of tryptophan-rich tryptone in the suspending media was also critical, as shown by a 3-fold increase in E. coli capture efficiency of Fe 3 O 4 /T4 in tryptone-containing media compared to that in tryptone-free media. This highlights for the first time that successful bacteria capturing requires not only an optimum tailoring of the particle's surface physicochemical properties for favourable bacteriophage loading, but also an in-depth understanding of how factors, such as temperature and solution chemistry influence the subsequent bacteriophage-bacteria interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. BACTERIOPHAGE PRD1 AND SILICA COLLOID TRANSPORT AND RECOVERY IN AN IRON OXIDE-COATED SAND AQUIFER. (R826179)

    EPA Science Inventory

    Bacteriophage PRD1 and silica colloids were co-injected into
    sewage-contaminated and uncontaminated zones of an iron oxide-coated sand
    aquifer on Cape Cod, MA, and their transport was monitored over distances up to
    6 m in three arrays. After deposition, the attache...

  3. Prevention and cure of systemic Escherichia coli K1 infection by modification of the bacterial phenotype.

    PubMed

    Mushtaq, Naseem; Redpath, Maria B; Luzio, J Paul; Taylor, Peter W

    2004-05-01

    Escherichia coli is a common cause of meningitis and sepsis in the newborn infant, and the large majority of isolates from these infections produce a polysialic acid (PSA) capsular polysaccharide, the K1 antigen, that protects the bacterial cell from immune attack. We determined whether a capsule-depolymerizing enzyme, by removing this protective barrier, could alter the outcome of systemic infection in an animal model. Bacteriophage-derived endosialidase E (endoE) selectively degrades the PSA capsule on the surface of E. coli K1 strains. Intraperitoneal administration of small quantities of recombinant endoE (20 micro g) to 3-day-old rats, colonized with a virulent strain of K1, prevented bacteremia and death from systemic infection. The enzyme had no effect on the viability of E. coli strains but sensitized strains expressing PSA to killing by the complement system. This study demonstrates the potential therapeutic efficacy of agents that cure infections by modification of the bacterial phenotype rather than by killing or inhibition of growth of the pathogen.

  4. [Biological properties of bacteriophages, active to Yersinia enterocolitica].

    PubMed

    Darsavelidze, M A; Kapanadze, Zh S; Chanishvili, T G

    2004-01-01

    The biological properties of 16 clones of Y. enterolitica bacteriophages were tested to select the most active for subsequent use. For the first time Y. enterocolitica virulent phages belonging to the family of Podoviridae were described and 7 serological groups of phages with no cross reactions were registered. The technology for the production of new therapeutic and prophylactic Y. enterocolitica polyvalent bacteriophage under laboratory conditions was developed. The effective multiplicity of contamination ensuring the maximum release of phages from bacterial cells, the optimum incubation temperature and the time of exposure were established. The experimental batches of therapeutic and prophylactic Y. enterocolitica polyvalent bacteriophage thus obtained met the requirements for antibacterial preparations.

  5. Solubility of uranium oxide in molten salt electrolysis bath of LiF-BaF2 with LaF3 additive

    NASA Astrophysics Data System (ADS)

    Alangi, Nagaraj; Mukherjee, Jaya; Gantayet, L. M.

    2016-03-01

    The solubility of UO2 in the molten mixtures of equimolar LiF-BaF2(1:1) with LaF3 as additive was studied in the range of 1423 K-1523 K. The molten fluoride salt mixture LiF-BaF2 LaF3 was equilibrated with a sintered uranium oxide pellet at 1423 K, 1473 K, 1523 K and the salt samples were collected after equilibration. Studies were conducted in the range of 10%-50% by weight additions of LaF3 in the equimolar LiF-BaF2(1:1) base fluoride salt bath. Solubility of UO2 increased with rise in LaF3 concentration in the molten fluoride in the temperature range of 1423 K-1523 K. At a given concentration of LaF3, the UO2 solubility increased monotonously with temperature. With mixed solvent, when UF4 was added as a replacement of part of LaF3 in LiF-BaF2(1:1)-10 wt% LaF3 and LiF-BaF2(1:1)-30 wt% LaF3, there was an enhancement of solubility of UO2.

  6. Crystallization and initial X-ray diffraction studies of scaffolding protein (gp7) of bacteriophage ϕ29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badasso, Mohammed O., E-mail: badas001@umn.edu; Anderson, Dwight L.; Department of Oral Science, University of Minnesota, Minneapolis, MN 55455

    2005-04-01

    ϕ29 bacteriophage scaffolding protein (gp7) has been overproduced in E. coli, purified, crystallized and characterized by X-ray diffraction. Two distinct crystal forms were obtained and a diffraction data set was collected to 1.8 Å resolution. The Bacillus subtilis bacteriophage ϕ29 scaffolding protein (gp7) has been crystallized by the hanging-drop vapour-diffusion method at 293 K. Two new distinct crystal forms that both differed from a previously crystallized and solved scaffolding protein were grown under the same conditions. Form I belongs to the primitive tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 77.13, c = 37.12 Å.more » Form II crystals exhibit an orthorhombic crystal form, with space group C222 and unit-cell parameters a = 107.50, b = 107. 80, c = 37.34 Å. Complete data sets have been collected to 1.78 and 1.80 Å for forms I and II, respectively, at 100 K using Cu Kα X-rays from a rotating-anode generator. Calculation of a V{sub M} value of 2.46 Å{sup 3} Da{sup −1} for form I suggests the presence of one molecule in the asymmetric unit, corresponding to a solvent content of 50.90%, whereas form II has a V{sub M} of 4.80 Å{sup 3} Da{sup −1} with a solvent content of 48.76% and two molecules in the asymmetric unit. The structures of both crystal forms are being determined by the molecular-replacement method using the coordinates of the published crystal structure of gp7.« less

  7. Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages

    PubMed Central

    Esplin, Ian N. D.; Berg, Jordan A.; Sharma, Ruchira; Allen, Robert C.; Arens, Daniel K.; Ashcroft, Cody R.; Bairett, Shannon R.; Beatty, Nolan J.; Bickmore, Madeline; Bloomfield, Travis J.; Brady, T. Scott; Bybee, Rachel N.; Carter, John L.; Choi, Minsey C.; Duncan, Steven; Fajardo, Christopher P.; Foy, Brayden B.; Fuhriman, David A.; Gibby, Paul D.; Grossarth, Savannah E.; Harbaugh, Kala; Harris, Natalie; Hilton, Jared A.; Hurst, Emily; Hyde, Jonathan R.; Ingersoll, Kayleigh; Jacobson, Caitlin M.; James, Brady D.; Jarvis, Todd M.; Jaen-Anieves, Daniella; Jensen, Garrett L.; Knabe, Bradley K.; Kruger, Jared L.; Merrill, Bryan D.; Pape, Jenny A.; Payne Anderson, Ashley M.; Payne, David E.; Peck, Malia D.; Pollock, Samuel V.; Putnam, Micah J.; Ransom, Ethan K.; Ririe, Devin B.; Robinson, David M.; Rogers, Spencer L.; Russell, Kerri A.; Schoenhals, Jonathan E.; Shurtleff, Christopher A.; Simister, Austin R.; Smith, Hunter G.; Stephenson, Michael B.; Staley, Lyndsay A.; Stettler, Jason M.; Stratton, Mallorie L.; Tateoka, Olivia B.; Tatlow, P. J.; Taylor, Alexander S.; Thompson, Suzanne E.; Townsend, Michelle H.; Thurgood, Trever L.; Usher, Brittian K.; Whitley, Kiara V.; Ward, Andrew T.; Ward, Megan E. H.; Webb, Charles J.; Wienclaw, Trevor M.; Williamson, Taryn L.; Wells, Michael J.; Wright, Cole K.; Breakwell, Donald P.; Hope, Sandra

    2017-01-01

    ABSTRACT Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages. PMID:29146842

  8. Seven Bacteriophages Isolated from the Female Urinary Microbiota

    PubMed Central

    Malki, Kema; Sible, Emily; Cooper, Alexandria; Garretto, Andrea; Bruder, Katherine; Watkins, Siobhan C.

    2016-01-01

    Recent research has debunked the myth that urine is sterile, having uncovered bacteria within the bladders of healthy individuals. However, the identity, diversity, and putative roles of bacteriophages in the bladder are unknown. We report the draft genome sequences of seven bacteriophages isolated from microbial communities from adult female bladders. PMID:27881533

  9. Methods of expanding bacteriophage host-range and bacteriophage produced by the methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crown, Kevin K.; Santarpia, Joshua

    A method of producing novel bacteriophages with expanded host-range and bacteriophages with expanded host ranges are disclosed. The method produces mutant phage strains which are infectious to a second host and can be more infectious to their natural host than in their natural state. The method includes repeatedly passaging a selected phage strain into bacterial cultures that contain varied ratios of its natural host bacterial strain with a bacterial strain that the phage of interest is unable to infect; the target-host. After each passage the resulting phage are purified and screened for activity against the target-host via double-overlay assays. Whenmore » mutant phages that are shown to infect the target-host are discovered, they are further propagated in culture that contains only the target-host to produce a stock of the resulting mutant phage.« less

  10. Isolation of Bacteriophages of the Marine Bacterium Beneckea natriegens from Coastal Salt Marshes1

    PubMed Central

    Zachary, Arthur

    1974-01-01

    Bacteriophages of the marine bacterium Beneckea natriegens were isolated from coastal marshes where they were limited to brackish and marine waters. The phages were widely distributed and morphologically diverse in the marshes. Images PMID:4133830

  11. STUDIES ON THE BACTERIOPHAGE OF D'HÉRELLE

    PubMed Central

    Hetler, D. M.; Bronfenbrenner, J.

    1928-01-01

    1. During the process of lysis by bacteriophage, there is an appreciable increase in the amount of free amino acid present in the culture. 2. The increase of free amino acid is due to hydrolysis of bacterial protein. PMID:19869482

  12. Potential of a lytic bacteriophage to disrupt Acinetobacter baumannii biofilms in vitro.

    PubMed

    Liu, Yannan; Mi, Zhiqiang; Niu, Wenkai; An, Xiaoping; Yuan, Xin; Liu, Huiying; Wang, Yong; Feng, Yuzhong; Huang, Yong; Zhang, Xianglilan; Zhang, Zhiyi; Fan, Hang; Peng, Fan; Li, Puyuan; Tong, Yigang; Bai, Changqing

    2016-10-01

    The ability of Acinetobacter baumannii to form biofilms and develop antibiotic resistance makes it difficult to control infections caused by this bacterium. In this study, we explored the potential of a lytic bacteriophage to disrupt A. baumannii biofilms. The potential of the lytic bacteriophage to disrupt A. baumannii biofilms was assessed by performing electron microscopy, live/dead bacterial staining, crystal violet staining and by determining adenosine triphosphate release. The bacteriophage inhibited the formation of and disrupted preformed A. baumannii biofilms. Results of disinfection assay showed that the lytic bacteriophage lysed A. baumannii cells suspended in blood or grown on metal surfaces. These results suggest the potential of the lytic bacteriophage to disrupt A. baumannii biofilms.

  13. Characterization of Bacillus phage-K2 isolated from chungkookjang, a fermented soybean foodstuff.

    PubMed

    Kim, Eun Ju; Hong, Jeong Won; Yun, Na-Rae; Lee, Young Nam

    2011-01-01

    An investigation of a virulent Bacillus phage-K2 (named Bp-K2) isolated from chungkookjang (a fermented soybean foodstuff) was made. Bp-K2 differed in infectivity against a number of Bacillus subtilis strains including starter strains of chungkookjang and natto, being more infectious to Bacillus strains isolated from the chungkookjang, but much less active against a natto strain. Bp-K2 is a small DNA phage whose genome size is about 21 kb. Bp-K2 is a tailed bacteriophage with an isometric icosahedral head (50 nm long on the lateral side, 80 nm wide), a long contractile sheath (85-90 nm × 28 nm), a thin tail fiber (80-85 nm long, 10 nm wide), and a basal plate (29 nm long, 47 nm wide) with a number of spikes, but no collar. The details of the structures of Bp-K2 differ from natto phage ϕBN100 as well as other known Bacillus phages such as SPO1-like or ϕ 29-like viruses. These data suggest that Bp-K2 would be a new member of the Myoviridae family of Bacillus bacteriophages.

  14. Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex.

    PubMed

    Fagerlund, Robert D; Wilkinson, Max E; Klykov, Oleg; Barendregt, Arjan; Pearce, F Grant; Kieper, Sebastian N; Maxwell, Howard W R; Capolupo, Angela; Heck, Albert J R; Krause, Kurt L; Bostina, Mihnea; Scheltema, Richard A; Staals, Raymond H J; Fineran, Peter C

    2017-06-27

    CRISPR-Cas adaptive immune systems capture DNA fragments from invading bacteriophages and plasmids and integrate them as spacers into bacterial CRISPR arrays. In type I-E and II-A CRISPR-Cas systems, this adaptation process is driven by Cas1-Cas2 complexes. Type I-F systems, however, contain a unique fusion of Cas2, with the type I effector helicase and nuclease for invader destruction, Cas3. By using biochemical, structural, and biophysical methods, we present a structural model of the 400-kDa Cas1 4 -Cas2-3 2 complex from Pectobacterium atrosepticum with bound protospacer substrate DNA. Two Cas1 dimers assemble on a Cas2 domain dimeric core, which is flanked by two Cas3 domains forming a groove where the protospacer binds to Cas1-Cas2. We developed a sensitive in vitro assay and demonstrated that Cas1-Cas2-3 catalyzed spacer integration into CRISPR arrays. The integrase domain of Cas1 was necessary, whereas integration was independent of the helicase or nuclease activities of Cas3. Integration required at least partially duplex protospacers with free 3'-OH groups, and leader-proximal integration was stimulated by integration host factor. In a coupled capture and integration assay, Cas1-Cas2-3 processed and integrated protospacers independent of Cas3 activity. These results provide insight into the structure of protospacer-bound type I Cas1-Cas2-3 adaptation complexes and their integration mechanism.

  15. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice.

    PubMed

    Maura, Damien; Morello, Eric; du Merle, Laurence; Bomme, Perrine; Le Bouguénec, Chantal; Debarbieux, Laurent

    2012-08-01

    Bacteriophages have been known to be present in the gut for many years, but studies of relationships between these viruses and their hosts in the intestine are still in their infancy. We isolated three bacteriophages specific for an enteroaggregative O104:H4 Escherichia coli (EAEC) strain responsible for diarrhoeal diseases in humans. We studied the replication of these bacteriophages in vitro and in vivo in a mouse model of gut colonization. Each bacteriophage was able to replicate in vitro in both aerobic and anaerobic conditions. Each bacteriophage individually reduced biofilms formed on plastic pegs and a cocktail of the three bacteriophages was found to be more efficient. The cocktail was also able to infect bacterial aggregates formed on the surface of epithelial cells. In the mouse intestine, bacteriophages replicated for at least 3 weeks, provided the host was present, with no change in host levels in the faeces. This model of stable and continuous viral replication provides opportunities for studying the long-term coevolution of virulent bacteriophages with their hosts within a mammalian polymicrobial ecosystem. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Nephelauxetic effect and 〈r(k)〉₄f radial integrals of Tm³⁺ in crystals.

    PubMed

    Petrov, Dimitar

    2015-12-05

    Bonding and covalency parameters have been evaluated from the nephelauxetic ratios βk=Fk (crystal)/Fk (free ion), with k=2, 4, 6, for 24 halide and chalcogenide crystals containing Tm(3+) ions. The radial expectation values for 4f electrons 〈r(k)〉4f of Tm(3+) ion in certain complex oxides, fluorides, and a sulfide have been determined by means of experimental Slater parameter shifts ΔFk relative to the Fk values for the free ion Tm IV. The 〈r(k)〉1f values derived in the dielectric screening model have been compared with those computed by different types of 4f wave functions as well as with other estimates. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Comparative persistence of human sewage-specific enterococcal bacteriophages in freshwater and seawater.

    PubMed

    Booncharoen, Namfon; Mongkolsuk, Skorn; Sirikanchana, Kwanrawee

    2018-07-01

    Enterococcus faecalis bacteria have been recently reported for their ability to host bacteriophages that are specifically from human sewage, suggesting their application to track human fecal contamination in water resources. However, little is known about the survivability of sewage-specific enterococcal bacteriophages in various water matrices under ambient and storage conditions. In this study, bacteriophages that were derived from the Thailand-isolated E. faecalis strains AIM06 and SR14 exhibited morphologies consistent with the Siphoviridae, Podoviridae, and Myoviridae families. Four representative bacteriophages were separately spiked into environmental water samples (n = 7) comprising freshwater and seawater with low- and high-pollution (LF, HF, LS, and HS, respectively) levels, defined according to Thailand Water Quality Standards. All bacteriophages decayed fastest in HS or HF samples at 30 °C, reaching a 5-log 10 reduction in 2.2 to 9.8 days, and slowest in LS samples, requiring 8.8 to 23.5 days. The decay rates were 5 to 53 times lower at a storage temperature of 5 °C. HF samples could be stored for as little as 2.5 days to prevent the decay of 50% of the phages. Myoviridae phages decayed faster than Siphoviridae phages and Podoviridae phages in most water matrices at 30 °C. Moreover, the decay rates were 1.8 to 92 times slower in filtered samples, emphasizing a strong role for water constituents, i.e., suspended solids and natural microorganisms, in phage persistence. This study emphasized that differential enterococcal bacteriophage persistence should be considered when planning the monitoring and interpreting of fecal sources by microbial source tracking.

  18. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  19. Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages.

    PubMed

    Esplin, Ian N D; Berg, Jordan A; Sharma, Ruchira; Allen, Robert C; Arens, Daniel K; Ashcroft, Cody R; Bairett, Shannon R; Beatty, Nolan J; Bickmore, Madeline; Bloomfield, Travis J; Brady, T Scott; Bybee, Rachel N; Carter, John L; Choi, Minsey C; Duncan, Steven; Fajardo, Christopher P; Foy, Brayden B; Fuhriman, David A; Gibby, Paul D; Grossarth, Savannah E; Harbaugh, Kala; Harris, Natalie; Hilton, Jared A; Hurst, Emily; Hyde, Jonathan R; Ingersoll, Kayleigh; Jacobson, Caitlin M; James, Brady D; Jarvis, Todd M; Jaen-Anieves, Daniella; Jensen, Garrett L; Knabe, Bradley K; Kruger, Jared L; Merrill, Bryan D; Pape, Jenny A; Payne Anderson, Ashley M; Payne, David E; Peck, Malia D; Pollock, Samuel V; Putnam, Micah J; Ransom, Ethan K; Ririe, Devin B; Robinson, David M; Rogers, Spencer L; Russell, Kerri A; Schoenhals, Jonathan E; Shurtleff, Christopher A; Simister, Austin R; Smith, Hunter G; Stephenson, Michael B; Staley, Lyndsay A; Stettler, Jason M; Stratton, Mallorie L; Tateoka, Olivia B; Tatlow, P J; Taylor, Alexander S; Thompson, Suzanne E; Townsend, Michelle H; Thurgood, Trever L; Usher, Brittian K; Whitley, Kiara V; Ward, Andrew T; Ward, Megan E H; Webb, Charles J; Wienclaw, Trevor M; Williamson, Taryn L; Wells, Michael J; Wright, Cole K; Breakwell, Donald P; Hope, Sandra; Grose, Julianne H

    2017-11-16

    Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages. Copyright © 2017 Esplin et al.

  20. 76 FR 35934 - In the Matter of: SHC Corp. (f/k/a Victormaxx Technologies, Inc.), Shells Seafood Restaurants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] In the Matter of: SHC Corp. (f/k/a Victormaxx Technologies, Inc.), Shells Seafood Restaurants, Inc., SI Restructuring, Inc. (f/k/a Schlotzsky's, Inc.), SLS... a lack of current and accurate information concerning the securities of Shells Seafood Restaurants...

  1. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni

    PubMed Central

    Siringan, Patcharin; Connerton, Phillippa L.; Cummings, Nicola J.; Connerton, Ian F.

    2014-01-01

    Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage. PMID:24671947

  2. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni.

    PubMed

    Siringan, Patcharin; Connerton, Phillippa L; Cummings, Nicola J; Connerton, Ian F

    2014-03-26

    Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage.

  3. Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment.

    PubMed

    Brovko, Lubov Y; Anany, Hany; Griffiths, Mansel W

    2012-01-01

    This chapter presents recent advances in bacteriophage research and their application in the area of food safety. Section 1 describes general facts on phage biology that are relevant to their application for control and detection of bacterial pathogens in food and environmental samples. Section 2 summarizes the recently acquired data on application of bacteriophages to control growth of bacterial pathogens and spoilage organisms in food and food-processing environment. Section 3 deals with application of bacteriophages for detection and identification of bacterial pathogens. Advantages of bacteriophage-based methods are presented and their shortcomings are discussed. The chapter is intended for food scientist and food product developers, and people in food inspection and health agencies with the ultimate goal to attract their attention to the new developing technology that has a tremendous potential in providing means for producing wholesome and safe food. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Evaluation of the factors controlling the time-dependent inactivation rate coefficients of bacteriophage MS2 and PRD1

    USGS Publications Warehouse

    Anders, R.; Chrysikopoulos, C.V.

    2006-01-01

    Static and dynamic batch experiments were conducted to study the effects of temperature and the presence of sand on the inactivation of bacteriophage MS2 and PRD1. The experimental data suggested that the inactivation process can be satisfactorily represented by a pseudo-first-order expression with time-dependent rate coefficients. The time-dependent rate coefficients were used to determine pertinent thermodynamic properties required for the analysis of the molecular processes involved in the inactivation of each bacteriophage. A combination of high temperature and the presence of sand appears to produce the greatest disruption to the surrounding protein coat of MS2. However, the lower activation energies for PRD1 indicate a weaker dependence of the inactivation rate on temperature. Instead, the presence of air-liquid and air-solid interfaces appears to produce the greatest damage to specific viral components that are related to infection. These results indicate the importance of using thermodynamic parameters based on the time-dependent inactivation model to better predict the inactivation of viruses in groundwater. ?? 2006 American Chemical Society.

  5. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F. William; Rosenberg, Alan H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.

  6. Arthrobacter globiformis and its bacteriophage in soil

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.; Liu, K.-C.

    1974-01-01

    An attempt was made to correlate bacteriophages for Arthrobacter globiformis with soils containing that bacterium. The phages were not detected unless the soil was nutritionally amended (with glucose or sucrose) and incubated for several days. Phage was continuously produced after amendment without the addition of host Arthrobacter. These results indicate that the bacteriophage is present in a masked state and that the bacteria are present in an insensitive form which becomes sensitive after addition of nutrient.

  7. Use of bacteriophage to prevent Pseudomonas aeruginosa contamination and fouling in Jet A aviation fuel.

    PubMed

    Bojanowski, Caitlin L; Crookes-Goodson, Wendy J; Robinson, Jayne B

    2016-11-01

    In the present study, the use of bacteriophages to prevent growth and/or biofouling by Pseudomonas aeruginosa PAO1 was investigated in microcosms containing Jet A aviation fuel as the carbon source. Bacteriophages were found to be effective at preventing biofilm formation but did not always prevent planktonic growth in the microcosms. This result was at odds with experiments conducted in nutrient-rich medium, demonstrating the necessity to test antimicrobial and antifouling strategies under conditions as near as possible to the 'real world'. The success of the bacteriophages at preventing biofilm formation makes them potential candidates as antifouling agents for fuel systems.

  8. Activation of the 2-5OAS/RNase L pathway in CVB1 or HAV/18f infected FRhK-4 cells does not require induction of OAS1 or OAS2 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulka, Michael, E-mail: michael.kulka@fda.hhs.go; Calvo, Mona S., E-mail: mona.calvo@fda.hhs.go; Ngo, Diana T., E-mail: diana.ngo@fda.hhs.go

    2009-05-25

    The latent, constitutively expressed protein RNase L is activated in coxsackievirus and HAV strain 18f infected FRhK-4 cells. Endogenous oligoadenylate synthetase (OAS) from uninfected and virus infected cell extracts synthesizes active forms of the triphosphorylated 2-5A oligomer (the only known activator of RNase L) in vitro and endogenous 2-5A is detected in infected cell extracts. However, only the largest OAS isoform, OAS3, is readily detected throughout the time course of infection. While IFNbeta treatment results in an increase in the level of all three OAS isoforms in FRhK-4 cells, IFNbeta pretreatment does not affect the temporal onset or enhancement ofmore » RNase L activity nor inhibit virus replication. Our results indicate that CVB1 and HAV/18f activate the 2-5OAS/RNase L pathway in FRhK-4 cells during permissive infection through endogenous levels of OAS, but contrary to that reported for some picornaviruses, CVB1 and HAV/18f replication is insensitive to this activated antiviral pathway.« less

  9. Aligning the unalignable: bacteriophage whole genome alignments.

    PubMed

    Bérard, Sèverine; Chateau, Annie; Pompidor, Nicolas; Guertin, Paul; Bergeron, Anne; Swenson, Krister M

    2016-01-13

    In recent years, many studies focused on the description and comparison of large sets of related bacteriophage genomes. Due to the peculiar mosaic structure of these genomes, few informative approaches for comparing whole genomes exist: dot plots diagrams give a mostly qualitative assessment of the similarity/dissimilarity between two or more genomes, and clustering techniques are used to classify genomes. Multiple alignments are conspicuously absent from this scene. Indeed, whole genome aligners interpret lack of similarity between sequences as an indication of rearrangements, insertions, or losses. This behavior makes them ill-prepared to align bacteriophage genomes, where even closely related strains can accomplish the same biological function with highly dissimilar sequences. In this paper, we propose a multiple alignment strategy that exploits functional collinearity shared by related strains of bacteriophages, and uses partial orders to capture mosaicism of sets of genomes. As classical alignments do, the computed alignments can be used to predict that genes have the same biological function, even in the absence of detectable similarity. The Alpha aligner implements these ideas in visual interactive displays, and is used to compute several examples of alignments of Staphylococcus aureus and Mycobacterium bacteriophages, involving up to 29 genomes. Using these datasets, we prove that Alpha alignments are at least as good as those computed by standard aligners. Comparison with the progressive Mauve aligner - which implements a partial order strategy, but whose alignments are linearized - shows a greatly improved interactive graphic display, while avoiding misalignments. Multiple alignments of whole bacteriophage genomes work, and will become an important conceptual and visual tool in comparative genomics of sets of related strains. A python implementation of Alpha, along with installation instructions for Ubuntu and OSX, is available on bitbucket (https://bitbucket.org/thekswenson/alpha).

  10. Bacteriophage as models for virus removal from Pacific oysters (Crassostrea gigas) during re-laying.

    PubMed Central

    Humphrey, T. J.; Martin, K.

    1993-01-01

    A study was undertaken to examine the feasibility of using naturally-occurring bacteriophages to assess the impact of re-laying on levels of viral contamination in Crassostrea gigas, the Pacific oyster. Two phages were chosen. One, male-specific (F+), was enumerated using Salmonella typhimurium. The other, a somatic phage, was detected using an, as yet, uncharacterized Escherichia coli. Investigations, using a variety of re-laying sites, demonstrated that numbers of F+ phage in oyster tissue declined more rapidly than those of somatic phage. For example, in oysters placed in commercially-used sea water ponds, F+ phage reached undetectable levels within 2-3 weeks, whereas somatic phage could still be detected 5 weeks after re-laying. The studies suggest that F+ phage may not be a suitable indicator for virus removal and that somatic phage may be better suited to this role. PMID:8405159

  11. Preparation and Storage of High-Titer Lactic Streptococcus Bacteriophages1

    PubMed Central

    Nyiendo, J.; Seidler, Ramon J.; Sandine, W. E.; Elliker, P. R.

    1974-01-01

    Various techniques were employed for preparation of high-titer bacteriophage lysates of Streptococcus lactis, S. cremoris, and S. diacetilactis strains. Infection of a 4-h host culture in litmus milk at 30 C yielded the highest titers (2 × 109 to 4 × 1011 plaque-forming units/ml) for most phages. Host infection in lactose-containing broth produced similar virus numbers only when 0.1 M tris(hydroxymethyl)aminomethane buffer stabilized the pH. The pH at the time of infection as well as the inoculum phage titer were critical in obtaining high titers. Optimum conditions for infection in broth were coupled with a polyethylene glycol concentration procedure to routinely produce milligram quantities of phage from 1 liter of lysate. Neutralization of whey lysates, as a means of storage, offered no survival advantage over unneutralized samples. Storage of phage lysates in a 15% glycerol whey solution at -22 C yielded a high rate of survival in most cases, even with repeated freezing and thawing, over a period of 24 months. PMID:16349981

  12. Evaluation of consumers’ perception and willingness to pay for bacteriophage treated fresh produce

    PubMed Central

    Naanwaab, Cephas; Yeboah, Osei-Agyeman; Ofori Kyei, Foster; Sulakvelidze, Alexander; Goktepe, Ipek

    2014-01-01

    Food-borne illnesses caused by bacteria such as enterohemorrhagic E. coli and Salmonella spp. take a significant toll on American consumers’ health; they also cost the United States an estimated $77.7 billion annually in health care and other losses.1 One novel modality for improving the safety of foods is application of lytic bacteriophages directly onto foods, in order to reduce or eliminate their contamination with specific foodborne bacterial pathogens. The main objective of this study was to assess consumers’ perception about foods treated with bacteriophages and examine their willingness to pay (WTP) an additional amount (10–30 cents/lb) for bacteriophage-treated fresh produce. The study utilized a survey questionnaire administered by telephone to consumers in 4 different states: Alabama, Georgia, North Carolina, and South Carolina. The results show that consumers are in general willing to pay extra for bacteriophage-treated fresh produce if it improves their food safety. However, income, race, and the state where a consumer lives are significant determinants in their WTP. PMID:26713224

  13. Bacteriophages reduce Yersinia enterocolitica contamination of food and kitchenware.

    PubMed

    Jun, Jin Woo; Park, Se Chang; Wicklund, Anu; Skurnik, Mikael

    2018-04-20

    Yersinia enterocolitica, the primary cause of yersiniosis, is one of the most important foodborne pathogens globally and is associated with the consumption of raw contaminated pork. In the current study, four virulent bacteriophages (phages), one of Podoviridae (fHe-Yen3-01) and three of Myoviridae (fHe-Yen9-01, fHe-Yen9-02, and fHe-Yen9-03), capable of infecting Y. enterocolitica were isolated and characterized. fHe-Yen9-01 had the broadest host range (61.3% of strains, 65/106). It demonstrated a latent period of 35 min and a burst size of 33 plaque-forming units/cell, and was found to have a genome of 167,773 bp with 34.79% GC content. To evaluate the effectiveness of phage fHe-Yen9-01 against Y. enterocolitica O:9 strain Ruokola/71, we designed an experimental model of the food market environment. Phage treatment after bacterial inoculation of food samples, including raw pork (4 °C, 72 h), ready-to-eat pork (26 °C, 12 h), and milk (4 °C, 72 h), prevented bacterial growth throughout the experiments, with counts decreasing by 1-3 logs from the original levels of 2-4 × 10 3  CFU/g or ml. Similarly, when artificially contaminated kitchen utensils, such as wooden and plastic cutting boards and knives, and artificial hands, were treated with phages for 2 h, bacterial growth was effectively inhibited, with counts decreasing by 1-2 logs from the original levels of ca 10 4  CFU/cm 2 or ml. To the best of our knowledge, this is the first report of the successful application of phages for the control of Y. enterocolitica growth in food and on kitchen utensils. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The role of bacteriophages in periodontal health and disease.

    PubMed

    Pinto, Graça; Silva, Maria Daniela; Peddey, Mark; Sillankorva, Sanna; Azeredo, Joana

    2016-10-01

    The human periodontium health is commonly compromised by chronic inflammatory conditions and has become a major public health concern. Dental plaque, the precursor of periodontal disease, is a complex biofilm consisting mainly of bacteria, but also archaea, protozoa, fungi and viruses. Viruses that specifically infect bacteria - bacteriophages - are most common in the oral cavity. Despite this, their role in the progression of periodontal disease remains poorly explored. This review aims to summarize how bacteriophages interact with the oral microbiota, their ability to increase bacterial virulence and mediate the transfer of resistance genes and suggests how bacteriophages can be used as an alternative to the current periodontal disease therapies.

  15. Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part II: In vitro antimicrobial activity evaluation of a bacteriophage cocktail and several antibiotics.

    PubMed

    Santos, T M A; Gilbert, R O; Caixeta, L S; Machado, V S; Teixeira, L M; Bicalho, R C

    2010-01-01

    The use of pathogenic-specific antimicrobials, as proposed by bacteriophage therapy, is expected to reduce the incidence of resistance development. Eighty Escherichia coli isolated from uteri of Holstein dairy cows were phenotypically characterized for antimicrobial resistance to ampicillin, ceftiofur, chloramphenicol, florfenicol, spectinomycin, streptomycin, and tetracycline by broth microdilution method. The lytic activity of a bacteriophage cocktail against all isolates was performed by a similar method. Additionally, the effect of different concentrations of antimicrobials and multiplicities of infections (MOI) of the bacteriophage cocktail on E. coli growth curve was measured. Isolates exhibited resistance to ampicillin (33.7%), ceftiofur (1.2%), chloramphenicol (100%), and florfenicol (100%). All strains were resistant to at least 2 of the antimicrobial agents tested; multidrug resistance (>or=3 of 7 antimicrobials tested) was observed in 35% of E. coli isolates. The major multidrug resistance profile was found for ampicillin-chloramphenicol-florfenicol, which was observed in more than 96.4% of the multidrug-resistant isolates. The bacteriophage cocktail preparation showed strong antimicrobial activity against multidrug-resistant E. coli. Multiplicity of infection as low as 10(-4) affected the growth of the E. coli isolates. The ratio of 10 bacteriophage particles per bacterial cell (MOI=10(1)) was efficient in inhibiting at least 50% of all isolates. Higher MOI should be tested in future in vitro studies to establish ratios that completely inhibit bacterial growth during longer periods. All isolates resistant to florfenicol were resistant to chloramphenicol and, because florfenicol was recently introduced into veterinary clinics, this finding suggests that the selection pressure of chloramphenicol, as well as other antimicrobials, may still play a relevant role in the emergence and dissemination of florfenicol resistance in E. coli. The bacteriophage

  16. CDH1 regulates E2F1 degradation in response to differentiation signals in keratinocytes

    PubMed Central

    Singh, Randeep K.; Dagnino, Lina

    2017-01-01

    The E2F1 transcription factor plays key roles in skin homeostasis. In the epidermis, E2F1 expression is essential for normal proliferation of undifferentiated keratinocytes, regeneration after injury and DNA repair following UV radiation-induced photodamage. Abnormal E2F1 expression promotes nonmelanoma skin carcinoma. In addition, E2F1 must be downregulated for proper keratinocyte differentiation, but the relevant mechanisms involved remain poorly understood. We show that differentiation signals induce a series of post-translational modifications in E2F1 that are jointly required for its downregulation. Analysis of the structural determinants that govern these processes revealed a central role for S403 and T433. In particular, substitution of these two amino acid residues with non-phosphorylatable alanine (E2F1 ST/A) interferes with E2F1 nuclear export, K11- and K48-linked polyubiquitylation and degradation in differentiated keratinocytes. In contrast, replacement of S403 and T433 with phosphomimetic aspartic acid to generate a pseudophosphorylated E2F1 mutant protein (E2F1 ST/D) generates a protein that is regulated in a manner indistinguishable from that of wild type E2F1. Cdh1 is an activating cofactor that interacts with the anaphase-promoting complex/cyclosome (APC/C) ubiquitin E3 ligase, promoting proteasomal degradation of various substrates. We found that Cdh1 associates with E2F1 in keratinocytes. Inhibition or RNAi-mediated silencing of Cdh1 prevents E2F1 degradation in response to differentiation signals. Our results reveal novel regulatory mechanisms that jointly modulate post-translational modifications and downregulation of E2F1, which are necessary for proper epidermal keratinocyte differentiation. PMID:27903963

  17. CDH1 regulates E2F1 degradation in response to differentiation signals in keratinocytes.

    PubMed

    Singh, Randeep K; Dagnino, Lina

    2017-01-17

    The E2F1 transcription factor plays key roles in skin homeostasis. In the epidermis, E2F1 expression is essential for normal proliferation of undifferentiated keratinocytes, regeneration after injury and DNA repair following UV radiation-induced photodamage. Abnormal E2F1 expression promotes nonmelanoma skin carcinoma. In addition, E2F1 must be downregulated for proper keratinocyte differentiation, but the relevant mechanisms involved remain poorly understood. We show that differentiation signals induce a series of post-translational modifications in E2F1 that are jointly required for its downregulation. Analysis of the structural determinants that govern these processes revealed a central role for S403 and T433. In particular, substitution of these two amino acid residues with non-phosphorylatable alanine (E2F1 ST/A) interferes with E2F1 nuclear export, K11- and K48-linked polyubiquitylation and degradation in differentiated keratinocytes. In contrast, replacement of S403 and T433 with phosphomimetic aspartic acid to generate a pseudophosphorylated E2F1 mutant protein (E2F1 ST/D) generates a protein that is regulated in a manner indistinguishable from that of wild type E2F1. Cdh1 is an activating cofactor that interacts with the anaphase-promoting complex/cyclosome (APC/C) ubiquitin E3 ligase, promoting proteasomal degradation of various substrates. We found that Cdh1 associates with E2F1 in keratinocytes. Inhibition or RNAi-mediated silencing of Cdh1 prevents E2F1 degradation in response to differentiation signals. Our results reveal novel regulatory mechanisms that jointly modulate post-translational modifications and downregulation of E2F1, which are necessary for proper epidermal keratinocyte differentiation.

  18. Potential impact of environmental bacteriophages in spreading antibiotic resistance genes.

    PubMed

    Muniesa, Maite; Colomer-Lluch, Marta; Jofre, Juan

    2013-06-01

    The idea that bacteriophage transduction plays a role in the horizontal transfer of antibiotic resistance genes is gaining momentum. Such transduction might be vital in horizontal transfer from environmental to human body-associated biomes and here we review many lines of evidence supporting this notion. It is well accepted that bacteriophages are the most abundant entities in most environments, where they have been shown to be quite persistent. This fact, together with the ability of many phages to infect bacteria belonging to different taxa, makes them suitable vehicles for gene transfer. Metagenomic studies confirm that substantial percentages of the bacteriophage particles present in most environments contain bacterial genes, including mobile genetic elements and antibiotic resistance genes. When specific genes of resistance to antibiotics are detected by real-time PCR in the bacteriophage populations of different environments, only tenfold lower numbers of these genes are observed, compared with those found in the corresponding bacterial populations. In addition, the antibiotic resistance genes from these bacteriophages are functional and generate resistance to the bacteria when these genes are transfected. Finally, reports about the transduction of antibiotic resistance genes are on the increase.

  19. Bacteriophage-based Probiotic Preparation for Managing Shigella Infections

    DTIC Science & Technology

    2015-04-16

    for a probiotic preparation – based on naturally occurring bacteriophages – as a way to condition the GI tract’s microflora gently and favorably...10-Apr-2013 Approved for Public Release; Distribution Unlimited Final Report: Bacteriophage-based Probiotic Preparation for Managing Shigella...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Phage, Shigella, probiotics REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S

  20. F-Specific RNA Bacteriophages, Especially Members of Subgroup II, Should Be Reconsidered as Good Indicators of Viral Pollution of Oysters.

    PubMed

    Hartard, C; Leclerc, M; Rivet, R; Maul, A; Loutreul, J; Banas, S; Boudaud, N; Gantzer, C

    2018-01-01

    Norovirus (NoV) is the leading cause of gastroenteritis outbreaks linked to oyster consumption. In this study, we investigated the potential of F-specific RNA bacteriophages (FRNAPH) as indicators of viral contamination in oysters by focusing especially on FRNAPH subgroup II (FRNAPH-II). These viral indicators have been neglected because their behavior is sometimes different from that of NoV in shellfish, especially during the depuration processes usually performed before marketing. However, a significant bias needs to be taken into account. This bias is that, in the absence of routine culture methods, NoV is targeted by genome detection, while the presence of FRNAPH is usually investigated by isolation of infectious particles. In this study, by targeting both viruses using genome detection, a significant correlation between the presence of FRNAPH-II and that of NoV in shellfish collected from various European harvesting areas impacted by fecal pollution was observed. Moreover, during their depuration, while the long period of persistence of NoV was confirmed, a similar or even longer period of persistence of the FRNAPH-II genome, which was over 30 days, was observed. Such a striking genome persistence calls into question the relevance of molecular methods for assessing viral hazards. Targeting the same virus (i.e., FRNAPH-II) by culture and genome detection in specimens from harvesting areas as well as during depuration, we concluded that the presence of genomes in shellfish does not provide any information on the presence of the corresponding infectious particles. In view of these results, infectious FRNAPH detection should be reconsidered as a valuable indicator in oysters, and its potential for use in assessing viral hazard needs to be investigated. IMPORTANCE This work brings new data about the behavior of viruses in shellfish, as well as about the relevance of molecular methods for their detection and evaluation of the viral hazard. First, a strong

  1. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage of...

  2. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage of...

  3. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage of...

  4. Template reporter bacteriophage platform and multiple bacterial detection assays based thereon

    NASA Technical Reports Server (NTRS)

    Goodridge, Lawrence (Inventor)

    2007-01-01

    The invention is a method for the development of assays for the simultaneous detection of multiple bacteria. A bacteria of interest is selected. A host bacteria containing plasmid DNA from a T even bacteriophage that infects the bacteria of interest is infected with T4 reporter bacteriophage. After infection, the progeny bacteriophage are plating onto the bacteria of interest. The invention also includes single-tube, fast and sensitive assays which utilize the novel method.

  5. 76 FR 18587 - In the Matter of Corestream Energy, Inc. (f/k/a Zealous, Inc.); Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] In the Matter of Corestream Energy, Inc. (f/k... Corestream Energy, Inc. (``Corestream'') (f/k/a Zealous, Inc.) because it has failed to file certain periodic.... Therefore, it is ordered, pursuant to Section 12(k) of the Securities Exchange Act of 1934, that trading in...

  6. Direction of Translation and Size of Bacteriophage φX174 Cistrons

    PubMed Central

    Benbow, Robert M.; Mayol, Robert F.; Picchi, Joanna C.; Sinsheimer, Robert L.

    1972-01-01

    Translation of the bacteriophage φX174 genome follows cistron order D-E-F-G-H-A-B-C. To establish this, the position of a nonsense mutation on the genetic map was compared with the physical size (molecular weight) of the appropriate protein fragment generated in nonpermissive cells. Distances on the φX174 genetic map and distances on a physical map constructed from the molecular weights of φX174 proteins and protein fragments are proportional over most of the genome with the exception of the high recombination region within cistron A. Images PMID:16789133

  7. Low Level Exposure to Sulfur Mustard: Development of a SOP for Analysis of Albumin Adducts and of a System for Non-Invasive Diagnosis on Skin

    DTIC Science & Technology

    2004-12-01

    were primarily responsible for the organic chemistry and the analytical chemistry, and to Dr. F . Bikker, Mrs. Roos Mars and Mrs. Helma van Dijk for...study as hosts for bacteriophages: TG1 [K-12 A(lac-pro) supE thi hsdD5/ F ’ traD36proA+ B+ laclq lacZ AM 15] and HB2151 [K-12 ara A(lac-pro) thi/ F ’ proA+ B...TG1 [K-12 A(lac-pro) supE thi hsdD5/ F ’ traD36 proA+ B+ lacPq lacZ AM15] and HB2151 [K-12 ara A(lac-pro) thi/ F ’ proA+ B+ laclq Z AM15]. Both strains were

  8. Expression of a bioactive bacteriophage endolysin in Nicotiana benthamiana plants

    USDA-ARS?s Scientific Manuscript database

    The emergence and spread of antibiotic-resistant pathogens has led to an increased interest in alternative antimicrobial treatments, such as bacteriophage, bacteriophage-encoded peptidoglycan hydrolases (endolysins) and antimicrobial peptides. In our study, the antimicrobial activity of the CP933 en...

  9. Metavirome Sequencing of the Termite Gut Reveals the Presence of an Unexplored Bacteriophage Community

    PubMed Central

    Tikhe, Chinmay V.; Husseneder, Claudia

    2018-01-01

    The Formosan subterranean termite; Coptotermes formosanus is nutritionally dependent on the complex and diverse community of bacteria and protozoa in their gut. Although, there have been many studies to decipher the taxonomic and functional diversity of bacterial communities in the guts of termites, their bacteriophages remain unstudied. We sequenced the metavirome of the guts of Formosan subterranean termite workers to study the diversity of bacteriophages and other associated viruses. Results showed that the termites harbor a virome in their gut comprised of varied and previously unknown bacteriophages. Between 87–90% of the predicted dsDNA virus genes by Metavir showed similarity to the tailed bacteriophages (Caudovirales). Many predicted genes from the virome matched to bacterial prophage regions. These data are suggestive of a virome dominated by temperate bacteriophages. We predicted the genomes of seven novel Caudovirales bacteriophages from the termite gut. Three of these predicted bacteriophage genomes were found in high proportions in all the three termite colonies tested. Two bacteriophages are predicted to infect endosymbiotic bacteria of the gut protozoa. The presence of these putative bacteriophages infecting endosymbionts of the gut protozoa, suggests a quadripartite relationship between the termites their symbiotic protozoa, endosymbiotic bacteria of the protozoa and their bacteriophages. Other than Caudovirales, ss-DNA virus related genes were also present in the termite gut. We predicted the genomes of 12 novel Microviridae phages from the termite gut and seven of those possibly represent a new proposed subfamily. Circovirus like genomes were also assembled from the termite gut at lower relative abundance. We predicted 10 novel circovirus genomes in this study. Whether these circoviruses infect the termites remains elusive at the moment. The functional and taxonomical annotations suggest that the termites may harbor a core virome comprised of

  10. Isolation and characterisation of lytic bacteriophages of Klebsiella pneumoniae and Klebsiella oxytoca.

    PubMed

    Karumidze, Natia; Kusradze, Ia; Rigvava, Sophio; Goderdzishvili, Marine; Rajakumar, Kumar; Alavidze, Zemphira

    2013-03-01

    Klebsiella bacteria have emerged as an increasingly important cause of community-acquired nosocomial infections. Extensive use of broad-spectrum antibiotics in hospitalised patients has led to both increased carriage of Klebsiella and the development of multidrug-resistant strains that frequently produce extended-spectrum β-lactamases and/or other defences against antibiotics. Many of these strains are highly virulent and exhibit a strong propensity to spread. In this study, six lytic Klebsiella bacteriophages were isolated from sewage-contaminated river water in Georgia and characterised as phage therapy candidates. Two of the phages were investigated in greater detail. Biological properties, including phage morphology, nucleic acid composition, host range, growth phenotype, and thermal and pH stability were studied for all six phages. Limited sample sequencing was performed to define the phylogeny of the K. pneumoniae- and K. oxytoca-specific bacteriophages vB_Klp_5 and vB_Klox_2, respectively. Both of the latter phages had large burst sizes, efficient rates of adsorption and were stable under different adverse conditions. Phages reported in this study are double-stranded DNA bacterial viruses belonging to the families Podoviridae and Siphoviridae. One or more of the six phages was capable of efficiently lysing ~63 % of Klebsiella strains comprising a collection of 123 clinical isolates from Georgia and the United Kingdom. These phages exhibit a number of properties indicative of potential utility in phage therapy cocktails.

  11. The rational design of a 'type 88' genetically stable peptide display vector in the filamentous bacteriophage fd.

    PubMed

    Enshell-Seijffers, D; Smelyanski, L; Gershoni, J M

    2001-05-15

    Filamentous bacteriophages are particularly efficient for the expression and display of combinatorial random peptides. Two phage proteins are often employed for peptide display: the infectivity protein, PIII, and the major coat protein, PVIII. The use of PVIII typically requires the expression of two pVIII genes: the wild-type and the recombinant pVIII gene, to generate mosaic phages. 'Type 88' vectors contain two pVIII genes in one phage genome. In this study a novel 'type 88' expression vector has been rationally designed and constructed. Two factors were taken into account: the insertion site and the genetic stability of the second pVIII gene. It was found that selective deletion of recombinant genes was encountered when inserts were cloned into either of the two non-coding regions of the phage genome. The deletions were independent of recA yet required a functional F-episome. Transcription was also found to be a positive factor for deletion. Taking the above into account led to the generation of a novel vector, designated fth1, which can be used to express recombinant peptides as pVIII chimeric proteins in mosaic bacteriophages. The fth1 vector is not only genetically stable but also of high copy number and produces high titers of recombinant phages.

  12. The combinatorial PP1-binding consensus Motif (R/K)x( (0,1))V/IxFxx(R/K)x(R/K) is a new apoptotic signature.

    PubMed

    Godet, Angélique N; Guergnon, Julien; Maire, Virginie; Croset, Amélie; Garcia, Alphonse

    2010-04-01

    Previous studies established that PP1 is a target for Bcl-2 proteins and an important regulator of apoptosis. The two distinct functional PP1 consensus docking motifs, R/Kx((0,1))V/IxF and FxxR/KxR/K, involved in PP1 binding and cell death were previously characterized in the BH1 and BH3 domains of some Bcl-2 proteins. In this study, we demonstrate that DPT-AIF(1), a peptide containing the AIF(562-571) sequence located in a c-terminal domain of AIF, is a new PP1 interacting and cell penetrating molecule. We also showed that DPT-AIF(1) provoked apoptosis in several human cell lines. Furthermore, DPT-APAF(1) a bi-partite cell penetrating peptide containing APAF-1(122-131), a non penetrating sequence from APAF-1 protein, linked to our previously described DPT-sh1 peptide shuttle, is also a PP1-interacting death molecule. Both AIF(562-571) and APAF-1(122-131) sequences contain a common R/Kx((0,1))V/IxFxxR/KxR/K motif, shared by several proteins involved in control of cell survival pathways. This motif combines the two distinct PP1c consensus docking motifs initially identified in some Bcl-2 proteins. Interestingly DPT-AIF(2) and DPT-APAF(2) that carry a F to A mutation within this combinatorial motif, no longer exhibited any PP1c binding or apoptotic effects. Moreover the F to A mutation in DPT-AIF(2) also suppressed cell penetration. These results indicate that the combinatorial PP1c docking motif R/Kx((0,1))V/IxFxxR/KxR/K, deduced from AIF(562-571) and APAF-1(122-131) sequences, is a new PP1c-dependent Apoptotic Signature. This motif is also a new tool for drug design that could be used to characterize potential anti-tumour molecules.

  13. Mechanical relaxations and 1/f noise in Bi, Nb, and Fe films

    NASA Astrophysics Data System (ADS)

    Alers, G. B.; Weissman, M. B.

    1991-10-01

    Anelastic piezoresistance and 1/f noise were measured in the same samples to compare mechanical relaxations with 1/f noise. In bismuth below 200 K, both effects could be fitted to a model invoking one class of mobile defects. In niobium, both the anelastic piezoresistance and the noise scaled with the concentration of dissolved hydrogen. A well-defined peak in noise versus temperature was observed without any peak in the anelastic response. In iron, noise apparently from a carbon Snoek relaxation was observed at 220 K in a sample with high impurity concentration and at 300 K with low impurity concentration. No anelastic feature was found at 220 K in the high-impurity-concentration sample. The broad nature of 1/f noise appears to arise not from a fundamental source but from the generally poor quality of thin films.

  14. Epitaxial growth of lithium fluoride on the (1 1 1) surface of CaF 2

    NASA Astrophysics Data System (ADS)

    Klumpp, St; Dabringhaus, H.

    1999-08-01

    Growth of lithium fluoride by molecular beam epitaxy on the (1 1 1) surface of calcium fluoride crystals was studied by TEM and LEED for crystal temperatures from 400 to 773 K and impinging lithium fluoride fluxes from 3×10 11 to 3×10 14 cm -2 s -1. Growth starts, usually, at the <1 1 0> steps on the (1 1 1) surface of CaF 2. For larger step distances and at later growth stages also growth on the terraces between the steps is found. Preferably, longish, roof-like crystallites are formed, which can be interpreted by growth of LiF(2 0 1¯)[0 1 0] parallel to CaF 2(1 1 1)[ 1¯ 0 1]. To a lesser extent square crystallites, i.e. growth with LiF(0 0 1), and, rarely, three-folded pyramidal crystallites, i.e. growth with LiF(1 1 1) parallel to CaF 2(1 1 1), are observed. While the pyramidal crystallites show strict epitaxial orientation with LiF[ 1¯ 0 1]‖CaF 2[ 1¯ 0 1] and LiF[ 1¯ 0 1]‖CaF 2[11], only about 80% of the square crystallites exhibit an epitaxial alignment, where LiF[1 0 0]‖CaF 2[ 1¯ 0 1] is preferred to LiF[1 1 0]‖CaF 2[ 1¯ 0 1]. The epitaxial relationships are discussed on the basis of theoretically calculated adsorption positions of the lithium fluoride monomer and dimer on the terrace and at the steps of the CaF 2(1 1 1) surface.

  15. [Advance on genome research of Yersinia pestis bacteriophage].

    PubMed

    Tan, H L; Wang, P; Li, W

    2017-04-10

    Completion of the genome sequences on Yersinia pestis bacteriophage offered unprecedented opportunity for researchers to carry out related genomic studies. This review was based on the genomic sequences and provided a genomic perspective in describing the essential features of genome on Yersinia pestis bacteriophage. Based on the comparative genomics, genetic evolutionary relationship was discussed. Description of functions from the gene prediction and protein annotation provided evidence for further related studies.

  16. Associations of Escherichia coli K-12 OmpF trimers with rough and smooth lipopolysaccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diedrich, D.L.; Stein, M.A.; Schnaitman, C.A.

    1990-09-01

    The associations of both rough and smooth lipopolysaccharides (LPS) with the OmpF porin of Escherichia coli K-12 were examined in galE strains deleted for ompC. Transformation with pSS37 and growth with galactose conferred the ability to assemble a Shigella dysenteriae O antigen onto the core oligosaccharide of E. coli K-12 LPS. The association of LPS with OmpF trimers was assessed by staining, autoradiography of LPS specifically labeled with (1-14C)galactose, and Western immunoblotting with a monoclonal antibody specific for OmpF trimers. These techniques revealed that the migration distances and multiple banding patterns of OmpF porin trimers in sodium dodecyl sulfate-polyacrylamide gelsmore » were dictated by the chemotype of associated LPS. Expression of smooth LPS caused almost all of the trimeric OmpF to run in gels with a slower mobility than trimers from rough strains. The LPS associated with trimers from a smooth strain differed from the bulk-phase LPS by consisting almost exclusively of molecules with O antigen.« less

  17. Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus arlettae).

    PubMed

    Bhardwaj, Neha; Bhardwaj, Sanjeev K; Mehta, Jyotsana; Mohanta, Girish C; Deep, Akash

    2016-07-15

    Bacteriophages are a class of viruses that specifically infect and replicate within a bacterium. They possess inherent affinity and specificity to the particular bacterial cells. This property of bacteriophages makes them an attractive biorecognition element in the field of biosensor development. In this work, we report the use of an immobilized bacteriophage for the development of a highly sensitive electrochemical sensor for Staphylococcus arlettae, bacteria from the pathogenic family of coagulase-negative staphylococci (CNS). The specific bacteriophages were covalently immobilized on the screen-printed graphene electrodes. Thus, the fabricated bacteriophage biosensor displayed quantitative response for the target bacteria (S. arlettae) for a broad detection range (2.0-2.0 × 10(6) cfu). A fast response time (2 min), low limit of detection (2 cfu), specificity, and stability over a prolonged period (3 months) are some of the important highlights of the proposed sensor. The practical utility of the developed sensor has been demonstrated by the analysis of S. arlettae in spiked water and apple juice samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Comparative genomic analysis of novel bacteriophages infecting Vibrio parahaemolyticus isolated from western and southern coastal areas of Korea.

    PubMed

    Yu, Junhyeok; Lim, Jeong-A; Kwak, Su-Jin; Park, Jong-Hyun; Chang, Hyun-Joo

    2018-05-01

    Vibrio parahaemolyticus, a foodborne pathogen, has become resistant to antibiotics. Therefore, alternative bio-control agents such bacteriophage are urgently needed for its control. Six novel bacteriophages specific to V. parahaemolyticus (vB_VpaP_KF1~2, vB_VpaS_KF3~6) were characterized at the molecular level in this study. Genomic similarity analysis revealed that these six bacteriophages could be divided into two groups with different genomic features, phylogenetic grouping, and morphologies. Two groups of bacteriophages had their own genes with different mechanisms for infection, assembly, and metabolism. Our results could be used as a future reference to study phage genomics or apply phages in future bio-control studies.

  19. Ff-nano, short functionalized nanorods derived from Ff (f1, fd, or M13) filamentous bacteriophage

    PubMed Central

    Sattar, Sadia; Bennett, Nicholas J.; Wen, Wesley X.; Guthrie, Jenness M.; Blackwell, Len F.; Conway, James F.; Rakonjac, Jasna

    2015-01-01

    F-specific filamentous phage of Escherichia coli (Ff: f1, M13, or fd) are long thin filaments (860 nm × 6 nm). They have been a major workhorse in display technologies and bionanotechnology; however, some applications are limited by the high length-to-diameter ratio of Ff. Furthermore, use of functionalized Ff outside of laboratory containment is in part hampered by the fact that they are genetically modified viruses. We have now developed a system for production and purification of very short functionalized Ff-phage-derived nanorods, named Ff-nano, that are only 50 nm in length. In contrast to standard Ff-derived vectors that replicate in E. coli and contain antibiotic-resistance genes, Ff-nano are protein-DNA complexes that cannot replicate on their own and do not contain any coding sequences. These nanorods show an increased resistance to heating at 70∘C in 1% SDS in comparison to the full-length Ff phage of the same coat composition. We demonstrate that functionalized Ff-nano particles are suitable for application as detection particles in sensitive and quantitative “dipstick” lateral flow diagnostic assay for human plasma fibronectin. PMID:25941520

  20. Ff-nano, short functionalized nanorods derived from Ff (f1, fd, or M13) filamentous bacteriophage.

    PubMed

    Sattar, Sadia; Bennett, Nicholas J; Wen, Wesley X; Guthrie, Jenness M; Blackwell, Len F; Conway, James F; Rakonjac, Jasna

    2015-01-01

    F-specific filamentous phage of Escherichia coli (Ff: f1, M13, or fd) are long thin filaments (860 nm × 6 nm). They have been a major workhorse in display technologies and bionanotechnology; however, some applications are limited by the high length-to-diameter ratio of Ff. Furthermore, use of functionalized Ff outside of laboratory containment is in part hampered by the fact that they are genetically modified viruses. We have now developed a system for production and purification of very short functionalized Ff-phage-derived nanorods, named Ff-nano, that are only 50 nm in length. In contrast to standard Ff-derived vectors that replicate in E. coli and contain antibiotic-resistance genes, Ff-nano are protein-DNA complexes that cannot replicate on their own and do not contain any coding sequences. These nanorods show an increased resistance to heating at 70(∘)C in 1% SDS in comparison to the full-length Ff phage of the same coat composition. We demonstrate that functionalized Ff-nano particles are suitable for application as detection particles in sensitive and quantitative "dipstick" lateral flow diagnostic assay for human plasma fibronectin.

  1. Membership, binarity, and rotation of F-G-K stars in the open cluster Blanco 1

    NASA Astrophysics Data System (ADS)

    Mermilliod, J.-C.; Platais, I.; James, D. J.; Grenon, M.; Cargile, P. A.

    2008-07-01

    Context: The nearby open cluster Blanco 1 is of considerable astrophysical interest for formation and evolution studies of open clusters because it is the third highest Galactic latitude cluster known. It has been observed often, but so far no definitive and comprehensive membership determination is readily available. Aims: An observing programme was carried out to study the stellar population of Blanco 1, and especially the membership and binary frequency of the F5-K0 dwarfs. Methods: We obtained radial-velocities with the CORAVEL spectrograph in the field of Blanco 1 for a sample of 148 F-G-K candidate stars in the magnitude range 10 < V < 14. New proper motions and UBVI CCD photometric data from two extensive surveys were obtained independently and are used to establish reliable cluster membership assignments in concert with radial-velocity data. Results: The membership of 68 stars is confirmed on the basis of proper motion, radial velocity, and photometric criteria. Fourteen spectroscopic- and suspected binaries (2 SB2s, 9 SB1s, 3 SB?) have been discovered among the confirmed members. Thirteen additional stars are located above the main sequence or close to the binary ridge, with radial velocities and proper motions supporting their membership. These are probable binaries with wide separations. Nine binaries (7 SB1 and 2 SB2) were detected among the field stars. The spectroscopic binary frequency among members is 20% (14/68); however, the overall binary rate reaches 40% (27/68) if one includes the photometric binaries. The cluster mean heliocentric radial velocity is +5.53 ± 0.11 km s-1 based on the most reliable 49 members. The V sin i distribution is similar to that of the Pleiades, confirming the age similarities between the two clusters. Conclusions: This study clearly demonstrates that, in spite of the cluster's high Galactic latitude, three membership criteria - radial velocity, proper motion, and photometry - are necessary for performing a reliable

  2. In vitro and in vivo antitumor activity of the halogenated boroxine dipotassium-trioxohydroxytetrafluorotriborate (K2[B3O3F4OH]).

    PubMed

    Ivankovic, Sinisa; Stojkovic, Ranko; Galic, Zoran; Galic, Borivoj; Ostojic, Jelena; Marasovic, Maja; Milos, Mladen

    2015-06-01

    Dipotassium-trioxohydroxytetrafluorotriborate K2[B3O3F4OH] was listed as a promising new therapeutic for cancer diseases. For in vitro and in vivo investigation of its antitumor effects 4T1 mammary adenocarcinoma, B16F10 melanoma and squamous cell carcinoma SCCVII were used. The detailed in vitro investigation undoubtedly showed that K2[B3O3F4OH] affects the growth of cancer cells. The proliferation of cells depends on the concentration so that aqueous solution of K2[B3O3F4OH], the concentrations of 10(-4) M and less, does not affect cell growth, but the concentrations of 10(-3) M or more, significantly slows cells growth. B16F10 and SCCVII cells show higher sensitivity to the cytotoxic effects of K2[B3O3F4OH] compared to 4T1 cells. Under in vivo conditions, K2[B3O3F4OH] slows the growth of all three tumors tested compared to the control, and the inhibitory effect was most pronounced during the application of the substance. There is almost no difference if K2[B3O3F4OH] was applied intraperitoneally, intratumor, peroral or as ointment. Addition of 5-FU did not further increase the antitumor efficacy of K2[B3O3F4OH].

  3. Bacteriophage-nanocomposites: an easy and reproducible method for the construction, handling, storage and transport of conjugates for deployment of bacteriophages active against Pseudomonas aeruginosa.

    PubMed

    Cooper, Ian R; Illsley, Matthew; Korobeinyk, Alina V; Whitby, Raymond L D

    2015-04-01

    The purpose of this work was proof of concept to develop a novel, cost effective protocol for the binding of bacteriophages to a surface without loss of function, after storage in various media. The technology platform involved covalently bonding bacteriophage 13 (a Pseudomonas aeruginosa bacteriophage) to two magnetised multiwalled carbon nanotube scaffolds using a series of buffers; bacteriophage-nanotube (B-N) conjugates were efficacious after storage at 20 °C for six weeks. B-N conjugates were added to human cell culture in vitro for 9 days without causing necrosis and apoptosis. B-N conjugates were frozen (-20 °C) in cell culture media for several weeks, after which recovery from the human cell culture medium was possible using a simple magnetic separation technique. The retention of viral infective potential was demonstrated by subsequent spread plating onto lawns of susceptible P. aeruginosa. Analysis of the human cell culture medium revealed the production of interleukins by the human fibroblasts upon exposure to the bacteriophage. One day after exposure, IL-8 levels transitorily increased between 60 and 100 pg/mL, but this level was not found on any subsequent days, suggesting an initial but not long lasting response. This paper outlines the development of a method to deliver antimicrobial activity to a surface that is small enough to be combined with other materials. To our knowledge at time of publication, this is the first report of magnetically coupled bacteriophages specific to human pathogens which can be recovered from test systems, and could represent a novel means to conditionally deploy antibacterial agents into living eukaryotic systems without the risks of some antibiotic therapies. Copyright © 2015. Published by Elsevier B.V.

  4. DGAT1 K232A polymorphism in Brazilian cattle breeds.

    PubMed

    Lacorte, G A; Machado, M A; Martinez, M L; Campos, A L; Maciel, R P; Verneque, R S; Teodoro, R L; Peixoto, M G C D; Carvalho, M R S; Fonseca, C G

    2006-08-31

    Recent reports identified DGAT1 (EC 2.3.1.20) harboring a lysine to alanine substitution (K232A) as a candidate gene with a strong effect on milk production traits. Our objective was to estimate the frequency of the DGAT1 K232A polymorphism in the main Zebu and Taurine breeds in Brazil as well as in Zebu x Taurine crossbreds as a potential QTL for marker-assisted selection. Samples of 331 animals from the main Brazilian breeds, Nellore, Guzerat, Red Sindhi, Gyr, Holstein, and Gyr x Holstein F1 were genotyped for DGAT1 K232A polymorphism (A and K alleles) using the PCR-RFLP technique. The highest frequency of the A allele was found in the Holstein sample (73%) followed by Gyr x Holstein F1 (39%). Gyr and Red Sindhi showed low frequencies of A alleles (4 and 2.5%, respectively). The A allele was not found in the Nellore and Guzerat samples. Our results could be used to guide association studies between this locus and milk traits in these breeds.

  5. Genomic Sequence and Characterization of the Virulent Bacteriophage φCTP1 from Clostridium tyrobutyricum and Heterologous Expression of Its Endolysin▿

    PubMed Central

    Mayer, Melinda J.; Payne, John; Gasson, Michael J.; Narbad, Arjan

    2010-01-01

    The growth of Clostridium tyrobutyricum in developing cheese leads to spoilage and cheese blowing. Bacteriophages or their specific lytic enzymes may provide a biological control method for eliminating such undesirable organisms without affecting other microflora. We isolated the virulent bacteriophage φCTP1 belonging to the Siphoviridae and have shown that it is effective in causing lysis of sensitive strains. The double-stranded DNA genome of φCTP1 is 59,199 bp, and sequence analysis indicated that it has 86 open reading frames. orf29 was identified as the gene coding for the phage endolysin responsible for cell wall degradation prior to virion release. We cloned and expressed the ctp1l gene in E. coli and demonstrated that the partially purified protein induced lysis of C. tyrobutyricum cells and reduced viable counts both in buffer and in milk. The endolysin was inactive against a range of clostridial species but did show lysis of Clostridium sporogenes, another potential spoilage organism. Removal of the C-terminal portion of the endolysin completely abolished lytic activity. PMID:20581196

  6. Radial integrals k)>4f and nephelauxetic effect of Nd3+ in crystals.

    PubMed

    Petrov, D; Angelov, B

    2014-01-24

    The radial expectation values k)>4f,k=2, 4, 6, for oxygen- or halogen- coordinated Nd(3+) ions in 25 crystals have been obtained from experimental Slater parameter shifts ΔFk=Fk (free ion) - Fk (crystal) by means of the dielectric screening model. The k)>4f values found by this new approach are compatible with those computed by relativistic 4f wave functions. The nephelauxetic ratios βk in respect to the free ion Nd IV have been also determined and related to covalency and bonding parameters. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Escherichia coli K1-specific bacteriophage CUS-3 distribution and function in phase-variable capsular polysialic acid O acetylation.

    PubMed

    King, Michael R; Vimr, Ross P; Steenbergen, Susan M; Spanjaard, Lodewijk; Plunkett, Guy; Blattner, Frederick R; Vimr, Eric R

    2007-09-01

    Escherichia coli K1 is the leading cause of human neonatal sepsis and meningitis and is important in other clinical syndromes of both humans and domestic animals; in this strain the polysialic acid capsule (K1 antigen) functions by inhibiting innate immunity. Recent discovery of the phase-variable capsular O acetylation mechanism indicated that the O-acetyltransferase gene, neuO, is carried on a putative K1-specific prophage designated CUS-3 (E. L. Deszo, S. M. Steenbergen, D. I. Freedberg, and E. R. Vimr, Proc. Natl. Acad. Sci. USA 102:5564-5569, 2005). Here we describe the isolation and characterization of a CUS-3 derivative (CUS-3a), demonstrating its morphology, lysogenization of a sensitive host, and the distribution of CUS-3 among a collection of 111 different K1 strains. The 40,207-bp CUS-3 genome was annotated from the strain RS218 genomic DNA sequence, indicating that most of the 63 phage open reading frames have their closest homologues in one of seven different lambdoid phages. Translational fusion of a reporter lacZ fragment to the hypervariable poly-Psi domain facilitated measurement of phase variation frequencies, indicating no significant differences between switch rates or effects on rates of the methyl-directed mismatch repair system. PCR analysis of poly-Psi domain length indicated preferential loss or gain of single 5'-AAGACTC-3' nucleotide repeats. Analysis of a K1 strain previously reported as "locked on" indicated a poly-Psi region with the least number of heptad repeats compatible with in-frame neuO expression. The combined results establish CUS-3 as an active mobile contingency locus in E. coli K1, indicating its capacity to mediate population-wide capsule variation.

  8. Study of the quaternary Na+, K+//F-, Br-, NO 3 - reciprocal system using an innovative methodology

    NASA Astrophysics Data System (ADS)

    Morgunova, O. E.; Ukhanov, A. S.; Katasonova, E. A.; Trunin, A. S.; Surinskii, K. D.

    2016-08-01

    The topological structure of the quaternary Na+, K+//F-, Br-, NO 3 - system is studied using a computer-assisted research system. A tree of phases is constructed, and the eutectic characteristics of the secant triangle NaNO3-KBr-NaF, (equiv. %) 84.6 NaNO3-9.1 KBr-6.3 NaF, at 255.3°C are determined.

  9. LOFT L2-3 blowdown experiment safety analyses D, E, and G; LOCA analyses H, K, K1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perryman, J.L.; Keeler, C.D.; Saukkoriipi, L.O.

    1978-12-01

    Three calculations using conservative off-nominal conditions and evaluation model options were made using RELAP4/MOD5 for blowdown-refill and RELAP4/MOD6 for reflood for Loss-of-Fluid Test Experiment L2-3 to support the experiment safety analysis effort. The three analyses are as follows: Analysis D: Loss of commercial power during Experiment L2-3; Analysis E: Hot leg quick-opening blowdown valve (QOBV) does not open during Experiment L2-3; and Analysis G: Cold leg QOBV does not open during Experiment L2-3. In addition, the results of three LOFT loss-of-coolant accident (LOCA) analyses using a power of 56.1 MW and a primary coolant system flow rate of 3.6 millionmore » 1bm/hr are presented: Analysis H: Intact loop 200% hot leg break; emergency core cooling (ECC) system B unavailable; Analysis K: Pressurizer relief valve stuck in open position; ECC system B unavailable; and Analysis K1: Same as analysis K, but using a primary coolant system flow rate of 1.92 million 1bm/hr (L2-4 pre-LOCE flow rate). For analysis D, the maximum cladding temperature reached was 1762/sup 0/F, 22 sec into reflood. In analyses E and G, the blowdowns were slower due to one of the QOBVs not functioning. The maximum cladding temperature reached in analysis E was 1700/sup 0/F, 64.7 sec into reflood; for analysis G, it was 1300/sup 0/F at the start of reflood. For analysis H, the maximum cladding temperature reached was 1825/sup 0/F, 0.01 sec into reflood. Analysis K was a very slow blowdown, and the cladding temperatures followed the saturation temperature of the system. The results of analysis K1 was nearly identical to analysis K; system depressurization was not affected by the primary coolant system flow rate.« less

  10. Detection specificity studies of bacteriophage adhesin-coated long-period grating-based biosensor

    NASA Astrophysics Data System (ADS)

    Koba, Marcin; Śmietana, Mateusz; Brzozowska, Ewa; Górska, Sabina; Mikulic, Predrag; Cusano, Andrea; Bock, Wojtek J.

    2015-09-01

    In this work, we present a label-free detection specificity study of an optical fiber long-period grating (LPG) biosensor working near the dispersion turning point of higher order cladding modes. The LPG sensor functionalized with bacteriophage adhesin is tested with specific and non-specific bacteria dry weight. We show that such biosensor is able to selectively bind, thus recognize different bacteria. We use bacteria dry weights of E. coli B as positive test and E. coli K12 and Salmonella enterica as negative tests. The resonance wavelength shift induced by E. coli B reaches over 90 nm, while for E. coli K12 and Salmonella enterica approximately 40 and 20 nm, respectively.

  11. Development of f2/f1 ratio functions in humans

    NASA Astrophysics Data System (ADS)

    Vento, Barbara A.; Durrant, John D.; Sabo, Diane L.; Boston, J. Robert

    2004-05-01

    Otoacoustic emissions (OAEs) presumably represent active processes within the cochlea fundamental to frequency-selectivity in peripheral auditory function. Maturation of the cochlear amplifier, vis-a-vis frequency encoding or selectivity, has yet to be fully characterized in humans. The purpose of this study was to further investigate the maturation of features of the f2/f1 frequency ratio (Distortion Product OAE amplitude X f2/f1 ratio) presumed to reflect cochlear frequency selectivity. A cross-sectional, multivariate study was completed comparing three age groups: pre-term infants, term infants and young adult subjects. Frequency ratio functions were analyzed at three f2 frequencies-2000, 4000 and 6000 Hz. An analysis included an estimation of the optimal ratio (OR) and a bandwidth-like measure (Q3). Analysis revealed significant interactions of age x frequency x gender for optimal ratio and a significant interaction of age x frequency for Q3. Consistent and statistically significant differences for both OR and Q3 were found in female subjects and when f2=2 or 6 kHz. This supports research by others [Abdala, J. Acoust. Soc. Am. 114, 3239-3250 (2003)] suggesting that the development of cochlear active mechanisms may still be somewhat in flux at least through term birth Furthermore, OAEs appear to demonstrate gender differences in the course of such maturational changes.

  12. Chemostat studies of bacteriophage M13 infected Escherichia coli JM109 for continuous ssDNA production.

    PubMed

    Kick, Benjamin; Behler, Karl Lorenz; Severin, Timm Steffen; Weuster-Botz, Dirk

    2017-09-20

    Steady state studies in a chemostat enable the control of microbial growth rate at defined reaction conditions. The effects of bacteriophage M13 infection on maximum growth rate of Escherichia coli JM109 were studied in parallel operated chemostats on a milliliter-scale to analyze the steady state kinetics of phage production. The bacteriophage infection led to a decrease in maximum specific growth rate of 15% from 0.74h -1 to 0.63h -1 . Under steady state conditions, a constant cell specific ssDNA formation rate of 0.15±0.004 mg ssDNA g CDW -1 h -1 was observed, which was independent of the growth rate. Using the estimated kinetic parameters for E. coli infected with bacteriophage M13, the ssDNA concentration in the steady state could be predicted as function of the dilution rate and the glucose concentration in the substrate. Scalability of milliliter-scale data was approved by steady state studies on a liter-scale at a selected dilution rate. An ssDNA space-time yield of 5.7mgL -1 h -1 was achieved with increased glucose concentration in the feed at a dilution rate of 0.3h -1 , which is comparable to established fed-batch fermentation with bacteriophage M13 for ssDNA production. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. (18)F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK).

    PubMed

    Hultsch, Christina; Schottelius, Margret; Auernheimer, Jörg; Alke, Andrea; Wester, Hans-Jürgen

    2009-09-01

    Oxime formation between an aminooxy-functionalized peptide and an (18)F-labelled aldehyde has recently been introduced as a powerful method for the rapid one-step chemoselective synthesis of radiofluorinated peptides. Here, the potential of using routinely produced and thus readily available [(18)F]fluorodeoxyglucose ([(18)F]FDG) as the aldehydic prosthetic group was investigated using an aminooxyacetyl-conjugated cyclic RGD peptide (cyclo(RGDfK(Aoa-(Boc)) as a model peptide. The use of [(18)F]FDG from routine production ([(18)F]FDGTUM) containing an excess of D: -glucose did not allow the radiosynthesis of [(18)F]FDG-RGD in activities >37 MBq in reasonable yield, rendering the direct use of clinical grade [(18)F]FDG for the routine clinical synthesis of (18)F-labelled peptides impossible. Using no-carrier-added (n.c.a.) [(18)F]FDG obtained via HPLC separation of [(18)F]FDGTUM from excess glucose, however, afforded [(18)F]FDG-RGD in yields of 56-93% (decay corrected) and activities up to 37 MBq. Suitable reaction conditions were 20 min at 120 degrees C and pH 2.5, and a peptide concentration of 5 mM. In a preliminary in vivo biodistribution study in M21 melanoma-bearing nude mice, [(18)F]FDG-RGD showed increased tumour accumulation compared to the "gold standard" [(18)F]galacto-RGD (2.18 vs 1.49 %iD/g, respectively, at 120 min after injection), but also slightly increased uptake in non-target organs, leading to comparable tumour/organ ratios for both compounds. These data demonstrate that chemoselective (18)F-labelling of aminooxy-functionalized peptides using n.c.a. [(18)F]FDG represents a radiofluorination/glycosylation strategy that allows preparation of (18)F-labelled peptides in high yield with suitable pharmacokinetics. As soon as the necessary n.c.a. preparation of [(18)F]FDG prior to reaction with the Aoa-peptide can be implemented in a fully automated [(18)F]FDG-synthesis, [(18)F]fluoroglucosylation of peptides may represent a promising alternative to

  14. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry.

    PubMed

    Colomer-Lluch, Marta; Imamovic, Lejla; Jofre, Juan; Muniesa, Maite

    2011-10-01

    This study evaluates the occurrence of bacteriophages carrying antibiotic resistance genes in animal environments. bla(TEM), bla(CTX-M) (clusters 1 and 9), and mecA were quantified by quantitative PCR in 71 phage DNA samples from pigs, poultry, and cattle fecal wastes. Densities of 3 to 4 log(10) gene copies (GC) of bla(TEM), 2 to 3 log(10) GC of bla(CTX-M), and 1 to 3 log(10) GC of mecA per milliliter or gram of sample were detected, suggesting that bacteriophages can be environmental vectors for the horizontal transfer of antibiotic resistance genes.

  15. Ground roll attenuation using polarization analysis in the t-f-k domain

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, Y.

    2017-07-01

    S waves travel slower than P waves and have a lower dominant frequency. Therefore, applying common techniques such as time-frequency filtering and f-k filtering to separate S waves from ground roll is difficult because ground roll is also characterized by slow velocity and low frequency. In this study, we present a method for attenuating ground roll using a polarization filtering method based on the t-f-k transform. We describe the particle motion of the waves by complex vector signals. Each pair of frequency components, whose frequencies have the same absolute value but different signs, of the complex signal indicate an elliptical or linear motion. The polarization parameters of the elliptical or linear motion are explicitly related to the two Fourier coefficients. We then extend these concepts to the t-f-k domain and propose a polarization filtering method for ground roll attenuation based on the t-f-k transform. The proposed approach can define automatically the time-varying reject zones on the f-k panel at different times as a function of the reciprocal ellipticity. Four attributes, time, frequency, apparent velocity and polarization are used to identify and extract the ground roll simultaneously. Thus, the ground roll and body waves can be separated as long as they are dissimilar in one of these attributes. We compare our method with commonly used filtering techniques by applying the methods to synthetic and real seismic data. The results indicate that our method can attenuate ground roll while preserving body waves more effectively than the other methods.

  16. Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology.

    PubMed

    Bibby, Kyle

    2014-02-01

    The recent rise in "omics"-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases-currently, only 0.001% of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.

  17. Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with trx-SA1, recombinant endolysin of S. aureus bacteriophage IME-SA1.

    PubMed

    Fan, Jindai; Zeng, Zhiliang; Mai, Kaijie; Yang, Yu; Feng, Jiaqi; Bai, Yang; Sun, Baoli; Xie, Qingmei; Tong, Yigang; Ma, Jingyun

    2016-08-15

    Methicillin-resistant Staphylococcus aureus (MRSA) has become a great threat to human and animal health and there is an urgent need to develop novel antibacterial agents to control this pathogen. The objective of this study was to obtain an active recombinant endolysin from the novel bacteriophage (IME-SA1), and conduct an efficacy trial of its effectiveness against bovine mastitis. We isolated a phage that was virulent and specific for S. aureus with an optimal multiplicity of infection of 0.01. Electron microscopy revealed that IME-SA1 was a member of the family Myoviridae, with an isometric head (98nm) and a long contractile tail (200nm). Experimental lysis experiments indicated the phage had an incubation period of 20min with a burst size of 80. When host bacteria were in early exponential growth stages, a multiplicity of infection of 0.01 resulted in a complete bacterial lysis after 9h. The endolysin gene (804bp) was cloned into the pET-32a bacterial expression vector and recombinant endolysin Trx-SA1 was successfully obtained with molecular size of about 47kDa. Preliminary results of therapeutic trials in cow udders showed that Trx-SA1 could effectively control mild clinical mastitis caused by S. aureus. The endolysin Trx-SA1 might be an alternative treatment strategy for infections caused by S. aureus, including MRSA. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Complete Nucleotide Sequence Analysis of a Novel Bacillus subtilis-Infecting Bacteriophage BSP10 and Its Effect on Poly-Gamma-Glutamic Acid Degradation

    PubMed Central

    Ghosh, Kuntal; Senevirathne, Amal; Kang, Hai Seong; Hyun, Woo Bin; Kim, Ji Eun; Kim, Kwang-Pyo

    2018-01-01

    While the harmful effects of lactic acid bacterial bacteriophages in the dairy industry are well-established, the importance of Bacillus subtilis-infecting bacteriophages on soybean fermentation is poorly-studied. In this study, we isolated a B. subtilis-infecting bacteriophage BSP10 from Meju (a brick of dried fermented soybean) and further characterized it. This Myoviridae family bacteriophage exhibited a narrow host range against B. subtilis strains (17/52, 32.7%). The genome of bacteriophage BSP10 is 153,767 bp long with 236 open reading frames and 5 tRNAs. Comparative genomics (using dot plot, progressiveMauve alignment, heat-plot, and BLASTN) and phylogenetic analysis strongly suggest its incorporation as a new species in the Nit1virus genus. Furthermore, bacteriophage BSP10 was efficient in the growth inhibition of B. subtilis ATCC 15245 in liquid culture and in Cheonggukjang (a soybean fermented food) fermentation. Artificial contamination of as low as 102 PFU/g of bacteriophage BSP10 during Cheonggukjang fermentation significantly reduced bacterial numbers by up to 112 fold in comparison to the control (no bacteriophage). Moreover, for the first time, we experimentally proved that B. subtilis-infecting bacteriophage greatly enhanced poly-γ-glutamic acid degradation during soybean fermentation, which is likely to negatively affect the functionalities of Cheonggukjang. PMID:29734701

  19. Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria.

    PubMed

    Pérez Pulido, Rubén; Grande Burgos, Maria José; Gálvez, Antonio; Lucas López, Rosario

    2016-10-01

    Bacteriophages have attracted great attention for application in food biopreservation. Lytic bacteriophages specific for human pathogenic bacteria can be isolated from natural sources such as animal feces or industrial wastes where the target bacteria inhabit. Lytic bacteriophages have been tested in different food systems for inactivation of main food-borne pathogens including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Salmonella enterica, Shigella spp., Campylobacter jejuni and Cronobacter sakazkii, and also for control of spoilage bacteria. Application of lytic bacteriophages could selectively control host populations of concern without interfering with the remaining food microbiota. Bacteriophages could also be applied for inactivation of bacteria attached to food contact surfaces or grown as biofilms. Bacteriophages may receive a generally recognized as safe status based on their lack of toxicity and other detrimental effects to human health. Phage preparations specific for L. monocytogenes, E. coli O157:H7 and S. enterica serotypes have been commercialized and approved for application in foods or as part of surface decontamination protocols. Phage endolysins have a broader host specificity compared to lytic bacteriophages. Cloned endolysins could be used as natural preservatives, singly or in combination with other antimicrobials such as bacteriocins.

  20. Study of the D K K and D K K ¯ systems

    NASA Astrophysics Data System (ADS)

    Debastiani, V. R.; Dias, J. M.; Oset, E.

    2017-07-01

    Using the fixed center approximation to Faddeev equations, we investigate the D K K and D K K ¯ three-body systems, considering that the D K dynamically generates, through its I =0 component, the Ds0 *(2317 ) molecule. According to our findings, for the D K K ¯ interaction we find evidence of a state I (JP)=1 /2 (0-) just above the Ds0 *(2317 )K ¯ threshold and around the D f0(980 ) threshold, with mass of about 2833-2858 MeV, made mostly of D f0(980 ). On the other hand, no evidence related to a state from the D K K interaction is found. The state found could be seen in the π π D invariant mass.

  1. Molecular characterization of bacteriophages for microbial source tracking in Korea.

    PubMed

    Lee, Jung Eun; Lim, Mi Young; Kim, Sei Yoon; Lee, Sunghee; Lee, Heetae; Oh, Hyun-Myung; Hur, Hor-Gil; Ko, Gwangpyo

    2009-11-01

    We investigated coliphages from various fecal sources, including humans and animals, for microbial source tracking in South Korea. Both somatic and F+-specific coliphages were isolated from 43 fecal samples from farms, wild animal habitats, and human wastewater plants. Somatic coliphages were more prevalent and abundant than F+ coliphages in all of the tested fecal samples. We further characterized 311 F+ coliphage isolates using RNase sensitivity assays, PCR and reverse transcription-PCR, and nucleic acid sequencing. Phylogenetic analyses were performed based on the partial nucleic acid sequences of 311 F+ coliphages from various sources. F+ RNA coliphages were most prevalent among geese (95%) and were least prevalent in cows (5%). Among the genogroups of F+ RNA coliphages, most F+ coliphages isolated from animal fecal sources belonged to either group I or group IV, and most from human wastewater sources were in group II or III. Some of the group I coliphages were present in both human and animal source samples. F+ RNA coliphages isolated from various sources were divided into two main clusters. All F+ RNA coliphages isolated from human wastewater were grouped with Qbeta-like phages, while phages isolated from most animal sources were grouped with MS2-like phages. UniFrac significance statistical analyses revealed significant differences between human and animal bacteriophages. In the principal coordinate analysis (PCoA), F+ RNA coliphages isolated from human waste were distinctively separate from those isolated from other animal sources. However, F+ DNA coliphages were not significantly different or separate in the PCoA. These results demonstrate that proper analysis of F+ RNA coliphages can effectively distinguish fecal sources.

  2. Application of bacteriophages in sensor development.

    PubMed

    Peltomaa, Riikka; López-Perolio, Irene; Benito-Peña, Elena; Barderas, Rodrigo; Moreno-Bondi, María Cruz

    2016-03-01

    Bacteriophage-based bioassays are a promising alternative to traditional antibody-based immunoassays. Bacteriophages, shortened to phages, can be easily conjugated or genetically engineered. Phages are robust, ubiquitous in nature, and harmless to humans. Notably, phages do not usually require inoculation and killing of animals; and thus, the production of phages is simple and economical. In recent years, phage-based biosensors have been developed featuring excellent robustness, sensitivity, and selectivity in combination with the ease of integration into transduction devices. This review provides a critical overview of phage-based bioassays and biosensors developed in the last few years using different interrogation methods such as colorimetric, enzymatic, fluorescence, surface plasmon resonance, quartz crystal microbalance, magnetoelastic, Raman, or electrochemical techniques.

  3. Targeted binding of the M13 bacteriophage to thiamethoxam organic crystals.

    PubMed

    Cho, Whirang; Fowler, Jeffrey D; Furst, Eric M

    2012-04-10

    Phage display screening with a combinatorial library was used to identify M13-type bacteriophages that express peptides with selective binding to organic crystals of thiamethoxam. The six most strongly binding phages exhibit at least 1000 times the binding affinity of wild-type M13 and express heptapeptide sequences that are rich in hydrophobic, hydrogen-bonding amino acids and proline. Among the peptide sequences identified, M13 displaying the pIII domain heptapeptide ASTLPKA exhibits the strongest binding to thiamethoxam in competitive binding assays. Electron and confocal microscopy confirm the specific binding affinity of ASTLPKA to thiamethoxam. Using atomic force microscope (AFM) probes functionalized with ASTLPKA expressing phage, we found that the average adhesion force between the bacteriophage and a thiamethoxam surface is 1.47 ± 0.80 nN whereas the adhesion force of wild-type M13KE phage is 0.18 ± 0.07 nN. Such a strongly binding bacteriophage could be used to modify the surface chemistry of thiamethoxam crystals and other organic solids with a high degree of specificity. © 2012 American Chemical Society

  4. Characterization of the endolysin from the Enterococcus faecalis bacteriophage VD13

    USDA-ARS?s Scientific Manuscript database

    Bacteriophage infecting bacteria produce endolysins (peptidoglycan hydrolases) to lyse the host cell from within and release nascent bacteriophage particles. Recombinant endolysins can also lyse Gram-positive bacteria when added exogenously. As a potential alternative to antibiotics, we cloned and...

  5. 31 CFR 315.32 - Series A, B, C, D, F, G, J, and K bonds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Series A, B, C, D, F, G, J, and K.... SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Interest § 315.32 Series A, B, C, D, F, G, J, and K bonds. All bonds of these series have matured and no longer earn interest. ...

  6. 31 CFR 315.32 - Series A, B, C, D, F, G, J, and K bonds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false Series A, B, C, D, F, G, J, and K.... SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Interest § 315.32 Series A, B, C, D, F, G, J, and K bonds. All bonds of these series have matured and no longer earn interest. ...

  7. 31 CFR 315.32 - Series A, B, C, D, F, G, J, and K bonds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Series A, B, C, D, F, G, J, and K.... SAVINGS BONDS, SERIES A, B, C, D, E, F, G, H, J, AND K, AND U.S. SAVINGS NOTES Interest § 315.32 Series A, B, C, D, F, G, J, and K bonds. All bonds of these series have matured and no longer earn interest. ...

  8. [Genetic study of bacteriophage phi81. I. Isolation, study of complementation and preliminary mapping of amber-mutants of bacteriophage phi81].

    PubMed

    Sineokiĭ, S P; Pogosov, V Z; Iankovskiĭ, N K; Krylov, V N

    1976-01-01

    123 Amber mutants of lambdoid bacteriophage phi81 are isolated and distributed into 19 complementation groups. Deletion mapping made possible to locate 5 gene groups on the genetic map of bacteriophage phi81 and to determine a region of possible location of mm' sticky ends on the prophage genetic map. A gene of phage phi81 is localized, which controls the adsorption specificity, and which functional similarity to a respective gene of phage phi80 is demonstrated.

  9. Adsorption of bacteriophages on clay minerals

    USGS Publications Warehouse

    Chattopadhyay, Sandip; Puls, Robert W.

    1999-01-01

    The ability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and φX-174) on clays (hectorite, saponite, kaolinite, and clay fraction of samples collected from a landfill site). The thermodynamic study not only determines the feasibility of the process but also provides information on the relative magnitudes of the different forces under a particular set of conditions. The total free energy of interaction during sorption of bacteriophages on clays (ΔG) has been assumed to be the summation of ΔGH (ΔG due to hydrophobic interactions) and ΔGEL (ΔG due to electrostatic interactions). The magnitude of ΔGH was determined from the different interfacial tensions (γ) present in the system, while ΔGEL was calculated from ζ-potentials of the colloidal particles. Calculated results show that surface hydrophobicities of the selected sorbents and sorbates dictate sorption. Among the selected bacteriophages, maximum sorption was observed with T-2, while hectorite has the maximum sorption capacity. Experimental results obtained from the batch adsorption studies also corroborated those obtained from the theoretical study.

  10. Evidence of a Dominant Lineage of Vibrio cholerae-Specific Lytic Bacteriophages Shed by Cholera Patients over a 10-Year Period in Dhaka, Bangladesh

    PubMed Central

    Seed, Kimberley D.; Bodi, Kip L.; Kropinski, Andrew M.; Ackermann, Hans-Wolfgang; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew

    2011-01-01

    Lytic bacteriophages are hypothesized to contribute to the seasonality and duration of cholera epidemics in Bangladesh. However, the bacteriophages contributing to this phenomenon have yet to be characterized at a molecular genetic level. In this study, we isolated and sequenced the genomes of 15 bacteriophages from stool samples from cholera patients spanning a 10-year surveillance period in Dhaka, Bangladesh. Our results indicate that a single novel bacteriophage type, designated ICP1 (for the International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) is present in all stool samples from cholera patients, while two other bacteriophage types, one novel (ICP2) and one T7-like (ICP3), are transient. ICP1 is a member of the Myoviridae family and has a 126-kilobase genome comprising 230 open reading frames. Comparative sequence analysis of ICP1 and related isolates from this time period indicates a high level of genetic conservation. The ubiquitous presence of ICP1 in cholera patients and the finding that the O1 antigen of lipopolysaccharide (LPS) serves as the ICP1 receptor suggest that ICP1 is extremely well adapted to predation of human-pathogenic V. cholerae O1. PMID:21304168

  11. Use of PRD1 bacteriophage in groundwater viral transport, inactivation, and attachment studies

    USGS Publications Warehouse

    Harvey, Ronald W.; Ryan, Joseph N.

    2004-01-01

    PRD1, an icosahedra-shaped, 62 nm (diameter), double-stranded DNA bacteriophage with an internal membrane, has emerged as an important model virus for studying the manner in which microorganisms are transported through a variety of groundwater environments. The popularity of this phage for use in transport studies involving geologic media is due, in part, to its relative stability over a range of temperatures and low degree of attachment in aquifer sediments. Laboratory and field investigations employing PRD1 are leading to a better understanding of viral attachment and transport behaviors in saturated geologic media and to improved methods for describing mathematically subsurface microbial transport at environmentally significant field scales. Radioisotopic labeling of PRD1 is facilitating additional information about the nature of viral interactions with solid surfaces in geologic media, the importance of iron oxide surfaces, and allowing differentiation between inactivation and attachment in field-scale tracer tests.

  12. A tripartite fusion, FaeG-FedF-LT(192)A2:B, of enterotoxigenic Escherichia coli (ETEC) elicits antibodies that neutralize cholera toxin, inhibit adherence of K88 (F4) and F18 fimbriae, and protect pigs against K88ac/heat-labile toxin infection.

    PubMed

    Ruan, Xiaosai; Liu, Mei; Casey, Thomas A; Zhang, Weiping

    2011-10-01

    Enterotoxigenic Escherichia coli (ETEC) strains expressing K88 (F4) or F18 fimbriae and heat-labile (LT) and/or heat-stable (ST) toxins are the major cause of diarrhea in young pigs. Effective vaccines inducing antiadhesin (anti-K88 and anti-F18) and antitoxin (anti-LT and anti-ST) immunity would provide broad protection to young pigs against ETEC. In this study, we genetically fused nucleotides coding for peptides from K88ac major subunit FaeG, F18 minor subunit FedF, and LT toxoid (LT(192)) A2 and B subunits for a tripartite adhesin-adhesin-toxoid fusion (FaeG-FedF-LT(192)A2:B). This fusion was used for immunizations in mice and pigs to assess the induction of antiadhesin and antitoxin antibodies. In addition, protection by the elicited antiadhesin and antitoxin antibodies against a porcine ETEC strain was evaluated in a gnotobiotic piglet challenge model. The data showed that this FaeG-FedF-LT(192)A2:B fusion elicited anti-K88, anti-F18, and anti-LT antibodies in immunized mice and pigs. In addition, the anti-porcine antibodies elicited neutralized cholera toxin and inhibited adherence against both K88 and F18 fimbriae. Moreover, immunized piglets were protected when challenged with ETEC strain 30302 (K88ac/LT/STb) and did not develop clinical disease. In contrast, all control nonvaccinated piglets developed severe diarrhea and dehydration after being challenged with the same ETEC strain. This study clearly demonstrated that this FaeG-FedF-LT(192)A2:B fusion antigen elicited antibodies that neutralized LT toxin and inhibited the adherence of K88 and F18 fimbrial E. coli strains and that this fusion could serve as an antigen for vaccines against porcine ETEC diarrhea. In addition, the adhesin-toxoid fusion approach used in this study may provide important information for developing effective vaccines against human ETEC diarrhea.

  13. Characterization of a new ViI-like Erwinia amylovora bacteriophage phiEa2809.

    PubMed

    Lagonenko, Alexander L; Sadovskaya, Olga; Valentovich, Leonid N; Evtushenkov, Anatoly N

    2015-04-01

    Erwinia amylovora is a Gram-negative plant pathogenic bacteria causing fire blight disease in many Rosaceae species. A novel E. amylovora bacteriophage, phiEa2809, was isolated from symptomless apple leaf sample collected in Belarus. This phage was also able to infect Pantoea agglomerans strains. The genome of phiEa2809 is a double-stranded linear DNA 162,160 bp in length, including 145 ORFs and one tRNA gene. The phiEa2809 genomic sequence is similar to the genomes of the Serratia plymutica phage MAM1, Shigella phage AG-3, Dickeya phage vB DsoM LIMEstone1 and Salmonella phage ViI and lacks similarity to described E. amylovora phage genomes. Based on virion morphology (an icosahedral head, long contractile tail) and genome structure, phiEa2809 was classified as a member of Myoviridae, ViI-like bacteriophages group. PhiEa2809 is the firstly characterized ViI-like bacteriophage able to lyse E. amylovora. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Control of Salmonella on sprouting mung bean and alfalfa seeds by using a biocontrol preparation based on antagonistic bacteria and lytic bacteriophages.

    PubMed

    Ye, Jianxiong; Kostrzynska, Magdalaena; Dunfield, Kari; Warriner, Keith

    2010-01-01

    The following reports on the application of a combination of antagonistic bacteria and lytic bacteriophages to control the growth of Salmonella on sprouting mung beans and alfalfa seeds. Antagonistic bacteria were isolated from mung bean sprouts and tomatoes by using the deferred plate assay to assess anti-Salmonella activity. From the isolates screened, an Enterobacter asburiae strain (labeled "JX1") exhibited stable antagonistic activity against a broad range of Salmonella serovars (Agona, Berta, Enteritidis, Hadar, Heidelberg, Javiana, Montevideo, Muenchen, Newport, Saint Paul, and Typhimurium). Lytic bacteriophages against Salmonella were isolated from pig or cattle manure effluent. A bacteriophage cocktail prepared from six isolates was coinoculated with E. asburiae JX1 along with Salmonella in broth culture. The combination of E. asburiae JX1 and bacteriophage cocktail reduced the levels of Salmonella by 5.7 to 6.4 log CFU/ml. Mung beans inoculated with Salmonella and sprouted over a 4-day period attained levels of 6.72 + or - 0.78 log CFU/g. In contrast, levels of Salmonella were reduced to 3.31 + or - 2.48 or 1.16 + or - 2.14 log CFU/g when the pathogen was coinoculated with bacteriophages or E. asburiae JX1, respectively. However, by using a combination of E. asburiae JX1 and bacteriophages, the levels of Salmonella associated with mung bean sprouts were only detected by enrichment. The biocontrol preparation was effective at controlling the growth of Salmonella under a range of sprouting temperatures (20 to 30 degrees Celsius) and was equally effective at suppressing the growth of Salmonella on sprouting alfalfa seeds. The combination of E. asburiae JX1 and bacteriophages represents a promising, chemical-free approach for controlling the growth of Salmonella on sprouting seeds.

  15. M13 Bacteriophage-Based Self-Assembly Structures and Their Functional Capabilities.

    PubMed

    Moon, Jong-Sik; Kim, Won-Geun; Kim, Chuntae; Park, Geun-Tae; Heo, Jeong; Yoo, So Y; Oh, Jin-Woo

    2015-06-01

    Controlling the assembly of basic structural building blocks in a systematic and orderly fashion is an emerging issue in various areas of science and engineering such as physics, chemistry, material science, biological engineering, and electrical engineering. The self-assembly technique, among many other kinds of ordering techniques, has several unique advantages and the M13 bacteriophage can be utilized as part of this technique. The M13 bacteriophage (Phage) can easily be modified genetically and chemically to demonstrate specific functions. This allows for its use as a template to determine the homogeneous distribution and percolated network structures of inorganic nanostructures under ambient conditions. Inexpensive and environmentally friendly synthesis can be achieved by using the M13 bacteriophage as a novel functional building block. Here, we discuss recent advances in the application of M13 bacteriophage self-assembly structures and the future of this technology.

  16. M13 Bacteriophage-Based Self-Assembly Structures and Their Functional Capabilities

    PubMed Central

    Moon, Jong-Sik; Kim, Won-Geun; Kim, Chuntae; Park, Geun-Tae; Heo, Jeong; Yoo, So Y; Oh, Jin-Woo

    2015-01-01

    Controlling the assembly of basic structural building blocks in a systematic and orderly fashion is an emerging issue in various areas of science and engineering such as physics, chemistry, material science, biological engineering, and electrical engineering. The self-assembly technique, among many other kinds of ordering techniques, has several unique advantages and the M13 bacteriophage can be utilized as part of this technique. The M13 bacteriophage (Phage) can easily be modified genetically and chemically to demonstrate specific functions. This allows for its use as a template to determine the homogeneous distribution and percolated network structures of inorganic nanostructures under ambient conditions. Inexpensive and environmentally friendly synthesis can be achieved by using the M13 bacteriophage as a novel functional building block. Here, we discuss recent advances in the application of M13 bacteriophage self-assembly structures and the future of this technology. PMID:26146494

  17. Genomic characterization of key bacteriophages to formulate the potential biocontrol agent to combat enteric pathogenic bacteria.

    PubMed

    Parmar, Krupa M; Dafale, Nishant A; Tikariha, Hitesh; Purohit, Hemant J

    2018-05-01

    Combating bacterial pathogens has become a global concern especially when the antibiotics and chemical agents are failing to control the spread due to its resistance. Bacteriophages act as a safe biocontrol agent by selectively lysing the bacterial pathogens without affecting the natural beneficial microflora. The present study describes the screening of prominent enteric pathogens NDK1, NDK2, NDK3, and NDK4 (Escherichia, Klebsiella, Enterobacter, and Serratia) mostly observed in domestic wastewater; against which KNP1, KNP2, KNP3, and KNP4 phages were isolated. To analyze their potential role in eradicating enteric pathogens and toxicity issue, these bacteriophages were sequenced using next-generation sequencing and characterized based on its genomic content. The isolated bacteriophages were homologous to Escherichia phage (KNP1), Klebsiella phage (KNP2), Enterobacter phage (KNP3), Serratia phage (KNP4), and belonged to Myoviridae family of Caudovirales except for the unclassified KNP4 phage. Draft genome analysis revealed the presence of lytic enzymes such as holing and lysozyme in KNP1 phage, endolysin in KNP2 phage, and endopeptidase with holin in KNP3 phage. The absence of any lysogenic and virulent genes makes this bacteriophage suitable candidate for preparation of phage cocktail to combat the pathogens present in wastewater. However, KNP4 contained a virulent gene rendering it unsuitable to be used as a biocontrol agent. These findings make the phages (KNP1-KNP3) as a promising alternative for the biocontrol of pathogens in wastewater which is the main culprit to spread these dominated pathogens in different natural water bodies. This study also necessitates for genomic screening of bacteriophages for lysogenic and virulence genes prior to its use as a biocontrol agent.

  18. 76 FR 35259 - Samaritan Pharmaceuticals, Inc., Seaena, Inc., Seirios International, Inc. (f/k/a Exactly...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ...., Seirios International, Inc. (f/k/a Exactly Sportswear, Inc.), et al.; Order of Suspension of Trading June 14, 2011. Samaritan Pharmaceuticals, Inc., Seaena, Inc., Seirios International, Inc. (f/k/a Exactly Sportswear, Inc.), Sento Corp., Shoe Pavilion, Inc., Silver Eagle Resources Ltd. (n/k/a Mercator Minerals Ltd...

  19. Effects of Bacteriophage Supplementation on Egg Performance, Egg Quality, Excreta Microflora, and Moisture Content in Laying Hens

    PubMed Central

    Zhao, P. Y.; Baek, H. Y.; Kim, I. H.

    2012-01-01

    An experiment was conducted to evaluate the effects of bacteriophage supplementation on egg performance, egg quality, excreta microflora, and moisture content in laying hens. A total of 288 Hy-line brown commercial laying hens (36-wk-old) were randomly allotted to 4 treatments in this 6-wk trial and dietary treatments included: i) CON, basal diet; ii) T1, CON+0.020% bacteriophage; iii) T2, CON+0.035% bacteriophage; iv) T3, CON+0.050% bacteriophage. There were 6 replicates for each treatment with 6 adjacent cages (2 hens/cage). Laying hens in T2 and T3 treatments had higher (p<0.05) egg production than those in CON and T1 treatments during wk 0 to 3. In addition, egg production in T1, T2, and T3 treatments was increased (p<0.05) compared with that in CON treatment during wk 4 to 6. At wk 4 and 5, birds in T2 group had higher (p<0.05) HU than those in CON. In addition, at wk 5 and 6, HU in birds fed T1 and T3 diets was greater (p<0.05) than those fed CON diet. E. coli and Salmonella spp. concentrations in excreta were decreased (p<0.05) by T1, T2, and T3 treatments. However, egg weight, egg shell color, yolk height, yolk color unit, egg shell strength, egg shell thickness, egg gravity, and excreta moisture content were not influenced by dietary treatments during the entire experimental period. In conclusion, bacteriophage supplementation has beneficial effects on egg production, egg albumen, and excreta microflora concentration in laying hens. PMID:25049658

  20. The K1 internal tide simulated by a 1/10° OGCM

    NASA Astrophysics Data System (ADS)

    Li, Zhuhua; von Storch, Jin-Song; Müller, Malte

    2017-05-01

    This paper quantifies the K1 internal tide simulated by the 1/10° STORMTIDE model, which simultaneously resolves the eddying general circulation and tides. An evident feature of the K1 internal tide is the critical latitude φc at 30°, which in the STORMTIDE model is characterized by variations from a high energy level equatorward of 30° to a low energy level poleward of 30°. This critical latitude separates the internal tide dynamics into bottom-trapped (at latitudes |φ| > |φc|) and freely propagating (at |φ| < |φc|) motions, respectively. Both types of motions are examined. The bottom-trapping process reveals a gradual vertical decrease of wave energy away from the bottom. The vertical scale, over which the wave energy decrease occurs, is smaller in shallow than in deep water regions. For the freely propagating K1 internal tides, the STORMTIDE model is able to simulate the first three low modes, with the wavelengths ranging from 200-400 km, 100-200 km, to 60-120 km. These wavelength distributions reveal not only a zonal asymmetry but also a poleward increase up to φc, in particular in the Pacific. Such distributions indicate the impact of stratification N and the Coriolis frequency f on the wavelengths. The large wavelength gradient near φc is caused by the wavelength increase from finite values at subcritical latitudes to infinity at φc. Compared to the M2 internal tide, the lower K1 tidal frequency leads to a stronger role of f, hence a weaker effect of N, for the K1 internal tide.

  1. Bacteriophage ecology in environmental biotechnology processes.

    PubMed

    Shapiro, Orr H; Kushmaro, Ariel

    2011-06-01

    Heterotrophic bacteria are an integral part of any environmental biotechnology process (EBP). Therefore, factors controlling bacterial abundance, activity, and community composition are central to the understanding of such processes. Among these factors, top-down control by bacteriophage predation has so far received very limited attention. With over 10(8) particles per ml, phage appear to be the most numerous biological entities in EBP. Phage populations in EBP appear to be highly dynamic and to correlate with the population dynamics of their hosts and genomic evidence suggests bacteria evolve to avoid phage predation. Clearly, there is much to learn regarding bacteriophage in EBP before we can truly understand the microbial ecology of these globally important systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Comparison of the virucidal efficacy of peracetic acid, potassium monopersulphate and sodium hypochlorite on bacteriophages P001 and MS2.

    PubMed

    Morin, T; Martin, H; Soumet, C; Fresnel, R; Lamaudière, S; Le Sauvage, A L; Deleurme, K; Maris, P

    2015-09-01

    The phagicidal activity of peroxy products against the virulent bacteriophage P001 infecting lactic acid bacteria and bacteriophage MS2 used as a surrogate of enteric viruses (EVs) was evaluated and compared to sodium hypochlorite using the EN 13610 European suspension test and a surface test developed in our laboratories. Infectivity tests were adapted and/or developed to determine the activity of disinfectants against reference P001 phage of Lactoccocus lactis and F-specific RNA phage MS2 of Escherichia coli in conditions simulating practical use. Similar concentrations of sodium hypochlorite were phagicidal against both bacteriophages, either at 0·05-0·125% of active chlorine using the suspension test or at 0·12-0·5% using the surface test. For Potassium monopersulphate (MPS), phagicidal concentrations varied from 0·006 to 0·012% whatever the type of test and phages. However, for peracetic acid products (PAP) used in suspension, concentrations 55 times higher were necessary against MS2 (0·271%) than against P001 (0·005%). With the surface test, 0·089-0·178% concentrations of PAP were effective against MS2, but these concentrations were 16-32 times greater than needed against P001. Sodium hypochlorite and MPS had similar phagicidal activities against P001 and MS2, but PAP did not. This is the first comparative study to investigate through suspension and surface tests the difference in resistance to peroxy compounds between a reference bacteriophage (P001) used to evaluate phagicidal concentrations in European standards and a surrogate of EVs (MS2). Results underline the importance of validation tests on pertinent surrogates of viruses or bacteriophages to adjust the concentration of disinfectants for use in the food and water industries. © 2015 The Society for Applied Microbiology.

  3. Recognition of Salmonella typhimurium by immobilized phage P22 monolayers

    NASA Astrophysics Data System (ADS)

    Handa, Hitesh; Gurczynski, Stephen; Jackson, Matthew P.; Auner, Gregory; Walker, Jeremy; Mao, Guangzhao

    2008-04-01

    Phages are promising alternatives to antibodies as the biorecognition element in a variety of biosensing applications. In this study, a monolayer of bacteriophage P22 whose tailspike proteins specifically recognize Salmonella serotypes was covalently bound to glass substrates through a bifunctional cross linker 3-aminopropyltrimethoxysilane. The specific binding of Salmonella typhimurium to the phage monolayer was studied by enzyme-linked immunosorbent assay and atomic force microscopy. Escherichia coli and a Gram-positive bacterium Listeria monocytogenes were also studied as control bacteria. The P22 particles show strong binding affinity to S. typhimurium. In addition, the dried P22 monolayer maintained 50% binding capacity to S. typhimurium after a one-week storage time. This is a promising method to prepare phage monolayer coatings on surface plasmon resonance and acoustic biosensor substrates in order to utilize the nascent phage display technology.

  4. Comparison of Polymerase Subunits from Double-Stranded RNA Bacteriophages

    PubMed Central

    Yang, Hongyan; Makeyev, Eugene V.; Bamford, Dennis H.

    2001-01-01

    The family Cystoviridae comprises several bacteriophages with double-stranded RNA (dsRNA) genomes. We have previously purified the catalytic polymerase subunit (Pol) of one of the Cystoviridae members, bacteriophage φ6, and shown that the protein can catalyze RNA synthesis in vitro. In this reaction, both bacteriophage-specific and heterologous RNAs can serve as templates, but those containing 3′ termini from the φ6 minus strands are favored. This provides a molecular basis for the observation that only plus strands, not minus strands, are transcribed from φ6 dsRNA segments in vivo. To test whether such a regulatory mechanism is also found in other dsRNA viruses, we purified recombinant Pol subunits from the φ6-related bacteriophages φ8 and φ13 and assayed their polymerase activities in vitro. The enzymes catalyze template-dependent RNA synthesis using both single-stranded-RNA (ssRNA) and dsRNA templates. However, they differ from each other as well as from φ6 Pol in certain biochemical properties. Notably, each polymerase demonstrates a distinct preference for ssRNAs bearing short 3′-terminal sequences from the virus-specific minus strands. This suggests that, in addition to other factors, RNA transcription in Cystoviridae is controlled by the template specificity of the polymerase subunit. PMID:11602748

  5. Fluorine Kα X-Ray Emission Spectra of MgF2, CaF2, SrF2 and BaF2

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara; Konishi, Wataru; Shoji, Shizuko; Kojima, Shinjiro

    1990-11-01

    The fluorine Kα emission spectra in fluorescence from a series of alkaline-earth fluorides MF2 (M=Mg, Ca, Sr and Ba) are measured with a high-resolution two-crystal vacuum spectrometer. An anomalously low intensity of the K1L1 satellite peak arising from 1s-1(2s2p)-1 initial states is observed for SrF2. The measured emission spectra are presented along with the UPS spectra of the F- 2p valence bands obtained by Poole et al. and the fluorine K absorption-edge spectra by Oizumi et al. By using these spectra, the first peak or shoulder in the fluorine K absorption-edge spectra is identified as being due to a core exciton which is formed below the bottom of the conduction band. The binding energy of the exciton is estimated to be 1.3(± 0.3), 1.1(± 0.2), 1.0(± 0.2) and 1.7(± 0.2) eV for MgF2, CaF2, SrF2 and BaF2, respectively.

  6. Phase Variable O Antigen Biosynthetic Genes Control Expression of the Major Protective Antigen and Bacteriophage Receptor in Vibrio cholerae O1

    PubMed Central

    Seed, Kimberley D.; Faruque, Shah M.; Mekalanos, John J.; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew

    2012-01-01

    The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage. PMID:23028317

  7. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  8. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  9. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  10. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  11. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  12. Attenuation and colloidal mobilization of bacteriophages in natural sediments under anoxic as compared to oxic conditions.

    PubMed

    Klitzke, Sondra; Schroeder, Jendrik; Selinka, Hans-Christoph; Szewzyk, Regine; Chorus, Ingrid

    2015-06-15

    Redox conditions are known to affect the fate of viruses in porous media. Several studies report the relevance of colloid-facilitated virus transport in the subsurface, but detailed studies on the effect of anoxic conditions on virus retention in natural sediments are still missing. Therefore, we investigated the fate of viruses in natural flood plain sediments with different sesquioxide contents under anoxic conditions by considering sorption to the solid phase, sorption to mobilized colloids, and inactivation in the aqueous phase. Batch experiments were conducted under oxic and anoxic conditions at pH values between 5.1 and 7.6, using bacteriophages MS2 and PhiX174 as model viruses. In addition to free and colloid-associated bacteriophages, dissolved and colloidal concentrations of Fe, Al and organic C as well as dissolved Ca were determined. Results showed that regardless of redox conditions, bacteriophages did not adsorb to mobilized colloids, even under favourable charge conditions. Under anoxic conditions, attenuation of bacteriophages was dominated by sorption over inactivation, with MS2 showing a higher degree of sorption than PhiX174. Inactivation in water was low under anoxic conditions for both bacteriophages with about one log10 decrease in concentration during 16 h. Increased Fe/Al concentrations and a low organic carbon content of the sediment led to enhanced bacteriophage removal under anoxic conditions. However, even in the presence of sufficient Fe/A-(hydr)oxides on the solid phase, bacteriophage sorption was low. We presume that organic matter may limit the potential retention of sesquioxides in anoxic sediments and should thus be considered for the risk assessment of virus breakthrough in the subsurface. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. 76 FR 44079 - M (2003) PLC (f/k/a Marconi PLC), Mayfair Mining & Minerals, Inc., MM2 Group, Inc., Nayna...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] M (2003) PLC (f/k/a Marconi PLC), Mayfair Mining & Minerals, Inc.,MM2 Group, Inc., Nayna Networks, Inc., NCT Group, Inc., and Neptune Industries... securities of M (2003) PLC (f/k/a Marconi PLC) because it has not filed any periodic reports since the period...

  14. Development of a bacteriophage displayed peptide library and biosensor

    NASA Astrophysics Data System (ADS)

    Chin, Robert C.; Salazar, Noe; Mayo, Michael W.; Villavicencio, Victor I.; Taylor, Richard B.; Chambers, James P.; Valdes, James J.

    1996-04-01

    A miniaturized, handheld biosensor for identification of hazardous biowarfare agents with high specificity is being developed. An innovative biological recognition system based on bacteriophage displayed peptide receptors will be utilized in conjunction with the miniature biosensor technology being developed. A bacteriophage library has been constructed to provide the artificial receptors. The library can contain millions of bacteriophage with randomly displayed peptide sequences in the phage outer protein coat which act as binding sites for the agents of interest. This library will be used to 'bio-pan' for phages that bind to a number of toxins and infectious agents and can, thus, provide an endless supply of low cost, reliable, specific, and stable artificial receptors. The biosensor instrument will utilize evanescent wave, planar waveguide, far-red dyes, diode laser and miniature circuit technologies for performance and portability.

  15. Influence of water chemistry and travel distance on bacteriophage PRD-1 transport in a sandy aquifer

    USGS Publications Warehouse

    Blanford, W.J.; Brusseau, M.L.; Jim Yeh, T.-C.; Gerba, C.P.; Harvey, R.

    2005-01-01

    Experiments were conducted to evaluate the impact of groundwater chemistry and travel distance on the transport and fate behavior of PRD-1, a bacteriophage employed as a surrogate tracer for pathogenic enteric viruses. The experiments were conducted in the unconfined aquifer at the United States Geological Survey Cape Cod Toxic-Substances Hydrology Research Site in Falmouth, Massachusetts. The transport behavior of bromide (Br-) and PRD-1 were evaluated in a sewage-effluent contaminated zone and a shallower uncontaminated zone at this site. Several multilevel sampling devices located along a 13-m transect were used to collect vertically discrete samples to examine longitudinal and vertical variability of PRD-1 retardation and attenuation. The concentration of viable bacteriophage in the aqueous phase decreased greatly during the first few meters of transport. This decrease is attributed to a combination of colloid filtration (attachment) and inactivation. The removal was greater (10 -12 relative recovery) and occurred within the first meter for the uncontaminated zone, whereas it was lesser (10-9 relative recovery) and occurred over 4 m in the contaminated zone. The lesser removal observed for the contaminated zone is attributed to the influence of sorbed and dissolved organic matter, phosphate, and other anions, which are present in higher concentrations in the contaminated zone, on PRD-1 attachment. After the initial decrease, the aqueous PRD-1 concentrations remained essentially constant in both zones for the remainder of the tests (total travel distances of 13 m), irrespective of variations in geochemical properties within and between the two zones. The viable, mobile PRD-1 particles traveled at nearly the rate of bromide, which was used as a non-reactive tracer. The results of this study indicate that a small fraction of viable virus particles may persist in the aqueous phase and travel significant distances in the subsurface environment. ?? 2005 Elsevier Ltd

  16. Multiple roles of genome-attached bacteriophage terminal proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redrejo-Rodríguez, Modesto; Salas, Margarita, E-mail: msalas@cbm.csic.es

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid.more » Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.« less

  17. Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages.

    PubMed

    Soleimani-Delfan, Abbas; Etemadifar, Zahra; Emtiazi, Giti; Bouzari, Majid

    2015-01-01

    One of the most economically important bacterial pathogens of plants and plant products is Dickeya dadantii. This bacterium causes soft rot disease in tubers and other parts of the potato and other plants of the Solanaceae family. The application of restricted host range bacteriophages as biocontrol agents has recently gained widespread interest. This study purposed to isolate the infectious agent of the potato and evaluate its biocontrol by bacteriophages. Two phytopathogenic strains were isolated from infected potatoes, identified based on biochemical and 16S rRNA gene sequencing, and submitted to GenBank as D. dadantii strain pis3 (accession no. HQ423668) and D. dadantii strain sip4 (accession no. HQ423669). Their bacteriophages were isolated from Caspian Sea water by enriching the water filtrate with D. dadantii strains as hosts using spot or overlay methods. On the basis of morphotypes, the isolated bacteriophages were identified as members of the Myoviridae and Siphoviridae families and could inhibit the growth of antibiotic resistant D. dadantii strains in culture medium. Moreover, in Dickeya infected plants treated with bacteriophage, no disease progression was detected. No significant difference was seen between phage-treated and control plants. Thus, isolated bacteriophages can be suggested for the biocontrol of plant disease caused by Dickeya strains.

  18. Escherichia coli K1-Specific Bacteriophage CUS-3 Distribution and Function in Phase-Variable Capsular Polysialic Acid O Acetylation▿ †

    PubMed Central

    King, Michael R.; Vimr, Ross P.; Steenbergen, Susan M.; Spanjaard, Lodewijk; Plunkett, Guy; Blattner, Frederick R.; Vimr, Eric R.

    2007-01-01

    Escherichia coli K1 is the leading cause of human neonatal sepsis and meningitis and is important in other clinical syndromes of both humans and domestic animals; in this strain the polysialic acid capsule (K1 antigen) functions by inhibiting innate immunity. Recent discovery of the phase-variable capsular O acetylation mechanism indicated that the O-acetyltransferase gene, neuO, is carried on a putative K1-specific prophage designated CUS-3 (E. L. Deszo, S. M. Steenbergen, D. I. Freedberg, and E. R. Vimr, Proc. Natl. Acad. Sci. USA 102:5564-5569, 2005). Here we describe the isolation and characterization of a CUS-3 derivative (CUS-3a), demonstrating its morphology, lysogenization of a sensitive host, and the distribution of CUS-3 among a collection of 111 different K1 strains. The 40,207-bp CUS-3 genome was annotated from the strain RS218 genomic DNA sequence, indicating that most of the 63 phage open reading frames have their closest homologues in one of seven different lambdoid phages. Translational fusion of a reporter lacZ fragment to the hypervariable poly-Ψ domain facilitated measurement of phase variation frequencies, indicating no significant differences between switch rates or effects on rates of the methyl-directed mismatch repair system. PCR analysis of poly-Ψ domain length indicated preferential loss or gain of single 5′-AAGACTC-3′ nucleotide repeats. Analysis of a K1 strain previously reported as “locked on” indicated a poly-Ψ region with the least number of heptad repeats compatible with in-frame neuO expression. The combined results establish CUS-3 as an active mobile contingency locus in E. coli K1, indicating its capacity to mediate population-wide capsule variation. PMID:17601779

  19. Use of PRD1 bacteriophage in groundwater viral transport, inactivation, and attachment studies

    USGS Publications Warehouse

    Harvey, R.W.; Ryan, J.N.

    2004-01-01

    PRD1, an icosahedra-shaped, 62 nm (diameter), double-stranded DNA bacteriophage with an internal membrane, has emerged as an important model virus for studying the manner in which microorganisms are transported through a variety of groundwater environments. The popularity of this phage for use in transport studies involving geologic media is due, in part, to its relative stability over a range of temperatures and low degree of attachment in aquifer sediments. Laboratory and field investigations employing PRD1 are leading to a better understanding of viral attachment and transport behaviors in saturated geologic media and to improved methods for describing mathematically subsurface microbial transport at environmentally significant field scales. Radioisotopic labeling of PRD1 is facilitating additional information about the nature of viral interactions with solid surfaces in geologic media, the importance of iron oxide surfaces, and allowing differentiation between inactivation and attachment in field-scale tracer tests. ?? 2004 Published by Elsevier B.V. on behalf of the Federation of European Microbiological Societies.

  20. Antigenic properties of HCMV peptides displayed by filamentous bacteriophages vs. synthetic peptides.

    PubMed

    Ulivieri, Cristina; Citro, Alessandra; Ivaldi, Federico; Mascolo, Dina; Ghittoni, Raffaella; Fanigliulo, Daniela; Manca, Fabrizio; Baldari, Cosima Tatiana; Li Pira, Giuseppina; Del Pozzo, Giovanna

    2008-08-15

    Several efforts have been invested in the identification of CTL and Th epitopes, as well as in the characterization of their immunodominance and MHC restriction, for the generation of a peptide-based HCMV vaccine. Small synthetic peptides are, however, poor antigens and carrier proteins are important for improving the efficacy of synthetic peptide vaccines. Recombinant bacteriophages appear as promising tools in the design of subunit vaccines. To investigate the antigenicity of peptides carried by recombinant bacteriophages we displayed different HCMV MHCII restricted peptides on the capsid of filamentous bacteriophage (fd) and found that hybrid bacteriophages are processed by human APC and activate HCMV-specific CD4 T-cells. Furthermore we constructed a reporter T-cell hybridoma expressing a chimeric TCR comprising murine alphabeta constant regions and human variable regions specific for the HLA-A2 restricted immunodominant NLV peptide of HCMV. Using the filamentous bacteriophage as an epitope carrier, we detected a more robust and long lasting response of the reporter T-cell hybridoma compared to peptide stimulation. Our results show a general enhancement of T-cell responses when antigenic peptides are carried by phages.

  1. THE INACTIVATION OF PENICILLINS F, G, K, AND X BY HUMAN AND RABBIT SERUM

    PubMed Central

    Eagle, Harry

    1947-01-01

    1. Penicillins F, G, K, and X were all inactivated by human and rabbit serum, but two qualitatively distinct mechanisms were apparently involved. 2. One was a slow inactivation of all four penicillins by a relatively thermostable serum component which was not demonstrably affected by heating for 60 minutes at 56°C. (a) In both human and rabbit serum this general inactivation of penicillin behaved like a pseudo first order reaction, with a velocity constant of 0.05–0.07 for penicillin X, and 0.09–0.11 for penicillins F and G. (b) The percentage of penicillins F, G, and X inactivated per hour was independent of their concentration over the range 0.4 to 50 micrograms per cc., averaging 9.5, 10, and 6.5 per cent, respectively, in human serum, and 9,8.5, and 5 per cent in rabbit serum. (c) The rate of inactivation varied linearly with the concentration of the serum factor. (d) Penicillin X was consistently and significantly less susceptible to inactivation than any of the other penicillins. Although minor differences were observed between F and G, these were not consistent, and are of questionable significance. 3. Superimposed on this slow inactivation of penicillins F, G, K, and X by a thermostable serum component was a much faster inactivation observed only with penicillin K. (a) In both rabbit and human serum, the serum factor responsible for this inactivation was highly thermolabile, and was almost completely destroyed within 5 minutes at 56°C., leaving only a thermostable component, not affected by further heating. (b) The inactivation of K by this thermolabile component was not a first order reaction, but varied with the concentration of both serum and penicillin. At high concentrations of K, the rate of inactivation due to the thermolabile factor was negligible, and penicillin K was destroyed no more rapidly than F, G, or X. The rate of inactivation increased as the concentration of penicillin was reduced. At penicillin K concentrations of 50, 10, 2, and 0

  2. Double-stranded DNA organization in bacteriophage heads: an alternative toroid-based model.

    PubMed Central

    Hud, N V

    1995-01-01

    Studies of the organization of double-stranded DNA within bacteriophage heads during the past four decades have produced a wealth of data. However, despite the presentation of numerous models, the true organization of DNA within phage heads remains unresolved. The observations of toroidal DNA structures in electron micrographs of phage lysates have long been cited as support for the organization of DNA in a spool-like fashion. This particular model, like all other models, has not been found to be consistent will all available data. Recently we proposed that DNA within toroidal condensates produced in vitro is organized in a manner significantly different from that suggested by the spool model. This new toroid model has allowed the development of an alternative model for DNA organization within bacteriophage heads that is consistent with a wide range of biophysical data. Here we propose that bacteriophage DNA is packaged in a toroid that is folded into a highly compact structure. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:8534805

  3. Membrane filtration immobilization technique-a simple and novel method for primary isolation and enrichment of bacteriophages.

    PubMed

    Ghugare, G S; Nair, A; Nimkande, V; Sarode, P; Rangari, P; Khairnar, K

    2017-02-01

    To develop a method for the isolation and enrichment of bacteriophages selectively against specific bacteria coupled with a membrane filtration technique. Rapid isolation and concentration of host-specific bacteriophages was achieved by exposure of the sample suspected to contain bacteriophages to a specific host immobilized on a 0·45 μm membrane in a membrane filtration unit. The principle behind this method is the exploitation of host-specific interaction of bacteriophages with their host and maximizing this interaction using a classic membrane filtration method. This provides a chance for each bacteriophage in the sample to interact with the specific host on the membrane filter fitted with a vacuum pump. Specific bacteriophages of the host are retained on the membrane along with its host cells due to the effect of adsorption and these adsorbed bacteriophages (along with their hosts) on the filter disc are then amplified and enriched in regular nutritive broth tryptose soya broth by incubation. With the help of the plaque assay method, host-specific phages of various bacterial species were isolated, segregated and enriched. The phage concentration method coupled with membrane filtration immobilization of host bacteria was able to isolate and enrich the host-specific bacteriophages by several fold using a lower quantity of an environmental water sample, or other phage suspensions. Enrichment of phages from single plaques was also achieved. The isolation and detection of host-specific bacteriophages from a low density bacteriophage water sample in a single step by the use of a simple and basic microbiological technique can be achieved. Enrichment of phages from low phage titre suspensions is also achieved very effectively. © 2016 The Society for Applied Microbiology.

  4. The construction of space-like surfaces with k1k2 - m(k1 + k2) = 1 in Minkowski three-space

    NASA Astrophysics Data System (ADS)

    Cao, Xi-Fang

    2002-07-01

    From solutions of the sinh-Laplace equation, we construct a family of space-like surfaces with k1k2 - m(k1 + k2) = 1 in Minkowski three-space, where k1 and k2 are principal curvatures and m is an arbitrary constant.

  5. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture

    PubMed Central

    Álvarez, Belén; Biosca, Elena G.

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum, R. pseudosolanacearum, and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis, not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta. Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field. PMID:28769942

  6. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture.

    PubMed

    Álvarez, Belén; Biosca, Elena G

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum , R. pseudosolanacearum , and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis , not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta . Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field.

  7. Self-Assembled Nanoporous Biofilms from Functionalized Nanofibrous M13 Bacteriophage.

    PubMed

    Devaraj, Vasanthan; Han, Jiye; Kim, Chuntae; Kang, Yong-Cheol; Oh, Jin-Woo

    2018-06-12

    Highly periodic and uniform nanostructures, based on a genetically engineered M13 bacteriophage, displayed unique properties at the nanoscale that have the potential for a variety of applications. In this work, we report a multilayer biofilm with self-assembled nanoporous surfaces involving a nanofiber-like genetically engineered 4E-type M13 bacteriophage, which was fabricated using a simple pulling method. The nanoporous surfaces were effectively formed by using the networking-like structural layers of the M13 bacteriophage during self-assembly. Therefore, an external template was not required. The actual M13 bacteriophage-based fabricated multilayered biofilm with porous nanostructures agreed well with experimental and simulation results. Pores formed in the final layer had a diameter of about 150⁻500 nm and a depth of about 15⁻30 nm. We outline a filter application for this multilayered biofilm that enables selected ions to be extracted from a sodium chloride solution. Here, we describe a simple, environmentally friendly, and inexpensive fabrication approach with large-scale production potential. The technique and the multi-layered biofilms produced may be applied to sensor, filter, plasmonics, and bio-mimetic fields.

  8. Rate coefficients for the reaction of O(1D) with the atmospherically long-lived greenhouse gases NF3, SF3CF3, CHF3, C2F6, c-C3F8, n-C5F12, and n-C6F14

    NASA Astrophysics Data System (ADS)

    Baasandorj, M.; Hall, B. D.; Burkholder, J. B.

    2012-09-01

    The contribution of atmospherically persistent (long-lived) greenhouse gases to the radiative forcing of Earth has increased over the past several decades. The impact of highly fluorinated saturated compounds, in particular perfluorinated compounds, on climate change is a concern because of their long atmospheric lifetimes, which are primarily determined by stratospheric loss processes, as well as their strong absorption in the infrared "window" region. A potentially key stratospheric loss process for these compounds is their gas-phase reaction with electronically excited oxygen atoms, O(1D). Therefore, accurate reaction rate coefficient data is desired for input to climate change models. In this work, rate coefficients, k, were measured for the reaction of O(1D) with several key long-lived greenhouse gases, namely NF3, SF5CF3, CHF3 (HFC-23), C2F6, c-C4F8, n-C5F12, and n-C6F14. Room temperature rate coefficients for the total reaction, kTot, corresponding to loss of O(1D), and reactive channel, kR, corresponding to the loss of the reactant compound, were measured for NF3 and SF5CF3 using competitive reaction and relative rate methods, respectively. kR was measured for the CHF3 reaction and improved upper-limits were determined for the perfluorinated compounds included in this study. For NF3, kTot was determined to be (2.55 ± 0.38) × 10-11 cm3 molecule-1 s-1 and kR, which was measured using CF3Cl, N2O, CF2ClCF2Cl (CFC-114), and CF3CFCl2 (CFC-114a) as reference compounds, was determined to be (2.21 ± 0.33) × 10-11 cm3 molecule-1 s-1 corresponding to a reactive branching ratio of 0.87 ± 0.13. For SF5CF3, kTot = (3.24 ± 0.50) × 10-13 cm3 molecule-1 s-1 and kR < 5.8 × 10-14 cm3 molecule-1 s-1 were measured, where kR is a factor of three lower than the current recommendation of kTot for use in atmospheric modeling. For CHF3, kR was determined to be (2.35 ± 0.35) × 10-12 cm3 molecule-1 s-1, which corresponds to a reactive channel yield of 0.26 ± 0.04, and

  9. Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status

    PubMed Central

    Hraiech, Sami; Brégeon, Fabienne; Rolain, Jean-Marc

    2015-01-01

    Pulmonary infections involving Pseudomonas aeruginosa are among the leading causes of the deterioration of the respiratory status of cystic fibrosis (CF) patients. The emergence of multidrug-resistant strains in such populations, favored by iterative antibiotic cures, has led to the urgent need for new therapies. Among them, bacteriophage-based therapies deserve a focus. One century of empiric use in the ex-USSR countries suggests that bacteriophages may have beneficial effects against a large range of bacterial infections. Interest in bacteriophages has recently renewed in Western countries, and the in vitro data available suggest that bacteriophage-based therapy may be of significant interest for the treatment of pulmonary infections in CF patients. Although the clinical data concerning this specific population are relatively scarce, the beginning of the first large randomized study evaluating bacteriophage-based therapy in burn infections suggests that the time has come to assess the effectiveness of this new therapy in CF P. aeruginosa pneumonia. Consequently, the aim of this review is, after a brief history, to summarize the evidence concerning bacteriophage efficacy against P. aeruginosa and, more specifically, the in vitro studies, animal models, and clinical trials targeting CF. PMID:26213462

  10. Impact of calcium ion on cytotoxic effect of the boroxine derivative, K2[B3O3F4OH].

    PubMed

    Ivankovic, Sinisa; Stojkovic, Ranko; Maksimovic, Milka; Galic, Borivoj; Milos, Mladen

    2016-01-01

    The effect of Ca 2+ ions on the cytotoxic ability of boron heterocyclic compound dipotassium-trioxohydroxytetrafluorotriborate (K 2 [B 3 O 3 F 4 OH]), on in vitro tumor cells (mammary adenocarcinoma 4T1, melanoma B16F10 and squamous cell carcinoma SCCVII) and non-tumoral fibroblast cells (mouse dermal L929 and hamster lung V79) was examined. At small concentrations of Ca 2+ ions (0.42 mM), K 2 [B 3 O 3 F 4 OH] (3.85 mM) has a very strong cytotoxic effect on all cancer cells tested (89.1, 85.6 and 84.6%) and significantly less effect on normal cells (19.5 and 24.2%), respectively. Applying larger concentrations of Ca 2+ ions (9.42-72.42 mM), at the same concentration of K 2 [B 3 O 3 F 4 OH], no significant cytotoxic effect was detected on cancer cells and normal cells investigated. The selective ability of K 2 [B 3 O 3 F 4 OH], in the medium with a low concentration of Ca 2+ ions has a strong cytotoxic effect on cancer cells and very weak effect in normal cells, opens up the possibility of its application in antitumor therapy.

  11. Bacteriophage Procurement for Therapeutic Purposes

    PubMed Central

    Weber-Dąbrowska, Beata; Jończyk-Matysiak, Ewa; Żaczek, Maciej; Łobocka, Małgorzata; Łusiak-Szelachowska, Marzanna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages), discovered 100 years ago, are able to infect and destroy only bacterial cells. In the current crisis of antibiotic efficacy, phage therapy is considered as a supplementary or even alternative therapeutic approach. Evolution of multidrug-resistant and pandrug-resistant bacterial strains poses a real threat, so it is extremely important to have the possibility to isolate new phages for therapeutic purposes. Our phage laboratory and therapy center has extensive experience with phage isolation, characterization, and therapeutic application. In this article we present current progress in bacteriophages isolation and use for therapeutic purposes, our experience in this field and its practical implications for phage therapy. We attempt to summarize the state of the art: properties of phages, the methods for their isolation, criteria of phage selection for therapeutic purposes and limitations of their use. Perspectives for the use of genetically engineered phages to specifically target bacterial virulence-associated genes are also briefly presented. PMID:27570518

  12. Virulent Bacteriophages Can Target O104:H4 Enteroaggregative Escherichia coli in the Mouse Intestine

    PubMed Central

    Maura, Damien; Galtier, Matthieu; Le Bouguénec, Chantal

    2012-01-01

    In vivo bacteriophage targeting of enteroaggregative Escherichia coli (EAEC) was assessed using a mouse intestinal model of colonization with the O104:H4 55989Str strain and a cocktail of three virulent bacteriophages. The colonization model was shown to mimic asymptomatic intestinal carriage found in humans. The addition of the cocktail to drinking water for 24 h strongly decreased ileal and weakly decreased fecal 55989Str concentrations in a dose-dependent manner. These decreases in ileal and fecal bacterial concentrations were only transient, since 55989Str concentrations returned to their original levels 3 days later. These transient decreases were independent of the mouse microbiota, as similar results were obtained with axenic mice. We studied the infectivity of each bacteriophage in the ileal and fecal environments and found that 55989Str bacteria in the mouse ileum were permissive to all three bacteriophages, whereas those in the feces were permissive to only one bacteriophage. Our results provide the first demonstration that bacterial permissivity to infection with virulent bacteriophages is not uniform throughout the gut; this highlights the need for a detailed characterization of the interactions between bacteria and bacteriophages in vivo for the further development of phage therapy targeting intestinal pathogens found in the gut of asymptomatic human carriers. PMID:23006754

  13. The roles of bacteriophages in membrane-based water and wastewater treatment processes: A review.

    PubMed

    Wu, Bing; Wang, Rong; Fane, Anthony G

    2017-03-01

    Membrane filtration processes have been widely applied in water and wastewater treatment for many decades. Concerns related to membrane treatment effectiveness, membrane lifespan, and membrane fouling control have been paid great attention. To achieve sustainable membrane operation with regards to low energy and maintenance cost, monitoring membrane performance and applying suitable membrane control strategies are required. As the most abundant species in water and wastewater, bacteriophages have shown great potential to be employed in membrane processes as (1) indicators to assess membrane performance considering their similar properties to human pathogenic waterborne viruses; (2) surrogate particles to monitor membrane integrity due to their nano-sized nature; and (3) biological agents to alleviate membrane fouling because of their antimicrobial properties. This study aims to provide a comprehensive review on the roles of bacteriophages in membrane-based water and wastewater treatment processes, with focuses on their uses for membrane performance examination, membrane integrity monitoring, and membrane biofouling control. The advantages, limitations, and influencing factors for bacteriophage-based applications are reported. Finally, the challenges and prospects of bacteriophage-based applications in membrane processes for water treatment are highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Temperate bacteriophage {phi}O18P from an Aeromonas media isolate: Characterization and complete genome sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beilstein, Frauke; Dreiseikelmann, Brigitte

    2008-03-30

    A group of 74 Aeromonas isolates from surface water of three ponds in Bielefeld, Germany was screened for prophage induction after UV irradiation. The phage {phi}O18P was induced from the Aeromonas media isolate O18. {phi}O18P belongs to the Myoviridae phage family. The complete nucleotide sequence of the double stranded DNA genome of bacteriophage {phi}O18P consists of 33,985 bp. The genome has 5' protruding cohesive ends of 16 bases. On the {phi}O18P genome 46 open reading frames (orfs) were identified which are organized in the modules integration and regulation, replication, head, packaging, tail and lysis. Additionally the phage DNA includes amore » methylase gene. Comparison of the genome architecture with those of other bacteriophages revealed significant similarities to the P2 phage family and especially to the prophages of Aeromonas salmonicida and the Vibrio cholerae phage K139.« less

  15. [Immunodetection of bacteriophages by a piezoelectric resonator with lateral electric field].

    PubMed

    Gulii, O I; Zaitsev, B D; Shikhabudinov, A M; Teplykh, A A; Borodina, I A; Pavlii, S A; Larionova, O S; Fomin, A S; Staroverov, S A; Dykman, L A; Ignatov, O V

    2016-01-01

    It has been demonstrated that electroacoustic analysis with polyclonal antibodies can be used for bacteriophage detection. The frequency dependences of the real and imaginary parts of electrical impedance of a resonator with a viral suspension with antibodies were shown to be essentially different from the dependences of a resonator with control viral suspension without antibodies. It was shown that ΦAl-Sp59b bacteriophages were detected with the use of antibodies in the presence of foreign virus particles. The ΦAl-Sp59b bacteriophage content in the analyzed suspension was ~1010–106 phages/mL; the time of analysis was no more than 5 min. The optimally informative parameter for obtaining reliable information was the change in the real or imaginary part of electrical impedance at a fixed frequency near the resonance upon the addition of specific antibodies to the analyzed suspension. It was demonstrated that the interaction between bacteriophages and antibodies can be recorded, offering good prospects for the development of a biological sensor for liquid-phase identification and virus detection.

  16. ''1/f noise'' in music: Music from 1/f noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, R.F.; Clarke, J.

    1978-01-01

    The spectral density of fluctuations in the audio power of many musical selections and of English speech varies approximately as 1/f (f is the frequency) down to a frequency of 5 x 10/sup -4/ Hz. This result implies that the audio-power fluctuations are correlated over all times in the same manner as ''1/f noise'' in electronic components. The frequency fluctuations of music also have a 1/f spectral density at frequencies down to the inverse of the length of the piece of music. The frequency fluctuations of English speech have a quite different behavior, with a single characteristic time of aboutmore » 0.1 s, the average length of a syllable. The observations on music suggest that 1/f noise is a good choice for stochastic composition. Compositions in which the frequency and duration of each note were determined by 1/f noise sources sounded pleasing. Those generated by white-noise sources sounded too random, while those generated by 1/f/sup 2/ noise sounded too correlated.« less

  17. Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus.

    PubMed

    Ji, Xiuling; Zhang, Chunjing; Fang, Yuan; Zhang, Qi; Lin, Lianbing; Tang, Bing; Wei, Yunlin

    2015-02-01

    As a unique ecological system with low temperature and low nutrient levels, glaciers are considered a "living fossil" for the research of evolution. In this work, a lytic cold-active bacteriophage designated VMY22 against Bacillus cereus MYB41-22 was isolated from Mingyong Glacier in China, and its characteristics were studied. Electron microscopy revealed that VMY22 has an icosahedral head (59.2 nm in length, 31.9 nm in width) and a tail (43.2 nm in length). Bacteriophage VMY22 was classified as a Podoviridae with an approximate genome size of 18 to 20 kb. A one-step growth curve revealed that the latent and the burst periods were 70 and 70 min, respectively, with an average burst size of 78 bacteriophage particles per infected cell. The pH and thermal stability of bacteriophage VMY22 were also investigated. The maximum stability of the bacteriophage was observed to be at pH 8.0 and it was comparatively stable at pH 5.0-9.0. As VMY22 is a cold-active bacteriophage with low production temperature, its characterization and the relationship between MYB41-22 and Bacillus cereus bacteriophage deserve further study.

  18. Oscillations and waves in a spatially distributed system with a 1/f spectrum

    NASA Astrophysics Data System (ADS)

    Koverda, V. P.; Skokov, V. N.

    2018-02-01

    A spatially distributed system with a 1/f power spectrum is described by two nonlinear stochastic equations. Conditions for the formation of auto-oscillations have been found using numerical methods. The formation of a 1/f and 1/k spectrum simultaneously with the formation and motion of waves under the action of white noise has been demonstrated. The large extreme fluctuations with 1/f and 1/k spectra correspond to the maximum entropy, which points to the stability of such processes. It is shown that on the background of formation and motion of waves at an external periodic action there appears spatio-temporal stochastic resonance, at which one can observe the expansion of the region of periodic pulsations under the action of white noise.

  19. MOF-Bacteriophage Biosensor for Highly Sensitive and Specific Detection of Staphylococcus aureus.

    PubMed

    Bhardwaj, Neha; Bhardwaj, Sanjeev K; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash

    2017-10-04

    To produce a sensitive and specific biosensor for Staphylococcus aureus, bacteriophages have been interfaced with a water-dispersible and environmentally stable metal-organic framework (MOF), NH 2 -MIL-53(Fe). The conjugation of the MOF with bacteriophages has been achieved through the use of glutaraldehyde as cross-linker. Highly sensitive detection of S. aureus in both synthetic and real samples was realized by the proposed MOF-bacteriophage biosensor based on the photoluminescence quenching phenomena: limit of detection (31 CFU/mL) and range of detection (40 to 4 × 10 8 CFU/mL). This is the first report exploiting the use of an MOF-bacteriophage complex for the biosensing of S. aureus. The results of our study highlight that the proposed biosensor is more sensitive than most of the previous methods while exhibiting some advanced features like specificity, regenerability, extended range of linear detection, and stability for long-term storage (even at room temperature).

  20. Pulmonary Bacteriophage Therapy on Pseudomonas aeruginosa Cystic Fibrosis Strains: First Steps Towards Treatment and Prevention

    PubMed Central

    Morello, Eric; Saussereau, Emilie; Maura, Damien; Huerre, Michel; Touqui, Lhousseine; Debarbieux, Laurent

    2011-01-01

    Multidrug-resistant bacteria are the cause of an increasing number of deadly pulmonary infections. Because there is currently a paucity of novel antibiotics, phage therapy—the use of specific viruses that infect bacteria—is now more frequently being considered as a potential treatment for bacterial infections. Using a mouse lung-infection model caused by a multidrug resistant Pseudomonas aeruginosa mucoid strain isolated from a cystic fibrosis patient, we evaluated bacteriophage treatments. New bacteriophages were isolated from environmental samples and characterized. Bacteria and bacteriophages were applied intranasally to the immunocompetent mice. Survival was monitored and bronchoalveolar fluids were analysed. Quantification of bacteria, bacteriophages, pro-inflammatory and cytotoxicity markers, as well as histology and immunohistochemistry analyses were performed. A curative treatment (one single dose) administrated 2 h after the onset of the infection allowed over 95% survival. A four-day preventive treatment (one single dose) resulted in a 100% survival. All of the parameters measured correlated with the efficacy of both curative and preventive bacteriophage treatments. We also showed that in vitro optimization of a bacteriophage towards a clinical strain improved both its efficacy on in vivo treatments and its host range on a panel of 20 P. aeruginosa cystic fibrosis strains. This work provides an incentive to develop clinical studies on pulmonary bacteriophage therapy to combat multidrug-resistant lung infections. PMID:21347240

  1. Rate coefficients for the reaction of O(1D) with the atmospherically long-lived greenhouse gases NF3, SF5CF3, CHF3, C2F6, c-C4F8, n-C5F12, and n-C6F14

    NASA Astrophysics Data System (ADS)

    Baasandorj, M.; Hall, B. D.; Burkholder, J. B.

    2012-12-01

    The contribution of atmospherically persistent (long-lived) greenhouse gases to the radiative forcing of Earth has increased over the past several decades. The impact of highly fluorinated, saturated compounds, in particular perfluorinated compounds, on climate change is a concern because of their long atmospheric lifetimes, which are primarily determined by stratospheric loss processes, as well as their strong absorption in the infrared "window" region. A potentially key stratospheric loss process for these compounds is their gas-phase reaction with electronically excited oxygen atoms, O(1D). Therefore, accurate reaction rate coefficient data is desired for input to climate change models. In this work, rate coefficients, k, were measured for the reaction of O(1D) with several key long-lived greenhouse gases, namely NF3, SF5CF3, CHF3 (HFC-23), C2F6, c-C4F8, n-C5F12, and n-C6F14. Room temperature rate coefficients for the total reaction, kTot, corresponding to loss of O(1D), and reactive channel, kR, corresponding to the loss of the reactant compound, were measured for NF3 and SF5CF3 using competitive reaction and relative rate methods, respectively. kR was measured for the CHF3 reaction and improved upper-limits were determined for the perfluorinated compounds included in this study. For NF3, kTot was determined to be (2.55 ± 0.38) × 10-11 cm3 molecule-1 s-1 and kR, which was measured using CF3Cl, N2O, CF2ClCF2Cl (CFC-114), and CF3CFCl2 (CFC-114a) as reference compounds, was determined to be (2.21 ± 0.33) × 10-11 cm3 molecule-1 s-1. For SF5CF3, kTot = (3.24 ± 0.50) × 10-13 cm3 molecule-1 s-1 and kR < 5.8 × 10×14 cm3 molecule-1 s-1 were measured, where kR is a factor of three lower than the current recommendation of kTot for use in atmospheric modeling. For CHF3 kR was determined to be (2.35 ± 0.35) × 10-12 cm3 molecule-1 s-1, which corresponds to a reactive channel yield of 0.26 ± 0.04, and resolves a large discrepancy among previously reported values

  2. Genomic and proteomic characterization of SuMu, a Mu-like bacteriophage infecting Haemophilus parasuis

    PubMed Central

    2012-01-01

    Background Haemophilus parasuis, the causative agent of Glässer’s disease, is prevalent in swine herds and clinical signs associated with this disease are meningitis, polyserositis, polyarthritis, and bacterial pneumonia. Six to eight week old pigs in segregated early weaning herds are particularly susceptible to the disease. Insufficient colostral antibody at weaning or the mixing of pigs with heterologous virulent H. parasuis strains from other farm sources in the nursery or grower-finisher stage are considered to be factors for the outbreak of Glässer’s disease. Previously, a Mu-like bacteriophage portal gene was detected in a virulent swine isolate of H. parasuis by nested polymerase chain reaction. Mu-like bacteriophages are related phyologenetically to enterobacteriophage Mu and are thought to carry virulence genes or to induce host expression of virulence genes. This study characterizes the Mu-like bacteriophage, named SuMu, isolated from a virulent H. parasuis isolate. Results Characterization was done by genomic comparison to enterobacteriophage Mu and proteomic identification of various homologs by mass spectrometry. This is the first report of isolation and characterization of this bacteriophage from the Myoviridae family, a double-stranded DNA bacteriophage with a contractile tail, from a virulent field isolate of H. parasuis. The genome size of bacteriophage SuMu was 37,151 bp. DNA sequencing revealed fifty five open reading frames, including twenty five homologs to Mu-like bacteriophage proteins: Nlp, phage transposase-C-terminal, COG2842, Gam-like protein, gp16, Mor, peptidoglycan recognition protein, gp29, gp30, gpG, gp32, gp34, gp36, gp37, gpL, phage tail tube protein, DNA circulation protein, gpP, gp45, gp46, gp47, COG3778, tail fiber protein gp37-C terminal, tail fiber assembly protein, and Com. The last open reading frame was homologous to IS1414. The G + C content of bacteriophage SuMu was 41.87% while its H. parasuis host genome

  3. Genomic and proteomic characterization of SuMu, a Mu-like bacteriophage infecting Haemophilus parasuis.

    PubMed

    Zehr, Emilie S; Tabatabai, Louisa B; Bayles, Darrell O

    2012-07-23

    Haemophilus parasuis, the causative agent of Glässer's disease, is prevalent in swine herds and clinical signs associated with this disease are meningitis, polyserositis, polyarthritis, and bacterial pneumonia. Six to eight week old pigs in segregated early weaning herds are particularly susceptible to the disease. Insufficient colostral antibody at weaning or the mixing of pigs with heterologous virulent H. parasuis strains from other farm sources in the nursery or grower-finisher stage are considered to be factors for the outbreak of Glässer's disease. Previously, a Mu-like bacteriophage portal gene was detected in a virulent swine isolate of H. parasuis by nested polymerase chain reaction. Mu-like bacteriophages are related phyologenetically to enterobacteriophage Mu and are thought to carry virulence genes or to induce host expression of virulence genes. This study characterizes the Mu-like bacteriophage, named SuMu, isolated from a virulent H. parasuis isolate. Characterization was done by genomic comparison to enterobacteriophage Mu and proteomic identification of various homologs by mass spectrometry. This is the first report of isolation and characterization of this bacteriophage from the Myoviridae family, a double-stranded DNA bacteriophage with a contractile tail, from a virulent field isolate of H. parasuis. The genome size of bacteriophage SuMu was 37,151 bp. DNA sequencing revealed fifty five open reading frames, including twenty five homologs to Mu-like bacteriophage proteins: Nlp, phage transposase-C-terminal, COG2842, Gam-like protein, gp16, Mor, peptidoglycan recognition protein, gp29, gp30, gpG, gp32, gp34, gp36, gp37, gpL, phage tail tube protein, DNA circulation protein, gpP, gp45, gp46, gp47, COG3778, tail fiber protein gp37-C terminal, tail fiber assembly protein, and Com. The last open reading frame was homologous to IS1414. The G + C content of bacteriophage SuMu was 41.87% while its H. parasuis host genome's G + C content was

  4. Occurrence of bacteriophages infecting Aeromonas, Enterobacter, and Klebsiella in water and association with contamination sources in Thailand.

    PubMed

    Wangkahad, Bencharong; Bosup, Suchada; Mongkolsuk, Skorn; Sirikanchana, Kwanrawee

    2015-06-01

    The co-residence of bacteriophages and their bacterial hosts in humans, animals, and environmental sources directed the use of bacteriophages to track the origins of the pathogenic bacteria that can be found in contaminated water. The objective of this study was to enumerate bacteriophages of Aeromonas caviae (AecaKS148), Enterobacter sp. (EnspKS513), and Klebsiella pneumoniae (KlpnKS648) in water and evaluate their association with contamination sources (human vs. animals). Bacterial host strains were isolated from untreated wastewater in Bangkok, Thailand. A double-layer agar technique was used to detect bacteriophages. All three bacteriophages were detected in polluted canal samples, with likely contamination from human wastewater, whereas none was found in non-polluted river samples. AecaKS148 was found to be associated with human fecal sources, while EnspKS513 and KlpnKS648 seemed to be equally prevalent in both human and animal fecal sources. Both bacteriophages were also present in polluted canals that could receive contamination from other fecal sources or the environment. In conclusion, all three bacteriophages were successfully monitored in Bangkok, Thailand. This study provided an example of bacteriophages for potential use as source identifiers of pathogen contamination. The results from this study will assist in controlling sources of pathogen contamination, especially in developing countries.

  5. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial.

    PubMed

    Leitner, Lorenz; Sybesma, Wilbert; Chanishvili, Nina; Goderdzishvili, Marina; Chkhotua, Archil; Ujmajuridze, Aleksandre; Schneider, Marc P; Sartori, Andrea; Mehnert, Ulrich; Bachmann, Lucas M; Kessler, Thomas M

    2017-09-26

    Urinary tract infections (UTI) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming. Thus, well-tolerated, highly effective therapeutic alternatives are urgently needed. Although there is evidence indicating that bacteriophage therapy may be effective and safe for treating UTIs, the number of investigated patients is low and there is a lack of randomized controlled trials. This study is the first randomized, placebo-controlled, double-blind trial investigating bacteriophages in UTI treatment. Patients planned for transurethral resection of the prostate are screened for UTIs and enrolled if in urine culture eligible microorganisms ≥10 4 colony forming units/mL are found. Patients are randomized in a double-blind fashion to the 3 study treatment arms in a 1:1:1 ratio to receive either: a) bacteriophage (i.e. commercially available Pyo bacteriophage) solution, b) placebo solution, or c) antibiotic treatment according to the antibiotic sensitivity pattern. All treatments are intended for 7 days. No antibiotic prophylaxes will be given to the double-blinded treatment arms a) and b). As common practice, the Pyo bacteriophage cocktail is subjected to periodic adaptation cycles during the study. Urinalysis, urine culture, bladder and pain diary, and IPSS questionnaire will be completed prior to and at the end of treatment (i.e. after 7 days) or at withdrawal/drop out from the study. Patients with persistent UTIs will undergo antibiotic treatment according to antibiotic sensitivity pattern. Based on the high lytic activity and the potential of resistance optimization by direct adaptation of bacteriophages, and considering the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a very promising treatment option for UTIs. Thus, our randomized controlled trial investigating bacteriophages for treating UTIs will provide

  6. An Ensemble Method to Distinguish Bacteriophage Virion from Non-Virion Proteins Based on Protein Sequence Characteristics.

    PubMed

    Zhang, Lina; Zhang, Chengjin; Gao, Rui; Yang, Runtao

    2015-09-09

    Bacteriophage virion proteins and non-virion proteins have distinct functions in biological processes, such as specificity determination for host bacteria, bacteriophage replication and transcription. Accurate identification of bacteriophage virion proteins from bacteriophage protein sequences is significant to understand the complex virulence mechanism in host bacteria and the influence of bacteriophages on the development of antibacterial drugs. In this study, an ensemble method for bacteriophage virion protein prediction from bacteriophage protein sequences is put forward with hybrid feature spaces incorporating CTD (composition, transition and distribution), bi-profile Bayes, PseAAC (pseudo-amino acid composition) and PSSM (position-specific scoring matrix). When performing on the training dataset 10-fold cross-validation, the presented method achieves a satisfactory prediction result with a sensitivity of 0.870, a specificity of 0.830, an accuracy of 0.850 and Matthew's correlation coefficient (MCC) of 0.701, respectively. To evaluate the prediction performance objectively, an independent testing dataset is used to evaluate the proposed method. Encouragingly, our proposed method performs better than previous studies with a sensitivity of 0.853, a specificity of 0.815, an accuracy of 0.831 and MCC of 0.662 on the independent testing dataset. These results suggest that the proposed method can be a potential candidate for bacteriophage virion protein prediction, which may provide a useful tool to find novel antibacterial drugs and to understand the relationship between bacteriophage and host bacteria. For the convenience of the vast majority of experimental Int. J. Mol. Sci. 2015, 16,21735 scientists, a user-friendly and publicly-accessible web-server for the proposed ensemble method is established.

  7. Bacteriophage significantly reduces Listeria monocytogenes on raw salmon fillet tissue

    USDA-ARS?s Scientific Manuscript database

    We have demonstrated the antilisterial activity of generally recognized as safe (GRAS) bacteriophage LISTEX P100 (phage P100) on the surface of raw salmon fillet tissue against Listeria monocytogenes serotypes 1/2a and 4b. In a broth model system, phage P100 completely inhibited L. monocytogenes gro...

  8. Interference with propagation of typing bacteriophages by extrachromosomal elements in Salmonella typhimurium: bacteriophage type 505.

    PubMed Central

    van Embden, J D; van Leeuwen, W J; Guinée, P A

    1976-01-01

    Samonella typhimurium bacteriophage type 505 is the most frequently encountered phage type in the Netherlands and its neighboring countries. Phage type 505 was analyzed with regard o the interference with propagation of the typing phages by the prophages and plasmids, present in the type strain S. typhimurium 505... Images PMID:783145

  9. 76 FR 66187 - Bacteriophage of Clavibacter Michiganensis Subspecies Michiganensis; Exemption From the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... bacteria, which means they attach to, infect, and reproduce in bacteria, and are host-specific for bacteria... bacteria. In addition, there is no evidence for bacteriophage infecting any other life form, including humans, except bacteria (Refs. 7, 12, and 13). Humans and other animals commonly consume bacteriophage as...

  10. Molecular Biology and Biotechnology of Bacteriophage

    NASA Astrophysics Data System (ADS)

    Onodera, Kazukiyo

    The development of the molecular biology of bacteriophage such as T4, lambda and filamentous phages was described and the process that the fundamental knowledge obtained in this field has subsequently led us to the technology of phage display was introduced.

  11. Removal of Surrogate Bacteriophages and Enteric Viruses from Seeded Environmental Waters Using a Semi-technical Ultrafiltration Unit.

    PubMed

    Frohnert, Anne; Kreißel, Katja; Lipp, Pia; Dizer, Halim; Hambsch, Beate; Szewzyk, Regine; Selinka, Hans-Christoph

    2015-03-19

    Experiments to determine the removal of viruses in different types of water (surface water from two reservoirs for drinking water treatment, treated groundwater and groundwater contaminated with either 5 or 30 % of wastewater) by ultrafiltration were performed with a semi-technical ultrafiltration unit. Concentrations of human adenoviruses (HAdVs), murine norovirus (MNV), and the bacteriophages MS2, ΦX174 and PRD1 were measured in the feed water and the filtrate, and log removal values were calculated. Bacteria added to the feed water were not detected in the filtrates. In contrast, in most cases viruses and bacteriophages were still present in the filtrates: log removal values were in the range of 1.4-6.3 depending on virus sizes and water qualities. Best removals were observed with bacteriophage PRD1 and HAdVs, followed by MNV and phages MS2 and ΦX174. Virus size, however, was not the only criterion for efficient removal. In diluted wastewater as compared to drinking water and uncontaminated environmental waters, virus removal was clearly higher for all viruses, most likely due to higher membrane fouling. For quality assessment purposes of membrane filtration efficiencies with regard to the elimination of human viruses the small bacteriophages MS2 and ΦX174 should be used as conservative viral indicators.

  12. Stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1.

    PubMed

    Schneider, G J; Geiduschek, E P

    1990-06-25

    The stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1 has been determined. 3H-Labeled TF1 was allowed to bind to a 32P-labeled DNA fragment containing a TF1 binding site. Multiple TF1-DNA complexes were resolved from each other and from unbound DNA by native gel electrophoresis. DNA-protein complexes were cut from polyacrylamide gels, and the amounts of 3H and 32P contained in each slice were measured. A ratio of 1.12 +/- 0.06 TF1 dimer/DNA molecule was calculated for the fastest-migrating TF1-DNA complex. We conclude that TF1 has a DNA-binding unit of one dimer. More slowly migrating complexes are apparently formed by serial addition of single TF1 dimers.

  13. Use of encapsulated bacteriophages to enhance farm to fork food safety.

    PubMed

    Hussain, Malik A; Liu, Huan; Wang, Qi; Zhong, Fang; Guo, Qian; Balamurugan, Sampathkumar

    2017-09-02

    Bacteriophages have been successfully applied to control the growth of pathogens in foods and to reduce the colonization and shedding of pathogens by food animals. They are set to play a dominant role in food safety in the future. However, many food-processing operations and the microenvironments in food animals' guts inactivate phages and reduce their infectivity. Encapsulation technologies have been used successfully to protect phages against extreme environments, and have been shown to preserve their activity and enable their release in targeted environments. A number of encapsulation technologies have shown potential for use with bacteriophages. This review discusses the current state of knowledge about the use of encapsulation technologies with bacteriophages to control pathogens in foods and food animals.

  14. Characterization of the Lytic Capability of a LysK-Like Endolysin, Lys-phiSA012, Derived from a Polyvalent Staphylococcus aureus Bacteriophage

    PubMed Central

    Nakamura, Tomohiro; Furusawa, Takaaki; Ohno, Hazuki; Takahashi, Hiromichi; Kitana, Junya; Usui, Masaru; Higuchi, Hidetoshi; Tamura, Yutaka

    2018-01-01

    Antibiotic-resistant bacteria (ARB) have spread widely and rapidly, with their increased occurrence corresponding with the increased use of antibiotics. Infections caused by Staphylococcus aureus have a considerable negative impact on human and livestock health. Bacteriophages and their peptidoglycan hydrolytic enzymes (endolysins) have received significant attention as novel approaches against ARB, including S. aureus. In the present study, we purified an endolysin, Lys-phiSA012, which harbors a cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) domain, an amidase domain, and a SH3b cell wall binding domain, derived from a polyvalent S. aureus bacteriophage which we reported previously. We demonstrate that Lys-phiSA012 exhibits high lytic activity towards staphylococcal strains, including methicillin-resistant S. aureus (MRSA). Analysis of deletion mutants showed that only mutants possessing the CHAP and SH3b domains could lyse S. aureus, indicating that lytic activity of the CHAP domain depended on the SH3b domain. The presence of at least 1 mM Ca2+ and 100 µM Zn2+ enhanced the lytic activity of Lys-phiSA012 in a turbidity reduction assay. Furthermore, a minimum inhibitory concentration (MIC) assay showed that the addition of Lys-phiSA012 decreased the MIC of oxacillin. Our results suggest that endolysins are a promising approach for replacing current antimicrobial agents and may contribute to the proper use of antibiotics, leading to the reduction of ARB. PMID:29495305

  15. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis.

    PubMed

    Porter, J; Anderson, J; Carter, L; Donjacour, E; Paros, M

    2016-03-01

    The objective of this study was to investigate the potential use of bacteriophage in preventing Escherichia coli mastitis on dairies. A cocktail consisting of 4 distinct bacteriophages was generated by screening against 36 E. coli isolates from dairy cows in Washington State with clinical mastitis. The bacteriophage significantly inhibited growth of 58% of the Washington State isolates and 54% of E. coli mastitis isolates from New York State, suggesting that the cocktail of phages had a relatively broad spectrum of action against relevant strains from 2 distinct geographies. The ability to suppress bacterial growth of these isolates in a liquid growth medium was not affected by the ratio of bacteriophage particles to bacterial cells (multiplicity of infection, MOI). For those E. coli that were completely inhibited by the phage cocktail, an MOI as low as 10 had the same effect as 10 µg/mL of ceftiofur on the growth rate of E. coli over a 12-h period using optical density measurements. A 3.3- to 5.6-log reduction of growth was achieved when E. coli was co-incubated with our phage cocktail in raw milk over a 12-h period at physiologic temperature. A modified gentamicin protection assay using bovine mammary epithelial cells provided a model to test whether bacteriophage could prevent cell attachment and invasion by chronic coliform mastitis strains. Pretreatment of cell cultures with the phage cocktail significantly reduced adhesion and intracellular survival of E. coli compared with controls. When combined with a bismuth-based teat sealant, the phage cocktail was able to inhibit bacterial growth when challenged with 1.6 × 10(3) cfu/mL of a clinical mastitis E. coli strain. In vitro results show bactericidal activity by our phage in raw milk and mammary tissue culture systems. Before a bacteriophage-based dry-cow treatment becomes a potential option for dairies, in vivo studies must be able to demonstrate that a specific dose of bacteriophage can protect cows from

  16. Methods for generation of reporter phages and immobilization of active bacteriophages on a polymer surface

    NASA Technical Reports Server (NTRS)

    Morgan, Mark Thomas (Inventor); Kothapalli, Aparna (Inventor); Applegate, Bruce Michael (Inventor); Perry, Lynda Louise (Inventor)

    2012-01-01

    Novel reporter bacteriophages are provided. Provided are compositions and methods that allow bacteriophages that are used for specific detection or killing of E. coli 0157:H7 to be propagated in nonpathogenic E. coli, thereby eliminating the safety and security risks of propagation in E. coli 0157:H7. Provided are compositions and methods for attaching active bacteriophages to the surface of a polymer in order to kill target bacteria with which the phage comes into contact. Provided are modified bacteriophages immobilized to a surface, which capture E. coli 0157:H7 and cause the captured cells to emit light or fluorescence, allowing detection of the bacteria in a sample.

  17. Isolation and characterization of Yersinia-specific bacteriophages from pig stools in Finland.

    PubMed

    Salem, M; Virtanen, S; Korkeala, H; Skurnik, M

    2015-03-01

    Bacteriophages infect bacteria, and they are present everywhere in the world including the intestinal tracts of animals. Yersiniosis is a common foodborne infection caused by Yersinia enterocolitica and Yersinia pseudotuberculosis. As these bacteria are frequently isolated from pigs, we wanted to know whether Yersinia-specific bacteriophages are also present in the pig stools and, if so, whether there is a positive or negative association between the prevalence of the Yersinia phages and the pathogenic Yersinia in the stool samples. Altogether 793 pig stool samples collected between November 2010 and March 2012 from 14 Finnish pig farms were screened for the presence of bacteriophages able to infect Y. enterocolitica serotype O:3, O:5,27 or O:9 strains, or Y. pseudotuberculosis serotype O:1a, O:1b or O:3 strains. Yersinia phages were isolated from 90 samples from eight farms. Yersinia enterocolitica O:3 was infected by 59 phages, 28 phages infected serotypes O:3 and O:5,27, and eight phages infected serotypes O:3, O:5,27 and O:9, and Y. pseudotuberculosis O:1a by eight phages. Many phages originating from pigs in the same farm were identical based on their restriction enzyme digestion patterns; 20 clearly different phages were selected for further characterization. Host ranges of these phages were tested with 94 Yersinia strains. Six of the phages infected eight strains, 13 phages infected three strains, and one phage infected only one strain, indicating that the phages had a relatively narrow host range. There was a clear association between the presence of the host bacteria and specific phages in the stools. The isolated bacteriophages may have potential as biocontrol agents for yersiniosis in both humans and pigs in future, and as alternatives or in addition to antibiotics. To our knowledge, this is the first reported isolation of Yersinia-specific phages from pig stool samples. © 2014 The Society for Applied Microbiology.

  18. Predictive sparse modeling of fMRI data for improved classification, regression, and visualization using the k-support norm.

    PubMed

    Belilovsky, Eugene; Gkirtzou, Katerina; Misyrlis, Michail; Konova, Anna B; Honorio, Jean; Alia-Klein, Nelly; Goldstein, Rita Z; Samaras, Dimitris; Blaschko, Matthew B

    2015-12-01

    We explore various sparse regularization techniques for analyzing fMRI data, such as the ℓ1 norm (often called LASSO in the context of a squared loss function), elastic net, and the recently introduced k-support norm. Employing sparsity regularization allows us to handle the curse of dimensionality, a problem commonly found in fMRI analysis. In this work we consider sparse regularization in both the regression and classification settings. We perform experiments on fMRI scans from cocaine-addicted as well as healthy control subjects. We show that in many cases, use of the k-support norm leads to better predictive performance, solution stability, and interpretability as compared to other standard approaches. We additionally analyze the advantages of using the absolute loss function versus the standard squared loss which leads to significantly better predictive performance for the regularization methods tested in almost all cases. Our results support the use of the k-support norm for fMRI analysis and on the clinical side, the generalizability of the I-RISA model of cocaine addiction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Isolation and characterization of two lytic cold-active bacteriophages infecting Pseudomonas fluorescens from the Napahai plateau wetland.

    PubMed

    Xiang, Yingying; Wang, Shuang; Li, Jiankai; Wei, Yunlin; Zhang, Qi; Lin, Lianbing; Ji, Xiuling

    2018-03-01

    As the "kidneys of the Earth", wetlands play important roles as biodiversity reservoirs, in water purification, and in flood control. In this study, 2 lytic cold-active bacteriophages, named VW-6S and VW-6B, infecting Pseudomonas fluorescens W-6 cells from the Napahai plateau wetland in China were isolated and characterized. Electron microscopy showed that both VW-6S and VW-6B had an icosahedral head (66.7 and 61.1 nm, respectively) and a long tail (8.3 nm width × 233.3 nm length and 11.1 nm width × 166.7 nm length, respectively). The bacteriophages VW-6S and VW-6B were classified as Siphoviridae and had an approximate genome size of 30-40 kb. The latent and burst periods of VW-6S were 60 and 30 min, whereas those of VW-6B were 30 and 30 min, respectively. The optimal pH values for the bacteriophages VW-6S and VW-6B were 8.0 and 10.0, respectively, and their activity decreased rapidly at temperatures higher than 60 °C. These cold-active bacteriophages provide good materials for further study of cold-adaptation mechanisms and interaction with the host P. fluorescens.

  20. 10 K gate I(2)L and 1 K component analog compatible bipolar VLSI technology - HIT-2

    NASA Astrophysics Data System (ADS)

    Washio, K.; Watanabe, T.; Okabe, T.; Horie, N.

    1985-02-01

    An advanced analog/digital bipolar VLSI technology that combines on the same chip 2-ns 10 K I(2)L gates with 1 K analog devices is proposed. The new technology, called high-density integration technology-2, is based on a new structure concept that consists of three major techniques: shallow grooved-isolation, I(2)L active layer etching, and I(2)L current gain increase. I(2)L circuits with 80-MHz maximum toggle frequency have developed compatibly with n-p-n transistors having a BV(CE0) of more than 10 V and an f(T) of 5 GHz, and lateral p-n-p transistors having an f(T) of 150 MHz.

  1. Quantum 1/f Noise in Solid State Devices in Particular Hg(1-x)Cd(x)Te N(+)-P Diodes

    DTIC Science & Technology

    1989-05-15

    1 / f noise in pentodes. 3. A. van der Ziel, P. H. Handel, X. C. Zhu, and K. H. Duh, "A theory of the Hooge parameters of solid-state...the progress reports 12. P. H. Hardel and A. van der Ziel, "Relativistic correction of the Hooge parameter for Umklapp 1 / f noise ," Physica, vol. 141B... Hooge parameter and of fundamental 1 / f noise sources. As a side result many quantum 1 / f noise formulas are verified

  2. Bacteriophages as vehicles for gene delivery into mammalian cells: prospects and problems.

    PubMed

    Bakhshinejad, Babak; Sadeghizadeh, Majid

    2014-10-01

    The identification of more efficient gene delivery vehicles (GDVs) is essential to fulfill the expectations of clinical gene therapy. Bacteriophages, due to their excellent safety profile, extreme stability under a variety of harsh environmental conditions and the capability for being genetically manipulated, have drawn a flurry of interest to be applied as a newly arisen category of gene delivery platforms. The incessant evolutionary interaction of bacteriophages with human cells has turned them into a part of our body's natural ecosystem. However, these carriers represent several barriers to gene transduction of mammalian cells. The lack of evolvement of specialized machinery for targeted cellular internalization, endosomal, lysosomal and proteasomal escape, cytoplasmic entry, nuclear localization and intranuclear transcription poses major challenges to the expression of the phage-carried gene. In this review, we describe pros and cons of bacteriophages as GDVs, provide an insight into numerous barriers that bacteriophages face for entry into and subsequent trafficking inside mammalian cells and elaborate on the strategies used to bypass these barriers. Tremendous genetic flexibility of bacteriophages to undergo numerous surface modifications through phage display technology has proven to be a turning point in the uncompromising efforts to surmount the limitations of phage-mediated gene expression. The revelatory outcomes of the studies undertaken within the recent years have been promising for phage-mediated gene delivery to move from concept to reality.

  3. ADSORPTION OF BACTERIOPHAGES ON CLAY MINERALS

    EPA Science Inventory

    Theability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and

  4. Soil-based systemic delivery and phyllosphere in vivo propagation of bacteriophages: Two possible strategies for improving bacteriophage persistence for plant disease control.

    PubMed

    Iriarte, Fanny B; Obradović, Aleksa; Wernsing, Mine H; Jackson, Lee E; Balogh, Botond; Hong, Jason A; Momol, M Timur; Jones, Jeffrey B; Vallad, Gary E

    2012-10-01

    Soil-based root applications and attenuated bacterial strains were evaluated as means to enhance bacteriophage persistence on plants for bacterial disease control. In addition, the systemic nature of phage applied to tomato roots was also evaluated. Several experiments were conducted applying either single phages or phage mixtures specific for Ralstonia solanacearum , Xanthomonas perforans or X. euvesicatoria to soil surrounding tomato plants and measuring the persistence and translocation of the phages over time. In general, all phages persisted in the roots of treated plants and were detected in stems and leaves; although phage level varied and persistence in stems and leaves was at a much lower level compared with persistence in roots. Bacterial wilt control was typically best if the phage or phage mixtures were applied to the soil surrounding tomatoes at the time of inoculation, less effective if applied 3 days before inoculation, and ineffective if applied 3 days after inoculation. The use of an attenuated X. perforans strain was also evaluated to improve the persistence of phage populations on tomato leaf surfaces. In greenhouse and field experiments, foliar applications of an attenuated mutant X. perforans 91-118:∆ OPGH strain prior to phage applications significantly improved phage persistence on tomato foliage compared with untreated tomato foliage. Both the soil-based bacteriophage delivery and the use of attenuated bacterial strains improved bacteriophage persistence on respective root and foliar tissues, with evidence of translocation with soil-based bacteriophage applications. Both strategies could lead to improved control of bacterial pathogens on plants.

  5. Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods.

    PubMed

    Lone, Ayesha; Anany, Hany; Hakeem, Mohammed; Aguis, Louise; Avdjian, Anne-Claire; Bouget, Marina; Atashi, Arash; Brovko, Luba; Rochefort, Dominic; Griffiths, Mansel W

    2016-01-18

    Due to lack of adequate control methods to prevent contamination in fresh produce and growing consumer demand for natural products, the use of bacteriophages has emerged as a promising approach to enhance safety of these foods. This study sought to control Listeria monocytogenes in cantaloupes and RTE meat and Escherichia coli O104:H4 in alfalfa seeds and sprouts under different storage conditions by using specific lytic bacteriophage cocktails applied either free or immobilized. Bacteriophage cocktails were introduced into prototypes of packaging materials using different techniques: i) immobilizing on positively charged modified cellulose membranes, ii) impregnating paper with bacteriophage suspension, and iii) encapsulating in alginate beads followed by application of beads onto the paper. Phage-treated and non-treated samples were stored for various times and at temperatures of 4°C, 12°C or 25°C. In cantaloupe, when free phage cocktail was added, L. monocytogenes counts dropped below the detection limit of the plating technique (<1 log CFU/g) after 5 days of storage at both 4°C and 12°C. However, at 25°C, counts below the detection limit were observed after 3 and 6h and a 2-log CFU/g reduction in cell numbers was seen after 24h. For the immobilized Listeria phage cocktail, around 1-log CFU/g reduction in the Listeria count was observed by the end of the storage period for all tested storage temperatures. For the alfalfa seeds and sprouts, regardless of the type of phage application technique (spraying of free phage suspension, bringing in contact with bacteriophage-based materials (paper coated with encapsulated bacteriophage or impregnated with bacteriophage suspension)), the count of E. coli O104:H4 was below the detection limit (<1 log CFU/g) after 1h in seeds and about a 1-log cycle reduction in E. coli count was observed on the germinated sprouts by day 5. In ready-to-eat (RTE) meat, LISTEX™ P100, a commercial phage product, was able to

  6. A novel blue-greenish emitting phosphor Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} with high thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Chao; Huang, Hongwei, E-mail: hhw@cugb.edu.cn; Hu, Yingmo, E-mail: huyingmo@cugb.edu.cn

    Highlights: • The Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} phosphors exhibit a broad excitation band. • The Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} emission color adjust from blue to green. • The Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} show superior thermal stability. - Abstract: Ba{sub 3}La{sub 1−m}K(PO{sub 4}){sub 3}F:mTb{sup 3+}(m = 0.01–0.50) phosphors have been prepared by a traditional high temperature solid-state reaction. XRD analysis verified the apatite-type phase structure of the as-prepared samples, and the morphology has been checked by the Scanning electron microscope (SEM). The emission spectrum of Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} phosphor consists of two regions, blue emission bandmore » from 380 to 470 nm and green emission band from 470 to 650 nm. With increasing Tb{sup 3+} ions doped concentration (m), the color hue of Ba{sub 3}La{sub 1−m}K(PO{sub 4}){sub 3}F:mTb{sup 3+}adjusts from blue to green. On the basis of concentration quenching method, the critical distance between Tb{sup 3+} ions is calculated to be 7.98 Å, suggesting that multipolar interaction predominate in quenching process. In addition, the temperature-dependence PL spectra of Ba{sub 3}LaK(PO{sub 4}){sub 3}F:0.01Tb{sup 3+} and Ba{sub 3}LaK(PO{sub 4}){sub 3}F:0.40Tb{sup 3+} phosphor are given,which exhibit superior thermal stability.« less

  7. Bacteriophage recombination systems and biotechnical applications.

    PubMed

    Nafissi, Nafiseh; Slavcev, Roderick

    2014-04-01

    Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses' life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed.

  8. Use of a bacteriophage cocktail to control Salmonella in food and the food industry.

    PubMed

    Spricigo, Denis Augusto; Bardina, Carlota; Cortés, Pilar; Llagostera, Montserrat

    2013-07-15

    The use of lytic bacteriophages for the biocontrol of food-borne pathogens in food and in the food industry is gaining increasing acceptance. In this study, the effectiveness of a bacteriophage cocktail composed of three different lytic bacteriophages (UAB_Phi 20, UAB_Phi78, and UAB_Phi87) was determined in four different food matrices (pig skin, chicken breasts, fresh eggs, and packaged lettuce) experimentally contaminated with Salmonella enterica serovar Typhimurium and S. enterica serovar Enteritidis. A significant bacterial reduction (>4 and 2 log/cm(2) for S. Typhimurium and S. Enteritidis, respectively; p≤0.005) was obtained in pig skin sprayed with the bacteriophage cocktail and then incubated at 33 °C for 6h. Significant decreases in the concentration of S. Typhimurium and S. Enteritidis were also measured in chicken breasts dipped for 5 min in a solution containing the bacteriophage cocktail and then refrigerated at 4 °C for 7 days (2.2 and 0.9 log10 cfu/g, respectively; p≤0.0001) as well as in lettuce similarly treated for 60 min at room temperature (3.9 and 2.2 log10 cfu/g, respectively; p≤0.005). However, only a minor reduction of the bacterial concentration (0.9 log10 cfu/cm(2) of S. Enteritidis and S. Typhimurium; p≤0.005) was achieved in fresh eggs sprayed with the bacteriophage cocktail and then incubated at 25 °C for 2 h. These results show the potential effectiveness of this bacteriophage cocktail as a biocontrol agent of Salmonella in several food matrices under conditions similar to those used in their production. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Theoretical model of the ionic mechanism of 1/f noise in nerve membrane.

    PubMed Central

    Clay, J R; Shlesinger, M F

    1976-01-01

    A model is presented for the ionic mechanism of low frequency 1/f electrical noise which has been observed in axonal membranes. The model consists of narrow channels which open randomly throughout the membrane and remain open for only a short time compared with f-1max where fmax approximately 2 kHz is the maximum frequency for which 1/f noise is observed. The fluctuation in channel formation is coupled to low frequency normal mode vibrations in liquid crystals which have properties similar to nerve membranes. Ionic current flow through the channels is assumed to occur via single file diffusion. The diffusion process is regarded as a non-Markovian random walk on a one-dimensional lattice which is mathematically decomposed into its spatial and temporal components. This technique allows calculation of the mean and variance of the number of ions which flow through any single short-lived channel. The final result for the current noise power spectrum, S, is S(f) = (A + k/I/2)/f, where I is the mean membrane current and A and k are parameters which are independent of membrane voltage. The theoretical result is consistent with observations of 1/f noise in lobster axon by Poussart (1971, Biophys. J. 11:212.) on the dependence of S(f) on the mean steady-state current and the external potassium concentration. We also calculate the mean channel density and the Frank elastic constant of the membrane. This work is an extension of a macroscopic model of Lundström and McQueen (1974, J. Theor. Biol. 45:405.) who obtain a spectral density of the form S approximately /I/2/f. PMID:1247642

  10. Characterization and formulation into solid dosage forms of a novel bacteriophage lytic against Klebsiella oxytoca.

    PubMed

    Brown, Teagan L; Petrovski, Steve; Hoyle, Dannielle; Chan, Hiu Tat; Lock, Peter; Tucci, Joseph

    2017-01-01

    To isolate and characterize bacteriophage lytic for the opportunistic pathogen Klebsiella oxytoca and their formulation into a range of solid dosage forms for in-vitro testing. We report the isolation, genomic and functional characterization of a novel bacteriophage lytic for Klebsiella oxytoca, which does not infect the closely related Klebsiella pneumoniae. This bacteriophage was formulated into suppositories and troches and shown to be released and lyse underlying Klebsiella oxytoca bacteria in an in-vitro model. These bacteriophage formulations were stable for at least 49 days at 4°C. The successful in-vitro assay of these formulations here suggests that they could potentially be tested in-vivo to determine whether such a therapeutic approach could modulate the gut microbiome, and control Klebsiella oxytoca overgrowth, during antibiotic therapy regimes. This study reports a novel bacteriophage specific for Klebsiella oxytoca which can be formulated into solid dosage forms appropriate for potential delivery in testing as a therapy to modulate gut microbiome during antibiotic therapies.

  11. 76 FR 54468 - Petra Pet, Inc. (a/k/a Petrapport) v. Panda Logistics Limited; Panda Logistics Co., Ltd. (f/k/a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... FEDERAL MARITIME COMMISSION [Docket No. 11-14] Petra Pet, Inc. (a/k/a Petrapport) v. Panda Logistics Limited; Panda Logistics Co., Ltd. (f/k/a panda Int'l Transportation Co., Ltd.); and RDM Solutions... with the Federal Maritime Commission (Commission) by Petra Pet, Inc. (a/k/a Petrapport), hereinafter...

  12. Bacteriophage 5' untranslated regions for control of plastid transgene expression.

    PubMed

    Yang, Huijun; Gray, Benjamin N; Ahner, Beth A; Hanson, Maureen R

    2013-02-01

    Expression of foreign proteins from transgenes incorporated into plastid genomes requires regulatory sequences that can be recognized by the plastid transcription and translation machinery. Translation signals harbored by the 5' untranslated region (UTR) of plastid transcripts can profoundly affect the level of accumulation of proteins expressed from chimeric transgenes. Both endogenous 5' UTRs and the bacteriophage T7 gene 10 (T7g10) 5' UTR have been found to be effective in combination with particular coding regions to mediate high-level expression of foreign proteins. We investigated whether two other bacteriophage 5' UTRs could be utilized in plastid transgenes by fusing them to the aadA (aminoglycoside-3'-adenyltransferase) coding region that is commonly used as a selectable marker in plastid transformation. Transplastomic plants containing either the T7g1.3 or T4g23 5' UTRs fused to Myc-epitope-tagged aadA were successfully obtained, demonstrating the ability of these 5' UTRs to regulate gene expression in plastids. Placing the Thermobifida fusca cel6A gene under the control of the T7g1.3 or T4g23 5' UTRs, along with a tetC downstream box, resulted in poor expression of the cellulase in contrast with high-level accumulation while using the T7g10 5' UTR. However, transplastomic plants with the bacteriophage 5' UTRs controlling the aadA coding region exhibited fewer undesired recombinant species than plants containing the same marker gene regulated by the Nicotiana tabacum psbA 5' UTR. Furthermore, expression of the T7g1.3 and T4g23 5' UTR::aadA fusions downstream of the cel6A gene provided sufficient spectinomycin resistance to allow selection of homoplasmic transgenic plants and had no effect on Cel6A accumulation.

  13. Bacteriophage Infecting the Myxobacterium Chondrococcus columnaris

    PubMed Central

    Kingsbury, David T.; Ordal, Erling J.

    1966-01-01

    Kingsbury, David T. (University of Washington, Seattle), and Erling J. Ordal. Bacteriophage infecting the myxobacterium Chondrococcus columnaris. J. Bacteriol. 91:1327–1332. 1966.—During a series of screening experiments, seven bacteriophages which infect the pathogenic myxobacterium Chondrococcus columnaris were isolated. Of these, one was chosen for detailed study. This phage has a wide host range among strains of C. columnaris, but does not infect other myxobacterial species tested. Morphologically, this phage resembles coliphage T2, though it is smaller. It has a head diameter of 600 A, a tail length of 1,000 A, and a tail width of 200 A. The head is attached to the tail by a well-defined neck. The turbid plaques produced by this phage are similar in appearance to those produced by coliphage λ, and average 1 mm in diameter. The phage has a latent period of 100 min, a rise period of an additional 90 min, and a burst size of 23. Calcium ions at a concentration of 0.004 m are required for adsorption. This requirement cannot be met by substitution of magnesium ions. A purified preparation of 2 × 1012 phage particles was extracted with phenol, and the nucleic acid was identified as deoxyribonucleic acid (DNA). Base ratios of the phage DNA and the DNA of two propagating strains were similar. Streptomycin at a concentration of 70 μg/ml inhibits phage infection at an early stage, probably by inhibiting injection of the phage DNA. Images PMID:5929758

  14. GENETIC CONTROL OF RESTRICTION AND MODIFICATION IN ESCHERICHIA COLI1

    PubMed Central

    Boyer, Herbert

    1964-01-01

    Boyer, Herbert (Yale University, New Haven, Conn.). Genetic control of restriction and modification in Escherichia coli. J. Bacteriol. 88:1652–1660. 1964.—Bacterial crosses with K-12 strains of Escherichia coli as Hfr donors (Hfr Hayes, Hfr Cavalli, and Hfr P4X-6) and B/r strains of E. coli as F− recipients were found to differ from crosses between K-12 Hfr donors and K-12 F− recipients in two ways: (i) recombinants (leu, pro, lac, and gal) did not appear at discrete time intervals but did appear simultaneously 30 min after matings were initiated, and (ii) the linkage of unselected markers to selected markers was reduced. Integration of a genetic region linked to the threonine locus of K-12 into the B/r genome resulted in a hybrid which no longer gave anomalous results in conjugation experiments. A similar region of the B strain was introduced into the K-12 strain, which then behaved as a typical B F− recipient. These observations are interpreted as the manifestation of host-controlled modification and restriction on the E. coli chromosome. This was verified by experiments on the restriction and modification of the bacteriophage lambda, F-lac, F-gal, and sex-factor, F1. It was found that the genetic region that controlled the mating responses of the K-12 and B/r strains also controlled the modification and restriction properties of these two strains. The genes responsible for the restricting and modifying properties of the K-12 and B strains of E. coli were found to be allelic, linked to each other, and linked to the threonine locus. PMID:14240953

  15. A Crystal-Physical Model of Electrotransfer in the Superionic Conductor Pb1 - x Sc x F2 + x ( x = 0.1)

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2018-04-01

    The frequency (ν = 10-1-107 Hz) dependences of electrical conductivity σ(ν) of single crystals of superionic conductor Pb0.9Sc0.1F2.1 (10 mol % ScF3) with fluorite type structure (CaF2) in the temperature range 153-410 K have been investigated. The static bulk conductivity σ dc =1.5 × 10-4 S/cm and average hopping frequency ν h = 1.5 × 107 Hz of charge carriers (mobile ions F-) at room temperature (293 K) have been defined from the σ dc (ν) experimental curves. Enthalpies of thermoactivated processes of ionic conductivity σ dc ( T) (Δ H σ = 0.393 ± 0.005 eV) and dielectric relaxation ν h ( T) (Δ H h = 0.37 ± 0.03 eV) coincide within their errors. A crystal-physical model of fluorine-ion transport in a Pb0.9Sc0.1F2.1 crystal lattice has been proposed. The characteristic parameters of charge carriers have been calculated: concentration n mob = 2.0 × 1021 cm-3, the distance of the hopping d ≈ 0.5 nm and mobility μmob = 4.5 × 10-7 cm2/s V (293 K).

  16. Dynamic redistribution of calcium sensitive potassium channels (hK(Ca)3.1) in migrating cells.

    PubMed

    Schwab, Albrecht; Nechyporuk-Zloy, Volodymyr; Gassner, Birgit; Schulz, Christoph; Kessler, Wolfram; Mally, Sabine; Römer, Michael; Stock, Christian

    2012-02-01

    Calcium-sensitive potassium channels (K(Ca)3.1) are expressed in virtually all migrating cells. Their activity is required for optimal cell migration so that their blockade leads to slowing down. K(Ca)3.1 channels must be inserted into the plasma membrane in order to elicit their physiological function. However, the plasma membrane of migrating cells is subject to rapid recycling by means of endo- and exocytosis. Here, we focussed on the endocytic internalization and the intracellular transport of the human isoform hK(Ca)3.1. A hK(Ca)3.1 channel construct with an HA-tag in the extracellularly located S3-S4 linker was transfected into migrating transformed renal epithelial MDCK-F cells. Channel internalization was visualized and quantified with immunofluorescence and a cell-based ELISA. Movement of hK(Ca)3.1 channel containing vesicles as well as migration of MDCK-F cells were monitored by means of time lapse video microscopy. hK(Ca)3.1 channels are endocytosed during migration. Most of the hK(Ca)3.1 channel containing vesicles are moving at a speed of up to 2 µm/sec in a microtubule-dependent manner towards the front of MDCK-F cells. Our experiments indicate that endocytosis of hK(Ca)3.1 channels is clathrin-dependent since they colocalize with clathrin adaptor proteins and since it is impaired when a C-terminal dileucine motif is mutated. The C-terminal dileucine motif is also important for the subcellular localization of hK(Ca)3.1 channels in migrating cells. Mutated channels are no longer concentrated at the leading edge. We therefore propose that recycling of hK(Ca)3.1 channels contributes to their characteristic subcellular distribution in migrating cells. Copyright © 2011 Wiley Periodicals, Inc.

  17. Bacteriophage ϕMAM1, a Viunalikevirus, Is a Broad-Host-Range, High-Efficiency Generalized Transducer That Infects Environmental and Clinical Isolates of the Enterobacterial Genera Serratia and Kluyvera

    PubMed Central

    Matilla, Miguel A.

    2014-01-01

    Members of the enterobacterial genus Serratia are ecologically widespread, and some strains are opportunistic human pathogens. Bacteriophage ϕMAM1 was isolated on Serratia plymuthica A153, a biocontrol rhizosphere strain that produces the potently bioactive antifungal and anticancer haterumalide oocydin A. The ϕMAM1 phage is a generalized transducing phage that infects multiple environmental and clinical isolates of Serratia spp. and a rhizosphere strain of Kluyvera cryocrescens. Electron microscopy allowed classification of ϕMAM1 in the family Myoviridae. Bacteriophage ϕMAM1 is virulent, uses capsular polysaccharides as a receptor, and can transduce chromosomal markers at frequencies of up to 7 × 10−6 transductants per PFU. We also demonstrated transduction of the complete 77-kb oocydin A gene cluster and heterogeneric transduction of a plasmid carrying a type III toxin-antitoxin system. These results support the notion of the potential ecological importance of transducing phages in the acquisition of genes by horizontal gene transfer. Phylogenetic analyses grouped ϕMAM1 within the ViI-like bacteriophages, and genomic analyses revealed that the major differences between ϕMAM1 and other ViI-like phages arise in a region encoding the host recognition determinants. Our results predict that the wider genus of ViI-like phages could be efficient transducing phages, and this possibility has obvious implications for the ecology of horizontal gene transfer, bacterial functional genomics, and synthetic biology. PMID:25107968

  18. FRNA Bacteriophages as Viral Indicators of Faecal Contamination in Mexican Tropical Aquatic Systems.

    PubMed

    Arredondo-Hernandez, Luis Jose Rene; Diaz-Avalos, Carlos; Lopez-Vidal, Yolanda; Castillo-Rojas, Gonzalo; Mazari-Hiriart, Marisa

    2017-01-01

    A particular challenge to water safety in populous intertropical regions is the lack of reliable faecal indicators to detect microbiological contamination of water, while the numerical relationships of specific viral indicators remain largely unexplored. The aim of this study was to investigate the numerical relationships of FRNA-bacteriophage genotypes, adenovirus 41, and human adenoviruses (HADV) in Mexican surface water systems to assess sewage contamination. We studied the presence of HADV, HADV41 and FRNA bacteriophage genotypes in water samples and quantified by qPCR and RT-qPCR. Virus and water quality indicator variances, as analyzed by principal component analysis and partial least squared regression, followed along the major percentiles of water faecal enterococci. FRNA bacteriophages adequately deciphered viral and point source water contamination. The strongest correlation for HADV was with FRNA bacteriophage type II, in water samples higher than the 50th percentiles of faecal enterococci, thus indicating urban pollution. FRNA bacteriophage genotypes I and III virus indicator performances were assisted by their associations with electrical conductivity and faecal enterococci. In combination, our methods are useful for inferring water quality degradation caused by sewage contamination. The methods used have potential for determining source contamination in water and, specifically, the presence of enteric viruses where clean and contaminated water have mixed.

  19. FRNA Bacteriophages as Viral Indicators of Faecal Contamination in Mexican Tropical Aquatic Systems

    PubMed Central

    Diaz-Avalos, Carlos; Lopez-Vidal, Yolanda; Castillo-Rojas, Gonzalo; Mazari-Hiriart, Marisa

    2017-01-01

    A particular challenge to water safety in populous intertropical regions is the lack of reliable faecal indicators to detect microbiological contamination of water, while the numerical relationships of specific viral indicators remain largely unexplored. The aim of this study was to investigate the numerical relationships of FRNA-bacteriophage genotypes, adenovirus 41, and human adenoviruses (HADV) in Mexican surface water systems to assess sewage contamination. We studied the presence of HADV, HADV41 and FRNA bacteriophage genotypes in water samples and quantified by qPCR and RT-qPCR. Virus and water quality indicator variances, as analyzed by principal component analysis and partial least squared regression, followed along the major percentiles of water faecal enterococci. FRNA bacteriophages adequately deciphered viral and point source water contamination. The strongest correlation for HADV was with FRNA bacteriophage type II, in water samples higher than the 50th percentiles of faecal enterococci, thus indicating urban pollution. FRNA bacteriophage genotypes I and III virus indicator performances were assisted by their associations with electrical conductivity and faecal enterococci. In combination, our methods are useful for inferring water quality degradation caused by sewage contamination. The methods used have potential for determining source contamination in water and, specifically, the presence of enteric viruses where clean and contaminated water have mixed. PMID:28114378

  20. Frequency measurement of the 5 S{1}/{2}(F = 3)-5 D{5}/{2}(F = 5) two-photon transition in rubidium

    NASA Astrophysics Data System (ADS)

    Touahri, D.; Acef, O.; Clairon, A.; Zondy, J.-J.; Felder, R.; Hilico, L.; de Beauvoir, B.; Biraben, F.; Nez, F.

    1997-02-01

    We have measured the frequencies of three diode lasers stabilized on the 5 S{1}/{2}(F = 3)-5 D{5}/{2}(F = 5) two-photon transition in rubidium at λ = 778.1 nm, with an uncertainty of 1 kHz, using BNM-LPTF frequency synthesis chain starting from a {CO 2}/{OsO 4} reference laser at 10.3 μm. We show that this frequency chain is able to reach the 10 -13 resolution level. After a discussion of the systematic effects that may shift the resonance, the transition frequency is found to be ν = 385 285 142 378.280 ± 2 kHz.

  1. Transformation of Clostridium acetobutylicum Protoplasts with Bacteriophage DNA

    PubMed Central

    Reid, Sharon J.; Allcock, Errol R.; Jones, David T.; Woods, David R.

    1983-01-01

    Techniques for the transformation of Clostridium acetobutylicum protoplasts with bacteriophage DNA are described. Transformation required regeneration of protoplasts and a 2-h eclipse period. PMID:16346174

  2. Isolation and Characterization of the Lytic Cold-Active Bacteriophage MYSP06 from the Mingyong Glacier in China.

    PubMed

    Li, Mingyuan; Wang, Jilian; Zhang, Qi; Lin, Lianbing; Kuang, Anxin; Materon, Luis Alberto; Ji, Xiuling; Wei, Yunlin

    2016-02-01

    As unique ecological systems, glaciers are characterized by low temperatures and low nutrient levels, which allow them to be considered as “living fossils” for the purpose of researching the evolution of life and the environmental evolution of the earth. Glaciers are also natural microbial “reservoirs”. In this work, a lytic cold-active bacteriophage designated MYSP06 was isolated from Janthinobacterium sp. MYB06 from the Mingyong Glacier in China, and its major characteristics were determined. Electron microscopy revealed that bacteriophage MYSP06 had an isometric head (74 nm) and a long tail (10 nm in width, 210 nm in length). It was classified as a Siphoviridae with an approximate genome size of 65–70 kb. A one-step growth curve revealed that the latent and burst periods were 95 and 65 min, respectively, with an average burst size of 16 bacteriophage particles per infected cell. The bacteriophage particles (100 %) adsorbed to the host cells within 10 min after infection. Moreover, the pH value and thermal stability of bacteriophage MYSP06 were also investigated. The maximum stability of the bacteriophage was observed at the optimal pH 7.0, and the bacteriophage became completely unstable at the extremely alkaline pH 11.0; however, it was comparatively stable at the acidic alkaline pH 6.0. As MYSP06 is a cold-active bacteriophage with a lower production temperature, its characterization and its relationship with its host Janthinobacterium sp. MYB06 deserve further study.

  3. Lysogeny with Shiga Toxin 2-Encoding Bacteriophages Represses Type III Secretion in Enterohemorrhagic Escherichia coli

    PubMed Central

    Xu, Xuefang; McAteer, Sean P.; Tree, Jai J.; Shaw, Darren J.; Wolfson, Eliza B. K.; Beatson, Scott A.; Roe, Andrew J.; Allison, Lesley J.; Chase-Topping, Margo E.; Mahajan, Arvind; Tozzoli, Rosangela; Woolhouse, Mark E. J.; Morabito, Stefano; Gally, David L.

    2012-01-01

    Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins. PMID:22615557

  4. Synthesis of K2SiF6:Mn4+ phosphor for LED lamp

    NASA Astrophysics Data System (ADS)

    Takarkhede, M. G.; Patil, R. R.; Moharil, S. V.; Joshi, C. P.; Talewar, Rupesh

    2018-05-01

    Now a days red emitting Mn4+ activated dialkali fluorosilicate phosphors have found applications in solid state lighting and displays. In this paper we describe development of K2SiF6 phosphor doped with Mn synthesized by simple method using Si metal powder with addition of oxidizing agent KMnO4. The photoluminescence spectra of K2SiF6:Mn show that emission is in the red region. In addition to this we studied LED spectra by coating the LED with phosphor mixed in different proportions with epoxy.

  5. Engineered enzymatically active bacteriophages and methods of uses thereof

    DOEpatents

    Collins, James J [Newton, MA; Kobayashi, Hideki [Yokohama, JP; Kearn, Mads [Ottawa, CA; Araki, Michihiro [Minatoku, JP; Friedland, Ari [Boston, MA; Lu, Timothy Kuan-Ta [Palo Alto, CA

    2012-05-22

    The present invention provides engineered bacteriophages that express at least one biofilm degrading enzyme on their surface and uses thereof for degrading bacterial biofilms. The invention also provides genetically engineered bacteriophages expressing the biofilm degrading enzymes and proteins necessary for the phage to replicate in different naturally occurring biofilm producing bacteria. The phages of the invention allow a method of biofilm degradation by the use of one or only a few administration of the phage because the system using these phages is self perpetuating, and capable of degrading biofilm even when the concentration of bacteria within the biofilm is low.

  6. Access to bacteriophage therapy: discouraging experiences from the human cell and tissue legal framework.

    PubMed

    Verbeken, G; Huys, I; De Vos, D; De Coninck, A; Roseeuw, D; Kets, E; Vanderkelen, A; Draye, J P; Rose, T; Jennes, S; Ceulemans, C; Pirnay, J P

    2016-02-01

    Cultures of human epithelial cells (keratinocytes) are used as an additional surgical tool to treat critically burnt patients. Initially, the production environment of keratinocyte grafts was regulated exclusively by national regulations. In 2004, the European Tissues and Cells Directive 2004/23/EC (transposed into Belgian Law) imposed requirements that resulted in increased production costs and no significant increase in quality and/or safety. In 2007, Europe published Regulation (EC) No. 1394/2007 on Advanced Therapy Medicinal Products. Overnight, cultured keratinocytes became (arguably) 'Advanced' Therapy Medicinal Products to be produced as human medicinal products. The practical impact of these amendments was (and still is) considerable. A similar development appears imminent in bacteriophage therapy. Bacteriophages are bacterial viruses that can be used for tackling the problem of bacterial resistance development to antibiotics. Therapeutic natural bacteriophages have been in clinical use for almost 100 years. Regulators today are framing the (re-)introduction of (natural) bacteriophage therapy into 'modern western' medicine as biological medicinal products, also subject to stringent regulatory medicinal products requirements. In this paper, we look back on a century of bacteriophage therapy to make the case that therapeutic natural bacteriophages should not be classified under the medicinal product regulatory frames as they exist today. It is our call to authorities to not repeat the mistake of the past. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. A filamentous bacteriophage targeted to carcinoembryonic antigen induces tumor regression in mouse models of colorectal cancer.

    PubMed

    Murgas, Paola; Bustamante, Nicolás; Araya, Nicole; Cruz-Gómez, Sebastián; Durán, Eduardo; Gaete, Diana; Oyarce, César; López, Ernesto; Herrada, Andrés Alonso; Ferreira, Nicolás; Pieringer, Hans; Lladser, Alvaro

    2018-02-01

    Colorectal cancer is a deadly disease, which is frequently diagnosed at advanced stages, where conventional treatments are no longer effective. Cancer immunotherapy has emerged as a new form to treat different malignancies by turning-on the immune system against tumors. However, tumors are able to evade antitumor immune responses by promoting an immunosuppressive microenvironment. Single-stranded DNA containing M13 bacteriophages are highly immunogenic and can be specifically targeted to the surface of tumor cells to trigger inflammation and infiltration of activated innate immune cells, overcoming tumor-associated immunosuppression and promoting antitumor immunity. Carcinoembryonic antigen (CEA) is highly expressed in colorectal cancers and has been shown to promote several malignant features of colorectal cancer cells. In this work, we targeted M13 bacteriophage to CEA, a tumor-associated antigen over-expressed in a high proportion of colorectal cancers but largely absent in normal cells. The CEA-targeted M13 bacteriophage was shown to specifically bind to purified CEA and CEA-expressing tumor cells in vitro. Both intratumoral and systemic administration of CEA-specific bacteriophages significantly reduced tumor growth of mouse models of colorectal cancer, as compared to PBS and control bacteriophage administration. CEA-specific bacteriophages promoted tumor infiltration of neutrophils and macrophages, as well as maturation dendritic cells in tumor-draining lymph nodes, suggesting that antitumor T-cell responses were elicited. Finally, we demonstrated that tumor protection provided by CEA-specific bacteriophage particles is mediated by CD8 + T cells, as depletion of circulating CD8 + T cells completely abrogated antitumor protection. In summary, we demonstrated that CEA-specific M13 bacteriophages represent a potential immunotherapy against colorectal cancer.

  8. Mutation of M13 Bacteriophage Major Coat Protein for Increased Conjugation to Exogenous Compounds.

    PubMed

    Tridgett, Matthew; Lloyd, James R; Kennefick, Jack; Moore-Kelly, Charles; Dafforn, Timothy R

    2018-06-20

    Over the past ten years there has been increasing interest in the conjugation of exogenous compounds to the surface of the M13 bacteriophage. M13 offers a convenient scaffold for the development of nanoassemblies with useful functions, such as highly specific drug delivery and pathogen detection. However, the progress of these technologies has been hindered by the limited efficiency of conjugation to the bacteriophage. Here we generate a mutant version of M13 with an additional lysine residue expressed on the outer surface of the M13 major coat protein, pVIII. We show that this mutation is accommodated by the bacteriophage and that up to an additional 520 exogenous groups can be attached to the bacteriophage surface via amine-directed conjugation. These results could aid the development of high payload drug delivery nanoassemblies and pathogen detection systems with increased sensitivity.

  9. Characterization of the temperate phage vB_RleM_PPF1 and its site-specific integration into the Rhizobium leguminosarum F1 genome.

    PubMed

    Halmillawewa, Anupama P; Restrepo-Córdoba, Marcela; Perry, Benjamin J; Yost, Christopher K; Hynes, Michael F

    2016-02-01

    Bacteriophages may play an important role in regulating population size and diversity of the root nodule symbiont Rhizobium leguminosarum, as well as participating in horizontal gene transfer. Although phages that infect this species have been isolated in the past, our knowledge of their molecular biology, and especially of genome composition, is extremely limited, and this lack of information impacts on the ability to assess phage population dynamics and limits potential agricultural applications of rhizobiophages. To help address this deficit in available sequence and biological information, the complete genome sequence of the Myoviridae temperate phage PPF1 that infects R. leguminosarum biovar viciae strain F1 was determined. The genome is 54,506 bp in length with an average G+C content of 61.9 %. The genome contains 94 putative open reading frames (ORFs) and 74.5 % of these predicted ORFs share homology at the protein level with previously reported sequences in the database. However, putative functions could only be assigned to 25.5 % (24 ORFs) of the predicted genes. PPF1 was capable of efficiently lysogenizing its rhizobial host R. leguminosarum F1. The site-specific recombination system of the phage targets an integration site that lies within a putative tRNA-Pro (CGG) gene in R. leguminosarum F1. Upon integration, the phage is capable of restoring the disrupted tRNA gene, owing to the 50 bp homologous sequence (att core region) it shares with its rhizobial host genome. Phage PPF1 is the first temperate phage infecting members of the genus Rhizobium for which a complete genome sequence, as well as other biological data such as the integration site, is available.

  10. A Bacteriophage-Related Chimeric Marine Virus Infecting Abalone

    PubMed Central

    Zhuang, Jun; Cai, Guiqin; Lin, Qiying; Wu, Zujian; Xie, Lianhui

    2010-01-01

    Marine viruses shape microbial communities with the most genetic diversity in the sea by multiple genetic exchanges and infect multiple marine organisms. Here we provide proof from experimental infection that abalone shriveling syndrome-associated virus (AbSV) can cause abalone shriveling syndrome. This malady produces histological necrosis and abnormally modified macromolecules (hemocyanin and ferritin). The AbSV genome is a 34.952-kilobase circular double-stranded DNA, containing putative genes with similarity to bacteriophages, eukaryotic viruses, bacteria and endosymbionts. Of the 28 predicted open reading frames (ORFs), eight ORF-encoded proteins have identifiable functional homologues. The 4 ORF products correspond to a predicted terminase large subunit and an endonuclease in bacteriophage, and both an integrase and an exonuclease from bacteria. The other four proteins are homologous to an endosymbiont-derived helicase, primase, single-stranded binding (SSB) protein, and thymidylate kinase, individually. Additionally, AbSV exhibits a common gene arrangement similar to the majority of bacteriophages. Unique to AbSV, the viral genome also contains genes associated with bacterial outer membrane proteins and may lack the structural protein-encoding ORFs. Genomic characterization of AbSV indicates that it may represent a transitional form of microbial evolution from viruses to bacteria. PMID:21079776

  11. Lytic bacteriophages reduce Escherichia coli O157

    PubMed Central

    Ferguson, Sean; Roberts, Cheryl; Handy, Eric; Sharma, Manan

    2013-01-01

    The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield™) or a control (phosphate buffered saline, PBS) was applied to lettuce by either; (1) immersion of lettuce in 500 ml of EcoShield™ 8.3 log PFU/ml or 9.8 log PFU/ml for up to 2 min before inoculation with E. coli O157:H7; (2) spray-application of EcoShield™ (9.3 log PFU/ml) to lettuce after inoculation with E. coli O157:H7 (4.10 CFU/cm2) following exposure to 50 μg/ml chlorine for 30 sec. After immersion studies, lettuce was spot-inoculated with E. coli O157:H7 (2.38 CFU/cm2). Phage-treated, inoculated lettuce pieces were stored at 4°C for and analyzed for E. coli O157:H7 populations for up to 7 d. Immersion of lettuce in 9.8 log PFU/ml EcoShield™ for 2 min significantly (p < 0.05) reduced E. coli O157:H7 populations after 24 h when stored at 4°C compared with controls. Immersion of lettuce in suspensions containing high concentrations of EcoShield™ (9.8 log PFU/ml) resulted in the deposition of high concentrations (7.8 log log PFU/cm2) of bacteriophages on the surface of fresh cut lettuce, potentially contributing to the efficacy of the lytic phages on lettuce. Spraying phages on to inoculated fresh cut lettuce after being washed in hypochlorite solution was significantly more effective in reducing E. coli O157:H7 populations (2.22 log CFU/cm2) on day 0 compared with control treatments (4.10 log CFU/cm2). Both immersion and spray treatments provided protection from E. coli O157:H7 contamination on lettuce, but spray application of lytic bacteriophages to lettuce was more effective in immediately reducing E. coli O157:H7 populations fresh cut lettuce. PMID:23819106

  12. Testing superalloys at 2000 (1367) and 2200 F (1478 K) in a Mach 4.6 airstream

    NASA Technical Reports Server (NTRS)

    Land, D. W.; Williams, R. R.; Rinehart, W. A.

    1972-01-01

    Seven superalloy models were tested in a plasma arc tunnel facility. The test models were 3 in. (7.62cm) square flat surfaces (nominally 0.01 to 0.02 in. (0.0254 to 0.0508 cm) thick) held in a water-cooled wedge holder at a 60 deg (1.05 rad) angle of attack. The models were cycled 25 times (two were cycled 50 times) for 10 min each cycle in a Mach 4.6 test stream with the model leading edge temperature maintained at 2200 F (1478 K) (one at 2000 F (1367 K)). Backface temperatures were measured with four platinum-platinum 10% rhodium thermocouples and the front surface temperatures with an optical pyrometer. Four different nickel base alloy materials and one cobalt material were evaluated.

  13. Phenotypic, fermentation characterization, and resistance mechanism analysis of bacteriophage-resistant mutants of Lactobacillus delbrueckii ssp. bulgaricus isolated from traditional Chinese dairy products.

    PubMed

    Deng, Kaibo; Fang, Wei; Zheng, Baodong; Miao, Song; Huo, Guicheng

    2018-03-01

    Bacteriophage infection is a large factor in dairy industrial production failure on the basis of pure inoculation fermentation, and developing good commercial starter cultures from wild dairy products and improving the environmental vigor of starter cultures by enhancing their phage resistance are still the most effective solutions. Here we used a spontaneous isolation method to obtain bacteriophage-resistant mutants of Lactobacillus delbrueckii ssp. bulgaricus strains that are used in traditional Chinese fermented dairy products. We analyzed their phenotypes, fermentation characteristics, and resistance mechanisms. The results showed that bacteriophage-insensitive mutants (BIM) BIM8 and BIM12 had high bacteriophage resistance while exhibiting fermentation and coagulation attributes that were as satisfying as those of their respective parent strains KLDS1.1016 and KLDS1.1028. According to the attachment receptor detection, mutants BIM8 and BIM12 exhibited reduced absorption to bacteriophage phiLdb compared with their respective bacteriophage-sensitive parent strains because of changes to the polysaccharides or teichoic acids connected to their peptidoglycan layer. Additionally, genes, including HSDR, HSDM, and HSDS, encoding 3 subunits of a type I restriction-modification system were identified in their respective parent strains. We also discovered that HSDR and HSDM were highly conserved but that HSDS was variable because it is responsible for the DNA specificity of the complex. The late lysis that occurred only in strain KLDS1.1016 and not in strain KLDS1.1028 suggests that the former and its mutant BIM8 also may have an activatable restriction-modification mechanism. We conclude that the L. bulgaricus BIM8 and BIM12 mutants have great potential in the dairy industry as starter cultures, and their phage-resistance mechanism was effective mainly due to the adsorption interference and restriction-modification system. Copyright © 2018 American Dairy Science

  14. 75 FR 17799 - AB Liquidating Corp. (f/k/a Adaptive Broadband Corp.), Globalnet Corp., Greenland Corp...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] AB Liquidating Corp. (f/k/a Adaptive Broadband Corp.), Globalnet Corp., Greenland Corp., KeraVision, Inc., Lifespan, Inc., STAR Telecommunications... concerning the securities of STAR Telecommunications, Inc. because it has not filed any periodic reports...

  15. Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates.

    PubMed

    Peng, Fan; Mi, Zhiqiang; Huang, Yong; Yuan, Xin; Niu, Wenkai; Wang, Yahui; Hua, Yuhui; Fan, Huahao; Bai, Changqing; Tong, Yigang

    2014-07-05

    With the use of broad-spectrum antibiotics, immunosuppressive drugs, and glucocorticoids, multidrug-resistant Acinetobacter baumannii (MDR-AB) has become a major nosocomial pathogen species. The recent renaissance of bacteriophage therapy may provide new treatment strategies for combatting drug-resistant bacterial infections. In this study, we isolated a lytic bacteriophage vB_AbaM-IME-AB2 has a short latent period and a small burst size, which clear its host's suspension quickly, was selected for characterization and a complete genomic comparative study. The isolated bacteriophage vB_AbaM-IME-AB2 has an icosahedral head and displays morphology resembling Myoviridae family. Gel separation assays showed that the phage particle contains at least nine protein bands with molecular weights ranging 15-100 kDa. vB_AbaM-IME-AB2 could adsorb its host cells in 9 min with an adsorption rate more than 99% and showed a short latent period (20 min) and a small burst size (62 pfu/cell). It could form clear plaques in the double-layer assay and clear its host's suspension in just 4 hours. Whole genome of vB_AbaM-IME-AB2 was sequenced and annotated and the results showed that its genome is a double-stranded DNA molecule consisting of 43,665 nucleotides. The genome has a G + C content of 37.5% and 82 putative coding sequences (CDSs). We compared the characteristics and complete genome sequence of all known Acinetobacter baumannii bacteriophages. There are only three that have been sequenced Acinetobacter baumannii phages AB1, AP22, and phiAC-1, which have a relatively high similarity and own a coverage of 65%, 50%, 8% respectively when compared with our phage vB_AbaM-IME-AB2. A nucleotide alignment of the four Acinetobacter baumannii phages showed that some CDSs are similar, with no significant rearrangements observed. Yet some sections of these strains of phage are nonhomologous. vB_AbaM-IME-AB2 was a novel and unique A. baumannii bacteriophage. These findings suggest a common

  16. Mechanical properties of haynes alloy 188 after 22,500 hours of exposure to LiF-22CaF2 and vacuum at 1093 K

    NASA Astrophysics Data System (ADS)

    Whittenberger, J. D.

    1994-12-01

    As a continuation of a study of a space-based thermal energy storage system centered on a LiF-CaF2 eutectic salt contained by Haynes alloy 188, this Co-base superalloy was subjected to molten salt, its vapor, and vacuum for 22,500 h at 1093 K. Samples from all three exposure conditions were tensile tested between 77 to 1200 K; in addition, vacuum and molten-salt exposed specimens were vacuum creep rupture tested at 1050 K. Comparison of these mechanical properties with those measured for the as-received alloy reveals no evidence for degradation beyond that ascribed to simple thermal aging of Haynes alloy 188. This behavior is identical to the 10,000 h results (Ref 3); hence, Haynes alloy 188 is a suitable containment material for an eutectic LiF-CaF2 thermal energy storage salt.

  17. Characterization and formulation into solid dosage forms of a novel bacteriophage lytic against Klebsiella oxytoca

    PubMed Central

    Petrovski, Steve; Hoyle, Dannielle; Chan, Hiu Tat; Lock, Peter; Tucci, Joseph

    2017-01-01

    Aim To isolate and characterize bacteriophage lytic for the opportunistic pathogen Klebsiella oxytoca and their formulation into a range of solid dosage forms for in-vitro testing. Methods and results We report the isolation, genomic and functional characterization of a novel bacteriophage lytic for Klebsiella oxytoca, which does not infect the closely related Klebsiella pneumoniae. This bacteriophage was formulated into suppositories and troches and shown to be released and lyse underlying Klebsiella oxytoca bacteria in an in-vitro model. These bacteriophage formulations were stable for at least 49 days at 4°C. Conclusions The successful in-vitro assay of these formulations here suggests that they could potentially be tested in-vivo to determine whether such a therapeutic approach could modulate the gut microbiome, and control Klebsiella oxytoca overgrowth, during antibiotic therapy regimes. Significance and impact of the study This study reports a novel bacteriophage specific for Klebsiella oxytoca which can be formulated into solid dosage forms appropriate for potential delivery in testing as a therapy to modulate gut microbiome during antibiotic therapies. PMID:28817689

  18. M13 Bacteriophage Based Protein Sensors

    NASA Astrophysics Data System (ADS)

    Lee, Ju Hun

    Despite significant progress in biotechnology and biosensing, early detection and disease diagnosis remains a critical issue for improving patient survival rates and well-being. Many of the typical detection schemes currently used possess issues such as low sensitivity and accuracy and are also time consuming to run and expensive. In addition, multiplexed detection remains difficult to achieve. Therefore, developing advanced approaches for reliable, simple, quantitative analysis of multiple markers in solution that also are highly sensitive are still in demand. In recent years, much of the research has primarily focused on improving two key components of biosensors: the bio-recognition agent (bio-receptor) and the transducer. Particular bio-receptors that have been used include antibodies, aptamers, molecular imprinted polymers, and small affinity peptides. In terms of transducing agents, nanomaterials have been considered as attractive candidates due to their inherent nanoscale size, durability and unique chemical and physical properties. The key focus of this thesis is the design of a protein detection and identification system that is based on chemically engineered M13 bacteriophage coupled with nanomaterials. The first chapter provides an introduction of biosensors and M13 bacteriophage in general, where the advantages of each are provided. In chapter 2, an efficient and enzyme-free sensor is demonstrated from modified M13 bacteriophage to generate highly sensitive colorimetric signals from gold nanocrystals. In chapter 3, DNA conjugated M13 were used to enable facile and rapid detection of antigens in solution that also provides modalities for identification. Lastly, high DNA loadings per phage was achieved via hydrozone chemistry and these were applied in conjunction with Raman active DNA-gold/silver core/shell nanoparticles toward highly sensitive SERS sensing.

  19. Nanoscale detection of bacteriophage triggered ion cascade (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Dobozi-King, Maria; Seo, Sungkyu; Kim, Jong U.; Cheng, Mosong; Kish, Laszlo B.; Young, Ryland

    2005-05-01

    In an era of potential bioterrorism and pandemics of antibiotic-resistant microbes, bacterial contaminations of food and water supplies is a major concern. There is an urgent need for the rapid, inexpensive and specific identification of bacteria under field conditions. Here we describe a method that combines the specificity and avidity of bacteriophages with fluctuation analysis of electrical noise. The method is based on the massive, transitory ion leakage that occurs at the moment of phage DNA injection into the host cell. The ion fluxes require only that the cells be physiologically viable (i.e., have energized membranes) and can occur within seconds after mixing the cells with sufficient concentrations of phage particles. To detect these fluxes, we have constructed a nano-well, a lateral, micron-size capacitor of titanium electrodes with gap size of 150 nm, and used it to measure the electrical field fluctuations in microliter (mm3) samples containing phage and bacteria. In mixtures where the analyte bacteria were sensitive to the phage, large stochastic waves with various time and amplitude scales were observed, with power spectra of approximately 1/f2 shape over at 1 - 10 Hz. Development of this SEPTIC (SEnsing of Phage-Triggered Ion Cascades) technology could provide rapid detection and identification of live, pathogenic bacteria on the scale of minutes, with unparalleled specificity. The method has a potential ultimate sensitivity of 1 bacterium/microliter (1 bacterium/mm3).

  20. Bacteriophages of Gordonia spp. Display a Spectrum of Diversity and Genetic Relationships.

    PubMed

    Pope, Welkin H; Mavrich, Travis N; Garlena, Rebecca A; Guerrero-Bustamante, Carlos A; Jacobs-Sera, Deborah; Montgomery, Matthew T; Russell, Daniel A; Warner, Marcie H; Hatfull, Graham F

    2017-08-15

    The global bacteriophage population is large, dynamic, old, and highly diverse genetically. Many phages are tailed and contain double-stranded DNA, but these remain poorly characterized genomically. A collection of over 1,000 phages infecting Mycobacterium smegmatis reveals the diversity of phages of a common bacterial host, but their relationships to phages of phylogenetically proximal hosts are not known. Comparative sequence analysis of 79 phages isolated on Gordonia shows these also to be diverse and that the phages can be grouped into 14 clusters of related genomes, with an additional 14 phages that are "singletons" with no closely related genomes. One group of six phages is closely related to Cluster A mycobacteriophages, but the other Gordonia phages are distant relatives and share only 10% of their genes with the mycobacteriophages. The Gordonia phage genomes vary in genome length (17.1 to 103.4 kb), percentage of GC content (47 to 68.8%), and genome architecture and contain a variety of features not seen in other phage genomes. Like the mycobacteriophages, the highly mosaic Gordonia phages demonstrate a spectrum of genetic relationships. We show this is a general property of bacteriophages and suggest that any barriers to genetic exchange are soft and readily violable. IMPORTANCE Despite the numerical dominance of bacteriophages in the biosphere, there is a dearth of complete genomic sequences. Current genomic information reveals that phages are highly diverse genomically and have mosaic architectures formed by extensive horizontal genetic exchange. Comparative analysis of 79 phages of Gordonia shows them to not only be highly diverse, but to present a spectrum of relatedness. Most are distantly related to phages of the phylogenetically proximal host Mycobacterium smegmatis , although one group of Gordonia phages is more closely related to mycobacteriophages than to the other Gordonia phages. Phage genome sequence space remains largely unexplored, but

  1. In vitro Effectiveness of Commercial Bacteriophage Cocktails on Diverse Extended-Spectrum Beta-Lactamase Producing Escherichia coli Strains.

    PubMed

    Gundogdu, Aycan; Bolkvadze, Darajen; Kilic, Huseyin

    2016-01-01

    The objective of this study is to determine the in vitro susceptibility of Georgian bacteriophage cocktails on multidrug resistant (MDR) extended-spectrum beta-lactamase producing Escherichia coli (ESBL-EC) isolated from patients' blood and urine cultures. A total of 615 E. coli isolates were included in this study. Phene Plate (PhP)-typing and phylogenetic grouping were used for the typing. Antimicrobial resistance profiles and ESBL production of all isolates were confirmed according to Clinical and Laboratory Standards Institute (CLSI) criteria. The activities of four bacteriophage cocktails (Enko-phage, SES-bacteriophage, Pyo-bacteriophage, and Intesti-bacteriophage) were determined against 142 ESBL-EC using in vitro spot tests. According to this, Enko-phage were active against 87.3% of the tested strains while that ratio was 81.7% for Intesti-bacteriophage, 81.7% for Pyo-bacteriophage, and 59.2% for SES-bacteriophage cocktails. Based on the contingency tests, the phage cocktails were observed to be statistically significantly ( p < 0.001) more effective on ESBL-EC strains belonging to phylogenetic groups D and B2. The employed phage cocktails were found to be affective against all tested resistant types. These results are promising especially for the infections that are caused by MDR pathogens that are difficult to treat. As this is a preliminary step to the potential clinical trials to be designed for the country, in vitro confirmation of their success on a MDR ESBL-EC collection should be accepted as an initial action, which is encouraging to consider clinical trials of phage therapy especially in countries which are not introduce phage therapy.

  2. In vitro Effectiveness of Commercial Bacteriophage Cocktails on Diverse Extended-Spectrum Beta-Lactamase Producing Escherichia coli Strains

    PubMed Central

    Gundogdu, Aycan; Bolkvadze, Darajen; Kilic, Huseyin

    2016-01-01

    The objective of this study is to determine the in vitro susceptibility of Georgian bacteriophage cocktails on multidrug resistant (MDR) extended-spectrum beta-lactamase producing Escherichia coli (ESBL-EC) isolated from patients’ blood and urine cultures. A total of 615 E. coli isolates were included in this study. Phene Plate (PhP)-typing and phylogenetic grouping were used for the typing. Antimicrobial resistance profiles and ESBL production of all isolates were confirmed according to Clinical and Laboratory Standards Institute (CLSI) criteria. The activities of four bacteriophage cocktails (Enko-phage, SES-bacteriophage, Pyo-bacteriophage, and Intesti-bacteriophage) were determined against 142 ESBL-EC using in vitro spot tests. According to this, Enko-phage were active against 87.3% of the tested strains while that ratio was 81.7% for Intesti-bacteriophage, 81.7% for Pyo-bacteriophage, and 59.2% for SES-bacteriophage cocktails. Based on the contingency tests, the phage cocktails were observed to be statistically significantly (p < 0.001) more effective on ESBL-EC strains belonging to phylogenetic groups D and B2. The employed phage cocktails were found to be affective against all tested resistant types. These results are promising especially for the infections that are caused by MDR pathogens that are difficult to treat. As this is a preliminary step to the potential clinical trials to be designed for the country, in vitro confirmation of their success on a MDR ESBL-EC collection should be accepted as an initial action, which is encouraging to consider clinical trials of phage therapy especially in countries which are not introduce phage therapy. PMID:27857711

  3. 8-Substituted 1,3-dimethyltetrahydropyrazino[2,1-f]purinediones: Water-soluble adenosine receptor antagonists and monoamine oxidase B inhibitors.

    PubMed

    Brunschweiger, Andreas; Koch, Pierre; Schlenk, Miriam; Rafehi, Muhammad; Radjainia, Hamid; Küppers, Petra; Hinz, Sonja; Pineda, Felipe; Wiese, Michael; Hockemeyer, Jörg; Heer, Jag; Denonne, Frédéric; Müller, Christa E

    2016-11-01

    Multitarget approaches, i.e., addressing two or more targets simultaneously with a therapeutic agent, are hypothesized to offer additive therapeutic benefit for the treatment of neurodegenerative diseases. Validated targets for the treatment of Parkinson's disease are, among others, the A 2A adenosine receptor (AR) and the enzyme monoamine oxidase B (MAO-B). Additional blockade of brain A 1 ARs may also be beneficial. We recently described 8-benzyl-substituted tetrahydropyrazino[2,1-f]purinediones as a new lead structure for the development of such multi-target drugs. We have now designed a new series of tetrahydropyrazino[2,1-f]purinediones to extensively explore their structure-activity-relationships. Several compounds blocked human and rat A 1 and A 2A ARs at similar concentrations representing dual A 1 /A 2A antagonists with high selectivity versus the other AR subtypes. Among the best dual A 1 /A 2A AR antagonists were 8-(3-(4-chlorophenyl)propyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (41, K i human A 1 : 65.5nM, A 2A : 230nM; K i rat A 1 : 352nM, A 2A : 316nM) and 1,3-dimethyl-8-((2-(thiophen-2-yl)thiazol-4-yl)methyl)-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (57, K i human A 1 : 642nM, A 2A : 203nM; K i rat A 1 : 166nM, A 2A : 121nM). Compound 57 was found to be well water-soluble (0.7mg/mL) at a physiological pH value of 7.4. One of the new compounds showed triple-target inhibition: (R)-1,3-dimethyl-8-(2,1,3,4-tetrahydronaphthalen-1-yl)-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (49) was about equipotent at A 1 and A 2A ARs and at MAO-B (K i human A 1 : 393nM, human A 2A : 595nM, IC 50 human MAO-B: 210nM) thus allowing future in vivo explorations of the intended multi-target approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Montmorillonite-induced Bacteriophage φ6 Disassembly

    NASA Astrophysics Data System (ADS)

    Trusiak, A.; Gottlieb, P.; Katz, A.; Alimova, A.; Steiner, J. C.; Block, K. A.

    2012-12-01

    It is estimated that there are 1031 virus particles on Earth making viruses an order of magnitude more prevalent in number than prokaryotes with the vast majority of viruses being bacteriophages. Clays are a major component of soils and aquatic sediments and can react with RNA, proteins and bacterial biofilms. The clays in soils serve as an important moderator between phage and their host bacteria, helping to preserve the evolutionary balance. Studies on the effects of clays on viral infectivity have given somewhat contradictory results; possibly a consequence of clay-virus interactions being dependent on the unique structure of particular viruses. In this work, the interaction between montmorillonite and the bacteriophage φ6 is investigated. φ6 is a member of the cystovirus family that infects Pseudomonas syringe, a common plant pathogen. As a member of the cystovirus family with an enveloped structure, φ6 serves as a model for reoviruses, a human pathogen. Experiments were conducted with φ6 suspended in dilute, purified homoionic commercial-grade montmorillonite over a range of virus:clay ratios. At a 1:100000 virus:clay ratio, the clay reduced viral infectivity by 99%. The minimum clay to virus ratio which results in a measurable reduction of P. syringae infection is 1:1. Electron microscopy demonstrates that mixed suspensions of smectite and virus co-aggregate to form flocs encompassing virions within the smectite. Both free viral particles as well as those imbedded in the flocs are seen in the micrographs to be missing the envelope- leaving only the nucleocapsid (NC) intact; indicating that smectite inactivates the virus by envelope disassembly. These results have strong implications in the evolution of both the φ6 virus and its P. syringae host cells. TEM of aggregate showing several disassembled NCs.

  5. A Structural Model for the Single-Stranded DNA Genome of Filamentous Bacteriophage Pf1

    PubMed Central

    Tsuboi, Masamichi; Tsunoda, Masaru; Overman, Stacy A.; Benevides, James M.; Thomas, George J.

    2010-01-01

    The filamentous bacteriophage Pf1, which infects strain PAK of Pseudomonas aeruginosa, is a flexible filament (~2000 × 6.5 nm) consisting of a covalently closed DNA loop of 7349 nucleotides sheathed by 7350 copies of a 46-residue α-helical subunit. The subunit α-helices, which are inclined at a small average angle (~16°) from the virion axis, are arranged compactly around the DNA core. Orientations of the Pf1 DNA nucleotides with respect to the filament axis are not known. In this work we report and interpret the polarized Raman spectra of oriented Pf1 filaments. We demonstrate that the polarizations of DNA Raman band intensities establish that the nucleotide bases of packaged Pf1 DNA are well ordered within the virion and that the base planes are positioned close to parallel to the filament axis. The present results are combined with a previously proposed projection of the intraviral path of Pf1 DNA (1) to develop a novel molecular model for the Pf1 assembly. PMID:20078135

  6. The Search for Therapeutic Bacteriophages Uncovers One New Subfamily and Two New Genera of Pseudomonas-Infecting Myoviridae

    PubMed Central

    Henry, Marine; Bobay, Louis-Marie; Chevallereau, Anne; Saussereau, Emilie; Ceyssens, Pieter-Jan; Debarbieux, Laurent

    2015-01-01

    In a previous study, six virulent bacteriophages PAK_P1, PAK_P2, PAK_P3, PAK_P4, PAK_P5 and CHA_P1 were evaluated for their in vivo efficacy in treating Pseudomonas aeruginosa infections using a mouse model of lung infection. Here, we show that their genomes are closely related to five other Pseudomonas phages and allow a subdivision into two clades, PAK_P1-like and KPP10-like viruses, based on differences in genome size, %GC and genomic contents, as well as number of tRNAs. These two clades are well delineated, with a mean of 86% and 92% of proteins considered homologous within individual clades, and 25% proteins considered homologous between the two clades. By ESI-MS/MS analysis we determined that their virions are composed of at least 25 different proteins and electron microscopy revealed a morphology identical to the hallmark Salmonella phage Felix O1. A search for additional bacteriophage homologs, using profiles of protein families defined from the analysis of the 11 genomes, identified 10 additional candidates infecting hosts from different species. By carrying out a phylogenetic analysis using these 21 genomes we were able to define a new subfamily of viruses, the Felixounavirinae within the Myoviridae family. The new Felixounavirinae subfamily includes three genera: Felixounalikevirus, PAK_P1likevirus and KPP10likevirus. Sequencing genomes of bacteriophages with therapeutic potential increases the quantity of genomic data on closely related bacteriophages, leading to establishment of new taxonomic clades and the development of strategies for analyzing viral genomes as presented in this article. PMID:25629728

  7. 17 CFR 240.12b-25 - Notification of inability to timely file all or any required portion of a Form 10-K, 20-F, 11-K...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... timely file all or any required portion of a Form 10-K, 20-F, 11-K, N-SAR, N-CSR, 10-Q, or 10-D. 240.12b... timely file all or any required portion of a Form 10-K, 20-F, 11-K, N-SAR, N-CSR, 10-Q, or 10-D. (a) If..., annual or transition report on Form N-CSR (17 CFR 249.331; 17 CFR 274.128) or Form N-SAR (17 CFR 249.330...

  8. 17 CFR 240.12b-25 - Notification of inability to timely file all or any required portion of a Form 10-K, 20-F, 11-K...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... timely file all or any required portion of a Form 10-K, 20-F, 11-K, N-SAR, N-CSR, 10-Q, or 10-D. 240.12b... timely file all or any required portion of a Form 10-K, 20-F, 11-K, N-SAR, N-CSR, 10-Q, or 10-D. (a) If..., annual or transition report on Form N-CSR (17 CFR 249.331; 17 CFR 274.128) or Form N-SAR (17 CFR 249.330...

  9. 17 CFR 240.12b-25 - Notification of inability to timely file all or any required portion of a Form 10-K, 20-F, 11-K...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... timely file all or any required portion of a Form 10-K, 20-F, 11-K, N-SAR, N-CSR, 10-Q, or 10-D. 240.12b... timely file all or any required portion of a Form 10-K, 20-F, 11-K, N-SAR, N-CSR, 10-Q, or 10-D. (a) If..., annual or transition report on Form N-CSR (17 CFR 249.331; 17 CFR 274.128) or Form N-SAR (17 CFR 249.330...

  10. 17 CFR 240.12b-25 - Notification of inability to timely file all or any required portion of a Form 10-K, 20-F, 11-K...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... timely file all or any required portion of a Form 10-K, 20-F, 11-K, N-SAR, N-CSR, 10-Q, or 10-D. 240.12b... timely file all or any required portion of a Form 10-K, 20-F, 11-K, N-SAR, N-CSR, 10-Q, or 10-D. (a) If..., annual or transition report on Form N-CSR (17 CFR 249.331; 17 CFR 274.128) or Form N-SAR (17 CFR 249.330...

  11. 17 CFR 240.12b-25 - Notification of inability to timely file all or any required portion of a Form 10-K, 20-F, 11-K...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... timely file all or any required portion of a Form 10-K, 20-F, 11-K, N-SAR, N-CSR, 10-Q, or 10-D. 240.12b... timely file all or any required portion of a Form 10-K, 20-F, 11-K, N-SAR, N-CSR, 10-Q, or 10-D. (a) If..., annual or transition report on Form N-CSR (17 CFR 249.331; 17 CFR 274.128) or Form N-SAR (17 CFR 249.330...

  12. Guidelines for Bacteriophage Product Certification.

    PubMed

    Fauconnier, Alan

    2018-01-01

    Following decades in the wilderness, bacteriophage therapy is now appearing as a credible antimicrobial strategy. However, this reemerging therapy does not rekindle without raising sensitive regulatory concerns. Indeed, whereas the European regulatory framework has been basically implemented to tackle ready-to-use pharmaceuticals produced on a large scale, bacteriophage therapy relies on a dynamic approach requiring a regulation on personalized medicine, nonexistent at present. Because of this, no guideline are currently available for addressing the scientific and regulatory issues specifically related to phage therapy medicinal products (PTMP).Pending to the implementation of an appropriate regulatory framework and to the development of ensuing guidelines, several avenues which might lead to PTMP regulatory compliance are explored here. Insights might come from the multi-strain dossier approach set up for particular animal vaccines, from the homologous group concept developed for the allergen products or from the licensing process for veterinary autogenous vaccines. Depending on national legislations, customized preparations prescribed as magistral formulas or to be used on a named-patient basis are possible regulatory approaches to be considered. However, these schemes are not optimal and should thus be regarded as transitional.

  13. Multiplex PCR for the detection and identification of dairy bacteriophages in milk.

    PubMed

    del Rio, B; Binetti, A G; Martín, M C; Fernández, M; Magadán, A H; Alvarez, M A

    2007-02-01

    Bacteriophage infections of starter lactic acid bacteria are a serious risk in the dairy industry. Phage infection can lead to slow lactic acid production or even the total failure of fermentation. The associated economic losses can be substantial. Rapid and sensitive methods are therefore required to detect and identify phages at all stages of the manufacture of fermented dairy products. This study describes a simple and rapid multiplex PCR method that, in a single reaction, detects the presence of bacteriophages infecting Streptococcus thermophilus and Lactobacillus delbrueckii, plus three genetically distinct 'species' of Lactococcus lactis phages commonly found in dairy plants (P335, 936 and c2). Available bacteriophage genome sequences were examined and the conserved regions used to design five pairs of primers, one for each of the above bacteriophage species. These primers were designed to generate specific fragments of different size depending on the species. Since this method can detect the above phages in untreated milk and can be easily incorporated into dairy industry routines, it might be readily used to earmark contaminated milk for use in processes that do not involve susceptible starter organisms or for use in those that involve phage-deactivating conditions.

  14. Monitoring of a 1 kWp Solar Photovoltaic System

    NASA Astrophysics Data System (ADS)

    Malek, M. F.; Zainuddin, H.; Rejab, S. N. M.; Shaari, S. N.; Shaari, S.; Omar, A. M.; Rusop, M.

    2009-06-01

    A 1 kWp `stand alone' PV system consists of 4 module (2 BP SX75U module and 2 BP 275F module), inverter, 2 thermocouple, 3 voltage sensor, 3 current sensor, 4 battery and data logger (Data Taker DT80) has been set up. This research involve nine parameters which are irradiance (Ia), ambient temperature (Tamb), module temperature (Tmod), module voltage (Vmod), battery voltage (Vbat), load voltage (Vload), module current (Imod), battery current (Ibat) and load current (Iload). All parameters were measured using the equipments and sensors that connected directly to data logger (Data Taker DT80) to interpret and show the data on computer using the Delogger sofware. The data then was transferred into the computer and analyzed using the Deview and Microsoft Excel software to determine the performance indices for the stand alone PV system. From the analysis a few performance indices were determined. The range of daily solar irradiation is between 2.20 kWhm-2 to 4.00 kWhm-2, while the range of total global irradiation is between 5.76 kWh to 10.48 kWh. For daily total energy yield, the range is between 0.23 kWh d-1 to 0.28 kWh d-1. The range for clearness index is between 0.49% to 0.89%. The range for final yield is between 0.77 kWh d-1 kWp-1 to 0.93 kWhd-1 kWp-1 while the range of array efficiency is between 2.53% to 4.65%. Lastly, the range of the performance ratio is between 22.08% to 40.58%.

  15. Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer

    USGS Publications Warehouse

    Ryan, J.N.; Elimelech, M.; Ard, R.A.; Harvey, R.W.; Johnson, P.R.

    1999-01-01

    Bacteriophage PRD1 and silica colloids were co-injected into sewage- contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by

  16. Effects of in ovo exposure to benzo[k]fluoranthene (BkF) on CYP1A expression and promoter methylation in developing chicken embryos.

    PubMed

    Brandenburg, Jonas; Head, Jessica A

    2018-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are toxic environmental pollutants that are potent teratogens. Recent research suggests that early life exposure to PAHs can affect health outcomes later in life. Some of these latent responses may be mediated by epigenetic mechanisms such as DNA methylation. The role of DNA methylation in regulating responses to PAHs in birds is currently unknown. Here, we assess the effect of in ovo exposure to the model PAH, benzo[k]fluoranthene (BkF), on aryl hydrocarbon receptor (AHR) mediated cytochrome P4501A (CYP1A) gene expression and promoter methylation in chicken embryos. Fertilized chicken eggs were injected with BkF (0-100μg/kg) prior to incubation. BkF exposure was associated with an increase in CYP1A4 and CYP1A5 mRNA levels at mid-incubation (embryonic day 10), which dropped to baseline levels towards the end of the incubation period (embryonic day 19). The transient induction in CYP1A expression was accompanied by small but significant increases in CYP1A promoter methylation, which persisted until after shortly after hatching. Methylation within the CYP1A promoter was correlated with levels of CYP1A5, but not CYP1A4 mRNA. Characterization of the role of DNA methylation in the AHR response pathway may increase our understanding of the effects of early life exposure to PAHs in birds. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Co-option of bacteriophage lysozyme genes by bivalve genomes.

    PubMed

    Ren, Qian; Wang, Chunyang; Jin, Min; Lan, Jiangfeng; Ye, Ting; Hui, Kaimin; Tan, Jingmin; Wang, Zheng; Wyckoff, Gerald J; Wang, Wen; Han, Guan-Zhu

    2017-01-01

    Eukaryotes have occasionally acquired genetic material through horizontal gene transfer (HGT). However, little is known about the evolutionary and functional significance of such acquisitions. Lysozymes are ubiquitous enzymes that degrade bacterial cell walls. Here, we provide evidence that two subclasses of bivalves (Heterodonta and Palaeoheterodonta) acquired a lysozyme gene via HGT, building on earlier findings. Phylogenetic analyses place the bivalve lysozyme genes within the clade of bacteriophage lysozyme genes, indicating that the bivalves acquired the phage-type lysozyme genes from bacteriophages, either directly or through intermediate hosts. These bivalve lysozyme genes underwent dramatic structural changes after their co-option, including intron gain and fusion with other genes. Moreover, evidence suggests that recurrent gene duplication occurred in the bivalve lysozyme genes. Finally, we show the co-opted lysozymes exhibit a capacity for antibacterial action, potentially augmenting the immune function of related bivalves. This represents an intriguing evolutionary strategy in the eukaryote-microbe arms race, in which the genetic materials of bacteriophages are co-opted by eukaryotes, and then used by eukaryotes to combat bacteria, using a shared weapon against a common enemy. © 2017 The Authors.

  18. Two-Stage Dynamics of In Vivo Bacteriophage Genome Ejection

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ju; Wu, David; Gelbart, William; Knobler, Charles M.; Phillips, Rob; Kegel, Willem K.

    2018-04-01

    Biopolymer translocation is a key step in viral infection processes. The transfer of information-encoding genomes allows viruses to reprogram the cell fate of their hosts. Constituting 96% of all known bacterial viruses [A. Fokine and M. G. Rossmann, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage 4, e28281 (2014)], the tailed bacteriophages deliver their DNA into host cells via an "ejection" process, leaving their protein shells outside of the bacteria; a similar scenario occurs for mammalian viruses like herpes, where the DNA genome is ejected into the nucleus of host cells, while the viral capsid remains bound outside to a nuclear-pore complex. In light of previous experimental measurements of in vivo bacteriophage λ ejection, we analyze here the physical processes that give rise to the observed dynamics. We propose that, after an initial phase driven by self-repulsion of DNA in the capsid, the ejection is driven by anomalous diffusion of phage DNA in the crowded bacterial cytoplasm. We expect that this two-step mechanism is general for phages that operate by pressure-driven ejection, and we discuss predictions of our theory to be tested in future experiments.

  19. Promoter binding, initiation, and elongation by bacteriophage T7 RNA polymerase. A single-molecule view of the transcription cycle.

    PubMed

    Skinner, Gary M; Baumann, Christoph G; Quinn, Diana M; Molloy, Justin E; Hoggett, James G

    2004-01-30

    A single-molecule transcription assay has been developed that allows, for the first time, the direct observation of promoter binding, initiation, and elongation by a single RNA polymerase (RNAP) molecule in real-time. To promote DNA binding and transcription initiation, a DNA molecule tethered between two optically trapped beads was held near a third immobile surface bead sparsely coated with RNAP. By driving the optical trap holding the upstream bead with a triangular oscillation while measuring the position of both trapped beads, we observed the onset of promoter binding, promoter escape (productive initiation), and processive elongation by individual RNAP molecules. After DNA template release, transcription re-initiation on the same DNA template is possible; thus, multiple enzymatic turnovers by an individual RNAP molecule can be observed. Using bacteriophage T7 RNAP, a commonly used RNAP paradigm, we observed the association and dissociation (k(off)= 2.9 s(-1)) of T7 RNAP and promoter DNA, the transition to the elongation mode (k(for) = 0.36 s(-1)), and the processive synthesis (k(pol) = 43 nt s(-1)) and release of a gene-length RNA transcript ( approximately 1200 nt). The transition from initiation to elongation is much longer than the mean lifetime of the binary T7 RNAP-promoter DNA complex (k(off) > k(for)), identifying a rate-limiting step between promoter DNA binding and promoter escape.

  20. Antimicrobial bacteriophage-derived proteins and therapeutic applications

    USDA-ARS?s Scientific Manuscript database

    Antibiotics have the remarkable power to control bacterial infections. Unfortunately, widespread use, whether regarded as prudent or not, has favored the emergence and persistence of antibiotic resistant strains of human pathogenic bacteria, resulting in a global health threat. Bacteriophages (pha...

  1. Finding the optimal dose of vitamin K1 to treat vitamin K deficiency and to avoid anaphylactoid reactions.

    PubMed

    Mi, Yan-Ni; Ping, Na-Na; Li, Bo; Xiao, Xue; Zhu, Yan-Bing; Cao, Lei; Ren, Jian-Kang; Cao, Yong-Xiao

    2017-10-01

    Vitamin K1 injection induces severe dose-related anaphylactoid reactions and overdose for the treatment of vitamin K deficiency. We aimed to find an optimal and small dose of vitamin K1 injection to treat vitamin K deficiency and avoid anaphylactoid reactions in animal. Rats were administered a vitamin K-deficient diet and gentamicin to establish vitamin K deficiency model. Behaviour tests were performed in beagle dogs to observe anaphylactoid reactions. The results showed an increased protein induced by vitamin K absence or antagonist II (PIVKA-II) levels, a prolonging of prothrombin time (PT) and activated partial thromboplastin time (APTT) and a decrease in vitamin K-dependent coagulation factor (F) II, VII, IX and X activities in the model group. In vitamin K1 0.01 mg/kg group, the liver vitamin K1 levels increased fivefold and the liver vitamin K2 levels increased to the normal amount. Coagulation markers PT, APTT, FVII and FIX activities returned to normal. Both in the 0.1 and 1.0 mg/kg vitamin K1 groups, coagulation functions completely returned to normal. Moreover, the amount of liver vitamin K1 was 40 (0.1 mg/kg) or 100 (1.0 mg/kg) times as in normal. Vitamin K2 was about 4 (0.1 mg/kg) or 5 (1.0 mg/kg) times as the normal amount. There was no obvious anaphylactoid symptom in dogs with the dose of 0.03 mg/kg, which is equivalent to the dose of 0.01 mg/kg in rats. These results demonstrated that a small dose of vitamin K1 is effective to improve vitamin K deficiency and to prevent anaphylactoid reactions, simultaneously. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  2. Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress.

    PubMed Central

    Odijk, T

    1998-01-01

    A continuum computation is proposed for the bending stress stabilizing DNA that is hexagonally packed within bacteriophage T7. Because the inner radius of the DNA spool is rather small, the stress of the curved DNA genome is strong enough to balance its electrostatic self-repulsion so as to form a stable hexagonal phase. The theory is in accord with the microscopically determined structure of bacteriophage T7 filled with DNA within the experimental margin of error. PMID:9726924

  3. Non-Identity-Mediated CRISPR-Bacteriophage Interaction Mediated via the Csy and Cas3 Proteins ▿#

    PubMed Central

    Cady, Kyle C.; O'Toole, George A.

    2011-01-01

    Studies of the Escherichia, Neisseria, Thermotoga, and Mycobacteria clustered regularly interspaced short palindromic repeat (CRISPR) subtypes have resulted in a model whereby CRISPRs function as a defense system against bacteriophage infection and conjugative plasmid transfer. In contrast, we previously showed that the Yersinia-subtype CRISPR region of Pseudomonas aeruginosa strain UCBPP-PA14 plays no detectable role in viral immunity but instead is required for bacteriophage DMS3-dependent inhibition of biofilm formation by P. aeruginosa. The goal of this study is to define the components of the Yersinia-subtype CRISPR region required to mediate this bacteriophage-host interaction. We show that the Yersinia-subtype-specific CRISPR-associated (Cas) proteins Csy4 and Csy2 are essential for small CRISPR RNA (crRNA) production in vivo, while the Csy1 and Csy3 proteins are not absolutely required for production of these small RNAs. Further, we present evidence that the core Cas protein Cas3 functions downstream of small crRNA production and that this protein requires functional HD (predicted phosphohydrolase) and DEXD/H (predicted helicase) domains to suppress biofilm formation in DMS3 lysogens. We also determined that only spacer 1, which is not identical to any region of the DMS3 genome, mediates the CRISPR-dependent loss of biofilm formation. Our evidence suggests that gene 42 of phage DMS3 (DMS3-42) is targeted by CRISPR2 spacer 1 and that this targeting tolerates multiple point mutations between the spacer and DMS3-42 target sequence. This work demonstrates how the interaction between P. aeruginosa strain UCBPP-PA14 and bacteriophage DMS3 can be used to further our understanding of the diverse roles of CRISPR system function in bacteria. PMID:21398535

  4. Panconnectivity of Locally Connected K(1,3)-Free Graphs

    DTIC Science & Technology

    1989-10-15

    Graph Theory, 3 (1979) p. 351-356. 22 7. Cun-Quan Zhang, Cycles of Given Lengths in KI, 3-Free Graphs, Discrete Math ., (1988) to appear. I. f 2.f 𔃽. AA A V V / (S. ...Locally Connected and Hamiltonian-Connected Graphs, Isreal J. Math., 33 (1979) p. 5-8. 4. V. Chvatal and P. Erd6s, A Note on Hamiltonian Circuits, Discrete ... Math ., 2 (1972) p. 111-113. 5. S. V. Kanetkar and P. R. Rao, Connected and Locally 2- Connected, K1.3-Free Graphs are Panconnected, J. Graph Theory, 8

  5. Quantitative analysis of 18F-NaF dynamic PET/CT cannot differentiate malignant from benign lesions in multiple myeloma.

    PubMed

    Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Anwar, Hoda; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-01-01

    A renewed interest has been recently developed for the highly sensitive bone-seeking radiopharmaceutical 18 F-NaF. Aim of the present study is to evaluate the potential utility of quantitative analysis of 18 F-NaF dynamic PET/CT data in differentiating malignant from benign degenerative lesions in multiple myeloma (MM). 80 MM patients underwent whole-body PET/CT and dynamic PET/CT scanning of the pelvis with 18 F-NaF. PET/CT data evaluation was based on visual (qualitative) assessment, semi-quantitative (SUV) calculations, and absolute quantitative estimations after application of a 2-tissue compartment model and a non-compartmental approach leading to the extraction of fractal dimension (FD). In total 263 MM lesions were demonstrated on 18 F-NaF PET/CT. Semi-quantitative and quantitative evaluations were performed for 25 MM lesions as well as for 25 benign, degenerative and traumatic lesions. Mean SUV average for MM lesions was 11.9 and mean SUV max was 23.2. Respectively, SUV average and SUV max for degenerative lesions were 13.5 and 20.2. Kinetic analysis of 18 F-NaF revealed the following mean values for MM lesions: K 1 = 0.248 (1/min), k 3 = 0.359 (1/min), influx (K i ) = 0.107 (1/min), FD = 1.382, while the respective values for degenerative lesions were: K 1 = 0.169 (1/min), k 3 = 0.422 (1/min), influx (K i ) = 0.095 (1/min), FD = 1. 411. No statistically significant differences between MM and benign degenerative disease regarding SUV average , SUV max , K 1 , k 3 and influx (K i ) were demonstrated. FD was significantly higher in degenerative than in malignant lesions. The present findings show that quantitative analysis of 18 F-NaF PET data cannot differentiate malignant from benign degenerative lesions in MM patients, supporting previously published results, which reflect the limited role of 18 F-NaF PET/CT in the diagnostic workup of MM.

  6. Methods for Initial Characterization of Campylobacter jejuni Bacteriophages.

    PubMed

    Sørensen, Martine Camilla Holst; Gencay, Yilmaz Emre; Brøndsted, Lone

    2017-01-01

    Here we describe an initial characterization of Campylobacter jejuni bacteriophages by host range analysis, genome size determination by pulsed-field gel electrophoresis, and receptor-type identification by screening mutants for phage sensitivity.

  7. Preliminary crystallographic analysis of the major capsid protein P2 of the lipid-containing bacteriophage PM2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrescia, Nicola G. A.; Kivelä, Hanna M.; Grimes, Jonathan M.

    2005-08-01

    The viral capsid protein P2 of bacteriophage PM2 has been crystallized. Preliminary X-ray analysis demonstrates the position and orientation of the two trimers in the asymmetric unit. PM2 (Corticoviridae) is a dsDNA bacteriophage which contains a lipid membrane beneath its icosahedral capsid. In this respect it resembles bacteriophage PRD1 (Tectiviridae), although it is not known whether the similarity extends to the detailed molecular architecture of the virus, for instance the fold of the major coat protein P2. Structural analysis of PM2 has been initiated and virus-derived P2 has been crystallized by sitting-nanodrop vapour diffusion. Crystals of P2 have been obtainedmore » in space group P2{sub 1}2{sub 1}2, with two trimers in the asymmetric unit and unit-cell parameters a = 171.1, b = 78.7, c = 130.1 Å. The crystals diffract to 4 Å resolution at the ESRF BM14 beamline (Grenoble, France) and the orientation of the non-crystallographic threefold axes, the spatial relationship between the two trimers and the packing of the trimers within the unit cell have been determined. The trimers form tightly packed layers consistent with the crystal morphology, possibly recapitulating aspects of the arrangement of subunits in the virus.« less

  8. New organic superconductors beta-(BDA-TTP)2X [BDA-TTP + 2,5-bis(1,3-dithian-2ylidene)-1,3,4,6-tetrathiapentalene; X(-) = SbF6(-), AsF6(-), and PF6(-)].

    PubMed

    Yamada, J; Watanabe, M; Akutsu, H; Nakatsuji, S; Nishikawa, H; Ikemoto, I; Kikuchi, K

    2001-05-09

    The synthesis, electrochemical properties, and molecular structure of a new pi-electron donor, 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP), is described. In contrast to the hitherto-known tetrachalcogenafulvalene pi-donors providing organic superconductors, this donor contains only the bis-fused 1,3-dithiole-2-ylidene unit as a pi-electron system, yet produces a series of ambient-pressure superconductors beta-(BDA-TTP)2X [X = SbF6 (magnetic T(c) = 6.9 K, resistive T(c) = 7.5 K), AsF6 (magnetic T(c) = 5.9 K, resistive T(c) = 5.8 K), and PF6 (magnetic T(c) = 5.9 K)], which are isostructural. The values of the intermolecular overlap integrals calculated on the donor layers of these superconductors suggest a two-dimensional (2D) electronic structure with loose donor packing. Tight-binding band calculations also indicate that these superconductors have the 2D band dispersion relations and closed Fermi surfaces.

  9. 40 CFR 180.1301 - Escherichia coli O157:H7 specific bacteriophages; temporary exemption from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... bacteriophages; temporary exemption from the requirement of a tolerance. 180.1301 Section 180.1301 Protection of... bacteriophages; temporary exemption from the requirement of a tolerance. A temporary exemption from the requirement of a tolerance is established for residues of lytic bacteriophages that are specific to...

  10. 40 CFR 180.1301 - Escherichia coli O157:H7 specific bacteriophages; temporary exemption from the requirement of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... bacteriophages; temporary exemption from the requirement of a tolerance. 180.1301 Section 180.1301 Protection of... bacteriophages; temporary exemption from the requirement of a tolerance. A temporary exemption from the requirement of a tolerance is established for residues of lytic bacteriophages that are specific to...

  11. 40 CFR 180.1301 - Escherichia coli O157:H7 specific bacteriophages; temporary exemption from the requirement of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... bacteriophages; temporary exemption from the requirement of a tolerance. 180.1301 Section 180.1301 Protection of... bacteriophages; temporary exemption from the requirement of a tolerance. A temporary exemption from the requirement of a tolerance is established for residues of lytic bacteriophages that are specific to...

  12. 40 CFR 180.1301 - Escherichia coli O157:H7 specific bacteriophages; temporary exemption from the requirement of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... bacteriophages; temporary exemption from the requirement of a tolerance. 180.1301 Section 180.1301 Protection of... bacteriophages; temporary exemption from the requirement of a tolerance. A temporary exemption from the requirement of a tolerance is established for residues of lytic bacteriophages that are specific to...

  13. The structure of the bacteriophage PRD1 spike sheds light on the evolution of viral capsid architecture.

    PubMed

    Merckel, Michael C; Huiskonen, Juha T; Bamford, Dennis H; Goldman, Adrian; Tuma, Roman

    2005-04-15

    Comparisons of bacteriophage PRD1 and adenovirus protein structures and virion architectures have been instrumental in unraveling an evolutionary relationship and have led to a proposal of a phylogeny-based virus classification. The structure of the PRD1 spike protein P5 provides further insight into the evolution of viral proteins. The crystallized P5 fragment comprises two structural domains: a globular knob and a fibrous shaft. The head folds into a ten-stranded jelly roll beta barrel, which is structurally related to the tumor necrosis factor (TNF) and the PRD1 coat protein domains. The shaft domain is a structural counterpart to the adenovirus spike shaft. The structural relationships between PRD1, TNF, and adenovirus proteins suggest that the vertex proteins may have originated from an ancestral TNF-like jelly roll coat protein via a combination of gene duplication and deletion.

  14. Exploration on anion ordering, optical properties and electronic structure in K3WO3F3 elpasolite

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Isaenko, L. I.; Kesler, V. G.; Lin, Z. S.; Molokeev, M. S.; Yelisseyev, A. P.; Zhurkov, S. A.

    2012-03-01

    Room-temperature modification of potassium oxyfluorotungstate, G2-K3WO3F3, has been prepared by low-temperature chemical route and single crystal growth. Wide optical transparency range of 0.3-9.4 μm and forbidden band gap Eg=4.32 eV have been obtained for G2-K3WO3F3 crystal. Meanwhile, its electronic structure has been calculated with the first-principles calculations. The good agreement between the theorectical and experimental results have been achieved. Furthermore, G2-K3WO3F3 is predicted to possess the relatively large nonlinear optical coefficients.

  15. Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage [psi]29 tail

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Ye; Morais, Marc C.; Cohen, Daniel N.

    2009-08-28

    The small bacteriophage {phi}29 must penetrate the {approx}250-{angstrom} thick external peptidoglycan cell wall and cell membrane of the Gram-positive Bacillus subtilis, before ejecting its dsDNA genome through its tail into the bacterial cytoplasm. The tail of bacteriophage {phi}29 is noncontractile and {approx}380 {angstrom} long. A 1.8-{angstrom} resolution crystal structure of gene product 13 (gp13) shows that this tail protein has spatially well separated N- and C-terminal domains, whose structures resemble lysozyme-like enzymes and metallo-endopeptidases, respectively. CryoEM reconstructions of the WT bacteriophage and mutant bacteriophages missing some or most of gp13 shows that this enzyme is located at the distal endmore » of the {phi}29 tail knob. This finding suggests that gp13 functions as a tail-associated, peptidoglycan-degrading enzyme able to cleave both the polysaccharide backbone and peptide cross-links of the peptidoglycan cell wall. Comparisons of the gp13{sup -} mutants with the {phi}29 mature and emptied phage structures suggest the sequence of events that occur during the penetration of the tail through the peptidoglycan layer.« less

  16. Nucleoli in human early erythroblasts (K2, K1, K1/2 cells).

    PubMed

    Smetana, K; Jirásková, I; Klamová, H

    2005-01-01

    Human early erythroid precursors classified according to the nuclear size were studied to provide information on nucleoli in these cells using simple cytochemical procedures for demonstration of RNA and proteins of silver-stained nucleolar organizers. K2 cells with nuclear diameter larger than 13 microm and K1 cells with nuclear diameter larger than 9 microm corresponding to proerythroblasts and macroblasts (large basophilic erythroblasts) mostly possessed large irregularly shaped nucleoli with multiple fibrillar centres representing "active nucleoli". K1/2 cells with nuclear diameter smaller than 9 microm corresponding to small basophilic erythroblasts were usually characterized by the presence of micronucleoli representing "inactive nucleolar types". On the other hand, a few K1/2 cells contained large nucleoli with multiple fibrillar centres similar to those present in K2 cells and thus appeared as "microproerythroblasts". The nucleolar asynchrony expressed by the presence of large irregularly shaped nucleoli with multiple nucleoli (active nucleoli) and ring-shaped nucleoli (resting nucleoli) in one and the same nucleus of K2 or K1 cells was not exceptional and might reflect a larger resistance of these cells to negative factors influencing the erythropoiesis. The intranucleolar translocation of silver-stained nucleolus organized regions was noted in K2 cells and might indicate the premature aging of these cells without further differentiation. More studies, however, are required in this direction.

  17. Improved recovery of bacteriophage M13 using an ATPS-based bioprocess.

    PubMed

    González-Mora, Alejandro; Ruiz-Ruiz, Federico; Benavides, Jorge; Rito-Palomares, Marco

    2018-06-08

    Aqueous two-phase systems (ATPS) have been widely exploited for the recovery and partial purification of biological compounds. Recently our research group characterized the primary recovery and partial purification of bacteriophage M13 using polymer-salt and ionic liquid-salt ATPS. From such study, it was concluded that PEG 400-potassium phosphate ATPS with a volume ratio (V R ) of 1 and 25% w/w TLL were the best suitable for the primary recovery of bacteriophage M13 from a crude extract, achieving a recovery yield of 83.3%. Although such system parameters were proven to be adequate for the recovery of the product of interest, it was concluded that further optimization was desirable and attainable by studying the effect of additional system parameters such as V R , concentration of neutral salt (M) and sample load (% w/w). This research work presents an optimization of a previously reported process for the recovery of bacteriophage M13 directly from a crude extract using ATPS. The increase in V R and sample load showed a positive effect in the recovery of M13 indicating an improved performance of the proposed ATPS. According to the results presented here, a system composed of PEG 400 17.2% (w/w), potassium phosphate 15.5% (w/w) and a sample load of 30% (w/w) allowed the recovery of M13 directly from a crude extract with a top phase recovery of 80.1%, representing an increase of 4.8 times in the final concentration and a reduction of 2.65 times in the processing costs. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  18. Electron-spin-resonance studies of 12CH3F + , 13CH3F + , and 12CH2DF + in neon matrices at 4 K: Comparison with theoretical calculations

    NASA Astrophysics Data System (ADS)

    Knight, Lon B., Jr.; Gregory, Brian W.; Hill, Devon W.; Arrington, C. A.; Momose, Takamasa; Shida, Tadamasa

    1991-01-01

    Various isotopic forms of the methyl fluoride cation 12CH3F+, 13CH3F+, and 12CH2DF+ have been generated by photoionization at 16.8 eV and separately by electron bombardment at 50 eV. The first electron-spin-resonance (ESR) results are reported for this radical cation which was isolated in neon matrices at 4 K. The measured A tensors or nuclear hyperfine parameters were compared with the results obtained from various computational approaches. Surprising observations were the large amounts of spin density on the methyl group, especially the hydrogen atoms, and the extreme differences in the deuterated spectra compared to the nondeuterated case. The presence of a single D atom apparently acts to prevent dynamic Jahn-Teller averaging which makes the methyl hydrogens equivalent on the ESR time scale. Such a dramatic Jahn-Teller effect has been previously observed for the similar methane cations CH+4 and CH2D+2. The magnetic parameters for CH2DF+ in neon at 4 K are gX=2.0032(5), gY=2.0106(8), and gZ=2.0120(5); for H: AX = 483(1), AY=476(1), and AZ=483(1) MHz; for D: ‖AX‖=5.0(3), ‖AY‖<3, and ‖AZ‖=7.1(3) MHz; for 19F : AX=965(1), AY=-130(2), and AZ=-166(1) MHz. For CH3F+, the g tensor and 19F A tensor were similar to those above but the H atoms were equivalent with values of AX=317(1), AY=323(2), and AZ=312 MHz.

  19. The Baseplate of Lactobacillus delbrueckii Bacteriophage Ld17 Harbors a Glycerophosphodiesterase.

    PubMed

    Cornelissen, Anneleen; Sadovskaya, Irina; Vinogradov, Evgeny; Blangy, Stéphanie; Spinelli, Silvia; Casey, Eoghan; Mahony, Jennifer; Noben, Jean-Paul; Dal Bello, Fabio; Cambillau, Christian; van Sinderen, Douwe

    2016-08-05

    Glycerophosphodiester phosphodiesterases (GDPDs; EC 3.1.4.46) typically hydrolyze glycerophosphodiesters to sn-glycerol 3-phosphate (Gro3P) and their corresponding alcohol during patho/physiological processes in bacteria and eukaryotes. GDPD(-like) domains were identified in the structural particle of bacterial viruses (bacteriophages) specifically infecting Gram-positive bacteria. The GDPD of phage 17 (Ld17; GDPDLd17), representative of the group b Lactobacillus delbrueckii subsp. bulgaricus (Ldb)-infecting bacteriophages, was shown to hydrolyze, besides the simple glycerophosphodiester, two complex surface-associated carbohydrates of the Ldb17 cell envelope: the Gro3P decoration of the major surface polysaccharide d-galactan and the oligo(glycerol phosphate) backbone of the partially glycosylated cell wall teichoic acid, a minor Ldb17 cell envelope component. Degradation of cell wall teichoic acid occurs according to an exolytic mechanism, and Gro3P substitution is presumed to be inhibitory for GDPDLd17 activity. The presence of the GDPDLd17 homotrimer in the viral baseplate structure involved in phage-host interaction together with the dependence of native GDPD activity, adsorption, and efficiency of plating of Ca(2+) ions supports a role for GDPDLd17 activity during phage adsorption and/or phage genome injection. In contrast to GDPDLd17, we could not identify any enzymatic activity for the GDPD-like domain in the neck passage structure of phage 340, a 936-type Lactococcus lactis subsp. lactis bacteriophage. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The Baseplate of Lactobacillus delbrueckii Bacteriophage Ld17 Harbors a Glycerophosphodiesterase*

    PubMed Central

    Cornelissen, Anneleen; Sadovskaya, Irina; Vinogradov, Evgeny; Blangy, Stéphanie; Spinelli, Silvia; Casey, Eoghan; Mahony, Jennifer; Noben, Jean-Paul; Dal Bello, Fabio; Cambillau, Christian; van Sinderen, Douwe

    2016-01-01

    Glycerophosphodiester phosphodiesterases (GDPDs; EC 3.1.4.46) typically hydrolyze glycerophosphodiesters to sn-glycerol 3-phosphate (Gro3P) and their corresponding alcohol during patho/physiological processes in bacteria and eukaryotes. GDPD(-like) domains were identified in the structural particle of bacterial viruses (bacteriophages) specifically infecting Gram-positive bacteria. The GDPD of phage 17 (Ld17; GDPDLd17), representative of the group b Lactobacillus delbrueckii subsp. bulgaricus (Ldb)-infecting bacteriophages, was shown to hydrolyze, besides the simple glycerophosphodiester, two complex surface-associated carbohydrates of the Ldb17 cell envelope: the Gro3P decoration of the major surface polysaccharide d-galactan and the oligo(glycerol phosphate) backbone of the partially glycosylated cell wall teichoic acid, a minor Ldb17 cell envelope component. Degradation of cell wall teichoic acid occurs according to an exolytic mechanism, and Gro3P substitution is presumed to be inhibitory for GDPDLd17 activity. The presence of the GDPDLd17 homotrimer in the viral baseplate structure involved in phage-host interaction together with the dependence of native GDPD activity, adsorption, and efficiency of plating of Ca2+ ions supports a role for GDPDLd17 activity during phage adsorption and/or phage genome injection. In contrast to GDPDLd17, we could not identify any enzymatic activity for the GDPD-like domain in the neck passage structure of phage 340, a 936-type Lactococcus lactis subsp. lactis bacteriophage. PMID:27268053

  1. Genetic requirements for sensitivity of bacteriophage t7 to dideoxythymidine.

    PubMed

    Tran, Ngoc Q; Tabor, Stanley; Richardson, Charles C

    2014-08-01

    We previously reported that the presence of dideoxythymidine (ddT) in the growth medium selectively inhibits the ability of bacteriophage T7 to infect Escherichia coli by inhibiting phage DNA synthese (N. Q. Tran, L. F. Rezende, U. Qimron, C. C. Richardson, and S. Tabor, Proc. Natl. Acad. Sci. U. S. A. 105:9373-9378, 2008, doi:10.1073/pnas.0804164105). In the presence of T7 gene 1.7 protein, ddT is taken up into the E. coli cell and converted to ddTTP. ddTTP is incorporated into DNA as ddTMP by the T7 DNA polymerase, resulting in chain termination. We have identified the pathway by which exogenous ddT is converted to ddTTP. The pathway consists of ddT transport by host nucleoside permeases and phosphorylation to ddTMP by the host thymidine kinase. T7 gene 1.7 protein phosphorylates ddTMP and ddTDP, resulting in ddTTP. A 74-residue peptide of the gene 1.7 protein confers ddT sensitivity to the same extent as the 196-residue wild-type gene 1.7 protein. We also show that cleavage of thymidine to thymine and deoxyribose-1-phosphate by the host thymidine phosphorylase greatly increases the sensitivity of phage T7 to ddT. Finally, a mutation in T7 DNA polymerase that leads to discrimination against the incorporation of ddTMP eliminates ddT sensitivity. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Genetic Requirements for Sensitivity of Bacteriophage T7 to Dideoxythymidine

    PubMed Central

    Tran, Ngoc Q.; Tabor, Stanley

    2014-01-01

    We previously reported that the presence of dideoxythymidine (ddT) in the growth medium selectively inhibits the ability of bacteriophage T7 to infect Escherichia coli by inhibiting phage DNA synthese (N. Q. Tran, L. F. Rezende, U. Qimron, C. C. Richardson, and S. Tabor, Proc. Natl. Acad. Sci. U. S. A. 105:9373–9378, 2008, doi:10.1073/pnas.0804164105). In the presence of T7 gene 1.7 protein, ddT is taken up into the E. coli cell and converted to ddTTP. ddTTP is incorporated into DNA as ddTMP by the T7 DNA polymerase, resulting in chain termination. We have identified the pathway by which exogenous ddT is converted to ddTTP. The pathway consists of ddT transport by host nucleoside permeases and phosphorylation to ddTMP by the host thymidine kinase. T7 gene 1.7 protein phosphorylates ddTMP and ddTDP, resulting in ddTTP. A 74-residue peptide of the gene 1.7 protein confers ddT sensitivity to the same extent as the 196-residue wild-type gene 1.7 protein. We also show that cleavage of thymidine to thymine and deoxyribose-1-phosphate by the host thymidine phosphorylase greatly increases the sensitivity of phage T7 to ddT. Finally, a mutation in T7 DNA polymerase that leads to discrimination against the incorporation of ddTMP eliminates ddT sensitivity. PMID:24858186

  3. A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption.

    PubMed

    Cooper, Ian R

    2016-11-01

    Bacteriophages are utilised in the food industry as biocontrol agents to reduce the load of bacteria, and thus reduce potential for human infection. This review focuses on current methods using bacteriophages within the food chain. Limitations of research will be discussed, and the potential for future food-based bacteriophage research. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku

    PubMed Central

    di Fagagna, Fabrizio d'Adda; Weller, Geoffrey R.; Doherty, Aidan J.; Jackson, Stephen P.

    2003-01-01

    Mu bacteriophage inserts its DNA into the genome of host bacteria and is used as a model for DNA transposition events in other systems. The eukaryotic Ku protein has key roles in DNA repair and in certain transposition events. Here we show that the Gam protein of phage Mu is conserved in bacteria, has sequence homology with both subunits of Ku, and has the potential to adopt a similar architecture to the core DNA-binding region of Ku. Through biochemical studies, we demonstrate that Gam and the related protein of Haemophilus influenzae display DNA binding characteristics remarkably similar to those of human Ku. In addition, we show that Gam can interfere with Ty1 retrotransposition in Saccharomyces cerevisiae. These data reveal structural and functional parallels between bacteriophage Gam and eukaryotic Ku and suggest that their functions have been evolutionarily conserved. PMID:12524520

  5. The HsiB1C1 (TssB-TssC) Complex of the Pseudomonas aeruginosa Type VI Secretion System Forms a Bacteriophage Tail Sheathlike Structure

    PubMed Central

    Lossi, Nadine S.; Manoli, Eleni; Förster, Andreas; Dajani, Rana; Pape, Tillmann; Freemont, Paul; Filloux, Alain

    2013-01-01

    Protein secretion systems in Gram-negative bacteria evolved into a variety of molecular nanomachines. They are related to cell envelope complexes, which are involved in assembly of surface appendages or transport of solutes. They are classified as types, the most recent addition being the type VI secretion system (T6SS). The T6SS displays similarities to bacteriophage tail, which drives DNA injection into bacteria. The Hcp protein is related to the T4 bacteriophage tail tube protein gp19, whereas VgrG proteins structurally resemble the gp27/gp5 puncturing device of the phage. The tube and spike of the phage are pushed through the bacterial envelope upon contraction of a tail sheath composed of gp18. In Vibrio cholerae it was proposed that VipA and VipB assemble into a tail sheathlike structure. Here we confirm these previous data by showing that HsiB1 and HsiC1 of the Pseudomonas aeruginosa H1-T6SS assemble into tubules resulting from stacking of cogwheel-like structures showing predominantly 12-fold symmetry. The internal diameter of the cogwheels is ∼100 Å, which is large enough to accommodate an Hcp tube whose external diameter has been reported to be 85 Å. The N-terminal 212 residues of HsiC1 are sufficient to form a stable complex with HsiB1, but the C terminus of HsiC1 is essential for the formation of the tubelike structure. Bioinformatics analysis suggests that HsiC1 displays similarities to gp18-like proteins in its C-terminal region. In conclusion, we provide further structural and mechanistic insights into the T6SS and show that a phage sheathlike structure is likely to be a conserved element across all T6SSs. PMID:23341461

  6. 21 CFR 866.2050 - Staphylococcal typing bacteriophage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Staphylococcal typing bacteriophage. 866.2050 Section 866.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2050...

  7. 21 CFR 866.2050 - Staphylococcal typing bacteriophage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Staphylococcal typing bacteriophage. 866.2050 Section 866.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2050...

  8. 21 CFR 866.2050 - Staphylococcal typing bacteriophage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Staphylococcal typing bacteriophage. 866.2050 Section 866.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2050...

  9. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    PubMed

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Bacteriophage use to control Salmonella biofilm on surfaces present in chicken slaughterhouses.

    PubMed

    Garcia, Keila Carolina de Ornellas Dutka; Corrêa, Isadora Mainieri de Oliveira; Pereira, Larissa Quinto; Silva, Tarcísio Macedo; Mioni, Mateus de Souza Ribeiro; Izidoro, Ana Carolina de Moraes; Bastos, Igor Henrique Vellano; Gonçalves, Guilherme Augusto Marietto; Okamoto, Adriano Sakai; Andreatti Filho, Raphael Lucio

    2017-09-01

    Foodborne diseases represent a major risk to public health worldwide. Pathogenic bacteria can live in the form of biofilm within the food industry, providing a permanent source of contamination. The aim of this study was to evaluate the influence of the types of adhesion surfaces on Salmonella biofilm formation at eight different times, and analyze the action time of a bacteriophage pool on established biofilms. Most of the samples used were classified as weak biofilm producers, with serovars Enteritidis and Heidelberg showing the highest frequency of biofilm formation. Glass and stainless steel surfaces significantly favored biofilm formation at 60 and 36 h of incubation respectively, but the polyvinyl chloride surface did not favor biofilm production, suggesting that the type of material may interfere with production. The bacteriophage pool action period focused on 3 h, but treatment of 9 h on glass surface biofilms was superior to other treatments because it affected the largest number of samples. These results suggests that some surface types and Salmonella serotypes may promote biofilm formation and indicate bacteriophages as an alternative to control biofilms. But further studies are required to prove the effectiveness and safety of bacteriophage therapy as an alternative in the antimicrobial control in the processing plants. © 2017 Poultry Science Association Inc.

  11. Gene 1.7 of bacteriophage T7 confers sensitivity of phage growth to dideoxythymidine.

    PubMed

    Tran, Ngoc Q; Rezende, Lisa F; Qimron, Udi; Richardson, Charles C; Tabor, Stanley

    2008-07-08

    Bacteriophage T7 DNA polymerase efficiently incorporates dideoxynucleotides into DNA, resulting in chain termination. Dideoxythymidine (ddT) present in the medium at levels not toxic to Escherichia coli inhibits phage T7. We isolated 95 T7 phage mutants that were resistant to ddT. All contained a mutation in T7 gene 1.7, a nonessential gene of unknown function. When gene 1.7 was expressed from a plasmid, T7 phage resistant to ddT still arose; analysis of 36 of these mutants revealed that all had a single mutation in gene 5, which encodes T7 DNA polymerase. This mutation changes tyrosine-526 to phenylalanine, which is known to increase dramatically the ability of T7 DNA polymerase to discriminate against dideoxynucleotides. DNA synthesis in cells infected with wild-type T7 phage was inhibited by ddT, suggesting that it resulted in chain termination of DNA synthesis in the presence of gene 1.7 protein. Overexpression of gene 1.7 from a plasmid rendered E. coli cells sensitive to ddT, indicating that no other T7 proteins are required to confer sensitivity to ddT.

  12. Detection of Hearing Loss Using 2f2-f1 and 2f1-f2 Distortion-Product Otoacoustic Emissions

    ERIC Educational Resources Information Center

    Fitzgerald, Tracy S.; Prieve, Beth A.

    2005-01-01

    Although many distortion-product otoacoustic emissions (DPOAEs) may be measured in the ear canal in response to 2 pure tone stimuli, the majority of clinical studies have focused exclusively on the DPOAE at the frequency 2f1-f2. This study investigated another DPOAE, 2f2-f1, in an attempt to determine the following: (a) the optimal stimulus…

  13. Cross sections for the reactions e+e-→K+K-π+π-, K+K-π0π0, and K+K-K+K- measured using initial-state radiation events

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Bünger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2012-07-01

    We study the processes e+e-→K+K-π+π-γ, K+K-π0π0γ, and K+K-K+K-γ, where the photon is radiated from the initial state. About 84 000, 8000, and 4200 fully reconstructed events, respectively, are selected from 454fb-1 of BABAR data. The invariant mass of the hadronic final state defines the e+e- center-of-mass energy, so that the K+K-π+π-γ data can be compared with direct measurements of the e+e-→K+K-π+π- reaction. No direct measurements exist for the e+e-→K+K-π0π0 or e+e-→K+K-K+K- reactions, and we present an update of our previous result based on a data sample that is twice as large. Studying the structure of these events, we find contributions from a number of intermediate states and extract their cross sections. In particular, we perform a more detailed study of the e+e-→ϕ(1020)ππγ reaction and confirm the presence of the Y(2175) resonance in the ϕ(1020)f0(980) and K+K-f0(980) modes. In the charmonium region, we observe the J/ψ in all three final states and in several intermediate states, as well as the ψ(2S) in some modes, and measure the corresponding products of branching fraction and electron width.

  14. Relevance of F-Specific RNA Bacteriophages in Assessing Human Norovirus Risk in Shellfish and Environmental Waters

    PubMed Central

    Hartard, C.; Banas, S.; Loutreul, J.; Rincé, A.; Benoit, F.; Boudaud, N.

    2016-01-01

    ABSTRACT Human noroviruses (HuNoVs) are the main cause of shellfish-borne gastroenteritis outbreaks. In the absence of routine technical approaches allowing infectious particles to be detected, this viral pathogen is currently targeted by genome research, leading to difficult interpretations. In this study, we investigated the potential of F-specific RNA bacteriophages (FRNAPH) as fecal and viral contamination indicators in shellfish and water from a local harvesting area. FRNAPH were also used as microbial source tracking tools. Constraints imposed by detection limits are illustrated here by the detection of infectious FRNAPH in several samples in the absence of FRNAPH genomes. The opposite situation was also observed, likely explained by the persistence of the genomes being greater than infectivity. Similar considerations may be applied to HuNoVs, suggesting that HuNoV genome targeting is of limited relevance in assessing infectious risks. While FRNAPH did not provide any benefits compared to Escherichia coli as fecal pollution indicators in water, novel observations were made in shellfish: contrary to E. coli, a seasonal trend of infectious FRNAPH concentrations was observed. These concentrations were higher than those found in water, confirming bioaccumulation in shellfish. This study also underlines a relationship between the presence of HuNoV genomes and those of human-specific FRNAPH subgroup II (FRNAPH-II) in shellfish collected throughout Europe. Further research should be undertaken to evaluate FRNAPH potential as an indicator of the presence of infectious HuNoVs. To this end, shellfish involved in HuNoV-caused gastroenteritis outbreaks should be analyzed for the presence of infectious FRNAPH-II. IMPORTANCE This work provides new data about the use of F-specific RNA phages (FRNAPH) as a tool for evaluating fecal or viral contamination, especially in shellfish. In our case study, FRNAPH did not provide any benefits compared to E. coli as fecal pollution

  15. Structural Studies of MS2 Bacteriophage Virus Particle Disassembly by Nuclear Magnetic Resonance Relaxation Measurements

    PubMed Central

    Anobom, C. D.; Albuquerque, S. C.; Albernaz, F. P.; Oliveira, A. C.; Silva, J. L.; Peabody, D. S.; Valente, A. P.; Almeida, F. C. L.

    2003-01-01

    In this article we studied, by nuclear magnetic resonance relaxation measurements, the disassembly of a virus particle—the MS2 bacteriophage. MS2 is one of the single-stranded RNA bacteriophages that infect Escherichia coli. At pH 4.5, the phage turns to a metastable state, as is indicated by an increase in the observed nuclear magnetic resonance signal intensity upon decreasing the pH from 7.0 to 4.5. Steady-state fluorescence and circular dichroism spectra at pH 4.5 show that the difference in conformation and secondary structure is not pronounced if compared with the phage at pH 7.0. At pH 4.5, two-dimensional 15N-1H heteronuclear multiple quantum coherence (HMQC) spectrum shows ∼40 crosspeaks, corresponding to the most mobile residues of MS2 coat protein at pH 4.5. The 15N linewidth is ∼30 Hz, which is consistent with an intermediate with a rotational relaxation time of 100 ns. The average spin lattice relaxation time (T1) of the mobile residues was measured at different temperatures, clearly distinguishing between the dimer and the equilibrium intermediate. The results show, for the first time, the presence of intermediates in the process of dissociation of the MS2 bacteriophage. PMID:12770895

  16. Productive performance of weanling piglets was improved by administration of a mixture of bacteriophages, targeted to control Coliforms and Clostridium spp. shedding in a challenging environment.

    PubMed

    Hosseindoust, A R; Lee, S H; Kim, J S; Choi, Y H; Kwon, I K; Chae, B J

    2017-10-01

    This study was conducted to investigate the effects of bacteriophages in different environments on growth performance, digestibility, ileal and caecal microbiota, gut morphology and immunity of weanling pigs. Two hundred piglets were randomly assigned to four treatment groups with five replicate pens with 10 pigs per pen. A 2 × 2 factorial arrangement of treatments was used to investigate the response of weanling pigs to supplemental bacteriophages (0 and 1.0 g/kg of diet) in contaminated or hygienic environments. Bacteriophages supplementation did not affect average daily gain (ADG), average daily feed intake (ADFI) and gain:feed in phases I and III; however, there was a significant improvement in ADG and gain:feed in phase II. The supplementation of bacteriophages increased the overall gain:feed of pigs. The overall result showed a greater ADG and ADFI in hygienic room. There were reductions in population of both ileal (p < 0.05) and caecal (p < 0.01) Clostridium spp. and ileal coliforms (p < 0.01) with the inclusion of bacteriophages in the diet. Bacteriophages increased ileal Lactobacillus and caecal Bifidobacterium and tended to increase ileal Bifidobacterium (p = 0.08). Contaminated environment decreased ileal Lactobacillus and caecal Bifidobacterium and tended to increase ileal Clostridium (p = 0.08) and coliforms (p = 0.08). Total anaerobic bacteria was tended to decrease (p = 0.06) in contaminated environment. Jejunal villus height increased in pigs received bacteriophages, but they did not affect other morphological items. The interaction between bacteriophages and environment tended to be significant (p = 0.06) for ileal villus height and ileal villus height to crypt depth ratio. The overall faecal score was significantly greater in hygienic environment and bacteriophages groups. The present findings indicate that there is an interactive effect on feed efficiency between bacteriophages and contaminated environment. In addition

  17. Fate and Transport of Bacteriophage (MS2 and PRD1) During Field-Scale Infiltration at a Research Site in Los Angeles County, CA

    NASA Astrophysics Data System (ADS)

    Anders, R.; Chrysikopoulos, C. V.

    2003-12-01

    As the use of tertiary-treated municipal wastewater (recycled water) for replenishment purposes continues to increase, provisions are being established to protect ground-water resources by ensuring that adequate soil-retention time and distance requirements are met for pathogen removal. However, many of the factors controlling virus fate and transport (e.g. hydraulic conditions, ground-water chemistry, and sediment mineralogy) are interrelated and poorly understood. Therefore, conducting field-scale experiments using surrogates for human enteric viruses at an actual recharge basin that uses recycled water may represent the best approach for establishing adequate setback requirements. Three field-scale infiltration experiments were conducted at such a basin using bacterial viruses (bacteriophage) MS2 and PRD1 as surrogates for human viruses, bromide as a conservative tracer, and recycled water. The specific research site consists of a test basin constructed adjacent to a large recharge facility (spreading grounds) located in the Montebello Forebay of Los Angeles County, California. The soil beneath the test basin is predominantly medium to coarse, moderately sorted, grayish-brown sand. The first experiment was conducted over a 2-day period to determine the feasibility of conducting field-scale infiltration experiments using recycled water seeded with high concentrations of bacteriophage and bromide as tracers. Based on the results of the first experiment, a second experiment was completed when similar hydraulic conditions existed at the test basin. The third infiltration experiment was conducted to confirm the results obtained from the second experiment. Data were obtained for samples collected during the second and third field-scale infiltration experiments from the test basin itself and from depths of 0.3, 0.6, 1.0, 1.5, 3.0, and 7.6 m below the bottom of the test basin. These field-scale tracer experiments indicate bacteriophage are attenuated by removal and (or

  18. Cochlearoids F-K: Phenolic meroterpenoids from the fungus Ganoderma cochlear and their renoprotective activity.

    PubMed

    Wang, Xin-Long; Zhou, Feng-Jiao; Dou, Man; Yan, Yong-Ming; Wang, Shu-Mei; Di, Lei; Cheng, Yong-Xian

    2016-11-15

    Ganoderma mushrooms are of great nutritious and medicinal values. This study was designed to characterize compounds from the fruiting bodies of Ganoderma cochlear and investigate their protective effects against kidney disorders. Six novel meroterpenoids cochlearoids F-K (1-6) were isolated by utilizing phytochemical approaches. Their structures were identified on the basis of extensive spectroscopic data and calculation methods. Biological evaluation shows that compounds 1-4 and 6 exhibit potent inhibitory activity on fibronectin overproduction in TGF-β1-induced HKC-8 cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Synthesis and near-infrared fluorescence of K5NdLi2F10 nanocrystals and their dispersion with high doping concentration and long lifetime

    NASA Astrophysics Data System (ADS)

    Duan, Weikuan; Zhang, Yanyan; Wang, Zhongyue; Jiang, Jingyi; Liang, Chen; Wei, Wei

    2014-05-01

    K5NdLi2F10 nanocrystals were synthesized by a novel synthetic route in the liquid phase, which could improve the morphology and reduce the size effectively, for the first time. The luminescence intensities of the K5NdLi2F10 nanocrystals and their dispersion in polyethylene glycol 400 (PEG-400) approximate to that of neodymium doped phosphate glass (3 mol%), while the lifetimes of the nanocrystals alone and when dispersed with Nd3+ ions (1 × 1020 cm-3) are 303.4 μs and 174.6 μs respectively. Based on the Judd-Ofelt analysis, the emission quantum yield of the dispersion reaches 39.57%. In all, the K5NdLi2F10 nanocrystals and their dispersion have promising applications as liquid laser materials and biological fluorescent markers.K5NdLi2F10 nanocrystals were synthesized by a novel synthetic route in the liquid phase, which could improve the morphology and reduce the size effectively, for the first time. The luminescence intensities of the K5NdLi2F10 nanocrystals and their dispersion in polyethylene glycol 400 (PEG-400) approximate to that of neodymium doped phosphate glass (3 mol%), while the lifetimes of the nanocrystals alone and when dispersed with Nd3+ ions (1 × 1020 cm-3) are 303.4 μs and 174.6 μs respectively. Based on the Judd-Ofelt analysis, the emission quantum yield of the dispersion reaches 39.57%. In all, the K5NdLi2F10 nanocrystals and their dispersion have promising applications as liquid laser materials and biological fluorescent markers. Electronic supplementary information (ESI) available: Fitting curve of refractive index and detailed contents of Judd-Ofelt analysis. See DOI: 10.1039/c3nr06825k

  20. In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections.

    PubMed

    Mendes, João J; Leandro, Clara; Mottola, Carla; Barbosa, Raquel; Silva, Filipa A; Oliveira, Manuela; Vilela, Cristina L; Melo-Cristino, José; Górski, Andrzej; Pimentel, Madalena; São-José, Carlos; Cavaco-Silva, Patrícia; Garcia, Miguel

    2014-08-01

    In patients with diabetes mellitus, foot infections pose a significant risk. These are complex infections commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii, all of which are potentially susceptible to bacteriophages. Here, we characterized five bacteriophages that we had determined previously to have antimicrobial and wound-healing potential in chronic S. aureus, P. aeruginosa and A. baumannii infections. Morphological and genetic features indicated that the bacteriophages were lytic members of the family Myoviridae or Podoviridae and did not harbour any known bacterial virulence genes. Combinations of the bacteriophages had broad host ranges for the different target bacterial species. The activity of the bacteriophages against planktonic cells revealed effective, early killing at 4 h, followed by bacterial regrowth to pre-treatment levels by 24 h. Using metabolic activity as a measure of cell viability within established biofilms, we found significant cell impairment following bacteriophage exposure. Repeated treatment every 4 h caused a further decrease in cell activity. The greatest effects on both planktonic and biofilm cells occurred at a bacteriophage : bacterium input multiplicity of 10. These studies on both planktonic cells and established biofilms allowed us to better evaluate the effects of a high input multiplicity and a multiple-dose treatment protocol, and the findings support further clinical development of bacteriophage therapy. © 2014 The Authors.

  1. F-theory models on K3 surfaces with various Mordell-Weil ranks — constructions that use quadratic base change of rational elliptic surfaces

    NASA Astrophysics Data System (ADS)

    Kimura, Yusuke

    2018-05-01

    We constructed several families of elliptic K3 surfaces with Mordell-Weil groups of ranks from 1 to 4. We studied F-theory compactifications on these elliptic K3 surfaces times a K3 surface. Gluing pairs of identical rational elliptic surfaces with nonzero Mordell-Weil ranks yields elliptic K3 surfaces, the Mordell-Weil groups of which have nonzero ranks. The sum of the ranks of the singularity type and the Mordell-Weil group of any rational elliptic surface with a global section is 8. By utilizing this property, families of rational elliptic surfaces with various nonzero Mordell-Weil ranks can be obtained by choosing appropriate singularity types. Gluing pairs of these rational elliptic surfaces yields families of elliptic K3 surfaces with various nonzero Mordell-Weil ranks. We also determined the global structures of the gauge groups that arise in F-theory compactifications on the resulting K3 surfaces times a K3 surface. U(1) gauge fields arise in these compactifications.

  2. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    PubMed

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.

  3. Activation of Ftz-F1-Responsive Genes through Ftz/Ftz-F1 Dependent Enhancers

    PubMed Central

    Field, Amanda; Xiang, Jie; Anderson, W. Ray; Graham, Patricia; Pick, Leslie

    2016-01-01

    The orphan nuclear receptor Ftz-F1 is expressed in all somatic nuclei in Drosophila embryos, but mutations result in a pair-rule phenotype. This was explained by the interaction of Ftz-F1 with the homeodomain protein Ftz that is expressed in stripes in the primordia of segments missing in either ftz-f1 or ftz mutants. Ftz-F1 and Ftz were shown to physically interact and coordinately activate the expression of ftz itself and engrailed by synergistic binding to composite Ftz-F1/Ftz binding sites. However, attempts to identify additional target genes on the basis of Ftz-F1/ Ftz binding alone has met with only limited success. To discern rules for Ftz-F1 target site selection in vivo and to identify additional target genes, a microarray analysis was performed comparing wildtype and ftz-f1 mutant embryos. Ftz-F1-responsive genes most highly regulated included engrailed and nine additional genes expressed in patterns dependent on both ftz and ftz-f1. Candidate enhancers for these genes were identified by combining BDTNP Ftz ChIP-chip data with a computational search for Ftz-F1 binding sites. Of eight enhancer reporter genes tested in transgenic embryos, six generated expression patterns similar to the corresponding endogenous gene and expression was lost in ftz mutants. These studies identified a new set of Ftz-F1 targets, all of which are co-regulated by Ftz. Comparative analysis of enhancers containing Ftz/Ftz-F1 binding sites that were or were not bona fide targets in vivo suggested that GAF negatively regulates enhancers that contain Ftz/Ftz-F1 binding sites but are not actually utilized. These targets include other regulatory factors as well as genes involved directly in morphogenesis, providing insight into how pair-rule genes establish the body pattern. PMID:27723822

  4. Naphthalene Acetic Acid Potassium Salt (NAA-K+) Affects Conidial Germination, Sporulation, Mycelial Growth, Cell Surface Morphology, and Viability of Fusarium oxysporum f. sp. radici-lycopersici and F. oxysporum f. sp. cubense in Vitro.

    PubMed

    Manzo-Valencia, María Karina; Valdés-Santiago, Laura; Sánchez-Segura, Lino; Guzmán-de-Peña, Dora Linda

    2016-11-09

    The response to exogenous addition of naphthalene acetic acid potassium salt (NAA-K + ) to Fusarium oxysporum f. sp radici-lycopersici ATCC 60095 and F. oxysporum f. sp. cubense isolated from Michoacan Mexico soil is reported. The in vitro study showed that NAA-K + might be effective in the control of Fusarium oxysporum. Exogenous application of NAA-K + affected both spores and mycelium stages of the fungi. Viability testing using acridine orange and propidium iodide showed that NAA-K + possesses fungal killing properties, doing it effectively in the destruction of conidia of this phytopathogenic fungi. Analysis of treated spores by scanning electron microscopy showed changes in the shape factor and fractal dimension. Moreover, NAA-K + repressed the expression of brlA and fluG genes. The results disclosed here give evidence of the use of this synthetic growth factor as a substance of biocontrol that presents advantages, and the methods of application in situ should be explored.

  5. Effects of solar ultraviolet radiations on Bacillus subtilis spores and T-7 bacteriophage

    NASA Technical Reports Server (NTRS)

    Spizizen, J.; Isherwood, J. E.; Taylor, G. R.

    1975-01-01

    Spores of Bacillus subtilis HA 101 and the DNA polymerase I-defective mutant HA 101 (59)F were exposed to selected wavelengths of solar ultraviolet light and space vacuum during the return of Apollo 16. In addition, coliphage T-7 suspensions were exposed to solar ultraviolet radiation as part of the Microbial Response to Space Environment Experiment. Optical filters were employed to provide different energy levels at wavelengths 254 nm and 280 nm. Dose-response curves for lethal and mutagenic effects were compared with ground-based data. A close parallel was observed between the results of solar radiation and ground tests with spores of the two strains. However, significantly greater inactivation of T-7 bacteriophage was observed after exposure to solar ultraviolet radiation.

  6. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR

    DOE PAGES

    Zinke, Maximilian; Fricke, Pascal; Samson, Camille; ...

    2017-07-07

    Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH,more » (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.« less

  7. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinke, Maximilian; Fricke, Pascal; Samson, Camille

    Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH,more » (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.« less

  8. Molecular beam epitaxy growth of SmFeAs(O,F) films with Tc = 55 K using the new fluorine source FeF3

    NASA Astrophysics Data System (ADS)

    Sakoda, Masahito; Ishii, Akihiro; Takinaka, Kenji; Naito, Michio

    2017-07-01

    REFeAs(O,F) (RE: rare-earth element) has the highest-Tc (˜58 K) among the iron-based superconductors, but a thin-film growth of REFeAs(O,F) is difficult. This is because it is not only a complex compound consisting of five elements but also requires doping of highly reactive fluorine to achieve superconductivity. We have reported in our previous article that fluorine can be supplied to a film by subliming solid-state fluorides such as FeF2 or SmF3. In this article, we report on the growth of SmFeAs(O,F) using FeF3 as an alternative fluorine source. FeF3 is solid at ambient temperatures and decomposes at temperatures as low as 100-200 °C, and releases fluorine-containing gas during the thermal decomposition. With this alternative fluorine source, we have grown SmFeAs(O,F) films with Tc as high as 55 K. This achievement demonstrates that FeF3 has potential as a fluorine source that can be employed ubiquitously for a thin-film growth of any fluorine containing compounds. One problem specific to FeF3 is that the compound is highly hydroscopic and contains a substantial amount of water even in its anhydrous form. In this article, we describe how to overcome this specific problem.

  9. Mechanistic study on the fluorination of K[B(CN)4] with ClF enabling the high yield and large scale synthesis of K[B(CF3)4] and K[(CF3)3BCN].

    PubMed

    Bernhardt, Eduard; Finze, Maik; Willner, Helge

    2011-10-17

    The fluorination of K[B(CN)(4)] with ClF is studied by millimolar test reactions in aHF and CH(2)Cl(2) solution and by subsequent identification of intermediates such as B-CF═NCl, B-CF(2)-NCl(2), and B-CF(3) species as well as NCl(3) by (19)F, (11)B NMR, and Raman spectroscopy, respectively. At first one cyano group of K[B(CN)(4)] is converted fast into a CF(3) group, and with increasing fluorination the reaction becomes slower and several intermediates could be observed. On the basis of these results, a synthesis was developed for K[B(CF(3))(4)] on a 0.2 molar scale by treatment of K[B(CN)(4)] diluted in aHF with ClF. The course of the reactions was followed by (i) monitoring the vapor pressure inside the reactor, (ii) observing the heat dissipation during ClF uptake, and (iii) measuring the volume of the released nitrogen gas. Since the fluorination of the last cyano group proceeds very slowly, the selective synthesis of K[(CF(3))(3)BCN] on a 0.2 molar scale is possible, as well. The analysis of the mechanisms, thermodynamics, and kinetics of the fluorination reactions is supported by density functional theory (DFT) calculations.

  10. Chemical Communications

    DTIC Science & Technology

    2012-04-27

    TOTAL: Patents Submitted Submitted: "Systems and Methods for Amplification and Phage Display", Derda, R., Tang, S.K.Y., Whitesides, G.M. PCT/US11...College 60 Oxford Street Cambridge MA 02138 5a: 5f-1a: 5f-c: Systems and Methods for Amplification and Phage Display Patent Filed in US? (5d-1) Y NPatent...the bacteriophage- T7 promoter (See S.I. for details). This series of FP encoding vectors contain the ampicillin-resistant gene as a selective marker

  11. Giant Acceleration of Diffusion Observed in a Single-Molecule Experiment on F(1)-ATPase.

    PubMed

    Hayashi, Ryunosuke; Sasaki, Kazuo; Nakamura, Shuichi; Kudo, Seishi; Inoue, Yuichi; Noji, Hiroyuki; Hayashi, Kumiko

    2015-06-19

    The giant acceleration (GA) of diffusion is a universal phenomenon predicted by the theoretical analysis given by Reimann et al. [Phys. Rev. Lett. 87, 010602 (2001)]. Here we apply the theory of the GA of diffusion to a single-molecule experiment on a rotary motor protein, F(1), which is a component of F(o)F(1) adenosine triphosphate synthase. We discuss the energetic properties of F(1) and identify a high energy barrier of the rotary potential to be 20k(B)T, with the condition that the adenosine diphosphates are tightly bound to the F(1) catalytic sites. To conclude, the GA of diffusion is useful for measuring energy barriers in nonequilibrium and single-molecule experiments.

  12. Analysis of Oxidative Stress and Wound-Inducible Dinor Isoprostanes F1 (Phytoprostanes F1) in Plants1

    PubMed Central

    Imbusch, Ruth; Mueller, Martin J.

    2000-01-01

    Isoprostanes F2 are arachidonate autoxidation products in mammals that have been shown to be induced during several human disorders associated with enhanced free-radical generation. Isoprostanes F2 represent not only extremely reliable markers of oxidative stress in vivo, but they also exert potent biological effects. Therefore, it has been postulated that isoprostanoids are mediators of oxidant injury in vivo. Higher plants, however, do not synthesize arachidonic acid or isoprostanes. Here we show that a series of isoprostane F2 analogs termed phytoprostanes F1 (previously dinor isoprostanes F1) are formed by an analogous pathway from α-linolenate in plants. High-performance liquid chromatography and gas chromatography-mass spectrometry methods using [18O]3phytoprostanes F1 as internal standard have been developed to quantify phytoprostanes F1. In fresh peppermint (Mentha piperita) leaves, phytoprostanes F1 were found in free form (76 ng/g of dry weight) and at about 150-fold higher levels esterified in lipids. It is notable that these levels of phytoprostanes F1 are more than two orders of magnitude higher than the basal levels of isoprostanes F2 in mammalian tissues. Furthermore, wounding, as well as butyl hydroperoxide or cupric acetate stress triggered a dramatic increase of free and esterified phytoprostanes F1. Thus phytoprostanes F1 may represent a sensitive measure of oxidative damage in plants similar to isoprostanes in mammals. However, one of the most exciting issues to be clarified is the possibility that linolenate-derived phytoprostanes F1 exert biological activities in plants and/or animals. PMID:11080305

  13. Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials.

    PubMed

    Jin, Hyo-Eon; Lee, Seung-Wuk

    2018-01-01

    M13 bacteriophages have several qualities that make them attractive candidates as building blocks for tissue regenerating scaffold materials. Through genetic engineering, a high density of functional peptides and proteins can be simultaneously displayed on the M13 bacteriophage's outer coat proteins. The resulting phage can self-assemble into nanofibrous network structures and can guide the tissue morphogenesis through proliferation, differentiation and apoptosis. In this manuscript, we will describe methods to develop major coat-engineered M13 phages as a basic building block and aligned tissue-like matrices to develop regenerative nanomaterials.

  14. Crystallization and preliminary X-ray analysis of gene product 44 from bacteriophage Mu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondou, Youhei; Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Toyama; Kitazawa, Daisuke

    2005-01-01

    Bacteriophage Mu baseplate protein gene product 44 was crystallized. The crystal belongs to space group R3, with unit-cell parameters a = b = 126.6, c = 64.2 Å. Bacteriophage Mu baseplate protein gene product 44 (gp44) is an essential protein required for the assembly of viable phages. To investigate the roles of gp44 in baseplate assembly and infection, gp44 was crystallized at pH 6.0 in the presence of 20% 2-methyl-2,4-pentanediol. The crystals belong to space group R3, with unit-cell parameters a = b = 127.47, c = 63.97 Å. The crystals diffract X-rays to at least 2.1 Å resolution andmore » are stable in the X-ray beam and are therefore appropriate for structure determination. Native data have been collected to 2.1 Å resolution using a DIP6040 image-plate system at beamline BL44XU at the SPring-8 facility in Japan.« less

  15. Preparation of isolated biomolecules for SFM observations: T4 bacteriophage as a test sample.

    PubMed Central

    Droz, E; Taborelli, M; Wells, T N; Descouts, P

    1993-01-01

    The T4 bacteriophage has been used to investigate protocols for the preparation of samples for scanning force microscopy in air, in order to obtaining reproducible images. The resolution of images and the distribution of bacteriophages on the substrate depends on the buffer type, its concentration, the surface treatment of substrate, and the method of deposition. The best imaging conditions for the phages require dilution in a volatile buffer at low ionic strength and adsorption onto hydrophilic surfaces. When imaging with the scanning force microscopy the quality of the images is influenced by the vertical and lateral forces applied on the sample and by the tip geometry. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 PMID:8241398

  16. Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage.

    PubMed

    Patel, Jitendra; Sharma, Manan; Millner, Patricia; Calaway, Todd; Singh, Manpreet

    2011-04-01

    Outbreaks associated with leafy greens have focused attention on the transfer of human pathogens to these commodities during harvest with commercial equipment. Attachment of Escherichia coli O157:H7 on new or rusty spinach harvester blades immersed in spinach extract or 10% tryptic soy broth (TSB) was investigated. Bacteriophages specific for E. coli O157:H7 were evaluated to kill cells attached to blade. A cocktail of five nalidixic acid-resistant E. coli O157:H7 isolates was transferred to 25 mL of spinach extract or 10% TSB. A piece of sterilized spinach harvester blade (2×1") was placed in above spinach extract or 10% TSB and incubated at room (22 °C) or dynamic (30 °C day, 20 °C night) temperatures. E. coli O157:H7 populations attached to blade during incubation in spinach extract or 10% TSB were determined. When inoculated at 1 log CFU/mL, E. coli O157:H7 attachment to blades after 24 and 48 h incubation at dynamic temperature (6.09 and 6.37 log CFU/mL) was significantly higher than when incubated at 22 °C (4.84 and 5.68 log CFU/mL), respectively. After 48 h incubation, two blades were sprayed on each side with a cocktail of E. coli O157-specific bacteriophages before scraping the blade, and subsequent plating on Sorbitol MacConkey media-nalidixic acid. Application of bacteriophages reduced E. coli O157:H7 populations by 4.5 log CFU on blades after 2 h of phage treatment. Our study demonstrates that E. coli O157:H7 can attach to and proliferate on spinach harvester blades under static and dynamic temperature conditions, and bacteriophages are able to reduce E. coli O157:H7 populations adhered to blades. © Mary Ann Liebert, Inc.

  17. Bacteriophages infecting Bacteroides as a marker for microbial source tracking.

    PubMed

    Jofre, Joan; Blanch, Anicet R; Lucena, Francisco; Muniesa, Maite

    2014-05-15

    Bacteriophages infecting certain strains of Bacteroides are amid the numerous procedures proposed for tracking the source of faecal pollution. These bacteriophages fulfil reasonably well most of the requirements identified as appropriate for a suitable marker of faecal sources. Thus, different host strains are available that detect bacteriophages preferably in water contaminated with faecal wastes corresponding to different animal species. For phages found preferably in human faecal wastes, which are the ones that have been more extensively studied, the amounts of phages found in waters contaminated with human fecal samples is reasonably high; these amounts are invariable through the time; their resistance to natural and anthropogenic stressors is comparable to that of other relatively resistant indicator of faecal pollution such us coliphages; the abundance ratios of somatic coliphages and bacteriophages infecting Bacteroides thetaiotaomicron GA17 are unvarying in recent and aged contamination; and standardised detection methods exist. These methods are easy, cost effective and provide data susceptible of numerical analysis. In contrast, there are some uncertainties regarding their geographical stability, and consequently suitable hosts need to be isolated for different geographical areas. However, a feasible method has been described to isolate suitable hosts in a given geographical area. In summary, phages infecting Bacteroides are a marker of faecal sources that in our opinion merits being included in the "toolbox" for microbial source tracking. However, further research is still needed in order to make clear some uncertainties regarding some of their characteristics and behaviour, to compare their suitability to the one of emerging methods such us targeting Bacteroidetes by qPCR assays; or settling molecular methods for their determination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A Newly Isolated Bacteriophage, PBES 02, Infecting Cronobacter sakazakii.

    PubMed

    Lee, Hyung Ju; Kim, Wan Il; Kwon, Young Chan; Cha, Kyung Eun; Kim, Minjin; Myung, Heejoon

    2016-09-28

    A novel bacteriophage, PBES 02, infecting Cronobacter sakazakii was isolated and characterized. It has a spherical head of 90 nm in diameter and a tail of 130 nm in length, and belongs to Myoviridae as observed under a transmission electron microscope. The major virion protein appears to be 38 kilodaltons (kDa) in size. The latent period of PBES 02 is 30 min and the burst size is 250. Infectivity of the phage remained intact after exposure to temperatures ranging from 4°C to 55°C for 1 h. It was also stable after exposure to pHs ranging from 6 to 10 for 1 h. The phage effectively removed contaminating Cronobacter sakazakii from broth infant formula. PBES 02 has a double-stranded DNA genome of 149,732 bases. Its GC ratio is 50.7%. Sequence analysis revealed that PBES 02 has 299 open reading frames (ORFs) and 14 tRNA genes. Thirty-nine ORFs were annotated, including 24 related to replication and regulation functions, 10 related to structural proteins, and 5 related to DNA packaging. The genome of PBES 02 is closely related to that of two other C. sakazakii phages, CR3 and CR8. Comparison of DNA sequences of genes encoding the major capsid protein revealed a wide geographical distribution of related phages over Asia, Europe, and America.

  19. Long-Term Safety of Topical Bacteriophage Application to the Frontal Sinus Region

    PubMed Central

    Drilling, Amanda J.; Ooi, Mian L.; Miljkovic, Dijana; James, Craig; Speck, Peter; Vreugde, Sarah; Clark, Jason; Wormald, Peter-John

    2017-01-01

    Background: Staphylococcus aureus biofilms contribute negatively to a number of chronic conditions, including chronic rhinosinusitis (CRS). With the inherent tolerance of biofilm-bound bacteria to antibiotics and the global problem of bacterial antibiotic resistance, the need to develop novel therapeutics is paramount. Phage therapy has previously shown promise in treating sinonasal S. aureus biofilms. Methods: This study investigates the long term (20 days) safety of topical sinonasal flushes with bacteriophage suspensions. The bacteriophage cocktail NOV012 against S. aureus selected for this work contains two highly characterized and different phages, P68 and K710. Host range was assessed against S. aureus strains isolated from CRS patients using agar spot tests. NOV012 was applied topically to the frontal sinus region of sheep, twice daily for 20 days. General sheep wellbeing, mucosal structural changes and inflammatory load were assessed to determine safety of NOV012 application. Results: NOV012 could lyse 52/61 (85%) of a panel of locally derived CRS clinical isolates. Application of NOV012 to the frontal sinuses of sheep for 20 days was found to be safe, with no observed inflammatory infiltration or tissue damage within the sinus mucosa. Conclusion: NOV012 cocktail appears safe to apply for extended periods to sheep sinuses and it could infect and lyse a wide range of S. aureus CRS clinical isolates. This indicates that phage therapy has strong potential as a treatment for chronic bacterial rhinosinusitis. PMID:28286740

  20. Tensile properties of haynes alloy 230 and inconel 617 after long exposures to LiF-22CaF2 and vacuum at 1093 K

    NASA Astrophysics Data System (ADS)

    Whittenberger, J. D.

    1994-12-01

    As a part of a study of a space-based thermal energy storage system utilizing the latent heat of fusion of the eutectic salt LiF-20CaF2 (mole%), the two wrought Ni-base superalloys Haynes alloy 230 and Inconel 617 were subjected to molten salt, its vapor, and vacuum for periods as long as 10,000 h at 1093 K. Following exposure, the microstructures were characterized, and samples from each superalloy were tensile tested between 77 and 1200 K. Neither the structure nor mechanical properties revealed evidence for additional degradation due to exposures to the salt. Although some loss in tensile properties was noted, particularly at 77 K, this reduction could be ascribed to the influence of simple aging at 1093 K.