Sample records for bacteriophage lytic enzymes

  1. Phage lytic enzymes: a history.

    PubMed

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  2. Lytic bacteriophages

    PubMed Central

    Sharma, Manan

    2013-01-01

    Foodborne illnesses resulting from the consumption of produce commodities contaminated with enteric pathogens continue to be a significant public health issue. Lytic bacteriophages may provide an effective and natural intervention to reduce bacterial pathogens on fresh and fresh-cut produce commodities. The use of multi-phage cocktails specific for a single pathogen has been most frequently assessed on produce commodities to minimize the development of bacteriophage insensitive mutants (BIM) in target pathogen populations. Regulatory approval for the use of several lytic phage products specific for bacterial pathogens such as Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes in foods and on food processing surfaces has been granted by various agencies in the US and other countries, possibly allowing for the more widespread use of bacteriophages in the decontamination of fresh and minimally processed produce. Research studies have shown lytic bacteriophages specific for E. coli O157:H7, Salmonella spp. and Listeria monocytogenes have been effective in reducing pathogen populations on leafy greens, sprouts and tomatoes. PMID:24228223

  3. Structure of the Cell Wall of Bacillus stearothermophilus: Mode of Action of a Thermophilic Bacteriophage Lytic Enzyme

    PubMed Central

    Welker, N. E.

    1971-01-01

    The mode of action of a bacteriophage lytic enzyme on cell walls of Bacillus stearothermophilus (NCA 1503-4R) has been investigated. The enzyme is an endopeptidase which catalyzes the hydrolysis of the l-alanyl-d-glutamyl linkage in peptide subunits of the cell wall peptidoglycan. Preliminary studies on the soluble components in lytic cell wall digests indicate that the glycan moiety is composed of alternating glucosamine and muramic acid; one half of the muramic acid residues contain the tripeptide, l-alanyl-d-glutamyldiaminopimelic acid, and the remaining residues contain the tetrapeptide, l-alanyl-d-glutamyldiaminopimeyl-d-alanine. Almost one half of the peptide subunits are involved in cross-linkages of chemotype I. A structure for the cell wall peptidoglycan is proposed in the light of these findings. PMID:4255338

  4. Potential of a lytic bacteriophage to disrupt Acinetobacter baumannii biofilms in vitro.

    PubMed

    Liu, Yannan; Mi, Zhiqiang; Niu, Wenkai; An, Xiaoping; Yuan, Xin; Liu, Huiying; Wang, Yong; Feng, Yuzhong; Huang, Yong; Zhang, Xianglilan; Zhang, Zhiyi; Fan, Hang; Peng, Fan; Li, Puyuan; Tong, Yigang; Bai, Changqing

    2016-10-01

    The ability of Acinetobacter baumannii to form biofilms and develop antibiotic resistance makes it difficult to control infections caused by this bacterium. In this study, we explored the potential of a lytic bacteriophage to disrupt A. baumannii biofilms. The potential of the lytic bacteriophage to disrupt A. baumannii biofilms was assessed by performing electron microscopy, live/dead bacterial staining, crystal violet staining and by determining adenosine triphosphate release. The bacteriophage inhibited the formation of and disrupted preformed A. baumannii biofilms. Results of disinfection assay showed that the lytic bacteriophage lysed A. baumannii cells suspended in blood or grown on metal surfaces. These results suggest the potential of the lytic bacteriophage to disrupt A. baumannii biofilms.

  5. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme.

    PubMed

    Nelson, D; Loomis, L; Fischetti, V A

    2001-03-27

    Bacteriophage lytic enzymes quickly destroy the cell wall of the host bacterium to release progeny phage. Because such lytic enzymes specifically kill the species in which they were produced, they may represent an effective way to control pathogenic bacteria without disturbing normal microflora. In this report, we studied a murein hydrolase from the streptococcal bacteriophage C(1) termed lysin. This enzyme is specific for groups A, C, and E streptococci, with little or no activity toward several oral streptococci or other commensal organisms tested. Using purified lysin in vitro, we show that 1,000 units (10 ng) of enzyme is sufficient to sterilize a culture of approximately 10(7) group A streptococci within 5 seconds. When a single dose of lysin (250 units) is first added to the oral cavity of mice, followed by 10(7) live group A streptococci, it provides protection from colonization (28.5% infected, n = 21) compared with controls without lysin (70.5% infected, n = 17) (P < 0.03). Furthermore, when lysin (500 units) was given orally to 9 heavily colonized mice, no detectable streptococci were observed 2 h after lysin treatment. In all, these studies show that lysin represents a unique murein hydrolase that has a rapid lethal effect both in vitro and in vivo on group A streptococci, without affecting other indigenous microorganisms analyzed. This general approach may be used to either eliminate or reduce streptococci from the upper respiratory mucosal epithelium of either carriers or infected individuals, thus reducing associated disease.

  6. Characterization of a Bacteriophage-Induced, Host-Specific Lytic Enzyme from Lysates of Bacillus stearothermophilus Infected with Bacteriophage TP-8

    PubMed Central

    Brehm, Sylvia P.; Welker, N. E.

    1974-01-01

    Phage TP-8 lysates of Bacillus stearothermophilus 4S or 4S(8) contain lytic activity exhibiting two pH optima, one at pH 6.5 and the other at pH 7.5. Using a variety of fractionation procedures, the two lytic activities could not be separated. At pH 7.5 the lytic enzyme is an endopeptidase which hydrolyzes the l-alanyl-d-glutamyl linkage in the peptide subunits of the cell wall peptidoglycan and at pH 6.5 it exhibits N-acetylmuramidase activity. Endopeptidase activity is inhibited by NaCl and neither lytic activity was significantly affected by divalent cations or ethylenediaminetetraacetic acid. Crude lysates contain 2.5 to 3.0 times more endopeptidase activity than N-acetylmuramidase activity. The ratio of the two lytic activities (endopeptidase/N-acetylmuramidase) changes to 1.3 to 1.7 during the course of purification, to 1.0 after isoelectric focusing, and 3.9 and 6.00 after exposure for 2 h at 60 and 65 C, respectively. We conclude that the two lytic activities may be associated with a single protein or a lytic enzyme complex composed of two enzymes. Lytic activity at pH 7.5 is more effective in solubilizing cells or cell walls than the lytic activity at pH 6.5. LiCl extracts of 4S and 4S(8) cells contain lytic activity exhibiting endopeptidase activity at pH 7.5 and N-acetylmuramidase activity at pH 6.5. Lytic activity in these LiCl extracts also has a number of other properties in common with those in lysates of phage TP-8. We proposed that the lytic enzyme(s) are not coded for by the phage genome but are part of the host autolytic system. PMID:4218232

  7. Genomic analysis of Bacillus subtilis lytic bacteriophage ϕNIT1 capable of obstructing natto fermentation carrying genes for the capsule-lytic soluble enzymes poly-γ-glutamate hydrolase and levanase.

    PubMed

    Ozaki, Tatsuro; Abe, Naoki; Kimura, Keitarou; Suzuki, Atsuto; Kaneko, Jun

    2017-01-01

    Bacillus subtilis strains including the fermented soybean (natto) starter produce capsular polymers consisting of poly-γ-glutamate and levan. Capsular polymers may protect the cells from phage infection. However, bacteriophage ϕNIT1 carries a γ-PGA hydrolase gene (pghP) that help it to counteract the host cell's protection strategy. ϕNIT had a linear double stranded DNA genome of 155,631-bp with a terminal redundancy of 5,103-bp, containing a gene encoding an active levan hydrolase. These capsule-lytic enzyme genes were located in the possible foreign gene cluster regions between central core and terminal redundant regions, and were expressed at the late phase of the phage lytic cycle. All tested natto origin Spounavirinae phages carried both genes for capsule degrading enzymes similar to ϕNIT1. A comparative genomic analysis revealed the diversity among ϕNIT1 and Bacillus phages carrying pghP-like and levan-hydrolase genes, and provides novel understanding on the acquisition mechanism of these enzymatic genes.

  8. Phage lytic proteins: biotechnological applications beyond clinical antimicrobials

    USDA-ARS?s Scientific Manuscript database

    Most bacteriophages encode two types of cell wall lytic proteins: Endolysins (lysins) and virion-associated peptidoglycan hydrolases. Both enzymes have the ability to degrade the peptidoglycan of Gram positive bacteria resulting in cell lysis when they are applied externally. Bacteriophage lytic p...

  9. Lytic bacteriophages reduce Escherichia coli O157

    PubMed Central

    Ferguson, Sean; Roberts, Cheryl; Handy, Eric; Sharma, Manan

    2013-01-01

    The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield™) or a control (phosphate buffered saline, PBS) was applied to lettuce by either; (1) immersion of lettuce in 500 ml of EcoShield™ 8.3 log PFU/ml or 9.8 log PFU/ml for up to 2 min before inoculation with E. coli O157:H7; (2) spray-application of EcoShield™ (9.3 log PFU/ml) to lettuce after inoculation with E. coli O157:H7 (4.10 CFU/cm2) following exposure to 50 μg/ml chlorine for 30 sec. After immersion studies, lettuce was spot-inoculated with E. coli O157:H7 (2.38 CFU/cm2). Phage-treated, inoculated lettuce pieces were stored at 4°C for and analyzed for E. coli O157:H7 populations for up to 7 d. Immersion of lettuce in 9.8 log PFU/ml EcoShield™ for 2 min significantly (p < 0.05) reduced E. coli O157:H7 populations after 24 h when stored at 4°C compared with controls. Immersion of lettuce in suspensions containing high concentrations of EcoShield™ (9.8 log PFU/ml) resulted in the deposition of high concentrations (7.8 log log PFU/cm2) of bacteriophages on the surface of fresh cut lettuce, potentially contributing to the efficacy of the lytic phages on lettuce. Spraying phages on to inoculated fresh cut lettuce after being washed in hypochlorite solution was significantly more effective in reducing E. coli O157:H7 populations (2.22 log CFU/cm2) on day 0 compared with control treatments (4.10 log CFU/cm2). Both immersion and spray treatments provided protection from E. coli O157:H7 contamination on lettuce, but spray application of lytic bacteriophages to lettuce was more effective in immediately reducing E. coli O157:H7 populations fresh cut lettuce. PMID:23819106

  10. Removal of Group B Streptococci Colonizing the Vagina and Oropharynx of Mice with a Bacteriophage Lytic Enzyme

    PubMed Central

    Cheng, Qi; Nelson, Daniel; Zhu, Shiwei; Fischetti, Vincent A.

    2005-01-01

    Group B streptococci (GBS) are the leading cause of neonatal meningitis and sepsis worldwide. The current treatment strategy is limited to intrapartum antibiotic prophylaxis in pregnant women to prevent early-onset neonatal diseases, but considering the potential for antibiotic resistance, the risk of losing control over the disease is high. To approach this problem, we have developed a bacteriophage (phage) lytic enzyme to remove colonizing GBS. Bacteriophage muralytic enzymes, termed lysins, are highly evolved molecules designed to degrade the cell wall of host bacteria to release phage particles from the bacterial cytoplasm. Several different lysins have been developed to specifically kill bacterial pathogens both on mucosal surfaces and in blood and represent a novel approach to control infection. A lysin cloned from a phage infecting GBS was found to contain two putative catalytic domains and one putative binding domain, which is similar to the domain organization of some staphylococcal phage lysins. The lysin (named PlyGBS) was recombinantly expressed in Escherichia coli, and purified PlyGBS efficiently killed all tested GBS serotypes in vitro. In a mouse model, a single dose of PlyGBS significantly reduced bacterial colonization in both the vagina and oropharynx. As an alternative strategy for intrapartum antibiotic prophylaxis, this approach may be used to reduce vaginal GBS colonization in pregnant women before delivery or to decontaminate newborns, thus reducing the incidence of GBS-associated neonatal meningitis and sepsis. PMID:15616283

  11. Mutagenesis of a bacteriophage lytic enzyme PlyGBS significantly increases its antibacterial activity against group B streptococci.

    PubMed

    Cheng, Qi; Fischetti, Vincent A

    2007-04-01

    Group B streptococci (GBS) are the leading cause of neonatal meningitis and sepsis worldwide. Intrapartum antibiotic prophylaxis (IAP) is the current prevention strategy given to pregnant women with confirmed vaginal GBS colonization. Due to antibiotic resistance identified in GBS, we previously developed another strategy using a bacteriophage lytic enzyme, PlyGBS, to reduce vaginal GBS colonization. In this study, various DNA mutagenesis methods were explored to produce PlyGBS mutants with increased lytic activity against GBS. Several hyperactive mutants were identified that contain only the endopeptidase domain found in the N-terminal region of PlyGBS and represent only about one-third of the wild-type PlyGBS in length. Significantly, these mutants not only have 18-28-fold increases in specific activities compared to PlyGBS, but they also have a similar activity spectrum against several streptococcal species. One of the hyperactive mutants, PlyGBS90-1, reduced the GBS colonization from >5 logs of growth per mouse to <50 colony-forming units (cfu) 4 h post treatment ( approximately 4-log reduction) using a single dose in a mouse vaginal model. A reduction in GBS colonization before delivery should significantly reduce neonatal GBS infection providing a safe alternative to IAP.

  12. Two New Lytic Bacteriophages of the Myoviridae Family Against Carbapenem-Resistant Acinetobacter baumannii

    PubMed Central

    Zhou, Weilong; Feng, Yu; Zong, Zhiyong

    2018-01-01

    Two lytic bacteriophages, WCHABP1 and WCHABP12, were recovered from hospital sewage and were able to infect 9 and 12 out of 18 carbapenem-resistant Acinetobacter baumannii clinical strains, which belonged to different clones. Electron microscopy scan showed that both bacteriophages had the similar morphology as those of the Myoviridae family. Whole genomic sequencing revealed 45.4- or 45.8-kb genome with a 37.6% GC content for WCHABP1 and WCHABP12, both of which showed significant DNA sequence similarity with bacteriophages of the Ap22virus genus within the Myoviridae family. Taxonomic analysis was therefore performed following the proposal approved by the International Committee on Taxonomy of Viruses, which confirmed that WCHABP1 and WCHABP12 represented two new species of the Ap22virus genus. No tRNAs but 88 and 89 open reading frames (ORFs) were predicted for the two bacteriophages, among which 22 and 21 had known function and encoded proteins for morphogenesis, packaging, lysis, and nucleiotide metabolism. The C-terminal amino acids of the large unit of fiber tail proteins varied between the bacteriophages, which may explain their different host ranges. For most lytic bacteriophages, a set of holin and endolysin are required for lysis. However, no known holin-encoding genes were identified in WCHABP1 and WCHABP12, suggesting that they may use alternative, yet-to-be-identified, novel holins for host cell membrane lysis. To test the efficacy of the bacteriophages in protecting against A. baumannii infection, a Galleria mellonella larva model was used. Only <20% G. mellonella larvae survived at 96 h after being infected by carbapenem-resistant A. baumannii strains, from which the two bacteriophages were recovered. With the administration of WCHABP1 and WCHABP12, the survival of larvae increased to 75%, while the treatment of polymyxin B only slightly increased the survival rate to 25%. The isolation of two new lytic bacteriophages in this study could expand our

  13. Isolation and Characterization of Lytic Properties of Bacteriophages Specific for M. haemolytica Strains.

    PubMed

    Urban-Chmiel, Renata; Wernicki, Andrzej; Stęgierska, Diana; Dec, Marta; Dudzic, Anna; Puchalski, Andrzej

    2015-01-01

    The objective of this study was isolation and morphological characterization of temperate bacteriophages obtained from M. haemolytica strains and evaluation of their lytic properties in vitro against M. haemolytica isolated from the respiratory tract of calves. The material for the study consisted of the reference strain M. haemolytica serotype 1 (ATCC®) BAA-410™, reference serotypes A1, A2, A5, A6, A7, A9 and A11, and wild-type isolates of M. haemolytica. Bacteriophages were induced from an overnight bacterial starter culture of all examined M. haemolytica strains treated with mitomycin C. The lytic properties and host ranges were determined by plaque assays. The morphology of the bacteriophages was examined in negative-stained smears with 5% uranyl acetate solution using a transmission electron microscope. The genetic analysis of the bacteriophages was followed by restriction analysis of bacteriophage DNA. This was followed by analysis of genetic material by polymerase chain reaction (PCR). Eight bacteriophages were obtained, like typical of the families Myoviridae, Siphoviridae and Podoviridae. Most of the bacteriophages exhibited lytic properties against the M. haemolytica strains. Restriction analysis revealed similarities to the P2-like phage obtained from the strain M. haemolytica BAA-410. The most similar profiles were observed in the case of bacteriophages φA1 and φA5. All of the bacteriophages obtained were characterized by the presence of additional fragments in the restriction profiles with respect to the P2-like reference phage. In the analysis of PCR products for the P2-like reference phage phi-MhaA1-PHL101 (DQ426904) and the phages of the M. haemolytica serotypes, a 734-bp phage PCR product was obtained. The primers were programmed in Primer-Blast software using the structure of the sequence DQ426904 of reference phage PHL101. The results obtained indicate the need for further research aimed at isolating and characterizing bacteriophages

  14. Characterization and formulation into solid dosage forms of a novel bacteriophage lytic against Klebsiella oxytoca.

    PubMed

    Brown, Teagan L; Petrovski, Steve; Hoyle, Dannielle; Chan, Hiu Tat; Lock, Peter; Tucci, Joseph

    2017-01-01

    To isolate and characterize bacteriophage lytic for the opportunistic pathogen Klebsiella oxytoca and their formulation into a range of solid dosage forms for in-vitro testing. We report the isolation, genomic and functional characterization of a novel bacteriophage lytic for Klebsiella oxytoca, which does not infect the closely related Klebsiella pneumoniae. This bacteriophage was formulated into suppositories and troches and shown to be released and lyse underlying Klebsiella oxytoca bacteria in an in-vitro model. These bacteriophage formulations were stable for at least 49 days at 4°C. The successful in-vitro assay of these formulations here suggests that they could potentially be tested in-vivo to determine whether such a therapeutic approach could modulate the gut microbiome, and control Klebsiella oxytoca overgrowth, during antibiotic therapy regimes. This study reports a novel bacteriophage specific for Klebsiella oxytoca which can be formulated into solid dosage forms appropriate for potential delivery in testing as a therapy to modulate gut microbiome during antibiotic therapies.

  15. Structure of the Bacteriophage [phi]KZ Lytic Transglycosylase gp144

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokine, Andrei; Miroshnikov, Konstantin A.; Shneider, Mikhail M.

    2008-04-02

    Lytic transglycosylases are enzymes that act on the peptidoglycan of bacterial cell walls. They cleave the glycosidic linkage between N-acetylmuramoyl and N-acetylglucosaminyl residues with the concomitant formation of a 1,6-anhydromuramoyl product. The x-ray structure of the lytic transglycosylase gp144 from the Pseudomonas bacteriophage {phi}KZ has been determined to 2.5-{angstrom} resolution. This protein is probably employed by the bacteriophage in the late stage of the virus reproduction cycle to destroy the bacterial cell wall to release the phage progeny. {phi}KZ gp144 is a 260-residue {alpha}-helical protein composed of a 70-residue N-terminal cell wall-binding domain and a C-terminal catalytic domain. The foldmore » of the N-terminal domain is similar to the peptidoglycan-binding domain from Streptomyces albus G d-Ala-d-Ala carboxypeptidase and to the N-terminal prodomain of human metalloproteinases that act on extracellular matrices. The C-terminal catalytic domain of gp144 has a structural similarity to the catalytic domain of the transglycosylase Slt70 from Escherichia coli and to lysozymes. The gp144 catalytic domain has an elongated groove that can bind at least five sugar residues at sites A-E. As in other lysozymes, the peptidoglycan cleavage (catalyzed by Glu{sup 115} in gp144) occurs between sugar-binding subsites D and E. The x-ray structure of the {phi}KZ transglycosylase complexed with the chitotetraose (N-acetylglucosamine){sub 4} has been determined to 2.6-{angstrom} resolution. The N-acetylglucosamine residues of the chitotetraose bind in sites A-D.« less

  16. The Genome Sequence of Bacteriophage CPV1 Virulent for Clostridium perfringens

    USDA-ARS?s Scientific Manuscript database

    Application of bacteriophages and their lytic enzymes to control Clostridium perfringens is one potential approach to reduce the pathogen on poultry farms and in poultry-processing facilities. Bacteriophages lytic for C. perfringens were isolated from sewage, feces and broiler intestinal contents. P...

  17. Characterization and formulation into solid dosage forms of a novel bacteriophage lytic against Klebsiella oxytoca

    PubMed Central

    Petrovski, Steve; Hoyle, Dannielle; Chan, Hiu Tat; Lock, Peter; Tucci, Joseph

    2017-01-01

    Aim To isolate and characterize bacteriophage lytic for the opportunistic pathogen Klebsiella oxytoca and their formulation into a range of solid dosage forms for in-vitro testing. Methods and results We report the isolation, genomic and functional characterization of a novel bacteriophage lytic for Klebsiella oxytoca, which does not infect the closely related Klebsiella pneumoniae. This bacteriophage was formulated into suppositories and troches and shown to be released and lyse underlying Klebsiella oxytoca bacteria in an in-vitro model. These bacteriophage formulations were stable for at least 49 days at 4°C. Conclusions The successful in-vitro assay of these formulations here suggests that they could potentially be tested in-vivo to determine whether such a therapeutic approach could modulate the gut microbiome, and control Klebsiella oxytoca overgrowth, during antibiotic therapy regimes. Significance and impact of the study This study reports a novel bacteriophage specific for Klebsiella oxytoca which can be formulated into solid dosage forms appropriate for potential delivery in testing as a therapy to modulate gut microbiome during antibiotic therapies. PMID:28817689

  18. [Potentialization of antibiotics by lytic enzymes].

    PubMed

    Brisou, J; Babin, P; Babin, R

    1975-01-01

    Few lytic enzymes, specially papaine and lysozyme, acting on the membrane and cell wall structures facilitate effects of bacitracine, streptomycine and other antibiotics. Streptomycino resistant strains became sensibles to this antibiotic after contact with papaine and lysozyme. The results of tests in physiological suspensions concern only the lytic activity of enzymes. The results on nutrient medium concern together lytic, and antibiotic activities.

  19. Characterization of a novel lytic bacteriophage from an industrial Escherichia coli fermentation process and elimination of virulence using a heterologous CRISPR-Cas9 system.

    PubMed

    Halter, Mathew C; Zahn, James A

    2018-03-01

    Bacterial-bacteriophage interactions are a well-studied and ecologically-important aspect of microbiology. Many commercial fermentation processes are susceptible to bacteriophage infections due to the use of high-density, clonal cell populations. Lytic infections of bacterial cells in these fermentations are especially problematic due to their negative impacts on product quality, asset utilization, and fouling of downstream equipment. Here, we report the isolation and characterization of a novel lytic bacteriophage, referred to as bacteriophage DTL that is capable of rapid lytic infections of an Escherichia coli K12 strain used for commercial production of 1,3-propanediol (PDO). The bacteriophage genome was sequenced and annotated, which identified 67 potential open-reading frames (ORF). The tail fiber ORF, the largest in the genome, was most closely related to bacteriophage RTP, a T1-like bacteriophage reported from a commercial E. coli fermentation process in Germany. To eliminate virulence, both a fully functional Streptococcus thermophilus CRISPR3 plasmid and a customized S. thermophilus CRISPR3 plasmid with disabled spacer acquisition elements and seven spacers targeting the bacteriophage DTL genome were constructed. Both plasmids were separately integrated into a PDO production strain, which was subsequently infected with bacteriophage DTL. The native S. thermophilus CRISPR3 operon was shown to decrease phage susceptibility by approximately 96%, while the customized CRISPR3 operon provided complete resistance to bacteriophage DTL. The results indicate that the heterologous bacteriophage-resistance system described herein is useful in eliminating lytic infections of bacteriophage DTL, which was prevalent in environment surrounding the manufacturing facility.

  20. Bacteriophage formulated into a range of semisolid and solid dosage forms maintain lytic capacity against isolated cutaneous and opportunistic oral bacteria.

    PubMed

    Brown, Teagan L; Thomas, Tereen; Odgers, Jessica; Petrovski, Steve; Spark, Marion Joy; Tucci, Joseph

    2017-03-01

    Resistance of bacteria to antimicrobial agents is of grave concern. Further research into the development of bacteriophage as therapeutic agents against bacterial infections may help alleviate this problem. To formulate bacteriophage into a range of semisolid and solid dosage forms and investigate the capacity of these preparations to kill bacteria under laboratory conditions. Bacteriophage suspensions were incorporated into dosage forms such as creams, ointments, pastes, pessaries and troches. These were applied to bacterial lawns in order to ascertain lytic capacity. Stability of these formulations containing phage was tested under various storage conditions. A range of creams and ointments were able to support phage lytic activity against Propionibacterium acnes. Assessment of the stability of these formulations showed that storage at 4 °C in light-protected containers resulted in optimal phage viability after 90 days. Pessaries/suppositories and troches were able to support phage lytic activity against Rhodococcus equi. We report here the in-vitro testing of semisolid and solid formulations of bacteriophage lytic against a range of bacteria known to contribute to infections of the epithelia. This study provides a basis for the future formulation of diverse phage against a range of bacteria that infect epithelial tissues. © 2016 Royal Pharmaceutical Society.

  1. Survival of Salmonella Newport on whole and fresh-cut cucumbers treated with lytic bacteriophages

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica associated with consumption of cucumbers (Cucumis sativus) has led to foodborne outbreaks in the U.S. Whole and fresh-cut cucumbers are susceptible to Salmonella spp. contamination during growing and harvesting. The application of lytic bacteriophages specific for Salmonella spp...

  2. Evaluation of the broad-spectrum lytic capability of bacteriophage cocktails against various Salmonella serovars and their effects on weaned pigs infected with Salmonella Typhimurium.

    PubMed

    Seo, Byoung-Joo; Song, Eu-Tteum; Lee, Kichan; Kim, Jong-Won; Jeong, Chang-Gi; Moon, Sung-Hyun; Son, Jee Soo; Kang, Sang Hyeon; Cho, Ho-Seong; Jung, Byeong Yeal; Kim, Won-Il

    2018-06-06

    The broad-spectrum lytic capability of Salmonella bacteriophages against various Salmonella species was evaluated to determine their potential as an alternative for antibiotics, and the safety and preventive effects of the bacteriophages were assessed on mice and pigs. Four bacteriophage cocktails were prepared using 13 bacteriophages, and the lytic capability of the four bacteriophage cocktails was tested using Salmonella reference strains and field isolates. Bacteriophage cocktail C (SEP-1, SGP-1, STP-1, SS3eP-1, STP-2, SChP-1, SAP-1, SAP-2; ≥10 9 pfu/ml) showed the best lytic activity against the Salmonella reference strains (100% of 34) and field isolates (92.5% of 107). Fifty mice were then orally inoculated with bacteriophage cocktail C to determine the distribution of bacteriophages in various organs, blood and feces. The effects of bacteriophages on Salmonella infection in weaned pigs (n=15) were also evaluated through an experimental challenge with Salmonella Typhimurium after treatment with bacteriophage cocktail C. All mice exhibited distribution of the bacteriophages in all organs, blood and feces until 15 days post infection (dpi). After 35 dpi, bacteriophages were not detected in any of these specimens. As demonstrated in a pig challenge study, treatment with bacteriophage cocktail C reduced the level of Salmonella shedding in feces. The metagenomic analyses of these pig feces also revealed that bacteriophage treatment decreased the number of species of the Enterobacteriaceae family without significant disturbance to the normal fecal flora. This study showed that bacteriophages effectively controlled Salmonella in a pig challenge model and could be a good alternative for antibiotics to control Salmonella infection.

  3. Molecular Basis for Lytic Bacteriophage Resistance in Enterococci.

    PubMed

    Duerkop, Breck A; Huo, Wenwen; Bhardwaj, Pooja; Palmer, Kelli L; Hooper, Lora V

    2016-08-30

    The human intestine harbors diverse communities of bacteria and bacteriophages. Given the specificity of phages for their bacterial hosts, there is growing interest in using phage therapies to combat the rising incidence of multidrug-resistant bacterial infections. A significant barrier to such therapies is the rapid development of phage-resistant bacteria, highlighting the need to understand how bacteria acquire phage resistance in vivo Here we identify novel lytic phages in municipal raw sewage that kill Enterococcus faecalis, a Gram-positive opportunistic pathogen that resides in the human intestine. We show that phage infection of E. faecalis requires a predicted integral membrane protein that we have named PIPEF (for phage infection protein from E. faecalis). We find that PIPEF is conserved in E. faecalis and harbors a 160-amino-acid hypervariable region that determines phage tropism for distinct enterococcal strains. Finally, we use a gnotobiotic mouse model of in vivo phage predation to show that the sewage phages temporarily reduce E. faecalis colonization of the intestine but that E. faecalis acquires phage resistance through mutations in PIPEF Our findings define the molecular basis for an evolutionary arms race between E. faecalis and the lytic phages that prey on them. They also suggest approaches for engineering E. faecalis phages that have altered host specificity and that can subvert phage resistance in the host bacteria. Bacteriophage therapy has received renewed attention as a potential solution to the rise in antibiotic-resistant bacterial infections. However, bacteria can acquire phage resistance, posing a major barrier to phage therapy. To overcome this problem, it is necessary to understand phage resistance mechanisms in bacteria. We have unraveled one such resistance mechanism in Enterococcus faecalis, a Gram-positive natural resident of the human intestine that has acquired antibiotic resistance and can cause opportunistic infections

  4. Top-down effects of a lytic bacteriophage and protozoa on bacteria in aqueous and biofilm phases.

    PubMed

    Zhang, Ji; Ormälä-Odegrip, Anni-Maria; Mappes, Johanna; Laakso, Jouni

    2014-12-01

    Lytic bacteriophages and protozoan predators are the major causes of bacterial mortality in natural microbial communities, which also makes them potential candidates for biological control of bacterial pathogens. However, little is known about the relative impact of bacteriophages and protozoa on the dynamics of bacterial biomass in aqueous and biofilm phases. Here, we studied the temporal and spatial dynamics of bacterial biomass in a microcosm experiment where opportunistic pathogenic bacteria Serratia marcescens was exposed to particle-feeding ciliates, surface-feeding amoebas, and lytic bacteriophages for 8 weeks, ca. 1300 generations. We found that ciliates were the most efficient enemy type in reducing bacterial biomass in the open water, but least efficient in reducing the biofilm biomass. Biofilm was rather resistant against bacterivores, but amoebae had a significant long-term negative effect on bacterial biomass both in the open-water phase and biofilm. Bacteriophages had only a minor long-term effect on bacterial biomass in open-water and biofilm phases. However, separate short-term experiments with the ancestral bacteriophages and bacteria revealed that bacteriophages crash the bacterial biomass dramatically in the open-water phase within the first 24 h. Thereafter, the bacteria evolve phage-resistance that largely prevents top-down effects. The combination of all three enemy types was most effective in reducing biofilm biomass, whereas in the open-water phase the ciliates dominated the trophic effects. Our results highlight the importance of enemy feeding mode on determining the spatial distribution and abundance of bacterial biomass. Moreover, the enemy type can be crucially important predictor of whether the rapid defense evolution can significantly affect top-down regulation of bacteria.

  5. Characterization of the Lytic Capability of a LysK-Like Endolysin, Lys-phiSA012, Derived from a Polyvalent Staphylococcus aureus Bacteriophage

    PubMed Central

    Nakamura, Tomohiro; Furusawa, Takaaki; Ohno, Hazuki; Takahashi, Hiromichi; Kitana, Junya; Usui, Masaru; Higuchi, Hidetoshi; Tamura, Yutaka

    2018-01-01

    Antibiotic-resistant bacteria (ARB) have spread widely and rapidly, with their increased occurrence corresponding with the increased use of antibiotics. Infections caused by Staphylococcus aureus have a considerable negative impact on human and livestock health. Bacteriophages and their peptidoglycan hydrolytic enzymes (endolysins) have received significant attention as novel approaches against ARB, including S. aureus. In the present study, we purified an endolysin, Lys-phiSA012, which harbors a cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) domain, an amidase domain, and a SH3b cell wall binding domain, derived from a polyvalent S. aureus bacteriophage which we reported previously. We demonstrate that Lys-phiSA012 exhibits high lytic activity towards staphylococcal strains, including methicillin-resistant S. aureus (MRSA). Analysis of deletion mutants showed that only mutants possessing the CHAP and SH3b domains could lyse S. aureus, indicating that lytic activity of the CHAP domain depended on the SH3b domain. The presence of at least 1 mM Ca2+ and 100 µM Zn2+ enhanced the lytic activity of Lys-phiSA012 in a turbidity reduction assay. Furthermore, a minimum inhibitory concentration (MIC) assay showed that the addition of Lys-phiSA012 decreased the MIC of oxacillin. Our results suggest that endolysins are a promising approach for replacing current antimicrobial agents and may contribute to the proper use of antibiotics, leading to the reduction of ARB. PMID:29495305

  6. Expression of a Peptidoglycan Hydrolase from Lytic Bacteriophages Atu_ph02 and Atu_ph03 Triggers Lysis of Agrobacterium tumefaciens

    PubMed Central

    Attai, Hedieh; Rimbey, Jeanette; Smith, George P.

    2017-01-01

    specificity of bacteriophage treatment for the host is an asset in complex communities, such as in orchards where it would be detrimental to harm the symbiotic bacteria in the environment. Second, bacteriophages are potential sources of enzymes that efficiently lyse bacterial cells. These phage proteins may have a broad specificity, but since proteins do not replicate as phages do, their effect is highly localized, providing an alternative to traditional antibiotic treatments. Thus, studies of lytic bacteriophages that infect A. tumefaciens may provide insights for designing preventative strategies against bacterial pathogens. PMID:28970228

  7. Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus.

    PubMed

    Ji, Xiuling; Zhang, Chunjing; Fang, Yuan; Zhang, Qi; Lin, Lianbing; Tang, Bing; Wei, Yunlin

    2015-02-01

    As a unique ecological system with low temperature and low nutrient levels, glaciers are considered a "living fossil" for the research of evolution. In this work, a lytic cold-active bacteriophage designated VMY22 against Bacillus cereus MYB41-22 was isolated from Mingyong Glacier in China, and its characteristics were studied. Electron microscopy revealed that VMY22 has an icosahedral head (59.2 nm in length, 31.9 nm in width) and a tail (43.2 nm in length). Bacteriophage VMY22 was classified as a Podoviridae with an approximate genome size of 18 to 20 kb. A one-step growth curve revealed that the latent and the burst periods were 70 and 70 min, respectively, with an average burst size of 78 bacteriophage particles per infected cell. The pH and thermal stability of bacteriophage VMY22 were also investigated. The maximum stability of the bacteriophage was observed to be at pH 8.0 and it was comparatively stable at pH 5.0-9.0. As VMY22 is a cold-active bacteriophage with low production temperature, its characterization and the relationship between MYB41-22 and Bacillus cereus bacteriophage deserve further study.

  8. [Isolation and characterization of a lytic bacteriophage from Mingyong glacier melt water].

    PubMed

    Li, Mingyuan; Ji, Xiuling; Wang, Baoqiang; Zhang, Qi; Lin, Lianbing; Zhang, Bing; Wei, Yunlin

    2012-02-04

    Glacier is a unique ecological system. This study focused on the isolation and characterization of a cold-active bateriophage from Mingyong glacier area in northwest Yunnan. Bacterial strains isolated from glacial melt water were used as host cells to isolate and purify bacteriophages by double-layer plate method. The morphology of the isolated phages and their host strains were observed by electron microscope. Restriction fragment length polymorphism (RFLP) analysis of genomic DNA, constituent proteins and physiological analysis of the bacteriophages were further carried out to characterize the phages. A lytic cold-active bacteriophage, designated as MYSP03, was isolated from Mingyong glacier. Its host strain MYB03 was identified as a member of genus Flavobacterium, based on the 16S rRNA sequence analysis. The bacteriophage MYSP03 has a isometric head (about 72 nm in diameter) and a long tail (about 240 nm in length and 10 nm in width), but no envelope was detected. Physiological analysis results showed that MYSP03 had infection activity at 4 degrees C, and clear and transparent plaques were formed on double-layer plates between 4 and 20 degrees C. Its optimum infection temperature was 10 degrees C and optimal pH 9.4, respectively. It is insensitive to chloroform. Furthermore, the genome of MYSP03 consists of double-stranded DNA and is approximately 66 kb.

  9. Survival studies of a temperate and lytic bacteriophage in bovine faeces and slurry.

    PubMed

    Nyambe, S; Burgess, C; Whyte, P; Bolton, D

    2016-10-01

    Cattle are the main reservoir of verocytotoxigenic Escherichia coli (VTEC), food-borne pathogens that express verocytotoxins (vtx) encoded by temperate bacteriophage. Bovine faeces and unturned manure heaps can support the survival of VTEC and may propagate and transmit VTEC. This study investigated the survival of a vtx2 bacteriophage, φ24B ::Kan, in bovine faeces and slurry. The survival of an anti-Escherichia coli O157:H7 lytic bacteriophage, e11/2, was examined in the same matrices, as a possible bio-control option for VTEC. Samples were inoculated with φ24B ::Kan and/or e11/2 bacteriophage at a concentration of 7-8 log10  PFU g(-1)  (faeces) or ml(-1) (slurry), stored at 4 and 14°C and examined every 2 days for 36 days. The ability of φ24B ::Kan to transduce E. coli cells was examined. Moreover, E. coli concentrations in the faeces and slurry were monitored throughout the experiment as were the pH and aw (faeces only). Both bacteriophages survived well in faeces and slurry. In addition, φ24B ::Kan was able to form lysogens. φ24B ::Kan and e11/2 phage can survive and remain infective in bovine faeces and slurry for at least 30 days under representative Irish temperatures. Bovine faeces and slurry may act as a reservoir for vtx bacteriophages. The survival of the anti-O157 phage suggests it may be a suitable bio-control option in these matrices. © 2016 The Society for Applied Microbiology.

  10. Expression of a Peptidoglycan Hydrolase from Lytic Bacteriophages Atu_ph02 and Atu_ph03 Triggers Lysis of Agrobacterium tumefaciens.

    PubMed

    Attai, Hedieh; Rimbey, Jeanette; Smith, George P; Brown, Pamela J B

    2017-12-01

    specificity of bacteriophage treatment for the host is an asset in complex communities, such as in orchards where it would be detrimental to harm the symbiotic bacteria in the environment. Second, bacteriophages are potential sources of enzymes that efficiently lyse bacterial cells. These phage proteins may have a broad specificity, but since proteins do not replicate as phages do, their effect is highly localized, providing an alternative to traditional antibiotic treatments. Thus, studies of lytic bacteriophages that infect A. tumefaciens may provide insights for designing preventative strategies against bacterial pathogens. Copyright © 2017 American Society for Microbiology.

  11. Phage lytic enzymes targeting streptococci

    USDA-ARS?s Scientific Manuscript database

    Streptococcal pathogens contribute to a wide variety of human and livestock diseases. There is a need for new antimicrobials to replace over-used conventional antibiotics. Bacteriophage (viruses that infect bacteria) endolysins (enzymes that help degrade the bacterial cell wall) are ideal candidat...

  12. Isolation and Characterization of the Lytic Cold-Active Bacteriophage MYSP06 from the Mingyong Glacier in China.

    PubMed

    Li, Mingyuan; Wang, Jilian; Zhang, Qi; Lin, Lianbing; Kuang, Anxin; Materon, Luis Alberto; Ji, Xiuling; Wei, Yunlin

    2016-02-01

    As unique ecological systems, glaciers are characterized by low temperatures and low nutrient levels, which allow them to be considered as “living fossils” for the purpose of researching the evolution of life and the environmental evolution of the earth. Glaciers are also natural microbial “reservoirs”. In this work, a lytic cold-active bacteriophage designated MYSP06 was isolated from Janthinobacterium sp. MYB06 from the Mingyong Glacier in China, and its major characteristics were determined. Electron microscopy revealed that bacteriophage MYSP06 had an isometric head (74 nm) and a long tail (10 nm in width, 210 nm in length). It was classified as a Siphoviridae with an approximate genome size of 65–70 kb. A one-step growth curve revealed that the latent and burst periods were 95 and 65 min, respectively, with an average burst size of 16 bacteriophage particles per infected cell. The bacteriophage particles (100 %) adsorbed to the host cells within 10 min after infection. Moreover, the pH value and thermal stability of bacteriophage MYSP06 were also investigated. The maximum stability of the bacteriophage was observed at the optimal pH 7.0, and the bacteriophage became completely unstable at the extremely alkaline pH 11.0; however, it was comparatively stable at the acidic alkaline pH 6.0. As MYSP06 is a cold-active bacteriophage with a lower production temperature, its characterization and its relationship with its host Janthinobacterium sp. MYB06 deserve further study.

  13. [RATIONAL ASPECTS OF BACTERIOPHAGES USE].

    PubMed

    Vakarina, A A; Kataeva, L V; Karpukhina, N F

    2015-01-01

    Analysis of existing aspects of bacteriophage use and study features of their lytic activity by using various techniques. Effect of monophages and associated bacteriophages (staphylococci, piopolyvalent and piocombined, intestiphage, pneumonia klebsiella and polyvalent klebsiella produced by "Microgen") was studied with 380 strains of Staphylococcus aureus and 279 cultures of Klebsiella pneumoniae in liquid and solid nutrient media. From patients with intestinal disorder, sensitivity was analyzed to 184 strains of Salmonella genus bacteria 18 serological variants to salmonella bacteriophages, 137 strains of Escherichia coli (lactose-negative, hemolytic), as well as some members of OKA groups (21 serovars) to coli-proteic and piopolyvalent bacteriophages. Lytic ability of the piobacteriophage against Klebsiella and Proteus genus bacteria was determined. Staphylococcus aureus was sensitive to staphylococcus bacteriophage in 71.6% of cases and to piobacteriophage--in 86.15% of cases. A 100% lytic ability of salmonella bacteriophage against Salmonella spp. was established. Sensitivity of E. coli of various serogroups to coli-proteic and piobacteriophage was 66 - 100%. Klebsiella, Proteus genus bacteria were sensitive to piobacteriophage in only 35% and 43.15% of cases, respectively. A more rational use of bacteriophages is necessary: development of a technique, evaluation of sensitivity of bacteria to bacteriophage, introduction of corrections into their production (expansion of bacteriophage spectra, determination and indication of their concentration in accompanying documents).

  14. Control of Salmonella on sprouting mung bean and alfalfa seeds by using a biocontrol preparation based on antagonistic bacteria and lytic bacteriophages.

    PubMed

    Ye, Jianxiong; Kostrzynska, Magdalaena; Dunfield, Kari; Warriner, Keith

    2010-01-01

    The following reports on the application of a combination of antagonistic bacteria and lytic bacteriophages to control the growth of Salmonella on sprouting mung beans and alfalfa seeds. Antagonistic bacteria were isolated from mung bean sprouts and tomatoes by using the deferred plate assay to assess anti-Salmonella activity. From the isolates screened, an Enterobacter asburiae strain (labeled "JX1") exhibited stable antagonistic activity against a broad range of Salmonella serovars (Agona, Berta, Enteritidis, Hadar, Heidelberg, Javiana, Montevideo, Muenchen, Newport, Saint Paul, and Typhimurium). Lytic bacteriophages against Salmonella were isolated from pig or cattle manure effluent. A bacteriophage cocktail prepared from six isolates was coinoculated with E. asburiae JX1 along with Salmonella in broth culture. The combination of E. asburiae JX1 and bacteriophage cocktail reduced the levels of Salmonella by 5.7 to 6.4 log CFU/ml. Mung beans inoculated with Salmonella and sprouted over a 4-day period attained levels of 6.72 + or - 0.78 log CFU/g. In contrast, levels of Salmonella were reduced to 3.31 + or - 2.48 or 1.16 + or - 2.14 log CFU/g when the pathogen was coinoculated with bacteriophages or E. asburiae JX1, respectively. However, by using a combination of E. asburiae JX1 and bacteriophages, the levels of Salmonella associated with mung bean sprouts were only detected by enrichment. The biocontrol preparation was effective at controlling the growth of Salmonella under a range of sprouting temperatures (20 to 30 degrees Celsius) and was equally effective at suppressing the growth of Salmonella on sprouting alfalfa seeds. The combination of E. asburiae JX1 and bacteriophages represents a promising, chemical-free approach for controlling the growth of Salmonella on sprouting seeds.

  15. In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections.

    PubMed

    Mendes, João J; Leandro, Clara; Mottola, Carla; Barbosa, Raquel; Silva, Filipa A; Oliveira, Manuela; Vilela, Cristina L; Melo-Cristino, José; Górski, Andrzej; Pimentel, Madalena; São-José, Carlos; Cavaco-Silva, Patrícia; Garcia, Miguel

    2014-08-01

    In patients with diabetes mellitus, foot infections pose a significant risk. These are complex infections commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii, all of which are potentially susceptible to bacteriophages. Here, we characterized five bacteriophages that we had determined previously to have antimicrobial and wound-healing potential in chronic S. aureus, P. aeruginosa and A. baumannii infections. Morphological and genetic features indicated that the bacteriophages were lytic members of the family Myoviridae or Podoviridae and did not harbour any known bacterial virulence genes. Combinations of the bacteriophages had broad host ranges for the different target bacterial species. The activity of the bacteriophages against planktonic cells revealed effective, early killing at 4 h, followed by bacterial regrowth to pre-treatment levels by 24 h. Using metabolic activity as a measure of cell viability within established biofilms, we found significant cell impairment following bacteriophage exposure. Repeated treatment every 4 h caused a further decrease in cell activity. The greatest effects on both planktonic and biofilm cells occurred at a bacteriophage : bacterium input multiplicity of 10. These studies on both planktonic cells and established biofilms allowed us to better evaluate the effects of a high input multiplicity and a multiple-dose treatment protocol, and the findings support further clinical development of bacteriophage therapy. © 2014 The Authors.

  16. Combined antibacterial activity of phage lytic proteins holin and lysin from Streptococcus suis bacteriophage SMP.

    PubMed

    Shi, Yibo; Li, Ning; Yan, Yaxian; Wang, Hengan; Li, Yan; Lu, Chengping; Sun, Jianhe

    2012-07-01

    Development of novel antibacterial agents is required to control infection with multidrug-resistant Streptococcus suis. HolSMP and LySMP, the holin and lysin of S. suis serotype 2 bacteriophage, named SMP, are responsible for lysis of host cells and release of progeny phage. HolSMP and LySMP expressed in Escherichia coli BL21(DE3) exerted efficient activity at 37 °C, pH 5.2, with addition of 0.8 % β-mercaptoethanol. Lytic spectra of purified HolSMP, LySMP or HolSMP + LySMP mixture were investigated. HolSMP, exhibiting a narrow lytic spectrum, was effective against Staphylococcus aureus and Bacillus subtilis, which were insensitive to LySMP. Moreover, HolSMP was identified as a promising antibacterial agent which was able to extend the spectrum of LySMP. The data suggest that combined use of holin and lysin could be a candidate strategy for resolution of drug resistance.

  17. Preliminary survey of local bacteriophages with lytic activity against multi-drug resistant bacteria.

    PubMed

    Latz, Simone; Wahida, Adam; Arif, Assuda; Häfner, Helga; Hoß, Mareike; Ritter, Klaus; Horz, Hans-Peter

    2016-10-01

    Bacteriophages (phages) represent a potential alternative for combating multi-drug resistant bacteria. Because of their narrow host range and the ever emergence of novel pathogen variants the continued search for phages is a prerequisite for optimal treatment of bacterial infections. Here we performed an ad hoc survey in the surroundings of a University hospital for the presence of phages with therapeutic potential. To this end, 16 aquatic samples of different origins and locations were tested simultaneously for the presence of phages with lytic activity against five current, but distinct strains each from the ESKAPE-group (i.e., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae). Phages could be isolated for 70% of strains, covering all bacterial species except S. aureus. Apart from samples from two lakes, freshwater samples were largely devoid of phages. By contrast, one liter of hospital effluent collected at a single time point already contained phages active against two-thirds of tested strains. In conclusion, phages with lytic activity against nosocomial pathogens are unevenly distributed across environments with the prime source being the immediate hospital vicinity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Lytic activity of the staphylolytic Twort phage endolysin CHAP domain is enhanced by the SH3b cell wall binding domain

    USDA-ARS?s Scientific Manuscript database

    Increases in the prevalence of antibiotic resistant strains of Staphylococcus (S.) aureus have elicited efforts to develop novel antimicrobials to treat these drug-resistant pathogens. One potential treatment repurposes the lytic enzymes produced by bacteriophages as antimicrobials. The phage Twor...

  19. Isolation and characterization of two lytic cold-active bacteriophages infecting Pseudomonas fluorescens from the Napahai plateau wetland.

    PubMed

    Xiang, Yingying; Wang, Shuang; Li, Jiankai; Wei, Yunlin; Zhang, Qi; Lin, Lianbing; Ji, Xiuling

    2018-03-01

    As the "kidneys of the Earth", wetlands play important roles as biodiversity reservoirs, in water purification, and in flood control. In this study, 2 lytic cold-active bacteriophages, named VW-6S and VW-6B, infecting Pseudomonas fluorescens W-6 cells from the Napahai plateau wetland in China were isolated and characterized. Electron microscopy showed that both VW-6S and VW-6B had an icosahedral head (66.7 and 61.1 nm, respectively) and a long tail (8.3 nm width × 233.3 nm length and 11.1 nm width × 166.7 nm length, respectively). The bacteriophages VW-6S and VW-6B were classified as Siphoviridae and had an approximate genome size of 30-40 kb. The latent and burst periods of VW-6S were 60 and 30 min, whereas those of VW-6B were 30 and 30 min, respectively. The optimal pH values for the bacteriophages VW-6S and VW-6B were 8.0 and 10.0, respectively, and their activity decreased rapidly at temperatures higher than 60 °C. These cold-active bacteriophages provide good materials for further study of cold-adaptation mechanisms and interaction with the host P. fluorescens.

  20. Bacteriophages as Potential Treatment for Urinary Tract Infections

    PubMed Central

    Sybesma, Wilbert; Zbinden, Reinhard; Chanishvili, Nino; Kutateladze, Mzia; Chkhotua, Archil; Ujmajuridze, Aleksandre; Mehnert, Ulrich; Kessler, Thomas M.

    2016-01-01

    Background: Urinary tract infections (UTIs) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming so that well-tolerated, highly effective therapeutic alternatives are urgently needed. Objective: To investigate the effect of bacteriophages on Escherichia coli and Klebsiella pneumoniae strains isolated from the urine of patients suffering from UTIs. Material and methods: Forty-one E. coli and 9 K. pneumoniae strains, isolated from the urine of patients suffering from UTIs, were tested in vitro for their susceptibility toward bacteriophages. The bacteriophages originated from either commercially available bacteriophage cocktails registered in Georgia or from the bacteriophage collection of the George Eliava Institute of Bacteriophage, Microbiology and Virology. In vitro screening of bacterial strains was performed by use of the spot-test method. The experiments were implemented three times by different groups of scientists. Results: The lytic activity of the commercial bacteriophage cocktails on the 41 E. coli strains varied between 66% (Pyo bacteriophage) and 93% (Enko bacteriophage). After bacteriophage adaptation of the Pyo bacteriophage cocktail, its lytic activity was increased from 66 to 93% and only one E. coli strain remained resistant. One bacteriophage of the Eliava collection could lyse all 9 K. pneumoniae strains. Conclusions: Based on the high lytic activity and the potential of resistance optimization by direct adaption of bacteriophages as reported in this study, and in view of the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a promising treatment option for UTIs highly warranting randomized controlled trials. PMID:27148173

  1. Bacteriophages as Potential Treatment for Urinary Tract Infections.

    PubMed

    Sybesma, Wilbert; Zbinden, Reinhard; Chanishvili, Nino; Kutateladze, Mzia; Chkhotua, Archil; Ujmajuridze, Aleksandre; Mehnert, Ulrich; Kessler, Thomas M

    2016-01-01

    Urinary tract infections (UTIs) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming so that well-tolerated, highly effective therapeutic alternatives are urgently needed. To investigate the effect of bacteriophages on Escherichia coli and Klebsiella pneumoniae strains isolated from the urine of patients suffering from UTIs. Forty-one E. coli and 9 K. pneumoniae strains, isolated from the urine of patients suffering from UTIs, were tested in vitro for their susceptibility toward bacteriophages. The bacteriophages originated from either commercially available bacteriophage cocktails registered in Georgia or from the bacteriophage collection of the George Eliava Institute of Bacteriophage, Microbiology and Virology. In vitro screening of bacterial strains was performed by use of the spot-test method. The experiments were implemented three times by different groups of scientists. The lytic activity of the commercial bacteriophage cocktails on the 41 E. coli strains varied between 66% (Pyo bacteriophage) and 93% (Enko bacteriophage). After bacteriophage adaptation of the Pyo bacteriophage cocktail, its lytic activity was increased from 66 to 93% and only one E. coli strain remained resistant. One bacteriophage of the Eliava collection could lyse all 9 K. pneumoniae strains. Based on the high lytic activity and the potential of resistance optimization by direct adaption of bacteriophages as reported in this study, and in view of the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a promising treatment option for UTIs highly warranting randomized controlled trials.

  2. Isolation and characterisation of lytic bacteriophages of Klebsiella pneumoniae and Klebsiella oxytoca.

    PubMed

    Karumidze, Natia; Kusradze, Ia; Rigvava, Sophio; Goderdzishvili, Marine; Rajakumar, Kumar; Alavidze, Zemphira

    2013-03-01

    Klebsiella bacteria have emerged as an increasingly important cause of community-acquired nosocomial infections. Extensive use of broad-spectrum antibiotics in hospitalised patients has led to both increased carriage of Klebsiella and the development of multidrug-resistant strains that frequently produce extended-spectrum β-lactamases and/or other defences against antibiotics. Many of these strains are highly virulent and exhibit a strong propensity to spread. In this study, six lytic Klebsiella bacteriophages were isolated from sewage-contaminated river water in Georgia and characterised as phage therapy candidates. Two of the phages were investigated in greater detail. Biological properties, including phage morphology, nucleic acid composition, host range, growth phenotype, and thermal and pH stability were studied for all six phages. Limited sample sequencing was performed to define the phylogeny of the K. pneumoniae- and K. oxytoca-specific bacteriophages vB_Klp_5 and vB_Klox_2, respectively. Both of the latter phages had large burst sizes, efficient rates of adsorption and were stable under different adverse conditions. Phages reported in this study are double-stranded DNA bacterial viruses belonging to the families Podoviridae and Siphoviridae. One or more of the six phages was capable of efficiently lysing ~63 % of Klebsiella strains comprising a collection of 123 clinical isolates from Georgia and the United Kingdom. These phages exhibit a number of properties indicative of potential utility in phage therapy cocktails.

  3. Application of zinc chloride precipitation method for rapid isolation and concentration of infectious Pectobacterium spp. and Dickeya spp. lytic bacteriophages from surface water and plant and soil extracts.

    PubMed

    Czajkowski, Robert; Ozymko, Zofia; Lojkowska, Ewa

    2016-01-01

    This is the first report describing precipitation of bacteriophage particles with zinc chloride as a method of choice to isolate infectious lytic bacteriophages against Pectobacterium spp. and Dickeya spp. from environmental samples. The isolated bacteriophages are ready to use to study various (ecological) aspects of bacteria-bacteriophage interactions. The method comprises the well-known precipitation of phages from aqueous extracts of the test material by addition of ZnCl2, resuscitation of bacteriophage particles in Ringer's buffer to remove the ZnCl2 excess and a soft agar overlay assay with the host bacterium to isolate infectious individual phage plaques. The method requires neither an enrichment step nor other steps (e. g., PEG precipitation, ultrafiltration, or ultracentrifugation) commonly used in other procedures and results in isolation of active viable bacteriophage particles.

  4. Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains

    PubMed Central

    Boncompain, Carina A.; Amadio, Ariel A.; Carrasco, Soledad; Suárez, Cristian A.

    2017-01-01

    Staphylococcus aureus is a very successful opportunistic pathogen capable of causing a variety of diseases ranging from mild skin infections to life-threatening sepsis, meningitis and pneumonia. Its ability to display numerous virulence mechanisms matches its skill to display resistance to several antibiotics, including β-lactams, underscoring the fact that new anti-S. aureus drugs are urgently required. In this scenario, the utilization of lytic bacteriophages that kill bacteria in a genus -or even species- specific way, has become an attractive field of study. In this report, we describe the isolation, characterization and sequencing of phages capable of killing S. aureus including methicillin resistant (MRSA) and multi-drug resistant S. aureus local strains from environmental, animal and human origin. Genome sequencing and bio-informatics analysis showed the absence of genes encoding virulence factors, toxins or antibiotic resistance determinants. Of note, there was a high similarity between our set of phages to others described in the literature such as phage K. Considering that reported phages were obtained in different continents, it seems plausible that there is a commonality of genetic features that are needed for optimum, broad host range anti-staphylococcal activity of these related phages. Importantly, the high activity and broad host range of one of our phages underscores its promising value to control the presence of S. aureus in fomites, industry and hospital environments and eventually on animal and human skin. The development of a cocktail of the reported lytic phages active against S. aureus–currently under way- is thus, a sensible strategy against this pathogen. PMID:28742812

  5. Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains.

    PubMed

    Abatángelo, Virginia; Peressutti Bacci, Natalia; Boncompain, Carina A; Amadio, Ariel F; Carrasco, Soledad; Suárez, Cristian A; Morbidoni, Héctor R

    2017-01-01

    Staphylococcus aureus is a very successful opportunistic pathogen capable of causing a variety of diseases ranging from mild skin infections to life-threatening sepsis, meningitis and pneumonia. Its ability to display numerous virulence mechanisms matches its skill to display resistance to several antibiotics, including β-lactams, underscoring the fact that new anti-S. aureus drugs are urgently required. In this scenario, the utilization of lytic bacteriophages that kill bacteria in a genus -or even species- specific way, has become an attractive field of study. In this report, we describe the isolation, characterization and sequencing of phages capable of killing S. aureus including methicillin resistant (MRSA) and multi-drug resistant S. aureus local strains from environmental, animal and human origin. Genome sequencing and bio-informatics analysis showed the absence of genes encoding virulence factors, toxins or antibiotic resistance determinants. Of note, there was a high similarity between our set of phages to others described in the literature such as phage K. Considering that reported phages were obtained in different continents, it seems plausible that there is a commonality of genetic features that are needed for optimum, broad host range anti-staphylococcal activity of these related phages. Importantly, the high activity and broad host range of one of our phages underscores its promising value to control the presence of S. aureus in fomites, industry and hospital environments and eventually on animal and human skin. The development of a cocktail of the reported lytic phages active against S. aureus-currently under way- is thus, a sensible strategy against this pathogen.

  6. Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria.

    PubMed

    Pérez Pulido, Rubén; Grande Burgos, Maria José; Gálvez, Antonio; Lucas López, Rosario

    2016-10-01

    Bacteriophages have attracted great attention for application in food biopreservation. Lytic bacteriophages specific for human pathogenic bacteria can be isolated from natural sources such as animal feces or industrial wastes where the target bacteria inhabit. Lytic bacteriophages have been tested in different food systems for inactivation of main food-borne pathogens including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Salmonella enterica, Shigella spp., Campylobacter jejuni and Cronobacter sakazkii, and also for control of spoilage bacteria. Application of lytic bacteriophages could selectively control host populations of concern without interfering with the remaining food microbiota. Bacteriophages could also be applied for inactivation of bacteria attached to food contact surfaces or grown as biofilms. Bacteriophages may receive a generally recognized as safe status based on their lack of toxicity and other detrimental effects to human health. Phage preparations specific for L. monocytogenes, E. coli O157:H7 and S. enterica serotypes have been commercialized and approved for application in foods or as part of surface decontamination protocols. Phage endolysins have a broader host specificity compared to lytic bacteriophages. Cloned endolysins could be used as natural preservatives, singly or in combination with other antimicrobials such as bacteriocins.

  7. Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods

    PubMed Central

    Woolston, Joelle; Li, Manrong; Das, Chythanya; Sulakvelidze, Alexander

    2017-01-01

    ShigaShield™ is a phage preparation composed of five lytic bacteriophages that specifically target pathogenic Shigella species found in contaminated waters and foods. In this study, we examined the efficacy of various doses (9x105-9x107 PFU/g) of ShigaShield™ in removing experimentally added Shigella on deli meat, smoked salmon, pre-cooked chicken, lettuce, melon and yogurt. The highest dose (2x107 or 9x107 PFU/g) of ShigaShield™ applied to each food type resulted in at least 1 log (90%) reduction of Shigella in all the food types. There was significant (P<0.01) reduction in the Shigella levels in all phage treated foods compared to controls, except for the lowest phage dose (9x105 PFU/g) on melon where reduction was only ca. 45% (0.25 log). The genomes of each component phage in the cocktail were fully sequenced and analyzed, and they were found not to contain any “undesirable genes” including those listed in the US Code for Federal Regulations (40 CFR Ch1). Our data suggest that ShigaShield™ (and similar phage preparations with potent lytic activity against Shigella spp.) may offer a safe and effective approach for reducing the levels of Shigella in various foods that may be contaminated with the bacterium. PMID:28362863

  8. Evidence of a Dominant Lineage of Vibrio cholerae-Specific Lytic Bacteriophages Shed by Cholera Patients over a 10-Year Period in Dhaka, Bangladesh

    PubMed Central

    Seed, Kimberley D.; Bodi, Kip L.; Kropinski, Andrew M.; Ackermann, Hans-Wolfgang; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew

    2011-01-01

    Lytic bacteriophages are hypothesized to contribute to the seasonality and duration of cholera epidemics in Bangladesh. However, the bacteriophages contributing to this phenomenon have yet to be characterized at a molecular genetic level. In this study, we isolated and sequenced the genomes of 15 bacteriophages from stool samples from cholera patients spanning a 10-year surveillance period in Dhaka, Bangladesh. Our results indicate that a single novel bacteriophage type, designated ICP1 (for the International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) is present in all stool samples from cholera patients, while two other bacteriophage types, one novel (ICP2) and one T7-like (ICP3), are transient. ICP1 is a member of the Myoviridae family and has a 126-kilobase genome comprising 230 open reading frames. Comparative sequence analysis of ICP1 and related isolates from this time period indicates a high level of genetic conservation. The ubiquitous presence of ICP1 in cholera patients and the finding that the O1 antigen of lipopolysaccharide (LPS) serves as the ICP1 receptor suggest that ICP1 is extremely well adapted to predation of human-pathogenic V. cholerae O1. PMID:21304168

  9. Using Phage Lytic Enzymes to Destroy Pathogenic and BW Bacteria

    DTIC Science & Technology

    2005-07-14

    against antibiotic resistant Enterococcus faecalis and Enterococcus faecium . J Bacteriol. 186:4808-12. Cheng, Q., D. Nelson, S. Zhu, and V.A...Lysins from Enterococcus faecalis RU-654 3. Fischetti, Vincent A. Schuch, Raymond Lytic Enzymes and spore surface antigens for detection and

  10. Isolation and characterization of T7-like lytic bacteriophages infecting multidrug resistant Pseudomonas aeruginosa isolated from Egypt.

    PubMed

    El Didamony, Gamal; Askora, Ahmed; Shehata, Aya A

    2015-06-01

    In this study, two lytic phages designated as ϕPSZ1 and ϕPSZ2 infecting multidrug resistant Pseudomonas aeruginosa were isolated from sewage samples collected in Zagazig, Egypt. Morphological analysis by transmission electron microscopy revealed that both phages belong to the podoviridae family and resembles typical T7-like phages. ϕPSZ1 has a head of about 60 ± 5 nm in diameter with a short tail of 19 ± 2 nm in length, while ϕPSZ2 has a head of about 57 ± 5 nm in diameter with a short tail of 14 ± 2 nm in length. Both phages were shown to be able to infect 13 different P. aeruginosa strains and has no effect on other tested bacteria. In spite of morphological similarity, these phages showed diverged genomic sequences revealed by restriction enzyme digestion analysis. One-step growth curves of bacteriophages revealed eclipse and latent periods of 12 min for ϕPSZ1 and 15 min for ϕPSZ2, respectively, with burst sizes of about 100 per infected cell. Phage treatment prevented the growth of P. aeruginosa for up to 18 h with multiplicity of infection ratios of 1. These results suggest that both phages have a high potential for phage application to control P. aeruginosa.

  11. The action of Escherichia coli CRISPR–Cas system on lytic bacteriophages with different lifestyles and development strategies

    PubMed Central

    Strotskaya, Alexandra; Savitskaya, Ekaterina; Metlitskaya, Anastasia; Morozova, Natalia; Datsenko, Kirill A.; Semenova, Ekaterina

    2017-01-01

    Abstract CRISPR–Cas systems provide prokaryotes with adaptive defense against bacteriophage infections. Given an enormous variety of strategies used by phages to overcome their hosts, one can expect that the efficiency of protective action of CRISPR–Cas systems against different viruses should vary. Here, we created a collection of Escherichia coli strains with type I-E CRISPR–Cas system targeting various positions in the genomes of bacteriophages λ, T5, T7, T4 and R1-37 and investigated the ability of these strains to resist the infection and acquire additional CRISPR spacers from the infecting phage. We find that the efficiency of CRISPR–Cas targeting by the host is determined by phage life style, the positions of the targeted protospacer within the genome, and the state of phage DNA. The results also suggest that during infection by lytic phages that are susceptible to CRISPR interference, CRISPR–Cas does not act as a true immunity system that saves the infected cell but rather enforces an abortive infection pathway leading to infected cell death with no phage progeny release. PMID:28130424

  12. The viability of lytic bacteriophage ΦD5 in potato-associated environments and its effect on Dickeya solani in potato (Solanum tuberosum L.) plants

    PubMed Central

    Smolarska, Anna; Ozymko, Zofia

    2017-01-01

    Dickeya solani is one of the most important pectinolytic phytopathogens responsible for high losses in potato, especially in seed potato production in Europe. Lytic bacteriophages can affect the structure of the host population and may influence spread, survival and virulence of the pathogen and in consequence, infection of the plant. In this study, we aimed to acquire information on the viability of the broad host lytic bacteriophage ΦD5 on potato, as well as to apprehend the specific effect of this bacteriophage on its host D. solani type-strain in different settings, as a preliminary step to target co-adaptation of phages and host bacteria in plant environment. Viability of the ΦD5 phage in tuber extract, on tuber surface, in potting compost, in rainwater and on the leaf surface, as well as the effect of copper sulfate, were examined under laboratory conditions. Also, the interaction of ΦD5 with the target host D. solani in vitro and in compost-grown potato plants was evaluated. ΦD5 remained infectious in potato tuber extract and rain water for up to 72 h but was inactivated in solutions containing 50 mM of copper. The phage population was stable for up to 28 days on potato tuber surface and in potting compost. In both, tissue culture and compost-grown potato plants, ΦD5 reduced infection by D. solani by more than 50%. The implications of these findings are discussed. PMID:28800363

  13. The viability of lytic bacteriophage ΦD5 in potato-associated environments and its effect on Dickeya solani in potato (Solanum tuberosum L.) plants.

    PubMed

    Czajkowski, Robert; Smolarska, Anna; Ozymko, Zofia

    2017-01-01

    Dickeya solani is one of the most important pectinolytic phytopathogens responsible for high losses in potato, especially in seed potato production in Europe. Lytic bacteriophages can affect the structure of the host population and may influence spread, survival and virulence of the pathogen and in consequence, infection of the plant. In this study, we aimed to acquire information on the viability of the broad host lytic bacteriophage ΦD5 on potato, as well as to apprehend the specific effect of this bacteriophage on its host D. solani type-strain in different settings, as a preliminary step to target co-adaptation of phages and host bacteria in plant environment. Viability of the ΦD5 phage in tuber extract, on tuber surface, in potting compost, in rainwater and on the leaf surface, as well as the effect of copper sulfate, were examined under laboratory conditions. Also, the interaction of ΦD5 with the target host D. solani in vitro and in compost-grown potato plants was evaluated. ΦD5 remained infectious in potato tuber extract and rain water for up to 72 h but was inactivated in solutions containing 50 mM of copper. The phage population was stable for up to 28 days on potato tuber surface and in potting compost. In both, tissue culture and compost-grown potato plants, ΦD5 reduced infection by D. solani by more than 50%. The implications of these findings are discussed.

  14. Reduction of Salmonella on chicken breast fillets stored under aerobic or modified atmosphere packaging by the application of lytic bacteriophage preparation SalmoFreshTM.

    PubMed

    Sukumaran, Anuraj T; Nannapaneni, Rama; Kiess, Aaron; Sharma, Chander Shekhar

    2016-03-01

    The present study evaluated the efficacy of recently approved Salmonella lytic bacteriophage preparation (SalmoFresh™) in reducing Salmonella on chicken breast fillets, as a surface and dip application. The effectiveness of phage in combination with modified atmosphere packaging (MAP) and the ability of phage preparation in reducing Salmonella on chicken breast fillets at room temperature was also evaluated. Chicken breast fillets inoculated with a cocktail of Salmonella Typhimurium, S. Heidelberg, and S. Enteritidis were treated with bacteriophage (10(9) PFU/mL) as either a dip or surface treatment. The dip-treated samples were stored at 4°C aerobically and the surface-treated samples were stored under aerobic and MAP conditions (95% CO2/5% O2) at 4°C for 7 d. Immersion of Salmonella-inoculated chicken breast fillets in bacteriophage solution reduced Salmonella (P < 0.05) by 0.7 and 0.9 log CFU/g on d 0 and d 1 of storage, respectively. Surface treatment with phage significantly (P < 0.05) reduced Salmonella by 0.8, 0.8, and 1 log CFU/g on d 0, 1, and 7 of storage, respectively, under aerobic conditions. Higher reductions in Salmonella counts were achieved on chicken breast fillets when the samples were surface treated with phage and stored under MAP conditions. The Salmonella counts were reduced by 1.2, 1.1, and 1.2 log CFU/g on d 0, 1, and 7 of storage, respectively. Bacteriophage surface application on chicken breast fillets stored at room temperature reduced the Salmonella counts by 0.8, 0.9, and 0.4 log CFU/g after 0, 4, and 8 h, respectively, compared to the untreated positive control. These findings indicate that lytic phage preparation was effective in reducing Salmonella on chicken breast fillets stored under aerobic and modified atmosphere conditions. © 2015 Poultry Science Association Inc.

  15. The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies.

    PubMed

    Strotskaya, Alexandra; Savitskaya, Ekaterina; Metlitskaya, Anastasia; Morozova, Natalia; Datsenko, Kirill A; Semenova, Ekaterina; Severinov, Konstantin

    2017-02-28

    CRISPR-Cas systems provide prokaryotes with adaptive defense against bacteriophage infections. Given an enormous variety of strategies used by phages to overcome their hosts, one can expect that the efficiency of protective action of CRISPR-Cas systems against different viruses should vary. Here, we created a collection of Escherichia coli strains with type I-E CRISPR-Cas system targeting various positions in the genomes of bacteriophages λ, T5, T7, T4 and R1-37 and investigated the ability of these strains to resist the infection and acquire additional CRISPR spacers from the infecting phage. We find that the efficiency of CRISPR-Cas targeting by the host is determined by phage life style, the positions of the targeted protospacer within the genome, and the state of phage DNA. The results also suggest that during infection by lytic phages that are susceptible to CRISPR interference, CRISPR-Cas does not act as a true immunity system that saves the infected cell but rather enforces an abortive infection pathway leading to infected cell death with no phage progeny release. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Isolation and characterization of wetland VSW-3, a novel lytic cold-active bacteriophage of Pseudomonas fluorescens.

    PubMed

    Qin, Kunhao; Ji, Xiuling; Zhang, Chunjing; Ding, Yafang; Kuang, Anxiu; Zhang, Shengting; Zhang, Qi; Lin, Lianbing; Wei, Yunlin

    2017-02-01

    Wetlands are often called the "kidneys of the Earth" and contribute substantially to environmental improvement. Pseudomonas fluorescens is a major contaminant of milk products and causes the spoilage of refrigerated foods and fresh poultry. In this study, we isolated and characterized a lytic cold-active bacteriophage named VSW-3 together with P. fluorescens SW-3 cells from the Napahai wetland in China. Electron microscopy showed that VSW-3 had an icosahedral head (56 nm) and a tapering tail (20 nm × 12 nm) and a genome size of approximate 40 kb. On the basis of the top-scoring hits in the BLASTP analysis, VSW-3 showed a high degree of module similarity to the Pseudomonas phages Andromeda and Bf7. The latent and burst periods were 45 and 20 min, respectively, with an average burst size of 90 phage particles per infected cell. The pH and thermal stability of VSW-3 were also explored. The optimal pH was found to be 7.0 and the activity decreased rapidly when the temperature exceeded 60 °C. VSW-3 is a cold-active bacteriophage, hence, it is important to research its ability to prevent product contamination caused by P. fluorescens and to characterize its relationship with its host P. fluorescens in the future.

  17. Bacteriophages and Phage-Derived Proteins – Application Approaches

    PubMed Central

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara

    2015-01-01

    Currently, the bacterial resistance, especially to most commonly used antibiotics has proved to be a severe therapeutic problem. Nosocomial and community-acquired infections are usually caused by multidrug resistant strains. Therefore, we are forced to develop an alternative or supportive treatment for successful cure of life-threatening infections. The idea of using natural bacterial pathogens such as bacteriophages is already well known. Many papers have been published proving the high antibacterial efficacy of lytic phages tested in animal models as well as in the clinic. Researchers have also investigated the application of non-lytic phages and temperate phages, with promising results. Moreover, the development of molecular biology and novel generation methods of sequencing has opened up new possibilities in the design of engineered phages and recombinant phage-derived proteins. Encouraging performances were noted especially for phage enzymes involved in the first step of viral infection responsible for bacterial envelope degradation, named depolymerases. There are at least five major groups of such enzymes – peptidoglycan hydrolases, endosialidases, endorhamnosidases, alginate lyases and hyaluronate lyases – that have application potential. There is also much interest in proteins encoded by lysis cassette genes (holins, endolysins, spanins) responsible for progeny release during the phage lytic cycle. In this review, we discuss several issues of phage and phage-derived protein application approaches in therapy, diagnostics and biotechnology in general. PMID:25666799

  18. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage of...

  19. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage of...

  20. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage of...

  1. Bacteriophage endolysins as novel antimicrobials

    PubMed Central

    Schmelcher, Mathias; Donovan, David M; Loessner, Martin J

    2013-01-01

    Endolysins are enzymes used by bacteriophages at the end of their replication cycle to degrade the peptidoglycan of the bacterial host from within, resulting in cell lysis and release of progeny virions. Due to the absence of an outer membrane in the Gram-positive bacterial cell wall, endolysins can access the peptidoglycan and destroy these organisms when applied externally, making them interesting antimicrobial candidates, particularly in light of increasing bacterial drug resistance. This article reviews the modular structure of these enzymes, in which cell wall binding and catalytic functions are separated, as well as their mechanism of action, lytic activity and potential as antimicrobials. It particularly focuses on molecular engineering as a means of optimizing endolysins for specific applications, highlights new developments that may render these proteins active against Gram-negative and intracellular pathogens and summarizes the most recent applications of endolysins in the fields of medicine, food safety, agriculture and biotechnology. PMID:23030422

  2. Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles.

    PubMed

    Dedrick, Rebekah M; Marinelli, Laura J; Newton, Gerald L; Pogliano, Kit; Pogliano, Joseph; Hatfull, Graham F

    2013-05-01

    Bacteriophages represent a majority of all life forms, and the vast, dynamic population with early origins is reflected in their enormous genetic diversity. A large number of bacteriophage genomes have been sequenced. They are replete with novel genes without known relatives. We know little about their functions, which genes are required for lytic growth, and how they are expressed. Furthermore, the diversity is such that even genes with required functions - such as virion proteins and repressors - cannot always be recognized. Here we describe a functional genomic dissection of mycobacteriophage Giles, in which the virion proteins are identified, genes required for lytic growth are determined, the repressor is identified, and the transcription patterns determined. We find that although all of the predicted phage genes are expressed either in lysogeny or in lytic growth, 45% of the predicted genes are non-essential for lytic growth. We also describe genes required for DNA replication, show that recombination is required for lytic growth, and that Giles encodes a novel repressor. RNAseq analysis reveals abundant expression of a small non-coding RNA in a lysogen and in late lytic growth, although it is non-essential for lytic growth and does not alter lysogeny. © 2013 Blackwell Publishing Ltd.

  3. Isolation and characterization of bacteriophages of Salmonella enterica serovar Pullorum.

    PubMed

    Bao, H; Zhang, H; Wang, R

    2011-10-01

    In this study, 2 bacteriophages of Salmonella Pullorum were isolated using an enrichment protocol and the double agar layer method. They were named PSPu-95 and PSPu-4-116, respectively, against clinical isolates of Salmonella Pullorum SPu-95 and SPu-116. The host ranges of the 2 bacteriophages were determined by performing spot tests with 20 bacteria strains. Both bacteriophages had wide host ranges. Bacteriophage PSPu-95 had a lytic effect on 17 of the 20 isolates (85%), and PSPu-4-116 produced a lytic effect on 14 isolates (70%) and was the only bacteriophage that produced a clear plaque on enterotoxigenic Escherichia coli K88. Transmission electron microscopy revealed the bacteriophages belonged to the order Caudovirales. Bacteriophage PSPu-95 was a member of the family Siphoviridae, but bacteriophage PSPu-4-116 belonged to the family Myoviridae. Both had a double-stranded DNA, which was digested with HindIII or EcoRI, that was estimated to be 58.3 kbp (PSPu-95) and 45.2 kbp (PSPu-4-116) by 1% agar electrophoresis. One-step growth kinetics showed that the latent periods were all less than 20 min, and the burst size was 77.5 pfu/cell for PSPu-95 and 86 pfu/cell for PSPu-4-116. The bacteriophages were able to survive in a pH range between 4 and 10, and they were able to survive in a treatment of 70°C for 60 min. The characterizations of these 2 bacteriophages were helpful in establishing a basis for adopting the most effective bacteriophage to control bacteria in the poultry industry.

  4. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    PubMed Central

    Scarascia, Giantommaso; Yap, Scott A.; Kaksonen, Anna H.; Hong, Pei-Ying

    2018-01-01

    Pseudomonas aeruginosa is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of P. aeruginosa in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P. aeruginosa exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to P. aeruginosa-enriched biofilm and were determined to lower the relative abundance of Pseudomonas-related taxa from 0.17 to 5.58% in controls to 0.01–0.61% in treated microbial communities. The relative abundance of Alphaproteobacteria, Pseudoalteromonas, and Planococcaceae decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable P. aeruginosa-associated problems in seawater applications. PMID:29770130

  5. Lysogenic bacteriophage isolated from acidophilium

    DOEpatents

    Ward, Thomas W.; Bruhn, Debby F.; Bulmer, Deborah K.

    1992-01-01

    A bacteriophage identified as .phi.Ac1 capable of infecting acidophilic heterotropic bacteria (such as Acidiphilium sp.) and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phase having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element form ore or coal.

  6. Genomic Sequence and Characterization of the Virulent Bacteriophage φCTP1 from Clostridium tyrobutyricum and Heterologous Expression of Its Endolysin▿

    PubMed Central

    Mayer, Melinda J.; Payne, John; Gasson, Michael J.; Narbad, Arjan

    2010-01-01

    The growth of Clostridium tyrobutyricum in developing cheese leads to spoilage and cheese blowing. Bacteriophages or their specific lytic enzymes may provide a biological control method for eliminating such undesirable organisms without affecting other microflora. We isolated the virulent bacteriophage φCTP1 belonging to the Siphoviridae and have shown that it is effective in causing lysis of sensitive strains. The double-stranded DNA genome of φCTP1 is 59,199 bp, and sequence analysis indicated that it has 86 open reading frames. orf29 was identified as the gene coding for the phage endolysin responsible for cell wall degradation prior to virion release. We cloned and expressed the ctp1l gene in E. coli and demonstrated that the partially purified protein induced lysis of C. tyrobutyricum cells and reduced viable counts both in buffer and in milk. The endolysin was inactive against a range of clostridial species but did show lysis of Clostridium sporogenes, another potential spoilage organism. Removal of the C-terminal portion of the endolysin completely abolished lytic activity. PMID:20581196

  7. 40 CFR 180.1301 - Escherichia coli O157:H7 specific bacteriophages; temporary exemption from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... bacteriophages; temporary exemption from the requirement of a tolerance. 180.1301 Section 180.1301 Protection of... bacteriophages; temporary exemption from the requirement of a tolerance. A temporary exemption from the requirement of a tolerance is established for residues of lytic bacteriophages that are specific to...

  8. 40 CFR 180.1301 - Escherichia coli O157:H7 specific bacteriophages; temporary exemption from the requirement of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... bacteriophages; temporary exemption from the requirement of a tolerance. 180.1301 Section 180.1301 Protection of... bacteriophages; temporary exemption from the requirement of a tolerance. A temporary exemption from the requirement of a tolerance is established for residues of lytic bacteriophages that are specific to...

  9. 40 CFR 180.1301 - Escherichia coli O157:H7 specific bacteriophages; temporary exemption from the requirement of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... bacteriophages; temporary exemption from the requirement of a tolerance. 180.1301 Section 180.1301 Protection of... bacteriophages; temporary exemption from the requirement of a tolerance. A temporary exemption from the requirement of a tolerance is established for residues of lytic bacteriophages that are specific to...

  10. 40 CFR 180.1301 - Escherichia coli O157:H7 specific bacteriophages; temporary exemption from the requirement of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... bacteriophages; temporary exemption from the requirement of a tolerance. 180.1301 Section 180.1301 Protection of... bacteriophages; temporary exemption from the requirement of a tolerance. A temporary exemption from the requirement of a tolerance is established for residues of lytic bacteriophages that are specific to...

  11. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens.

    PubMed

    Sulakvelidze, Alexander

    2013-10-01

    Bacteriophages (also called 'phages') are viruses that kill bacteria. They are arguably the oldest (3 billion years old, by some estimates) and most ubiquitous (total number estimated to be 10(30) -10(32) ) known organisms on Earth. Phages play a key role in maintaining microbial balance in every ecosystem where bacteria exist, and they are part of the normal microflora of all fresh, unprocessed foods. Interest in various practical applications of bacteriophages has been gaining momentum recently, with perhaps the most attention focused on using them to improve food safety. That approach, called 'phage biocontrol', typically includes three main types of applications: (i) using phages to treat domesticated livestock in order to reduce their intestinal colonization with, and shedding of, specific bacterial pathogens; (ii) treatments for decontaminating inanimate surfaces in food-processing facilities and other food establishments, so that foods processed on those surfaces are not cross-contaminated with the targeted pathogens; and (iii) post-harvest treatments involving direct applications of phages onto the harvested foods. This mini-review primarily focuses on the last type of intervention, which has been gaining the most momentum recently. Indeed, the results of recent studies dealing with improving food safety, and several recent regulatory approvals of various commercial phage preparations developed for post-harvest food safety applications, strongly support the idea that lytic phages may provide a safe, environmentally-friendly, and effective approach for significantly reducing contamination of various foods with foodborne bacterial pathogens. However, some important technical and nontechnical problems may need to be addressed before phage biocontrol protocols can become an integral part of routine food safety intervention strategies implemented by food industries in the USA. © 2013 Society of Chemical Industry.

  12. Clostridium perfringens bacteriophages FCP39O and FCP26F: genomic organization and proteomic analysis of the virions

    USDA-ARS?s Scientific Manuscript database

    Initial screening for bacteriophages lytic for Clostridium perfringens was performed utilizing filtered samples obtained from poultry (intestinal material), soil, sewage and poultry processing drainage water. Lytic phage preparations were initially characterized by transmission electron microscopy ...

  13. Lytic and inhibition responses to bacteriophages among marine bacteria, with special reference to the origin of phage-host systems

    NASA Astrophysics Data System (ADS)

    Moebus, K.

    1983-12-01

    The results of phage-host cross-reaction tests reported by Moebus & Nattkemper (1981) were re-examined using serially diluted bacteriophage suspensions to elicit the actual type of reaction between the bacteria and phage lysates tested. More than 1450 phage-host systems were studied at 25 °C incubation temperature. Among the nearly 300 phage strains used, 29 were identified as temperate ones. In about 65 % of the phage-host systems bacteriophage propagation was indicated by plaque formation. The remaining systems were characterized by the “inhibition” reaction of bacteria to phage lysates indicated by homogenously reduced bacterial growth within the test area without production of progeny phages. Since crude phage lysates had to be used, it remains obscure whether agents other than infective phage particles (defective ones or bacteriocins) caused this reaction. Among 269 systems of the inhibition type which were also tested at 5° and 15 °C, 54 were observed to propagate phages at one of or both the lower temperatures. Plaques produced at 15 °C with several phage-host systems were found to yield only few progeny phages which generally could not be propagated to produce high-titer phage stocks. With one system temperature-sensitive phage mutants were isolated. The probability of inhibition reactions occurring was found to be higher with phage-host systems isolated east of the Azores than with systems derived from the western Atlantic. With systems from the last mentioned area the proportion of inhibition versus lytic responses of bacteria to phages was observed to increase with the distance between the stations where both parts of the systems were derived. The latter findings are discussed in view of the assumption that bacterial and bacteriophage populations undergo genetic changes while being transported from west to east.

  14. Identification of novel bacteriophage peptides using a combination of gene sequence LC-MS-MS analysis and BLASTP

    USDA-ARS?s Scientific Manuscript database

    Introduction: In an effort to characterize novel bacteriophage with lytic activity against pathogenic E.coli associated with foodborne illness, gene sequencing and mass spectrometry have been used to identify expressed peptides which differentiate isolated bacteriophage from other known phage. Here,...

  15. Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater.

    PubMed

    Eydal, Hallgerd S C; Jägevall, Sara; Hermansson, Malte; Pedersen, Karsten

    2009-10-01

    Viruses were earlier found to be 10-fold more abundant than prokaryotes in deep granitic groundwater at the Aspö Hard Rock Laboratory (HRL). Using a most probable number (MPN) method, 8-30 000 cells of sulphate-reducing bacteria per ml were found in groundwater from seven boreholes at the Aspö HRL. The content of lytic phages infecting the indigenous bacterium Desulfovibrio aespoeensis in Aspö groundwater was analysed using the MPN technique for phages. In four of 10 boreholes, 0.2-80 phages per ml were found at depths of 342-450 m. Isolates of lytic phages were made from five cultures. Using transmission electron microscopy, these were characterized and found to be in the Podoviridae morphology group. The isolated phages were further analysed regarding host range and were found not to infect five other species of Desulfovibrio or 10 Desulfovibrio isolates with up to 99.9% 16S rRNA gene sequence identity to D. aespoeensis. To further analyse phage-host interactions, using a direct count method, growth of the phages and their host was followed in batch cultures, and the viral burst size was calculated to be approximately 170 phages per lytic event, after a latent period of approximately 70 h. When surviving cells from infected D. aespoeensis batch cultures were inoculated into new cultures and reinfected, immunity to the phages was found. The parasite-prey system found implies that viruses are important for microbial ecosystem diversity and activity, and for microbial numbers in deep subsurface groundwater.

  16. Dual Active Site in the Endolytic Transglycosylase gp144 of Bacteriophage phiKZ.

    PubMed

    Chertkov, O V; Armeev, G A; Uporov, I V; Legotsky, S A; Sykilinda, N N; Shaytan, A K; Klyachko, N L; Miroshnikov, K A

    2017-01-01

    Lytic transglycosylases are abundant peptidoglycan lysing enzymes that degrade the heteropolymers of bacterial cell walls in metabolic processes or in the course of a bacteriophage infection. The conventional catalytic mechanism of transglycosylases involves only the Glu or Asp residue. Endolysin gp144 of Pseudomonas aeruginosa bacteriophage phiKZ belongs to the family of Gram-negative transglycosylases with a modular composition and C -terminal location of the catalytic domain. Glu115 of gp144 performs the predicted role of a catalytic residue. However, replacement of this residue does not completely eliminate the activity of the mutant protein. Site-directed mutagenesis has revealed the participation of Tyr197 in the catalytic mechanism, as well as the presence of a second active site involving Glu178 and Tyr147. The existence of the dual active site was supported by computer modeling and monitoring of the molecular dynamics of the changes in the conformation and surface charge distribution as a consequence of point mutations.

  17. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria

    PubMed Central

    Yosef, Ido; Manor, Miriam; Kiro, Ruth

    2015-01-01

    The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones. PMID:26060300

  18. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria.

    PubMed

    Yosef, Ido; Manor, Miriam; Kiro, Ruth; Qimron, Udi

    2015-06-09

    The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones.

  19. Bacteriophage enzymes for the prevention and treatment of bacterial infections: Stability and stabilization of the enzyme lysing Streptococcus pyogenes cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klyachko, N. L.; Dmitrieva, N. F.; Eshchina, A. S.

    2008-06-01

    Recombinant, phage associated lytic enzyme Ply C capable to lyse streptococci of groups A and C was stabilized in the variety of the micelles containing compositions to improve the stability of the enzyme for further application in medicine. It was shown that, in the micellar polyelectrolyte composition M16, the enzyme retained its activity for 2 months; while in a buffer solution under the same conditions ((pH 6.3, room temperature), it completely lost its activity in 2 days

  20. Quality-Controlled Small-Scale Production of a Well-Defined Bacteriophage Cocktail for Use in Human Clinical Trials

    PubMed Central

    Merabishvili, Maya; Pirnay, Jean-Paul; Verbeken, Gilbert; Chanishvili, Nina; Tediashvili, Marina; Lashkhi, Nino; Glonti, Thea; Krylov, Victor; Mast, Jan; Van Parys, Luc; Lavigne, Rob; Volckaert, Guido; Mattheus, Wesley; Verween, Gunther; De Corte, Peter; Rose, Thomas; Jennes, Serge; Zizi, Martin; De Vos, Daniel; Vaneechoutte, Mario

    2009-01-01

    We describe the small-scale, laboratory-based, production and quality control of a cocktail, consisting of exclusively lytic bacteriophages, designed for the treatment of Pseudomonas aeruginosa and Staphylococcus aureus infections in burn wound patients. Based on succesive selection rounds three bacteriophages were retained from an initial pool of 82 P. aeruginosa and 8 S. aureus bacteriophages, specific for prevalent P. aeruginosa and S. aureus strains in the Burn Centre of the Queen Astrid Military Hospital in Brussels, Belgium. This cocktail, consisting of P. aeruginosa phages 14/1 (Myoviridae) and PNM (Podoviridae) and S. aureus phage ISP (Myoviridae) was produced and purified of endotoxin. Quality control included Stability (shelf life), determination of pyrogenicity, sterility and cytotoxicity, confirmation of the absence of temperate bacteriophages and transmission electron microscopy-based confirmation of the presence of the expected virion morphologic particles as well as of their specific interaction with the target bacteria. Bacteriophage genome and proteome analysis confirmed the lytic nature of the bacteriophages, the absence of toxin-coding genes and showed that the selected phages 14/1, PNM and ISP are close relatives of respectively F8, φKMV and phage G1. The bacteriophage cocktail is currently being evaluated in a pilot clinical study cleared by a leading Medical Ethical Committee. PMID:19300511

  1. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  2. Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage [psi]29 tail

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Ye; Morais, Marc C.; Cohen, Daniel N.

    2009-08-28

    The small bacteriophage {phi}29 must penetrate the {approx}250-{angstrom} thick external peptidoglycan cell wall and cell membrane of the Gram-positive Bacillus subtilis, before ejecting its dsDNA genome through its tail into the bacterial cytoplasm. The tail of bacteriophage {phi}29 is noncontractile and {approx}380 {angstrom} long. A 1.8-{angstrom} resolution crystal structure of gene product 13 (gp13) shows that this tail protein has spatially well separated N- and C-terminal domains, whose structures resemble lysozyme-like enzymes and metallo-endopeptidases, respectively. CryoEM reconstructions of the WT bacteriophage and mutant bacteriophages missing some or most of gp13 shows that this enzyme is located at the distal endmore » of the {phi}29 tail knob. This finding suggests that gp13 functions as a tail-associated, peptidoglycan-degrading enzyme able to cleave both the polysaccharide backbone and peptide cross-links of the peptidoglycan cell wall. Comparisons of the gp13{sup -} mutants with the {phi}29 mature and emptied phage structures suggest the sequence of events that occur during the penetration of the tail through the peptidoglycan layer.« less

  3. Aquatic Plant Control Research Program. Biological Control of Hydrilla verticillata (L.f.) Royle with Lytic Enzyme-Producing Microorganisms.

    DTIC Science & Technology

    1985-09-01

    pectinase . Lytic enzyme-positive isolates were successively subcultured on restrictive media in the laboratory to enhance enzyme production. Twenty-two...candidate microorganisms by testing isolates for produc- tion of cellulase and pectinase . c. Taxonomically characterize candidates. d. Enhance production of...present study, but could become necessary if results of this study indicate that cellulase-enhanced v ,isolates are capable of damaging hydrilla. Pectinase

  4. Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores.

    PubMed

    Banawas, Saeed; Korza, George; Paredes-Sabja, Daniel; Li, Yunfeng; Hao, Bing; Setlow, Peter; Sarker, Mahfuzur R

    2015-09-01

    The protease CspB and the cortex-lytic enzyme SleC are essential for peptoglycan cortex hydrolysis during germination of spores of the Clostridium perfringens food poisoning isolate SM101. In this study, Western blot analyses were used to demonstrate that CspB and SleC are present exclusively in the C. perfringens SM101 spore coat layer fraction and absent in the lysate from decoated spores and from the purified inner spore membrane. These results indicate why decoating treatments greatly reduce both germination and apparent viability of C. perfringens spores in the absence of an exogenous lytic enzyme. In addition, quantitative Western blot analyses showed that there are approximately 2000 and 130,000 molecules of CspB and pro-SleC, respectively, per C. perfringens SM101 spore, consistent with CspB's role in acting catalytically on pro-SleC to convert this zymogen to the active enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Roles of germination-specific lytic enzymes CwlJ and SleB in Bacillus anthracis.

    PubMed

    Heffron, Jared D; Orsburn, Benjamin; Popham, David L

    2009-04-01

    The structural characteristics of a spore enable it to withstand stresses that typically kill a vegetative cell. Spores remain dormant until small molecule signals induce them to germinate into vegetative bacilli. Germination requires degradation of the thick cortical peptidoglycan by germination-specific lytic enzymes (GSLEs). Bacillus anthracis has four putative GSLEs, based upon sequence similarities with enzymes in other species: SleB, CwlJ1, CwlJ2, and SleL. In this study, the roles of SleB, CwlJ1, and CwlJ2 were examined. The expression levels of all three genes peak 3.5 h into sporulation. Genetic analysis revealed that, similar to other known GSLEs, none of these gene products are individually required for growth, sporulation, or triggering of germination. However, later germination events are affected in spores lacking CwlJ1 or SleB. Compared to the wild type, germinating spores without CwlJ1 suffer a delay in optical density loss and cortex peptidoglycan release. The absence of SleB also causes a delay in cortex fragment release. A double mutant lacking both SleB and CwlJ1 is completely blocked in cortex hydrolysis and progresses through outgrowth to produce colonies at a frequency 1,000-fold lower than that of the wild-type strain. A null mutation eliminating CwlJ2 has no effect on germination. High-performance liquid chromatography and mass spectroscopy analysis revealed that SleB is required for lytic transglycosylase activity. CwlJ1 also clearly participates in cortex hydrolysis, but its specific mode of action remains unclear. Understanding the lytic germination activities that naturally diminish spore resistance can lead to methods for prematurely inducing them, thus simplifying the process of treating contaminated sites.

  6. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae.

    PubMed

    Kęsik-Szeloch, Agata; Drulis-Kawa, Zuzanna; Weber-Dąbrowska, Beata; Kassner, Jerzy; Majkowska-Skrobek, Grażyna; Augustyniak, Daria; Lusiak-Szelachowska, Marzanna; Zaczek, Maciej; Górski, Andrzej; Kropinski, Andrew M

    2013-03-28

    Members of the genus Klebsiella are among the leading microbial pathogens associated with nosocomial infection. The increased incidence of antimicrobial resistance in these species has propelled the need for alternate/combination therapeutic regimens to aid clinical treatment. Bacteriophage therapy forms one of these alternate strategies. Electron microscopy, burst size, host range, sensitivity of phage particles to temperature, chloroform, pH, and restriction digestion of phage DNA were used to characterize Klebsiella phages. Of the 32 isolated phages eight belonged to the family Myoviridae, eight to the Siphoviridae whilst the remaining 16 belonged to the Podoviridae. The host range of these phages was characterised against 254 clinical Enterobacteriaceae strains including multidrug resistant Klebsiella isolates producing extended-spectrum beta-lactamases (ESBLs). Based on their lytic potential, six of the phages were further characterised for burst size, physicochemical properties and sensitivity to restriction endonuclease digestion. In addition, five were fully sequenced. Multiple phage-encoded host resistance mechanisms were identified. The Siphoviridae phage genomes (KP16 and KP36) contained low numbers of host restriction sites similar to the strategy found in T7-like phages (KP32). In addition, phage KP36 encoded its own DNA adenine methyltransferase. The φKMV-like KP34 phage was sensitive to all endonucleases used in this study. Dam methylation of KP34 DNA was detected although this was in the absence of an identifiable phage encoded methyltransferase. The Myoviridae phages KP15 and KP27 both carried Dam and Dcm methyltransferase genes and other anti-restriction mechanisms elucidated in previous studies. No other anti-restriction mechanisms were found, e.g. atypical nucleotides (hmC or glucosyl hmC), although Myoviridae phage KP27 encodes an unknown anti-restriction mechanism that needs further investigation.

  7. Polymer-based delivery systems for support and delivery of bacteriophages

    NASA Astrophysics Data System (ADS)

    Brown, Alyssa Marie

    One of the most urgent problems in the fields of medicine and agriculture is the decreasing effectiveness of antibiotics. Once a miracle drug, antibiotics have recently become associated with the creation of antibiotic-resistant bacteria. The main limitations of these treatments include lack of both adaptability and specificity. To overcome these shortcomings of current antibiotic treatments, there has been a renewed interest in bacteriophage research. Bacteriophages are naturally-occurring viruses that lyse bacteria. They are highly specific, with each bacteriophage type lysing a narrow range of bacteria strains. Bacteriophages are also ubiquitous biological entities, populating environments where bacterial growth is supported. Just as humans are exposed to bacteria in their daily lives, we are exposed to bacteriophages as well. To use bacteriophages in practical applications, they must be delivered to the site of an infection in a controlled-release system. Two systems were studied to observe their support of bacteriophage lytic activity, as well as investigate the possibility of controlling bacteriophage release rates. First, hydrogels were studied, using crosslinking and blending techniques to achieve a range of release profiles. Second, polyanhydride microparticles were studied, evaluating release rates as a function of monomer chemistries.

  8. Genomic, Proteomic and Morphological Characterization of Two Novel Broad Host Lytic Bacteriophages ΦPD10.3 and ΦPD23.1 Infecting Pectinolytic Pectobacterium spp. and Dickeya spp.

    PubMed Central

    Czajkowski, Robert; Ozymko, Zofia; de Jager, Victor; Siwinska, Joanna; Smolarska, Anna; Ossowicki, Adam; Narajczyk, Magdalena; Lojkowska, Ewa

    2015-01-01

    Pectinolytic Pectobacterium spp. and Dickeya spp. are necrotrophic bacterial pathogens of many important crops, including potato, worldwide. This study reports on the isolation and characterization of broad host lytic bacteriophages able to infect the dominant Pectobacterium spp. and Dickeya spp. affecting potato in Europe viz. Pectobacterium carotovorum subsp. carotovorum (Pcc), P. wasabiae (Pwa) and Dickeya solani (Dso) with the objective to assess their potential as biological disease control agents. Two lytic bacteriophages infecting stains of Pcc, Pwa and Dso were isolated from potato samples collected from two potato fields in central Poland. The ΦPD10.3 and ΦPD23.1 phages have morphology similar to other members of the Myoviridae family and the Caudovirales order, with a head diameter of 85 and 86 nm and length of tails of 117 and 121 nm, respectively. They were characterized for optimal multiplicity of infection, the rate of adsorption to the Pcc, Pwa and Dso cells, the latent period and the burst size. The phages were genotypically characterized with RAPD-PCR and RFLP techniques. The structural proteomes of both phages were obtained by fractionation of phage proteins by SDS-PAGE. Phage protein identification was performed by liquid chromatography-mass spectrometry (LC-MS) analysis. Pulsed-field gel electrophoresis (PFGE), genome sequencing and comparative genome analysis were used to gain knowledge of the length, organization and function of the ΦPD10.3 and ΦPD23.1 genomes. The potential use of ΦPD10.3 and ΦPD23.1 phages for the biocontrol of Pectobacterium spp. and Dickeya spp. infections in potato is discussed. PMID:25803051

  9. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process.

    PubMed

    Latka, Agnieszka; Maciejewska, Barbara; Majkowska-Skrobek, Grazyna; Briers, Yves; Drulis-Kawa, Zuzanna

    2017-04-01

    Bacteriophages are bacterial viruses that infect the host after successful receptor recognition and adsorption to the cell surface. The irreversible adherence followed by genome material ejection into host cell cytoplasm must be preceded by the passage of diverse carbohydrate barriers such as capsule polysaccharides (CPSs), O-polysaccharide chains of lipopolysaccharide (LPS) molecules, extracellular polysaccharides (EPSs) forming biofilm matrix, and peptidoglycan (PG) layers. For that purpose, bacteriophages are equipped with various virion-associated carbohydrate active enzymes, termed polysaccharide depolymerases and lysins, that recognize, bind, and degrade the polysaccharide compounds. We discuss the existing diversity in structural locations, variable architectures, enzymatic specificities, and evolutionary aspects of polysaccharide depolymerases and virion-associated lysins (VALs) and illustrate how these aspects can correlate with the host spectrum. In addition, we present methods that can be used for activity determination and the application potential of these enzymes as antibacterials, antivirulence agents, and diagnostic tools.

  10. Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of staphylococcus aureus bacteriophage vB_SauS-phiIPLA88

    USDA-ARS?s Scientific Manuscript database

    Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 (phiIPLA88) contains a virion-associated muralytic enzyme (HydH5) encoded by orf58, which is located in the morphogenetic module. Comparative bioinformatic analysis revealed that HydH5 significantly resembled other peptidoglycan hydrolases encode...

  11. Use of a bacteriophage cocktail to control Salmonella in food and the food industry.

    PubMed

    Spricigo, Denis Augusto; Bardina, Carlota; Cortés, Pilar; Llagostera, Montserrat

    2013-07-15

    The use of lytic bacteriophages for the biocontrol of food-borne pathogens in food and in the food industry is gaining increasing acceptance. In this study, the effectiveness of a bacteriophage cocktail composed of three different lytic bacteriophages (UAB_Phi 20, UAB_Phi78, and UAB_Phi87) was determined in four different food matrices (pig skin, chicken breasts, fresh eggs, and packaged lettuce) experimentally contaminated with Salmonella enterica serovar Typhimurium and S. enterica serovar Enteritidis. A significant bacterial reduction (>4 and 2 log/cm(2) for S. Typhimurium and S. Enteritidis, respectively; p≤0.005) was obtained in pig skin sprayed with the bacteriophage cocktail and then incubated at 33 °C for 6h. Significant decreases in the concentration of S. Typhimurium and S. Enteritidis were also measured in chicken breasts dipped for 5 min in a solution containing the bacteriophage cocktail and then refrigerated at 4 °C for 7 days (2.2 and 0.9 log10 cfu/g, respectively; p≤0.0001) as well as in lettuce similarly treated for 60 min at room temperature (3.9 and 2.2 log10 cfu/g, respectively; p≤0.005). However, only a minor reduction of the bacterial concentration (0.9 log10 cfu/cm(2) of S. Enteritidis and S. Typhimurium; p≤0.005) was achieved in fresh eggs sprayed with the bacteriophage cocktail and then incubated at 25 °C for 2 h. These results show the potential effectiveness of this bacteriophage cocktail as a biocontrol agent of Salmonella in several food matrices under conditions similar to those used in their production. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus.

    PubMed

    Gilmer, Daniel B; Schmitz, Jonathan E; Euler, Chad W; Fischetti, Vincent A

    2013-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pyogenes (group A streptococcus [GrAS]) cause serious and sometimes fatal human diseases. They are among the many Gram-positive pathogens for which resistance to leading antibiotics has emerged. As a result, alternative therapies need to be developed to combat these pathogens. We have identified a novel bacteriophage lysin (PlySs2), derived from a Streptococcus suis phage, with broad lytic activity against MRSA, vancomycin-intermediate S. aureus (VISA), Streptococcus suis, Listeria, Staphylococcus simulans, Staphylococcus epidermidis, Streptococcus equi, Streptococcus agalactiae (group B streptococcus [GBS]), S. pyogenes, Streptococcus sanguinis, group G streptococci (GGS), group E streptococci (GES), and Streptococcus pneumoniae. PlySs2 has an N-terminal cysteine-histidine aminopeptidase (CHAP) catalytic domain and a C-terminal SH3b binding domain. It is stable at 50 °C for 30 min, 37 °C for >24 h, 4°C for 15 days, and -80 °C for >7 months; it maintained full activity after 10 freeze-thaw cycles. PlySs2 at 128 μg/ml in vitro reduced MRSA and S. pyogenes growth by 5 logs and 3 logs within 1 h, respectively, and exhibited a MIC of 16 μg/ml for MRSA. A single, 2-mg dose of PlySs2 protected 92% (22/24) of the mice in a bacteremia model of mixed MRSA and S. pyogenes infection. Serially increasing exposure of MRSA and S. pyogenes to PlySs2 or mupirocin resulted in no observed resistance to PlySs2 and resistance to mupirocin. To date, no other lysin has shown such notable broad lytic activity, stability, and efficacy against multiple, leading, human bacterial pathogens; as such, PlySs2 has all the characteristics to be an effective therapeutic.

  13. Resistance gene transfer: induction of transducing phage by sub-inhibitory concentrations of antimicrobials is not correlated to induction of lytic phage

    PubMed Central

    Stanczak-Mrozek, Kinga I.; Laing, Ken G.

    2017-01-01

    Objectives: Horizontal gene transfer of antimicrobial resistance (AMR) genes between clinical isolates via transduction is poorly understood. MRSA are opportunistic pathogens resistant to all classes of antimicrobial agents but currently no strains are fully drug resistant. AMR gene transfer between Staphylococcus aureus isolates is predominantly due to generalized transduction via endogenous bacteriophage, and recent studies have suggested transfer is elevated during host colonization. The aim was to investigate whether exposure to sub-MIC concentrations of antimicrobials triggers bacteriophage induction and/or increased efficiency of AMR gene transfer. Methods: Isolates from MRSA carriers were exposed to nine antimicrobials and supernatants were compared for lytic phage particles and ability to transfer an AMR gene. A new technology, droplet digital PCR, was used to measure the concentration of genes in phage particles. Results: All antibiotics tested induced lytic phage and AMR gene transduction, although the ratio of transducing particles to lytic particles differed substantially for each antibiotic. Mupirocin induced the highest ratio of transducing versus lytic particles. Gentamicin and novobiocin reduced UV-induced AMR transduction. The genes carried in phage particles correlated with AMR transfer or lytic particle activity, suggesting antimicrobials influence which DNA sequences are packaged into phage particles. Conclusions: Sub-inhibitory antibiotics induce AMR gene transfer between clinical MRSA, while combination therapy with an inhibiting antibiotic could potentially alter AMR gene packaging into phage particles, reducing AMR transfer. In a continually evolving environment, pathogens have an advantage if they can transfer DNA while lowering the risk of lytic death. PMID:28369562

  14. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan.

    PubMed

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz Ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract.

  15. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan

    PubMed Central

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    Abstract This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract. PMID:26691463

  16. Production of Lytic Enzymes by Trichoderma Isolates during in vitro Antagonism with Aspergillus Niger, The Causal Agent of Collar ROT of Peanut

    PubMed Central

    Gajera, H. P.; Vakharia, D. N.

    2012-01-01

    Twelve isolates of Trichoderma (six of T. harzianum, five of T. viride, one of T. virens), which reduced variably the incidence of collar rot disease caused in peanut by Aspergillus niger Van Tieghem, were evaluated for their potential to produce lytic enzymes during in vitro antagonism. T. viride 60 inhibited highest (86.2%) growth of test fungus followed by T. harzianum 2J (80.4%) at 6 days after inoculation (DAI) on PDA media. The specific activities of chitinase, β-1,3-glucanase and protease were 11, 3.46 and 9 folds higher in T6 antagonist (T. viride 60 and A. niger interactions) followed by 8.72, 2.85 and 9 folds in T8antagonist (T. harzianum 2J and A. niger interactions), respectively, compared to the activity produced by control petri plate T13 (A. niger alone) at 6 DAI. Activity of these lytic enzymes induced in antagonists’ plates comprises the growth of Trichoderma isolates. However, cellulase and poly galacturonase were found least amount in these antagonists treatment. A significant positive correlation (p=0.01) between percentage growth inhibition of test fungus and lytic enzymes – (chitinase, β-1,3-glucanase and protease) in the culture medium of antagonist treatment established a relationship to inhibit growth of fungal pathogen by increasing the levels of these enzymes. Among the Trichoderma isolates, T. viride 60 was found best strain to be used in biological control of plant pathogen A. niger. PMID:24031802

  17. 78 FR 15929 - Notice of Intent To Grant Exclusive License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    .... 12/874,138, ``BACTERIOPHAGE LYTIC ENZYMES AS ALTERNATIVE ANTIMICROBIALS'', filed on September 1, 2010... OF PEPTIDOGLYCAN HYDROLASE ENZYMES TO A PROTEIN TRANSDUCTION DOMAIN ALLOWS ERADICATION OF BOTH...

  18. Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials.

    PubMed

    Sukumaran, Anuraj T; Nannapaneni, Rama; Kiess, Aaron; Sharma, Chander Shekhar

    2015-08-17

    The effectiveness of recently approved Salmonella lytic bacteriophage preparation (SalmoFresh™) in reducing Salmonella in vitro and on chicken breast fillets was examined in combination with lauric arginate (LAE) or cetylpyridinium chloride (CPC). In another experiment, a sequential spray application of this bacteriophage (phage) solution on Salmonella inoculated chicken skin after a 20s dip in chemical antimicrobials (LAE, CPC, peracetic acid, or chlorine) was also examined in reducing Salmonella counts on chicken skin. The application of phage in combination with CPC or LAE reduced S. Typhimurium, S. Heidelberg, and S. Enteritidis up to 5 log units in vitro at 4 °C. On chicken breast fillets, phage in combination with CPC or LAE resulted in significant (p<0.05) reductions of Salmonella ranging from 0.5 to 1.3 log CFU/g as compared to control up to 7 days of refrigerated storage. When phage was applied sequentially with chemical antimicrobials, all the treatments resulted in significant reductions of Salmonella. The application of chlorine (30 ppm) and PAA (400 ppm) followed by phage spray (10(9)PFU/ml) resulted in highest Salmonella reductions of 1.6-1.7 and 2.2-2.5l og CFU/cm(2), respectively. In conclusion, the surface applications of phage in combination with LAE or CPC significantly reduced Salmonella counts on chicken breast fillets. However, higher reductions in Salmonella counts were achieved on chicken skin by the sequential application of chemical antimicrobials followed by phage spray. The sequential application of chlorine, PAA, and phage can provide additional hurdles to reduce Salmonella on fresh poultry carcasses or cut up parts. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Simulated hatchery system to assess bacteriophage efficacy against Vibrio harveyi.

    PubMed

    Raghu Patil, J; Desai, Srividya Narayanamurthy; Roy, Panchali; Durgaiah, Murali; Saravanan, R Sanjeev; Vipra, Aradhana

    2014-12-02

    Vibriosis caused by luminous Vibrio harveyi commonly contributes to poor survival in shrimp hatcheries and aquaculture ponds. Lytic bacteriophages pathogenic for V. harveyi are currently being investigated as an alternative to antibiotics to prevent vibriosis. Here, 8 bacteriophages were isolated from oysters and clams using V. harveyi strains as baiting hosts. Among these bacteriophages, 1 strain (VHP6b) identified as broadly pathogenic for 27 V. harveyi strains examined was further characterized by electron microscopy and genome sequence analysis. Phage VHP6b possessed a tail and morphology consistent with it being a member of the family Siphoviridae, and its genome and proteome were most closely related to the Vibrio phages SSP02 and MAR10. An integrase gene essential for lysogeny was not evident. The ability of bacteriophage VHP6b to protect shrimp postlarvae against vibriosis caused by V. harveyi strain VH6 was demonstrated in a model system designed to simulate typical hatchery conditions. Bacteriophage treatment improved survival of postlarvae by 40 to 60% under these conditions, so therapies based on this or other bacteriophages may be useful in shrimp hatcheries.

  20. Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part I: Isolation and lytic activity estimation of bacteriophages.

    PubMed

    Bicalho, R C; Santos, T M A; Gilbert, R O; Caixeta, L S; Teixeira, L M; Bicalho, M L S; Machado, V S

    2010-01-01

    The objective of this study was to isolate bacteriophages from environmental samples of 2 large commercial dairy farms using Escherichia coli isolated from the uteri of postpartum Holstein dairy cows as hosts. A total of 11 bacteriophage preparations were isolated from manure systems of commercial dairy farms and characterized for in vitro antimicrobial activity. In addition, a total of 57 E. coli uterine isolates from 5 dairy cows were phylogenetically grouped by triplex PCR. Each E. coli bacterial host from the uterus was inoculated with their respective bacteriophage preparation at several different multiplicities of infections (MOI) to determine minimum inhibitory MOI. The effect of a single dose (MOI=10(2)) of bacteriophage on the growth curve of all 57 E. coli isolates was assessed using a microplate technique. Furthermore, genetic diversity within and between the different bacteriophage preparations was assessed by bacteriophage purification followed by DNA extraction, restriction, and agarose gel electrophoresis. Phylogenetic grouping based on triplex PCR showed that all isolates of E. coli belonged to phylogroup B1. Bacterial growth was completely inhibited at considerably low MOI, and the effect of a single dose (MOI=10(2)) of bacteriophage preparations on the growth curve of all 57 E. coli isolates showed that all bacteriophage preparations significantly decreased the growth rate of the isolates. Bacteriophage preparation 1230-10 had the greatest antimicrobial activity and completely inhibited the growth of 71.7% (n=57) of the isolates. The combined action of bacteriophage preparations 1230-10, 6375-10, 2540-4, and 6547-2, each at MOI=10(2), had the broadest spectrum of action and completely inhibited the growth (final optical density at 600 nm

  1. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes.

    PubMed

    Pei, Ruoting; Lamas-Samanamud, Gisella R

    2014-09-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Inhibition of Biofilm Formation by T7 Bacteriophages Producing Quorum-Quenching Enzymes

    PubMed Central

    Lamas-Samanamud, Gisella R.

    2014-01-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings. PMID:24951790

  3. Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates.

    PubMed

    Peng, Fan; Mi, Zhiqiang; Huang, Yong; Yuan, Xin; Niu, Wenkai; Wang, Yahui; Hua, Yuhui; Fan, Huahao; Bai, Changqing; Tong, Yigang

    2014-07-05

    With the use of broad-spectrum antibiotics, immunosuppressive drugs, and glucocorticoids, multidrug-resistant Acinetobacter baumannii (MDR-AB) has become a major nosocomial pathogen species. The recent renaissance of bacteriophage therapy may provide new treatment strategies for combatting drug-resistant bacterial infections. In this study, we isolated a lytic bacteriophage vB_AbaM-IME-AB2 has a short latent period and a small burst size, which clear its host's suspension quickly, was selected for characterization and a complete genomic comparative study. The isolated bacteriophage vB_AbaM-IME-AB2 has an icosahedral head and displays morphology resembling Myoviridae family. Gel separation assays showed that the phage particle contains at least nine protein bands with molecular weights ranging 15-100 kDa. vB_AbaM-IME-AB2 could adsorb its host cells in 9 min with an adsorption rate more than 99% and showed a short latent period (20 min) and a small burst size (62 pfu/cell). It could form clear plaques in the double-layer assay and clear its host's suspension in just 4 hours. Whole genome of vB_AbaM-IME-AB2 was sequenced and annotated and the results showed that its genome is a double-stranded DNA molecule consisting of 43,665 nucleotides. The genome has a G + C content of 37.5% and 82 putative coding sequences (CDSs). We compared the characteristics and complete genome sequence of all known Acinetobacter baumannii bacteriophages. There are only three that have been sequenced Acinetobacter baumannii phages AB1, AP22, and phiAC-1, which have a relatively high similarity and own a coverage of 65%, 50%, 8% respectively when compared with our phage vB_AbaM-IME-AB2. A nucleotide alignment of the four Acinetobacter baumannii phages showed that some CDSs are similar, with no significant rearrangements observed. Yet some sections of these strains of phage are nonhomologous. vB_AbaM-IME-AB2 was a novel and unique A. baumannii bacteriophage. These findings suggest a common

  4. Bacteriophage Applications for Food Production and Processing

    PubMed Central

    Moye, Zachary D.; Woolston, Joelle; Sulakvelidze, Alexander

    2018-01-01

    Foodborne illnesses remain a major cause of hospitalization and death worldwide despite many advances in food sanitation techniques and pathogen surveillance. Traditional antimicrobial methods, such as pasteurization, high pressure processing, irradiation, and chemical disinfectants are capable of reducing microbial populations in foods to varying degrees, but they also have considerable drawbacks, such as a large initial investment, potential damage to processing equipment due to their corrosive nature, and a deleterious impact on organoleptic qualities (and possibly the nutritional value) of foods. Perhaps most importantly, these decontamination strategies kill indiscriminately, including many—often beneficial—bacteria that are naturally present in foods. One promising technique that addresses several of these shortcomings is bacteriophage biocontrol, a green and natural method that uses lytic bacteriophages isolated from the environment to specifically target pathogenic bacteria and eliminate them from (or significantly reduce their levels in) foods. Since the initial conception of using bacteriophages on foods, a substantial number of research reports have described the use of bacteriophage biocontrol to target a variety of bacterial pathogens in various foods, ranging from ready-to-eat deli meats to fresh fruits and vegetables, and the number of commercially available products containing bacteriophages approved for use in food safety applications has also been steadily increasing. Though some challenges remain, bacteriophage biocontrol is increasingly recognized as an attractive modality in our arsenal of tools for safely and naturally eliminating pathogenic bacteria from foods. PMID:29671810

  5. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections.

    PubMed

    Pallavali, Roja Rani; Degati, Vijaya Lakshmi; Lomada, Dakshayani; Reddy, Madhava C; Durbaka, Vijaya Raghava Prasad

    2017-01-01

    Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS), Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100%) were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence, our results suggest

  6. Versatile de novo enzyme activity in capsid proteins from an engineered M13 bacteriophage library.

    PubMed

    Casey, John P; Barbero, Roberto J; Heldman, Nimrod; Belcher, Angela M

    2014-11-26

    Biocatalysis has grown rapidly in recent decades as a solution to the evolving demands of industrial chemical processes. Mounting environmental pressures and shifting supply chains underscore the need for novel chemical activities, while rapid biotechnological progress has greatly increased the utility of enzymatic methods. Enzymes, though capable of high catalytic efficiency and remarkable reaction selectivity, still suffer from relative instability, high costs of scaling, and functional inflexibility. Herein, we developed a biochemical platform for engineering de novo semisynthetic enzymes, functionally modular and widely stable, based on the M13 bacteriophage. The hydrolytic bacteriophage described in this paper catalyzes a range of carboxylic esters, is active from 25 to 80 °C, and demonstrates greater efficiency in DMSO than in water. The platform complements biocatalysts with characteristics of heterogeneous catalysis, yielding high-surface area, thermostable biochemical structures readily adaptable to reactions in myriad solvents. As the viral structure ensures semisynthetic enzymes remain linked to the genetic sequences responsible for catalysis, future work will tailor the biocatalysts to high-demand synthetic processes by evolving new activities, utilizing high-throughput screening technology and harnessing M13's multifunctionality.

  7. Potential of the virion-associated peptidoglycan hydrolase HydH5 and its derivative fusion proteins in milk biopreservation

    USDA-ARS?s Scientific Manuscript database

    Bacteriophage lytic enzymes have recently attracted considerable interest as novel antimicrobials against Gram-positive bacteria. In this work, antimicrobial activity in milk of HydH5 [(a virion-associated peptidoglycan hydrolase (VAPGH) encoded by the Staphylococcus aureus bacteriophage vB_SauS-ph...

  8. AtlA functions as a peptidoglycan lytic transglycosylase in the Neisseria gonorrhoeae type IV secretion system.

    PubMed

    Kohler, Petra L; Hamilton, Holly L; Cloud-Hansen, Karen; Dillard, Joseph P

    2007-08-01

    Type IV secretion systems require peptidoglycan lytic transglycosylases for efficient secretion, but the function of these enzymes is not clear. The type IV secretion system gene cluster of Neisseria gonorrhoeae encodes two peptidoglycan transglycosylase homologues. One, LtgX, is similar to peptidoglycan transglycosylases from other type IV secretion systems. The other, AtlA, is similar to endolysins from bacteriophages and is not similar to any described type IV secretion component. We characterized the enzymatic function of AtlA in order to examine its role in the type IV secretion system. Purified AtlA was found to degrade macromolecular peptidoglycan and to produce 1,6-anhydro peptidoglycan monomers, characteristic of lytic transglycosylase activity. We found that AtlA can functionally replace the lambda endolysin to lyse Escherichia coli. In contrast, a sensitive measure of lysis demonstrated that AtlA does not lyse gonococci expressing it or gonococci cocultured with an AtlA-expressing strain. The gonococcal type IV secretion system secretes DNA during growth. A deletion of ltgX or a substitution in the putative active site of AtlA severely decreased DNA secretion. These results indicate that AtlA and LtgX are actively involved in type IV secretion and that AtlA is not involved in lysis of gonococci to release DNA. This is the first demonstration that a type IV secretion peptidoglycanase has lytic transglycosylase activity. These data show that AtlA plays a role in type IV secretion of DNA that requires peptidoglycan breakdown without cell lysis.

  9. STUDIES ON THE PURIFICATION OF BACTERIOPHAGE

    PubMed Central

    Kalmanson, G.; Bronfenbrenner, J.

    1939-01-01

    A simple method of concentrating and purifying bacteriophage has been described. The procedure consisted essentially in collecting the active agent on a reinforced collodion membrane of a porosity that would just retain all the active agent and permit extraneous material to pass through. Advantage was taken of the fact that B. coli will proliferate and regenerate bacteriophage in a completely diffusible synthetic medium with ammonia as the only source of nitrogen, which permitted the purification of the bacteriophage by copious washing. The material thus obtained was concentrated by suction and after thorough washing possessed all the activity of the original filtrate. It was labile, losing its activity in a few days on standing, and was quickly and completely inactivated upon drying. This material contained approximately 15 per cent of nitrogen and with 2 or 3 mg. samples of inactive dry residue it was possible to obtain positive protein color tests. The concentrated and purified bacteriophage has about 10–14 mg. of nitrogen, or 6 x 10–17 gm. of protein per unit of lytic activity. Assuming that each unit of activity represents a molecule, the calculated maximum average molecular weight would be approximately 36,000,000, and on the assumption of a spherical shape of particles and a density of 1.3, the calculated radius would be about 22 millimicra. By measurement of the diffusion rate, the average radius of particle of the fraction of the purified bacteriophage which diffuses most readily through a porous plate was found to be of the order of magnitude of 9 millimicra, or of a calculated molecular weight of 2,250,000. Furthermore, when this purified bacteriophage was fractionated by forcing it through a thin collodion membrane, which permits the passage of only the smaller particles, it was possible to demonstrate in the ultrafiltrate active particles of about 2 millimicra in radius, and of a calculated molecular weight of 25,000. It was of interest to apply

  10. Isolation and characterization of two bacteriophages with strong in vitro antimicrobial activity against Pseudomonas aeruginosa isolated from dogs with ocular infections.

    PubMed

    Santos, Thiago M A; Ledbetter, Eric C; Caixeta, Luciano S; Bicalho, Marcela L S; Bicalho, Rodrigo C

    2011-08-01

    To isolate and characterize bacteriophages with strong in vitro lytic activity against various pathogenic Pseudomonas aeruginosa strains isolated from dogs with ocular infections. 26 genetically distinct P aeruginosa isolates. P aeruginosa strains were derived from dogs with naturally acquired ulcerative keratitis. From a large-scale screening for bacteriophages with potential therapeutic benefit against canine ocular infections, 2 bacteriophages (P2S2 and P5U5) were selected; host ranges were determined, and phage nucleic acid type and genetic profile were identified via enzymatic digestion. Electron microscopy was used to characterize bacteriophage ultrastructure. Bacteriophage temperature and pH stabilities were assessed by use of double-layer agar overlay titration. A cocultivation assay was used to evaluate the effect of the bacteriophages on bacterial host growth. P5U5 was active against all P aeruginosa isolates, whereas P2S2 formed lytic plaques on plates of 21 (80.8%) isolates. For each bacteriophage, the genomic nucleic acid was DNA; each was genetically distinct. Ultrastructurally, P2S2 and P5U5 appeared likely to belong to the Podoviridae and Siphoviridae families, respectively. The bacteriophages were stable within a pH range of 4 to 12; however, titers of both bacteriophages decreased following heating for 10 to 50 minutes at 45° or 60°C. Growth of each P aeruginosa isolate was significantly inhibited in coculture with P2S2 or P5U5; the dose response was related to the plaque-forming unit-to-CFU ratios. Bacteriophages P2S2 and P5U5 appear to be good candidates for phage treatment of infection caused by pathogenic P aeruginosa in dogs.

  11. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages

    PubMed Central

    Abedon, Stephen T.

    2015-01-01

    Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-biofilm effectiveness by phages, by contrast, may result from a combination of inherent abilities to concentrate lytic antibacterial activity intracellularly via bacterial infection and extracellularly via localized population growth. Considered here is the anti-biofilm activity of microorganisms, with a case presented for why, ecologically, bacteriophages can be more efficacious than traditional antibiotics as medically or environmentally applied biofilm-disrupting agents. Four criteria, it can be argued, generally must be met, in combination, for microorganisms to eradicate biofilms: (1) Furnishing of sufficiently effective antibacterial factors, (2) intimate interaction with biofilm bacteria over extended periods, (3) associated ability to concentrate antibacterial factors in or around targets, and, ultimately, (4) a means of physically disrupting or displacing target bacteria. In nature, lytic predators of bacteria likely can meet these criteria whereas antibiotic production, in and of itself, largely may not. PMID:26371010

  12. Bacteriophages and Biofilms

    PubMed Central

    Harper, David R.; Parracho, Helena M. R. T.; Walker, James; Sharp, Richard; Hughes, Gavin; Werthén, Maria; Lehman, Susan; Morales, Sandra

    2014-01-01

    Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce) enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  13. Characterization of bacteriophages virulent for Clostridium perfringens and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium

    USDA-ARS?s Scientific Manuscript database

    There has been a resurgent interest in the use of bacteriophages or their gene products to control bacterial pathogens as alternatives to currently utilized antibiotics. Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a significant role in human food-borne di...

  14. Characterization of bacteriophages virulent for Clostridium perfringens and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium

    USDA-ARS?s Scientific Manuscript database

    There has been a resurgent interest in the use of bacteriophages or their gene products to control bacterial pathogens as alternatives to currently utilized antibiotics. Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a significant role in human food-borne d...

  15. Phage-host interactions analysis of newly characterized Oenococcus oeni bacteriophages: Implications for malolactic fermentation in wine.

    PubMed

    Costantini, Antonella; Doria, Francesca; Saiz, Juan-Carlos; Garcia-Moruno, Emilia

    2017-04-04

    Nowadays, only few phages infecting Oenococcus oeni, the principal lactic acid bacteria (LAB) species responsible for malolactic fermentation (MLF) in wine, have been characterized. In the present study, to better understanding the factors affecting the lytic activity of Oenococcus phages, fifteen O. oeni bacteriophages have been studied in detail, both with molecular and microbiological methods. No correlations were found between genome sizes, type of integrase genes, or morphology and the lytic activity of the 15 tested phages. Interestingly, though phage attack in a wine at the end of alcoholic fermentation seems not to be a problem, it can indeed represent a risk factor for MLF when the alcohol content is low, feature that may be a key point for choosing the appropriate time for malolactic starter inoculation. Additionally, it was observed that some phages genomes bear 2 or 3 types of integrase genes, which point to horizontal gene transfer between O. oeni bacteriophages. Copyright © 2017. Published by Elsevier B.V.

  16. Evaluation of a lytic bacteriophage, Φ st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens.

    PubMed

    Wong, Chuan Loo; Sieo, Chin Chin; Tan, Wen Siang; Abdullah, Norhani; Hair-Bejo, Mohd; Abu, Jalila; Ho, Yin Wan

    2014-02-17

    In this study, a Salmonella Typhimurium lytic bacteriophage, Φ st1, which was isolated from chicken faecal material, was evaluated as a candidate for biocontrol of Salmonella in chickens. The morphology of Φ st1 showed strong resemblance to members of the Siphoviridae family. Φ st1 was observed to be a DNA phage with an estimated genome size of 121 kbp. It was found to be able to infect S. Typhimurium and S. Hadar, with a stronger lytic activity against the former. Subsequent characterisation of Φ st1 against S. Typhimurium showed that Φ st1 has a latent period of 40 min with an average burst size of 22 particles per infective centre. Approximately 86.1% of the phage adsorbed to the host cells within the initial 5 min of infection. At the optimum multiplicity of infection (MOI) (0.1), the highest reduction rate of S. Typhimurium (6.6 log₁₀ CFU/ml) and increment in phage titre (3.8 log₁₀ PFU/ml) was observed. Φ st1 produced adsorption rates of 88.4-92.2% at pH7-9 and demonstrated the highest bacteria reduction (6.6 log₁₀ CFU/ml) at pH9. Φ st1 also showed an insignificant different (P>0.05) reduction rate of host cells at 37 °C (6.4 log₁₀ CFU/ml) and 42 °C (6.0 log₁₀ CFU/ml). The in vivo study using Φ st1 showed that intracloacal inoculation of ~10¹² PFU/ml of the phage in the chickens challenged with ~10¹⁰ CFU/ml of S. Typhimurium was able to reduce (P<0.05) the S. Typhimurium more rapidly than the untreated group. The Salmonella count reduced to 2.9 log₁₀ CFU/ml within 6h of post-challenge and S. Typhimurium was not detected at and after 24h of post-challenge. Reduction of Salmonella count in visceral organs was also observed at 6h post-challenge. Approximately 1.6 log₁₀ FU/ml Φ st1 was found to persist in the caecal wall of the chicks at 72 h of post-challenge. The present study indicated that Φ st1 may serve as a potential biocontrol agent to reduce the Salmonella count in caecal content of chickens. Copyright © 2013

  17. Genomic characterization of key bacteriophages to formulate the potential biocontrol agent to combat enteric pathogenic bacteria.

    PubMed

    Parmar, Krupa M; Dafale, Nishant A; Tikariha, Hitesh; Purohit, Hemant J

    2018-05-01

    Combating bacterial pathogens has become a global concern especially when the antibiotics and chemical agents are failing to control the spread due to its resistance. Bacteriophages act as a safe biocontrol agent by selectively lysing the bacterial pathogens without affecting the natural beneficial microflora. The present study describes the screening of prominent enteric pathogens NDK1, NDK2, NDK3, and NDK4 (Escherichia, Klebsiella, Enterobacter, and Serratia) mostly observed in domestic wastewater; against which KNP1, KNP2, KNP3, and KNP4 phages were isolated. To analyze their potential role in eradicating enteric pathogens and toxicity issue, these bacteriophages were sequenced using next-generation sequencing and characterized based on its genomic content. The isolated bacteriophages were homologous to Escherichia phage (KNP1), Klebsiella phage (KNP2), Enterobacter phage (KNP3), Serratia phage (KNP4), and belonged to Myoviridae family of Caudovirales except for the unclassified KNP4 phage. Draft genome analysis revealed the presence of lytic enzymes such as holing and lysozyme in KNP1 phage, endolysin in KNP2 phage, and endopeptidase with holin in KNP3 phage. The absence of any lysogenic and virulent genes makes this bacteriophage suitable candidate for preparation of phage cocktail to combat the pathogens present in wastewater. However, KNP4 contained a virulent gene rendering it unsuitable to be used as a biocontrol agent. These findings make the phages (KNP1-KNP3) as a promising alternative for the biocontrol of pathogens in wastewater which is the main culprit to spread these dominated pathogens in different natural water bodies. This study also necessitates for genomic screening of bacteriophages for lysogenic and virulence genes prior to its use as a biocontrol agent.

  18. Rapid detection of bacteriophages in starter culture using water-in-oil-in-water emulsion microdroplets.

    PubMed

    Wang, Min S; Nitin, Nitin

    2014-10-01

    Bacteriophage contamination of starter culture and raw material poses a major problem in the fermentation industry. In this study, a rapid detection of lytic phage contamination in starter culture using water-in-oil-in-water (W/O/W) emulsion microdroplets was described. A model bacteria with varying concentrations of lytic phages were encapsulated in W/O/W emulsion microdroplets using a simple needle-in-tube setup. The detection of lytic phage contamination was accomplished in 1 h using the propidium iodide labeling of the phage-infected bacteria inside the W/O/W emulsion microdroplets. Using this approach, a detection limit of 10(2) PFU/mL of phages was achieved quantitatively, while 10(4) PFU/mL of phages could be detected qualitatively based on visual comparison of the fluorescence images. Given the simplicity and sensitivity of this approach, it is anticipated that this method can be adapted to any strains of bacteria and lytic phages that are commonly used for fermentation, and has potential for a rapid detection of lytic phage contamination in the fermentation industry.

  19. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture

    PubMed Central

    Álvarez, Belén; Biosca, Elena G.

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum, R. pseudosolanacearum, and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis, not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta. Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field. PMID:28769942

  20. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture.

    PubMed

    Álvarez, Belén; Biosca, Elena G

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum , R. pseudosolanacearum , and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis , not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta . Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field.

  1. Characterization of Bacteriophages Virulent for Clostridium perfringens and Identification of Phage Lytic Enzymes as Alternatives to Antibiotics for Potential Control of the Bacterium

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a significant role in human food-borne disease as well as non-food-borne human, animal, and poultry diseases. There has been a resurgent interest in the use of bacteriophages or their gene products to control b...

  2. Characterization of Bacteriophages Virulent for Clostridium perfringens and Identification of Phage Lytic Enzymes as Alternatives to Antibiotics for Potential Control of the Bacterium.

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a significant role in human food-borne disease as well as non-food-borne human, animal, and poultry diseases. There has been a resurgent interest in the use of bacteriophages or their gene products to control b...

  3. Bacteriophage cocktail for biocontrol of Salmonella in dried pet food.

    PubMed

    Heyse, Serena; Hanna, Leigh Farris; Woolston, Joelle; Sulakvelidze, Alexander; Charbonneau, Duane

    2015-01-01

    Human salmonellosis has been associated with contaminated pet foods and treats. Therefore, there is interest in identifying novel approaches for reducing the risk of Salmonella contamination within pet food manufacturing environments. The use of lytic bacteriophages shows promise as a safe and effective way to mitigate Salmonella contamination in various food products. Bacteriophages are safe, natural, highly targeted antibacterial agents that specifically kill bacteria and can be targeted to kill food pathogens without affecting other microbiota. In this study, we show that a cocktail containing six bacteriophages had a broadspectrum activity in vitro against a library of 930 Salmonella enterica strains representing 44 known serovars. The cocktail was effective against 95% of the strains in this tested library. In liquid culture dose-ranging experiments, bacteriophage cocktail concentrations of ≥10(8) PFU/ml inactivated more than 90% of the Salmonella population (10(1) to 10(3) CFU/ml). Dried pet food inoculated with a mixture containing equal proportions of Salmonella serovars Enteritidis (ATCC 4931), Montevideo (ATCC 8387), Senftenberg (ATCC 8400), and Typhimurium (ATCC 13311) and then surface treated with the six-bacteriophage cocktail (≥2.5 ± 1.5 × 10(6) PFU/g) achieved a greater than 1-log (P < 0.001) reduction compared with the phosphate-buffered saline-treated control in measured viable Salmonella within 60 min. Moreover, this bacteriophage cocktail reduced natural contamination in samples taken from an undistributed lot of commercial dried dog food that tested positive for Salmonella. Our results indicate that bacteriophage biocontrol of S. enterica in dried pet food is technically feasible.

  4. Newly identified bacteriolytic enzymes that target a wide range of clinical isolates of Clostridium difficile.

    PubMed

    Mehta, Krunal K; Paskaleva, Elena E; Wu, Xia; Grover, Navdeep; Mundra, Ruchir V; Chen, Kevin; Zhang, Yongrong; Yang, Zhiyong; Feng, Hanping; Dordick, Jonathan S; Kane, Ravi S

    2016-12-01

    Clostridium difficile has emerged as a major cause of infectious diarrhea in hospitalized patients, with increasing mortality rate and annual healthcare costs exceeding $3 billion. Since C. difficile infections are associated with the use of antibiotics, there is an urgent need to develop treatments that can inactivate the bacterium selectively without affecting commensal microflora. Lytic enzymes from bacteria and bacteriophages show promise as highly selective and effective antimicrobial agents. These enzymes often have a modular structure, consisting of a catalytic domain and a binding domain. In the current work, using consensus catalytic domain and cell-wall binding domain sequences as probes, we analyzed in silico the genome of C. difficile, as well as phages infecting C. difficile. We identified two genes encoding cell lytic enzymes with possible activity against C. difficile. We cloned the genes in a suitable expression vector, expressed and purified the protein products, and tested enzyme activity in vitro. These newly identified enzymes were found to be active against C. difficile cells in a dose-dependent manner. We achieved a more than 4-log reduction in the number of viable bacteria within 5 h of application. Moreover, we found that the enzymes were active against a wide range of C. difficile clinical isolates. We also characterized the biocatalytic mechanism by identifying the specific bonds cleaved by these enzymes within the cell wall peptidoglycan. These results suggest a new approach to combating the growing healthcare problem associated with C. difficile infections. Biotechnol. Bioeng. 2016;113: 2568-2576. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry.

    PubMed

    Gutiérrez, Diana; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2016-01-01

    Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed.

  6. Evaluation of consumers’ perception and willingness to pay for bacteriophage treated fresh produce

    PubMed Central

    Naanwaab, Cephas; Yeboah, Osei-Agyeman; Ofori Kyei, Foster; Sulakvelidze, Alexander; Goktepe, Ipek

    2014-01-01

    Food-borne illnesses caused by bacteria such as enterohemorrhagic E. coli and Salmonella spp. take a significant toll on American consumers’ health; they also cost the United States an estimated $77.7 billion annually in health care and other losses.1 One novel modality for improving the safety of foods is application of lytic bacteriophages directly onto foods, in order to reduce or eliminate their contamination with specific foodborne bacterial pathogens. The main objective of this study was to assess consumers’ perception about foods treated with bacteriophages and examine their willingness to pay (WTP) an additional amount (10–30 cents/lb) for bacteriophage-treated fresh produce. The study utilized a survey questionnaire administered by telephone to consumers in 4 different states: Alabama, Georgia, North Carolina, and South Carolina. The results show that consumers are in general willing to pay extra for bacteriophage-treated fresh produce if it improves their food safety. However, income, race, and the state where a consumer lives are significant determinants in their WTP. PMID:26713224

  7. Comparative genome analysis of novel Podoviruses lytic for hypermucoviscous Klebsiella pneumoniae of K1, K2, and K57 capsular types.

    PubMed

    Solovieva, Ekaterina V; Myakinina, Vera P; Kislichkina, Angelina A; Krasilnikova, Valentina M; Verevkin, Vladimir V; Mochalov, Vladimir V; Lev, Anastasia I; Fursova, Nadezhda K; Volozhantsev, Nikolay V

    2018-01-02

    Hypermucoviscous (HV) strains of capsular types K1, K2 and K57 are the most virulent representatives of the Klebsiella pneumoniae species. Eight novel bacteriophages lytic for HV K. pneumoniae were isolated and characterized. Three bacteriophages, KpV41, KpV475, and KpV71 were found to have a lytic activity against mainly K. pneumoniae of capsular type K1. Two phages, KpV74, and KpV763 were lytic for K2 capsular type K. pneumoniae, and the phage KpV767 was specific to K57-type K. pneumoniae only. Two more phages, KpV766, and KpV48 had no capsular specificity. The phage genomes consist of a linear double-stranded DNA of 40,395-44,623bp including direct terminal repeats of 180-246 bp. The G + C contents are 52.3-54.2 % that is slightly lower than that of genomes of K. pneumoniae strains being used for phage propagation. According to the genome structures, sequence similarity and phylogenetic data, the phages are classified within the genus Kp32virus and Kp34virus of subfamily Autographivirinae, family Podoviridae. In the phage genomes, genes encoding proteins with putative motifs of polysaccharide depolymerase were identified. Depolymerase genes of phages KpV71 and KpV74 lytic for hypermucoviscous K. pneumoniae of K1 and K2 capsular type, respectively, were cloned and expressed in Escherichia coli, and the recombinant gene products were purified. The specificity and polysaccharide-degrading activity of the recombinant depolymerases were demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Characterization of a T7-like lytic bacteriophage (phiSG-JL2) of Salmonella enterica serovar gallinarum biovar gallinarum.

    PubMed

    Kwon, Hyuk-Joon; Cho, Sun-Hee; Kim, Tae-Eun; Won, Yong-Jin; Jeong, Jihye; Park, Se Chang; Kim, Jae-Hong; Yoo, Han-Sang; Park, Yong-Ho; Kim, Sun-Joong

    2008-11-01

    PhiSG-JL2 is a newly discovered lytic bacteriophage infecting Salmonella enterica serovar Gallinarum biovar Gallinarum but is nonlytic to a rough vaccine strain of serovar Gallinarum biovar Gallinarum (SG-9R), S. enterica serovar Enteritidis, S. enterica serovar Typhimurium, and S. enterica serovar Gallinarum biovar Pullorum. The phiSG-JL2 genome is 38,815 bp in length (GC content, 50.9%; 230-bp-long direct terminal repeats), and 55 putative genes may be transcribed from the same strand. Functions were assigned to 30 genes based on high amino acid similarity to known proteins. Most of the expected proteins except tail fiber (31.9%) and the overall organization of the genomes were similar to those of yersiniophage phiYeO3-12. phiSG-JL2 could be classified as a new T7-like virus and represents the first serovar Gallinarum biovar Gallinarum phage genome to be sequenced. On the basis of intraspecific ratios of nonsynonymous to synonymous nucleotide changes (Pi[a]/Pi[s]), gene 2 encoding the host RNA polymerase inhibitor displayed Darwinian positive selection. Pretreatment of chickens with phiSG-JL2 before intratracheal challenge with wild-type serovar Gallinarum biovar Gallinarum protected most birds from fowl typhoid. Therefore, phiSG-JL2 may be useful for the differentiation of serovar Gallinarum biovar Gallinarum from other Salmonella serotypes, prophylactic application in fowl typhoid control, and understanding of the vertical evolution of T7-like viruses.

  9. Phage-Encoded Colanic Acid-Degrading Enzyme Permits Lytic Phage Infection of a Capsule-Forming Resistant Mutant Escherichia coli Strain

    PubMed Central

    Kim, Min Soo; Kim, Young Deuk; Hong, Sung Sik; Park, Kwangseo; Ko, Kwan Soo

    2014-01-01

    In this study, we isolated a bacteriophage T7-resistant mutant strain of Escherichia coli (named S3) and then proceeded to characterize it. The mutant bacterial colonies appeared to be mucoid. Microarray analysis revealed that genes related to colanic acid production were upregulated in the mutant. Increases in colanic acid production by the mutant bacteria were observed when l-fucose was measured biochemically, and protective capsule formation was observed under an electron microscope. We found a point mutation in the lon gene promoter in S3, the mutant bacterium. Overproduction of colanic acid was observed in some phage-resistant mutant bacteria after infection with other bacteriophages, T4 and lambda. Colanic acid overproduction was also observed in clinical isolates of E. coli upon phage infection. The overproduction of colanic acid resulted in the inhibition of bacteriophage adsorption to the host. Biofilm formation initially decreased shortly after infection but eventually increased after 48 h of incubation due to the emergence of the mutant bacteria. Bacteriophage PBECO4 was shown to infect the colanic acid-overproducing mutant strains of E. coli. We confirmed that the gene product of open reading frame 547 (ORF547) of PBECO4 harbored colanic acid-degrading enzymatic (CAE) activity. Treatment of the T7-resistant bacteria with both T7 and PBECO4 or its purified enzyme (CAE) led to successful T7 infection. Biofilm formation decreased with the mixed infection, too. This procedure, using a phage cocktail different from those exploiting solely receptor differences, represents a novel strategy for overcoming phage resistance in mutant bacteria. PMID:25416767

  10. Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry

    PubMed Central

    Gutiérrez, Diana; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2016-01-01

    Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed. PMID:27375566

  11. Isolation, characterization, and application of bacteriophages for Salmonella spp. biocontrol in pigs.

    PubMed

    Albino, Luiz A A; Rostagno, Marcos H; Húngaro, Humberto M; Mendonça, Regina C S

    2014-08-01

    Foodborne illness due to Salmonella-contaminated pork products is an important public health problem, causing significant economic losses worldwide. The use of bacteriophages is a potential intervention tool that has attracted interest for the control of foodborne pathogens. The objective of this study was to detect the presence of Salmonella in commercial pig farms and to isolate specific autochthonous bacteriophages against Salmonella Typhimurium, to characterize them and to evaluate their lytic capacity against Salmonella Typhimurium in vivo and in vitro. Salmonella was isolated on 50% (4/8) of the farms, with serotype Typhimurium being the most prevalent, detected in 48.2% of samples (13/27). The isolated Salmonella Typhimurium bacteriophages belong to the Podoviridae family, were active against serotypes Abony, Enteritidis, Typhi, and Typhimurium, but not against serotypes Arizonae, Cholerasuis, Gallinarum, and Pullorum. In in vitro tests, bacteriophage at 10(7) PFU/mL and 10(9) PFU/mL significantly reduced (p<0.05) Salmonella Typhimurium counts in 1.6 and 2.5 log10 colony-forming units (CFU)/mL, respectively, after 24 h. Before the in vivo treatment with bacteriophages, Salmonella was identified in 93.3% (28/30) of the fecal samples from the pigs inoculated with 10(6) CFU/mL, and only in 56.6% (17/30) after the treatment consisting of oral administration of the pool of the bacteriophages after the fasting period, simulating a common preslaughter practice. These results indicate that the pool of bacteriophages administered was capable of reducing the colonization of Salmonella in pigs.

  12. Toward Understanding Phage:Host Interactions in the Rumen; Complete Genome Sequences of Lytic Phages Infecting Rumen Bacteria

    PubMed Central

    Gilbert, Rosalind A.; Kelly, William J.; Altermann, Eric; Leahy, Sinead C.; Minchin, Catherine; Ouwerkerk, Diane; Klieve, Athol V.

    2017-01-01

    The rumen is known to harbor dense populations of bacteriophages (phages) predicted to be capable of infecting a diverse range of rumen bacteria. While bacterial genome sequencing projects are revealing the presence of phages which can integrate their DNA into the genome of their host to form stable, lysogenic associations, little is known of the genetics of phages which utilize lytic replication. These phages infect and replicate within the host, culminating in host lysis, and the release of progeny phage particles. While lytic phages for rumen bacteria have been previously isolated, their genomes have remained largely uncharacterized. Here we report the first complete genome sequences of lytic phage isolates specifically infecting three genera of rumen bacteria: Bacteroides, Ruminococcus, and Streptococcus. All phages were classified within the viral order Caudovirales and include two phage morphotypes, representative of the Siphoviridae and Podoviridae families. The phage genomes displayed modular organization and conserved viral genes were identified which enabled further classification and determination of closest phage relatives. Co-examination of bacterial host genomes led to the identification of several genes responsible for modulating phage:host interactions, including CRISPR/Cas elements and restriction-modification phage defense systems. These findings provide new genetic information and insights into how lytic phages may interact with bacteria of the rumen microbiome. PMID:29259581

  13. Potential for Bacteriophage Endolysins to Supplement or Replace Antibiotics in Food Production and Clinical Care

    PubMed Central

    Love, Michael J.; Bhandari, Dinesh; Dobson, Renwick C. J.

    2018-01-01

    There is growing concern about the emergence of bacterial strains showing resistance to all classes of antibiotics commonly used in human medicine. Despite the broad range of available antibiotics, bacterial resistance has been identified for every antimicrobial drug developed to date. Alarmingly, there is also an increasing prevalence of multidrug-resistant bacterial strains, rendering some patients effectively untreatable. Therefore, there is an urgent need to develop alternatives to conventional antibiotics for use in the treatment of both humans and food-producing animals. Bacteriophage-encoded lytic enzymes (endolysins), which degrade the cell wall of the bacterial host to release progeny virions, are potential alternatives to antibiotics. Preliminary studies show that endolysins can disrupt the cell wall when applied exogenously, though this has so far proven more effective in Gram-positive bacteria compared with Gram-negative bacteria. Their potential for development is furthered by the prospect of bioengineering, and aided by the modular domain structure of many endolysins, which separates the binding and catalytic activities into distinct subunits. These subunits can be rearranged to create novel, chimeric enzymes with optimized functionality. Furthermore, there is evidence that the development of resistance to these enzymes may be more difficult compared with conventional antibiotics due to their targeting of highly conserved bonds. PMID:29495476

  14. Induction of Protease Release of the Resistant Diatom Chaetoceros didymus in Response to Lytic Enzymes from an Algicidal Bacterium

    PubMed Central

    Paul, Carsten; Pohnert, Georg

    2013-01-01

    Marine lytic bacteria can have a substantial effect on phytoplankton and are even capable to terminate blooms of microalgae. The bacterium Kordia algicida was reported to lyse cells of the diatom Skeletonema costatum and several other diatoms by a quorum sensing controlled excretion of proteases. However the diatom Chaetoceros didymus is fully resistant against the bacterial enzymes. We show that the growth curve of this diatom is essentially unaffected by addition of bacterial filtrates that are active against other diatoms. By monitoring proteases from the medium using zymography and fluorescence based activity assays we demonstrate that C. didymus responds to the presence of the lytic bacteria with the induced production of algal proteases. These proteases exhibit a substantially increased activity compared to the bacterial counterparts. The induction is also triggered by signals in the supernatant of a K. algicida culture. Size fractionation shows that only the >30 kD fraction of the bacterial exudates acts as an inducing cue. Implications for a potential induced defense of the diatom C. didymus are discussed. PMID:23469204

  15. Complete genome sequence of IME15, the first T7-like bacteriophage lytic to pan-antibiotic-resistant Stenotrophomonas maltophilia.

    PubMed

    Huang, Yong; Fan, Huahao; Pei, Guangqian; Fan, Hang; Zhang, Zhiyi; An, Xiaoping; Mi, Zhiqiang; Shi, Taoxing; Tong, Yigang

    2012-12-01

    T7-like bacteriophages are a class of virulent bacteriophages which have a clearer genetic background and smaller genomes than other phages. In addition, it grows faster and is easier to culture than other phages. At present, the numbers of available T7-like bacteriophage genomes and Stenotrophomonas maltophilia genomes are small, and IME15 is the first T7-like virulent Stenotrophomonas phage whose sequence has been reported. It shows effective lysis of S. maltophilia. Here we announce its complete genome, and major findings from its annotation are described.

  16. Inhibiting the Growth of Escherichia coli O157:H7 in Beef, Pork, and Chicken Meat using a Bacteriophage

    PubMed Central

    Seo, Jina; Seo, Dong Joo; Oh, Hyejin; Jeon, Su Been; Oh, Mi-Hwa; Choi, Changsun

    2016-01-01

    This study aimed to inhibit Escherichia coli (E. coli) O157:H7 artificially contaminated in fresh meat using bacteriophage. Among 14 bacteriophages, the highly lytic bacteriophage BPECO19 strain was selected to inhibit E. coli O157:H7 in artificially contaminated meat samples. Bacteriophage BPECO19 significantly reduced E. coli O157:H7 bacterial load in vitro in a multiplicity of infection (MOI)-dependent manner. E. coli O157:H7 was completely inhibited only in 10 min in vitro by the treatment of 10,000 MOI BPECO19. The treatment of BPECO19 at 100,000 MOI completely reduced 5 Log CFU/cm2 E. coli O157:H7 bacterial load in beef and pork at 4 and 8h, respectively. In chicken meat, a 4.65 log reduction of E. coli O157:H7 was observed at 4 h by 100,000 MOI. The treatment of single bacteriophage BPECO19 was an effective method to control E. coli O157:H7 in meat samples. PMID:27194926

  17. Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family.

    PubMed

    Morgenstern, Ingo; Powlowski, Justin; Tsang, Adrian

    2014-11-01

    Our understanding of fungal cellulose degradation has shifted dramatically in the past few years with the characterization of a new class of secreted enzymes, the lytic polysaccharide monooxygenases (LPMO). After a period of intense research covering structural, biochemical, theoretical and evolutionary aspects, we have a picture of them as wedge-like copper-dependent metalloenzymes that on reduction generate a radical copper-oxyl species, which cleaves mainly crystalline cellulose. The main biological function lies in the synergism of fungal LPMOs with canonical hydrolytic cellulases in achieving efficient cellulose degradation. Their important role in cellulose degradation is highlighted by the wide distribution and often numerous occurrences in the genomes of almost all plant cell-wall degrading fungi. In this review, we provide an overview of the latest achievements in LPMO research and consider the open questions and challenges that undoubtedly will continue to stimulate interest in this new and exciting group of enzymes. © The Author 2014. Published by Oxford University Press.

  18. Fungal cell-wall lytic enzymes, antifungal metabolite(s) production, and characterization from Streptomyces exfoliatus MT9 for controlling fruit-rotting fungi.

    PubMed

    Choudhary, Bharti; Nagpure, Anand; Gupta, Rajinder K

    2014-12-01

    An antifungal actinomycete strain MT9 was isolated from Loktak Lake, Manipur, India and its cultural characteristics, fatty acid methyl ester, 16S rRNA gene analysis suggests that strain MT9 is identical to Streptomyces exfoliatus. Strain MT9 displayed strong and broad-spectrum antagonism towards several fruit-rotting fungi by mycelial growth suppression. Crude fungal cell-wall lytic enzymes, i.e., chitinase, β-1,3-glucanase, and protease produced by S. exfoliatus MT9 were optimally active at pH 8.0 and 50 °C, pH 5.0 and 60 °C, pH 9.0 and 70 °C, respectively. All three mycolytic enzymes had good stability over a wide pH range of 5.0-10.0, with protease being more thermostable than both chitinase and β-1,3-glucanase. Interestingly zymogram analysis revealed that S. exfoliatus MT9 secretes six distinct chitinase isoenzymes with approximate molecular weights of 9.42, 13.93, 27.87, 36.43, 54.95, 103.27 kDa, six active protease isoenzymes with apparent molecular weights of 12.45, 30.20, 37.45, 46.32, 52.46, 131.46 kDa, and an active band of 119.39 kDa as β-1,3-glucanase enzyme. Extracellular fluid and its organic solvent extracts also exhibited inhibitory activity to various fruit-rotting fungi. The MIC value of n-butanol extract was 2-25 µg/ml against tested fruit-rotting fungi. Antifungal secondary metabolite(s) was found to be polyene in nature. To the best of our knowledge, this is the first report on extracellular production of fungal cell-wall lytic enzymes and antifungal metabolites by bioactive S. exfoliatus MT9 under submerged fermentation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Isolation, characterization and genomic analysis of a novel lytic bacteriophage vB_SsoS-ISF002 infecting Shigella sonnei and Shigella flexneri.

    PubMed

    Shahin, Khashayar; Bouzari, Majid; Wang, Ran

    2018-03-01

    Shigellosis is one of the most important food-borne and water-borne diseases worldwide. Although antibiotics are considered as efficient agents for shigellosis treatment, improper use of these has led to the emergence of antibiotic-resistant Shigella spp. Therefore, finding a new strategy as alternative treatment seems necessary. Different samples from a wastewater treatment plant were used to isolate Shigella spp. specific phages. Physiological properties were determined, and genomic analysis was also carried out. A virulent Siphoviridae bacteriophage, vB_SsoS-ISF002, was isolated from urban wastewater in Iran and showed infectivity to different isolates of both Shigella sonnei and Shigella flexneri. vB_SsoS-ISF002 was stable at different pH values and temperatures. It had a short latent period (15 min), a large burst size (76±9 p.f.u. cell -1 ) and appropriate lytic activity especially at high MOI. Its genome (dsDNA) was 50 564 bp with 45.53 % GC content and 76 predicted open reading frames. According to comparative genomic analysis and phylogenic tree construction, vB_SsoS-ISF002 was considered as a member of the T1virus genus. These results indicated that vB_SsoS-ISF002 is a novel virulent T1virus phage and may have potential as an alternative treatment for shigellosis.

  20. [TL, the new bacteriophage of Pseudomonas aeruginosa and its application for the search of halo-producing bacteriophages].

    PubMed

    Pleteneva, E A; Burkal'tseva, M V; Shaburova, O V; Krylov, S V; Pechnikova, E V; Sokolova, O S; Krylov, V N

    2011-01-01

    The properties of new virulent bacteriophage TL of Pseudomonas aeruginosa belonging to the family Podoviridae (genome size of 46 kb) were investigated. This bacteriophage is capable of lysogenizing the bacterial lawn in halo zones around negative colonies (NC) of other bacteriophages. TL forms large NC, that are hardly distinguishable on the lawn of P. aeruginisa PAO1. At the same time, on the lawns of some phage-resistant PAO1 mutants, as well as on those produced by a number of clinical isolates, TL forms more transparent NC. It is suggested that more effective growth of the bacteriophage TL NC is associated with the differences in outer lipopolysaccharide (LPS) layer of the cell walls of different bacterial strains, as well as of the bacteria inside and outside of the halos. This TL property was used to optimize selection of bacteriophages producing halos around NC on the lawn of P. aeruginosa PAO1. As a result, a group of bacteriophages differing in the patterns of interaction between their halos and TL bacteriophage, as well as in some characters was identified. Taking into consideration the importance of cell-surfaced structures of P. aeruginosa in manifestation of virulence and pathogenicity, possible utilization of specific phage enzymes, polysacchadide depolymerases, for more effective treatment of P. aeruginosa infections is discussed.

  1. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection.

    PubMed

    Schooley, Robert T; Biswas, Biswajit; Gill, Jason J; Hernandez-Morales, Adriana; Lancaster, Jacob; Lessor, Lauren; Barr, Jeremy J; Reed, Sharon L; Rohwer, Forest; Benler, Sean; Segall, Anca M; Taplitz, Randy; Smith, Davey M; Kerr, Kim; Kumaraswamy, Monika; Nizet, Victor; Lin, Leo; McCauley, Melanie D; Strathdee, Steffanie A; Benson, Constance A; Pope, Robert K; Leroux, Brian M; Picel, Andrew C; Mateczun, Alfred J; Cilwa, Katherine E; Regeimbal, James M; Estrella, Luis A; Wolfe, David M; Henry, Matthew S; Quinones, Javier; Salka, Scott; Bishop-Lilly, Kimberly A; Young, Ry; Hamilton, Theron

    2017-10-01

    Widespread antibiotic use in clinical medicine and the livestock industry has contributed to the global spread of multidrug-resistant (MDR) bacterial pathogens, including Acinetobacter baumannii We report on a method used to produce a personalized bacteriophage-based therapeutic treatment for a 68-year-old diabetic patient with necrotizing pancreatitis complicated by an MDR A. baumannii infection. Despite multiple antibiotic courses and efforts at percutaneous drainage of a pancreatic pseudocyst, the patient deteriorated over a 4-month period. In the absence of effective antibiotics, two laboratories identified nine different bacteriophages with lytic activity for an A. baumannii isolate from the patient. Administration of these bacteriophages intravenously and percutaneously into the abscess cavities was associated with reversal of the patient's downward clinical trajectory, clearance of the A. baumannii infection, and a return to health. The outcome of this case suggests that the methods described here for the production of bacteriophage therapeutics could be applied to similar cases and that more concerted efforts to investigate the use of therapeutic bacteriophages for MDR bacterial infections are warranted.

  2. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection

    PubMed Central

    Biswas, Biswajit; Gill, Jason J.; Hernandez-Morales, Adriana; Lancaster, Jacob; Lessor, Lauren; Barr, Jeremy J.; Reed, Sharon L.; Rohwer, Forest; Benler, Sean; Segall, Anca M.; Taplitz, Randy; Smith, Davey M.; Kerr, Kim; Kumaraswamy, Monika; Nizet, Victor; Lin, Leo; McCauley, Melanie D.; Strathdee, Steffanie A.; Benson, Constance A.; Pope, Robert K.; Leroux, Brian M.; Picel, Andrew C.; Mateczun, Alfred J.; Cilwa, Katherine E.; Regeimbal, James M.; Estrella, Luis A.; Wolfe, David M.; Henry, Matthew S.; Quinones, Javier; Salka, Scott; Bishop-Lilly, Kimberly A.; Young, Ry; Hamilton, Theron

    2017-01-01

    ABSTRACT Widespread antibiotic use in clinical medicine and the livestock industry has contributed to the global spread of multidrug-resistant (MDR) bacterial pathogens, including Acinetobacter baumannii. We report on a method used to produce a personalized bacteriophage-based therapeutic treatment for a 68-year-old diabetic patient with necrotizing pancreatitis complicated by an MDR A. baumannii infection. Despite multiple antibiotic courses and efforts at percutaneous drainage of a pancreatic pseudocyst, the patient deteriorated over a 4-month period. In the absence of effective antibiotics, two laboratories identified nine different bacteriophages with lytic activity for an A. baumannii isolate from the patient. Administration of these bacteriophages intravenously and percutaneously into the abscess cavities was associated with reversal of the patient's downward clinical trajectory, clearance of the A. baumannii infection, and a return to health. The outcome of this case suggests that the methods described here for the production of bacteriophage therapeutics could be applied to similar cases and that more concerted efforts to investigate the use of therapeutic bacteriophages for MDR bacterial infections are warranted. PMID:28807909

  3. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    PubMed

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. [A STUDY OF THE ISOLATED BACTERIOPHAGE ΦAB-SP7 ADSORPTION ON THE CELL SURFACE OF THE AZOSPIRILLUM BRASILENSE SP7].

    PubMed

    Guliy, O I; Karavaeva, O A; Velikov, V A; Sokolov, O I; Pavily, S A; Larionova, O S; Burov, A M; Ignatov, O V

    2016-01-01

    The bacteriophage ΦAb-Sp7 was isolated from the cells of the Azospirillum brasilense Sp7. The morphology, size of the gram-negative colonies, and range of lytic activity against other strains and species of the genus Azospirillum was tested. The isolated phage DNA was examined using electrophoretic and restriction analysis, and the size of the genome were established. The electron microscopy. resuIts show that the phage (capsid) has a strand-like form. The electron microscopy study of the bacteriophage ΦAb-Sp7 adsorption on the A. brasilense Sp7 bacterial surface was performed.

  5. Expression of a Clostridium perfringens genome-encoded putative N-acetylmuramoyl-L-alanine amidase as a potential antimicrobial to control the bacterium

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a substantial role in non-foodborne human, animal and avian diseases as well as human foodborne disease. Previously discovered C. perfringens bacteriophage lytic enzyme amino acid sequences were utilized to iden...

  6. Diversity of phage infection types and associated terminology: the problem with 'Lytic or lysogenic'.

    PubMed

    Hobbs, Zack; Abedon, Stephen T

    2016-04-01

    Bacteriophages, or phages, are viruses of members of domain Bacteria. These viruses play numerous roles in shaping the diversity of microbial communities, with impact differing depending on what infection strategies specific phages employ. From an applied perspective, these especially are communities containing undesired or pathogenic bacteria that can be modified through phage-mediated bacterial biocontrol, that is, through phage therapy. Here we seek to categorize phages in terms of their infection strategies as well as review or suggest more descriptive, accurate or distinguishing terminology. Categories can be differentiated in terms of (1) whether or not virion release occurs (productive infections versus lysogeny, pseudolysogeny and/or the phage carrier state), (2) the means of virion release (lytic versus chronic release) and (3) the degree to which phages are genetically equipped to display lysogenic cycles (temperate versus non-temperate phages). We address in particular the use or overuse of what can be a somewhat equivocal phrase, 'Lytic or lysogenic', especially when employed as a means of distinguishing among phages types. We suggest that the implied dichotomy is inconsistent with both modern as well as historical understanding of phage biology. We consider, therefore, less ambiguous terminology for distinguishing between 'Lytic' versus 'Lysogenic' phage types. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Production of Bacteriophages by Listeria Cells Entrapped in Organic Polymers.

    PubMed

    Roy, Brigitte; Philippe, Cécile; Loessner, Martin J; Goulet, Jacques; Moineau, Sylvain

    2018-06-13

    Applications for bacteriophages as antimicrobial agents are increasing. The industrial use of these bacterial viruses requires the production of large amounts of suitable strictly lytic phages, particularly for food and agricultural applications. This work describes a new approach for phage production. Phages H387 ( Siphoviridae ) and A511 ( Myoviridae ) were propagated separately using Listeria ivanovii host cells immobilised in alginate beads. The same batch of alginate beads could be used for four successive and efficient phage productions. This technique enables the production of large volumes of high-titer phage lysates in continuous or semi-continuous (fed-batch) cultures.

  8. [POSSIBILITIES OF APPLICATION OF MALDI-TOF MASS-SPECTROMETRY FOR STUDY OF CARBOHYDRATE-SPECIFIC RECEPTORS FOR DIAGNOSTIC BACTERIOPHAGE EL TOR].

    PubMed

    Telesmanich, N R; Goncharenko, E V; Chaika, S O; Chaika, I A; Telicheva, V O

    2016-01-01

    Study mechanisms of interaction of diagnostic bacteriophage El Tor with sensitive strain Vibrio cholerae El Tor 18507 using direct protein profiling, identification of constant and variable proteins, taking part in interaction of the phage and cell, as well as carbohydrate-specific phage receptors. . A commercial preparation of cholera diagnostic bacteriophage El Tor, strain V. cholerae El Tor 18507 were used. Effect of carbohydrates on bacteriophage activity was determined in experiments with phage by a classic and modified by us method. Protein profiles of the studied objects were studied using MSP-analysis method. Sucrose was shown to inhibit lytic activity of bacteriophage. Proteome profiles of El Tor bacteriophage and sensitive indicator strains were studied, identification of constant and variable proteins of the studied objects by MSP Peak-list program was carried out. Analysis of changes of profiles of phage and microbial cell during interaction with sucrose gave a basis for assuming, that sucrose in the mixture of culture-phage enters interaction namely with phage protein receptors, blocking receptors specific for cholera vibrio, that subsequently manifests in a sharp decrease of phage activity against the sensitive strain.

  9. Purification of bacteriophage lambda repressor

    PubMed Central

    Gao, Ning; Shearwin, Keith; Mack, John; Finzi, Laura; Dunlap, David

    2013-01-01

    Bacteriophage lambda repressor controls the lysogeny/lytic growth switch after infection of E. coli by lambda phage. In order to study in detail the looping of DNA mediated by the protein, tag-free repressor and a loss-of-cooperativity mutant were expressed in E.coli and purified by (1) ammonium sulfate fractionation, (2) anion-exchange chromatography and (3) heparin affinity chromatography. This method employs more recently developed and readily available chromatography resins to produce highly pure protein in good yield. In tethered particle motion looping assays and atomic force microscopy “footprinting” assays, both the wild-type protein and a C-terminal His-tagged variant, purified using immobilized metal affinity chromatography, bound specifically to high affinity sites to mediate loop formation. In contrast the G147D loss-of-cooperativity mutant bound specifically but did not secure loops. PMID:23831434

  10. Gene Expression of Lytic Endopeptidases AlpA and AlpB from Lysobacter sp. XL1 in Pseudomonads.

    PubMed

    Tsfasman, Irina M; Lapteva, Yulia S; Krasovskaya, Ludmila A; Kudryakova, Irina V; Vasilyeva, Natalia V; Granovsky, Igor E; Stepnaya, Olga A

    2015-01-01

    Development of an efficient expression system for (especially secreted) bacterial lytic enzymes is a complicated task due to the specificity of their action. The substrate for such enzymes is peptidoglycan, the main structural component of bacterial cell walls. For this reason, expression of recombinant lytic proteins is often accompanied with lysis of the producing bacterium. This paper presents data on the construction of an inducible system for expression of the lytic peptidases AlpA and AlpB from Lysobacter sp. XL1 in Pseudomonas fluorescens Q2-87, which provides for the successful secretion of these proteins into the culture liquid. In this system, the endopeptidase gene under control of the T7lac promoter was integrated into the bacterial chromosome, as well as the Escherichia coli lactose operon repressor protein gene. The T7 pol gene under lac promoter control, which encodes the phage T7 RNA polymerase, is maintained in Pseudomonas cells on the plasmids. Media and cultivation conditions for the recombinant strains were selected to enable the production of AlpA and AlpB by a simple purification protocol. Production of recombinant lytic enzymes should contribute to the development of new-generation antimicrobial drugs whose application will not be accompanied by selection of resistant microorganisms. © 2015 S. Karger AG, Basel.

  11. Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions.

    PubMed

    Esteban, Patricia Perez; Alves, Diana R; Enright, Mark C; Bean, Jessica E; Gaudion, Alison; Jenkins, A T A; Young, Amber E R; Arnot, Tom C

    2014-01-01

    Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic-resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil-in-water nano-emulsion. Nano-emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano-emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage-loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18-20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage-emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano-emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti-microbial wound management strategies. © 2014 American Institute of Chemical Engineers.

  12. A filterable lytic agent obtained from a red tide bloom that caused lysis of Karenia brevis (Gymnodinum breve) cultures

    USGS Publications Warehouse

    2002-01-01

    A filterable lytic agent (FLA) was obtained from seawater in the southeastern Gulf of Mexico during a red tide bloom that caused lysis of Karenia brevis (formerly Gymnodinium breve) Piney Island. This agent was obtained from <0.2µ  filtrates that were concentrated by ultrafiltration using a 100 kDa filter. The FLA was propagated by passage on K. brevis cultures, and the filtered supernatants of such cultures resulted in K. brevis lysis when added to such cultures. The lytic activity was lost upon heating to 65°C or by 0.02 µm filtration. Epifluorescence and transmission electron microscopy (TEM) of supernatants of K. brevis cultures treated with the lytic agent indicated a high abundance of viral particles (4 × 109 to 7 × 109 virus-like particles [VLPs] ml–1) compared to control cultures (~107 ml–1). However, viral particles were seldom found in TEM photomicrograph thin sections of lysing K. brevis cells. Although a virus specific for K. brevis may have been the FLA, other explanations such as filterable bacteria or bacteriophages specific for bacteria associated with the K. brevis cultures cannot be discounted.

  13. Engineered enzymatically active bacteriophages and methods of uses thereof

    DOEpatents

    Collins, James J [Newton, MA; Kobayashi, Hideki [Yokohama, JP; Kearn, Mads [Ottawa, CA; Araki, Michihiro [Minatoku, JP; Friedland, Ari [Boston, MA; Lu, Timothy Kuan-Ta [Palo Alto, CA

    2012-05-22

    The present invention provides engineered bacteriophages that express at least one biofilm degrading enzyme on their surface and uses thereof for degrading bacterial biofilms. The invention also provides genetically engineered bacteriophages expressing the biofilm degrading enzymes and proteins necessary for the phage to replicate in different naturally occurring biofilm producing bacteria. The phages of the invention allow a method of biofilm degradation by the use of one or only a few administration of the phage because the system using these phages is self perpetuating, and capable of degrading biofilm even when the concentration of bacteria within the biofilm is low.

  14. Evidence that bacteriophage λ lysogens may induce in response to the proton motive force uncoupler CCCP.

    PubMed

    Thomason, Lynn C; Court, Donald L

    2016-02-01

    We describe a genetic β-galactoside reporter system using a disk diffusion assay on MacConkey Lactose agar petri plates to monitor maintenance of the bacteriophage λ prophage state and viral induction in Escherichia coli K-12. Evidence is presented that the phage λ major lytic promoters, pL and pR, are activated when cells containing the reporters are exposed to the energy poison carbonyl cyanide m-chlorophenyl hydrazine, CCCP. This uncoupler of oxidative phosphorylation inhibits ATP synthesis by collapsing the proton motive force. Expression of the λ lytic promoters in response to CCCP requires host RecA function and an autocleavable CI repressor, as does SOS induction of the λ prophage that occurs by a DNA damage-dependent pathway. λ Cro function is required for CCCP-mediated activation of the λ lytic promoters. CCCP does not induce an sfi-lacZ SOS reporter. Published by Oxford University Press on behalf of FEMS 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Comparative Genomics of Bacteriophage of the Genus Seuratvirus

    PubMed Central

    Sazinas, Pavelas; Redgwell, Tamsin; Rihtman, Branko; Grigonyte, Aurelija; Michniewski, Slawomir; Scanlan, David J; Hobman, Jon

    2018-01-01

    Abstract Despite being more abundant and having smaller genomes than their bacterial host, relatively few bacteriophages have had their genomes sequenced. Here, we isolated 14 bacteriophages from cattle slurry and performed de novo genome sequencing, assembly, and annotation. The commonly used marker genes polB and terL showed these bacteriophages to be closely related to members of the genus Seuratvirus. We performed a core-gene analysis using the 14 new and four closely related genomes. A total of 58 core genes were identified, the majority of which has no known function. These genes were used to construct a core-gene phylogeny, the results of which confirmed the new isolates to be part of the genus Seuratvirus and expanded the number of species within this genus to four. All bacteriophages within the genus contained the genes queCDE encoding enzymes involved in queuosine biosynthesis. We suggest these genes are carried as a mechanism to modify DNA in order to protect these bacteriophages against host endonucleases. PMID:29272407

  16. Effect of phenolic compounds, ethyl alcohol, and sodium metabisulphite on the lytic activity of phage PL-1 on a Lactobacillus casei S strain.

    PubMed

    Lee, A; Eschenbruch, R; Waller, J

    1985-09-01

    The effect of phenolic compounds, ethyl alcohol, and sodium metabisulphite on the lytic activity of virulent bacteriophage PL-1 on a Lactobacillus casei S strain isolated from a lactic acid beverage fermentation was investigated. Catechin, caffeic, and gallic acids, commercially produced red, white, and champagne tannins, ethyl alcohol, and sodium metabisulphite inhibited plaque formation. Catechin, caffeic, and gallic acids were the most effective inhibitors of plaque formation. Commercially supplied oenocyanin was not effective.

  17. Why Be Temperate: Lessons from Bacteriophage λ.

    PubMed

    Gandon, Sylvain

    2016-05-01

    Many pathogens have evolved the ability to induce latent infections of their hosts. The bacteriophage λ is a classical model for exploring the regulation and the evolution of latency. Here, I review recent experimental studies on phage λ that identify specific conditions promoting the evolution of lysogenic life cycles. In addition, I present specific adaptations of phage λ that allow this virus to react plastically to variations in the environment and to reactivate its lytic life cycle. All of these different examples are discussed in the light of evolutionary epidemiology theory to disentangle the different evolutionary forces acting on temperate phages. Understanding phage λ adaptations yield important insights into the evolution of latency in other microbes, including several life-threatening human pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Reactivation and Lytic Replication of Kaposi’s Sarcoma-Associated Herpesvirus: An Update

    PubMed Central

    Aneja, Kawalpreet K.; Yuan, Yan

    2017-01-01

    The life cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) consists of two phases, latent and lytic. The virus establishes latency as a strategy for avoiding host immune surveillance and fusing symbiotically with the host for lifetime persistent infection. However, latency can be disrupted and KSHV is reactivated for entry into the lytic replication. Viral lytic replication is crucial for efficient dissemination from its long-term reservoir to the sites of disease and for the spread of the virus to new hosts. The balance of these two phases in the KSHV life cycle is important for both the virus and the host and control of the switch between these two phases is extremely complex. Various environmental factors such as oxidative stress, hypoxia, and certain chemicals have been shown to switch KSHV from latency to lytic reactivation. Immunosuppression, unbalanced inflammatory cytokines, and other viral co-infections also lead to the reactivation of KSHV. This review article summarizes the current understanding of the initiation and regulation of KSHV reactivation and the mechanisms underlying the process of viral lytic replication. In particular, the central role of an immediate-early gene product RTA in KSHV reactivation has been extensively investigated. These studies revealed multiple layers of regulation in activation of RTA as well as the multifunctional roles of RTA in the lytic replication cascade. Epigenetic regulation is known as a critical layer of control for the switch of KSHV between latency and lytic replication. The viral non-coding RNA, PAN, was demonstrated to play a central role in the epigenetic regulation by serving as a guide RNA that brought chromatin remodeling enzymes to the promoters of RTA and other lytic genes. In addition, a novel dimension of regulation by microPeptides emerged and has been shown to regulate RTA expression at the protein level. Overall, extensive investigation of KSHV reactivation and lytic replication has revealed

  19. Molecular Characterization of Podoviridae Bacteriophages Virulent for Clostridium perfringens and Comparison of Their Predicted Lytic Proteins

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a significant role in human food-borne disease as well as non-food-borne human, animal and poultry diseases. There has been a resurgent interest in the use of bacteriophages or their gene products to control ba...

  20. Characterization of novel Staphylococcus aureus lytic phage and defining their combinatorial virulence using the OmniLog® system

    PubMed Central

    Estrella, Luis A.; Quinones, Javier; Henry, Matthew; Hannah, Ryan M.; Pope, Robert K.; Hamilton, Theron; Teneza-mora, Nimfa; Hall, Eric; Biswajit, Biswas

    2016-01-01

    ABSTRACT Skin and soft tissue infections (SSTI) caused by methicillin resistant Staphylococcus aureus (MRSA) are difficult to treat. Bacteriophage (phage) represent a potential alternate treatment for antibiotic resistant bacterial infections. In this study, 7 novel phage with broad lytic activity for S. aureus were isolated and identified. Screening of a diverse collection of 170 clinical isolates by efficiency of plating (EOP) assays shows that the novel phage are virulent and effectively prevent growth of 70–91% of MRSA and methicillin sensitive S. aureus (MSSA) isolates. Phage K, which was previously identified as having lytic activity on S. aureus was tested on the S. aureus collection and shown to prevent growth of 82% of the isolates. These novel phage group were examined by electron microscopy, the results of which indicate that the phage belong to the Myoviridae family of viruses. The novel phage group requires β-N-acetyl glucosamine (GlcNac) moieties on cell wall teichoic acids for infection. The phage were distinct from, but closely related to, phage K as characterized by restriction endonuclease analysis. Furthermore, growth rate analysis via OmniLog® microplate assay indicates that a combination of phage K, with phage SA0420ᶲ1, SA0456ᶲ1 or SA0482ᶲ1 have a synergistic phage-mediated lytic effect on MRSA and suppress formation of phage resistance. These results indicate that a broad spectrum lytic phage mixture can suppress the emergence of resistant bacterial populations and hence have great potential for combating S. aureus wound infections. PMID:27738555

  1. Bacteriophages and Their Immunological Applications against Infectious Threats.

    PubMed

    Criscuolo, Elena; Spadini, Sara; Lamanna, Jacopo; Ferro, Mattia; Burioni, Roberto

    2017-01-01

    Bacteriophage therapy dates back almost a century, but the discovery of antibiotics led to a rapid decline in the interests and investments within this field of research. Recently, the novel threat of multidrug-resistant bacteria highlighted the alarming drop in research and development of new antibiotics: 16 molecules were discovered during 1983-87, 10 new therapeutics during the nineties, and only 5 between 2003 and 2007. Phages are therefore being reconsidered as alternative therapeutics. Phage display technique has proved to be extremely promising for the identification of effective antibodies directed against pathogens, as well as for vaccine development. At the same time, conventional phage therapy uses lytic bacteriophages for treatment of infections and recent clinical trials have shown great potential. Moreover, several other approaches have been developed in vitro and in vivo using phage-derived proteins as antibacterial agents. Finally, their use has also been widely considered for public health surveillance, as biosensor phages can be used to detect food and water contaminations and prevent bacterial epidemics. These novel approaches strongly promote the idea that phages and their proteins can be exploited as an effective weapon in the near future, especially in a world which is on the brink of a "postantibiotic era."

  2. Bacteriophages and Their Immunological Applications against Infectious Threats

    PubMed Central

    Lamanna, Jacopo; Ferro, Mattia; Burioni, Roberto

    2017-01-01

    Bacteriophage therapy dates back almost a century, but the discovery of antibiotics led to a rapid decline in the interests and investments within this field of research. Recently, the novel threat of multidrug-resistant bacteria highlighted the alarming drop in research and development of new antibiotics: 16 molecules were discovered during 1983–87, 10 new therapeutics during the nineties, and only 5 between 2003 and 2007. Phages are therefore being reconsidered as alternative therapeutics. Phage display technique has proved to be extremely promising for the identification of effective antibodies directed against pathogens, as well as for vaccine development. At the same time, conventional phage therapy uses lytic bacteriophages for treatment of infections and recent clinical trials have shown great potential. Moreover, several other approaches have been developed in vitro and in vivo using phage-derived proteins as antibacterial agents. Finally, their use has also been widely considered for public health surveillance, as biosensor phages can be used to detect food and water contaminations and prevent bacterial epidemics. These novel approaches strongly promote the idea that phages and their proteins can be exploited as an effective weapon in the near future, especially in a world which is on the brink of a “postantibiotic era.” PMID:28484722

  3. Islands of non-essential genes, including a DNA translocation operon, in the genome of bacteriophage 0305ϕ8-36

    PubMed Central

    Pathria, Saurav; Rolando, Mandy; Lieman, Karen; Hayes, Shirley; Hardies, Stephen; Serwer, Philip

    2012-01-01

    We investigate genes of lytic, Bacillus thuringiensis bacteriophage 0305ϕ8-36 that are non-essential for laboratory propagation, but might have a function in the wild. We isolate deletion mutants to identify these genes. The non-permutation of the genome (218.948 Kb, with a 6.479 Kb terminal repeat and 247 identified orfs) simplifies isolation of deletion mutants. We find two islands of non-essential genes. The first island (3.01% of the genomic DNA) has an informatically identified DNA translocation operon. Deletion causes no detectable growth defect during propagation in a dilute agarose overlay. Identification of the DNA translocation operon begins with a DNA relaxase and continues with a translocase and membrane-binding anchor proteins. The relaxase is in a family, first identified here, with homologs in other bacteriophages. The second deleted island (3.71% of the genome) has genes for two metallo-protein chaperonins and two tRNAs. Deletion causes a significant growth defect. In addition, (1) we find by “in situ” (in-plaque) single-particle fluorescence microscopy that adsorption to the host occurs at the tip of the 486 nm long tail, (2) we develop a procedure of 0305ϕ8-36 purification that does not cause tail contraction, and (3) we then find by electron microscopy that 0305ϕ8-36 undergoes tail tip-tail tip dimerization that potentially blocks adsorption to host cells, presumably with effectiveness that increases as the bacteriophage particle concentration increases. These observations provide an explanation of the previous observation that 0305ϕ8-36 does not lyse liquid cultures, even though 0305ϕ8-36 is genomically lytic. PMID:22666654

  4. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt.

    PubMed

    Mahmoud, Mayada; Askora, Ahmed; Barakat, Ahmed Barakat; Rabie, Omar El-Farouk; Hassan, Sayed Emam

    2018-02-02

    In this study, we isolated and characterized three phages named as Salmacey1, Salmacey2 and Salmacey3, infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. The most prevalent Salmonella serovars were S. typhimurium, S. enteritidis, and S. kentucky. All these Salmonella serovars were found to be resistant to more than two of the ten antimicrobial agents tested. Only S. kentucky was found to be resistant to seven antimicrobial agents. Examination of these phage particles by transmission electron microscopy (TEM), demonstrated that two phages (Salmacey1, Salmacey2) were found to belong to family Siphoviridae, and Salmacey3 was assigned to the family Myoviridae. The results of host range assay revealed that these bacteriophages were polyvalent and thus capable of infecting four strains of Salmonella serovars and Citrobacter freundii. Moreover, the two phages (Salmacey1, Salmacey2) had a lytic effect on Enterobacter cloacae and Salmacey3 was able to infect E. coli. All phages could not infect S. para Typhi, Staphylococus aureus and Bacillus cereus. One-step growth curves of bacteriophages revealed that siphovirus phages (Salmacey1, Salmacey2) have burst size (80 and 90pfu per infected cell with latent period 35min and 40min respectively), and for the myovirus Salmacey3 had a burst size 110pfu per infected cell with latent period 60min. Molecular analyses indicated that these phages contained double-stranded DNA genomes. The lytic activity of the phages against the most multidrug resistant serovars S. kentucky as host strain was evaluated. The result showed that these bacteriophages were able to completely stop the growth of S. kentucky in vitro. These results suggest that phages have a high potential for phage application to control Salmonella serovars isolated from broilers in Egypt. Copyright © 2017. Published by Elsevier B.V.

  5. Campylobacter bacteriophages and bacteriophage therapy.

    PubMed

    Connerton, P L; Timms, A R; Connerton, I F

    2011-08-01

    Members of the genus Campylobacter are frequently responsible for human enteric disease with occasionally very serious outcomes. Much of this disease burden is thought to arise from consumption of contaminated poultry products. More than 80% of poultry in the UK harbour Campylobacter as a part of their intestinal flora. To address this unacceptably high prevalence, various interventions have been suggested and evaluated. Among these is the novel approach of using Campylobacter-specific bacteriophages, which are natural predators of the pathogen. To optimize their use as therapeutic agents, it is important to have a comprehensive understanding of the bacteriophages that infect Campylobacter, and how they can affect their host bacteria. This review will focus on many aspects of Campylobacter-specific bacteriophages including: their first isolation in the 1960s, their use in bacteriophage typing schemes, their isolation from the different biological sources and genomic characterization. As well as their use as therapeutic agents to reduce Campylobacter in poultry their future potential, including their use in bio-sanitization of food, will be explored. The evolutionary consequences of naturally occurring bacteriophage infection that have come to light through investigations of bacteriophages in the poultry ecosystem will also be discussed. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics

    USDA-ARS?s Scientific Manuscript database

    Virion-associated peptidoglycan hydrolases (VAPGH) are phage-encoded lytic enzymes that locally degrade the peptidoglycan (PG) of the bacterial cell wall during infection. Their action usually generates a small hole through which the phage tail crosses the cell envelope to inject the phage genetic m...

  7. Bacteriophages to combat foodborne infections caused by food contamination by bacteria of the Campylobacter genus.

    PubMed

    Myga-Nowak, Magdalena; Godela, Agnieszka; Głąb, Tomasz; Lewańska, Monika; Boratyński, Janusz

    2016-09-26

    It is estimated that each year more than 2 million people suffer from diarrheal diseases, resulting from the consumption of contaminated meat. Foodborne infections are most frequently caused by small Gram-negative rods Campylobacter. The hosts of these bacteria are mainly birds wherein they are part of the normal intestinal flora. During the commercial slaughter, there is a likelihood of contamination of carcasses by the bacteria found in the intestinal content. In Europe, up to 90% of poultry flocks can be a reservoir of the pathogen. According to the European Food Safety Authority report from 2015, the number of reported and confirmed cases of human campylobacteriosis exceeds 200 thousands per year, and such trend remains at constant level for several years. The occurrence of growing antibiotic resistance in bacteria forces the limitation of antibiotic use in the animal production. Therefore, the European Union allows only using stringent preventive and hygienic treatment on farms. Achieving Campylobacter free chickens using these methods is possible, but difficult to implement and expensive. Utilization of bacterial viruses - bacteriophages, can be a path to provide the hygienic conditions of poultry production and food processing. Formulations applied in the food protection should contain strictly lytic bacteriophages, be non-pyrogenic and retain long lasting biological activity. Currently, on the market there are available commercial bacteriophage preparations for agricultural use, but neither includes phages against Campylobacter. However, papers on the application of bacteriophages against Campylobacter in chickens and poultry products were published in the last few years. In accordance with the estimates, 2-logarithm reduction of Campylobacter in poultry carcases will contribute to the 30-fold reduction in the incidence of campylobacteriosis in humans. Research on bacteriophages against Campylobacter have cognitive and economic importance. The paper

  8. Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part II: In vitro antimicrobial activity evaluation of a bacteriophage cocktail and several antibiotics.

    PubMed

    Santos, T M A; Gilbert, R O; Caixeta, L S; Machado, V S; Teixeira, L M; Bicalho, R C

    2010-01-01

    The use of pathogenic-specific antimicrobials, as proposed by bacteriophage therapy, is expected to reduce the incidence of resistance development. Eighty Escherichia coli isolated from uteri of Holstein dairy cows were phenotypically characterized for antimicrobial resistance to ampicillin, ceftiofur, chloramphenicol, florfenicol, spectinomycin, streptomycin, and tetracycline by broth microdilution method. The lytic activity of a bacteriophage cocktail against all isolates was performed by a similar method. Additionally, the effect of different concentrations of antimicrobials and multiplicities of infections (MOI) of the bacteriophage cocktail on E. coli growth curve was measured. Isolates exhibited resistance to ampicillin (33.7%), ceftiofur (1.2%), chloramphenicol (100%), and florfenicol (100%). All strains were resistant to at least 2 of the antimicrobial agents tested; multidrug resistance (>or=3 of 7 antimicrobials tested) was observed in 35% of E. coli isolates. The major multidrug resistance profile was found for ampicillin-chloramphenicol-florfenicol, which was observed in more than 96.4% of the multidrug-resistant isolates. The bacteriophage cocktail preparation showed strong antimicrobial activity against multidrug-resistant E. coli. Multiplicity of infection as low as 10(-4) affected the growth of the E. coli isolates. The ratio of 10 bacteriophage particles per bacterial cell (MOI=10(1)) was efficient in inhibiting at least 50% of all isolates. Higher MOI should be tested in future in vitro studies to establish ratios that completely inhibit bacterial growth during longer periods. All isolates resistant to florfenicol were resistant to chloramphenicol and, because florfenicol was recently introduced into veterinary clinics, this finding suggests that the selection pressure of chloramphenicol, as well as other antimicrobials, may still play a relevant role in the emergence and dissemination of florfenicol resistance in E. coli. The bacteriophage

  9. Lytic bacteriophages specific to Flavobacterium columnare rescue catfish, Clarias batrachus (Linn.) from columnaris disease.

    PubMed

    Prasad, Yogendra; Arpana; Kumar, Dinesh; Sharma, A K

    2011-03-01

    This investigation was aimed to find out appropriate strategy against antibiotic resistant bacterial fish pathogen, F. columnare. This pathogen was found persistently associated with fishes causing columnaris disease and ensuing mass mortality in hatchery and culture system of Sub - Himalayan region. Nine lytic F. columnare phages (FCP1 - FCP9) specific to its fifteen isolates were isolated from the water and bottom sediments of various geo-climatic regions of North India. The F. columnare phage FCP1 (made of hexagonal head and non contractile long tail belonging to family Podovariedae, a member of DNA virus) exhibited broader host range to lyse 9 out of 15 isolates of F. columnare. Therapeutic ability of FCP1 phage was assessed in C. batrachus inoculated intramuscularly (im) with virulent bacterial isolate FC8 and post inoculated (PI) with FCP1 phage (@ 10(8) : 10(6):: cfu : pfu) through intramuscular (im), immersion (bath) and oral (phage impregnated feed) treatment. Significant (p < 0.001) reduction (less than 10(-3) cfu ml(-1)) in host bacterium in the sera, gill, liver and kidney of challenged fishes was noted after 6 hr of phage treatment. Quantum of phage played a significant role in bringing down bacterial population as in the sera of dose 1 (@ 4.55 x 10(6) pfu ml(-1)) and dose 2 (@ 9.15 x 10(6) pfu ml(-1)) treated fishes mean log10 cfu value reduced by 3 logs (58.39%) and 5 logs (73.77%) at 96 hr, respectively. Phage treatment led to disappearance of gross symptoms, negative bacteriological test, detectable phage and 100% survival in experimentally infected C. batrachus. Result of this study provides evidence of profound lytic impact of FCP1 phage and represents its interesting therapeutic importance against antibiotic resistant F. columnare.

  10. Influence of a bacteriophage on the population dynamics of toxic dinoflagellates by lysis of algicidal bacteria.

    PubMed

    Cai, Wenwei; Wang, Hui; Tian, Yun; Chen, Feng; Zheng, Tianling

    2011-11-01

    A lytic phage (øZCW1) was isolated from an algicidal bacterium Pseudoalteromonas sp. strain SP48 that specifically kills the toxic dinoflagellate Alexandrium tamarense. We demonstrated that øZCW1 could trigger the growth of A. tamarense by inhibiting the growth of algicidal bacterium SP48. In contrast, the growth of A. tamarense was suppressed when cocultured with either SP48 or the øZCW1-resistant mutant of SP48. This study provides the first evidence of the indirect impact of bacteriophage on bloom-forming microalgae via phage lysis of alga-killing bacteria.

  11. Characterization of a Thermophilic Bacteriophage for Bacillus stearothermophilus1

    PubMed Central

    Saunders, Grady F.; Campbell, L. Leon

    1966-01-01

    Saunders, Grady F. (University of Illinois, Urbana), and L. Leon Campbell. Characterization of a thermophilic bacteriophage for Bacillus stearothermophilus. J. Bacteriol. 91:340–348. 1965.—The biological and physical-chemical properties of the thermophilic bacteriophage TP-84 were investigated. TP-84 was shown to be lytic for 3 of 24 strains of Bacillus stearothermophilus tested over the temperature range of 43 to 76 C. The latent period of TP-84 on B. stearothermophilus strain 10 was 22 to 24 min. TP-84 has a hexagonal head, 53 mμ in diameter and 30 mμ on a side; its tail is 130 mμ long and 3 to 5 mμ wide. The phage has an S5020,w of 436, and bands at a density of 1.508 g/cc in CsCl (pH 8.5). The diffusion coefficient of TP-84 was calculated to be 6.19 × 10−8 cm2/sec. From the sedimentation and diffusion data, a particle molecular weight of 50 million daltons was calculated for TP-84. The phage DNA has a base composition of 42% guanine + cytosine, deduced from buoyant density and melting temperature measurements. Images PMID:5903101

  12. Isolation and Characterization of Two Lytic Bacteriophages, φSt2 and φGrn1; Phage Therapy Application for Biological Control of Vibrio alginolyticus in Aquaculture Live Feeds

    PubMed Central

    Kalatzis, Panos G.; Bastías, Roberto; Kokkari, Constantina; Katharios, Pantelis

    2016-01-01

    Bacterial infections are a serious problem in aquaculture since they can result in massive mortalities in farmed fish and invertebrates. Vibriosis is one of the most common diseases in marine aquaculture hatcheries and its causative agents are bacteria of the genus Vibrio mostly entering larval rearing water through live feeds, such as Artemia and rotifers. The pathogenic Vibrio alginolyticus strain V1, isolated during a vibriosis outbreak in cultured seabream, Sparus aurata, was used as host to isolate and characterize the two novel bacteriophages φSt2 and φGrn1 for phage therapy application. In vitro cell lysis experiments were performed against the bacterial host V. alginolyticus strain V1 but also against 12 presumptive Vibrio strains originating from live prey Artemia salina cultures indicating the strong lytic efficacy of the 2 phages. In vivo administration of the phage cocktail, φSt2 and φGrn1, at MOI = 100 directly on live prey A. salina cultures, led to a 93% decrease of presumptive Vibrio population after 4 h of treatment. Current study suggests that administration of φSt2 and φGrn1 to live preys could selectively reduce Vibrio load in fish hatcheries. Innovative and environmental friendly solutions against bacterial diseases are more than necessary and phage therapy is one of them. PMID:26950336

  13. A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast.

    PubMed

    Jaschke, Paul R; Lieberman, Erica K; Rodriguez, Jon; Sierra, Adrian; Endy, Drew

    2012-12-20

    The 5386 nucleotide bacteriophage øX174 genome has a complicated architecture that encodes 11 gene products via overlapping protein coding sequences spanning multiple reading frames. We designed a 6302 nucleotide synthetic surrogate, øX174.1, that fully separates all primary phage protein coding sequences along with cognate translation control elements. To specify øX174.1f, a decompressed genome the same length as wild type, we truncated the gene F coding sequence. We synthesized DNA encoding fragments of øX174.1f and used a combination of in vitro- and yeast-based assembly to produce yeast vectors encoding natural or designer bacteriophage genomes. We isolated clonal preparations of yeast plasmid DNA and transfected E. coli C strains. We recovered viable øX174 particles containing the øX174.1f genome from E. coli C strains that independently express full-length gene F. We expect that yeast can serve as a genomic 'drydock' within which to maintain and manipulate clonal lineages of other obligate lytic phage. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Novel N4 Bacteriophages Prevail in the Cold Biosphere.

    PubMed

    Zhan, Yuanchao; Buchan, Alison; Chen, Feng

    2015-08-01

    Coliphage N4 is a lytic bacteriophage discovered nearly half a century ago, and it was considered to be a "genetic orphan" until very recently, when several additional N4-like phages were discovered to infect nonenteric bacterial hosts. Interest in this genus of phages is stimulated by their unique genetic features and propagation strategies. To better understand the ecology of N4-like phages, we investigated the diversity and geographic patterns of N4-like phages by examining 56 Chesapeake Bay viral communities, using a PCR-clone library approach targeting a diagnostic N4-like DNA polymerase gene. Many new lineages of N4-like phages were found in the bay, and their genotypes shift from the lower to the upper bay. Interestingly, signature sequences of N4-like phages were recovered only from winter month samples, when water temperatures were below 4°C. An analysis of existing metagenomic libraries from various aquatic environments supports the hypothesis that N4-like phages are most prolific in colder waters. In particular, a high number of N4-like phages were detected in Organic Lake, Antarctica, a cold and hypersaline system. The prevalence of N4-like phages in the cold biosphere suggests these viruses possess yet-to-be-determined mechanisms that facilitate lytic infections under cold conditions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. M13 bacteriophage purification using poly(ionic liquids) as alternative separation matrices.

    PubMed

    Jacinto, Maria João; Patinha, David J S; Marrucho, Isabel M; Gonçalves, João; Willson, Richard C; Azevedo, Ana M; Aires-Barros, M Raquel

    2018-01-12

    M13 is a filamentous, non-lytic bacteriophage that infects Escherichia coli via the F pilus. Currently, phage M13 is widely used in phage display technology and bio-nanotechnology, and is considered a possible antibacterial therapeutic agent, among other applications. Conventional phage purification involves 5-7 operational steps, with high operational costs and significant product loss (approximately 60%). In this work, we propose a scalable purification process for M13 bacteriophage using a novel stationary phase based on a polymeric ionic liquid (PIL) with a positively charged backbone structure. Poly (1-vinyl-3-ethyl imidazolium bis(trifluoromethylsulfonyl) imide) - poly(VEIM-TFSI) predominantly acted as an anion exchanger under binding-elution mode. This revealed to be a rapid and simple method for the recovery of phage M13 with an overall separation yield of over 70% after a single downstream step. To the best of our knowledge, PILs have never been used as separation matrices for biological products and the results obtained, together with the large number of cations and anions available to prepare PILs, illustrate well the large potential of the proposed methodology. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Methods for Bacteriophage Preservation.

    PubMed

    Łobocka, Małgorzata B; Głowacka, Aleksandra; Golec, Piotr

    2018-01-01

    In a view of growing interest in bacteriophages as the most abundant members of microbial communities and as antibacterial agents, reliable methods for bacteriophage long-term preservation, that warrant the access to original or mutant stocks of unchanged properties, have become of crucial importance. A storage method that retains the infectivity of any kind of bacteriophage virions, either in a cell lysate or in a purified suspension, does not exist, due to the enormous diversity of bacteriophages and hence the differentiation of their sensitivity to various storage conditions. Here, we describe a method of long-term bacteriophage preservation, which is based on freezing of freshly infected susceptible bacteria at early stages of bacteriophage development. The infected bacteria release mature bacteriophages upon melting enabling the recovery of bacteriophage virions with high efficiency. The only limitation of this method is the sensitivity of bacteriophage host to deep-freezing, and thus it can be used for the long-term preservation of the vast majority of bacteriophages.

  17. Influence of a Bacteriophage on the Population Dynamics of Toxic Dinoflagellates by Lysis of Algicidal Bacteria▿†

    PubMed Central

    Cai, Wenwei; Wang, Hui; Tian, Yun; Chen, Feng; Zheng, Tianling

    2011-01-01

    A lytic phage (øZCW1) was isolated from an algicidal bacterium Pseudoalteromonas sp. strain SP48 that specifically kills the toxic dinoflagellate Alexandrium tamarense. We demonstrated that øZCW1 could trigger the growth of A. tamarense by inhibiting the growth of algicidal bacterium SP48. In contrast, the growth of A. tamarense was suppressed when cocultured with either SP48 or the øZCW1-resistant mutant of SP48. This study provides the first evidence of the indirect impact of bacteriophage on bloom-forming microalgae via phage lysis of alga-killing bacteria. PMID:21890676

  18. Paenibacillus larvae-Directed Bacteriophage HB10c2 and Its Application in American Foulbrood-Affected Honey Bee Larvae

    PubMed Central

    Beims, Hannes; Wittmann, Johannes; Bunk, Boyke; Spröer, Cathrin; Rohde, Christine; Günther, Gabi; Rohde, Manfred; von der Ohe, Werner

    2015-01-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members of the order Bacillales were analyzed for phage HB10c2-induced lysis. Breeding assays with infected bee larvae revealed that the in vitro phage activity observed was not predictive of the real-life scenario and therapeutic efficacy. On the basis of the disclosed P. larvae-bacteriophage coevolution, we discuss the future prospects of AFB phage therapy. PMID:26048941

  19. Molecular Characterization of a Novel Temperate Sinorhizobium Bacteriophage, ФLM21, Encoding DNA Methyltransferase with CcrM-Like Specificity

    PubMed Central

    Dziewit, Lukasz; Oscik, Karolina; Bartosik, Dariusz

    2014-01-01

    ABSTRACT ΦLM21 is a temperate phage isolated from Sinorhizobium sp. strain LM21 (Alphaproteobacteria). Genomic analysis and electron microscopy suggested that ΦLM21 is a member of the family Siphoviridae. The phage has an isometric head and a long noncontractile tail. The genome of ΦLM21 has 50,827 bp of linear double-stranded DNA encoding 72 putative proteins, including proteins responsible for the assembly of the phage particles, DNA packaging, transcription, replication, and lysis. Virion proteins were characterized using mass spectrometry, leading to the identification of the major capsid and tail components, tape measure, and a putative portal protein. We have confirmed the activity of two gene products, a lytic enzyme (a putative chitinase) and a DNA methyltransferase, sharing sequence specificity with the cell cycle-regulating methyltransferase (CcrM) of the bacterial host. Interestingly, the genome of Sinorhizobium phage ΦLM21 shows very limited similarity to other known phage genome sequences and is thus considered unique. IMPORTANCE Prophages are known to play an important role in the genomic diversification of bacteria via horizontal gene transfer. The influence of prophages on pathogenic bacteria is very well documented. However, our knowledge of the overall impact of prophages on the survival of their lysogenic, nonpathogenic bacterial hosts is still limited. In particular, information on prophages of the agronomically important Sinorhizobium species is scarce. In this study, we describe the isolation and molecular characterization of a novel temperate bacteriophage, ΦLM21, of Sinorhizobium sp. LM21. Since we have not found any similar sequences, we propose that this bacteriophage is a novel species. We conducted a functional analysis of selected proteins. We have demonstrated that the phage DNA methyltransferase has the same sequence specificity as the cell cycle-regulating methyltransferase CcrM of its host. We point out that this phenomenon of

  20. Bacteriophage phi11 lysin: physicochemical characterization and comparison with phage phi80a lysin

    USDA-ARS?s Scientific Manuscript database

    Phage lytic enzymes are promising antimicrobial agents. Lysins of phage phi11 (LysPhi11) and phi80a (LysPhi80a) can lyse (destroy) biofilms and cells of antibiotic-resistant strains of Staphylococcus aureus. Stability of enzymes is one of the parameters making their practical use possible. The obj...

  1. Biological characterization of v. Cholerae-specific bacteriophages isolated from water sources in Georgia.

    PubMed

    Elbakidze, T; Kokashvili, T; Janelidze, N; Porchkhidze, K; Koberidze, T; Tediashvili, M

    2015-03-01

    Vibrio cholerae, a widely spread bacterium in various marine, fresh, and brackish water environments, can cause a devastating diarrheal disease - cholera and also mild forms of gastroenteritis. Bacterial viruses are natural controllers of bacterial population density in water systems. The goal of this study was to isolate and characterize V. cholerae-specific bacteriophages occurring in the Georgian coastal zone of the Black Sea and inland water reservoirs in the eastern part of Georgia. During 2006-2009, 71 phages lytic to V. cholerae were collected from these aquatic environments. The phage isolation rate was varying from 8% to 15%, depending on the sampling season and site, and the abundance of host bacteria. The majority of phages specific to V. cholerae were collected from freshwater sources. The phage isolation showed seasonal character covering warm period -from April to September. Based on basic characteristics of primary phage isolates (lytic spectrum, virion morphology and DNA restriction profiles) 23 V. cholerae -specific phages were selected for series of consecutive screenings. Comparatively wide spectrum of lytic activity was revealed in case of 14 phages specific to V. cholerae O1, and one phage - VchBS3, active against non-O1 V. cholerae. Three phages active against V. cholerae non-O1 and six V. cholerae O1 -specific phages have been studied in detail for a number of biological features (stability in different solutions, temperature-, pH- and UV- sensitivity, influence of high ionic strength etc.), considered to be additional important characteristics for selection of phages with therapeutic potential.

  2. Biocontrol of Ralstonia solanacearum by Treatment with Lytic Bacteriophages ▿ †

    PubMed Central

    Fujiwara, Akiko; Fujisawa, Mariko; Hamasaki, Ryosuke; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

    2011-01-01

    Ralstonia solanacearum is a Gram-negative bacterium and the causative agent of bacterial wilt in many important crops. We treated R. solanacearum with three lytic phages: φRSA1, φRSB1, and φRSL1. Infection with φRSA1 and φRSB1, either alone or in combination with the other phages, resulted in a rapid decrease in the host bacterial cell density. Cells that were resistant to infection by these phages became evident approximately 30 h after phage addition to the culture. On the other hand, cells infected solely with φRSL1 in a batch culture were maintained at a lower cell density (1/3 of control) over a long period. Pretreatment of tomato seedlings with φRSL1 drastically limited penetration, growth, and movement of root-inoculated bacterial cells. All φRSL1-treated tomato plants showed no symptoms of wilting during the experimental period, whereas all untreated plants had wilted by 18 days postinfection. φRSL1 was shown to be relatively stable in soil, especially at higher temperatures (37 to 50°C). Active φRSL1 particles were recovered from the roots of treated plants and from soil 4 months postinfection. Based on these observations, we propose an alternative biocontrol method using a unique phage, such as φRSL1, instead of a phage cocktail with highly virulent phages. Using this method, φRSL1 killed some but not all bacterial cells. The coexistence of bacterial cells and the phage resulted in effective prevention of wilting. PMID:21498752

  3. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Dell, William B.; Agarwal, Pratul K.; Meilleur, Flora

    Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. Here, we determined the high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed “pre-bound” molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygenmore » activation. Our results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme–substrate complex.« less

  4. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase

    DOE PAGES

    O'Dell, William B.; Agarwal, Pratul K.; Meilleur, Flora

    2016-12-22

    Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. Here, we determined the high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed “pre-bound” molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygenmore » activation. Our results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme–substrate complex.« less

  5. Modular Approach to Select Bacteriophages Targeting Pseudomonas aeruginosa for Their Application to Children Suffering With Cystic Fibrosis

    PubMed Central

    Krylov, Victor; Shaburova, Olga; Pleteneva, Elena; Bourkaltseva, Maria; Krylov, Sergey; Kaplan, Alla; Chesnokova, Elena; Kulakov, Leonid; Magill, Damian; Polygach, Olga

    2016-01-01

    This review discusses the potential application of bacterial viruses (phage therapy) toward the eradication of antibiotic resistant Pseudomonas aeruginosa in children with cystic fibrosis (CF). In this regard, several potential relationships between bacteria and their bacteriophages are considered. The most important aspect that must be addressed with respect to phage therapy of bacterial infections in the lungs of CF patients is in ensuring the continuity of treatment in light of the continual occurrence of resistant bacteria. This depends on the ability to rapidly select phages exhibiting an enhanced spectrum of lytic activity among several well-studied phage groups of proven safety. We propose a modular based approach, utilizing both mono-species and hetero-species phage mixtures. With an approach involving the visual recognition of characteristics exhibited by phages of well-studied phage groups on lawns of the standard P. aeruginosa PAO1 strain, the simple and rapid enhancement of the lytic spectrum of cocktails is permitted, allowing the development of tailored preparations for patients capable of circumventing problems associated with phage resistant bacterial mutants. PMID:27790211

  6. Selection of Functional Quorum Sensing Systems by Lysogenic Bacteriophages in Pseudomonas aeruginosa

    PubMed Central

    Saucedo-Mora, Miguel A.; Castañeda-Tamez, Paulina; Cazares, Adrián; Pérez-Velázquez, Judith; Hense, Burkhard A.; Cazares, Daniel; Figueroa, Wendy; Carballo, Marco; Guarneros, Gabriel; Pérez-Eretza, Berenice; Cruz, Nelby; Nishiyama, Yoshito; Maeda, Toshinari; Belmont-Díaz, Javier A.; Wood, Thomas K.; García-Contreras, Rodolfo

    2017-01-01

    Quorum sensing (QS) in Pseudomonas aeruginosa coordinates the expression of virulence factors, some of which are used as public goods. Since their production is a cooperative behavior, it is susceptible to social cheating in which non-cooperative QS deficient mutants use the resources without investing in their production. Nevertheless, functional QS systems are abundant; hence, mechanisms regulating the amount of cheating should exist. Evidence that demonstrates a tight relationship between QS and the susceptibility of bacteria against the attack of lytic phages is increasing; nevertheless, the relationship between temperate phages and QS has been much less explored. Therefore, in this work, we studied the effects of having a functional QS system on the susceptibility to temperate bacteriophages and how this affects the bacterial and phage dynamics. We find that both experimentally and using mathematical models, that the lysogenic bacteriophages D3112 and JBD30 select QS-proficient P. aeruginosa phenotypes as compared to the QS-deficient mutants during competition experiments with mixed strain populations in vitro and in vivo in Galleria mellonella, in spite of the fact that both phages replicate better in the wild-type background. We show that this phenomenon restricts social cheating, and we propose that temperate phages may constitute an important selective pressure toward the conservation of bacterial QS. PMID:28912771

  7. Hyperexpansion of RNA Bacteriophage Diversity

    PubMed Central

    Krishnamurthy, Siddharth R.; Janowski, Andrew B.; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-01-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. PMID:27010970

  8. Marine Transducing Bacteriophage Attacking a Luminous Bacterium

    PubMed Central

    Keynan, Alex; Nealson, Kenneth; Sideropoulos, Henry; Hastings, J. W.

    1974-01-01

    The isolation and partial characterization of a marine bacteriophage attacking a strain of luminous bacteria is described, including some physical, biological, and genetic properties. It is a DNA phage of density of 1.52 with a long flexible tail and an apparently icosohedral head. With respect to stability in suspension, it has a rather specific requirement for the sodium ion in high concentration; it is further stabilized by the addition of calcium and magnesium ions. These same ions are likewise all required for both good plating efficiency and plaque uniformity. Although it goes through a typical lytic growth cycle (about 45 min), with a burst size of 100, and no stable lysogens have been isolated, it is nevertheless a transducing phage specifically for the tryptophan region, transducing several, but not all, independently isolated Trp− auxotrophs to protrophy. No other auxotrophs of a variety of amino acids were transduced by this phage to prototrophy. Phage infection does not change the normal expression of the luminescent system, and light remains at near normal levels until cell lysis occurs. Images PMID:16789143

  9. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial.

    PubMed

    Leitner, Lorenz; Sybesma, Wilbert; Chanishvili, Nina; Goderdzishvili, Marina; Chkhotua, Archil; Ujmajuridze, Aleksandre; Schneider, Marc P; Sartori, Andrea; Mehnert, Ulrich; Bachmann, Lucas M; Kessler, Thomas M

    2017-09-26

    Urinary tract infections (UTI) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming. Thus, well-tolerated, highly effective therapeutic alternatives are urgently needed. Although there is evidence indicating that bacteriophage therapy may be effective and safe for treating UTIs, the number of investigated patients is low and there is a lack of randomized controlled trials. This study is the first randomized, placebo-controlled, double-blind trial investigating bacteriophages in UTI treatment. Patients planned for transurethral resection of the prostate are screened for UTIs and enrolled if in urine culture eligible microorganisms ≥10 4 colony forming units/mL are found. Patients are randomized in a double-blind fashion to the 3 study treatment arms in a 1:1:1 ratio to receive either: a) bacteriophage (i.e. commercially available Pyo bacteriophage) solution, b) placebo solution, or c) antibiotic treatment according to the antibiotic sensitivity pattern. All treatments are intended for 7 days. No antibiotic prophylaxes will be given to the double-blinded treatment arms a) and b). As common practice, the Pyo bacteriophage cocktail is subjected to periodic adaptation cycles during the study. Urinalysis, urine culture, bladder and pain diary, and IPSS questionnaire will be completed prior to and at the end of treatment (i.e. after 7 days) or at withdrawal/drop out from the study. Patients with persistent UTIs will undergo antibiotic treatment according to antibiotic sensitivity pattern. Based on the high lytic activity and the potential of resistance optimization by direct adaptation of bacteriophages, and considering the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a very promising treatment option for UTIs. Thus, our randomized controlled trial investigating bacteriophages for treating UTIs will provide

  10. Structural requirements of choline derivatives for 'conversion' of pneumococcal amidase. A new single-step procedure for purification of this autolysin.

    PubMed

    Sanz, J M; Lopez, R; Garcia, J L

    1988-05-23

    Tertiary amines appear to be the minimal structure needed to convert in vitro the inactive form (E-form) of pneumococcal amidase to the catalytic active form (C-form). Diethylethanolamine was one of the compounds that converted the E-form, a finding that has been used successfully to develop an affinity chromatography system in DEAE-cellulose for the rapid and efficient purification of lytic enzymes of pneumococcus and its bacteriophages.

  11. Computational Determination of the Effects of Bacteriophage Bacteriophage Interactions in Human body.

    PubMed

    Mostafa, Marwa Mostafa; Nassef, Mohammad; Badr, Amr

    2017-10-19

    Chronic diseases are becoming more serious and widely spreading and this carries a heavy burden on doctors to deal with such patients. Although many of these diseases can be treated by bacteriophages, the situation is significantly dangerous in patients having concomitant more than one chronic disease, where conflicts between phages used in treating these diseases are very closer to happen. This research paper presents a method to detecting the Bacteriophage-Bacteriophage Interaction. This method is implemented based on Domain-Domain Interactions model and it was used to infer Domain-Domain Interactions between the bacteriophages injected in the human body at the same time. By testing the method over bacteriophages that are used to treat tuberculosis, salmonella and virulent E.coli, many interactions have been inferred and detected between these bacteriophages. Several effects were detected for the resulted interactions such as: playing a role in DNA repair such as non-homologous end joining, playing a role in DNA replication, playing a role in the interaction between the immune system and the tumor cells and playing a role in the stiff man syndrome. We revised all patents relating to bacteriophage bacteriophage interactions and phage therapy. The proposed method is developed to help doctors to realize the effect of simultaneously injecting different bacteriophages into the human body to treat different diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Comparison of Polymerase Subunits from Double-Stranded RNA Bacteriophages

    PubMed Central

    Yang, Hongyan; Makeyev, Eugene V.; Bamford, Dennis H.

    2001-01-01

    The family Cystoviridae comprises several bacteriophages with double-stranded RNA (dsRNA) genomes. We have previously purified the catalytic polymerase subunit (Pol) of one of the Cystoviridae members, bacteriophage φ6, and shown that the protein can catalyze RNA synthesis in vitro. In this reaction, both bacteriophage-specific and heterologous RNAs can serve as templates, but those containing 3′ termini from the φ6 minus strands are favored. This provides a molecular basis for the observation that only plus strands, not minus strands, are transcribed from φ6 dsRNA segments in vivo. To test whether such a regulatory mechanism is also found in other dsRNA viruses, we purified recombinant Pol subunits from the φ6-related bacteriophages φ8 and φ13 and assayed their polymerase activities in vitro. The enzymes catalyze template-dependent RNA synthesis using both single-stranded-RNA (ssRNA) and dsRNA templates. However, they differ from each other as well as from φ6 Pol in certain biochemical properties. Notably, each polymerase demonstrates a distinct preference for ssRNAs bearing short 3′-terminal sequences from the virus-specific minus strands. This suggests that, in addition to other factors, RNA transcription in Cystoviridae is controlled by the template specificity of the polymerase subunit. PMID:11602748

  13. Paenibacillus larvae-Directed Bacteriophage HB10c2 and Its Application in American Foulbrood-Affected Honey Bee Larvae.

    PubMed

    Beims, Hannes; Wittmann, Johannes; Bunk, Boyke; Spröer, Cathrin; Rohde, Christine; Günther, Gabi; Rohde, Manfred; von der Ohe, Werner; Steinert, Michael

    2015-08-15

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members of the order Bacillales were analyzed for phage HB10c2-induced lysis. Breeding assays with infected bee larvae revealed that the in vitro phage activity observed was not predictive of the real-life scenario and therapeutic efficacy. On the basis of the disclosed P. larvae-bacteriophage coevolution, we discuss the future prospects of AFB phage therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Therapies based on targeting EBV lytic replication for EBV-associated malignancies.

    PubMed

    Li, Hongde; Hu, Jianmin; Luo, Xiangjian; Bode, Ann M; Dong, Zigang; Cao, Ya

    2018-05-11

    In recent years, EBV lytic infection has been shown to significantly contribute to carcinogenesis. Thus, therapies aimed at targeting the EBV lytic cycle have been developed as novel strategies for treatment of EBV-associated diseases malignancies. In this review, focusing on the viral lytic proteins, we describe recent advances regarding the involvement of the EBV lytic cycle in carcinogenesis. Moreover, we further discuss two distinct EBV lytic cycle-targeted therapeutic strategies against EBV-induced malignancies: One of the strategies involves inhibition of the EBV lytic cycle by natural compounds known to have anti-EBV properties; another one is to intentionally induce EBV lytic replication in combination with nucleotide analogues. Recent advances in EBV lytic-based strategies are beginning to show promise in the treatment and/or prevention of EBV-related tumors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Isolation and characterization of bacteriophages specific to hydrogen-sulfide-producing bacteria.

    PubMed

    Gong, Chao; Heringa, Spencer; Singh, Randhir; Kim, Jinkyung; Jiang, Xiuping

    2013-01-01

    The objectives of this study were to isolate and characterize bacteriophages specific to hydrogen-sulfide-producing bacteria (SPB) from raw animal materials, and to develop a SPB-specific bacteriophage cocktail for rendering application. Meat, chicken offal, and feather samples collected from local supermarkets and rendering processing plants were used to isolate SPB (n = 142). Bacteriophages (n = 52) specific to SPB were isolated and purified from the above samples using 18 of those isolated SPB strains as hosts. The host ranges of bacteriophages against 5 selected SPB strains (Escherichia coli, Citrobacter freundii, and Hafnia alvei) were determined. Electron microscopy observation of 9 phages selected for the phage cocktail revealed that 6 phages belonged to the family of Siphoviridae and 3 belonged to the Myoviridae family. Restriction enzyme digestion analysis with endonuclease DraI detected 6 distinguished patterns among the 9 phages. Phage treatment prevented the growth of SPB for up to 10 h with multiplicity of infection ratios of 1, 10, 100, and 1000 in tryptic soy broth at 30 °C, and extended the lag phase of SPB growth for 2 h at 22 °C with multiplicities of infection of 10, 100, and 1000. These results suggest that the selected bacteriophage cocktail has a high potential for phage application to control SPB in raw animal materials destined for the rendering process.

  16. Bacteriophages That Lyse Mycobacteria and Corynebacteria, and Show Cytopathogenic Effect on Tissue Cultures of Renal Cells of Cercopithecus Aethiops

    PubMed Central

    Mankiewicz, E.

    1965-01-01

    Bacteriophages isolated from sputum and resection specimens of patients suffering from carcinoma of the lung were found to lyse corynebacteria and mycobacteria, and to produce a cytopathogenic effect on certain cells in tissue cultures. From the same and other patients with neoplastic disease, bacteria were isolated and described as coryne-mycobacteria because of bacteriological features they shared with both species. These bacteria, which either were sensitive to mycobacteriophages and corynebacteriophages or were phage-immune lysogenic bacteria, could be induced to produce lytic particles with phagolytic activity on corynebacteria and mycobacteria and a cytopathogenic effect on HeLa cells and on the renal cells of Cercopithecus. PMID:14218217

  17. Extending the Host Range of Bacteriophage Particles for DNA Transduction.

    PubMed

    Yosef, Ido; Goren, Moran G; Globus, Rea; Molshanski-Mor, Shahar; Qimron, Udi

    2017-06-01

    A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts. To extend the host range of T7 phage for DNA transduction, we have designed hybrid particles displaying various phage tail/tail fiber proteins. These modular particles were programmed to package and transduce DNA into hosts that restrict T7 phage propagation. We have also developed an innovative generalizable platform that considerably enhances DNA transfer into new hosts by artificially selecting tails that efficiently transduce DNA. In addition, we have demonstrated that the hybrid particles transduce desired DNA into desired hosts. This study thus critically extends and improves the ability of the particles to transduce DNA into novel phage-restrictive hosts, providing a platform for myriad applications that require this ability. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A comparative study on the activity of fungal lytic polysaccharide monooxygenases for the depolymerization of cellulose in soybean spent flakes.

    PubMed

    Pierce, Brian C; Agger, Jane Wittrup; Zhang, Zhenghong; Wichmann, Jesper; Meyer, Anne S

    2017-09-08

    Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes capable of the oxidative breakdown of polysaccharides. They are of industrial interest due to their ability to enhance the enzymatic depolymerization of recalcitrant substrates by glycoside hydrolases. In this paper, twenty-four lytic polysaccharide monooxygenases (LPMOs) expressed in Trichoderma reesei were evaluated for their ability to oxidize the complex polysaccharides in soybean spent flakes, an abundant and industrially relevant substrate. TrCel61A, a soy-polysaccharide-active AA9 LPMO from T. reesei, was used as a benchmark in this evaluation. In total, seven LPMOs demonstrated activity on pretreated soy spent flakes, with the products from enzymatic treatments evaluated using mass spectrometry and high performance anion exchange chromatography. The hydrolytic boosting effect of the top-performing enzymes was evaluated in combination with endoglucanase and beta-glucosidase. Two enzymes (TrCel61A and Aspte6) showed the ability to release more than 36% of the pretreated soy spent flake glucose - a greater than 75% increase over the same treatment without LPMO addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Interaction of Bacteriophages with the Immune System: Induction of Bacteriophage-Specific Antibodies.

    PubMed

    Dąbrowska, Krystyna

    2018-01-01

    In all cases when a bacteriophage makes direct contact with a mammalian organism, it may challenge the mammalian immunological system. Its major consequence is production of antibodies specific to the bacteriophage. Here we present protocols applicable in studies of bacteriophage ability to induce specific antibodies. The protocols have been divided into three parts: purification, immunization, and detection (ELISA).

  20. Different Expression Patterns of Genes from the Exo-Xis Region of Bacteriophage λ and Shiga Toxin-Converting Bacteriophage Ф24B following Infection or Prophage Induction in Escherichia coli

    PubMed Central

    Bloch, Sylwia; Nejman-Faleńczyk, Bożena; Dydecka, Aleksandra; Łoś, Joanna M.; Felczykowska, Agnieszka; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2014-01-01

    Lambdoid bacteriophages serve as useful models in microbiological and molecular studies on basic biological process. Moreover, this family of viruses plays an important role in pathogenesis of enterohemorrhagic Escherichia coli (EHEC) strains, as they are carriers of genes coding for Shiga toxins. Efficient expression of these genes requires lambdoid prophage induction and multiplication of the phage genome. Therefore, understanding the mechanisms regulating these processes appears essential for both basic knowledge and potential anti-EHEC applications. The exo-xis region, present in genomes of lambdoid bacteriophages, contains highly conserved genes of largely unknown functions. Recent report indicated that the Ea8.5 protein, encoded in this region, contains a newly discovered fused homeodomain/zinc-finger fold, suggesting its plausible regulatory role. Moreover, subsequent studies demonstrated that overexpression of the exo-xis region from a multicopy plasmid resulted in impaired lysogenization of E. coli and more effective induction of λ and Ф24B prophages. In this report, we demonstrate that after prophage induction, the increase in phage DNA content in the host cells is more efficient in E. coli bearing additional copies of the exo-xis region, while survival rate of such bacteria is lower, which corroborated previous observations. Importantly, by using quantitative real-time reverse transcription PCR, we have determined patterns of expressions of particular genes from this region. Unexpectedly, in both phages λ and Ф24B, these patterns were significantly different not only between conditions of the host cells infection by bacteriophages and prophage induction, but also between induction of prophages with various agents (mitomycin C and hydrogen peroxide). This may shed a new light on our understanding of regulation of lambdoid phage development, depending on the mode of lytic cycle initiation. PMID:25310402

  1. Encapsulation Strategies of Bacteriophage (Felix O1) for Oral Therapeutic Application.

    PubMed

    Islam, Golam S; Wang, Qi; Sabour, Parviz M

    2018-01-01

    Due to emerging antibiotic-resistant strains among the pathogens, a variety of strategies, including therapeutic application of bacteriophages, have been suggested as a possible alternative to antibiotics in food animal production. As pathogen-specific biocontrol agents, bacteriophages are being studied intensively. Primarily their applications in the food industry and animal production have been recognized in the USA and Europe, for pathogens including Salmonella, Campylobacter, Escherichia coli, and Listeria. However, the viability of orally administered phage may rapidly reduce under the harsh acidic conditions of the stomach, presence of enzymes and bile. It is evident that bacteriophages, intended for phage therapy by oral administration, require efficient protection from the acidic environment of the stomach and should remain active in the animal's gastrointestinal tract where pathogen colonizes. Encapsulation of phages by spray drying or extrusion methods can protect phages from the simulated hostile gut conditions and help controlled release of phages to the digestive system when appropriate formulation strategy is implemented.

  2. Discovery and characterization of a new family of lytic polysaccharide monooxygenases.

    PubMed

    Hemsworth, Glyn R; Henrissat, Bernard; Davies, Gideon J; Walton, Paul H

    2014-02-01

    Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes capable of oxidizing recalcitrant polysaccharides. They are attracting considerable attention owing to their potential use in biomass conversion, notably in the production of biofuels. Previous studies have identified two discrete sequence-based families of these enzymes termed AA9 (formerly GH61) and AA10 (formerly CBM33). Here, we report the discovery of a third family of LPMOs. Using a chitin-degrading exemplar from Aspergillus oryzae, we show that the three-dimensional structure of the enzyme shares some features of the previous two classes of LPMOs, including a copper active center featuring the 'histidine brace' active site, but is distinct in terms of its active site details and its EPR spectroscopy. The newly characterized AA11 family expands the LPMO clan, potentially broadening both the range of potential substrates and the types of reactive copper-oxygen species formed at the active site of LPMOs.

  3. Cloning and Expression Analysis of Genes Encoding Lytic Endopeptidases L1 and L5 from Lysobacter sp. Strain XL1

    PubMed Central

    Lapteva, Y. S.; Zolova, O. E.; Shlyapnikov, M. G.; Tsfasman, I. M.; Muranova, T. A.; Stepnaya, O. A.; Kulaev, I. S.

    2012-01-01

    Lytic enzymes are the group of hydrolases that break down structural polymers of the cell walls of various microorganisms. In this work, we determined the nucleotide sequences of the Lysobacter sp. strain XL1 alpA and alpB genes, which code for, respectively, secreted lytic endopeptidases L1 (AlpA) and L5 (AlpB). In silico analysis of their amino acid sequences showed these endopeptidases to be homologous proteins synthesized as precursors similar in structural organization: the mature enzyme sequence is preceded by an N-terminal signal peptide and a pro region. On the basis of phylogenetic analysis, endopeptidases AlpA and AlpB were assigned to the S1E family [clan PA(S)] of serine peptidases. Expression of the alpA and alpB open reading frames (ORFs) in Escherichia coli confirmed that they code for functionally active lytic enzymes. Each ORF was predicted to have the Shine-Dalgarno sequence located at a canonical distance from the start codon and a potential Rho-independent transcription terminator immediately after the stop codon. The alpA and alpB mRNAs were experimentally found to be monocistronic; transcription start points were determined for both mRNAs. The synthesis of the alpA and alpB mRNAs was shown to occur predominantly in the late logarithmic growth phase. The amount of alpA mRNA in cells of Lysobacter sp. strain XL1 was much higher, which correlates with greater production of endopeptidase L1 than of L5. PMID:22865082

  4. Cloning and expression analysis of genes encoding lytic endopeptidases L1 and L5 from Lysobacter sp. strain XL1.

    PubMed

    Lapteva, Y S; Zolova, O E; Shlyapnikov, M G; Tsfasman, I M; Muranova, T A; Stepnaya, O A; Kulaev, I S; Granovsky, I E

    2012-10-01

    Lytic enzymes are the group of hydrolases that break down structural polymers of the cell walls of various microorganisms. In this work, we determined the nucleotide sequences of the Lysobacter sp. strain XL1 alpA and alpB genes, which code for, respectively, secreted lytic endopeptidases L1 (AlpA) and L5 (AlpB). In silico analysis of their amino acid sequences showed these endopeptidases to be homologous proteins synthesized as precursors similar in structural organization: the mature enzyme sequence is preceded by an N-terminal signal peptide and a pro region. On the basis of phylogenetic analysis, endopeptidases AlpA and AlpB were assigned to the S1E family [clan PA(S)] of serine peptidases. Expression of the alpA and alpB open reading frames (ORFs) in Escherichia coli confirmed that they code for functionally active lytic enzymes. Each ORF was predicted to have the Shine-Dalgarno sequence located at a canonical distance from the start codon and a potential Rho-independent transcription terminator immediately after the stop codon. The alpA and alpB mRNAs were experimentally found to be monocistronic; transcription start points were determined for both mRNAs. The synthesis of the alpA and alpB mRNAs was shown to occur predominantly in the late logarithmic growth phase. The amount of alpA mRNA in cells of Lysobacter sp. strain XL1 was much higher, which correlates with greater production of endopeptidase L1 than of L5.

  5. Bacteriophages Infecting Propionibacterium acnes

    PubMed Central

    2013-01-01

    Viruses specifically infecting bacteria, or bacteriophages, are the most common biological entity in the biosphere. As such, they greatly influence bacteria, both in terms of enhancing their virulence and in terms of killing them. Since the first identification of bacteriophages in the beginning of the 20th century, researchers have been fascinated by these microorganisms and their ability to eradicate bacteria. In this review, we will cover the history of the Propionibacterium acnes bacteriophage research and point out how bacteriophage research has been an important part of the research on P. acnes itself. We will further discuss recent findings from phage genome sequencing and the identification of phage sequence signatures in clustered regularly interspaced short palindromic repeats (CRISPRs). Finally, the potential to use P. acnes bacteriophages as a therapeutic strategy to combat P. acnes-associated diseases will be discussed. PMID:23691509

  6. Co-option of bacteriophage lysozyme genes by bivalve genomes.

    PubMed

    Ren, Qian; Wang, Chunyang; Jin, Min; Lan, Jiangfeng; Ye, Ting; Hui, Kaimin; Tan, Jingmin; Wang, Zheng; Wyckoff, Gerald J; Wang, Wen; Han, Guan-Zhu

    2017-01-01

    Eukaryotes have occasionally acquired genetic material through horizontal gene transfer (HGT). However, little is known about the evolutionary and functional significance of such acquisitions. Lysozymes are ubiquitous enzymes that degrade bacterial cell walls. Here, we provide evidence that two subclasses of bivalves (Heterodonta and Palaeoheterodonta) acquired a lysozyme gene via HGT, building on earlier findings. Phylogenetic analyses place the bivalve lysozyme genes within the clade of bacteriophage lysozyme genes, indicating that the bivalves acquired the phage-type lysozyme genes from bacteriophages, either directly or through intermediate hosts. These bivalve lysozyme genes underwent dramatic structural changes after their co-option, including intron gain and fusion with other genes. Moreover, evidence suggests that recurrent gene duplication occurred in the bivalve lysozyme genes. Finally, we show the co-opted lysozymes exhibit a capacity for antibacterial action, potentially augmenting the immune function of related bivalves. This represents an intriguing evolutionary strategy in the eukaryote-microbe arms race, in which the genetic materials of bacteriophages are co-opted by eukaryotes, and then used by eukaryotes to combat bacteria, using a shared weapon against a common enemy. © 2017 The Authors.

  7. BVPaP-3, a T7-like lytic phage of Pseudomonas aeruginosa: its isolation and characterisation.

    PubMed

    Ahiwale, Sangeeta; Prakash, Divya; Gajbhiye, Milind; Jagdale, Smita; Patil, Nita; Kapadnis, Balu

    2012-04-01

    The increasing emergence of antibiotic-resistant bacteria has produced a growing interest among scientists in bacteriophages as alternative antimicrobial agents. This article reports a lytic phage against an antibiotic-resistant strain of Pseudomonas aeruginosa. Phage BVPaP-3 is a member of the Podoviridae family and morphologically similar to the T7-like phage gh-1. The phage has a hexagonal head of 58-59 nm in diameter and a short tail of 10 × 8 nm. It is stable at a wide range of pH (6-10) and temperatures (4-40°C). Its optimal growth temperature is 37°C and the adsorption rate constant is 1.19 × 10(-9). Latent and eclipse periods are 20 and 15 min, respectively, and the burst size is 44 after 35 min at 37°C. The phage has a DNA size of 41.31 kb and a proteome of 11 proteins. The major protein is 33 kDa in size.

  8. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex.

    PubMed

    Golshahi, Laleh; Seed, Kimberley D; Dennis, Jonathan J; Finlay, Warren H

    2008-12-01

    Antibiotic-resistant bacterial infections have renewed interest in finding substitute methods of treatment. The purpose of the present in vitro study was to investigate the possibility of respiratory delivery of a Burkholderia cepacia complex (BCC) bacteriophage by nebulized aerosol administration. Bacteriophages in isotonic saline were aerosolized with Pari LC star and eFlow nebulizers, at titers with mean value (standard deviation) of 2.15 x 10(8) (1.63 x 10(8)) plaque-forming unit (PFU)/mL in 2.5-mL nebulizer fills. The breathing pattern of an adult was simulated using a pulmonary waveform generator. During breath simulation, the size distributions of the nebulized aerosol were measured using phase doppler anemometry (PDA). Efficiency of nebulizer delivery was subsequently determined by collection of aerosol on low resistance filters and measurement of bacteriophage titers. These filter titers were used as input data to a mathematical lung deposition model to predict regional deposition of bacteriophages in the lung and initial bacteriophage titers in the liquid surface layer of each conducting airway generation. The results suggest that BCC bacteriophages can be nebulized successfully within a reasonable delivery time and predicted titers in the lung indicate that this method may hold potential for treatment of bacterial lung infections common among cystic fibrosis patients.

  9. TF1, the bacteriophage SPO1-encoded type II DNA-binding protein, is essential for viral multiplication.

    PubMed

    Sayre, M H; Geiduschek, E P

    1988-09-01

    The lytic Bacillus subtilis bacteriophage SPO1 encodes an abundant, 99-amino-acid type II DNA-binding protein, transcription factor 1 (TF1). TF1 is special in this family of procaryotic chromatin-forming proteins in its preference for hydroxymethyluracil-containing DNA, such as SPO1 DNA, and in binding with high affinity to specific sites in the SPO1 chromosome. We constructed recessive null alleles of the TF1 gene and introduced them into SPO1 chromosomes. Segregation analysis with partially diploid phage heterozygous for TF1 showed that phage bearing only these null alleles was inviable. Deletion of the nine C-proximal amino acids of TF1 prohibited phage multiplication in vivo and abolished its site-specific DNA-binding activity in vitro.

  10. Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens.

    PubMed

    Sillankorva, Sanna; Neubauer, Peter; Azeredo, Joana

    2008-10-27

    Despite the proven relevance of Pseudomonas fluorescens as a spoilage microorganism in milk, fresh meats and refrigerated food products and the recognized potential of bacteriophages as sanitation agents, so far no phages specific for P. fluorescens isolates from dairy industry have been closely characterized in view of their lytic efficiency. Here we describe the isolation and characterization of a lytic phage capable to infect a variety of P. fluorescens strains isolated from Portuguese and United States dairy industries. Several phages were isolated which showed a different host spectrum and efficiency of lysis. One of the phages, phage phiIBB-PF7A, was studied in detail due to its efficient lysis of a wide spectrum of P. fluorescens strains and ribotypes. Phage phiIBB-PF7A with a head diameter of about 63 nm and a tail size of about 13 x 8 nm belongs morphologically to the Podoviridae family and resembles a typical T7-like phage, as analyzed by transmission electron microscopy (TEM). The phage growth cycle with a detected latent period of 15 min, an eclipse period of 10 min, a burst size of 153 plaque forming units per infected cell, its genome size of approximately 42 kbp, and the size and N-terminal sequence of one of the protein bands, which gave similarity to the major capsid protein 10A, are consistent with this classification. The isolated T7-like phage, phage phiIBB-PF7A, is fast and efficient in lysing different P. fluorescens strains and may be a good candidate to be used as a sanitation agent to control the prevalence of spoilage causing P. fluorescens strains in dairy and food related environments.

  11. Detection of Escherichia coli in drinking water using T7 bacteriophage-conjugated magnetic probe.

    PubMed

    Chen, Juhong; Alcaine, Samuel D; Jiang, Ziwen; Rotello, Vincent M; Nugen, Sam R

    2015-09-01

    In this study, we demonstrate a bacteriophage (phage)-based magnetic separation scheme for the rapid detection of Escherichia coli (E. coli) in drinking water. T7 phage is a lytic phage with a broad host range specificity for E. coli. Our scheme was as follows: (1) T7 bacteriophage-conjugated magnetic beads were used to capture and separate E. coli BL21 from drinking water; (2) subsequent phage-mediated lysis was used to release endemic β-galactosidase (β-gal) from the bound bacterial cells; (3) the release of β-gal was detected using chlorophenol red-β-d-galactopyranoside (CRPG), a colorimetric substrate which changes from yellow to red in the presence of β-gal. Using this strategy, we were able to detect E. coli at a concentration of 1 × 10(4) CFU·mL(-1) within 2.5 h. The specificity of the proposed magnetic probes toward E. coli was demonstrated against a background of competing bacteria. By incorporating a pre-enrichment step in Luria-Bertani (LB) broth supplemented with isopropyl β-d-thiogalactopyranoside (IPTG), we were able to detect 10 CFU·mL(-1) in drinking water after 6 h of pre-enrichment. The colorimetric change can be determined either by visual observation or with a reader, allowing for a simple, rapid quantification of E. coli in resource-limited settings.

  12. Bacteriophage in polar inland waters

    USGS Publications Warehouse

    Säwström, Christin; Lisle, John; Anesio, A.M.; Priscu, John C.; Laybourn-Parry, J.

    2008-01-01

    Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in polar inland waters are scant but the indications are that they play an active and dynamic role in these microbially dominated polar ecosystems. This review summarises what is presently known about polar inland bacteriophages, ranging from subglacial Antarctic lakes to glacial ecosystems in the Arctic. The review examines interactions between bacteriophages and their hosts and the abiotic and biotic variables that influence these interactions in polar inland waters. In addition, we consider the proportion of the bacteria in Arctic and Antarctic lake and glacial waters that are lysogenic and visibly infected with viruses. We assess the relevance of bacteriophages in the microbial loop in the extreme environments of Antarctic and Arctic inland waters with an emphasis on carbon cycling.

  13. Nanoscale bacteriophage biosensors beyond phage display.

    PubMed

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology.

  14. Nanoscale bacteriophage biosensors beyond phage display

    PubMed Central

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology. PMID:24143096

  15. Discovery and characterization of a new family of lytic polysaccharide mono-oxygenases

    PubMed Central

    Hemsworth, Glyn R.; Henrissat, Bernard; Davies, Gideon J.; Walton, Paul H.

    2014-01-01

    Lytic polysaccharide mono-oxygenases (LPMOs) are a recently discovered class of enzymes capable of oxidizing recalcitrant polysaccharides. They currently attract much attention due to their potential use in biomass conversion, notably in the production of biofuels. Past work has identified two discrete sequence-based families of these enzymes termed AA9 (formerly GH61) and AA10 (formerly CBM33). Here we report the discovery of a third family of LPMOs. Using a chitin-degrading exemplar from Aspergillus oryzae, we show that the 3-D structure of the enzyme shares some features of the previous two classes of LPMOs, including a copper active centre featuring the histidine brace active site, but is distinct in terms of its active site details and its EPR spectroscopy. The new AA11 family expands the LPMO clan with the potential to broaden both the range of potential substrates and the types of reactive copper-oxygen species formed at the active site of LPMOs. PMID:24362702

  16. Differential bacteriophage mortality on exposure to copper.

    PubMed

    Li, Jinyu; Dennehy, John J

    2011-10-01

    Many studies report that copper can be used to control microbial growth, including that of viruses. We determined the rates of copper-mediated inactivation for a wide range of bacteriophages. We used two methods to test the effect of copper on bacteriophage survival. One method involved placing small volumes of bacteriophage lysate on copper and stainless steel coupons. Following exposure, metal coupons were rinsed with lysogeny broth, and the resulting fluid was serially diluted and plated on agar with the corresponding bacterial host. The second method involved adding copper sulfate (CuSO(4)) to bacteriophage lysates to a final concentration of 5 mM. Aliquots were removed from the mixture, serially diluted, and plated with the appropriate bacterial host. Significant mortality was observed among the double-stranded RNA (dsRNA) bacteriophages Φ6 and Φ8, the single-stranded RNA (ssRNA) bacteriophage PP7, the ssDNA bacteriophage ΦX174, and the dsDNA bacteriophage PM2. However, the dsDNA bacteriophages PRD1, T4, and λ were relatively unaffected by copper. Interestingly, lipid-containing bacteriophages were most susceptible to copper toxicity. In addition, in the first experimental method, the pattern of bacteriophage Φ6 survival over time showed a plateau in mortality after lysates dried out. This finding suggests that copper's effect on bacteriophage is mediated by the presence of water.

  17. Novel “Superspreader” Bacteriophages Promote Horizontal Gene Transfer by Transformation

    PubMed Central

    Bliskovsky, Valery V.; Malagon, Francisco; Baker, James D.; Prince, Jeffrey S.; Klaus, James S.; Adhya, Sankar L.

    2017-01-01

    ABSTRACT Bacteriophages infect an estimated 1023 to 1025 bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub “superspreaders,” releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. PMID:28096488

  18. Action of lytic polysaccharide monooxygenase on plant tissue is governed by cellular type.

    PubMed

    Chabbert, Brigitte; Habrant, Anouck; Herbaut, Mickaël; Foulon, Laurence; Aguié-Béghin, Véronique; Garajova, Sona; Grisel, Sacha; Bennati-Granier, Chloé; Gimbert-Herpoël, Isabelle; Jamme, Frédéric; Réfrégiers, Matthieu; Sandt, Christophe; Berrin, Jean-Guy; Paës, Gabriel

    2017-12-19

    Lignocellulosic biomass bioconversion is hampered by the structural and chemical complexity of the network created by cellulose, hemicellulose and lignin. Biological conversion of lignocellulose involves synergistic action of a large array of enzymes including the recently discovered lytic polysaccharide monooxygenases (LPMOs) that perform oxidative cleavage of cellulose. Using in situ imaging by synchrotron UV fluorescence, we have shown that the addition of AA9 LPMO (from Podospora anserina) to cellulases cocktail improves the progression of enzymes in delignified Miscanthus x giganteus as observed at tissular levels. In situ chemical monitoring of cell wall modifications performed by synchrotron infrared spectroscopy during enzymatic hydrolysis demonstrated that the boosting effect of the AA9 LPMO was dependent on the cellular type indicating contrasted recalcitrance levels in plant tissues. Our study provides a useful strategy for investigating enzyme dynamics and activity in plant cell wall to improve enzymatic cocktails aimed at expanding lignocelluloses biorefinery.

  19. A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes.

    PubMed

    Vidal-Melgosa, Silvia; Pedersen, Henriette L; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G T

    2015-04-03

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. A New Versatile Microarray-based Method for High Throughput Screening of Carbohydrate-active Enzymes*

    PubMed Central

    Vidal-Melgosa, Silvia; Pedersen, Henriette L.; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B.; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G. T.

    2015-01-01

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths. PMID:25657012

  1. Lytic agents, cell permeability, and monolayer penetrability.

    PubMed

    Salton, M R

    1968-07-01

    Cell lysis induced by lytic agents is the terminal phase of a series of events leading to membrane disorganization and breadkdown with the release of cellular macromolecules. Permeability changes following exposure to lytic systems may range from selective effects on ion fluxes to gross membrane damage and cell leakage. Lysis can be conceived as an interfacial phenomenon, and the action of surface-active agents on erythrocytes has provided a model in which to investigate relationships between hemolysis and chemical structure, ionic charge, surface tension lowering, and ability to penetrate monolayers of membrane lipid components. Evidence suggests that lysis follows the attainment of surface pressures exceeding a "critical collapse" level and could involve membrane cholesterol or phospholipid. Similarities of chemical composition of membranes from various cell types could account for lytic responses observed on interaction with surface-active agents. Cell membranes usually contain about 20-30 % lipid and 50-75 % protein. One or two major phospholipids are present in all cell membranes, but sterols are not detectable in bacterial membranes other than those of the Mycoplasma group. The rigid cell wall in bacteria has an important bearing on their response to treatment with lytic agents. Removal of the wall renders the protoplast membrane sensitive to rapid lysis with surfactants. Isolated membranes of erythrocytes and bacteria are rapidly dissociated by surface-active agents. Products of dissociation of bacterial membranes have uniform behavior in the ultracentrifuge (sedimentation coefficients 2-3S). Dissociation of membrane proteins from lipids and the isolation and characterization of these proteins will provide a basis for investigating the specificity of interaction of lytic agents with biomembranes.

  2. [Strategies to prevent bacteriophage infection in industrial fermentation].

    PubMed

    Shen, Juntao; Xiu, Zhilong

    2017-12-25

    During the development of bacteria-based biotechnology, bacteriophage infection is one of the constant threats and troublesome problems in industrial fermentation. The core of puzzled bacteriophage infection is a complex arm race of coevolution between bacteriophages and their hosts where bacteriophage has evolved lots of escaped ways against bacterial resistance mechanisms. The strategies of rationally designing factories and rotation of starter strains could reduce the risk of bacteriophage infection, but often fail to avoid. Genetic engineering to increase bacterial resistance is one of the strategies to prevent bacteriophage infection and more knowledge about bacteriophage and its host is needed. Recently, there are some new findings on bacterial resistance mechanisms which provide new solutions for bacteriophage infection. For example, it is possible for a rational design of resistant strains to use CRISPR-Cas based technologies just based on the sequences of bacteriophages. Moreover, it is also possible to avoid the escape of bacteriophage by iteratively building up resistance levels to generate robust industrial starter cultures. Quorum-sensing signal molecules have recently been proved to be involved in the interactions between bacteria and bacteriophages, which provides a possible way to solve bacteriophage infection from a population level. Finally, the rapid development of bacteriophage genome editing and synthetic biology will bring some new cues for preventing bacteriophage infection in industrial fermentation.

  3. Protist predation can select for bacteria with lowered susceptibility to infection by lytic phages.

    PubMed

    Örmälä-Odegrip, Anni-Maria; Ojala, Ville; Hiltunen, Teppo; Zhang, Ji; Bamford, Jaana K H; Laakso, Jouni

    2015-05-07

    Consumer-resource interactions constitute one of the most common types of interspecific antagonistic interaction. In natural communities, complex species interactions are likely to affect the outcomes of reciprocal co-evolution between consumers and their resource species. Individuals face multiple enemies simultaneously, and consequently they need to adapt to several different types of enemy pressures. In this study, we assessed how protist predation affects the susceptibility of bacterial populations to infection by viral parasites, and whether there is an associated cost of defence on the competitive ability of the bacteria. As a study system we used Serratia marcescens and its lytic bacteriophage, along with two bacteriovorous protists with distinct feeding modes: Tetrahymena thermophila (particle feeder) and Acanthamoeba castellanii (surface feeder). The results were further confirmed with another study system with Pseudomonas and Tetrahymena thermophila. We found that selection by protist predators lowered the susceptibility to infections by lytic phages in Serratia and Pseudomonas. In Serratia, concurrent selection by phages and protists led to lowered susceptibility to phage infections and this effect was independent from whether the bacteria shared a co-evolutionary history with the phage population or not. Bacteria that had evolved with phages were overall more susceptible to phage infection (compared to bacteria with history with multiple enemies) but they were less vulnerable to the phages they had co-evolved with than ancestral phages. Selection by bacterial enemies was costly in general and was seen as a lowered fitness in absence of phages, measured as a biomass yield. Our results show the significance of multiple species interactions on pairwise consumer-resource interaction, and suggest potential overlap in defending against predatory and parasitic enemies in microbial consumer-resource communities. Ultimately, our results could have larger scale

  4. Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods.

    PubMed

    Lone, Ayesha; Anany, Hany; Hakeem, Mohammed; Aguis, Louise; Avdjian, Anne-Claire; Bouget, Marina; Atashi, Arash; Brovko, Luba; Rochefort, Dominic; Griffiths, Mansel W

    2016-01-18

    Due to lack of adequate control methods to prevent contamination in fresh produce and growing consumer demand for natural products, the use of bacteriophages has emerged as a promising approach to enhance safety of these foods. This study sought to control Listeria monocytogenes in cantaloupes and RTE meat and Escherichia coli O104:H4 in alfalfa seeds and sprouts under different storage conditions by using specific lytic bacteriophage cocktails applied either free or immobilized. Bacteriophage cocktails were introduced into prototypes of packaging materials using different techniques: i) immobilizing on positively charged modified cellulose membranes, ii) impregnating paper with bacteriophage suspension, and iii) encapsulating in alginate beads followed by application of beads onto the paper. Phage-treated and non-treated samples were stored for various times and at temperatures of 4°C, 12°C or 25°C. In cantaloupe, when free phage cocktail was added, L. monocytogenes counts dropped below the detection limit of the plating technique (<1 log CFU/g) after 5 days of storage at both 4°C and 12°C. However, at 25°C, counts below the detection limit were observed after 3 and 6h and a 2-log CFU/g reduction in cell numbers was seen after 24h. For the immobilized Listeria phage cocktail, around 1-log CFU/g reduction in the Listeria count was observed by the end of the storage period for all tested storage temperatures. For the alfalfa seeds and sprouts, regardless of the type of phage application technique (spraying of free phage suspension, bringing in contact with bacteriophage-based materials (paper coated with encapsulated bacteriophage or impregnated with bacteriophage suspension)), the count of E. coli O104:H4 was below the detection limit (<1 log CFU/g) after 1h in seeds and about a 1-log cycle reduction in E. coli count was observed on the germinated sprouts by day 5. In ready-to-eat (RTE) meat, LISTEX™ P100, a commercial phage product, was able to

  5. Incorporation of T4 bacteriophage in electrospun fibres.

    PubMed

    Korehei, R; Kadla, J

    2013-05-01

    Antibacterial food packaging materials, such as bacteriophage-activated electrospun fibrous mats, may address concerns triggered by waves of bacterial food contamination. To address this, we investigated several efficient methods for incorporating T4 bacteriophage into electrospun fibrous mats. The incorporation of T4 bacteriophage using simple suspension electrospinning led to more than five orders of magnitude decrease in bacteriophage activity. To better maintain bacteriophage viability, emulsion electrospinning was developed where the T4 bacteriophage was pre-encapsulated in an alginate reservoir via an emulsification process and subsequently electrospun into fibres. This resulted in an increase in bacteriophage viability, but there was still two orders of magnitude drop in activity. Using a coaxial electrospinning process, full bacteriophage activity could be maintained. In this process, a core/shell fibre structure was formed with the T4 bacteriophage being directly incorporated into the fibre core. The core/shell fibre encapsulated bacteriophage exhibited full bacteriophage viability after storing for several weeks at +4°C. Coaxial electrospinning was shown to be capable of encapsulating bacteriophages with high loading capacity, high viability and long storage time. These results are significant in the context of controlling and preventing bacterial infections in perishable foods during storage. © 2013 The Society for Applied Microbiology.

  6. M13 Bacteriophage Based Protein Sensors

    NASA Astrophysics Data System (ADS)

    Lee, Ju Hun

    Despite significant progress in biotechnology and biosensing, early detection and disease diagnosis remains a critical issue for improving patient survival rates and well-being. Many of the typical detection schemes currently used possess issues such as low sensitivity and accuracy and are also time consuming to run and expensive. In addition, multiplexed detection remains difficult to achieve. Therefore, developing advanced approaches for reliable, simple, quantitative analysis of multiple markers in solution that also are highly sensitive are still in demand. In recent years, much of the research has primarily focused on improving two key components of biosensors: the bio-recognition agent (bio-receptor) and the transducer. Particular bio-receptors that have been used include antibodies, aptamers, molecular imprinted polymers, and small affinity peptides. In terms of transducing agents, nanomaterials have been considered as attractive candidates due to their inherent nanoscale size, durability and unique chemical and physical properties. The key focus of this thesis is the design of a protein detection and identification system that is based on chemically engineered M13 bacteriophage coupled with nanomaterials. The first chapter provides an introduction of biosensors and M13 bacteriophage in general, where the advantages of each are provided. In chapter 2, an efficient and enzyme-free sensor is demonstrated from modified M13 bacteriophage to generate highly sensitive colorimetric signals from gold nanocrystals. In chapter 3, DNA conjugated M13 were used to enable facile and rapid detection of antigens in solution that also provides modalities for identification. Lastly, high DNA loadings per phage was achieved via hydrozone chemistry and these were applied in conjunction with Raman active DNA-gold/silver core/shell nanoparticles toward highly sensitive SERS sensing.

  7. Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria.

    PubMed

    Nakonieczna, A; Cooper, C J; Gryko, R

    2015-09-01

    Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage-derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram-positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors. © 2015 The Society for Applied Microbiology.

  8. Murein Lytic Enzyme TgaA of Bifidobacterium bifidum MIMBb75 Modulates Dendritic Cell Maturation through Its Cysteine- and Histidine-Dependent Amidohydrolase/Peptidase (CHAP) Amidase Domain

    PubMed Central

    Zanoni, Ivan; Balzaretti, Silvia; Miriani, Matteo; Taverniti, Valentina; De Noni, Ivano; Presti, Ilaria; Stuknyte, Milda; Scarafoni, Alessio; Arioli, Stefania; Iametti, Stefania; Bonomi, Francesco; Mora, Diego; Karp, Matti; Granucci, Francesca

    2014-01-01

    Bifidobacteria are Gram-positive inhabitants of the human gastrointestinal tract that have evolved close interaction with their host and especially with the host's immune system. The molecular mechanisms underlying such interactions, however, are largely unidentified. In this study, we investigated the immunomodulatory potential of Bifidobacterium bifidum MIMBb75, a bacterium of human intestinal origin commercially used as a probiotic. Particularly, we focused our attention on TgaA, a protein expressed on the outer surface of MIMBb75's cells and homologous to other known bacterial immunoactive proteins. TgaA is a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP). We ran immunological experiments stimulating dendritic cells (DCs) with the B. bifidum MIMBb75 and TgaA, with the result that both the bacterium and the protein activated DCs and triggered interleukin-2 (IL-2) production. In addition, we observed that the heterologous expression of TgaA in Bifidobacterium longum transferred to the bacterium the ability to induce IL-2. Subsequently, immunological experiments performed using two purified recombinant proteins corresponding to the single domains LT and CHAP demonstrated that the CHAP domain is the immune-reactive region of TgaA. Finally, we also showed that TgaA-dependent activation of DCs requires the protein CD14, marginally involves TRIF, and is independent of Toll-like receptor 4 (TLR4) and MyD88. In conclusion, our study suggests that the bacterial CHAP domain is a novel microbe-associated molecular pattern actively participating in the cross talk mechanisms between bifidobacteria and the host's immune system. PMID:24814791

  9. Purification of bacteriophage M13 by anion exchange chromatography.

    PubMed

    Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2010-07-01

    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.

  10. In vitro atrazine-exposure inhibits human natural killer cell lytic granule release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Alexander M.; Brundage, Kathleen M.; Center for Immunopathology and Microbial Pathogenesis, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506

    2007-06-01

    The herbicide atrazine is a known immunotoxicant and an inhibitor of human natural killer (NK) cell lytic function. The precise changes in NK cell lytic function following atrazine exposure have not been fully elucidated. The current study identifies the point at which atrazine exerts its affect on the stepwise process of human NK cell-mediated lyses of the K562 target cell line. Using intracellular staining of human peripheral blood lymphocytes, it was determined that a 24-h in vitro exposure to atrazine did not decrease the level of NK cell lytic proteins granzyme A, granzyme B or perforin. Thus, it was hypothesizedmore » that atrazine exposure was inhibiting the ability of the NK cells to bind to the target cell and subsequently inhibit the release of lytic protein from the NK cell. To test this hypothesis, flow cytometry and fluorescent microscopy were employed to analyze NK cell-target cell co-cultures following atrazine exposure. These assays demonstrated no significant decrease in the level of target cell binding. However, the levels of NK intracellular lytic protein retained and the amount of lytic protein released were assessed following a 4-h incubation with K562 target cells. The relative level of intracellular lytic protein was 25-50% higher, and the amount of lytic protein released was 55-65% less in atrazine-treated cells than vehicle-treated cells following incubation with the target cells. These results indicate that ATR exposure inhibits the ability of NK cells to lyse target cells by blocking lytic granule release without affecting the ability of the NK cell to form stable conjugates with target cells.« less

  11. Gammaherpesvirus Colonization of the Spleen Requires Lytic Replication in B Cells.

    PubMed

    Lawler, Clara; de Miranda, Marta Pires; May, Janet; Wyer, Orry; Simas, J Pedro; Stevenson, Philip G

    2018-04-01

    Gammaherpesviruses infect lymphocytes and cause lymphocytic cancers. Murid herpesvirus-4 (MuHV-4), Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus all infect B cells. Latent infection can spread by B cell recirculation and proliferation, but whether this alone achieves systemic infection is unclear. To test the need of MuHV-4 for lytic infection in B cells, we flanked its essential ORF50 lytic transactivator with loxP sites and then infected mice expressing B cell-specific Cre (CD19-Cre). The floxed virus replicated normally in Cre - mice. In CD19-Cre mice, nasal and lymph node infections were maintained; but there was little splenomegaly, and splenic virus loads remained low. Cre-mediated removal of other essential lytic genes gave a similar phenotype. CD19-Cre spleen infection by intraperitoneal virus was also impaired. Therefore, MuHV-4 had to emerge lytically from B cells to colonize the spleen. An important role for B cell lytic infection in host colonization is consistent with the large CD8 + T cell responses made to gammaherpesvirus lytic antigens during infectious mononucleosis and suggests that vaccine-induced immunity capable of suppressing B cell lytic infection might reduce long-term virus loads. IMPORTANCE Gammaherpesviruses cause B cell cancers. Most models of host colonization derive from cell cultures with continuous, virus-driven B cell proliferation. However, vaccines based on these models have worked poorly. To test whether proliferating B cells suffice for host colonization, we inactivated the capacity of MuHV-4, a gammaherpesvirus of mice, to reemerge from B cells. The modified virus was able to colonize a first wave of B cells in lymph nodes but spread poorly to B cells in secondary sites such as the spleen. Consequently, viral loads remained low. These results were consistent with virus-driven B cell proliferation exploiting normal host pathways and thus having to transfer lytically to new B cells for new proliferation. We

  12. Lytic to temperate switching of viral communities

    NASA Astrophysics Data System (ADS)

    Knowles, B.; Silveira, C. B.; Bailey, B. A.; Barott, K.; Cantu, V. A.; Cobián-Güemes, A. G.; Coutinho, F. H.; Dinsdale, E. A.; Felts, B.; Furby, K. A.; George, E. E.; Green, K. T.; Gregoracci, G. B.; Haas, A. F.; Haggerty, J. M.; Hester, E. R.; Hisakawa, N.; Kelly, L. W.; Lim, Y. W.; Little, M.; Luque, A.; McDole-Somera, T.; McNair, K.; de Oliveira, L. S.; Quistad, S. D.; Robinett, N. L.; Sala, E.; Salamon, P.; Sanchez, S. E.; Sandin, S.; Silva, G. G. Z.; Smith, J.; Sullivan, C.; Thompson, C.; Vermeij, M. J. A.; Youle, M.; Young, C.; Zgliczynski, B.; Brainard, R.; Edwards, R. A.; Nulton, J.; Thompson, F.; Rohwer, F.

    2016-03-01

    Microbial viruses can control host abundances via density-dependent lytic predator-prey dynamics. Less clear is how temperate viruses, which coexist and replicate with their host, influence microbial communities. Here we show that virus-like particles are relatively less abundant at high host densities. This suggests suppressed lysis where established models predict lytic dynamics are favoured. Meta-analysis of published viral and microbial densities showed that this trend was widespread in diverse ecosystems ranging from soil to freshwater to human lungs. Experimental manipulations showed viral densities more consistent with temperate than lytic life cycles at increasing microbial abundance. An analysis of 24 coral reef viromes showed a relative increase in the abundance of hallmark genes encoded by temperate viruses with increased microbial abundance. Based on these four lines of evidence, we propose the Piggyback-the-Winner model wherein temperate dynamics become increasingly important in ecosystems with high microbial densities; thus ‘more microbes, fewer viruses’.

  13. Niclosamide inhibits lytic replication of Epstein-Barr virus by disrupting mTOR activation.

    PubMed

    Huang, Lu; Yang, Mengtian; Yuan, Yan; Li, Xiaojuan; Kuang, Ersheng

    2017-02-01

    Infection with the oncogenic γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause several severe malignancies in humans. Inhibition of the lytic replication of EBV and KSHV eliminates the reservoir of persistent infection and transmission, consequently preventing the occurrence of diseases from the sources of infection. Antiviral drugs are limited in controlling these viral infectious diseases. Here, we demonstrate that niclosamide, an old anthelmintic drug, inhibits mTOR activation during EBV lytic replication. Consequently, niclosamide effectively suppresses EBV lytic gene expression, viral DNA lytic replication and virion production in EBV-infected lymphoma cells and epithelial cells. Niclosamide exhibits cytotoxicity toward lymphoma cells and induces irreversible cell cycle arrest in lytically EBV-infected cells. The ectopic overexpression of mTOR reverses the inhibition of niclosamide in EBV lytic replication. Similarly, niclosamide inhibits KSHV lytic replication. Thus, we conclude that niclosamide is a promising candidate for chemotherapy against the acute occurrence and transmission of infectious diseases of oncogenic γ-herpesviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae.

    PubMed

    Grose, Julianne H; Casjens, Sherwood R

    2014-11-01

    Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships.

  15. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae

    PubMed Central

    Grose, Julianne H.; Casjens, Sherwood R.

    2014-01-01

    Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships. PMID:25240328

  16. ARID3B: a Novel Regulator of the Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycle

    PubMed Central

    Wood, Jennifer J.; Boyne, James R.; Paulus, Christina; Jackson, Brian R.; Nevels, Michael M.

    2016-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of commonly fatal malignancies of immunocompromised individuals, including primary effusion lymphoma (PEL) and Kaposi's sarcoma (KS). A hallmark of all herpesviruses is their biphasic life cycle—viral latency and the productive lytic cycle—and it is well established that reactivation of the KSHV lytic cycle is associated with KS pathogenesis. Therefore, a thorough appreciation of the mechanisms that govern reactivation is required to better understand disease progression. The viral protein replication and transcription activator (RTA) is the KSHV lytic switch protein due to its ability to drive the expression of various lytic genes, leading to reactivation of the entire lytic cycle. While the mechanisms for activating lytic gene expression have received much attention, how RTA impacts cellular function is less well understood. To address this, we developed a cell line with doxycycline-inducible RTA expression and applied stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative proteomics. Using this methodology, we have identified a novel cellular protein (AT-rich interacting domain containing 3B [ARID3B]) whose expression was enhanced by RTA and that relocalized to replication compartments upon lytic reactivation. We also show that small interfering RNA (siRNA) knockdown or overexpression of ARID3B led to an enhancement or inhibition of lytic reactivation, respectively. Furthermore, DNA affinity and chromatin immunoprecipitation assays demonstrated that ARID3B specifically interacts with A/T-rich elements in the KSHV origin of lytic replication (oriLyt), and this was dependent on lytic cycle reactivation. Therefore, we have identified a novel cellular protein whose expression is enhanced by KSHV RTA with the ability to inhibit KSHV reactivation. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of fatal malignancies of

  17. Drug Modulators of B Cell Signaling Pathways and Epstein-Barr Virus Lytic Activation.

    PubMed

    Kosowicz, John G; Lee, Jaeyeun; Peiffer, Brandon; Guo, Zufeng; Chen, Jianmeng; Liao, Gangling; Hayward, S Diane; Liu, Jun O; Ambinder, Richard F

    2017-08-15

    Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus that establishes a latency reservoir in B cells. In this work, we show that ibrutinib, idelalisib, and dasatinib, drugs that block B cell receptor (BCR) signaling and are used in the treatment of hematologic malignancies, block BCR-mediated lytic induction at clinically relevant doses. We confirm that the immunosuppressive drugs cyclosporine and tacrolimus also inhibit BCR-mediated lytic induction but find that rapamycin does not inhibit BCR-mediated lytic induction. Further investigation shows that mammalian target of rapamycin complex 2 (mTORC2) contributes to BCR-mediated lytic induction and that FK506-binding protein 12 (FKBP12) binding alone is not adequate to block activation. Finally, we show that BCR signaling can activate EBV lytic induction in freshly isolated B cells from peripheral blood mononuclear cells (PBMCs) and that activation can be inhibited by ibrutinib or idelalisib. IMPORTANCE EBV establishes viral latency in B cells. Activation of the B cell receptor pathway activates lytic viral expression in cell lines. Here we show that drugs that inhibit important kinases in the BCR signaling pathway inhibit activation of lytic viral expression but do not inhibit several other lytic activation pathways. Immunosuppressant drugs such as cyclosporine and tacrolimus but not rapamycin also inhibit BCR-mediated EBV activation. Finally, we show that BCR activation of lytic infection occurs not only in tumor cell lines but also in freshly isolated B cells from patients and that this activation can be blocked by BCR inhibitors. Copyright © 2017 American Society for Microbiology.

  18. Bacteriophages safely reduce Salmonella contamination in pet food and raw pet food ingredients.

    PubMed

    Soffer, Nitzan; Abuladze, Tamar; Woolston, Joelle; Li, Manrong; Hanna, Leigh Farris; Heyse, Serena; Charbonneau, Duane; Sulakvelidze, Alexander

    2016-01-01

    Contamination of pet food with Salmonella is a serious public health concern, and several disease outbreaks have recently occurred due to human exposure to Salmonella tainted pet food. The problem is especially challenging for raw pet foods (which include raw meats, seafood, fruits, and vegetables). These foods are becoming increasingly popular because of their nutritional qualities, but they are also more difficult to maintain Salmonella -free because they lack heat-treatment. Among various methods examined to improve the safety of pet foods (including raw pet food), one intriguing approach is to use bacteriophages to specifically kill Salmonella serotypes. At least 2 phage preparations (SalmoFresh® and Salmonelex™) targeting Salmonella are already FDA cleared for commercial applications to improve the safety of human foods. However, similar preparations are not yet available for pet food applications. Here, we report the results of evaluating one such preparation (SalmoLyse®) in reducing Salmonella levels in various raw pet food ingredients (chicken, tuna, turkey, cantaloupe, and lettuce). Application of SalmoLyse® in low (ca. 2-4×10 6 PFU/g) and standard (ca. 9×10 6 PFU/g) concentrations significantly ( P < 0.01) reduced (by 60-92%) Salmonella contamination in all raw foods examined compared to control treatments. When SalmoLyse®-treated (ca. 2×10 7 PFU/g) dry pet food was fed to cats and dogs, it did not trigger any deleterious side effects in the pets. Our data suggest that the bacteriophage cocktail lytic for Salmonella can significantly and safely reduce Salmonella contamination in various raw pet food ingredients.

  19. Genetic evolution of bacteriophage. I. Hybrids between unrelated bacteriophages P22 and Fels 2.

    PubMed

    Yamamoto, N

    1969-01-01

    A new bacteriophage species, designated F22, was isolated from phage P22 stocks grown on Salmonella typhimurium Q1 lysogenic for Fels 2 at a frequency of less than 10(-11). P22 has a very short tail with a hexagonal base plate and six spikes. Phage Fels 2 is morphologically similar to E. coli T-even phages, having a long tail with a contractile sheath and carrying no genetic region related to P22. Phage F22 is morphologically and serologically indistinguishable from Fels 2, but carries the c(c(1), c(2), and c(3)) markers of P22. The color markers h(21), g, and m(3) of P22 do not appear in F22. Thus, F22 is evidently a recombinant between the unrelated bacteriophages P22 and Fels 2. The recombination between unrelated bacteriophages could play an important role in the evolution of bacteriophages.

  20. Valyl-tRNA synthetase modification-dependent restriction of bacteriophage T4.

    PubMed Central

    Olson, N J; Marchin, G L

    1984-01-01

    A strain of Escherichia coli, CP 790302, severely restricts the growth of wild-type bacteriophage T4. In broth culture, most infections of single cells are abortive, although a few infected cells exhibit reduced burst sizes. In contrast, bacteriophage T4 mutants impaired in the ability to modify valyl-tRNA synthetase develop normally on this strain. Biochemical evidence indicates that the phage-modified valyl-tRNA synthetase in CP 790302 is different from that previously described. Although the enzyme is able to support normal protein synthesis, a disproportionate amount of phage structural protein (serum blocking power) fails to mature into particles of the appropriate density. The results with host strain CP 790302 are consistent with either a gratuitous inhibition of phage assembly by faulty modification or abrogation of an unknown role that valyl-tRNA synthetase might normally play in viral assembly. PMID:6374167

  1. Bacteriophage-Resistant Mutants in Yersinia pestis: Identification of Phage Receptors and Attenuation for Mice

    PubMed Central

    Filippov, Andrey A.; Sergueev, Kirill V.; He, Yunxiu; Huang, Xiao-Zhe; Gnade, Bryan T.; Mueller, Allen J.; Fernandez-Prada, Carmen M.; Nikolich, Mikeljon P.

    2011-01-01

    Background Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. Methodology/Principal Findings The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. Conclusions/Significance We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis. PMID:21980477

  2. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice.

    PubMed

    Filippov, Andrey A; Sergueev, Kirill V; He, Yunxiu; Huang, Xiao-Zhe; Gnade, Bryan T; Mueller, Allen J; Fernandez-Prada, Carmen M; Nikolich, Mikeljon P

    2011-01-01

    Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD₅₀ and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.

  3. GENETIC EVOLUTION OF BACTERIOPHAGE, I. HYBRIDS BETWEEN UNRELATED BACTERIOPHAGES P22 AND FELS 2*

    PubMed Central

    Yamamoto, Nobuto

    1969-01-01

    A new bacteriophage species, designated F22, was isolated from phage P22 stocks grown on Salmonella typhimurium Q1 lysogenic for Fels 2 at a frequency of less than 10-11. P22 has a very short tail with a hexagonal base plate and six spikes. Phage Fels 2 is morphologically similar to E. coli T-even phages, having a long tail with a contractile sheath and carrying no genetic region related to P22. Phage F22 is morphologically and serologically indistinguishable from Fels 2, but carries the c(c1, c2, and c3) markers of P22. The color markers h21, g, and m3 of P22 do not appear in F22. Thus, F22 is evidently a recombinant between the unrelated bacteriophages P22 and Fels 2. The recombination between unrelated bacteriophages could play an important role in the evolution of bacteriophages. Images PMID:4890254

  4. Neutron and high-resolution room-temperature X-ray data collection from crystallized lytic polysaccharide monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacik, John -Paul; Mekasha, Sophanit; Forsberg, Zarah

    Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1–3 mm 3) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected andmore » processed to 1.1 Å resolution in space group P2 12 12 1. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. As a result, joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.« less

  5. Neutron and high-resolution room-temperature X-ray data collection from crystallized lytic polysaccharide monooxygenase

    DOE PAGES

    Bacik, John -Paul; Mekasha, Sophanit; Forsberg, Zarah; ...

    2015-01-01

    Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1–3 mm 3) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected andmore » processed to 1.1 Å resolution in space group P2 12 12 1. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. As a result, joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.« less

  6. Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods.

    PubMed

    Perera, Meenu N; Abuladze, Tamar; Li, Manrong; Woolston, Joelle; Sulakvelidze, Alexander

    2015-12-01

    ListShield™, a commercially available bacteriophage cocktail that specifically targets Listeria monocytogenes, was evaluated as a bio-control agent for L. monocytogenes in various Ready-To-Eat foods. ListShield™ treatment of experimentally contaminated lettuce, cheese, smoked salmon, and frozen entrèes significantly reduced (p < 0.05) L. monocytogenes contamination by 91% (1.1 log), 82% (0.7 log), 90% (1.0 log), and 99% (2.2 log), respectively. ListShield™ application, alone or combined with an antioxidant/anti-browning solution, resulted in a statistically significant (p < 0.001) 93% (1.1 log) reduction of L. monocytogenes contamination on apple slices after 24 h at 4 °C. Treatment of smoked salmon from a commercial processing facility with ListShield™ eliminated L. monocytogenes (no detectable L. monocytogenes) in both the naturally contaminated and experimentally contaminated salmon fillets. The organoleptic quality of foods was not affected by application of ListShield™, as no differences in the color, taste, or appearance were detectable. Bio-control of L. monocytogenes with lytic bacteriophage preparations such as ListShield™ can offer an environmentally-friendly, green approach for reducing the risk of listeriosis associated with the consumption of various foods that may be contaminated with L. monocytogenes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Plating Bacteriophage M13.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2017-10-03

    A plaque of bacteriophage M13 derives from infection of a single bacterium by a single virus particle. The progeny particles infect neighboring bacteria, which, in turn, release another generation of daughter virus particles. If the bacteria are growing in semisolid medium (e.g., containing agar or agarose), then the diffusion of the progeny particles is limited. Cells infected with bacteriophage M13 are not killed, but have a longer generation time than uninfected Escherichia coli In consequence, plaques appear as areas of slower-growing cells on a faster-growing lawn of bacterial cells. This protocol describes plating of bacteriophage M13 stocks. Plaques are readily detectable on top agar after 4-8 h of incubation at 37°C. © 2017 Cold Spring Harbor Laboratory Press.

  8. Application of bacteriophages specific to hydrogen sulfide-producing bacteria in raw poultry by-products.

    PubMed

    Gong, Chao; Liu, Xiaohua; Jiang, Xiuping

    2014-03-01

    Hydrogen sulfide-producing bacteria (SPB) can spoil raw animal materials and release harmful hydrogen sulfide (H2S) gas. The objective of this study was to apply a SPB-specific bacteriophage cocktail to control H2S production by SPB in different raw poultry by-products in the laboratory (20, 30, and 37°C) and greenhouse (average temperature 29 to 31°C, humidity 34.8 to 59.8%, and light intensity 604.8 Wm(2)) by simulating transportation and a rendering facility. The amount of H2S production was determined using either test strips impregnated with lead acetate or a H2S monitor. In the laboratory, phage treatment applied to fresh chicken meat inoculated with SPB, spoiled chicken meat, chicken guts, and chicken feathers reduced H2S production by approximately 25 to 69% at temperatures from 20 to 37°C. In the greenhouse, phage treatment achieved approximately a 30 to 85% reduction of H2S yield in chicken offal and feathers. Among all phage treatments, multiplicity of infection (MOI) of 100 exhibited the highest inhibitory activities against SPB on H2S production. Several factors such as initial SPB level, temperature, and MOI affect lytic activities of bacteriophages. Our study demonstrated that the phage cocktail is effective to reduce the production of H2S by SPB significantly in raw animal materials. This biological control method can control SPB in raw poultry by-products at ambient temperatures, leading to a safer working environment and high quality product with less nutrient degradation for the rendering industry.

  9. A first step toward liposome-mediated intracellular bacteriophage therapy.

    PubMed

    Nieth, Anita; Verseux, Cyprien; Barnert, Sabine; Süss, Regine; Römer, Winfried

    2015-01-01

    The emergence of antibiotic-resistant bacteria presents a severe challenge to medicine and public health. While bacteriophage therapy is a promising alternative to traditional antibiotics, the general inability of bacteriophages to penetrate eukaryotic cells limits their use against resistant bacteria, causing intracellular diseases like tuberculosis. Bacterial vectors show some promise in carrying therapeutic bacteriophages into cells, but also bring a number of risks like an overload of bacterial antigens or the acquisition of virulence genes from the pathogen. As a first step in the development of a non-bacterial vector for bacteriophage delivery into pathogen-infected cells, we attempted to encapsulate bacteriophages into liposomes. Here we report effective encapsulation of the model bacteriophage λeyfp and the mycobacteriophage TM4 into giant liposomes. Furthermore, we show that liposome-associated bacteriophages are taken up into eukaryotic cells more efficiently than free bacteriophages. These are important milestones in the development of an intracellular bacteriophage therapy that might be useful in the fight against multi-drug-resistant intracellular pathogens like Mycobacterium tuberculosis.

  10. Phase Variable O Antigen Biosynthetic Genes Control Expression of the Major Protective Antigen and Bacteriophage Receptor in Vibrio cholerae O1

    PubMed Central

    Seed, Kimberley D.; Faruque, Shah M.; Mekalanos, John J.; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew

    2012-01-01

    The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage. PMID:23028317

  11. Bacteriophage recombination systems and biotechnical applications.

    PubMed

    Nafissi, Nafiseh; Slavcev, Roderick

    2014-04-01

    Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses' life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed.

  12. Taking Bacteriophage Therapy Seriously: A Moral Argument

    PubMed Central

    Verbeken, Gilbert; Huys, Isabelle; Jennes, Serge; Chanishvili, Nina; Górski, Andrzej; De Vos, Daniel

    2014-01-01

    The excessive and improper use of antibiotics has led to an increasing incidence of bacterial resistance. In Europe the yearly number of infections caused by multidrug resistant bacteria is more than 400.000, each year resulting in 25.000 attributable deaths. Few new antibiotics are in the pipeline of the pharmaceutical industry. Early in the 20th century, bacteriophages were described as entities that can control bacterial populations. Although bacteriophage therapy was developed and practiced in Europe and the former Soviet republics, the use of bacteriophages in clinical setting was neglected in Western Europe since the introduction of traditional antibiotics. Given the worldwide antibiotic crisis there is now a growing interest in making bacteriophage therapy available for use in modern western medicine. Despite the growing interest, access to bacteriophage therapy remains highly problematic. In this paper, we argue that the current state of affairs is morally unacceptable and that all stakeholders (pharmaceutical industry, competent authorities, lawmakers, regulators, and politicians) have the moral duty and the shared responsibility towards making bacteriophage therapy urgently available for all patients in need. PMID:24868534

  13. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    NASA Astrophysics Data System (ADS)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  14. Lysogeny with Shiga Toxin 2-Encoding Bacteriophages Represses Type III Secretion in Enterohemorrhagic Escherichia coli

    PubMed Central

    Xu, Xuefang; McAteer, Sean P.; Tree, Jai J.; Shaw, Darren J.; Wolfson, Eliza B. K.; Beatson, Scott A.; Roe, Andrew J.; Allison, Lesley J.; Chase-Topping, Margo E.; Mahajan, Arvind; Tozzoli, Rosangela; Woolhouse, Mark E. J.; Morabito, Stefano; Gally, David L.

    2012-01-01

    Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins. PMID:22615557

  15. Virus scaffolds as enzyme nano-carriers.

    PubMed

    Cardinale, Daniela; Carette, Noëlle; Michon, Thierry

    2012-07-01

    The cooperative organization of enzymes by cells is a key feature for the efficiency of living systems. In the field of nanotechnologies, effort currently aims at mimicking this natural organization. Nanoscale resolution and high-registration alignment are necessary to control enzyme distribution in nano-containers or on the surface of solid supports. Virus capsid self-assembly is driven by precise supramolecular combinations of protein monomers, which have made them attractive building blocks to engineer enzyme nano-carriers (ENCs). We discuss some examples of what in our opinion constitute the latest advances in the use of plant viruses, bacteriophages and virus-like particles (VLPs) as nano-scaffolds for enzyme selection, enzyme confinement and patterning, phage therapy, raw material processing, and single molecule enzyme kinetics studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Bacteriophages in dairy products: pros and cons.

    PubMed

    Mc Grath, Stephen; Fitzgerald, Gerald F; van Sinderen, Douwe

    2007-04-01

    Since the time bacteriophages were first identified as a major cause of fermentation failure in the dairy industry, researchers have been struggling to develop strategies to exclude them from the dairy environment. Over 70 years of research has led to huge improvements in the consistency and quality of fermented dairy products, while also facilitating an appreciation of the beneficial properties of bacteriophages with respect to dairy product development. With specific reference to Lactococcus lactis and cheese production, this review outlines some recently reported novel methods aimed at limiting the bacteriophage infection as well as highlighting some beneficial aspects of bacteriophage activity.

  17. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae.

    PubMed

    Frampton, Rebekah A; Acedo, Elena Lopez; Young, Vivienne L; Chen, Danni; Tong, Brian; Taylor, Corinda; Easingwood, Richard A; Pitman, Andrew R; Kleffmann, Torsten; Bostina, Mihnea; Fineran, Peter C

    2015-06-24

    Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae.

  18. Bacteriophages safely reduce Salmonella contamination in pet food and raw pet food ingredients

    PubMed Central

    Soffer, Nitzan; Abuladze, Tamar; Woolston, Joelle; Li, Manrong; Hanna, Leigh Farris; Heyse, Serena; Charbonneau, Duane; Sulakvelidze, Alexander

    2016-01-01

    ABSTRACT Contamination of pet food with Salmonella is a serious public health concern, and several disease outbreaks have recently occurred due to human exposure to Salmonella tainted pet food. The problem is especially challenging for raw pet foods (which include raw meats, seafood, fruits, and vegetables). These foods are becoming increasingly popular because of their nutritional qualities, but they are also more difficult to maintain Salmonella-free because they lack heat-treatment. Among various methods examined to improve the safety of pet foods (including raw pet food), one intriguing approach is to use bacteriophages to specifically kill Salmonella serotypes. At least 2 phage preparations (SalmoFresh® and Salmonelex™) targeting Salmonella are already FDA cleared for commercial applications to improve the safety of human foods. However, similar preparations are not yet available for pet food applications. Here, we report the results of evaluating one such preparation (SalmoLyse®) in reducing Salmonella levels in various raw pet food ingredients (chicken, tuna, turkey, cantaloupe, and lettuce). Application of SalmoLyse® in low (ca. 2–4×106 PFU/g) and standard (ca. 9×106 PFU/g) concentrations significantly (P < 0.01) reduced (by 60–92%) Salmonella contamination in all raw foods examined compared to control treatments. When SalmoLyse®-treated (ca. 2×107 PFU/g) dry pet food was fed to cats and dogs, it did not trigger any deleterious side effects in the pets. Our data suggest that the bacteriophage cocktail lytic for Salmonella can significantly and safely reduce Salmonella contamination in various raw pet food ingredients. PMID:27738557

  19. The Immunomodulatory Capacity of an Epstein-Barr Virus Abortive Lytic Cycle: Potential Contribution to Viral Tumorigenesis

    PubMed Central

    2018-01-01

    Epstein-Barr virus (EBV) is characterized by a bipartite life cycle in which latent and lytic stages are alternated. Latency is compatible with long-lasting persistency within the infected host, while lytic expression, preferentially found in oropharyngeal epithelial tissue, is thought to favor host-to-host viral dissemination. The clinical importance of EBV relates to its association with cancer, which we think is mainly a consequence of the latency/persistency mechanisms. However, studies in murine models of tumorigenesis/lymphomagenesis indicate that the lytic cycle also contributes to cancer formation. Indeed, EBV lytic expression is often observed in established cell lines and tumor biopsies. Within the lytic cycle EBV expresses a handful of immunomodulatory (BCRF1, BARF1, BNLF2A, BGLF5 & BILF1) and anti-apoptotic (BHRF1 & BALF1) proteins. In this review, we discuss the evidence supporting an abortive lytic cycle in which these lytic genes are expressed, and how the immunomodulatory mechanisms of EBV and related herpesviruses Kaposi Sarcoma herpesvirus (KSHV) and human cytomegalovirus (HCMV) result in paracrine signals that feed tumor cells. An abortive lytic cycle would reconcile the need of lytic expression for viral tumorigenesis without relaying in a complete cycle that would induce cell lysis to release the newly formed infective viral particles. PMID:29601503

  20. Lytic and Chemotactic Features of the Plaque-Forming Bacterium KD531 on Phaeodactylum tricornutum

    PubMed Central

    Chen, Zhangran; Zheng, Wei; Yang, Luxi; Boughner, Lisa A.; Tian, Yun; Zheng, Tianling; Xu, Hong

    2017-01-01

    Phaeodactylum tricornutum is a dominant bloom forming species and potential biofuel feedstock. To control P. tricornutum bloom or to release lipids from P. tricornutum, we previously screened and identified the lytic bacterium Labrenzia sp. KD531 toward P. tricornutum. In the present study, we evaluated the lytic activity of Labrenzia sp. KD531 on microalgae and investigated its lytic mechanism. The results indicated that the lytic activity of KD531 was temperature- and pH-dependent, but light-independent. In addition to P. tricornutum, KD531 also showed lytic activity against other algal species, especially green algae. A quantitative analysis of algal cellular protein, carbohydrate and lipid content together with measurements of dry weight after exposure to bacteria-infected algal lysate indicated that the bacterium KD531 influenced the algal biomass by disrupting the algal cells. Both chemotactic analysis and microscopic observations of subsamples from different regions of formed plaques showed that KD531 could move toward and then directly contact algal cells. Direct contact between P. tricornutum and KD531 cells was essential for the lytic process. PMID:29312256

  1. Characterization of Vibrio cholerae bacteriophages isolated from the environmental waters of the Lake Victoria region of Kenya.

    PubMed

    Maina, Alice Nyambura; Mwaura, Francis B; Oyugi, Julius; Goulding, David; Toribio, Ana L; Kariuki, Samuel

    2014-01-01

    Over the last decade, cholera outbreaks have become common in some parts of Kenya. The most recent cholera outbreak occurred in Coastal and Lake Victoria region during January 2009 and May 2010, where a total of 11,769 cases and 274 deaths were reported by the Ministry of Public Health and Sanitation. The objective of this study is to isolate Vibrio cholerae bacteriophages from the environmental waters of the Lake Victoria region of Kenya with potential for use as a biocontrol for cholera outbreaks. Water samples from wells, ponds, sewage effluent, boreholes, rivers, and lakes of the Lake Victoria region of Kenya were enriched for 48 h at 37 °C in broth containing a an environmental strain of V. cholerae. Bacteriophages were isolated from 5 out of the 42 environmental water samples taken. Isolated phages produced tiny, round, and clear plaques suggesting that these phages were lytic to V. cholerae. Transmission electron microscope examination revealed that all the nine phages belonged to the family Myoviridae, with typical icosahedral heads, long contractile tails, and fibers. Head had an average diameter of 88.3 nm and tail of length and width 84.9 and 16.1 nm, respectively. Vibriophages isolated from the Lake Victoria region of Kenya have been characterized and the isolated phages may have a potential to be used as antibacterial agents to control pathogenic V. cholerae bacteria in water reservoirs.

  2. Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered Pichia pastoris for X-ray and neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Dell, William B.; Swartz, Paul D.; Weiss, Kevin L.

    Lytic polysaccharide monooxygenases (LPMOs) are carbohydrate-disrupting enzymes secreted by bacteria and fungi that break glycosidic bondsviaan oxidative mechanism. Fungal LPMOs typically act on cellulose and can enhance the efficiency of cellulose-hydrolyzing enzymes that release soluble sugars for bioethanol production or other industrial uses. The enzyme PMO-2 fromNeurospora crassa(NcPMO-2) was heterologously expressed inPichia pastoristo facilitate crystallographic studies of the fungal LPMO mechanism. Diffraction resolution and crystal morphology were improved by expressingNcPMO-2 from a glycoengineered strain ofP. pastorisand by the use of crystal seeding methods, respectively. These improvements resulted in high-resolution (1.20 Å) X-ray diffraction data collection at 100 K and themore » production of a largeNcPMO-2 crystal suitable for room-temperature neutron diffraction data collection to 2.12 Å resolution.« less

  3. Potential of the virion-associated peptidoglycan hydrolase HydH5 and its derivative fusion proteins in milk biopreservation.

    PubMed

    Rodríguez-Rubio, Lorena; Martínez, Beatriz; Donovan, David M; García, Pilar; Rodríguez, Ana

    2013-01-01

    Bacteriophage lytic enzymes have recently attracted considerable interest as novel antimicrobials against Gram-positive bacteria. In this work, antimicrobial activity in milk of HydH5 [a virion-associated peptidoglycan hydrolase (VAPGH) encoded by the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88], and three different fusion proteins created between HydH5 and lysostaphin has been assessed. The lytic activity of the five proteins (HydH5, HydH5Lyso, HydH5SH3b, CHAPSH3b and lysostaphin) was confirmed using commercial whole extended shelf-life milk (ESL) in challenge assays with 10(4) CFU/mL of the strain S. aureus Sa9. HydH5, HydH5Lyso and HydH5SH3b (3.5 µM) kept the staphylococcal viable counts below the control cultures for 6 h at 37°C. The effect is apparent just 15 minutes after the addition of the lytic enzyme. Of note, lysostaphin and CHAPSH3b showed the highest staphylolytic protection as they were able to eradicate the initial staphylococcal challenge immediately or 15 min after addition, respectively, at lower concentration (1 µM) at 37°C. CHAPSH3b showed the same antistaphyloccal effect at room temperature (1.65 µM). No re-growth was observed for the remainder of the experiment (up to 6 h). CHAPSH3b activity (1.65 µM) was also assayed in raw (whole and skim) and pasteurized (whole and skim) milk. Pasteurization of milk clearly enhanced CHAPSH3b staphylolytic activity in both whole and skim milk at both temperatures. This effect was most dramatic at room temperature as this protein was able to reduce S. aureus viable counts to undetectable levels immediately after addition with no re-growth detected for the duration of the experiment (360 min). Furthermore, CHAPSH3b protein is known to be heat tolerant and retained some lytic activity after pasteurization treatment and after storage at 4°C for 3 days. These results might facilitate the use of the peptidoglycan hydrolase HydH5 and its derivative fusions, particularly CHAPSH3b, as biocontrol

  4. Genetic and Immunological Studies of Bacteriophage T4 Thymidylate Synthetase

    PubMed Central

    Krauss, S. W.; Stollar, B. D.; Friedkin, M.

    1973-01-01

    Thymidylate synthetase, which appears after infection of Escherichia coli with bacteriophage T4, has been partially purified. The phage enzyme is immunologically distinct from the host enzyme and has a molecular weight of 50,000 in comparison to 68,000 for the host enzyme. A system has been developed to characterize T4 td mutants previously known to have impaired expression of phage thymidylate synthetase. For this system, an E. coli host lacking thymidylate synthetase was isolated. Known genetic suppressors were transduced into this host. The resulting isogenic hosts were infected with phage T4 td mutants. The specific activities and amounts of cross-reacting material induced by several different types of phage mutants under conditions of suppression or non-suppression have been examined. The results show that the phage carries the structural gene specifying the thymidylate synthetase which appears after phage infection, and that the combination of plaque morphology, enzyme activity assays, and an assay for immunologically cross-reacting material provides a means for identifying true amber mutants of the phage gene. Images PMID:4575286

  5. In silico Evolution of Lysis-Lysogeny Strategies Reproduces Observed Lysogeny Propensities in Temperate Bacteriophages

    PubMed Central

    Sinha, Vaibhhav; Goyal, Akshit; Svenningsen, Sine L.; Semsey, Szabolcs; Krishna, Sandeep

    2017-01-01

    Bacteriophages are the most abundant organisms on the planet and both lytic and temperate phages play key roles as shapers of ecosystems and drivers of bacterial evolution. Temperate phages can choose between (i) lysis: exploiting their bacterial hosts by producing multiple phage particles and releasing them by lysing the host cell, and (ii) lysogeny: establishing a potentially mutually beneficial relationship with the host by integrating their chromosome into the host cell's genome. Temperate phages exhibit lysogeny propensities in the curiously narrow range of 5–15%. For some temperate phages, the propensity is further regulated by the multiplicity of infection, such that single infections go predominantly lytic while multiple infections go predominantly lysogenic. We ask whether these observations can be explained by selection pressures in environments where multiple phage variants compete for the same host. Our models of pairwise competition, between phage variants that differ only in their propensity to lysogenize, predict the optimal lysogeny propensity to fall within the experimentally observed range. This prediction is robust to large variation in parameters such as the phage infection rate, burst size, decision rate, as well as bacterial growth rate, and initial phage to bacteria ratio. When we compete phage variants whose lysogeny strategies are allowed to depend upon multiplicity of infection, we find that the optimal strategy is one which switches from full lysis for single infections to full lysogeny for multiple infections. Previous attempts to explain lysogeny propensity have argued for bet-hedging that optimizes the response to fluctuating environmental conditions. Our results suggest that there is an additional selection pressure for lysogeny propensity within phage populations infecting a bacterial host, independent of environmental conditions. PMID:28798729

  6. Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruer-Zerhusen, Nathan; Alahuhta, Markus; Lunin, Vladimir V.

    Auxiliary activity (AA) enzymes are produced by numerous bacterial and fungal species to assist in the degradation of biomass. These enzymes are abundant but have yet to be fully characterized. Here, we report the X-ray structure of Thermobifida fusca AA10A (TfAA10A), investigate mutational characterization of key surface residues near its active site, and explore the importance of the various domains of Thermobifida fusca AA10B (TfAA10B). The structure of TfAA10A is similar to other bacterial LPMOs (lytic polysaccharide monooxygenases), including signs of photo-reduction and a distorted active site, with mixed features showing both type I and II copper coordination. The pointmore » mutation experiments of TfAA10A show that Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for the binding of substrate, but that the X1 module does not affect binding or activity. In TfAA10A, Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for substrate binding, but that the X1 module does not affect binding or activity. The structure of TfAA10A is similar to other bacterial lytic polysaccharide monooxygenases with mixed features showing both type I and II copper coordination. The role of LPMOs and the variability of abundance in genomes are not fully explored. LPMOs likely perform initial attacks into crystalline cellulose to allow larger processive cellulases to bind and attack, but the precise nature of their synergistic behavior remains to be definitively characterized.« less

  7. Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues

    DOE PAGES

    Kruer-Zerhusen, Nathan; Alahuhta, Markus; Lunin, Vladimir V.; ...

    2017-11-30

    Auxiliary activity (AA) enzymes are produced by numerous bacterial and fungal species to assist in the degradation of biomass. These enzymes are abundant but have yet to be fully characterized. Here, we report the X-ray structure of Thermobifida fusca AA10A (TfAA10A), investigate mutational characterization of key surface residues near its active site, and explore the importance of the various domains of Thermobifida fusca AA10B (TfAA10B). The structure of TfAA10A is similar to other bacterial LPMOs (lytic polysaccharide monooxygenases), including signs of photo-reduction and a distorted active site, with mixed features showing both type I and II copper coordination. The pointmore » mutation experiments of TfAA10A show that Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for the binding of substrate, but that the X1 module does not affect binding or activity. In TfAA10A, Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for substrate binding, but that the X1 module does not affect binding or activity. The structure of TfAA10A is similar to other bacterial lytic polysaccharide monooxygenases with mixed features showing both type I and II copper coordination. The role of LPMOs and the variability of abundance in genomes are not fully explored. LPMOs likely perform initial attacks into crystalline cellulose to allow larger processive cellulases to bind and attack, but the precise nature of their synergistic behavior remains to be definitively characterized.« less

  8. The Genome of S-PM2, a “Photosynthetic” T4-Type Bacteriophage That Infects Marine Synechococcus Strains

    PubMed Central

    Mann, Nicholas H.; Clokie, Martha R. J.; Millard, Andrew; Cook, Annabel; Wilson, William H.; Wheatley, Peter J.; Letarov, Andrey; Krisch, H. M.

    2005-01-01

    Bacteriophage S-PM2 infects several strains of the abundant and ecologically important marine cyanobacterium Synechococcus. A large lytic phage with an isometric icosahedral head, S-PM2 has a contractile tail and by this criterion is classified as a myovirus (1). The linear, circularly permuted, 196,280-bp double-stranded DNA genome of S-PM2 contains 37.8% G+C residues. It encodes 239 open reading frames (ORFs) and 25 tRNAs. Of these ORFs, 19 appear to encode proteins associated with the cell envelope, including a putative S-layer-associated protein. Twenty additional S-PM2 ORFs have homologues in the genomes of their cyanobacterial hosts. There is a group I self-splicing intron within the gene encoding the D1 protein. A total of 40 ORFs, organized into discrete clusters, encode homologues of T4 proteins involved in virion morphogenesis, nucleotide metabolism, gene regulation, and DNA replication and repair. The S-PM2 genome encodes a few surprisingly large (e.g., 3,779 amino acids) ORFs of unknown function. Our analysis of the S-PM2 genome suggests that many of the unknown S-PM2 functions may be involved in the adaptation of the metabolism of the host cell to the requirements of phage infection. This hypothesis originates from the identification of multiple phage-mediated modifications of the host's photosynthetic apparatus that appear to be essential for maintaining energy production during the lytic cycle. PMID:15838046

  9. Advanced Catalytic Enzyme System (ACES) - Dual Use Capabilities

    DTIC Science & Technology

    2003-07-01

    Novozymes A/S (Bagsvaerd, Denmark) with activity against both cells and spores, and a bacteriophage enzyme (PlyG Lysin) that is specific for B. anthracis... Novozymes ), Lysozyme (commercial) Buffer: Ammonium carbonate Fire-Fighting Components: ColdFire®, Fire Choke® or an equivalent Class A foam The

  10. The Genetic Switch Regulating Activity of Early Promoters of the Temperate Lactococcal Bacteriophage TP901-1

    PubMed Central

    Madsen, Peter Lynge; Johansen, Annette H.; Hammer, Karin; Brøndsted, Lone

    1999-01-01

    A functional analysis of open reading frame 4 (ORF4) and ORF5 from the temperate lactococcal phage TP901-1 was performed by mutant and deletion analysis combined with transcriptional studies of the early phage promoters pR and pL. ORF4 (180 amino acids) was identified as a phage repressor necessary for repression of both promoters. Furthermore, the presence of ORF4 confers immunity of the host strain to TP901-1. ORF5 (72 amino acids) was found to be able to inhibit repression of the lytic promoter pL by ORF4. Upon transformation with a plasmid containing both ORF4 and ORF5 and their cognate promoters, clonal variation is observed: in each transformant, either pL is open and pR is closed or vice versa. The repression is still dependent on ORF4, and the presence of ORF5 is needed for the clonal variation. Induction of a repressed pL fusion containing orf4 and orf5 was obtained by addition of mitomycin C, and the induction was also shown to be dependent on the presence of the RecA protein, even though ORF4 does not contain a recognizable autocleavage site. Our results suggest that the relative amounts of the two proteins ORF4 and ORF5 determine the decision between lytic or lysogenic life cycle after phage infection and that a protein complex consisting of ORF4 and ORF5 may constitute a new type of genetic switch in bacteriophages. PMID:10601198

  11. Killing of Staphylococci by θ-Defensins Involves Membrane Impairment and Activation of Autolytic Enzymes

    PubMed Central

    Wilmes, Miriam; Stockem, Marina; Bierbaum, Gabriele; Schlag, Martin; Götz, Friedrich; Tran, Dat Q.; Schaal, Justin B.; Ouellette, André J.; Selsted, Michael E.; Sahl, Hans-Georg

    2014-01-01

    θ-Defensins are cyclic antimicrobial peptides expressed in leukocytes of Old world monkeys. To get insight into their antibacterial mode of action, we studied the activity of RTDs (rhesus macaque θ-defensins) against staphylococci. We found that in contrast to other defensins, RTDs do not interfere with peptidoglycan biosynthesis, but rather induce bacterial lysis in staphylococci by interaction with the bacterial membrane and/or release of cell wall lytic enzymes. Potassium efflux experiments and membrane potential measurements revealed that the membrane impairment by RTDs strongly depends on the energization of the membrane. In addition, RTD treatment caused the release of Atl-derived cell wall lytic enzymes probably by interaction with membrane-bound lipoteichoic acid. Thus, the premature and uncontrolled activity of these enzymes contributes strongly to the overall killing by θ-defensins. Interestingly, a similar mode of action has been described for Pep5, an antimicrobial peptide of bacterial origin. PMID:25632351

  12. Growing Bacteriophage M13 in Liquid Culture.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2017-11-01

    Stocks of bacteriophage M13 are usually grown in liquid culture. The infected bacteria do not lyse but, instead, grow at a slower than normal rate to form a dilute suspension. The inoculum of bacteriophage is almost always a freshly picked plaque or a suspension of bacteriophage particles obtained from a single plaque, as described here. Infected cells contain up to 200 copies of double-stranded, replicative-form DNA and extrude several hundred bacteriophage particles per generation. Thus, a 1-mL culture of infected cells can produce enough double-stranded viral DNA (1-2 mg) for restriction mapping and recovery of cloned DNA inserts and sufficient single-stranded DNA (∼5-10 mg) for site-directed mutagenesis, DNA sequencing, or synthesis of radiolabeled probes. The titer of bacteriophages in the supernatant from infected cells is so high (∼10 12 pfu/mL) that a small aliquot serves as a permanent stock of the starting plaque. © 2017 Cold Spring Harbor Laboratory Press.

  13. Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations

    USDA-ARS?s Scientific Manuscript database

    Background: Reduced yields of ethanol due to bacterial contamination in fermentation cultures weakens the economics of biofuel production. Lactic acid bacteria are considered the most problematic, and surveys of commercial fuel ethanol facilities have found that species of Lactobacillus are predomin...

  14. Crystal Structures of the SpoIID Lytic Transglycosylases Essential for Bacterial Sporulation.

    PubMed

    Nocadello, Salvatore; Minasov, George; Shuvalova, Ludmilla S; Dubrovska, Ievgeniia; Sabini, Elisabetta; Anderson, Wayne F

    2016-07-15

    Bacterial spores are the most resistant form of life known on Earth and represent a serious problem for (i) bioterrorism attack, (ii) horizontal transmission of microbial pathogens in the community, and (iii) persistence in patients and in a nosocomial environment. Stage II sporulation protein D (SpoIID) is a lytic transglycosylase (LT) essential for sporulation. The LT superfamily is a potential drug target because it is active in essential bacterial processes involving the peptidoglycan, which is unique to bacteria. However, the absence of structural information for the sporulation-specific LT enzymes has hindered mechanistic understanding of SpoIID. Here, we report the first crystal structures with and without ligands of the SpoIID family from two community relevant spore-forming pathogens, Bacillus anthracis and Clostridium difficile. The structures allow us to visualize the overall architecture, characterize the substrate recognition model, identify critical residues, and provide the structural basis for catalysis by this new family of enzymes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display.

    PubMed

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-11-14

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.

  16. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display

    PubMed Central

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-01-01

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840

  17. Evidence for a lineage of virulent bacteriophages that target Campylobacter.

    PubMed

    Timms, Andrew R; Cambray-Young, Joanna; Scott, Andrew E; Petty, Nicola K; Connerton, Phillippa L; Clarke, Louise; Seeger, Kathy; Quail, Mike; Cummings, Nicola; Maskell, Duncan J; Thomson, Nicholas R; Connerton, Ian F

    2010-03-30

    Our understanding of the dynamics of genome stability versus gene flux within bacteriophage lineages is limited. Recently, there has been a renewed interest in the use of bacteriophages as 'therapeutic' agents; a prerequisite for their use in such therapies is a thorough understanding of their genetic complement, genome stability and their ecology to avoid the dissemination or mobilisation of phage or bacterial virulence and toxin genes. Campylobacter, a food-borne pathogen, is one of the organisms for which the use of bacteriophage is being considered to reduce human exposure to this organism. Sequencing and genome analysis was performed for two Campylobacter bacteriophages. The genomes were extremely similar at the nucleotide level (> or = 96%) with most differences accounted for by novel insertion sequences, DNA methylases and an approximately 10 kb contiguous region of metabolic genes that were dissimilar at the sequence level but similar in gene function between the two phages. Both bacteriophages contained a large number of radical S-adenosylmethionine (SAM) genes, presumably involved in boosting host metabolism during infection, as well as evidence that many genes had been acquired from a wide range of bacterial species. Further bacteriophages, from the UK Campylobacter typing set, were screened for the presence of bacteriophage structural genes, DNA methylases, mobile genetic elements and regulatory genes identified from the genome sequences. The results indicate that many of these bacteriophages are related, with 10 out of 15 showing some relationship to the sequenced genomes. Two large virulent Campylobacter bacteriophages were found to show very high levels of sequence conservation despite separation in time and place of isolation. The bacteriophages show adaptations to their host and possess genes that may enhance Campylobacter metabolism, potentially advantaging both the bacteriophage and its host. Genetic conservation has been shown to extend to other

  18. Modulation of the Lytic Activity of the Dedicated Autolysin for Flagellum Formation SltF by Flagellar Rod Proteins FlgB and FlgF

    PubMed Central

    Herlihey, Francesca A.; Osorio-Valeriano, Manuel; Dreyfus, Georges

    2016-01-01

    ABSTRACT SltF was identified previously as an autolysin required for the assembly of flagella in the alphaproteobacteria, but the nature of its peptidoglycan lytic activity remained unknown. Sequence alignment analyses suggest that it could function as either a muramidase, lytic transglycosylase, or β-N-acetylglucosaminidase. Recombinant SltF from Rhodobacter sphaeroides was purified to apparent homogeneity, and it was demonstrated to function as a lytic transglycosylase based on enzymatic assays involving mass spectrometric analyses. Circular dichroism (CD) analysis determined that it is composed of 83.4% α-structure and 1.48% β-structure and thus is similar to family 1A lytic transglycosylases. However, alignment of apparent SltF homologs identified in the genome database defined a new subfamily of the family 1 lytic transglycosylases. SltF was demonstrated to be endo-acting, cleaving within chains of peptidoglycan, with optimal activity at pH 7.0. Its activity is modulated by two flagellar rod proteins, FlgB and FlgF: FlgB both stabilizes and stimulates SltF activity, while FlgF inhibits it. Invariant Glu57 was confirmed as the sole catalytic acid/base residue of SltF. IMPORTANCE The bacterial flagellum is comprised of a basal body, hook, and helical filament, which are connected by a rod structure. With a diameter of approximately 4 nm, the rod is larger than the estimated pore size within the peptidoglycan sacculus, and hence its insertion requires the localized and controlled lysis of this essential cell wall component. In many beta- and gammaproteobacteria, this lysis is catalyzed by the β-N-acetylglucosaminidase domain of FlgJ. However, FlgJ of the alphaproteobacteria lacks this activity and instead it recruits a separate enzyme, SltF, for this purpose. In this study, we demonstrate that SltF functions as a newly identified class of lytic transglycosylases and that its autolytic activity is uniquely modulated by two rod proteins, FlgB and FlgF. PMID

  19. Bacteriophages as indicators of faecal pollution and enteric ...

    EPA Pesticide Factsheets

    Bacteriophages are an attractive alternative to fecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport due to their closer morphological and biological properties compared to FIB. Based on a meta-analysis of published data, we summarize concentrations of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in human waste, non-human waste, fresh and marine waters as well as removal through wastewater treatment processes. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the environment and provide an overview of the methods available for detection and enumeration of bacteriophages. In summary, concentrations of FIB bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Our investigation supports use of bacteriophages as viral surrogates especially for wastewater treatment processes, while additional research is needed to clarify their utility as indicators of viral fate and transport in the ambient water. Describes concentrations and removal through environmental and engineered systems of bacteriophages, fecal indicator bacteria and viral pathogens.

  20. Norovirus and FRNA bacteriophage determined by RT-qPCR and infectious FRNA bacteriophage in wastewater and oysters.

    PubMed

    Flannery, John; Keaveney, Sinéad; Rajko-Nenow, Paulina; O'Flaherty, Vincent; Doré, William

    2013-09-15

    Norovirus (NoV), the leading cause of adult non-bacterial gastroenteritis can be commonly detected in wastewater but the extent of NoV removal provided by wastewater treatment plants (WWTPs) is unclear. We monitored a newly commissioned WWTP with UV disinfection on a weekly basis over a six month period for NoV using RT-qPCR and for FRNA bacteriophage GA using both RT-qPCR (total concentration) and a plaque assay (infectious concentration). Mean concentrations of NoV GI and GII in influent wastewater were reduced by 0.25 and 0.41 log10 genome copies 100 ml(-1), respectively by the WWTP. The mean concentration of total FRNA bacteriophage GA was reduced by 0.35 log genome copies 100 ml(-1) compared to a reduction of infectious FRNA bacteriophage GA of 2.13 log PFU 100 ml(-1). A significant difference between concentrations of infectious and total FRNA bacteriophage GA was observed in treated, but not in untreated wastewaters. We conclude that RT-qPCR in isolation underestimates the reduction of infectious virus during wastewater treatment. We further compared the concentrations of infectious virus in combined sewer overflow (CSO) and UV treated effluents using FRNA bacteriophage GA. A greater percentage (98%) of infectious virus is released in CSO discharges than UV treated effluent (44%). Following a CSO discharge, concentrations of NoV GII and infectious FRNA bacteriophage GA in oysters from less than the limit of detection to 3150 genome copies 100 g(-1) and 1050 PFU 100 g(-1) respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Call for a dedicated European legal framework for bacteriophage therapy.

    PubMed

    Verbeken, Gilbert; Pirnay, Jean-Paul; Lavigne, Rob; Jennes, Serge; De Vos, Daniel; Casteels, Minne; Huys, Isabelle

    2014-04-01

    The worldwide emergence of antibiotic resistances and the drying up of the antibiotic pipeline have spurred a search for alternative or complementary antibacterial therapies. Bacteriophages are bacterial viruses that have been used for almost a century to combat bacterial infections, particularly in Poland and the former Soviet Union. The antibiotic crisis has triggered a renewed clinical and agricultural interest in bacteriophages. This, combined with new scientific insights, has pushed bacteriophages to the forefront of the search for new approaches to fighting bacterial infections. But before bacteriophage therapy can be introduced into clinical practice in the European Union, several challenges must be overcome. One of these is the conceptualization and classification of bacteriophage therapy itself and the extent to which it constitutes a human medicinal product regulated under the European Human Code for Medicines (Directive 2001/83/EC). Can therapeutic products containing natural bacteriophages be categorized under the current European regulatory framework, or should this framework be adapted? Various actors in the field have discussed the need for an adapted (or entirely new) regulatory framework for the reintroduction of bacteriophage therapy in Europe. This led to the identification of several characteristics specific to natural bacteriophages that should be taken into consideration by regulators when evaluating bacteriophage therapy. One important consideration is whether bacteriophage therapy development occurs on an industrial scale or a hospital-based, patient-specific scale. More suitable regulatory standards may create opportunities to improve insights into this promising therapeutic approach. In light of this, we argue for the creation of a new, dedicated European regulatory framework for bacteriophage therapy.

  2. Curcuminoids as EBV Lytic Activators for Adjuvant Treatment in EBV-Positive Carcinomas

    PubMed Central

    Ramayanti, Octavia; Brinkkemper, Mitch; Verkuijlen, Sandra A. W. M.; Ritmaleni, Leni; Go, Mei Lin

    2018-01-01

    Epstein-Barr virus (EBV) persists in nasopharyngeal (NPC) and gastric carcinomas (EBVaGC) in a tightly latent form. Cytolytic virus activation (CLVA) therapy employs gemcitabine and valproic acid (GCb+VPA) to reactivate latent EBV into the lytic phase and antiviral valganciclovir to enhance cell death and prevent virus production. CLVA treatment has proven safe in phase-I/II trials with promising clinical responses in patients with recurrent NPC. However, a major challenge is to maximize EBV lytic reactivation by CLVA. Curcumin, a dietary spice used in Asian countries, is known for its antitumor property and therapeutic potential. Novel curcuminoids that were developed to increase efficacy and bioavailability may serve as oral CLVA adjuvants. We investigated the potential of curcumin and its analogs (curcuminoids) to trigger the EBV lytic cycle in EBVaGC and NPC cells. EBV-reactivating effects were measured by immunoblot and immunofluorescence using monoclonal antibodies specific for EBV lytic proteins. Two of the hit compounds (41, EF24) with high lytic inducing activity were further studied for their synergistic or antagonistic effects when combined with GCb+VPA and analyzed by cytotoxicity and mRNA profiling assays to measure the EBV reactivation. Curcuminoid as a single agent significantly induced EBV reactivation in recombinant GC and NPC lines. The drug effects were dose- and time-dependent. Micromolar concentration of curcuminoid EF24 enhanced the CLVA effect in all cell systems except SNU719, a naturally infected EBVaGC cell that carries a more tightly latent viral genome. These findings indicated that EF24 has potential as EBV lytic activator and may serve as an adjuvant in CLVA treatment. PMID:29565326

  3. Curcuminoids as EBV Lytic Activators for Adjuvant Treatment in EBV-Positive Carcinomas.

    PubMed

    Ramayanti, Octavia; Brinkkemper, Mitch; Verkuijlen, Sandra A W M; Ritmaleni, Leni; Go, Mei Lin; Middeldorp, Jaap M

    2018-03-22

    Epstein-Barr virus (EBV) persists in nasopharyngeal (NPC) and gastric carcinomas (EBVaGC) in a tightly latent form. Cytolytic virus activation (CLVA) therapy employs gemcitabine and valproic acid (GCb+VPA) to reactivate latent EBV into the lytic phase and antiviral valganciclovir to enhance cell death and prevent virus production. CLVA treatment has proven safe in phase-I/II trials with promising clinical responses in patients with recurrent NPC. However, a major challenge is to maximize EBV lytic reactivation by CLVA. Curcumin, a dietary spice used in Asian countries, is known for its antitumor property and therapeutic potential. Novel curcuminoids that were developed to increase efficacy and bioavailability may serve as oral CLVA adjuvants. We investigated the potential of curcumin and its analogs (curcuminoids) to trigger the EBV lytic cycle in EBVaGC and NPC cells. EBV-reactivating effects were measured by immunoblot and immunofluorescence using monoclonal antibodies specific for EBV lytic proteins. Two of the hit compounds ( 41 , EF24 ) with high lytic inducing activity were further studied for their synergistic or antagonistic effects when combined with GCb+VPA and analyzed by cytotoxicity and mRNA profiling assays to measure the EBV reactivation. Curcuminoid as a single agent significantly induced EBV reactivation in recombinant GC and NPC lines. The drug effects were dose- and time-dependent. Micromolar concentration of curcuminoid EF24 enhanced the CLVA effect in all cell systems except SNU719, a naturally infected EBVaGC cell that carries a more tightly latent viral genome. These findings indicated that EF24 has potential as EBV lytic activator and may serve as an adjuvant in CLVA treatment.

  4. Cellular STAT3 functions via PCBP2 to restrain Epstein-Barr Virus lytic activation in B lymphocytes.

    PubMed

    Koganti, Siva; Clark, Carissa; Zhi, Jizu; Li, Xiaofan; Chen, Emily I; Chakrabortty, Sharmistha; Hill, Erik R; Bhaduri-McIntosh, Sumita

    2015-05-01

    A major hurdle to killing Epstein-Barr virus (EBV)-infected tumor cells using oncolytic therapy is the presence of a substantial fraction of EBV-infected cells that does not support the lytic phase of EBV despite exposure to lytic cycle-promoting agents. To determine the mechanism(s) underlying this refractory state, we developed a strategy to separate lytic from refractory EBV-positive (EBV(+)) cells. By examining the cellular transcriptome in separated cells, we previously discovered that high levels of host STAT3 (signal transducer and activator of transcription 3) curtail the susceptibility of latently infected cells to lytic cycle activation signals. The goals of the present study were 2-fold: (i) to determine the mechanism of STAT3-mediated resistance to lytic activation and (ii) to exploit our findings to enhance susceptibility to lytic activation. We therefore analyzed our microarray data set, cellular proteomes of separated lytic and refractory cells, and a publically available STAT3 chromatin immunoprecipitation sequencing (ChIP-Seq) data set to identify cellular PCBP2 [poly(C)-binding protein 2], an RNA-binding protein, as a transcriptional target of STAT3 in refractory cells. Using Burkitt lymphoma cells and EBV(+) cell lines from patients with hypomorphic STAT3 mutations, we demonstrate that single cells expressing high levels of PCBP2 are refractory to spontaneous and induced EBV lytic activation, STAT3 functions via cellular PCBP2 to regulate lytic susceptibility, and suppression of PCBP2 levels is sufficient to increase the number of EBV lytic cells. We expect that these findings and the genome-wide resources that they provide will accelerate our understanding of a longstanding mystery in EBV biology and guide efforts to improve oncolytic therapy for EBV-associated cancers. Most humans are infected with Epstein-Barr virus (EBV), a cancer-causing virus. While EBV generally persists silently in B lymphocytes, periodic lytic (re)activation of latent

  5. Bacteriophage-based nanoprobes for rapid bacteria separation

    NASA Astrophysics Data System (ADS)

    Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.

    2015-10-01

    The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying

  6. The possible use of V. parahaemolyticus - specific bacteriophages for prevention and therapy of infections caused by V. parahaemolyticus.

    PubMed

    Tskhvediani, A; Khukhunashvili, T; Eliashvili, T; Tsertsvadze, G; Gachechiladze, N; Tediashvili, M

    2014-06-01

    Vibrio parahaemolyticus is the most common halophilic Vibrio species causing serious gastroenteritis in humans. The main source of infection is consumption of undercooked or raw seafood or exposure to contaminated water. The monitoring conducted in 2006-2008 demonstrated that warm, subtropical climate and low- to moderate salinity of water in the Black Sea coastal zone provides a favorable environment for growth and spread of V. parahaemolyticus bacteria. Antibiotics are commonly applied for control V.parahaemolyticus infections in humans. However, with the growing problem with bacterial antibiotic-resistance search for alternative biological anti-infectives, such as bacteriophages, becomes more actual. The aim of the presented work was characterization of V. parahamolyticus- specific bacteriophages in relation with their possible use for treatment and prevention of food and waterborne gastroenteritis in humans infected with V.parahaemolyticus. 69 bacteriophages specific to V.parahaemolyticus were isolated from different water sources and 5 of them were characterized according to their virion morphology, host-range, temperature and pH dependence. Stability of phages in different media and solutions, also susceptibility to action of a number of protolithic enzymes was studied as well. Obtained results showed that studied bacteriophages can be used for preparation of phage mixture as a potential therapeutic preparation against V.parahaemolyticus associated infections.

  7. Immunology: Is Actin at the Lytic Synapse a Friend or a Foe?

    PubMed

    Hammer, John A

    2018-02-19

    Cytotoxic T cells and natural killer cells defend us against disease by secreting lytic granules. Whether actin facilitates or thwarts lytic granule secretion has been an open question. Recent results now indicate that the answer depends on the maturation stage of the immune cell-target cell contact. Published by Elsevier Ltd.

  8. The First Siphoviridae Family Bacteriophages Infecting Bordetella bronchiseptica Isolated from Environment.

    PubMed

    Petrovic, Aleksandra; Kostanjsek, Rok; Rakhely, Gabor; Knezevic, Petar

    2017-02-01

    Bordetella bronchiseptica is a well-known etiological agent of kennel cough in dogs and cats and one of the two causative agents of atrophic rhinitis, a serious swine disease. The aim of the study was to isolate B. bronchiseptica bacteriophages from environmental samples for the first time. A total of 29 phages from 65 water samples were isolated using the strain ATCC 10580 as a host. The lytic spectra of the phages were examined at 25 and 37 °C, using 12 strains of B. bronchiseptica. All phages were able to plaque on 25.0 % to 41.7 % of the strains. The selected phages showed similar morphology (Siphoviridae, morphotype B2), but variation of RFLP patterns and efficacy of plating on various strains. The partial genome sequence of phage vB_BbrS_CN1 showed its similarity to phages from genus Yuavirus. Using PCR, it was confirmed that the phages do not originate from the host strain, and environmental origin was additionally confirmed by the analysis of host genome sequence in silico and plating heated and unheated samples in parallel. Accordingly, this is the first isolation of B. bronchiseptica phages from environment and the first isolation and characterization of phages of B. bronchiseptica belonging to family Siphoviridae.

  9. Whey powders are a rich source and excellent storage matrix for dairy bacteriophages.

    PubMed

    Wagner, Natalia; Brinks, Erik; Samtlebe, Meike; Hinrichs, Jörg; Atamer, Zeynep; Kot, Witold; Franz, Charles M A P; Neve, Horst; Heller, Knut J

    2017-01-16

    Thirteen whey powders and 5 whey powder formulations were screened for the presence of dairy bacteriophages using a representative set of 8 acid-producing Lactococcus lactis and 5 Streptococcus thermophilus, and 8 flavour-producing Leuconostoc pseudomesenteroides and Leuconostoc mesenteroides strains. Lytic L. lactis phages were detected in all samples, while S. thermophilus and Leuconostoc phages were present in 50% or 40% of the samples, respectively. Maximal phage titers were 6×10 7 plaque-forming units (pfu)/g of whey powder for L. lactis phages, 1×10 7 pfu/g for Leuconostoc phages and 1×10 5 pfu/g for S. thermophilus phages. In total, 55 phages were isolated and characterized. Thirty one of the 33 lactococcal phages tested belonged to the wide-spread 936 phage group. In the course of this study, a PCR detection method for Leuconostoc phages (Ali et al., 2013) was adapted to new phage isolates. Furthermore, a remarkably high stability of phages in whey powder samples was documented during a long-term storage period of 4 years. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Escherichia coli K-12 and B contain functional bacteriophage P2 ogr genes.

    PubMed Central

    Slettan, A; Gebhardt, K; Kristiansen, E; Birkeland, N K; Lindqvist, B H

    1992-01-01

    The bacteriophage P2 ogr gene encodes an essential 72-amino-acid protein which acts as a positive regulator of P2 late transcription. A P2 ogr deletion phage, which depends on the supply of Ogr protein in trans for lytic growth on Escherichia coli C, has previously been constructed. E. coli B and K-12 were found to support the growth of the ogr-defective P2 phage because of the presence of functional ogr genes located in cryptic P2-like prophages in these strains. The cryptic ogr genes were cloned and sequenced. Compared with the P2 wild-type ogr gene, the ogr genes in the B and K-12 strains are conserved, containing mostly silent base substitutions. One of the base substitutions in the K-12 ogr gene results in replacement of an alanine with valine at position 57 in the Ogr protein but does not seem to affect the function of Ogr as a transcriptional activator. The cryptic ogr genes are constitutively transcribed, apparently at a higher level than the wild-type ogr gene in a P2 lysogen. Images PMID:1597424

  11. Bacteriophages in the human gut: Our fellow travelers throughout life and potential biomarkers of heath or disease.

    PubMed

    Bakhshinejad, Babak; Ghiasvand, Saeedeh

    2017-08-15

    The gastrointestinal (GI) tract is populated by a huge variety of viruses. Bacterial viruses (bacteriophages) constitute the largest and the most unrecognized part of virome. The total bacteriophage community of the human gut is called phageome. Phages colonize the gut from the earliest moments of life and become our fellow travelers throughout life. Phageome seems to be unique to each individual and shows a high degree of interpersonal variation. In the healthy gut, a vast majority of phages have a lysogenic lifestyle. These prophages serve as a major respository of mobile genetic elements in the gut and play key roles in the exchange of genetic material between bacterial species via horizontal gene transfer (HGT). But, imbalance in the gut microbial community during dysbiosis, caused by diseases or environmental stresses such as antibiotics, is accompanied by induction of prophages leading to a decreased ratio of symbionts to pathobionts. Based on this, a diseased gut is transformed from an environment predominantly occupied by prophages to an ecosystem mostly inhabited by lytic phages. A growing body of evidence has provided support for the notion that phageome structure and composition change dependent on the physiological or pathological status of the body. This has been demonstrated by pronounced quantitative and qualitative differences between the phageome of healthy individuals and patients. Although many aspects of the contribution made by phages to human biology remain to be understood, recent findings favor the suggestion that phageome might represent potential to serve as a biomarker of health or disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay

    Treesearch

    Chiaki Hori; Jill Gaskell; Kiyohiko Igarashi; Masahiro Samejima; David Hibbett; Bernard Henrissat; Dan Cullen

    2013-01-01

    To degrade the polysaccharides, wood-decay fungi secrete a variety of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) classified into various sequence-based families of carbohydrate-active enzymes (CAZys) and their appended carbohydrate-binding modules (CBM). Oxidative enzymes, such as cellobiose dehydrogenase (CDH) and lytic polysaccharide monooxygenase (...

  13. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection.

    PubMed

    Khawaldeh, A; Morales, S; Dillon, B; Alavidze, Z; Ginn, A N; Thomas, L; Chapman, S J; Dublanchet, A; Smithyman, A; Iredell, J R

    2011-11-01

    We describe the success of adjunctive bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection in the context of bilateral ureteric stents and bladder ulceration, after repeated failure of antibiotics alone. No bacteriophage-resistant bacteria arose, and the kinetics of bacteriophage and bacteria in urine suggest self-sustaining and self-limiting infection.

  14. Genomic diversity of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum.

    PubMed

    Castillo, Daniel; Middelboe, Mathias

    2016-12-01

    Bacteriophages infecting the fish pathogen Flavobacterium psychrophilum can potentially be used to prevent and control outbreaks of this bacterium in salmonid aquaculture. However, the application of bacteriophages in disease control requires detailed knowledge on their genetic composition. To explore the diversity of F. pyschrophilum bacteriophages, we have analyzed the complete genome sequences of 17 phages isolated from two distant geographic areas (Denmark and Chile), including the previously characterized temperate bacteriophage 6H. Phage genome size ranged from 39 302 to 89 010 bp with a G+C content of 27%-32%. None of the bacteriophages isolated in Denmark contained genes associated with lysogeny, whereas the Chilean isolates were all putative temperate phages and similar to bacteriophage 6H. Comparative genome analysis showed that phages grouped in three different genetic clusters based on genetic composition and gene content, indicating a limited genetic diversity of F. psychrophilum-specific bacteriophages. However, amino acid sequence dissimilarity (25%) was found in putative structural proteins, which could be related to the host specificity determinants. This study represents the first analysis of genomic diversity and composition among bacteriophages infecting the fish pathogen F. psychrophilum and discusses the implications for the application of phages in disease control. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ϕR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF.

    PubMed

    Leon-Velarde, Carlos G; Happonen, Lotta; Pajunen, Maria; Leskinen, Katarzyna; Kropinski, Andrew M; Mattinen, Laura; Rajtor, Monika; Zur, Joanna; Smith, Darren; Chen, Shu; Nawaz, Ayesha; Johnson, Roger P; Odumeru, Joseph A; Griffiths, Mansel W; Skurnik, Mikael

    2016-09-01

    Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in detail, with the aim of

  16. Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ϕR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF

    PubMed Central

    Happonen, Lotta; Pajunen, Maria; Leskinen, Katarzyna; Kropinski, Andrew M.; Mattinen, Laura; Rajtor, Monika; Zur, Joanna; Smith, Darren; Chen, Shu; Nawaz, Ayesha; Johnson, Roger P.; Odumeru, Joseph A.; Griffiths, Mansel W.

    2016-01-01

    ABSTRACT Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica. To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. IMPORTANCE Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in

  17. Occurrence of Propionibacterium freudenreichii bacteriophages in swiss cheese.

    PubMed Central

    Gautier, M; Rouault, A; Sommer, P; Briandet, R

    1995-01-01

    We isolated bacteriophages active against Propionibacterium freudenreichii from 16 of 32 swiss cheese samples. Bacteriophage concentrations ranged from 14 to 7 x 10(5) PFU/g, depending on the sample and the sensitive strain used for detection. Only a few strains, 8 of the 44 strains of P. freudenreichii in our collection, were sensitive. We observed that multiplication of bacteriophages occurred in the cheese loaf during multiplication of propionibacteria in a warm curing room, but it seems that these bacteriophages have no adverse effect on the development of the propionic flora. We also found that sensitive cells, originating from either the starter or the cheese-making milk, were present at a high level (10(9) CFU/g) in the cheese. PMID:7618869

  18. Reduction of Salmonella in ground chicken using a bacteriophage.

    PubMed

    Grant, Ar'Quette; Parveen, Salina; Schwarz, Jurgen; Hashem, Fawzy; Vimini, Bob

    2017-08-01

    This study's goal was to ascertain the effectiveness of a commercially available Salmonella bacteriophage during ground chicken production focusing on: water source, different Salmonella serovars, and time. Salmonella-free boneless, skinless chicken meat was inoculated with 4.0 Log CFU/cm2 of either a cocktail of 3 Salmonella isolates derived from ground chicken (GC) or a cocktail of 3 Salmonella strains not isolated from ground chicken (non-GC). Bacteriophages were spread onto the chicken using sterile tap or filtered water for 30 min or 8 h. Salmonella was recovered using standard plating method. Greater Salmonella reduction was observed when the bacteriophage was diluted in sterile tap water than in sterile filtered water: 0.39 Log CFU/cm2 and 0.23 Log CFU/cm2 reduction after 30 min, respectively (P < 0.05). The non-GC isolates showed reductions of 0.71 Log CFU/cm2 and 0.90 Log CFU/cm2 after 30 min and 8 h, respectively (P < 0.05). The GC isolates were less sensitive to the bacteriophage: 0.39 Log CFU/cm2 and 0.67 Log CFU/cm2 reductions after 30 min and 8 h, respectively (P < 0.05). In conclusion, bacteriophage reduction was dependent on water used to dilute the bacteriophage, Salmonella's susceptibility to the bacteriophage, and treatment time. © 2017 Poultry Science Association Inc.

  19. Bacteriophage T4 Infection of Stationary Phase E. coli: Life after Log from a Phage Perspective

    PubMed Central

    Bryan, Daniel; El-Shibiny, Ayman; Hobbs, Zack; Porter, Jillian; Kutter, Elizabeth M.

    2016-01-01

    Virtually all studies of phage infections investigate bacteria growing exponentially in rich media. In nature, however, phages largely encounter non-growing cells. Bacteria entering stationary phase often activate well-studied stress defense mechanisms that drastically alter the cell, facilitating its long-term survival. An understanding of phage-host interactions in such conditions is of major importance from both an ecological and therapeutic standpoint. Here, we show that bacteriophage T4 can efficiently bind to, infect and kill E. coli in stationary phase, both in the presence and absence of a functional stationary-phase sigma factor, and explore the response of T4-infected stationary phase cells to the addition of fresh nutrients 5 or 24 h after that infection. An unexpected new mode of response has been identified. “Hibernation” mode is a persistent but reversible dormant state in which the infected cells make at least some phage enzymes, but halt phage development until appropriate nutrients become available before producing phage particles. Our evidence indicates that the block in hibernation mode occurs after the middle-mode stage of phage development; host DNA breakdown and the incorporation of the released nucleotides into phage DNA indicate that the enzymes of the nucleotide synthesizing complex, under middle-mode control, have been made and assembled into a functional state. Once fresh glucose and amino acids become available, the standard lytic infection process rapidly resumes and concentrations of up to 1011 progeny phage (an average of about 40 phage per initially present cell) are produced. All evidence is consistent with the hibernation-mode control point lying between middle mode and late mode T4 gene expression. We have also observed a “scavenger” response, where the infecting phage takes advantage of whatever few nutrients are available to produce small quantities of progeny within 2 to 5 h after infection. The scavenger response seems

  20. Modification of Escherichia coli–bacteriophage interactions by surfactants and antibiotics in vitro

    PubMed Central

    Scanlan, Pauline D.; Bischofberger, Anna M.

    2017-01-01

    Abstract Although experiments indicate that the abiotic environment plays an important role in bacterial interactions with their parasitic viruses (bacteriophages or phages), it is not yet clear how exposure to compounds present in nature alters the impact of phages on bacterial growth and evolution. To address this question, we exposed Escherichia coli K12 MG1655, in combination with three lytic phages, to various substances that natural and clinical microbial populations are likely to encounter: bile salts (present in mammalian gastrointestinal tracts), sodium dodecyl sulfate (SDS, a common surfactant in cleaning and hygiene products) and four antibiotics (present at variable concentrations in natural and clinical environments). Our results show that bile salts and SDS can reduce the detrimental effect of phages on bacterial growth. In some cases these compounds completely mitigated any negative effects of phages on bacterial growth and consequently bacteria did not evolve resistance to phages in these conditions. The proportional effects of phages were unaffected by antibiotics in most combinations, excepting three cases of phage-drug synergy. These results suggest that accounting for interactions between phages and environmental factors such as surfactants and antibiotics will improve understanding of both bacterial growth and resistance evolution to phages in vivo and in nature. PMID:27737900

  1. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.

    1984-03-30

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties.

  2. Genomic Diversity of Type B3 Bacteriophages of Caulobacter crescentus.

    PubMed

    Ash, Kurt T; Drake, Kristina M; Gibbs, Whitney S; Ely, Bert

    2017-07-01

    The genomes of the type B3 bacteriophages that infect Caulobacter crescentus are among the largest phage genomes thus far deposited into GenBank with sizes over 200 kb. In this study, we introduce six new bacteriophage genomes which were obtained from phage collected from various water systems in the southeastern United States and from tropical locations across the globe. A comparative analysis of the 12 available genomes revealed a "core genome" which accounts for roughly 1/3 of these bacteriophage genomes and is predominately localized to the head, tail, and lysis gene regions. Despite being isolated from geographically distinct locations, the genomes of these bacteriophages are highly conserved in both genome sequence and gene order. We also identified the insertions, deletions, translocations, and horizontal gene transfer events which are responsible for the genomic diversity of this group of bacteriophages and demonstrated that these changes are not consistent with the idea that modular reassortment of genomes occurs in this group of bacteriophages.

  3. Identification of the Essential Role of Viral Bcl-2 for Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication

    PubMed Central

    Liang, Qiming; Chang, Brian; Lee, Patrick; Brulois, Kevin F.; Ge, Jianning; Shi, Mude; Rodgers, Mary A.; Feng, Pinghui; Oh, Byung-Ha; Liang, Chengyu

    2015-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) evades host defenses through tight suppression of autophagy by targeting each step of its signal transduction: by viral Bcl-2 (vBcl-2) in vesicle nucleation, by viral FLIP (vFLIP) in vesicle elongation, and by K7 in vesicle maturation. By exploring the roles of KSHV autophagy-modulating genes, we found, surprisingly, that vBcl-2 is essential for KSHV lytic replication, whereas vFLIP and K7 are dispensable. Knocking out vBcl-2 from the KSHV genome resulted in decreased lytic gene expression at the mRNA and protein levels, a lower viral DNA copy number, and, consequently, a dramatic reduction in the amount of progeny infectious viruses, as also described in the accompanying article (A. Gelgor, I. Kalt, S. Bergson, K. F. Brulois, J. U. Jung, and R. Sarid, J Virol 89:5298–5307, 2015). More importantly, the antiapoptotic and antiautophagic functions of vBcl-2 were not required for KSHV lytic replication. Using a comprehensive mutagenesis analysis, we identified that glutamic acid 14 (E14) of vBcl-2 is critical for KSHV lytic replication. Mutating E14 to alanine totally blocked KSHV lytic replication but showed little or no effect on the antiapoptotic and antiautophagic functions of vBcl-2. Our study indicates that vBcl-2 harbors at least three important and genetically separable functions to modulate both cellular signaling and the virus life cycle. IMPORTANCE The present study shows for the first time that vBcl-2 is essential for KSHV lytic replication. Removal of the vBcl-2 gene results in a lower level of KSHV lytic gene expression, impaired viral DNA replication, and consequently, a dramatic reduction in the level of progeny production. More importantly, the role of vBcl-2 in KSHV lytic replication is genetically separated from its antiapoptotic and antiautophagic functions, suggesting that the KSHV Bcl-2 carries a novel function in viral lytic replication. PMID:25740994

  4. Anti-TNFα therapy for inflammatory bowel diseases is associated with Epstein-Barr virus lytic activation.

    PubMed

    Lapsia, Sameer; Koganti, Siva; Spadaro, Salvatore; Rajapakse, Ramona; Chawla, Anupama; Bhaduri-McIntosh, Sumita

    2016-02-01

    Anti-TNFα therapy, known to suppress T-cell immunity, is increasingly gaining popularity for treatment of autoimmune diseases including inflammatory bowel diseases (IBD). T-cell suppression increases the risk of B-cell EBV-lymphoproliferative diseases and lymphomas. Since EBV-lytic activation is essential for development of EBV-lymphomas and there have been reports of EBV-lymphomas in patients treated with anti-TNFα therapy, we investigated if patients treated with anti-TNFα antibodies demonstrate greater EBV-lytic activity in blood. Peripheral blood mononuclear cells from 10 IBD patients solely on anti-TNFα therapy compared to 3 control groups (10 IBD patients not on immunosuppressive therapy, 10 patients with abdominal pain but without IBD, and 10 healthy subjects) were examined for the percentage of T-cells, EBV load and EBV-lytic transcripts. Patients on anti-TNFα therapy had significantly fewer T-cells, greater EBV load, and increased levels of transcripts from EBV-lytic genes of all kinetic classes compared to controls. Furthermore, exposure of EBV-infected B-cell lines to anti-TNFα antibodies resulted in increased levels of BZLF1 mRNA; BZLF1 encodes for ZEBRA, the viral latency-to-lytic cycle switch. Thus, IBD patients treated with anti-TNFα antibodies have greater EBV loads likely due to enhanced EBV-lytic gene expression and anti-TNFα antibodies may be sufficient to activate the EBV lytic cycle. Findings from this pilot study lay the groundwork for additional scientific and clinical investigation into the effects of anti-TNFα therapy on the life cycle of EBV, a ubiquitous oncovirus that causes lymphomas in the setting of immunocompromise. © 2015 Wiley Periodicals, Inc.

  5. Bacteriophages as indicators of faecal pollution and enteric virus removal.

    PubMed

    McMinn, B R; Ashbolt, N J; Korajkic, A

    2017-07-01

    Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. Bacteriophage are alternative fecal indicators that may be better surrogates for viral pathogens than fecal indicator bacteria (FIB). This report offers a summary of the existing literature concerning the utility of bacteriophage as indicators of viral presence (fecal sources and surface waters) and persistence (in built infrastructure and aquatic environments). Our findings indicate that bacteriophage levels in all matrices examined are consistently lower than FIB, but similar to viral pathogens. Furthermore, in built infrastructure (e.g. wastewater treatment systems) bacteriophage closely mimic viral pathogen persistence suggesting they may be adequate sentinels of enteric virus removal. © 2017 The Society for Applied Microbiology.

  6. Chloroquine inhibits lytic replication of Kaposi's sarcoma-associated herpesvirus by disrupting mTOR and p38-MAPK activation.

    PubMed

    Yang, Mengtian; Huang, Lu; Li, Xiaojuan; Kuang, Ersheng

    2016-09-01

    Lytic infection is essential for the persistent infection and pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV), and inhibiting KSHV lytic replication may effectively prevent the occurrence of KSHV-related diseases. Chloroquine (CQ), a well-known antimalarial drug and autophagy inhibitor, exerts broad-spectrum antiviral effects and shows anti-cancer therapeutic potential. However, the ability of CQ and its derivatives to control infection of oncogenic γ-herpesvirus remains undefined. Here we reveal that CQ suppresses KSHV lytic gene expression and virion production, and shows cytotoxicity toward KSHV lytically infected B cells at clinically acceptable doses. CQ suppresses mTOR and p38-MAPK pathway activation during KSHV lytic replication but not latent infection. Furthermore, CQ blocks Epstein-Barr virus (EBV) lytic replication via a distinct mechanism that is invoked to block virion production but does not affect viral gene expression. These results suggest that CQ is an effective antiviral drug against KSHV lytic infection. Our findings indicate that CQ treatment should be considered for controlling KSHV-related diseases, particularly for primary use in co-infection of KSHV with malaria. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Convection-enhanced delivery of M13 bacteriophage to the brain

    PubMed Central

    Ksendzovsky, Alexander; Walbridge, Stuart; Saunders, Richard C.; Asthagiri, Ashok R.; Heiss, John D.; Lonser, Russell R.

    2013-01-01

    Object Recent studies indicate that M13 bacteriophage, a very large nanoparticle, binds to β-amyloid and α-synuclein proteins, leading to plaque disaggregation in models of Alzheimer and Parkinson disease. To determine the feasibility, safety, and characteristics of convection-enhanced delivery (CED) of M13 bacteriophage to the brain, the authors perfused primate brains with bacteriophage. Methods Four nonhuman primates underwent CED of M13 bacteriophage (900 nm) to thalamic gray matter (4 infusions) and frontal white matter (3 infusions). Bacteriophage was coinfused with Gd-DTPA (1 mM), and serial MRI studies were performed during infusion. Animals were monitored for neurological deficits and were killed 3 days after infusion. Tissues were analyzed for bacteriophage distribution. Results Real-time T1-weighted MRI studies of coinfused Gd-DTPA during infusion demonstrated a discrete region of perfusion in both thalamic gray and frontal white matter. An MRI-volumetric analysis revealed that the mean volume of distribution (Vd) to volume of infusion (Vi) ratio of M13 bacteriophage was 2.3 ± 0.2 in gray matter and 1.9 ± 0.3 in white matter. The mean values are expressed ± SD. Immunohistochemical analysis demonstrated mean Vd:Vi ratios of 2.9 ± 0.2 in gray matter and 2.1 ± 0.3 in white matter. The Gd-DTPA accurately tracked M13 bacteriophage distribution (the mean difference between imaging and actual bacteriophage Vd was insignificant [p > 0.05], and was −2.2% ± 9.9% in thalamic gray matter and 9.1% ± 9.5% in frontal white matter). Immunohistochemical analysis revealed evidence of additional spread from the initial delivery site in white matter (mean Vd:Vi, 16.1 ± 9.1). All animals remained neurologically intact after infusion during the observation period, and histological studies revealed no evidence of toxicity. Conclusions The CED method can be used successfully and safely to distribute M13 bacteriophage in the brain. Furthermore, additional white

  8. Convection-enhanced delivery of M13 bacteriophage to the brain.

    PubMed

    Ksendzovsky, Alexander; Walbridge, Stuart; Saunders, Richard C; Asthagiri, Ashok R; Heiss, John D; Lonser, Russell R

    2012-08-01

    Recent studies indicate that M13 bacteriophage, a very large nanoparticle, binds to β-amyloid and α-synuclein proteins, leading to plaque disaggregation in models of Alzheimer and Parkinson disease. To determine the feasibility, safety, and characteristics of convection-enhanced delivery (CED) of M13 bacteriophage to the brain, the authors perfused primate brains with bacteriophage. Four nonhuman primates underwent CED of M13 bacteriophage (900 nm) to thalamic gray matter (4 infusions) and frontal white matter (3 infusions). Bacteriophage was coinfused with Gd-DTPA (1 mM), and serial MRI studies were performed during infusion. Animals were monitored for neurological deficits and were killed 3 days after infusion. Tissues were analyzed for bacteriophage distribution. Real-time T1-weighted MRI studies of coinfused Gd-DTPA during infusion demonstrated a discrete region of perfusion in both thalamic gray and frontal white matter. An MRI-volumetric analysis revealed that the mean volume of distribution (Vd) to volume of infusion (Vi) ratio of M13 bacteriophage was 2.3 ± 0.2 in gray matter and 1.9 ± 0.3 in white matter. The mean values are expressed ± SD. Immunohistochemical analysis demonstrated mean Vd:Vi ratios of 2.9 ± 0.2 in gray matter and 2.1 ± 0.3 in white matter. The Gd-DTPA accurately tracked M13 bacteriophage distribution (the mean difference between imaging and actual bacteriophage Vd was insignificant [p > 0.05], and was -2.2% ± 9.9% in thalamic gray matter and 9.1% ± 9.5% in frontal white matter). Immunohistochemical analysis revealed evidence of additional spread from the initial delivery site in white matter (mean Vd:Vi, 16.1 ± 9.1). All animals remained neurologically intact after infusion during the observation period, and histological studies revealed no evidence of toxicity. The CED method can be used successfully and safely to distribute M13 bacteriophage in the brain. Furthermore, additional white matter spread after infusion cessation

  9. The effects of bacteriophage and nanoparticles on microbial processes

    NASA Astrophysics Data System (ADS)

    Moody, Austin L.

    There are approximately 1031 tailed phages in the biosphere, making them the most abundant organism. Bacteriophages are viruses that infect bacteria. Due to the large diversity and abundance, no two bacteriophages that have been isolated are genetically the same. Phage products have potential in disease therapy to solve bacteria-related problems, such as infections resulting from resistant strains of Staphylococcus aureus. A bacteriophage capable of infecting methicillin-resistant S. aureus (MRSA) was isolated from bovine hair. The bacteriophage, named JB phage, was characterized using purification, amplification, cesium chloride banding, scanning electron microscopy, and transmission electron microscopy. JB phage and nanoparticles were used in various in vitro and in vivo models to test their effects on microbial processes. Scanning and transmission electron microscopy studies revealed strong interactions between JB phage and nanoparticles, which resulted in increased bacteriophage infectivity. JB phage and nanoparticle cocktails were used as a therapeutic to treat skin and systemic infections in mice caused by MRSA.

  10. Bacteriophage Mediated Killing of Staphylococcus aureus In Vitro on Orthopaedic K Wires in Presence of Linezolid Prevents Implant Colonization

    PubMed Central

    Kaur, Sandeep; Harjai, Kusum; Chhibber, Sanjay

    2014-01-01

    Background Infections of bone and joint tissues following arthroplasty surgeries remain a major challenge in orthopaedic settings. Methicillin resistant Staphylococcus aureus (MRSA) is recognised as an established pathogen in such infections. Combination therapy using linezolid and bacteriophage impregnated in biopolymer was investigated in the present study as an alternative strategy to prevent MRSA colonisation on the orthopaedic implant surface. Methodology Coating of stainless steel orthopaedic grade K-wires was achieved using hydroxypropylmethlycellulose (HPMC) mixed with phage alone, linezolid alone and phage and linezolid together. The potential of these agents to inhibit adhesion of S.aureus (MRSA) 43300 on K-wires was assessed. Coated and naked wires were analysed by scanning electron microscopy (SEM) and fluorescent staining. Result Significant reduction in bacterial adhesion was achieved on phage/linezolid wires in comparison to naked as well as HPMC coated wires. However, maximum reduction in bacterial adherence (∼4 log cycles) was observed on the wires coated with phage-linezolid combination. The frequency of emergence of resistant mutants was also negligible in presence of both the agents. Conclusion This study provides evidence to confirm that local delivery system employing linezolid (a potent protein synthesis inhibitor) along with a broad spectrum lytic bacteriophage (capable of self-multiplication) is able to attack the adhered as well as surrounding bacteria present near the implant site. Unlike other antibiotic based therapies, this combination has the potential to significantly restrict the emergence of resistant mutants, thus paving the way for effective treatment of MRSA associated infection of medical implants. PMID:24594764

  11. Genetic characterization of ØVC8 lytic phage for Vibrio cholerae O1.

    PubMed

    Solís-Sánchez, Alejandro; Hernández-Chiñas, Ulises; Navarro-Ocaña, Armando; De la Mora, Javier; Xicohtencatl-Cortes, Juan; Eslava-Campos, Carlos

    2016-03-22

    Epidemics and pandemics of cholera, a diarrheal disease, are attributed to Vibrio cholera serogroups O1 and O139. In recent years, specific lytic phages of V. cholera have been proposed to be important factors in the cyclic occurrence of cholera in endemic areas. However, the role and potential participation of lytic phages during long interepidemic periods of cholera in non-endemic regions have not yet been described. The purpose of this study was to isolate and characterize specific lytic phages of V. cholera O1 strains. Sixteen phages were isolated from wastewater samples collected at the Endhó Dam in Hidalgo State, Mexico, concentrated with PEG/NaCl, and purified by density gradient. The lytic activity of the purified phages was tested using different V. cholerae O1 and O139 strains. Phage morphology was visualized by transmission electron microscopy (TEM), and phage genome sequencing was performed using the Genome Analyzer IIx System. Genome assembly and bioinformatics analysis were performed using a set of high-throughput programs. Phage structural proteins were analyzed by mass spectrometry. Sixteen phages with lytic and lysogenic activity were isolated; only phage ØVC8 showed specific lytic activity against V. cholerae O1 strains. TEM images of ØVC8 revealed a phage with a short tail and an isometric head. The ØVC8 genome comprises linear double-stranded DNA of 39,422 bp with 50.8 % G + C. Of the 48 annotated ORFs, 16 exhibit homology with sequences of known function and several conserved domains. Bioinformatics analysis showed multiple conserved domains, including an Ig domain, suggesting that ØVC8 might adhere to different mucus substrates such as the human intestinal epithelium. The results suggest that ØVC8 genome utilize the "single-stranded cohesive ends" packaging strategy of the lambda-like group. The two structural proteins sequenced and analyzed are proteins of known function. ØVC8 is a lytic phage with specific activity against V. cholerae

  12. Microneedle-mediated transdermal bacteriophage delivery

    PubMed Central

    Ryan, Elizabeth; Garland, Martin J.; Singh, Thakur Raghu Raj; Bambury, Eoin; O’Dea, John; Migalska, Katarzyna; Gorman, Sean P.; McCarthy, Helen O.; Gilmore, Brendan F.; Donnelly, Ryan F.

    2012-01-01

    Interest in bacteriophages as therapeutic agents has recently been reawakened. Parenteral delivery is the most routinely-employed method of administration. However, injection of phages has numerous disadvantages, such as the requirement of a health professional for administration and the possibility of cross-contamination. Transdermal delivery offers one potential means of overcoming many of these problems. The present study utilized a novel poly (carbonate) (PC) hollow microneedle (MN) device for the transdermal delivery of Escherichia coli-specific T4 bacteriophages both in vitro and in vivo. MN successfully achieved bacteriophage delivery in vitro across dermatomed and full thickness skin. A concentration of 2.67 × 106 PFU/ml (plaque forming units per ml) was detected in the receiver compartment when delivered across dermatomed skin and 4.0 × 103 PFU/ml was detected in the receiver compartment when delivered across full thickness skin. An in vivo study resulted in 4.13 × 103 PFU/ml being detected in blood 30 min following initial MN-mediated phage administration. Clearance occurred rapidly, with phages being completely cleared from the systemic circulation within 24 h, which was expected in the absence of infection. We have shown here that MN-mediated delivery allows successful systemic phage absorption. Accordingly, bacteriophage-based therapeutics may now have an alternative route for systemic delivery. Once fully-investigated, this could lead to more widespread investigation of these interesting therapeutic viruses. PMID:22750416

  13. Predicting bacteriophage proteins located in host cell with feature selection technique.

    PubMed

    Ding, Hui; Liang, Zhi-Yong; Guo, Feng-Biao; Huang, Jian; Chen, Wei; Lin, Hao

    2016-04-01

    A bacteriophage is a virus that can infect a bacterium. The fate of an infected bacterium is determined by the bacteriophage proteins located in the host cell. Thus, reliably identifying bacteriophage proteins located in the host cell is extremely important to understand their functions and discover potential anti-bacterial drugs. Thus, in this paper, a computational method was developed to recognize bacteriophage proteins located in host cells based only on their amino acid sequences. The analysis of variance (ANOVA) combined with incremental feature selection (IFS) was proposed to optimize the feature set. Using a jackknife cross-validation, our method can discriminate between bacteriophage proteins located in a host cell and the bacteriophage proteins not located in a host cell with a maximum overall accuracy of 84.2%, and can further classify bacteriophage proteins located in host cell cytoplasm and in host cell membranes with a maximum overall accuracy of 92.4%. To enhance the value of the practical applications of the method, we built a web server called PHPred (〈http://lin.uestc.edu.cn/server/PHPred〉). We believe that the PHPred will become a powerful tool to study bacteriophage proteins located in host cells and to guide related drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability.

    PubMed

    Kracher, Daniel; Andlar, Martina; Furtmüller, Paul G; Ludwig, Roland

    2018-02-02

    Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-containing enzymes that oxidatively degrade insoluble plant polysaccharides and soluble oligosaccharides. Upon reductive activation, they cleave the substrate and promote biomass degradation by hydrolytic enzymes. In this study, we employed LPMO9C from Neurospora crassa , which is active toward cellulose and soluble β-glucans, to study the enzyme-substrate interaction and thermal stability. Binding studies showed that the reduction of the mononuclear active-site copper by ascorbic acid increased the affinity and the maximum binding capacity of LPMO for cellulose. The reduced redox state of the active-site copper and not the subsequent formation of the activated oxygen species increased the affinity toward cellulose. The lower affinity of oxidized LPMO could support its desorption after catalysis and allow hydrolases to access the cleavage site. It also suggests that the copper reduction is not necessarily performed in the substrate-bound state of LPMO. Differential scanning fluorimetry showed a stabilizing effect of the substrates cellulose and xyloglucan on the apparent transition midpoint temperature of the reduced, catalytically active enzyme. Oxidative auto-inactivation and destabilization were observed in the absence of a suitable substrate. Our data reveal the determinants of LPMO stability under turnover and non-turnover conditions and indicate that the reduction of the active-site copper initiates substrate binding. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Stabilization of T4 bacteriophage at acidic and basic pH by adsorption on paper.

    PubMed

    Meyer, Abigail; Greene, Melissa; Kimmelshue, Chad; Cademartiri, Rebecca

    2017-12-01

    Bacteriophages find applications in agriculture, medicine, and food safety. Many of these applications can expose bacteriophages to stresses that inactivate them including acidic and basic pH. Bacteriophages can be stabilized against these stresses by materials including paper, a common material in packaging and consumer products. Combining paper and bacteriophages creates antibacterial materials, which can reduce the use of antibiotics. Here we show that adsorption on paper protects T4, T5, and T7 bacteriophage from acidic and basic pH. We added bacteriophages to filter paper functionalized with carboxylic acid (carboxyl methyl cellulose) or amine (chitosan) groups, and exposed them to pH from 5.6 to 14. We determined the number of infective bacteriophages after exposure directly on the paper. All papers extended the lifetime of infective bacteriophage by at least a factor of four with some papers stabilizing bacteriophages for up to one week. The degree of stabilization depended on five main factors (i) the family of the bacteriophage, (ii) the charge of the paper and bacteriophages, (iii) the location of the bacteriophages within the paper, (iv) the ability of the paper to prevent bacteriophage-bacteriophage aggregation, and (v) the sensitivity of the bacteriophage proteins to the tested pH. Even when adsorbed on paper the bacteriophages were able to remove E. coli in milk. Choosing the right paper modification or material will protect bacteriophages adsorbed on that material against detrimental pH and other environmental challenges increasing the range of applications of bacteriophages on materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Purification and Properties of Bacteriophage T4-Induced RNA Ligase*

    PubMed Central

    Silber, Robert; Malathi, V. G.; Hurwitz, Jerard

    1972-01-01

    An enzyme, purified 300-fold from Escherichia coli infected with bacteriophage T4, catalyzes the conversion of 5′-termini of polyribonucleotides to internal phosphodiester bonds. The reaction requires ATP and Mg++. For every 5′-32P terminus rendered resistant to alkaline phosphatase, an equal amount of AMP and PPi are formed. Various polyribonucleotides are substrates in the reaction; to date, the best substrate is [5′-32P]polyriboadenylate. With the latter substrate, no evidence of intermolecular reaction was obtained. However, the 5′-32P termini of poly(A) rendered resistant to alkaline phosphatase are also resistant to attack by RNase II, polynucleotide phosphorylase, and low concentrations of venom phosphodiesterase. Since the product formed with poly(A) lacks 3′-hydroxyl ends, as measured with these exonucleases, the enzyme appears to convert linear molecules of polyriboadenylate to a circular form by the intramolecular covalent linkage of the 5′-phosphate end to the 3′-hydroxyl terminus. Images PMID:4342972

  17. In vitro and in vivo analyses of the Bacillus anthracis spore cortex lytic protein SleL

    PubMed Central

    Lambert, Emily A.; Sherry, Nora

    2012-01-01

    The bacterial endospore is the most resilient biological structure known. Multiple protective integument layers shield the spore core and promote spore dehydration and dormancy. Dormancy is broken when a spore germinates and becomes a metabolically active vegetative cell. Germination requires the breakdown of a modified layer of peptidoglycan (PG) known as the spore cortex. This study reports in vitro and in vivo analyses of the Bacillus anthracis SleL protein. SleL is a spore cortex lytic enzyme composed of three conserved domains: two N-terminal LysM domains and a C-terminal glycosyl hydrolase family 18 domain. Derivatives of SleL containing both, one or no LysM domains were purified and characterized. SleL is incapable of digesting intact cortical PG of either decoated spores or purified spore sacculi. However, SleL derivatives can hydrolyse fragmented PG substrates containing muramic-δ-lactam recognition determinants. The muropeptides that result from SleL hydrolysis are the products of N-acetylglucosaminidase activity. These muropeptide products are small and readily released from the cortex matrix. Loss of the LysM domain(s) decreases both PG binding and hydrolysis activity but these domains do not appear to determine specificity for muramic-δ-lactam. When the SleL derivatives are expressed in vivo, those proteins lacking one or both LysM domains do not associate with the spore. Instead, these proteins remain in the mother cell and are apparently degraded. SleL with both LysM domains localizes to the coat or cortex of the endospore. The information revealed by elucidating the role of SleL and its domains in B. anthracis sporulation and germination is important in designing new spore decontamination methods. By exploiting germination-specific lytic enzymes, eradication techniques may be greatly simplified. PMID:22343356

  18. Narrow-Host-Range Bacteriophages That Infect Rhizobium etli Associate with Distinct Genomic Types

    PubMed Central

    Santamaría, Rosa Isela; Bustos, Patricia; Sepúlveda-Robles, Omar; Lozano, Luis; Rodríguez, César; Fernández, José Luis; Juárez, Soledad; Kameyama, Luis; Guarneros, Gabriel; Dávila, Guillermo

    2014-01-01

    In this work, we isolated and characterized 14 bacteriophages that infect Rhizobium etli. They were obtained from rhizosphere soil of bean plants from agricultural lands in Mexico using an enrichment method. The host range of these phages was narrow but variable within a collection of 48 R. etli strains. We obtained the complete genome sequence of nine phages. Four phages were resistant to several restriction enzymes and in vivo cloning, probably due to nucleotide modifications. The genome size of the sequenced phages varied from 43 kb to 115 kb, with a median size of ∼45 to 50 kb. A large proportion of open reading frames of these phage genomes (65 to 70%) consisted of hypothetical and orphan genes. The remainder encoded proteins needed for phage morphogenesis and DNA synthesis and processing, among other functions, and a minor percentage represented genes of bacterial origin. We classified these phages into four genomic types on the basis of their genomic similarity, gene content, and host range. Since there are no reports of similar sequences, we propose that these bacteriophages correspond to novel species. PMID:24185856

  19. Glutathione diminishes Dibutyltin- and tributyltin-induced loss of lytic function in human natural killer cells

    PubMed Central

    Powell, Jeralyn J.; Davis, McLisa V.; Whalen, Margaret M.

    2008-01-01

    This study investigated whether reduced glutathione (GSH) was able to alter the negative effects of tributyltin (TBT) or dibutyltin (DBT) on the lytic function of human natural killer (NK) cells. NK cells are an intital immune defense against the development of tumors or viral infections. TBT and DBT are widespread environmental contaminants, due to their various industrial applications. Both TBT and DBT have been shown to decrease the ability of NK cells to lyse tumor cells (lytic function). The results indicated that the presence of GSH during exposure of NK cells to TBT or DBT diminished the negative effect of the BT on the lytic function of NK cells. This suggests that interaction TBT and DBT with functionally relevant sulfhydryl groups in NK cells may be part of the mechanism by which they decrease NK lytic function. PMID:18821099

  20. Glutathione diminishes tributyltin- and dibutyltin-induced loss of lytic function in human natural killer cells.

    PubMed

    Powell, Jeralyn J; Davis, McLisa V; Whalen, Margaret M

    2009-01-01

    This study investigated whether reduced glutathione (GSH) was able to alter the negative effects of tributyltin (TBT) or dibutyltin (DBT) on the lytic function of human natural killer (NK) cells. NK cells are an initial immune defense against the development of tumors or viral infections. TBT and DBT are widespread environmental contaminants, due to their various industrial applications. Both TBT and DBT have been shown to decrease the ability of NK cells to lyse tumor cells (lytic function). The results indicated that the presence of GSH during the exposure of NK cells to TBT or DBT diminished the negative effect of the butyltin on the lytic function of NK cells. This suggests that the interaction of TBT and DBT with functionally relevant sulfhydryl groups in NK cells may be part of the mechanism by which they decrease NK lytic function.

  1. Bacteriophages of Yersinia pestis.

    PubMed

    Zhao, Xiangna; Skurnik, Mikael

    2016-01-01

    Bacteriophage play many varied roles in microbial ecology and evolution. This chapter collates a vast body of knowledge and expertise on Yersinia pestis phages, including the history of their isolation and classical methods for their isolation and identification. The genomic diversity of Y. pestis phage and bacteriophage islands in the Y. pestis genome are also discussed because all phage research represents a branch of genetics. In addition, our knowledge of the receptors that are recognized by Y. pestis phage, advances in phage therapy for Y. pestis infections, the application of phage in the detection of Y. pestis, and clustered regularly interspaced short palindromic repeats (CRISPRs) sequences of Y. pestis from prophage DNA are all reviewed here.

  2. Bacteriophage-based synthetic biology for the study of infectious diseases

    PubMed Central

    Lu, Timothy K.

    2014-01-01

    Since their discovery, bacteriophages have contributed enormously to our understanding of molecular biology as model systems. Furthermore, bacteriophages have provided many tools that have advanced the fields of genetic engineering and synthetic biology. Here, we discuss bacteriophage-based technologies and their application to the study of infectious diseases. New strategies for engineering genomes have the potential to accelerate the design of novel phages as therapies, diagnostics, and tools. Though almost a century has elapsed since their discovery, bacteriophages continue to have a major impact on modern biological sciences, especially with the growth of multidrug-resistant bacteria and interest in the microbiome. PMID:24997401

  3. Isolation and characterization of Yersinia-specific bacteriophages from pig stools in Finland.

    PubMed

    Salem, M; Virtanen, S; Korkeala, H; Skurnik, M

    2015-03-01

    Bacteriophages infect bacteria, and they are present everywhere in the world including the intestinal tracts of animals. Yersiniosis is a common foodborne infection caused by Yersinia enterocolitica and Yersinia pseudotuberculosis. As these bacteria are frequently isolated from pigs, we wanted to know whether Yersinia-specific bacteriophages are also present in the pig stools and, if so, whether there is a positive or negative association between the prevalence of the Yersinia phages and the pathogenic Yersinia in the stool samples. Altogether 793 pig stool samples collected between November 2010 and March 2012 from 14 Finnish pig farms were screened for the presence of bacteriophages able to infect Y. enterocolitica serotype O:3, O:5,27 or O:9 strains, or Y. pseudotuberculosis serotype O:1a, O:1b or O:3 strains. Yersinia phages were isolated from 90 samples from eight farms. Yersinia enterocolitica O:3 was infected by 59 phages, 28 phages infected serotypes O:3 and O:5,27, and eight phages infected serotypes O:3, O:5,27 and O:9, and Y. pseudotuberculosis O:1a by eight phages. Many phages originating from pigs in the same farm were identical based on their restriction enzyme digestion patterns; 20 clearly different phages were selected for further characterization. Host ranges of these phages were tested with 94 Yersinia strains. Six of the phages infected eight strains, 13 phages infected three strains, and one phage infected only one strain, indicating that the phages had a relatively narrow host range. There was a clear association between the presence of the host bacteria and specific phages in the stools. The isolated bacteriophages may have potential as biocontrol agents for yersiniosis in both humans and pigs in future, and as alternatives or in addition to antibiotics. To our knowledge, this is the first reported isolation of Yersinia-specific phages from pig stool samples. © 2014 The Society for Applied Microbiology.

  4. Expression of lysozymes from Erwinia amylovora phages and Erwinia genomes and inhibition by a bacterial protein.

    PubMed

    Müller, Ina; Gernold, Marina; Schneider, Bernd; Geider, Klaus

    2012-01-01

    Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme. Copyright © 2012 S. Karger AG, Basel.

  5. Evolution and the complexity of bacteriophages.

    PubMed

    Serwer, Philip

    2007-03-13

    The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the presence of cellular gene homologs, (3) determine

  6. Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency*

    PubMed Central

    Eibinger, Manuel; Ganner, Thomas; Bubner, Patricia; Rošker, Stephanie; Kracher, Daniel; Haltrich, Dietmar; Ludwig, Roland; Plank, Harald; Nidetzky, Bernd

    2014-01-01

    Lytic polysaccharide monooxygenase (LPMO) represents a unique principle of oxidative degradation of recalcitrant insoluble polysaccharides. Used in combination with hydrolytic enzymes, LPMO appears to constitute a significant factor of the efficiency of enzymatic biomass depolymerization. LPMO activity on different cellulose substrates has been shown from the slow release of oxidized oligosaccharides into solution, but an immediate and direct demonstration of the enzyme action on the cellulose surface is lacking. Specificity of LPMO for degrading ordered crystalline and unordered amorphous cellulose material of the substrate surface is also unknown. We show by fluorescence dye adsorption analyzed with confocal laser scanning microscopy that a LPMO (from Neurospora crassa) introduces carboxyl groups primarily in surface-exposed crystalline areas of the cellulosic substrate. Using time-resolved in situ atomic force microscopy we further demonstrate that cellulose nano-fibrils exposed on the surface are degraded into shorter and thinner insoluble fragments. Also using atomic force microscopy, we show that prior action of LPMO enables cellulases to attack otherwise highly resistant crystalline substrate areas and that it promotes an overall faster and more complete surface degradation. Overall, this study reveals key characteristics of LPMO action on the cellulose surface and suggests the effects of substrate morphology on the synergy between LPMO and hydrolytic enzymes in cellulose depolymerization. PMID:25361767

  7. Bacteriophage sensitivity patterns among bacteria isolated from marine waters

    NASA Astrophysics Data System (ADS)

    Moebus, K.; Nattkemper, H.

    1981-09-01

    Phage-host cross-reaction tests were performed with 774 bacterial strains and 298 bacteriophages. The bacteria (bacteriophages) were isolated at different times from water samples collected in the Atlantic Ocean between the European continental shelf and the Sargasso Sea: 733 (258) strains; in the North Sea near Helgoland: 31 (31) strains; and in the Bay of Biscay: 10 (9) strains. Of the Atlantic Ocean bacteria 326 were found to be susceptible to one or more Atlantic Ocean bacteriophage(s). The bacteriophage sensitivity patterns of these bacteria vary considerably, placing 225 of them in two large clusters of bacteriophage-host systems. Taking all into account, 250 of the 326 Atlantic Ocean bacteria are different from each other. This high degree of variation among the bacteria distinguishes microbial populations derived from widely separated eastern and western regions of the Atlantic Ocean. It also sets apart from each other the populations derived from samples collected at successive stations some 200 miles apart, although to a lesser degree. With bacterial populations found from samples collected on the way back and forth between Europe and the Sargasso Sea a gradual change was observed from "western" phage sensitivity patterns to "eastern" ones. Sixty-nine Atlantic Ocean bacteria are sensitive to bacteriophages isolated from the North Sea and the Bay of Biscay; of these only 26 strains are also susceptible to Atlantic Ocean phages. The interpretation of the results is based on the hydrographical conditions prevailing in the northern Atlantic Ocean including the North Sea, and on the assumption that the microbial populations investigated have undergone genetic changes while being transported within water masses from west to east.

  8. Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage

    PubMed Central

    Qimron, Udi; Marintcheva, Boriana; Tabor, Stanley; Richardson, Charles C.

    2006-01-01

    Use of bacteriophages as a therapy for bacterial infection has been attempted over the last century. Such an endeavor requires the elucidation of basic aspects of the host–virus interactions and the resistance mechanisms of the host. Two recently developed bacterial collections now enable a genomewide search of the genetic interactions between Escherichia coli and bacteriophages. We have screened >85% of the E. coli genes for their ability to inhibit growth of T7 phage and >90% of the host genes for their ability to be used by the virus. In addition to identifying all of the known interactions, several other interactions have been identified. E. coli CMP kinase is essential for T7 growth, whereas overexpression of the E. coli uridine/cytidine kinase inhibits T7 growth. Mutations in any one of nine genes that encode enzymes for the synthesis of the E. coli lipopolysaccharide receptor for T7 adsorption leads to T7 resistance. Selection of T7 phage that can recognize these altered receptors has enabled the construction of phage to which the host is 100-fold less resistant. PMID:17135349

  9. T4 bacteriophage conjugated magnetic particles for E. coli capturing: Influence of bacteriophage loading, temperature and tryptone.

    PubMed

    Liana, Ayu Ekajayanthi; Marquis, Christopher P; Gunawan, Cindy; Gooding, J Justin; Amal, Rose

    2017-03-01

    This work demonstrates the use of bacteriophage conjugated magnetic particles (Fe 3 O 4 ) for the rapid capturing and isolation of Escherichia coli. The investigation of T4 bacteriophage adsorption to silane functionalised Fe 3 O 4 with amine (NH 2 ), carboxylic (COOH) and methyl (CH 3 ) surface functional groups reveals the domination of net electrostatic and hydrophobic interactions in governing bacteriophage adsorption. The bare Fe 3 O 4 and Fe 3 O 4 -NH 2 with high T4 loading captured 3-fold more E. coli (∼70% capturing efficiency) compared to the low loading T4 on Fe 3 O 4 -COOH, suggesting the significance of T4 loading in E. coli capturing efficiency. Importantly, it is further revealed that E. coli capture is highly dependent on the incubation temperature and the presence of tryptone in the media. Effective E. coli capturing only occurs at 37°C in tryptone-containing media with the absence of either conditions resulted in poor bacteria capture. The incubation temperature dictates the capturing ability of Fe 3 O 4 /T4, whereby T4 and E. coli need to establish an irreversible binding that occurred at 37°C. The presence of tryptophan-rich tryptone in the suspending media was also critical, as shown by a 3-fold increase in E. coli capture efficiency of Fe 3 O 4 /T4 in tryptone-containing media compared to that in tryptone-free media. This highlights for the first time that successful bacteria capturing requires not only an optimum tailoring of the particle's surface physicochemical properties for favourable bacteriophage loading, but also an in-depth understanding of how factors, such as temperature and solution chemistry influence the subsequent bacteriophage-bacteria interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Engineering bacteriophage for a pragmatic low-resource setting bacterial diagnostic platform.

    PubMed

    Talbert, Joey N; Alcaine, Samuel D; Nugen, Sam R

    2016-04-01

    Bacteriophages represent multifaceted building blocks that can be incorporated as substitutes for, or in unison with other detection methods, to create powerful new diagnostics for the detection of bacteria. The ease of phage manipulation, production, and detection speed clearly highlights that there remains unrealized opportunities to leverage these phage-based components in diagnostics amenable to resource-limited settings. The passage of regulations like the Food Safety Modernization act, and the ever increasing extent of global trade and travel, will create further demand for these types of diagnostics. While phage-based diagnostics have begun to entering the market place, further research is needed to ensure the potential benefits of phage-based technologies for public health are fully realized. We are just beginning to explore the possibilities that phage-based detection can offer us in the future. The combination of engineered phages as well as engineered enzymes could result in ultrasensitive detection systems for low-resource settings. Because the reporter enzyme is synthesized in vivo, we need to consider the options outside of normal enzyme reporters. In this case, common enzyme issues such as purification and long-term stability are less important. Phage-based diagnostics were conceptualized from out-of-the box thinking and the evolution of these systems should be as well.

  11. Adenovirus Death Protein (ADP) Is Required for Lytic Infection of Human Lymphocytes

    PubMed Central

    Murali, V. K.; Ornelles, D. A.; Gooding, L. R.; Wilms, H. T.; Huang, W.; Tollefson, A. E.; Wold, W. S. M.

    2014-01-01

    The adenovirus death protein (ADP) is expressed at late times during a lytic infection of species C adenoviruses. ADP promotes the release of progeny virus by accelerating the lysis and death of the host cell. Since some human lymphocytes survive while maintaining a persistent infection with species C adenovirus, we compared ADP expression in these cells with ADP expression in lymphocytes that proceed with a lytic infection. Levels of ADP were low in KE37 and BJAB cells, which support a persistent infection. In contrast, levels of ADP mRNA and protein were higher in Jurkat cells, which proceed with a lytic infection. Epithelial cells infected with an ADP-overexpressing virus died more quickly than epithelial cells infected with an ADP-deleted virus. However, KE37, and BJAB cells remained viable after infection with the ADP-overexpressing virus. Although the levels of ADP mRNA increased in KE37 and BJAB cells infected with the ADP-overexpressing virus, the fraction of cells with detectable ADP was unchanged, suggesting that the control of ADP expression differs between epithelial and lymphocytic cells. When infected with an ADP-deleted adenovirus, Jurkat cells survived and maintained viral DNA for greater than 1 month. These findings are consistent with the notion that the level of ADP expression determines whether lymphocytic cells proceed with a lytic or a persistent adenovirus infection. PMID:24198418

  12. Doxorubicin-conjugated bacteriophages carrying anti-MHC class I chain-related A for targeted cancer therapy in vitro.

    PubMed

    Phumyen, Achara; Jantasorn, Siriporn; Jumnainsong, Amonrat; Leelayuwat, Chanvit

    2014-01-01

    Cancer therapy by systemic administration of anticancer drugs, besides the effectiveness shown on cancer cells, demonstrated the side effects and cytotoxicity on normal cells. The targeted drug-carrying nanoparticles may decrease the required drug concentration at the site and the distribution of drugs to normal tissues. Overexpression of major histocompatibility complex class I chain-related A (MICA) in cancer is useful as a targeted molecule for the delivery of doxorubicin to MICA-expressing cell lines. The application of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide (EDC) chemistry was employed to conjugate the major coat protein of bacteriophages carrying anti-MICA and doxorubicin in a mildly acid condition. Doxorubicin (Dox) on phages was determined by double fluorescence of phage particles stained by M13-fluorescein isothiocyanate (FITC) and drug autofluorescence by flow cytometry. The ability of anti-MICA on phages to bind MICA after doxorubicin conjugation was evaluated by indirect enzyme-linked immunosorbent assay. One cervical cancer and four cholangiocarcinoma cell lines expressing MICA were used as models to evaluate targeting activity by cell cytotoxicity test. Flow cytometry and indirect enzyme-linked immunosorbent assay demonstrated that most of the phages (82%) could be conjugated with doxorubicin, and the Dox-carrying phage-displaying anti-MICA (Dox-phage) remained the binding activity against MICA. Dox-phage was more efficient than free drugs in killing all the cell lines tested. The half maximal inhibitory concentration (IC50) values of Dox-phage were lower than those of free drugs at approximately 1.6-6 times depending on MICA expressions and the cell lines tested. Evidently, the application of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide chemistry is effective to conjugate doxorubicin and major coat protein of bacteriophages without destroying binding activity of MICA antibodies. Dox-carrying bacteriophages targeting MICA have been

  13. [Biological properties of bacteriophages, active to Yersinia enterocolitica].

    PubMed

    Darsavelidze, M A; Kapanadze, Zh S; Chanishvili, T G

    2004-01-01

    The biological properties of 16 clones of Y. enterolitica bacteriophages were tested to select the most active for subsequent use. For the first time Y. enterocolitica virulent phages belonging to the family of Podoviridae were described and 7 serological groups of phages with no cross reactions were registered. The technology for the production of new therapeutic and prophylactic Y. enterocolitica polyvalent bacteriophage under laboratory conditions was developed. The effective multiplicity of contamination ensuring the maximum release of phages from bacterial cells, the optimum incubation temperature and the time of exposure were established. The experimental batches of therapeutic and prophylactic Y. enterocolitica polyvalent bacteriophage thus obtained met the requirements for antibacterial preparations.

  14. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1.

    PubMed

    Jakutyte-Giraitiene, Lina; Gasiunas, Giedrius

    2016-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) together with CRISPR-associated (cas) genes form an adaptive prokaryotic immune system which provides acquired resistance against viruses and plasmids. Bacillus subtilis presently is the best-characterized laboratory model for Gram-positive bacteria and also widely used for industrial production of enzymes, vitamins and antibiotics. In this study, we show that type II-A CRISPR-Cas system from Streptococcus thermophilus can be transferred into B. subtilis and provides heterologous protection against phage infection. We engineered a heterologous host by cloning S. thermophilus Cas9 and a spacer targeting bacteriophage SPP1 into the chromosome of B. subtilis, which does not harbor its own CRISPR-Cas systems. We found that the heterologous CRISPR-Cas system is functionally active in B. subtilis and provides resistance against bacteriophage SPP1 infection. The high efficiency of the acquired immunity against phage could be useful in generation of biotechnologically important B. subtilis strains with engineered chromosomes.

  15. NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing

    PubMed Central

    Hsu, Hsiang-Ting; Viswanath, Dixita I.; Önfelt, Björn

    2016-01-01

    Natural killer (NK) cell activation triggers sequential cellular events leading to destruction of diseased cells. We previously identified lytic granule convergence, a dynein- and integrin signal–dependent movement of lysosome-related organelles to the microtubule-organizing center, as an early step in the cell biological process underlying NK cell cytotoxicity. Why lytic granules converge during NK cell cytotoxicity, however, remains unclear. We experimentally controlled the availability of human ligands to regulate NK cell signaling and promote granule convergence with either directed or nondirected degranulation. By the use of acoustic trap microscopy, we generated specific effector–target cell arrangements to define the impact of the two modes of degranulation. NK cells with converged granules had greater targeted and less nonspecific “bystander” killing. Additionally, NK cells in which dynein was inhibited or integrin blocked under physiological conditions demonstrated increased nondirected degranulation and bystander killing. Thus, NK cells converge lytic granules and thereby improve the efficiency of targeted killing and prevent collateral damage to neighboring healthy cells. PMID:27903610

  16. Discovery and Biochemical Characterization of PlyP56, PlyN74, and PlyTB40—Bacillus Specific Endolysins

    PubMed Central

    Etobayeva, Irina; Linden, Sara B.; Alem, Farhang; Rizkalla, Lucas; Temple, Louise; Hakami, Ramin M.

    2018-01-01

    Three Bacillus bacteriophage-derived endolysins, designated PlyP56, PlyN74, and PlyTB40, were identified, cloned, purified, and characterized for their antimicrobial properties. Sequence alignment reveals these endolysins have an N-terminal enzymatically active domain (EAD) linked to a C-terminal cell wall binding domain (CBD). PlyP56 has a Peptidase_M15_4/VanY superfamily EAD with a conserved metal binding motif and displays biological dependence on divalent ions for activity. In contrast, PlyN74 and PlyTB40 have T7 lysozyme-type Amidase_2 and carboxypeptidase T-type Amidase_3 EADs, respectively, which are members of the MurNAc-LAA superfamily, but are not homologs and thus do not have a shared protein fold. All three endolysins contain similar SH3-family CBDs. Although minor host range differences were noted, all three endolysins show relatively broad antimicrobial activity against members of the Bacillus cereus sensu lato group with the highest lytic activity against B. cereus ATCC 4342. Characterization studies determined the optimal lytic activity for these enzymes was at physiological pH (pH 7.0–8.0), over a broad temperature range (4–55 °C), and at low concentrations of NaCl (<50 mM). Direct comparison of lytic activity shows the PlyP56 enzyme to be twice as effective at lysing the cell wall peptidoglycan as PlyN74 or PlyTB40, suggesting PlyP56 is a good candidate for further antimicrobial development as well as bioengineering studies. PMID:29883383

  17. Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages

    PubMed Central

    Esplin, Ian N. D.; Berg, Jordan A.; Sharma, Ruchira; Allen, Robert C.; Arens, Daniel K.; Ashcroft, Cody R.; Bairett, Shannon R.; Beatty, Nolan J.; Bickmore, Madeline; Bloomfield, Travis J.; Brady, T. Scott; Bybee, Rachel N.; Carter, John L.; Choi, Minsey C.; Duncan, Steven; Fajardo, Christopher P.; Foy, Brayden B.; Fuhriman, David A.; Gibby, Paul D.; Grossarth, Savannah E.; Harbaugh, Kala; Harris, Natalie; Hilton, Jared A.; Hurst, Emily; Hyde, Jonathan R.; Ingersoll, Kayleigh; Jacobson, Caitlin M.; James, Brady D.; Jarvis, Todd M.; Jaen-Anieves, Daniella; Jensen, Garrett L.; Knabe, Bradley K.; Kruger, Jared L.; Merrill, Bryan D.; Pape, Jenny A.; Payne Anderson, Ashley M.; Payne, David E.; Peck, Malia D.; Pollock, Samuel V.; Putnam, Micah J.; Ransom, Ethan K.; Ririe, Devin B.; Robinson, David M.; Rogers, Spencer L.; Russell, Kerri A.; Schoenhals, Jonathan E.; Shurtleff, Christopher A.; Simister, Austin R.; Smith, Hunter G.; Stephenson, Michael B.; Staley, Lyndsay A.; Stettler, Jason M.; Stratton, Mallorie L.; Tateoka, Olivia B.; Tatlow, P. J.; Taylor, Alexander S.; Thompson, Suzanne E.; Townsend, Michelle H.; Thurgood, Trever L.; Usher, Brittian K.; Whitley, Kiara V.; Ward, Andrew T.; Ward, Megan E. H.; Webb, Charles J.; Wienclaw, Trevor M.; Williamson, Taryn L.; Wells, Michael J.; Wright, Cole K.; Breakwell, Donald P.; Hope, Sandra

    2017-01-01

    ABSTRACT Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages. PMID:29146842

  18. Seven Bacteriophages Isolated from the Female Urinary Microbiota

    PubMed Central

    Malki, Kema; Sible, Emily; Cooper, Alexandria; Garretto, Andrea; Bruder, Katherine; Watkins, Siobhan C.

    2016-01-01

    Recent research has debunked the myth that urine is sterile, having uncovered bacteria within the bladders of healthy individuals. However, the identity, diversity, and putative roles of bacteriophages in the bladder are unknown. We report the draft genome sequences of seven bacteriophages isolated from microbial communities from adult female bladders. PMID:27881533

  19. Overproduction and characterization of a lytic polysaccharide monooxygenase in Bacillus subtilis using an assay based on ascorbate consumption.

    PubMed

    Yu, Mi-Ji; Yoon, Sun-Hee; Kim, Young-Wan

    2016-11-01

    Lytic polysaccharide monooxygenases (LPMOs) are copper ion-containing enzymes that degrade crystalline polysaccharides, such as cellulose or chitin, through an oxidative mechanism. To the best of our knowledge, there are no assay methods for the direct characterization of LPMOs that degrade substrates without coupled enzymes. As such, in this study, a coupled enzyme-free assay method for LPMOs was developed, which is based on measuring the consumption of ascorbic acid used as an external electron donor for LPMOs. To establish this new assay method, a chitin-active LPMO from Bacillus atrophaeus (BatLPMO10) was cloned as a model enzyme. An expression system using B. subtilis as the host cell yielded a simple purification process without complicated periplasmic fractionation, as well as improved productivity by 3.7-fold higher than that of Escherichia coli BL21(DE3). At the optimum pH determined using a newly developed assay, BatLPMO10 showed the highest activity in terms of promoting chitin degradation by a chitinase. In addition, the assay method indicated that BatLPMO10 was inhibited by sodium ions, and BatLPMO10 and a chitinase mutually enhanced each other's activities upon degrading chitin as the substrate. In conclusion, this hydrolase-free ascorbate assay allows quantitative analysis of BatLPMO10 without a coupled enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Methods of expanding bacteriophage host-range and bacteriophage produced by the methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crown, Kevin K.; Santarpia, Joshua

    A method of producing novel bacteriophages with expanded host-range and bacteriophages with expanded host ranges are disclosed. The method produces mutant phage strains which are infectious to a second host and can be more infectious to their natural host than in their natural state. The method includes repeatedly passaging a selected phage strain into bacterial cultures that contain varied ratios of its natural host bacterial strain with a bacterial strain that the phage of interest is unable to infect; the target-host. After each passage the resulting phage are purified and screened for activity against the target-host via double-overlay assays. Whenmore » mutant phages that are shown to infect the target-host are discovered, they are further propagated in culture that contains only the target-host to produce a stock of the resulting mutant phage.« less

  1. Optimizing the European regulatory framework for sustainable bacteriophage therapy in human medicine.

    PubMed

    Verbeken, Gilbert; Pirnay, Jean-Paul; De Vos, Daniel; Jennes, Serge; Zizi, Martin; Lavigne, Rob; Casteels, Minne; Huys, Isabelle

    2012-06-01

    For practitioners at hospitals seeking to use natural (not genetically modified, as appearing in nature) bacteriophages for treatment of antibiotic-resistant bacterial infections (bacteriophage therapy), Europe's current regulatory framework for medicinal products hinders more than it facilitates. Although many experts consider bacteriophage therapy to be a promising complementary (or alternative) treatment to antibiotic therapy, no bacteriophage-specific framework for documentation exists to date. Decades worth of historical clinical data on bacteriophage therapy (from Eastern Europe, particularly Poland, and the former Soviet republics, particularly Georgia and Russia, as well as from today's 27 EU member states and the US) have not been taken into account by European regulators because these data have not been validated under current Western regulatory standards. Consequently, applicants carrying out standard clinical trials on bacteriophages in Europe are obliged to initiate clinical work from scratch. This paper argues for a reduced documentation threshold for Phase 1 clinical trials of bacteriophages and maintains that bacteriophages should not be categorized as classical medicinal products for at least two reasons: (1) such a categorization is scientifically inappropriate for this specific therapy and (2) such a categorization limits the marketing authorization process to industry, the only stakeholder with sufficient financial resources to prepare a complete dossier for the competent authorities. This paper reflects on the current regulatory framework for medicines in Europe and assesses possible regulatory pathways for the (re-)introduction of bacteriophage therapy in a way that maintains its effectiveness and safety as well as its inherent characteristics of sustainability and in situ self-amplification and limitation.

  2. Dehydration of bacteriophages in electrospun nanofibers: effect of excipients in polymeric solutions

    NASA Astrophysics Data System (ADS)

    Koo, Charmaine K. W.; Senecal, Kris; Senecal, Andre; Nugen, Sam R.

    2016-12-01

    Bacteriophages are viruses capable of infecting and lysing target bacterial cells; as such they have potential applications in agriculture for decontamination of foods, food contact surfaces and food rinse water. Although bacteriophages can retain infectivity long-term using lyophilized storage, the process of freeze-drying can be time consuming and expensive. In this study, electrospinning was used for dehydrating bacteriophages in polyvinylpyrrolidone polymer solutions with addition of excipients (sodium chloride, magnesium sulfate, Tris-HCl, sucrose) in deionized water. The high voltage dehydration reduced the infectivity of bacteriophages following electrospinning, with the damaging effect abated with addition of storage media (SM) buffer and sucrose. SM buffer and sucrose also provided the most protection over extended storage (8 weeks; 20 °C 1% relative humidity) by mitigating environmental effects on the dried bacteriophages. Magnesium sulfate however provided the least protection due to coagulation effects of the ion, which can disrupt the native conformation of the bacteriophage protein coat. Storage temperatures (20 °C, 4 °C and -20 °C 1% relative humidity) had a minimal effect while relative humidity had substantial effect on the infectivity of bacteriophages. Nanofibers stored in higher relative humidity (33% and 75%) underwent considerable damage due to extensive water absorption and disruption of the fibers. Overall, following storage of nanofiber mats for eight weeks at ambient temperatures, high infective phage concentrations (106-107 PFU ml-1) were retained. Therefore, this study provided valuable insights on preservation and dehydration of bacteriophages by electrospinning in comparison to freeze drying and liquid storage, and the influence of excipients on the viability of bacteriophages.

  3. A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis.

    PubMed

    Burchard, R P; Dworkin, M

    1966-03-01

    Burchard, Robert P. (University of Minnesota, Minneapolis), and M. Dworkin. A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis. J. Bacteriol. 91:1305-1313. 1966.-A bacteriophage (MX-1) infecting Myxococcus xanthus FB(t) has been isolated from cow dung. The bacteriophage particle is approximately 175 mmu long. A tail about 100 mmu in length is encased in a contractile sheath and terminates in a tail plate. The head is polyhedral with a width of about 75 mmu. The nucleic acid of the bacteriophage is deoxyribonucleic acid and has a guanine plus cytosine content of 55.5%. The bacteriophage requires 10(-3)m Ca(++) and 10(-2)m monovalent cation for optimal adsorption. Grown on vegetative cells of M. xanthus FB(t) at 30 C in 2% Casitone medium, the bacteriophage has a latent period of 120 min and a burst size of approximately 100. Host range studies indicate that three strains of M. xanthus including a morphogenetic mutant are sensitive to the bacteriophage, whereas M. fulvus, Cytophaga, Sporocytophaga myxococcoides, and a fourth strain of M. xanthus are not. Of the two cellular forms characteristic of the Myxococcus life cycle, the bacteriophage infect only the vegetative cells; they do not adsorb to microcysts. Ability to adsorb bacteriophage is lost between 65 and 75 min after initiation of the relatively synchronous conversion of vegetative cells to microcysts. The bacteriophage does not adsorb to spheroplasts. After the appearance of visible morphogenesis and before the loss of bacteriophage receptor sites, addition of bacteriophage results in the formation of microcysts which give rise to infective centers only upon germination. The possibility that the infected microcysts are harboring intact bacteriophages has been eliminated.

  4. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice.

    PubMed

    Maura, Damien; Morello, Eric; du Merle, Laurence; Bomme, Perrine; Le Bouguénec, Chantal; Debarbieux, Laurent

    2012-08-01

    Bacteriophages have been known to be present in the gut for many years, but studies of relationships between these viruses and their hosts in the intestine are still in their infancy. We isolated three bacteriophages specific for an enteroaggregative O104:H4 Escherichia coli (EAEC) strain responsible for diarrhoeal diseases in humans. We studied the replication of these bacteriophages in vitro and in vivo in a mouse model of gut colonization. Each bacteriophage was able to replicate in vitro in both aerobic and anaerobic conditions. Each bacteriophage individually reduced biofilms formed on plastic pegs and a cocktail of the three bacteriophages was found to be more efficient. The cocktail was also able to infect bacterial aggregates formed on the surface of epithelial cells. In the mouse intestine, bacteriophages replicated for at least 3 weeks, provided the host was present, with no change in host levels in the faeces. This model of stable and continuous viral replication provides opportunities for studying the long-term coevolution of virulent bacteriophages with their hosts within a mammalian polymicrobial ecosystem. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Evaluation of aerosol spray and intramuscular injection of bacteriophage to treat an Escherichia coli respiratory infection.

    PubMed

    Huff, W E; Huff, G R; Rath, N C; Balog, J M; Donoghue, A M

    2003-07-01

    Two studies were conducted to determine the efficacy of either aerosol or i.m. injection of bacteriophage to treat an Escherichia coli respiratory infection in broiler chickens. An additional two studies were conducted to enumerate the bacteriophage in the blood of birds at 1, 2, 3, 4, 5, 6, 24, and 48 h after being sprayed or injected i.m. with bacteriophage. Five birds were bled at each period. In study 1, there were 10 treatments with three replicate pens of 10 birds. The treatments consisted of an untreated control, heat-killed bacteriophage spray, active bacteriophage spray, E. coli challenge at 7 d of age, and E. coli challenge followed by spraying the birds with heat-killed bacteriophage or active bacteriophage at 2, 24, or 48 h after challenge. In study 2 there were 11 treatments with three replicate pens of 10 birds per pen. The treatments were untreated controls, birds injected i.m. in the thigh with heat-killed or active bacteriophage, E. coli challenge at 7 d of age, PBS challenge, E. coli challenge followed by injection of heat-killed or active bacteriophage immediately after challenge or at 24 or 48 h after challenge. In both studies the E. coli challenge consisted of injecting 10(4) cfu into the thoracic air sac. Treatment of this severe E. coli infection with the bacteriophage aerosol spray significantly reduced mortality from 50 to 20% when given immediately after the challenge but had little treatment efficacy when administered 24 or 48 h after challenge. The i.m. injection of bacteriophage significantly reduced mortality from 53 to 17%, 46 to 10%, and 44 to 20% when given immediately, 24, or 48 h after challenge, respectively. Only a few birds sprayed with bacteriophage had detectable bacteriophage in their blood with an average of 96 pfu/mL 1 h after bacteriophage administration, and no bacteriophage was detected 24 and 48 h after bacteriophage administration. All birds injected i.m. with bacteriophage had detectable levels of bacteriophage in

  6. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  7. Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages.

    PubMed

    Esplin, Ian N D; Berg, Jordan A; Sharma, Ruchira; Allen, Robert C; Arens, Daniel K; Ashcroft, Cody R; Bairett, Shannon R; Beatty, Nolan J; Bickmore, Madeline; Bloomfield, Travis J; Brady, T Scott; Bybee, Rachel N; Carter, John L; Choi, Minsey C; Duncan, Steven; Fajardo, Christopher P; Foy, Brayden B; Fuhriman, David A; Gibby, Paul D; Grossarth, Savannah E; Harbaugh, Kala; Harris, Natalie; Hilton, Jared A; Hurst, Emily; Hyde, Jonathan R; Ingersoll, Kayleigh; Jacobson, Caitlin M; James, Brady D; Jarvis, Todd M; Jaen-Anieves, Daniella; Jensen, Garrett L; Knabe, Bradley K; Kruger, Jared L; Merrill, Bryan D; Pape, Jenny A; Payne Anderson, Ashley M; Payne, David E; Peck, Malia D; Pollock, Samuel V; Putnam, Micah J; Ransom, Ethan K; Ririe, Devin B; Robinson, David M; Rogers, Spencer L; Russell, Kerri A; Schoenhals, Jonathan E; Shurtleff, Christopher A; Simister, Austin R; Smith, Hunter G; Stephenson, Michael B; Staley, Lyndsay A; Stettler, Jason M; Stratton, Mallorie L; Tateoka, Olivia B; Tatlow, P J; Taylor, Alexander S; Thompson, Suzanne E; Townsend, Michelle H; Thurgood, Trever L; Usher, Brittian K; Whitley, Kiara V; Ward, Andrew T; Ward, Megan E H; Webb, Charles J; Wienclaw, Trevor M; Williamson, Taryn L; Wells, Michael J; Wright, Cole K; Breakwell, Donald P; Hope, Sandra; Grose, Julianne H

    2017-11-16

    Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages. Copyright © 2017 Esplin et al.

  8. Kaposi's Sarcoma-Associated Herpesvirus Utilizes and Manipulates RNA N6-Adenosine Methylation To Promote Lytic Replication

    PubMed Central

    Chen, E. Ricky; Nilsen, Timothy W.

    2017-01-01

    ABSTRACT N6-adenosine methylation (m6A) is the most common posttranscriptional RNA modification in mammalian cells. We found that most transcripts encoded by the Kaposi's sarcoma-associated herpesvirus (KSHV) genome undergo m6A modification. The levels of m6A-modified mRNAs increased substantially upon stimulation for lytic replication. The blockage of m6A inhibited splicing of the pre-mRNA encoding the replication transcription activator (RTA), a key KSHV lytic switch protein, and halted viral lytic replication. We identified several m6A sites in RTA pre-mRNA crucial for splicing through interactions with YTH domain containing 1 (YTHDC1), an m6A nuclear reader protein, in conjunction with serine/arginine-rich splicing factor 3 (SRSF3) and SRSF10. Interestingly, RTA induced m6A and enhanced its own pre-mRNA splicing. Our results not only demonstrate an essential role of m6A in regulating RTA pre-mRNA splicing but also suggest that KSHV has evolved a mechanism to manipulate the host m6A machinery to its advantage in promoting lytic replication. IMPORTANCE KSHV productive lytic replication plays a pivotal role in the initiation and progression of Kaposi's sarcoma tumors. Previous studies suggested that the KSHV switch from latency to lytic replication is primarily controlled at the chromatin level through histone and DNA modifications. The present work reports for the first time that KSHV genome-encoded mRNAs undergo m6A modification, which represents a new mechanism at the posttranscriptional level in the control of viral replication. PMID:28592530

  9. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni

    PubMed Central

    Siringan, Patcharin; Connerton, Phillippa L.; Cummings, Nicola J.; Connerton, Ian F.

    2014-01-01

    Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage. PMID:24671947

  10. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni.

    PubMed

    Siringan, Patcharin; Connerton, Phillippa L; Cummings, Nicola J; Connerton, Ian F

    2014-03-26

    Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage.

  11. KSHV Targeted Therapy: An Update on Inhibitors of Viral Lytic Replication

    PubMed Central

    Coen, Natacha; Duraffour, Sophie; Snoeck, Robert; Andrei, Graciela

    2014-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman’s disease. Since the discovery of KSHV 20 years ago, there is still no standard treatment and the management of virus-associated malignancies remains toxic and incompletely efficacious. As the majority of tumor cells are latently infected with KSHV, currently marketed antivirals that target the virus lytic cycle have shown inconsistent results in clinic. Nevertheless, lytic replication plays a major role in disease progression and virus dissemination. Case reports and retrospective studies have pointed out the benefit of antiviral therapy in the treatment and prevention of KSHV-associated diseases. As a consequence, potent and selective antivirals are needed. This review focuses on the anti-KSHV activity, mode of action and current status of antiviral drugs targeting KSHV lytic cycle. Among these drugs, different subclasses of viral DNA polymerase inhibitors and compounds that do not target the viral DNA polymerase are being discussed. We also cover molecules that target cellular kinases, as well as the potential of new drug targets and animal models for antiviral testing. PMID:25421895

  12. Activation and Repression of Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycles by Short- and Medium-Chain Fatty Acids

    PubMed Central

    Gorres, Kelly L.; Daigle, Derek; Mohanram, Sudharshan

    2014-01-01

    ABSTRACT The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. IMPORTANCE Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota

  13. Development of a novel and highly efficient method of isolating bacteriophages from water.

    PubMed

    Liu, Weili; Li, Chao; Qiu, Zhi-Gang; Jin, Min; Wang, Jing-Feng; Yang, Dong; Xiao, Zhong-Hai; Yuan, Zhao-Kang; Li, Jun-Wen; Xu, Qun-Ying; Shen, Zhi-Qiang

    2017-08-01

    Bacteriophages are widely used to the treatment of drug-resistant bacteria and the improvement of food safety through bacterial lysis. However, the limited investigations on bacteriophage restrict their further application. In this study, a novel and highly efficient method was developed for isolating bacteriophage from water based on the electropositive silica gel particles (ESPs) method. To optimize the ESPs method, we evaluated the eluent type, flow rate, pH, temperature, and inoculation concentration of bacteriophage using bacteriophage f2. The quantitative detection reported that the recovery of the ESPs method reached over 90%. The qualitative detection demonstrated that the ESPs method effectively isolated 70% of extremely low-concentration bacteriophage (10 0 PFU/100L). Based on the host bacteria composed of 33 standard strains and 10 isolated strains, the bacteriophages in 18 water samples collected from the three sites in the Tianjin Haihe River Basin were isolated by the ESPs and traditional methods. Results showed that the ESPs method was significantly superior to the traditional method. The ESPs method isolated 32 strains of bacteriophage, whereas the traditional method isolated 15 strains. The sample isolation efficiency and bacteriophage isolation efficiency of the ESPs method were 3.28 and 2.13 times higher than those of the traditional method. The developed ESPs method was characterized by high isolation efficiency, efficient handling of large water sample size and low requirement on water quality. Copyright © 2017. Published by Elsevier B.V.

  14. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F.W.; Rosenberg, A.H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest. 1 fig.

  15. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F. William; Rosenberg, Alan H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.

  16. Comparative lytic efficacy of rt-PA and ultrasound in porcine versus human clots.

    PubMed

    Huang, Shenwen; Shekhar, Himanshu; Holland, Christy K

    2017-01-01

    Porcine thrombi are employed routinely in preclinical models of ischemic stroke. In this study, we examined the differential lytic susceptibility of porcine and human whole blood clots with and without the use of microbubbles and ultrasound (US) as an adjuvant. An in vitro system equipped with time-lapse microscopy was used to evaluate recombinant tissue-plasminogen activator (rt-PA) lysis of porcine and human clots in the same species or cross species plasma. Human and porcine whole blood clots were treated with rt-PA and an echo contrast agent, Definity®, and exposed to intermittent 120 kHz US. The rt-PA lytic efficacy observed for porcine clots in porcine plasma was 22 times lower than for human clots in human plasma reported previously. Further, porcine clots did not exhibit increased lysis with adjuvant Definity® and US exposure. However, the rt-PA lytic susceptibility of the porcine clots in human plasma was similar to that of human clots in human plasma. Human clots perfused with porcine plasma did not respond to rt-PA, but adjuvant use of Definity® and US enhanced lysis. These results reveal considerable differences in lytic susceptibility of porcine clots and human clots to rt-PA. The use of porcine clot models to test new human thrombolytic therapies may necessitate modulation of coagulation and thrombolytic factors to reflect human hemostasis accurately.

  17. Hydroxyapatite crystals as a bone graft substitute in benign lytic lesions of bone

    PubMed Central

    Gupta, Anil Kumar; Kumar, Praganesh; Keshav, Kumar; Singh, Anant

    2015-01-01

    Background: Bone grafts are required to fill a cavity created after curettage of benign lytic lesions of the bone. To avoid the problems associated at donor site with autologous bone graft, we require allograft or bone graft substitutes. We evaluated the healing of lytic lesions after hydroxyapatite (HA) grafting by serial radiographs. Materials and Methods: Forty cases of benign lytic lesions of bone were managed by simple curettage and grafting using HA blocks. Commercially available HA of bovine origin (Surgiwear Ltd., Shahjahanpur, India) was used for this purpose. Mean duration of followup was 34.8 months (range 12–84 months). Mean patient age was 19.05 years (range 3–55 years). Radiological staging of graft incorporation was done as per criteria of Irwin et al. 2001. Results: In our series, two cases were in stage I. A total of 11 cases were in stage II and 27 were in stage III. Graft incorporation was radiologically complete by 15 months. Clinical recovery was observed before radiological healing. The average time taken to return to preoperative function was 3 months. Recurrence was observed in giant cell tumor (n = 3) and chondromyxoid fibroma (n = 1). There was no incidence of graft rejection, collapse, growth plate disturbances or antigenic response. Conclusions: We conclude that calcium HA is biologically acceptable bone graft substitute in the management of benign lytic lesions of bone. PMID:26806973

  18. A Cell Culture Model of Latent and Lytic Herpes Simplex Virus Type 1 Infection in Spiral Ganglion.

    PubMed

    Liu, Yuehong; Li, Shufeng

    2015-01-01

    Reactivation of latent herpes simplex virus type 1 (HSV-1) in spiral ganglion neurons (SGNs) is supposed to be one of the causes of idiopathic sudden sensorineural hearing loss. This study aims to establish a cell culture model of latent and lytic HSV-1 infection in spiral ganglia. In the presence of acyclovir, primary cultures of SGNs were latently infected with HSV-1 expressing green fluorescent protein. Four days later, these cells were treated with trichostatin A (TSA), a known chemical reactivator of HSV-1. TCID50 was used to measure the titers of virus in cultures on Vero cells. RNA from cultures was detected for the presence of transcripts of ICP27 and latency-associated transcript (LAT) using reverse transcription polymerase chain reaction. There is no detectable infectious HSV-1 in latently infected cultures, whereas they could be observed in both lytically infected and latently infected/TSA-treated cultures. LAT was the only detectable transcript during latent infection, whereas lytic ICP27 transcript was detected in lytically infected and latently infected/TSA-treated cultures. Cultured SGNs can be both latently and lytically infected with HSV-1. Furthermore, latently infected SGNs can be reactivated using TSA, yielding infectious virus.

  19. Predicting In Vivo Efficacy of Therapeutic Bacteriophages Used To Treat Pulmonary Infections

    PubMed Central

    Henry, Marine; Lavigne, Rob

    2013-01-01

    The potential of bacteriophage therapy to treat infections caused by antibiotic-resistant bacteria has now been well established using various animal models. While numerous newly isolated bacteriophages have been claimed to be potential therapeutic candidates on the basis of in vitro observations, the parameters used to guide their choice among billions of available bacteriophages are still not clearly defined. We made use of a mouse lung infection model and a bioluminescent strain of Pseudomonas aeruginosa to compare the activities in vitro and in vivo of a set of nine different bacteriophages (PAK_P1, PAK_P2, PAK_P3, PAK_P4, PAK_P5, CHA_P1, LBL3, LUZ19, and PhiKZ). For seven bacteriophages, a good correlation was found between in vitro and in vivo activity. While the remaining two bacteriophages were active in vitro, they were not sufficiently active in vivo under similar conditions to rescue infected animals. Based on the bioluminescence recorded at 2 and 8 h postinfection, we also define for the first time a reliable index to predict treatment efficacy. Our results showed that the bacteriophages isolated directly on the targeted host were the most efficient in vivo, supporting a personalized approach favoring an optimal treatment. PMID:24041900

  20. Arthrobacter globiformis and its bacteriophage in soil

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.; Liu, K.-C.

    1974-01-01

    An attempt was made to correlate bacteriophages for Arthrobacter globiformis with soils containing that bacterium. The phages were not detected unless the soil was nutritionally amended (with glucose or sucrose) and incubated for several days. Phage was continuously produced after amendment without the addition of host Arthrobacter. These results indicate that the bacteriophage is present in a masked state and that the bacteria are present in an insensitive form which becomes sensitive after addition of nutrient.

  1. HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes

    PubMed Central

    Núñez-Andrade, Norman; Iborra, Salvador; Trullo, Antonio; Moreno-Gonzalo, Olga; Calvo, Enrique; Catalán, Elena; Menasche, Gaël; Sancho, David; Vázquez, Jesús; Yao, Tso-Pang

    2016-01-01

    HDAC6 is a tubulin deacetylase involved in many cellular functions related to cytoskeleton dynamics including cell migration and autophagy. In addition, HDAC6 affects antigen-dependent CD4+ T cell activation. In this study, we show that HDAC6 contributes to the cytotoxic function of CD8+ T cells. Immunization studies revealed defective cytotoxic activity in vivo in the absence of HDAC6. Adoptive transfer of wild-type or Hdac6-/- CD8+ T cells to Rag1-/- mice demonstrated specific impairment in CD8+ T cell responses against vaccinia infection. Mechanistically, HDAC6-deficient cytotoxic T lymphocytes (CTLs) showed defective in vitro cytolytic activity related to altered dynamics of lytic granules, inhibited kinesin 1 – dynactin mediated terminal transport of lytic granules to the immune synapse and deficient exocytosis, but not to target cell recognition, T cell receptor (TCR) activation or interferon (IFNγ) production. Our results establish HDAC6 as an effector of the immune cytotoxic response that acts by affecting the dynamics, transport and secretion of lytic granules by CTLs. PMID:26869226

  2. Wide host range and strong lytic activity of Staphylococcus aureus lytic phage Stau2.

    PubMed

    Hsieh, Sue-Er; Lo, Hsueh-Hsia; Chen, Shui-Tu; Lee, Mong-Chuan; Tseng, Yi-Hsiung

    2011-02-01

    In searching for an alternative antibacterial agent against multidrug-resistant Staphylococcus aureus, we have isolated and characterized a lytic staphylophage, Stau2. It possesses a double-stranded DNA genome estimated to be about 134.5 kb and a morphology resembling that of members of the family Myoviridae. With an estimated latency period of 25 min and a burst size of 100 PFU/infected cell, propagation of Stau2 in liquid culture gave a lysate of ca. 6 × 10(10) PFU/ml. It was stable at pH 5 to 13 in normal saline at room temperature for at least 4 weeks and at -85°C for more than 2 years, while 1 × 10(9) out of 2 × 10(12) PFU/ml retained infectivity after 36 months at 4°C. Stau2 could lyse 80% of the S. aureus isolates (164/205) obtained from hospitals in Taiwan, with complete lysis of most of the isolates tested within 3 h; however, it was an S. aureus-specific phage because no lytic infection could be found in the coagulase-negative staphylococci tested. Its host range among S. aureus isolates was wider than that of polyvalent phage K (47%), which can also lyse many other staphylococcal species. Experiments with mice demonstrated that Stau2 could provide 100% protection from lethal infection when a multiplicity of infection of 10 was administered immediately after a challenge with S. aureus S23. Considering these results, Stau2 could be considered at least as a candidate for topical phage therapy or an additive in the food industry.

  3. Aligning the unalignable: bacteriophage whole genome alignments.

    PubMed

    Bérard, Sèverine; Chateau, Annie; Pompidor, Nicolas; Guertin, Paul; Bergeron, Anne; Swenson, Krister M

    2016-01-13

    In recent years, many studies focused on the description and comparison of large sets of related bacteriophage genomes. Due to the peculiar mosaic structure of these genomes, few informative approaches for comparing whole genomes exist: dot plots diagrams give a mostly qualitative assessment of the similarity/dissimilarity between two or more genomes, and clustering techniques are used to classify genomes. Multiple alignments are conspicuously absent from this scene. Indeed, whole genome aligners interpret lack of similarity between sequences as an indication of rearrangements, insertions, or losses. This behavior makes them ill-prepared to align bacteriophage genomes, where even closely related strains can accomplish the same biological function with highly dissimilar sequences. In this paper, we propose a multiple alignment strategy that exploits functional collinearity shared by related strains of bacteriophages, and uses partial orders to capture mosaicism of sets of genomes. As classical alignments do, the computed alignments can be used to predict that genes have the same biological function, even in the absence of detectable similarity. The Alpha aligner implements these ideas in visual interactive displays, and is used to compute several examples of alignments of Staphylococcus aureus and Mycobacterium bacteriophages, involving up to 29 genomes. Using these datasets, we prove that Alpha alignments are at least as good as those computed by standard aligners. Comparison with the progressive Mauve aligner - which implements a partial order strategy, but whose alignments are linearized - shows a greatly improved interactive graphic display, while avoiding misalignments. Multiple alignments of whole bacteriophage genomes work, and will become an important conceptual and visual tool in comparative genomics of sets of related strains. A python implementation of Alpha, along with installation instructions for Ubuntu and OSX, is available on bitbucket (https://bitbucket.org/thekswenson/alpha).

  4. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  5. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  6. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  7. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1990-01-01

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  8. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  9. Epstein-Barr virus origin of lytic replication mediates association of replicating episomes with promyelocytic leukaemia protein nuclear bodies and replication compartments.

    PubMed

    Amon, Wolfgang; White, Robert E; Farrell, Paul J

    2006-05-01

    Epstein-Barr virus (EBV) establishes a latent persistence from which it can be reactivated to undergo lytic replication. Late lytic-cycle gene expression is linked to lytic DNA replication, as it is sensitive to the same inhibitors that block lytic replication, and it has recently been shown that the viral origin of lytic replication (ori lyt) is required in cis for late-gene expression. During the lytic cycle, the viral genome forms replication compartments, which are usually adjacent to promyelocytic leukaemia protein (PML) nuclear bodies. A tetracycline repressor DNA-binding domain-enhanced green fluorescent protein fusion was used to visualize replicating plasmids carrying a tetracycline operator sequence array. ori lyt mediated the production of plasmid replication compartments that were associated with PML nuclear bodies. Plasmids carrying ori lyt and EBV itself were visualized in the same cells and replicated in similar regions of the nucleus, further supporting the validity of the plasmids for studying late-gene regulation.

  10. The role of bacteriophages in periodontal health and disease.

    PubMed

    Pinto, Graça; Silva, Maria Daniela; Peddey, Mark; Sillankorva, Sanna; Azeredo, Joana

    2016-10-01

    The human periodontium health is commonly compromised by chronic inflammatory conditions and has become a major public health concern. Dental plaque, the precursor of periodontal disease, is a complex biofilm consisting mainly of bacteria, but also archaea, protozoa, fungi and viruses. Viruses that specifically infect bacteria - bacteriophages - are most common in the oral cavity. Despite this, their role in the progression of periodontal disease remains poorly explored. This review aims to summarize how bacteriophages interact with the oral microbiota, their ability to increase bacterial virulence and mediate the transfer of resistance genes and suggests how bacteriophages can be used as an alternative to the current periodontal disease therapies.

  11. Potential impact of environmental bacteriophages in spreading antibiotic resistance genes.

    PubMed

    Muniesa, Maite; Colomer-Lluch, Marta; Jofre, Juan

    2013-06-01

    The idea that bacteriophage transduction plays a role in the horizontal transfer of antibiotic resistance genes is gaining momentum. Such transduction might be vital in horizontal transfer from environmental to human body-associated biomes and here we review many lines of evidence supporting this notion. It is well accepted that bacteriophages are the most abundant entities in most environments, where they have been shown to be quite persistent. This fact, together with the ability of many phages to infect bacteria belonging to different taxa, makes them suitable vehicles for gene transfer. Metagenomic studies confirm that substantial percentages of the bacteriophage particles present in most environments contain bacterial genes, including mobile genetic elements and antibiotic resistance genes. When specific genes of resistance to antibiotics are detected by real-time PCR in the bacteriophage populations of different environments, only tenfold lower numbers of these genes are observed, compared with those found in the corresponding bacterial populations. In addition, the antibiotic resistance genes from these bacteriophages are functional and generate resistance to the bacteria when these genes are transfected. Finally, reports about the transduction of antibiotic resistance genes are on the increase.

  12. Bacteriophage-based Probiotic Preparation for Managing Shigella Infections

    DTIC Science & Technology

    2015-04-16

    for a probiotic preparation – based on naturally occurring bacteriophages – as a way to condition the GI tract’s microflora gently and favorably...10-Apr-2013 Approved for Public Release; Distribution Unlimited Final Report: Bacteriophage-based Probiotic Preparation for Managing Shigella...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Phage, Shigella, probiotics REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S

  13. Template reporter bacteriophage platform and multiple bacterial detection assays based thereon

    NASA Technical Reports Server (NTRS)

    Goodridge, Lawrence (Inventor)

    2007-01-01

    The invention is a method for the development of assays for the simultaneous detection of multiple bacteria. A bacteria of interest is selected. A host bacteria containing plasmid DNA from a T even bacteriophage that infects the bacteria of interest is infected with T4 reporter bacteriophage. After infection, the progeny bacteriophage are plating onto the bacteria of interest. The invention also includes single-tube, fast and sensitive assays which utilize the novel method.

  14. Newly Isolated Bacteriophages from the Podoviridae, Siphoviridae, and Myoviridae Families Have Variable Effects on Putative Novel Dickeya spp.

    PubMed

    Alič, Špela; Naglič, Tina; Tušek-Žnidarič, Magda; Ravnikar, Maja; Rački, Nejc; Peterka, Matjaž; Dreo, Tanja

    2017-01-01

    Soft rot pathogenic bacteria from the genus Dickeya cause severe economic losses in orchid nurseries worldwide, and there is no effective control currently available. In the last decade, the genus Dickeya has undergone multiple changes as multiple new taxa have been described, and just recently a new putative Dickeya species was reported. This study reports the isolation of three bacteriophages active against putative novel Dickeya spp. isolates from commercially produced infected orchids that show variable host-range profiles. Bacteriophages were isolated through enrichment from Dickeya -infected orchid tissue. Convective interaction media monolith chromatography was used to isolate bacteriophages from wastewaters, demonstrating its suitability for the isolation of infective bacteriophages from natural sources. Based on bacteriophage morphology, all isolated bacteriophages were classified as being in the order Caudovirales , belonging to three different families, Podoviridae , Myoviridae , and Siphoviridae . The presence of three different groups of bacteriophages was confirmed by analyzing the bacteriophage specificity of bacterial hosts, restriction fragment length polymorphism and plaque morphology. Bacteriophage BF25/12, the first reported Podoviridae bacteriophage effective against Dickeya spp., was selected for further characterization. Its genome sequence determined by next-generation sequencing showed limited similarity to other characterized Podoviridae bacteriophages. Interactions among the bacteriophages and Dickeya spp. were examined using transmission electron microscopy, which revealed degradation of electron-dense granules in response to bacteriophage infection in some Dickeya strains. The temperature stability of the chosen Podoviridae bacteriophage monitored over 1 year showed a substantial decrease in the survival of bacteriophages stored at -20°C over longer periods. It showed susceptibility to low pH and UV radiation but was stable in neutral

  15. Newly Isolated Bacteriophages from the Podoviridae, Siphoviridae, and Myoviridae Families Have Variable Effects on Putative Novel Dickeya spp.

    PubMed Central

    Alič, Špela; Naglič, Tina; Tušek-Žnidarič, Magda; Ravnikar, Maja; Rački, Nejc; Peterka, Matjaž; Dreo, Tanja

    2017-01-01

    Soft rot pathogenic bacteria from the genus Dickeya cause severe economic losses in orchid nurseries worldwide, and there is no effective control currently available. In the last decade, the genus Dickeya has undergone multiple changes as multiple new taxa have been described, and just recently a new putative Dickeya species was reported. This study reports the isolation of three bacteriophages active against putative novel Dickeya spp. isolates from commercially produced infected orchids that show variable host-range profiles. Bacteriophages were isolated through enrichment from Dickeya-infected orchid tissue. Convective interaction media monolith chromatography was used to isolate bacteriophages from wastewaters, demonstrating its suitability for the isolation of infective bacteriophages from natural sources. Based on bacteriophage morphology, all isolated bacteriophages were classified as being in the order Caudovirales, belonging to three different families, Podoviridae, Myoviridae, and Siphoviridae. The presence of three different groups of bacteriophages was confirmed by analyzing the bacteriophage specificity of bacterial hosts, restriction fragment length polymorphism and plaque morphology. Bacteriophage BF25/12, the first reported Podoviridae bacteriophage effective against Dickeya spp., was selected for further characterization. Its genome sequence determined by next-generation sequencing showed limited similarity to other characterized Podoviridae bacteriophages. Interactions among the bacteriophages and Dickeya spp. were examined using transmission electron microscopy, which revealed degradation of electron-dense granules in response to bacteriophage infection in some Dickeya strains. The temperature stability of the chosen Podoviridae bacteriophage monitored over 1 year showed a substantial decrease in the survival of bacteriophages stored at -20°C over longer periods. It showed susceptibility to low pH and UV radiation but was stable in neutral and

  16. Isolation, Characterization, and Bioinformatic Analyses of Lytic Salmonella Enteritidis Phages and Tests of Their Antibacterial Activity in Food.

    PubMed

    Han, Han; Wei, Xiaoting; Wei, Yi; Zhang, Xiufeng; Li, Xuemin; Jiang, Jinzhong; Wang, Ran

    2017-02-01

    Salmonella Enteritidis remains a major threat for food safety. To take efforts to develop phage-based biocontrol for S. Enteritidis contamination in food, in this study, the phages against S. Enteritidis were isolated from sewage samples, characterized by host range assays, DNA restriction enzyme pattern analyses, and transmission electron microscope observations, and tested for antibacterial activity in food; some potent phages were further characterized by bioinformatic analyses. Results showed that based on the plaque quality and host range, seven lytic phages targeting S. Enteritidis were selected, considered as seven distinct phages through DNA physical maps, and classified as Myoviridae or Siphoviridae family by morphologic observations; the combined use of such seven strain phages as a "food additive" could succeed in controlling the artificial S. Enteritidis contamination in the different physical forms of food at a range of temperatures; by bioinformatic analyses, both selected phage BPS 11 Q 3 and BPS 15 Q 2 seemed to be newfound obligate lytic phage strains with no indications for any potentially harmful genes in their genomes. In conclusion, our results showed a potential of isolated phages as food additives for controlling S. Enteritidis contamination in some salmonellosis outbreak-associated food vehicles, and there could be minimized potential risk associated with using BPS 11 Q 3 and BPS 15 Q 2 in food.

  17. Expression of a bioactive bacteriophage endolysin in Nicotiana benthamiana plants

    USDA-ARS?s Scientific Manuscript database

    The emergence and spread of antibiotic-resistant pathogens has led to an increased interest in alternative antimicrobial treatments, such as bacteriophage, bacteriophage-encoded peptidoglycan hydrolases (endolysins) and antimicrobial peptides. In our study, the antimicrobial activity of the CP933 en...

  18. Bacteriophage P2 ogr and P4 delta genes act independently and are essential for P4 multiplication.

    PubMed Central

    Halling, C; Calendar, R

    1990-01-01

    Satellite bacteriophage P4 requires the products of the late genes of a helper phage such as P2 for lytic growth. Expression of the P2 late genes is positively regulated by the P2 ogr gene in a process requiring P2 DNA replication. Transactivation of P2 late gene expression by P4 requires the P4 delta gene product and works even in the absence of P2 DNA replication. We have made null mutants of the P2 ogr and P4 delta genes. In the absence of the P4 delta gene product, P4 multiplication required both the P2 ogr protein and P2 DNA replication. In the absence of the P2 ogr gene product, P4 multiplication required the P4 delta protein. In complementation experiments, we found that the P2 ogr protein was made in the absence of P2 DNA replication but could not function unless P2 DNA replicated. We produced P4 delta protein from a plasmid and found that it complemented the null P4 delta and P2 ogr mutants. Images PMID:2193911

  19. Metavirome Sequencing of the Termite Gut Reveals the Presence of an Unexplored Bacteriophage Community

    PubMed Central

    Tikhe, Chinmay V.; Husseneder, Claudia

    2018-01-01

    The Formosan subterranean termite; Coptotermes formosanus is nutritionally dependent on the complex and diverse community of bacteria and protozoa in their gut. Although, there have been many studies to decipher the taxonomic and functional diversity of bacterial communities in the guts of termites, their bacteriophages remain unstudied. We sequenced the metavirome of the guts of Formosan subterranean termite workers to study the diversity of bacteriophages and other associated viruses. Results showed that the termites harbor a virome in their gut comprised of varied and previously unknown bacteriophages. Between 87–90% of the predicted dsDNA virus genes by Metavir showed similarity to the tailed bacteriophages (Caudovirales). Many predicted genes from the virome matched to bacterial prophage regions. These data are suggestive of a virome dominated by temperate bacteriophages. We predicted the genomes of seven novel Caudovirales bacteriophages from the termite gut. Three of these predicted bacteriophage genomes were found in high proportions in all the three termite colonies tested. Two bacteriophages are predicted to infect endosymbiotic bacteria of the gut protozoa. The presence of these putative bacteriophages infecting endosymbionts of the gut protozoa, suggests a quadripartite relationship between the termites their symbiotic protozoa, endosymbiotic bacteria of the protozoa and their bacteriophages. Other than Caudovirales, ss-DNA virus related genes were also present in the termite gut. We predicted the genomes of 12 novel Microviridae phages from the termite gut and seven of those possibly represent a new proposed subfamily. Circovirus like genomes were also assembled from the termite gut at lower relative abundance. We predicted 10 novel circovirus genomes in this study. Whether these circoviruses infect the termites remains elusive at the moment. The functional and taxonomical annotations suggest that the termites may harbor a core virome comprised of

  20. Targeted Curing of All Lysogenic Bacteriophage from Streptococcus pyogenes Using a Novel Counter-selection Technique

    PubMed Central

    Euler, Chad W.; Juncosa, Barbara; Ryan, Patricia A.; Deutsch, Douglas R.; McShan, W. Michael; Fischetti, Vincent A.

    2016-01-01

    Streptococcus pyogenes is a human commensal and a bacterial pathogen responsible for a wide variety of human diseases differing in symptoms, severity, and tissue tropism. The completed genome sequences of >37 strains of S. pyogenes, representing diverse disease-causing serotypes, have been published. The greatest genetic variation among these strains is attributed to numerous integrated prophage and prophage-like elements, encoding several virulence factors. A comparison of isogenic strains, differing in prophage content, would reveal the effects of these elements on streptococcal pathogenesis. However, curing strains of prophage is often difficult and sometimes unattainable. We have applied a novel counter-selection approach to identify rare S. pyogenes mutants spontaneously cured of select prophage. To accomplish this, we first inserted a two-gene cassette containing a gene for kanamycin resistance (KanR) and the rpsL wild-type gene, responsible for dominant streptomycin sensitivity (SmS), into a targeted prophage on the chromosome of a streptomycin resistant (SmR) mutant of S. pyogenes strain SF370. We then applied antibiotic counter-selection for the re-establishment of the KanS/SmR phenotype to select for isolates cured of targeted prophage. This methodology allowed for the precise selection of spontaneous phage loss and restoration of the natural phage attB attachment sites for all four prophage-like elements in this S. pyogenes chromosome. Overall, 15 mutants were constructed that encompassed every permutation of phage knockout as well as a mutant strain, named CEM1ΔΦ, completely cured of all bacteriophage elements (a ~10% loss of the genome); the only reported S. pyogenes strain free of prophage-like elements. We compared CEM1ΔΦ to the WT strain by analyzing differences in secreted DNase activity, as well as lytic and lysogenic potential. These mutant strains should allow for the direct examination of bacteriophage relationships within S. pyogenes and

  1. DNA Damage Signaling Is Induced in the Absence of Epstein-Barr Virus (EBV) Lytic DNA Replication and in Response to Expression of ZEBRA.

    PubMed

    Wang'ondu, Ruth; Teal, Stuart; Park, Richard; Heston, Lee; Delecluse, Henri; Miller, George

    2015-01-01

    Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.

  2. Genomics of Three New Bacteriophages Useful in the Biocontrol of Salmonella

    PubMed Central

    Bardina, Carlota; Colom, Joan; Spricigo, Denis A.; Otero, Jennifer; Sánchez-Osuna, Miquel; Cortés, Pilar; Llagostera, Montserrat

    2016-01-01

    Non-typhoid Salmonella is the principal pathogen related to food-borne diseases throughout the world. Widespread antibiotic resistance has adversely affected human health and has encouraged the search for alternative antimicrobial agents. The advances in bacteriophage therapy highlight their use in controlling a broad spectrum of food-borne pathogens. One requirement for the use of bacteriophages as antibacterials is the characterization of their genomes. In this work, complete genome sequencing and molecular analyses were carried out for three new virulent Salmonella-specific bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) able to infect a broad range of Salmonella strains. Sequence analysis of the genomes of UAB_Phi20, UAB_Phi78, and UAB_Phi87 bacteriophages did not evidence the presence of known virulence-associated and antibiotic resistance genes, and potential immunoreactive food allergens. The UAB_Phi20 genome comprised 41,809 base pairs with 80 open reading frames (ORFs); 24 of them with assigned function. Genome sequence showed a high homology of UAB_Phi20 with Salmonella bacteriophage P22 and other P22likeviruses genus of the Podoviridae family, including ST64T and ST104. The DNA of UAB_Phi78 contained 44,110 bp including direct terminal repeats (DTR) of 179 bp and 58 putative ORFs were predicted and 20 were assigned function. This bacteriophage was assigned to the SP6likeviruses genus of the Podoviridae family based on its high similarity not only with SP6 but also with the K1-5, K1E, and K1F bacteriophages, all of which infect Escherichia coli. The UAB_Phi87 genome sequence consisted of 87,669 bp with terminal direct repeats of 608 bp; although 148 ORFs were identified, putative functions could be assigned to only 29 of them. Sequence comparisons revealed the mosaic structure of UAB_Phi87 and its high similarity with bacteriophages Felix O1 and wV8 of E. coli with respect to genetic content and functional organization. Phylogenetic analysis of large

  3. Comparative lytic efficacy of rt-PA and ultrasound in porcine versus human clots

    PubMed Central

    Shekhar, Himanshu; Holland, Christy K.

    2017-01-01

    Introduction Porcine thrombi are employed routinely in preclinical models of ischemic stroke. In this study, we examined the differential lytic susceptibility of porcine and human whole blood clots with and without the use of microbubbles and ultrasound (US) as an adjuvant. Materials and methods An in vitro system equipped with time-lapse microscopy was used to evaluate recombinant tissue-plasminogen activator (rt-PA) lysis of porcine and human clots in the same species or cross species plasma. Human and porcine whole blood clots were treated with rt-PA and an echo contrast agent, Definity®, and exposed to intermittent 120 kHz US. Results and conclusions The rt-PA lytic efficacy observed for porcine clots in porcine plasma was 22 times lower than for human clots in human plasma reported previously. Further, porcine clots did not exhibit increased lysis with adjuvant Definity® and US exposure. However, the rt-PA lytic susceptibility of the porcine clots in human plasma was similar to that of human clots in human plasma. Human clots perfused with porcine plasma did not respond to rt-PA, but adjuvant use of Definity® and US enhanced lysis. These results reveal considerable differences in lytic susceptibility of porcine clots and human clots to rt-PA. The use of porcine clot models to test new human thrombolytic therapies may necessitate modulation of coagulation and thrombolytic factors to reflect human hemostasis accurately. PMID:28545055

  4. [Advance on genome research of Yersinia pestis bacteriophage].

    PubMed

    Tan, H L; Wang, P; Li, W

    2017-04-10

    Completion of the genome sequences on Yersinia pestis bacteriophage offered unprecedented opportunity for researchers to carry out related genomic studies. This review was based on the genomic sequences and provided a genomic perspective in describing the essential features of genome on Yersinia pestis bacteriophage. Based on the comparative genomics, genetic evolutionary relationship was discussed. Description of functions from the gene prediction and protein annotation provided evidence for further related studies.

  5. Population Dynamics of a Salmonella Lytic Phage and Its Host: Implications of the Host Bacterial Growth Rate in Modelling

    PubMed Central

    Santos, Sílvio B.; Carvalho, Carla; Azeredo, Joana; Ferreira, Eugénio C.

    2014-01-01

    The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the interactions between a broad-host-range Salmonella phage and its pathogenic host. The model takes into consideration the main biological parameters that rule phage-bacteria interactions likewise the adsorption rate, latent period, burst size, bacterial growth rate, and substrate uptake rate, among others. The experimental validation of the model was performed with data from phage-interaction studies in a 5 L bioreactor. The key and innovative aspect of the model was the introduction of variations in the latent period and adsorption rate values that are considered as constants in previous developed models. By modelling the latent period as a normal distribution of values and the adsorption rate as a function of the bacterial growth rate it was possible to accurately predict the behaviour of the phage-bacteria population. The model was shown to predict simulated data with a good agreement with the experimental observations and explains how a lytic phage and its host bacteria are able to coexist. PMID:25051248

  6. Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus arlettae).

    PubMed

    Bhardwaj, Neha; Bhardwaj, Sanjeev K; Mehta, Jyotsana; Mohanta, Girish C; Deep, Akash

    2016-07-15

    Bacteriophages are a class of viruses that specifically infect and replicate within a bacterium. They possess inherent affinity and specificity to the particular bacterial cells. This property of bacteriophages makes them an attractive biorecognition element in the field of biosensor development. In this work, we report the use of an immobilized bacteriophage for the development of a highly sensitive electrochemical sensor for Staphylococcus arlettae, bacteria from the pathogenic family of coagulase-negative staphylococci (CNS). The specific bacteriophages were covalently immobilized on the screen-printed graphene electrodes. Thus, the fabricated bacteriophage biosensor displayed quantitative response for the target bacteria (S. arlettae) for a broad detection range (2.0-2.0 × 10(6) cfu). A fast response time (2 min), low limit of detection (2 cfu), specificity, and stability over a prolonged period (3 months) are some of the important highlights of the proposed sensor. The practical utility of the developed sensor has been demonstrated by the analysis of S. arlettae in spiked water and apple juice samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus*

    PubMed Central

    Forsberg, Zarah; Nelson, Cassandra E.; Dalhus, Bjørn; Mekasha, Sophanit; Loose, Jennifer S. M.; Crouch, Lucy I.; Røhr, Åsmund K.; Gardner, Jeffrey G.; Eijsink, Vincent G. H.; Vaaje-Kolstad, Gustav

    2016-01-01

    Cellvibrio japonicus is a Gram-negative soil bacterium that is primarily known for its ability to degrade plant cell wall polysaccharides through utilization of an extensive repertoire of carbohydrate-active enzymes. Several putative chitin-degrading enzymes are also found among these carbohydrate-active enzymes, such as chitinases, chitobiases, and lytic polysaccharide monooxygenases (LPMOs). In this study, we have characterized the chitin-active LPMO, CjLPMO10A, a tri-modular enzyme containing a catalytic family AA10 LPMO module, a family 5 chitin-binding module, and a C-terminal unclassified module of unknown function. Characterization of the latter module revealed tight and specific binding to chitin, thereby unraveling a new family of chitin-binding modules (classified as CBM73). X-ray crystallographic elucidation of the CjLPMO10A catalytic module revealed that the active site of the enzyme combines structural features previously only observed in either cellulose or chitin-active LPMO10s. Analysis of the copper-binding site by EPR showed a signal signature more similar to those observed for cellulose-cleaving LPMOs. The full-length LPMO shows no activity toward cellulose but is able to bind and cleave both α- and β-chitin. Removal of the chitin-binding modules reduced LPMO activity toward α-chitin compared with the full-length enzyme. Interestingly, the full-length enzyme and the individual catalytic LPMO module boosted the activity of an endochitinase equally well, also yielding similar amounts of oxidized products. Finally, gene deletion studies show that CjLPMO10A is needed by C. japonicus to obtain efficient growth on both purified chitin and crab shell particles. PMID:26858252

  8. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus.

    PubMed

    Forsberg, Zarah; Nelson, Cassandra E; Dalhus, Bjørn; Mekasha, Sophanit; Loose, Jennifer S M; Crouch, Lucy I; Røhr, Åsmund K; Gardner, Jeffrey G; Eijsink, Vincent G H; Vaaje-Kolstad, Gustav

    2016-04-01

    Cellvibrio japonicusis a Gram-negative soil bacterium that is primarily known for its ability to degrade plant cell wall polysaccharides through utilization of an extensive repertoire of carbohydrate-active enzymes. Several putative chitin-degrading enzymes are also found among these carbohydrate-active enzymes, such as chitinases, chitobiases, and lytic polysaccharide monooxygenases (LPMOs). In this study, we have characterized the chitin-active LPMO,CjLPMO10A, a tri-modular enzyme containing a catalytic family AA10 LPMO module, a family 5 chitin-binding module, and a C-terminal unclassified module of unknown function. Characterization of the latter module revealed tight and specific binding to chitin, thereby unraveling a new family of chitin-binding modules (classified as CBM73). X-ray crystallographic elucidation of theCjLPMO10A catalytic module revealed that the active site of the enzyme combines structural features previously only observed in either cellulose or chitin-active LPMO10s. Analysis of the copper-binding site by EPR showed a signal signature more similar to those observed for cellulose-cleaving LPMOs. The full-length LPMO shows no activity toward cellulose but is able to bind and cleave both α- and β-chitin. Removal of the chitin-binding modules reduced LPMO activity toward α-chitin compared with the full-length enzyme. Interestingly, the full-length enzyme and the individual catalytic LPMO module boosted the activity of an endochitinase equally well, also yielding similar amounts of oxidized products. Finally, gene deletion studies show thatCjLPMO10A is needed byC. japonicusto obtain efficient growth on both purified chitin and crab shell particles. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus

    PubMed Central

    Neamah, Maan M.; Mir-Sanchis, Ignacio; López-Sanz, María; Acosta, Sonia; Baquedano, Ignacio; Haag, Andreas F.

    2017-01-01

    Abstract DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages. PMID:28475766

  10. Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus.

    PubMed

    Neamah, Maan M; Mir-Sanchis, Ignacio; López-Sanz, María; Acosta, Sonia; Baquedano, Ignacio; Haag, Andreas F; Marina, Alberto; Ayora, Silvia; Penadés, José R

    2017-06-20

    DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Bacteriophage-nanocomposites: an easy and reproducible method for the construction, handling, storage and transport of conjugates for deployment of bacteriophages active against Pseudomonas aeruginosa.

    PubMed

    Cooper, Ian R; Illsley, Matthew; Korobeinyk, Alina V; Whitby, Raymond L D

    2015-04-01

    The purpose of this work was proof of concept to develop a novel, cost effective protocol for the binding of bacteriophages to a surface without loss of function, after storage in various media. The technology platform involved covalently bonding bacteriophage 13 (a Pseudomonas aeruginosa bacteriophage) to two magnetised multiwalled carbon nanotube scaffolds using a series of buffers; bacteriophage-nanotube (B-N) conjugates were efficacious after storage at 20 °C for six weeks. B-N conjugates were added to human cell culture in vitro for 9 days without causing necrosis and apoptosis. B-N conjugates were frozen (-20 °C) in cell culture media for several weeks, after which recovery from the human cell culture medium was possible using a simple magnetic separation technique. The retention of viral infective potential was demonstrated by subsequent spread plating onto lawns of susceptible P. aeruginosa. Analysis of the human cell culture medium revealed the production of interleukins by the human fibroblasts upon exposure to the bacteriophage. One day after exposure, IL-8 levels transitorily increased between 60 and 100 pg/mL, but this level was not found on any subsequent days, suggesting an initial but not long lasting response. This paper outlines the development of a method to deliver antimicrobial activity to a surface that is small enough to be combined with other materials. To our knowledge at time of publication, this is the first report of magnetically coupled bacteriophages specific to human pathogens which can be recovered from test systems, and could represent a novel means to conditionally deploy antibacterial agents into living eukaryotic systems without the risks of some antibiotic therapies. Copyright © 2015. Published by Elsevier B.V.

  12. Genetic modifications to temperate Enterococcus faecalis phage ϕEf11 that abolish the establishment of lysogeny and sensitivity to repressor, and increase host range and productivity of lytic infection

    PubMed Central

    Zhang, H.; Fouts, D. E.; DePew, J.

    2013-01-01

    ϕEf11 is a temperate bacteriophage originally isolated by induction from a lysogenic Enterococcus faecalis strain recovered from an infected root canal, and the ϕEf11 prophage is widely disseminated among strains of E. faecalis. Because E. faecalis has emerged as a significant opportunistic human pathogen, we were interested in examining the genes and regulatory sequences predicted to be critical in the establishment/maintenance of lysogeny by ϕEf11 as a first step in the construction of the genome of a virulent, highly lytic phage that could be used in treating serious E. faecalis infections. Passage of ϕEf11 in E. faecalis JH2-2 yielded a variant that produced large, extensively spreading plaques in lawns of indicator cells, and elevated phage titres in broth cultures. Genetic analysis of the cloned virus producing the large plaques revealed that the variant was a recombinant between ϕEf11 and a defective ϕFL1C-like prophage located in the E. faecalis JH2-2 chromosome. The recombinant possessed five ORFs of the defective ϕFL1C-like prophage in place of six ORFs of the ϕEf11 genome. Deletion of the putative lysogeny gene module (ORFs 31–36) and replacement of the putative cro promoter from the recombinant phage genome with a nisin-inducible promoter resulted in no loss of virus infectivity. The genetic construct incorporating all the aforementioned ϕEf11 genomic modifications resulted in the generation of a variant that was incapable of lysogeny and insensitive to repressor, rendering it virulent and highly lytic, with a notably extended host range. PMID:23579685

  13. Poorly Lytic Bacteriophage from Dactylosporangium thailandensis (Actinomycetales)

    PubMed Central

    Higgins, M. L.; Lechevalier, Mary P.

    1969-01-01

    Dactylosporangiophage A1 has a polygonal head (75 nm) with spherical capsomeres (3 nm) and a noncontractile tail (200 by 10 nm) with cross-striations which is terminated with at least three prongs which are used for attachment. It contains double-stranded deoxyribonucleic acid and produces very little lysis. Intracellular phage multiplication leads to the formation of crystalline aggregates of apparently complete virions. Plaques are formed only on certain substrains of Dactylosporangium thailandensis L1 and are always small (0.5 mm or less). They are clear on some substrains and turbid on others. Formation of plaques occurs only on one medium, Czapek agar with 0.2 to 0.4% yeast extract, 0.2% peptone, or a defined mixture of amino acids. Over 100 strains of bacteria, mainly actinomycetes, were screened in a futile attempt to find an indicator strain which is not a substrain of L1. The Dactylosporangium-phage system studied is considered to be a semiresistant carrier state. Images PMID:5774140

  14. Wide Host Range and Strong Lytic Activity of Staphylococcus aureus Lytic Phage Stau2▿

    PubMed Central

    Hsieh, Sue-Er; Lo, Hsueh-Hsia; Chen, Shui-Tu; Lee, Mong-Chuan; Tseng, Yi-Hsiung

    2011-01-01

    In searching for an alternative antibacterial agent against multidrug-resistant Staphylococcus aureus, we have isolated and characterized a lytic staphylophage, Stau2. It possesses a double-stranded DNA genome estimated to be about 134.5 kb and a morphology resembling that of members of the family Myoviridae. With an estimated latency period of 25 min and a burst size of 100 PFU/infected cell, propagation of Stau2 in liquid culture gave a lysate of ca. 6 × 1010 PFU/ml. It was stable at pH 5 to 13 in normal saline at room temperature for at least 4 weeks and at −85°C for more than 2 years, while 1 × 109 out of 2 × 1012 PFU/ml retained infectivity after 36 months at 4°C. Stau2 could lyse 80% of the S. aureus isolates (164/205) obtained from hospitals in Taiwan, with complete lysis of most of the isolates tested within 3 h; however, it was an S. aureus-specific phage because no lytic infection could be found in the coagulase-negative staphylococci tested. Its host range among S. aureus isolates was wider than that of polyvalent phage K (47%), which can also lyse many other staphylococcal species. Experiments with mice demonstrated that Stau2 could provide 100% protection from lethal infection when a multiplicity of infection of 10 was administered immediately after a challenge with S. aureus S23. Considering these results, Stau2 could be considered at least as a candidate for topical phage therapy or an additive in the food industry. PMID:21148689

  15. Two-stage continuous operation of recombinant Escherichia coli using the bacteriophage lambda Q- vector.

    PubMed

    Oh, Jeong Seok; Cho, Daechul; Park, Tai Hyun

    2005-11-01

    A two-stage continuous culture of Escherichia coli in combination with a bacteriophage lambda system was performed in order to overcome the intrinsic plasmid instability that is frequently observed in recombinant fermentation. A phage lambda vector with a Q(-) mutation was used to enhance the expression of the lambda system. The optimal values of the important operational variables such as the substrate concentration, the dilution rate, and the mean residence time on the expression of the cloned gene were determined in both batch and continuous cultures. For all culturing modes, the full induction of the cloned gene was observed 4 h after the temperature shift. In the two stage continuous culture, the overproduction reached their maxima at D=0.25 h(-1) with 1.5 S(0) of the medium supply. The maximum productivity of the total beta-galactosidase was 16.3x10(6) U l(-1) h(-1), which was approximately seven times higher than that in the single-copy lysogenic stage. The recombinant cells were stable in the lysogenic state for more than 260 h, while they were stable for 40 h in the lytic state. The instability that developed rapidly in the second tank is believed to be due to the accumulation of lysis proteins as a result of vector leakage during the operation.

  16. Testing protozoacidal activity of ligand-lytic peptides against termite gut protozoa in vitro (protozoa culture) and in vivo (microinjection into termite hindgut).

    PubMed

    Husseneder, Claudia; Sethi, Amit; Foil, Lane; Delatte, Jennifer

    2010-12-29

    We are developing a novel approach to subterranean termite control that would lead to reduced reliance on the use of chemical pesticides. Subterranean termites are dependent on protozoa in the hindguts of workers to efficiently digest wood. Lytic peptides have been shown to kill a variety of protozoan parasites (Mutwiri et al. 2000) and also protozoa in the gut of the Formosan subterranean termite, Coptotermes formosanus (Husseneder and Collier 2009). Lytic peptides are part of the nonspecific immune system of eukaryotes, and destroy the membranes of microorganisms (Leuschner and Hansel 2004). Most lytic peptides are not likely to harm higher eukaryotes, because they do not affect the electrically neutral cholesterol-containing cell membranes of higher eukaryotes (Javadpour et al. 1996). Lytic peptide action can be targeted to specific cell types by the addition of a ligand. For example, Hansel et al. (2007) reported that lytic peptides conjugated with cancer cell membrane receptor ligands could be used to destroy breast cancer cells, while lytic peptides alone or conjugated with non-specific peptides were not effective. Lytic peptides also have been conjugated to human hormones that bind to receptors on tumor cells for targeted destruction of prostate and testicular cancer cells (Leuschner and Hansel 2004). In this article we present techniques used to demonstrate the protozoacidal activity of a lytic peptide (Hecate) coupled to a heptapeptide ligand that binds to the surface membrane of protozoa from the gut of the Formosan subterranean termite. These techniques include extirpation of the gut from termite workers, anaerobic culture of gut protozoa (Pseudotrichonympha grassii, Holomastigotoides hartmanni,Spirotrichonympha leidyi), microscopic confirmation that the ligand marked with a fluorescent dye binds to the termite gut protozoa and other free-living protozoa but not to bacteria or gut tissue. We also demonstrate that the same ligand coupled to a lytic

  17. Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism

    PubMed Central

    Kim, Seonah; Ståhlberg, Jerry; Sandgren, Mats; Paton, Robert S.; Beckham, Gregg T.

    2014-01-01

    Lytic polysaccharide monooxygenases (LPMOs) exhibit a mononuclear copper-containing active site and use dioxygen and a reducing agent to oxidatively cleave glycosidic linkages in polysaccharides. LPMOs represent a unique paradigm in carbohydrate turnover and exhibit synergy with hydrolytic enzymes in biomass depolymerization. To date, several features of copper binding to LPMOs have been elucidated, but the identity of the reactive oxygen species and the key steps in the oxidative mechanism have not been elucidated. Here, density functional theory calculations are used with an enzyme active site model to identify the reactive oxygen species and compare two hypothesized reaction pathways in LPMOs for hydrogen abstraction and polysaccharide hydroxylation; namely, a mechanism that employs a η1-superoxo intermediate, which abstracts a substrate hydrogen and a hydroperoxo species is responsible for substrate hydroxylation, and a mechanism wherein a copper-oxyl radical abstracts a hydrogen and subsequently hydroxylates the substrate via an oxygen-rebound mechanism. The results predict that oxygen binds end-on (η1) to copper, and that a copper-oxyl–mediated, oxygen-rebound mechanism is energetically preferred. The N-terminal histidine methylation is also examined, which is thought to modify the structure and reactivity of the enzyme. Density functional theory calculations suggest that this posttranslational modification has only a minor effect on the LPMO active site structure or reactivity for the examined steps. Overall, this study suggests the steps in the LPMO mechanism for oxidative cleavage of glycosidic bonds. PMID:24344312

  18. Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution.

    PubMed

    Lacombe-Harvey, Marie-Ève; Brzezinski, Ryszard; Beaulieu, Carole

    2018-06-21

    Actinobacteria, a large group of Gram-positive bacteria, secrete a wide range of extracellular enzymes involved in the degradation of organic compounds and biopolymers including the ubiquitous aminopolysaccharides chitin and chitosan. While chitinolytic enzymes are distributed in all kingdoms of life, actinobacteria are recognized as particularly good decomposers of chitinous material and several members of this taxon carry impressive sets of genes dedicated to chitin and chitosan degradation. Degradation of these polymers in actinobacteria is dependent on endo- and exo-acting hydrolases as well as lytic polysaccharide monooxygenases. Actinobacterial chitinases and chitosanases belong to nine major families of glycosyl hydrolases that share no sequence similarity. In this paper, the distribution of chitinolytic actinobacteria within different ecosystems is examined and their chitinolytic machinery is described and compared to those of other chitinolytic organisms.

  19. Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology.

    PubMed

    Bibby, Kyle

    2014-02-01

    The recent rise in "omics"-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases-currently, only 0.001% of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.

  20. PARP1 restricts Epstein Barr Virus lytic reactivation by binding the BZLF1 promoter.

    PubMed

    Lupey-Green, Lena N; Moquin, Stephanie A; Martin, Kayla A; McDevitt, Shane M; Hulse, Michael; Caruso, Lisa B; Pomerantz, Richard T; Miranda, Jj L; Tempera, Italo

    2017-07-01

    The Epstein Barr virus (EBV) genome persists in infected host cells as a chromatinized episome and is subject to chromatin-mediated regulation. Binding of the host insulator protein CTCF to the EBV genome has an established role in maintaining viral latency type, and in other herpesviruses, loss of CTCF binding at specific regions correlates with viral reactivation. Here, we demonstrate that binding of PARP1, an important cofactor of CTCF, at the BZLF1 lytic switch promoter restricts EBV reactivation. Knockdown of PARP1 in the Akata-EBV cell line significantly increases viral copy number and lytic protein expression. Interestingly, CTCF knockdown has no effect on viral reactivation, and CTCF binding across the EBV genome is largely unchanged following reactivation. Moreover, EBV reactivation attenuates PARP activity, and Zta expression alone is sufficient to decrease PARP activity. Here we demonstrate a restrictive function of PARP1 in EBV lytic reactivation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Innate Lymphoid Cells (ILCs) as Mediators of Inflammation, Release of Cytokines and Lytic Molecules

    PubMed Central

    Elemam, Noha Mousaad

    2017-01-01

    Innate lymphoid cells (ILCs) are an emerging group of immune cells that provide the first line of defense against various pathogens as well as contributing to tissue repair and inflammation. ILCs have been classically divided into three subgroups based on their cytokine secretion and transcription factor profiles. ILC nomenclature is analogous to that of T helper cells. Group 1 ILCs composed of natural killer (NK) cells as well as IFN-γ secreting ILC1s. ILC2s have the capability to produce TH2 cytokines while ILC3s and lymphoid tissue inducer (LTis) are subsets of cells that are able to secrete IL-17 and/or IL-22. A recent subset of ILC known as ILC4 was discovered, and the cells of this subset were designated as NK17/NK1 due to their release of IL-17 and IFN-γ. In this review, we sought to explain the subclasses of ILCs and their roles as mediators of lytic enzymes and inflammation. PMID:29232860

  2. Innate Lymphoid Cells (ILCs) as Mediators of Inflammation, Release of Cytokines and Lytic Molecules.

    PubMed

    Elemam, Noha Mousaad; Hannawi, Suad; Maghazachi, Azzam A

    2017-12-10

    Innate lymphoid cells (ILCs) are an emerging group of immune cells that provide the first line of defense against various pathogens as well as contributing to tissue repair and inflammation. ILCs have been classically divided into three subgroups based on their cytokine secretion and transcription factor profiles. ILC nomenclature is analogous to that of T helper cells. Group 1 ILCs composed of natural killer (NK) cells as well as IFN-γ secreting ILC1s. ILC2s have the capability to produce T H 2 cytokines while ILC3s and lymphoid tissue inducer (LTis) are subsets of cells that are able to secrete IL-17 and/or IL-22. A recent subset of ILC known as ILC4 was discovered, and the cells of this subset were designated as NK17/NK1 due to their release of IL-17 and IFN-γ. In this review, we sought to explain the subclasses of ILCs and their roles as mediators of lytic enzymes and inflammation.

  3. Calcium Signaling throughout the Toxoplasma gondii Lytic Cycle

    PubMed Central

    Borges-Pereira, Lucas; Budu, Alexandre; McKnight, Ciara A.; Moore, Christina A.; Vella, Stephen A.; Hortua Triana, Miryam A.; Liu, Jing; Garcia, Celia R. S.; Pace, Douglas A.; Moreno, Silvia N. J.

    2015-01-01

    Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca2+ oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca2+ enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca2+ changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca2+ oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca2+ influx. This is the first study showing, in real time, Ca2+ signals preceding egress and their direct link with motility, an essential virulence trait. PMID:26374900

  4. Application of bacteriophages in sensor development.

    PubMed

    Peltomaa, Riikka; López-Perolio, Irene; Benito-Peña, Elena; Barderas, Rodrigo; Moreno-Bondi, María Cruz

    2016-03-01

    Bacteriophage-based bioassays are a promising alternative to traditional antibody-based immunoassays. Bacteriophages, shortened to phages, can be easily conjugated or genetically engineered. Phages are robust, ubiquitous in nature, and harmless to humans. Notably, phages do not usually require inoculation and killing of animals; and thus, the production of phages is simple and economical. In recent years, phage-based biosensors have been developed featuring excellent robustness, sensitivity, and selectivity in combination with the ease of integration into transduction devices. This review provides a critical overview of phage-based bioassays and biosensors developed in the last few years using different interrogation methods such as colorimetric, enzymatic, fluorescence, surface plasmon resonance, quartz crystal microbalance, magnetoelastic, Raman, or electrochemical techniques.

  5. Significance of the Bacteriophage Treatment Schedule in Reducing Salmonella Colonization of Poultry

    PubMed Central

    Bardina, Carlota; Spricigo, Denis A.; Cortés, Pilar

    2012-01-01

    Salmonella remains the major cause of food-borne diseases worldwide, with chickens known to be the main reservoir for this zoonotic pathogen. Among the many approaches to reducing Salmonella colonization of broilers, bacteriophage offers several advantages. In this study, three bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) obtained from our collection that exhibited a broad host range against Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium were characterized with respect to morphology, genome size, and restriction patterns. A cocktail composed of the three bacteriophages was more effective in promoting the lysis of S. Enteritidis and S. Typhimurium cultures than any of the three bacteriophages alone. In addition, the cocktail was able to lyse the Salmonella enterica serovars Virchow, Hadar, and Infantis. The effectiveness of the bacteriophage cocktail in reducing the concentration of S. Typhimurium was tested in two animal models using different treatment schedules. In the mouse model, 50% survival was obtained when the cocktail was administered simultaneously with bacterial infection and again at 6, 24, and 30 h postinfection. Likewise, in the White Leghorn chicken specific-pathogen-free (SPF) model, the best results, defined as a reduction of Salmonella concentration in the chicken cecum, were obtained when the bacteriophage cocktail was administered 1 day before or just after bacterial infection and then again on different days postinfection. Our results show that frequent treatment of the chickens with bacteriophage, and especially prior to colonization of the intestinal tract by Salmonella, is required to achieve effective bacterial reduction over time. PMID:22773654

  6. Characterization of the endolysin from the Enterococcus faecalis bacteriophage VD13

    USDA-ARS?s Scientific Manuscript database

    Bacteriophage infecting bacteria produce endolysins (peptidoglycan hydrolases) to lyse the host cell from within and release nascent bacteriophage particles. Recombinant endolysins can also lyse Gram-positive bacteria when added exogenously. As a potential alternative to antibiotics, we cloned and...

  7. [Genetic study of bacteriophage phi81. I. Isolation, study of complementation and preliminary mapping of amber-mutants of bacteriophage phi81].

    PubMed

    Sineokiĭ, S P; Pogosov, V Z; Iankovskiĭ, N K; Krylov, V N

    1976-01-01

    123 Amber mutants of lambdoid bacteriophage phi81 are isolated and distributed into 19 complementation groups. Deletion mapping made possible to locate 5 gene groups on the genetic map of bacteriophage phi81 and to determine a region of possible location of mm' sticky ends on the prophage genetic map. A gene of phage phi81 is localized, which controls the adsorption specificity, and which functional similarity to a respective gene of phage phi80 is demonstrated.

  8. Adsorption of bacteriophages on clay minerals

    USGS Publications Warehouse

    Chattopadhyay, Sandip; Puls, Robert W.

    1999-01-01

    The ability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and φX-174) on clays (hectorite, saponite, kaolinite, and clay fraction of samples collected from a landfill site). The thermodynamic study not only determines the feasibility of the process but also provides information on the relative magnitudes of the different forces under a particular set of conditions. The total free energy of interaction during sorption of bacteriophages on clays (ΔG) has been assumed to be the summation of ΔGH (ΔG due to hydrophobic interactions) and ΔGEL (ΔG due to electrostatic interactions). The magnitude of ΔGH was determined from the different interfacial tensions (γ) present in the system, while ΔGEL was calculated from ζ-potentials of the colloidal particles. Calculated results show that surface hydrophobicities of the selected sorbents and sorbates dictate sorption. Among the selected bacteriophages, maximum sorption was observed with T-2, while hectorite has the maximum sorption capacity. Experimental results obtained from the batch adsorption studies also corroborated those obtained from the theoretical study.

  9. Novel bacteriophages containing a genome of another bacteriophage within their genomes.

    PubMed

    Swanson, Maud M; Reavy, Brian; Makarova, Kira S; Cock, Peter J; Hopkins, David W; Torrance, Lesley; Koonin, Eugene V; Taliansky, Michael

    2012-01-01

    A novel bacteriophage infecting Staphylococus pasteuri was isolated during a screen for phages in Antarctic soils. The phage named SpaA1 is morphologically similar to phages of the family Siphoviridae. The 42,784 bp genome of SpaA1 is a linear, double-stranded DNA molecule with 3' protruding cohesive ends. The SpaA1 genome encompasses 63 predicted protein-coding genes which cluster within three regions of the genome, each of apparently different origin, in a mosaic pattern. In two of these regions, the gene sets resemble those in prophages of Bacillus thuringiensis kurstaki str. T03a001 (genes involved in DNA replication/transcription, cell entry and exit) and B. cereus AH676 (additional regulatory and recombination genes), respectively. The third region represents an almost complete genome (except for the short terminal segments) of a distinct bacteriophage, MZTP02. Nearly the same gene module was identified in prophages of B. thuringiensis serovar monterrey BGSC 4AJ1 and B. cereus Rock4-2. These findings suggest that MZTP02 can be shuttled between genomes of other bacteriophages and prophages, leading to the formation of chimeric genomes. The presence of a complete phage genome in the genome of other phages apparently has not been described previously and might represent a 'fast track' route of virus evolution and horizontal gene transfer. Another phage (BceA1) nearly identical in sequence to SpaA1, and also including the almost complete MZTP02 genome within its own genome, was isolated from a bacterium of the B. cereus/B. thuringiensis group. Remarkably, both SpaA1 and BceA1 phages can infect B. cereus and B. thuringiensis, but only one of them, SpaA1, can infect S. pasteuri. This finding is best compatible with a scenario in which MZTP02 was originally contained in BceA1 infecting Bacillus spp, the common hosts for these two phages, followed by emergence of SpaA1 infecting S. pasteuri.

  10. [Determination of Azospirillum Brasilense Cells With Bacteriophages via Electrooptical Analysis of Microbial Suspensions].

    PubMed

    Gulii, O I; Karavayeva, O A; Pavlii, S A; Sokolov, O I; Bunin, V D; Ignatov, O V

    2015-01-01

    The dependence-of changes in the electrooptical properties of Azospirillum brasilense cell suspension Sp7 during interaction with bacteriophage ΦAb-Sp7 on the number and time of interactions was studied. Incubation of cells with bacteriophage significantly changed the electrooptical signal within one minute. The selective effect of bacteriophage ΦAb on 18 strains of bacteria of the genus Azospirillum was studied: A. amazonense Ami4, A. brasilense Sp7, Cd, Sp107, Sp245, Jm6B2, Brl4, KR77, S17, S27, SR55, SR75, A. halopraeferans Au4, A. irakense KBC1, K A3, A. lipoferum Sp59b, SR65 and RG20a. We determined the limit of reliable determination of microbial cells infected with bacteriophage: - 10(4) cells/mL. The presence of foreign cell cultures of E. coli B-878 and E. coli XL-1 did not complicate the detection of A brasilense Sp7 cells with the use of bacteriophage ΦAb-Sp7. The results demonstrated that bacteriophage (ΦAb-Sp7 can be used for the detection of Azospirillum microbial cells via t electrooptical analysis of cell suspensions.

  11. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    PubMed

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  12. Augmentation of failed human vertebrae with critical un-contained lytic defect restores their structural competence under functional loading: An experimental study.

    PubMed

    Alkalay, Ron N; von Stechow, Dietrich; Hackney, David B

    2015-07-01

    Lytic spinal lesions reduce vertebral strength and may result in their fracture. Vertebral augmentation is employed clinically to provide mechanical stability and pain relief for vertebrae with lytic lesions. However, little is known about its efficacy in strengthening fractured vertebrae containing lytic metastasis. Eighteen unembalmed human lumbar vertebrae, having simulated uncontained lytic defects and tested to failure in a prior study, were augmented using a transpedicular approach and re-tested to failure using a wedge fracture model. Axial and moment based strength and stiffness parameters were used to quantify the effect of augmentation on the structural response of the failed vertebrae. Effects of cement volume, bone mineral density and vertebral geometry on the change in structural response were investigated. Augmentation increased the failed lytic vertebral strength [compression: 85% (P<0.001), flexion: 80% (P<0.001), anterior-posterior shear: 95%, P<0.001)] and stiffness [(40% (P<0.05), 53% (P<0.05), 45% (P<0.05)]. Cement volume correlated with the compressive strength (r(2)=0.47, P<0.05) and anterior-posterior shear strength (r(2)=0.52, P<0.05) and stiffness (r(2)=0.45, P<0.05). Neither the geometry of the failed vertebrae nor its pre-fracture bone mineral density correlated with the volume of cement. Vertebral augmentation is effective in bolstering the failed lytic vertebrae compressive and axial structural competence, showing strength estimates up to 50-90% of historical values of osteoporotic vertebrae without lytic defects. This modest increase suggests that lytic vertebrae undergo a high degree of structural damage at failure, with strength only partially restored by vertebral augmentation. The positive effect of cement volume is self-limiting due to extravasation. Copyright © 2015. Published by Elsevier Ltd.

  13. M13 Bacteriophage-Based Self-Assembly Structures and Their Functional Capabilities.

    PubMed

    Moon, Jong-Sik; Kim, Won-Geun; Kim, Chuntae; Park, Geun-Tae; Heo, Jeong; Yoo, So Y; Oh, Jin-Woo

    2015-06-01

    Controlling the assembly of basic structural building blocks in a systematic and orderly fashion is an emerging issue in various areas of science and engineering such as physics, chemistry, material science, biological engineering, and electrical engineering. The self-assembly technique, among many other kinds of ordering techniques, has several unique advantages and the M13 bacteriophage can be utilized as part of this technique. The M13 bacteriophage (Phage) can easily be modified genetically and chemically to demonstrate specific functions. This allows for its use as a template to determine the homogeneous distribution and percolated network structures of inorganic nanostructures under ambient conditions. Inexpensive and environmentally friendly synthesis can be achieved by using the M13 bacteriophage as a novel functional building block. Here, we discuss recent advances in the application of M13 bacteriophage self-assembly structures and the future of this technology.

  14. M13 Bacteriophage-Based Self-Assembly Structures and Their Functional Capabilities

    PubMed Central

    Moon, Jong-Sik; Kim, Won-Geun; Kim, Chuntae; Park, Geun-Tae; Heo, Jeong; Yoo, So Y; Oh, Jin-Woo

    2015-01-01

    Controlling the assembly of basic structural building blocks in a systematic and orderly fashion is an emerging issue in various areas of science and engineering such as physics, chemistry, material science, biological engineering, and electrical engineering. The self-assembly technique, among many other kinds of ordering techniques, has several unique advantages and the M13 bacteriophage can be utilized as part of this technique. The M13 bacteriophage (Phage) can easily be modified genetically and chemically to demonstrate specific functions. This allows for its use as a template to determine the homogeneous distribution and percolated network structures of inorganic nanostructures under ambient conditions. Inexpensive and environmentally friendly synthesis can be achieved by using the M13 bacteriophage as a novel functional building block. Here, we discuss recent advances in the application of M13 bacteriophage self-assembly structures and the future of this technology. PMID:26146494

  15. Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin.

    PubMed

    Shen, Yang; Köller, Thomas; Kreikemeyer, Bernd; Nelson, Daniel C

    2013-08-01

    Streptococcus pyogenes, or Group A streptococcus (GAS), has a propensity to colonize human tissues and form biofilms. Significantly, these biofilms are a contributing mechanism of antibiotic treatment failure in streptococcal disease. In this study, we evaluate a streptococcal-specific bacteriophage-encoded endolysin (PlyC), which is known to lyse planktonic streptococci, on both static and dynamic streptococcal biofilms. PlyC was benchmarked against antibiotics for MIC, MBC and minimum biofilm eradication concentration (MBEC). A biomass eradication assay based on crystal violet staining of the biofilm matrix was also used to quantify the anti-biofilm properties of PlyC. Finally, conventional fluorescence microscopy and laser scanning confocal microscopy were used to study the effects of PlyC on static and dynamic biofilms of GAS. PlyC and antibiotics had similar MIC (range 0.02-0.08 mg/L) and MBC (range 0.02-1.25 mg/L) values on planktonic GAS. However, when GAS grew in biofilms, the MBEC values for antibiotics rose to clinically resistant values (≥400 mg/L) whereas PlyC had MBEC values two orders of magnitude lower by mass and four orders of magnitude lower by molarity than the conventional antibiotics. Laser scanning confocal microscopy revealed that PlyC destroys the biofilm as it diffuses through the matrix in a time-dependent fashion. Our findings indicate that while streptococcal cells within a biofilm rapidly become refractory to traditional antibiotics, the biofilm matrix is readily destroyed by the lytic actions of PlyC.

  16. Inhibition of mTORC1 inhibits lytic replication of Epstein-Barr virus in a cell-type specific manner.

    PubMed

    Adamson, Amy L; Le, Brandi T; Siedenburg, Brian D

    2014-06-11

    Epstein-Barr virus is a human herpesvirus that infects a majority of the human population. Primary infection of Epstein-Barr virus (EBV) causes the syndrome infectious mononucleosis. This virus is also associated with several cancers, including Burkitt's lymphoma, post-transplant lymphoproliferative disorder and nasopharyngeal carcinoma. As all herpesvirus family members, EBV initially replicates lytically to produce abundant virus particles, then enters a latent state to remain within the host indefinitely. Through a genetic screen in Drosophila, we determined that reduction of Drosophila Tor activity altered EBV immediate-early protein function. To further investigate this finding, we inhibited mTOR in EBV-positive cells and investigated subsequent changes to lytic replication via Western blotting, flow cytometry, and quantitative PCR. The student T-test was used to evaluate significance. mTOR, the human homolog of Drosophila Tor, is an important protein at the center of a major signaling pathway that controls many aspects of cell biology. As the EBV immediate-early genes are responsible for EBV lytic replication, we examined the effect of inhibition of mTORC1 on EBV lytic replication in human EBV-positive cell lines. We determined that treatment of cells with rapamycin, which is an inhibitor of mTORC1 activity, led to a reduction in the ability of B cell lines to undergo lytic replication. In contrast, EBV-positive epithelial cell lines underwent higher levels of lytic replication when treated with rapamycin. Overall, the responses of EBV-positive cell lines vary when treated with mTOR inhibitors, and this may be important when considering such inhibitors as anti-cancer therapeutic agents.

  17. Application of bacteriophages to reduce Salmonella contamination on workers' boots in rendering-processing environment.

    PubMed

    Gong, C; Jiang, X; Wang, J

    2017-10-01

    Workers' boots are considered one of the re-contamination routes of Salmonella for rendered meals in the rendering-processing environment. This study was conducted to evaluate the efficacy of a bacteriophage cocktail for reducing Salmonella on workers' boots and ultimately for preventing Salmonella re-contamination of rendered meals. Under laboratory conditions, biofilms of Salmonella Typhimurium avirulent strain 8243 formed on rubber templates or boots were treated with a bacteriophage cocktail of 6 strains (ca. 9 log PFU/mL) for 6 h at room temperature. Bacteriophage treatments combined with sodium hypochlorite (400 ppm) or 30-second brush scrubbing also were investigated for a synergistic effect on reducing Salmonella biofilms. Sodium magnesium (SM) buffer and sodium hypochlorite (400 ppm) were used as controls. To reduce indigenous Salmonella on workers' boots, a field study was conducted to apply a bacteriophage cocktail and other combined treatments 3 times within one wk in a rendering-processing environment. Prior to and after bacteriophage treatments, Salmonella populations on the soles of rubber boots were swabbed and enumerated on XLT-4, Miller-Mallinson or CHROMagar™ plates. Under laboratory conditions, Salmonella biofilms formed on rubber templates and boots were reduced by 95.1 to 99.999% and 91.5 to 99.2%, respectively. In a rendering-processing environment (ave. temperature: 19.3°C; ave. relative humidity: 48%), indigenous Salmonella populations on workers' boots were reduced by 84.2, 92.9, and 93.2% after being treated with bacteriophages alone, bacteriophages + sodium hypochlorite, and bacteriophages + scrubbing for one wk, respectively. Our results demonstrated the effectiveness of bacteriophage treatments in reducing Salmonella contamination on the boots in both laboratory and the rendering-processing environment. © 2017 Poultry Science Association Inc.

  18. Bacteriophage ecology in environmental biotechnology processes.

    PubMed

    Shapiro, Orr H; Kushmaro, Ariel

    2011-06-01

    Heterotrophic bacteria are an integral part of any environmental biotechnology process (EBP). Therefore, factors controlling bacterial abundance, activity, and community composition are central to the understanding of such processes. Among these factors, top-down control by bacteriophage predation has so far received very limited attention. With over 10(8) particles per ml, phage appear to be the most numerous biological entities in EBP. Phage populations in EBP appear to be highly dynamic and to correlate with the population dynamics of their hosts and genomic evidence suggests bacteria evolve to avoid phage predation. Clearly, there is much to learn regarding bacteriophage in EBP before we can truly understand the microbial ecology of these globally important systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Phenoloxidase but not lytic activity reflects resistance against Pasteuria ramosa in Daphnia magna

    PubMed Central

    Pauwels, Kevin; De Meester, Luc; Decaestecker, Ellen; Stoks, Robby

    2011-01-01

    The field of ecological immunology strongly relies on indicators of immunocompetence. Two major indicators in invertebrates, the activity of phenoloxidase (PO) and lytic activity have recently been questioned in studies showing that, across a natural range of baseline levels, these indicators did not predict resistance against a manipulated challenge with natural parasites. We confirmed this finding by showing that baseline levels of PO and lytic activity in the host Daphnia magna were not related to spore load of the parasite Pasteuria ramosa. Yet, PO levels in infected hosts did predict spore load, indicating PO activity can be useful as an indicator of immunocompetence in this model parasite–host system. PMID:20810432

  20. Phenoloxidase but not lytic activity reflects resistance against Pasteuria ramosa in Daphnia magna.

    PubMed

    Pauwels, Kevin; De Meester, Luc; Decaestecker, Ellen; Stoks, Robby

    2011-02-23

    The field of ecological immunology strongly relies on indicators of immunocompetence. Two major indicators in invertebrates, the activity of phenoloxidase (PO) and lytic activity have recently been questioned in studies showing that, across a natural range of baseline levels, these indicators did not predict resistance against a manipulated challenge with natural parasites. We confirmed this finding by showing that baseline levels of PO and lytic activity in the host Daphnia magna were not related to spore load of the parasite Pasteuria ramosa. Yet, PO levels in infected hosts did predict spore load, indicating PO activity can be useful as an indicator of immunocompetence in this model parasite-host system.

  1. Natural mummification of the human gut preserves bacteriophage DNA.

    PubMed

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Dowd, Scot E; Toranzos, Gary A; Marota, Isolina; Cano, Raul J

    2016-01-01

    The natural mummification process of the human gut represents a unique opportunity to study the resulting microbial community structure and composition. While results are providing insights into the preservation of bacteria, fungi, pathogenic eukaryotes and eukaryotic viruses, no studies have demonstrated that the process of natural mummification also results in the preservation of bacteriophage DNA. We characterized the gut microbiome of three pre-Columbian Andean mummies, namely FI3, FI9 and FI12, and found sequences homologous to viruses. From the sequences attributable to viruses, 50.4% (mummy FI3), 1.0% (mummy FI9) and 84.4% (mummy FI12) were homologous to bacteriophages. Sequences corresponding to the Siphoviridae, Myoviridae, Podoviridae and Microviridae families were identified. Predicted putative bacterial hosts corresponded mainly to the Firmicutes and Proteobacteria, and included Bacillus, Staphylococcus, Clostridium, Escherichia, Vibrio, Klebsiella, Pseudomonas and Yersinia. Predicted functional categories associated with bacteriophages showed a representation of structural, replication, integration and entry and lysis genes. The present study suggests that the natural mummification of the human gut results in the preservation of bacteriophage DNA, representing an opportunity to elucidate the ancient phageome and to hypothesize possible mechanisms of preservation. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  3. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  4. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  5. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  6. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  7. Development of a bacteriophage displayed peptide library and biosensor

    NASA Astrophysics Data System (ADS)

    Chin, Robert C.; Salazar, Noe; Mayo, Michael W.; Villavicencio, Victor I.; Taylor, Richard B.; Chambers, James P.; Valdes, James J.

    1996-04-01

    A miniaturized, handheld biosensor for identification of hazardous biowarfare agents with high specificity is being developed. An innovative biological recognition system based on bacteriophage displayed peptide receptors will be utilized in conjunction with the miniature biosensor technology being developed. A bacteriophage library has been constructed to provide the artificial receptors. The library can contain millions of bacteriophage with randomly displayed peptide sequences in the phage outer protein coat which act as binding sites for the agents of interest. This library will be used to 'bio-pan' for phages that bind to a number of toxins and infectious agents and can, thus, provide an endless supply of low cost, reliable, specific, and stable artificial receptors. The biosensor instrument will utilize evanescent wave, planar waveguide, far-red dyes, diode laser and miniature circuit technologies for performance and portability.

  8. Bacteriophage T5 DNA ejection under pressure.

    PubMed

    Leforestier, A; Brasilès, S; de Frutos, M; Raspaud, E; Letellier, L; Tavares, P; Livolant, F

    2008-12-19

    The transfer of the bacteriophage genome from the capsid into the host cell is a key step of the infectious process. In bacteriophage T5, DNA ejection can be triggered in vitro by simple binding of the phage to its purified Escherichia coli receptor FhuA. Using electrophoresis and cryo-electron microscopy, we measure the extent of DNA ejection as a function of the external osmotic pressure. In the high pressure range (7-16 atm), the amount of DNA ejected decreases with increasing pressure, as theoretically predicted and observed for lambda and SPP1 bacteriophages. In the low and moderate pressure range (2-7 atm), T5 exhibits an unexpected behavior. Instead of a unique ejected length, multiple populations coexist. Some phages eject their complete genome, whereas others stop at some nonrandom states that do not depend on the applied pressure. We show that contrarily to what is observed for the phages SPP1 and lambda, T5 ejection cannot be explained as resulting from a simple pressure equilibrium between the inside and outside of the capsid. Kinetics parameters and/or structural characteristics of the ejection machinery could play a determinant role in T5 DNA ejection.

  9. Multiple roles of genome-attached bacteriophage terminal proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redrejo-Rodríguez, Modesto; Salas, Margarita, E-mail: msalas@cbm.csic.es

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid.more » Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.« less

  10. Deoxyribonucleic Acid Replication and Expression of Early and Late Bacteriophage Functions in Bacillus subtilis

    PubMed Central

    Pène, Jacques J.; Marmur, Julius

    1967-01-01

    The role of deoxyribonucleic acid (DNA) replication in the control of the synthesis of deoxycytidylate (dCMP) deaminase and lysozyme in Bacillus subtilis infected with bacteriophage 2C has been studied. These phage-induced enzymes are synthesized at different times during the latent period. It was shown by actinomycin inhibition that the formation of the late enzyme (lysozyme) required messenger ribonucleic acid (mRNA) synthesized de novo after the initiation of translation of mRNA which specifies the early function (dCMP deaminase). The inhibition of phage DNA synthesis by mitomycin C prevented the synthesis of lysozyme only when added before the onset of phage DNA replication, but it did not affect the synthesis or action of dCMP deaminase when added at any time during the latent period. Treatment of infected cells with mitomycin C after phage DNA synthesis had reached 8 to 10% of its maximal rate resulted in the production of normal amounts of lysozyme. These observations suggest that mRNA specifying early enzymes can be transcribed from parental (and probably also from progeny) DNA, whereas late functional messengers can be transcribed only after the formation of progeny DNA. PMID:4990039

  11. Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages.

    PubMed

    Soleimani-Delfan, Abbas; Etemadifar, Zahra; Emtiazi, Giti; Bouzari, Majid

    2015-01-01

    One of the most economically important bacterial pathogens of plants and plant products is Dickeya dadantii. This bacterium causes soft rot disease in tubers and other parts of the potato and other plants of the Solanaceae family. The application of restricted host range bacteriophages as biocontrol agents has recently gained widespread interest. This study purposed to isolate the infectious agent of the potato and evaluate its biocontrol by bacteriophages. Two phytopathogenic strains were isolated from infected potatoes, identified based on biochemical and 16S rRNA gene sequencing, and submitted to GenBank as D. dadantii strain pis3 (accession no. HQ423668) and D. dadantii strain sip4 (accession no. HQ423669). Their bacteriophages were isolated from Caspian Sea water by enriching the water filtrate with D. dadantii strains as hosts using spot or overlay methods. On the basis of morphotypes, the isolated bacteriophages were identified as members of the Myoviridae and Siphoviridae families and could inhibit the growth of antibiotic resistant D. dadantii strains in culture medium. Moreover, in Dickeya infected plants treated with bacteriophage, no disease progression was detected. No significant difference was seen between phage-treated and control plants. Thus, isolated bacteriophages can be suggested for the biocontrol of plant disease caused by Dickeya strains.

  12. Bromodomain and extraterminal inhibitors block the Epstein-Barr virus lytic cycle at two distinct steps.

    PubMed

    Keck, Kristin M; Moquin, Stephanie A; He, Amanda; Fernandez, Samantha G; Somberg, Jessica J; Liu, Stephanie M; Martinez, Delsy M; Miranda, Jj L

    2017-08-11

    Lytic infection by the Epstein-Barr virus (EBV) poses numerous health risks, such as infectious mononucleosis and lymphoproliferative disorder. Proteins in the bromodomain and extraterminal (BET) family regulate multiple stages of viral life cycles and provide promising intervention targets. Synthetic small molecules can bind to the bromodomains and disrupt function by preventing recognition of acetylated lysine substrates. We demonstrate that JQ1 and other BET inhibitors block two different steps in the sequential cascade of the EBV lytic cycle. BET inhibitors prevent expression of the viral immediate-early protein BZLF1. JQ1 alters transcription of genes controlled by the host protein BACH1, and BACH1 knockdown reduces BZLF1 expression. BET proteins also localize to the lytic origin of replication (OriLyt) genetic elements, and BET inhibitors prevent viral late gene expression. There JQ1 reduces BRD4 recruitment during reactivation to preclude replication initiation. This represents a rarely observed dual mode of action for drugs.

  13. Characterization of a novel Streptococcus suis endolysin and development of a multi-acting antimicrobial enzyme that is refractory to resistance development

    USDA-ARS?s Scientific Manuscript database

    The crisis of increasing resistance of pathogenic bacteria to classical antibiotics has driven research towards identification of other means to fight infectious disease. One particularly attractive option is the use of bacteriophage-encoded peptidoglycan hydrolases (endolysins). These enzymes are a...

  14. Antigenic properties of HCMV peptides displayed by filamentous bacteriophages vs. synthetic peptides.

    PubMed

    Ulivieri, Cristina; Citro, Alessandra; Ivaldi, Federico; Mascolo, Dina; Ghittoni, Raffaella; Fanigliulo, Daniela; Manca, Fabrizio; Baldari, Cosima Tatiana; Li Pira, Giuseppina; Del Pozzo, Giovanna

    2008-08-15

    Several efforts have been invested in the identification of CTL and Th epitopes, as well as in the characterization of their immunodominance and MHC restriction, for the generation of a peptide-based HCMV vaccine. Small synthetic peptides are, however, poor antigens and carrier proteins are important for improving the efficacy of synthetic peptide vaccines. Recombinant bacteriophages appear as promising tools in the design of subunit vaccines. To investigate the antigenicity of peptides carried by recombinant bacteriophages we displayed different HCMV MHCII restricted peptides on the capsid of filamentous bacteriophage (fd) and found that hybrid bacteriophages are processed by human APC and activate HCMV-specific CD4 T-cells. Furthermore we constructed a reporter T-cell hybridoma expressing a chimeric TCR comprising murine alphabeta constant regions and human variable regions specific for the HLA-A2 restricted immunodominant NLV peptide of HCMV. Using the filamentous bacteriophage as an epitope carrier, we detected a more robust and long lasting response of the reporter T-cell hybridoma compared to peptide stimulation. Our results show a general enhancement of T-cell responses when antigenic peptides are carried by phages.

  15. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale.

    PubMed

    Boudaud, Nicolas; Machinal, Claire; David, Fabienne; Fréval-Le Bourdonnec, Armelle; Jossent, Jérôme; Bakanga, Fanny; Arnal, Charlotte; Jaffrezic, Marie Pierre; Oberti, Sandrine; Gantzer, Christophe

    2012-05-15

    The removal of MS2, Qβ and GA, F-specific RNA bacteriophages, potential surrogates for pathogenic waterborne viruses, was investigated during a conventional drinking water treatment at pilot scale by using river water, artificially and independently spiked with these bacteriophages. The objective of this work is to develop a standard system for assessing the effectiveness of drinking water plants with respect to the removal of MS2, Qβ and GA bacteriophages by a conventional pre-treatment process (coagulation-flocculation-settling-sand filtration) followed or not by an ultrafiltration (UF) membrane (complete treatment process). The specific performances of three UF membranes alone were assessed by using (i) pre-treated water and (ii) 0.1 mM sterile phosphate buffer solution (PBS), spiked with bacteriophages. These UF membranes tested in this work were designed for drinking water treatment market and were also selected for research purpose. The hypothesis serving as base for this study was that the interfacial properties for these three bacteriophages, in terms of electrostatic charge and the degree of hydrophobicity, could induce variations in the removal performances achieved by drinking water treatments. The comparison of the results showed a similar behaviour for both MS2 and Qβ surrogates whereas it was particularly atypical for the GA surrogate. The infectious character of MS2 and Qβ bacteriophages was mostly removed after clarification followed by sand filtration processes (more than a 4.8-log reduction) while genomic copies were removed at more than a 4.0-log after the complete treatment process. On the contrary, GA bacteriophage was only slightly removed by clarification followed by sand filtration, with less than 1.7-log and 1.2-log reduction, respectively. After the complete treatment process achieved, GA bacteriophage was removed with less than 2.2-log and 1.6-log reduction, respectively. The effectiveness of the three UF membranes tested in terms of

  16. Membrane filtration immobilization technique-a simple and novel method for primary isolation and enrichment of bacteriophages.

    PubMed

    Ghugare, G S; Nair, A; Nimkande, V; Sarode, P; Rangari, P; Khairnar, K

    2017-02-01

    To develop a method for the isolation and enrichment of bacteriophages selectively against specific bacteria coupled with a membrane filtration technique. Rapid isolation and concentration of host-specific bacteriophages was achieved by exposure of the sample suspected to contain bacteriophages to a specific host immobilized on a 0·45 μm membrane in a membrane filtration unit. The principle behind this method is the exploitation of host-specific interaction of bacteriophages with their host and maximizing this interaction using a classic membrane filtration method. This provides a chance for each bacteriophage in the sample to interact with the specific host on the membrane filter fitted with a vacuum pump. Specific bacteriophages of the host are retained on the membrane along with its host cells due to the effect of adsorption and these adsorbed bacteriophages (along with their hosts) on the filter disc are then amplified and enriched in regular nutritive broth tryptose soya broth by incubation. With the help of the plaque assay method, host-specific phages of various bacterial species were isolated, segregated and enriched. The phage concentration method coupled with membrane filtration immobilization of host bacteria was able to isolate and enrich the host-specific bacteriophages by several fold using a lower quantity of an environmental water sample, or other phage suspensions. Enrichment of phages from single plaques was also achieved. The isolation and detection of host-specific bacteriophages from a low density bacteriophage water sample in a single step by the use of a simple and basic microbiological technique can be achieved. Enrichment of phages from low phage titre suspensions is also achieved very effectively. © 2016 The Society for Applied Microbiology.

  17. Self-Assembled Nanoporous Biofilms from Functionalized Nanofibrous M13 Bacteriophage.

    PubMed

    Devaraj, Vasanthan; Han, Jiye; Kim, Chuntae; Kang, Yong-Cheol; Oh, Jin-Woo

    2018-06-12

    Highly periodic and uniform nanostructures, based on a genetically engineered M13 bacteriophage, displayed unique properties at the nanoscale that have the potential for a variety of applications. In this work, we report a multilayer biofilm with self-assembled nanoporous surfaces involving a nanofiber-like genetically engineered 4E-type M13 bacteriophage, which was fabricated using a simple pulling method. The nanoporous surfaces were effectively formed by using the networking-like structural layers of the M13 bacteriophage during self-assembly. Therefore, an external template was not required. The actual M13 bacteriophage-based fabricated multilayered biofilm with porous nanostructures agreed well with experimental and simulation results. Pores formed in the final layer had a diameter of about 150⁻500 nm and a depth of about 15⁻30 nm. We outline a filter application for this multilayered biofilm that enables selected ions to be extracted from a sodium chloride solution. Here, we describe a simple, environmentally friendly, and inexpensive fabrication approach with large-scale production potential. The technique and the multi-layered biofilms produced may be applied to sensor, filter, plasmonics, and bio-mimetic fields.

  18. Ultrastructure and Viral Metagenome of Bacteriophages from an Anaerobic Methane Oxidizing Methylomirabilis Bioreactor Enrichment Culture

    PubMed Central

    Gambelli, Lavinia; Cremers, Geert; Mesman, Rob; Guerrero, Simon; Dutilh, Bas E.; Jetten, Mike S. M.; Op den Camp, Huub J. M.; van Niftrik, Laura

    2016-01-01

    With its capacity for anaerobic methane oxidation and denitrification, the bacterium Methylomirabilis oxyfera plays an important role in natural ecosystems. Its unique physiology can be exploited for more sustainable wastewater treatment technologies. However, operational stability of full-scale bioreactors can experience setbacks due to, for example, bacteriophage blooms. By shaping microbial communities through mortality, horizontal gene transfer, and metabolic reprogramming, bacteriophages are important players in most ecosystems. Here, we analyzed an infected Methylomirabilis sp. bioreactor enrichment culture using (advanced) electron microscopy, viral metagenomics and bioinformatics. Electron micrographs revealed four different viral morphotypes, one of which was observed to infect Methylomirabilis cells. The infected cells contained densely packed ~55 nm icosahedral bacteriophage particles with a putative internal membrane. Various stages of virion assembly were observed. Moreover, during the bacteriophage replication, the host cytoplasmic membrane appeared extremely patchy, which suggests that the bacteriophages may use host bacterial lipids to build their own putative internal membrane. The viral metagenome contained 1.87 million base pairs of assembled viral sequences, from which five putative complete viral genomes were assembled and manually annotated. Using bioinformatics analyses, we could not identify which viral genome belonged to the Methylomirabilis- infecting bacteriophage, in part because the obtained viral genome sequences were novel and unique to this reactor system. Taken together these results show that new bacteriophages can be detected in anaerobic cultivation systems and that the effect of bacteriophages on the microbial community in these systems is a topic for further study. PMID:27877158

  19. Isolation of bacteriophages from air using vacuum filtration technique: an improved and novel method.

    PubMed

    Magare, B; Nair, A; Khairnar, K

    2017-10-01

    Development of a simple and economical air sampler for isolation and enrichment of bacteriophages from air samples. A vacuum filtration unit with simple modifications was used for isolation of bacteriophages from air sampled in the lavatory. Air was sampled at the rate of 62 l min -1 by bubbling into Mcllvaine buffer for 30 min, which was used as bacteriophage solution for enrichment and plaque assessment against individual hosts. Alternatively, the aforementioned phage solution was enriched using a host consortium before plaque assessment. Phages were isolated in the range of 1-12 PFU per ml by the first method, whereas enrichment with host consortium gave phages around 10- to 1000-folds higher in number. Combining with established enrichment method, an improvement of about 10 times in phage isolation efficiency was attained. The method is very useful for studying the natural bacteriophages of air, requiring only a basic microbiological laboratory setup making it simple and economical. This study brings out a simple, economical air sampler for assessing air bacteriophages that can be employed by any microbial laboratory. Although various methods are available for studying bacteriophages in water and soil, very limited are available for air. To the best of our knowledge, the method developed in this study is unique in its design and concept for studying bacteriophages in air. The sampler is sterilizable by autoclaving and maintains a healthy rate of airflow provided by conventional vacuum pumps. The use of a nonspecific 'trapping solution' allows for the qualitative and quantitative study of air bacteriophages. © 2017 The Society for Applied Microbiology.

  20. Glycolysis, Glutaminolysis, and Fatty Acid Synthesis Are Required for Distinct Stages of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication.

    PubMed

    Sanchez, Erica L; Pulliam, Thomas H; Dimaio, Terri A; Thalhofer, Angel B; Delgado, Tracie; Lagunoff, Michael

    2017-05-15

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). KSHV infection induces and requires multiple metabolic pathways, including the glycolysis, glutaminolysis, and fatty acid synthesis (FAS) pathways, for the survival of latently infected endothelial cells. To determine the metabolic requirements for productive KSHV infection, we induced lytic replication in the presence of inhibitors of different metabolic pathways. We found that glycolysis, glutaminolysis, and FAS are all required for maximal KSHV virus production and that these pathways appear to participate in virus production at different stages of the viral life cycle. Glycolysis and glutaminolysis, but not FAS, inhibit viral genome replication and, interestingly, are required for different early steps of lytic gene expression. Glycolysis is necessary for early gene transcription, while glutaminolysis is necessary for early gene translation but not transcription. Inhibition of FAS resulted in decreased production of extracellular virions but did not reduce intracellular genome levels or block intracellular virion production. However, in the presence of FAS inhibitors, the intracellular virions are noninfectious, indicating that FAS is required for virion assembly or maturation. KS tumors support both latent and lytic KSHV replication. Previous work has shown that multiple cellular metabolic pathways are required for latency, and we now show that these metabolic pathways are required for efficient lytic replication, providing novel therapeutic avenues for KS tumors. IMPORTANCE KSHV is the etiologic agent of Kaposi's sarcoma, the most common tumor of AIDS patients. KS spindle cells, the main tumor cells, all contain KSHV, mostly in the latent state, during which there is limited viral gene expression. However, a percentage of spindle cells support lytic replication and production of virus and these cells are thought to contribute to overall tumor formation. Our

  1. Glycolysis, Glutaminolysis, and Fatty Acid Synthesis Are Required for Distinct Stages of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication

    PubMed Central

    Sanchez, Erica L.; Pulliam, Thomas H.; Dimaio, Terri A.; Thalhofer, Angel B.; Delgado, Tracie

    2017-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). KSHV infection induces and requires multiple metabolic pathways, including the glycolysis, glutaminolysis, and fatty acid synthesis (FAS) pathways, for the survival of latently infected endothelial cells. To determine the metabolic requirements for productive KSHV infection, we induced lytic replication in the presence of inhibitors of different metabolic pathways. We found that glycolysis, glutaminolysis, and FAS are all required for maximal KSHV virus production and that these pathways appear to participate in virus production at different stages of the viral life cycle. Glycolysis and glutaminolysis, but not FAS, inhibit viral genome replication and, interestingly, are required for different early steps of lytic gene expression. Glycolysis is necessary for early gene transcription, while glutaminolysis is necessary for early gene translation but not transcription. Inhibition of FAS resulted in decreased production of extracellular virions but did not reduce intracellular genome levels or block intracellular virion production. However, in the presence of FAS inhibitors, the intracellular virions are noninfectious, indicating that FAS is required for virion assembly or maturation. KS tumors support both latent and lytic KSHV replication. Previous work has shown that multiple cellular metabolic pathways are required for latency, and we now show that these metabolic pathways are required for efficient lytic replication, providing novel therapeutic avenues for KS tumors. IMPORTANCE KSHV is the etiologic agent of Kaposi's sarcoma, the most common tumor of AIDS patients. KS spindle cells, the main tumor cells, all contain KSHV, mostly in the latent state, during which there is limited viral gene expression. However, a percentage of spindle cells support lytic replication and production of virus and these cells are thought to contribute to overall tumor formation

  2. Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status

    PubMed Central

    Hraiech, Sami; Brégeon, Fabienne; Rolain, Jean-Marc

    2015-01-01

    Pulmonary infections involving Pseudomonas aeruginosa are among the leading causes of the deterioration of the respiratory status of cystic fibrosis (CF) patients. The emergence of multidrug-resistant strains in such populations, favored by iterative antibiotic cures, has led to the urgent need for new therapies. Among them, bacteriophage-based therapies deserve a focus. One century of empiric use in the ex-USSR countries suggests that bacteriophages may have beneficial effects against a large range of bacterial infections. Interest in bacteriophages has recently renewed in Western countries, and the in vitro data available suggest that bacteriophage-based therapy may be of significant interest for the treatment of pulmonary infections in CF patients. Although the clinical data concerning this specific population are relatively scarce, the beginning of the first large randomized study evaluating bacteriophage-based therapy in burn infections suggests that the time has come to assess the effectiveness of this new therapy in CF P. aeruginosa pneumonia. Consequently, the aim of this review is, after a brief history, to summarize the evidence concerning bacteriophage efficacy against P. aeruginosa and, more specifically, the in vitro studies, animal models, and clinical trials targeting CF. PMID:26213462

  3. Bacteriophage Procurement for Therapeutic Purposes

    PubMed Central

    Weber-Dąbrowska, Beata; Jończyk-Matysiak, Ewa; Żaczek, Maciej; Łobocka, Małgorzata; Łusiak-Szelachowska, Marzanna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages), discovered 100 years ago, are able to infect and destroy only bacterial cells. In the current crisis of antibiotic efficacy, phage therapy is considered as a supplementary or even alternative therapeutic approach. Evolution of multidrug-resistant and pandrug-resistant bacterial strains poses a real threat, so it is extremely important to have the possibility to isolate new phages for therapeutic purposes. Our phage laboratory and therapy center has extensive experience with phage isolation, characterization, and therapeutic application. In this article we present current progress in bacteriophages isolation and use for therapeutic purposes, our experience in this field and its practical implications for phage therapy. We attempt to summarize the state of the art: properties of phages, the methods for their isolation, criteria of phage selection for therapeutic purposes and limitations of their use. Perspectives for the use of genetically engineered phages to specifically target bacterial virulence-associated genes are also briefly presented. PMID:27570518

  4. Assessment of drinking water quality using indicator bacteria and bacteriophages.

    PubMed

    Méndez, Javier; Audicana, Ana; Cancer, Mercedes; Isern, Anna; Llaneza, Julian; Moreno, Belén; Navarro, Mercedes; Tarancón, M Lluisa; Valero, Fernando; Ribas, Ferran; Jofre, Juan; Lucena, Francisco

    2004-09-01

    Bacterial indicators and bacteriophages suggested as potential indicators of water quality were determined by public laboratories in water from springs, household water wells, and rural and metropolitan water supplies in north-eastern Spain. Indicator bacteria were detected more frequently than bacteriophages in springs, household water wells and rural water supplies. In contrast, positive bacteriophage detections were more numerous than those of bacteria in metropolitan water supplies. Most of the metropolitan water supply samples containing indicators had concentrations of chlorine below 0.1 mg l(-1), their indicator loads resembling more closely those of rural water supplies than any other samples taken from metropolitan water supplies. The number of samples from metropolitan water supplies containing more than 0.1 mg l(-1) of chlorine that contained phages clearly outnumbered those containing indicator bacteria. Some association was observed between rainfall and the presence of indicators. Sediments from service reservoirs and water from dead ends in the distribution network of one of the metropolitan water supplies were also tested. Bacterial indicators and phages were detected in a higher percentage than in samples of tap water from the same network. Additionally, indicator bacteria were detected more frequently than bacteriophages in sediments of service reservoirs and water from dead end samples. We conclude that naturally occurring indicator bacteria and bacteriophages respond differently to chlorination and behave differently in drinking water distribution networks. Moreover, this study has shown that testing for the three groups of phages in routine laboratories is easy to implement and feasible without the requirement for additional material resources for the laboratories.

  5. Virulent Bacteriophages Can Target O104:H4 Enteroaggregative Escherichia coli in the Mouse Intestine

    PubMed Central

    Maura, Damien; Galtier, Matthieu; Le Bouguénec, Chantal

    2012-01-01

    In vivo bacteriophage targeting of enteroaggregative Escherichia coli (EAEC) was assessed using a mouse intestinal model of colonization with the O104:H4 55989Str strain and a cocktail of three virulent bacteriophages. The colonization model was shown to mimic asymptomatic intestinal carriage found in humans. The addition of the cocktail to drinking water for 24 h strongly decreased ileal and weakly decreased fecal 55989Str concentrations in a dose-dependent manner. These decreases in ileal and fecal bacterial concentrations were only transient, since 55989Str concentrations returned to their original levels 3 days later. These transient decreases were independent of the mouse microbiota, as similar results were obtained with axenic mice. We studied the infectivity of each bacteriophage in the ileal and fecal environments and found that 55989Str bacteria in the mouse ileum were permissive to all three bacteriophages, whereas those in the feces were permissive to only one bacteriophage. Our results provide the first demonstration that bacterial permissivity to infection with virulent bacteriophages is not uniform throughout the gut; this highlights the need for a detailed characterization of the interactions between bacteria and bacteriophages in vivo for the further development of phage therapy targeting intestinal pathogens found in the gut of asymptomatic human carriers. PMID:23006754

  6. The Effectiveness of Bacteriophages against Methicillin-Resistant Staphylococcus aureus ST398 Nasal Colonization in Pigs.

    PubMed

    Verstappen, Koen M; Tulinski, Pawel; Duim, Birgitta; Fluit, Ad C; Carney, Jennifer; van Nes, Arie; Wagenaar, Jaap A

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important colonizer in animals and an opportunistic pathogen in humans. In humans, MRSA can cause infections that might be difficult to treat because of antimicrobial resistance. The use of bacteriophages has been suggested as a potential approach for the control of MRSA colonization to minimize the-often occupational-exposure of humans. The aim of this study was to assess the efficacy of bacteriophage treatment on porcine nasal colonization with MRSA in vitro, in vivo, and ex vivo. The effectiveness of a bacteriophage combination of phage K*710 and P68 was assessed in vitro by incubating them with MRSA V0608892/1 (ST398) measuring the OD600 hourly. To study the in vivo effect, bacteriophages were administered in a gel developed for human application, which contain 109 plaque-forming units (pfu)/mL (K and P68 in a 19.25:1 ratio) for 5 days to piglets (N = 8) that were experimentally colonized with the MRSA strain. Eight piglets experimentally colonized were used as a negative control. The MRSA strain was also used to colonize porcine nasal mucosa explants and bacteriophages were applied to assess the ex vivo efficacy of treatment. Bacteriophages were effective in vitro. In vivo, sixteen piglets were colonized with MRSA but the number of CFU recovered after the application of the bacteriophages in 8 piglets was not reduced compared to the control animals (approx. 105 CFU/swab). In the ex vivo model, 108 CFU were used to establish colonization with MRSA; a reduction of colonization was not observed after application of bacteriophages. However, application of mupirocin both in vivo and ex vivo resulted in a near eradication of MRSA. i) The MRSA strain was killed in the presence of the bacteriophages phage K*710 and P68 in vitro. ii) Bacteriophages did not reduce porcine nasal colonization in vivo or ex vivo. Physiological in vivo and ex vivo conditions may explain these observations. Efficacy in the ex vivo

  7. The Effectiveness of Bacteriophages against Methicillin-Resistant Staphylococcus aureus ST398 Nasal Colonization in Pigs

    PubMed Central

    Duim, Birgitta; Fluit, Ad C; Carney, Jennifer; van Nes, Arie; Wagenaar, Jaap A

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important colonizer in animals and an opportunistic pathogen in humans. In humans, MRSA can cause infections that might be difficult to treat because of antimicrobial resistance. The use of bacteriophages has been suggested as a potential approach for the control of MRSA colonization to minimize the—often occupational—exposure of humans. The aim of this study was to assess the efficacy of bacteriophage treatment on porcine nasal colonization with MRSA in vitro, in vivo, and ex vivo. The effectiveness of a bacteriophage combination of phage K*710 and P68 was assessed in vitro by incubating them with MRSA V0608892/1 (ST398) measuring the OD600 hourly. To study the in vivo effect, bacteriophages were administered in a gel developed for human application, which contain 109 plaque-forming units (pfu)/mL (K and P68 in a 19.25:1 ratio) for 5 days to piglets (N = 8) that were experimentally colonized with the MRSA strain. Eight piglets experimentally colonized were used as a negative control. The MRSA strain was also used to colonize porcine nasal mucosa explants and bacteriophages were applied to assess the ex vivo efficacy of treatment. Bacteriophages were effective in vitro. In vivo, sixteen piglets were colonized with MRSA but the number of CFU recovered after the application of the bacteriophages in 8 piglets was not reduced compared to the control animals (approx. 105 CFU/swab). In the ex vivo model, 108 CFU were used to establish colonization with MRSA; a reduction of colonization was not observed after application of bacteriophages. However, application of mupirocin both in vivo and ex vivo resulted in a near eradication of MRSA. In conclusion: i) The MRSA strain was killed in the presence of the bacteriophages phage K*710 and P68 in vitro. ii) Bacteriophages did not reduce porcine nasal colonization in vivo or ex vivo. Physiological in vivo and ex vivo conditions may explain these observations. Efficacy

  8. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes.

    PubMed Central

    Tabor, S; Richardson, C C

    1985-01-01

    The RNA polymerase gene of bacteriophage T7 has been cloned into the plasmid pBR322 under the inducible control of the lambda PL promoter. After induction, T7 RNA polymerase constitutes 20% of the soluble protein of Escherichia coli, a 200-fold increase over levels found in T7-infected cells. The overproduced enzyme has been purified to homogeneity. During extraction the enzyme is sensitive to a specific proteolysis, a reaction that can be prevented by a modification of lysis conditions. The specificity of T7 RNA polymerase for its own promoters, combined with the ability to inhibit selectively the host RNA polymerase with rifampicin, permits the exclusive expression of genes under the control of a T7 RNA polymerase promoter. We describe such a coupled system and its use to express high levels of phage T7 gene 5 protein, a subunit of T7 DNA polymerase. Images PMID:3156376

  9. Treatment of Highly Virulent Extraintestinal Pathogenic Escherichia coli Pneumonia With Bacteriophages.

    PubMed

    Dufour, Nicolas; Debarbieux, Laurent; Fromentin, Mélanie; Ricard, Jean-Damien

    2015-06-01

    To study the effect of bacteriophage treatment on highly virulent extraintestinal Escherichia coli pneumonia in mice and compare it with conventional antimicrobial treatment. Animal investigation. University research laboratory. Pathogen-free 8-week-old Balb/cJRj male mice. Two bacteriophages (536_P1 and 536_P7) were isolated from sewage using strain 536, a highly virulent extraintestinal E. coli. Their in vitro and in vivo efficacy against strain 536 and a ventilator-associated pneumonia E. coli were tested. The first group of mice were infected by intranasal instillation of bioluminescent strain 536 and received 536_P1 intranasally, ceftriaxone, or control. The second group of mice was infected with the ventilator-associated pneumonia strain and received 536_P7. Adaptation of 536_P7 to this clinical isolate was also evaluated in vitro and in vivo. In vivo efficacy of bacteriophage and antibiotic treatment were assessed by recording bioluminescence for short-time periods and by recording body weight and survival of mice for longer periods. Both treatments improved survival compared with control (100% vs 0%), and in vivo bioluminescence recordings showed a similar rapid decrease of emitted light, suggesting prompt bacterial clearance. The majority of mice infected by the ventilator-associated pneumonia strain were not rescued by treatment with 536_P7; however, in vitro adaptation of this bacteriophage toward the ventilator-associated pneumonia strain led to isolate a variant which significantly improved in vivo treatment efficacy (animal survival increased from 20% to 75%). Bacteriophage treatment was as effective as antibiotherapy to provide 100% survival rate in a lethal model of highly virulent E. coli pneumonia. Adaptation of a bacteriophage is a rapid solution to improve its efficacy toward specific strains. These results suggest that phage therapy could be a promising therapeutic strategy for ventilator-associated pneumonia.

  10. The Human Gut Phage Community and Its Implications for Health and Disease.

    PubMed

    Manrique, Pilar; Dills, Michael; Young, Mark J

    2017-06-08

    In this review, we assess our current understanding of the role of bacteriophages infecting the human gut bacterial community in health and disease. In general, bacteriophages contribute to the structure of their microbial communities by driving host and viral diversification, bacterial evolution, and by expanding the functional diversity of ecosystems. Gut bacteriophages are an ensemble of unique and shared phages in individuals, which encompass temperate phages found predominately as prophage in gut bacteria (prophage reservoir) and lytic phages. In healthy individuals, only a small fraction of the prophage reservoir is activated and found as extracellular phages. Phage community dysbiosis is characterized by a shift in the activated prophage community or an increase of lytic phages, and has been correlated with disease, suggesting that a proper balance between lysis and lysogeny is needed to maintain health. Consequently, the concept of microbial dysbiosis might be extended to the phage component of the microbiome as well. Understanding the dynamics and mechanisms to restore balance after dysbiosis is an active area of research. The use of phage transplants to re-establish health suggests that phages can be used as disease treatment. Such advances represent milestones in our understanding of gut phages in human health and should fuel research on their role in health and disease.

  11. Identification and Characterization of T5-Like Bacteriophages Representing Two Novel Subgroups from Food Products

    PubMed Central

    Sváb, Domonkos; Falgenhauer, Linda; Rohde, Manfred; Szabó, Judit; Chakraborty, Trinad; Tóth, István

    2018-01-01

    During recent years, interest in the use of bacteriophages as biocontrol agents against foodborne pathogens has increased, particularly for members of the family Enterobacteriaceae, with pathogenic Escherichia coli, Shigella, and Salmonella strains among them. Here, we report the isolation and characterisation of 12 novel T5-like bacteriophages from confiscated food samples. All bacterophages effectively lysed E. coli K-12 strains and were able to infect pathogenic E. coli strains representing enterohaemorrhagic (EHEC), enteropathogenic (EPEC), enterotoxigenic (ETEC), and enteroinvasive (EIEC) pathotypes, Shigella dysenteriae, S. sonnei strains, as well as multidrug-resistant (MDR) E. coli and multiple strains representing different Salmonella enterica serovars. All the bacteriophages exhibited Siphoviridae morphology. Whole genome sequencing of the novel T5-like bacteriophages showed that they represent two distinct groups, with the genome-based grouping correlating to the different host spectra. As these bacteriophages are of food origin, their stability and lack of any virulence genes, as well as their broad and mutually complementary host spectrum makes these new T5-like bacteriophages valuable candidates for use as biocontrol agents against foodborne pathogenic enterobacteria. PMID:29487585

  12. Are Phage Lytic Proteins the Secret Weapon To Kill Staphylococcus aureus?

    PubMed

    Gutiérrez, Diana; Fernández, Lucía; Rodríguez, Ana; García, Pilar

    2018-01-23

    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most threatening microorganisms for global human health. The current strategies to reduce the impact of S. aureus include a restrictive control of worldwide antibiotic use, prophylactic measures to hinder contamination, and the search for novel antimicrobials to treat human and animal infections caused by this bacterium. The last strategy is currently the focus of considerable research. In this regard, phage lytic proteins (endolysins and virion-associated peptidoglycan hydrolases [VAPGHs]) have been proposed as suitable candidates. Indeed, these proteins display narrow-spectrum antimicrobial activity and a virtual lack of bacterial-resistance development. Additionally, the therapeutic use of phage lytic proteins in S. aureus animal infection models is yielding promising results, showing good efficacy without apparent side effects. Nonetheless, human clinical trials are still in progress, and data are not available yet. This minireview also analyzes the main obstacles for introducing phage lytic proteins as human therapeutics against S. aureus infections. Besides the common technological problems derived from large-scale production of therapeutic proteins, a major setback is the lack of a proper legal framework regulating their use. In that sense, the relevant health authorities should urgently have a timely discussion about these new antimicrobials. On the other hand, the research community should provide data to dispel any doubts regarding their efficacy and safety. Overall, the appropriate scientific data and regulatory framework will encourage pharmaceutical companies to invest in these promising antimicrobials. Copyright © 2018 Gutiérrez et al.

  13. [Immunodetection of bacteriophages by a piezoelectric resonator with lateral electric field].

    PubMed

    Gulii, O I; Zaitsev, B D; Shikhabudinov, A M; Teplykh, A A; Borodina, I A; Pavlii, S A; Larionova, O S; Fomin, A S; Staroverov, S A; Dykman, L A; Ignatov, O V

    2016-01-01

    It has been demonstrated that electroacoustic analysis with polyclonal antibodies can be used for bacteriophage detection. The frequency dependences of the real and imaginary parts of electrical impedance of a resonator with a viral suspension with antibodies were shown to be essentially different from the dependences of a resonator with control viral suspension without antibodies. It was shown that ΦAl-Sp59b bacteriophages were detected with the use of antibodies in the presence of foreign virus particles. The ΦAl-Sp59b bacteriophage content in the analyzed suspension was ~1010–106 phages/mL; the time of analysis was no more than 5 min. The optimally informative parameter for obtaining reliable information was the change in the real or imaginary part of electrical impedance at a fixed frequency near the resonance upon the addition of specific antibodies to the analyzed suspension. It was demonstrated that the interaction between bacteriophages and antibodies can be recorded, offering good prospects for the development of a biological sensor for liquid-phase identification and virus detection.

  14. MetaPhinder-Identifying Bacteriophage Sequences in Metagenomic Data Sets.

    PubMed

    Jurtz, Vanessa Isabell; Villarroel, Julia; Lund, Ole; Voldby Larsen, Mette; Nielsen, Morten

    Bacteriophages are the most abundant biological entity on the planet, but at the same time do not account for much of the genetic material isolated from most environments due to their small genome sizes. They also show great genetic diversity and mosaic genomes making it challenging to analyze and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e.contigs) of phage origin in metagenomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic genome structure of many bacteriophages. The method is demonstrated to out-perform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder.

  15. Isolation and Characterization of phiLLS, a Novel Phage with Potential Biocontrol Agent against Multidrug-Resistant Escherichia coli

    PubMed Central

    Amarillas, Luis; Rubí-Rangel, Lucia; Chaidez, Cristobal; González-Robles, Arturo; Lightbourn-Rojas, Luis; León-Félix, Josefina

    2017-01-01

    Foodborne diseases are a serious and growing problem, and the incidence and prevalence of antimicrobial resistance among foodborne pathogens is reported to have increased. The emergence of antibiotic-resistant bacterial strains demands novel strategies to counteract this epidemic. In this regard, lytic bacteriophages have reemerged as an alternative for the control of pathogenic bacteria. However, the effective use of phages relies on appropriate biological and genomic characterization. In this study, we present the isolation and characterization of a novel bacteriophage named phiLLS, which has shown strong lytic activity against generic and multidrug-resistant Escherichia coli strains. Transmission electron microscopy of phiLLS morphology revealed that it belongs to the Siphoviridae family. Furthermore, this phage exhibited a relatively large burst size of 176 plaque-forming units per infected cell. Phage phiLLS significantly reduced the growth of E. coli under laboratory conditions. Analyses of restriction profiles showed the presence of submolar fragments, confirming that phiLLS is a pac-type phage. Phylogenetic analysis based on the amino acid sequence of large terminase subunits confirmed that this phage uses a headful packaging strategy to package their genome. Genomic sequencing and bioinformatic analysis showed that phiLLS is a novel bacteriophage that is most closely related to T5-like phages. In silico analysis indicated that the phiLLS genome consists of 107,263 bp (39.0 % GC content) encoding 160 putative ORFs, 16 tRNAs, several potential promoters and transcriptional terminators. Genome analysis suggests that the phage phiLLS is strictly lytic without carrying genes associated with virulence factors and/or potential immunoreactive allergen proteins. The bacteriophage isolated in this study has shown promising results in the biocontrol of bacterial growth under in vitro conditions, suggesting that it may prove useful as an alternative agent for the

  16. Isolation and Characterization of phiLLS, a Novel Phage with Potential Biocontrol Agent against Multidrug-Resistant Escherichia coli.

    PubMed

    Amarillas, Luis; Rubí-Rangel, Lucia; Chaidez, Cristobal; González-Robles, Arturo; Lightbourn-Rojas, Luis; León-Félix, Josefina

    2017-01-01

    Foodborne diseases are a serious and growing problem, and the incidence and prevalence of antimicrobial resistance among foodborne pathogens is reported to have increased. The emergence of antibiotic-resistant bacterial strains demands novel strategies to counteract this epidemic. In this regard, lytic bacteriophages have reemerged as an alternative for the control of pathogenic bacteria. However, the effective use of phages relies on appropriate biological and genomic characterization. In this study, we present the isolation and characterization of a novel bacteriophage named phiLLS, which has shown strong lytic activity against generic and multidrug-resistant Escherichia coli strains. Transmission electron microscopy of phiLLS morphology revealed that it belongs to the Siphoviridae family. Furthermore, this phage exhibited a relatively large burst size of 176 plaque-forming units per infected cell. Phage phiLLS significantly reduced the growth of E. coli under laboratory conditions. Analyses of restriction profiles showed the presence of submolar fragments, confirming that phiLLS is a pac -type phage. Phylogenetic analysis based on the amino acid sequence of large terminase subunits confirmed that this phage uses a headful packaging strategy to package their genome. Genomic sequencing and bioinformatic analysis showed that phiLLS is a novel bacteriophage that is most closely related to T5-like phages. In silico analysis indicated that the phiLLS genome consists of 107,263 bp (39.0 % GC content) encoding 160 putative ORFs, 16 tRNAs, several potential promoters and transcriptional terminators. Genome analysis suggests that the phage phiLLS is strictly lytic without carrying genes associated with virulence factors and/or potential immunoreactive allergen proteins. The bacteriophage isolated in this study has shown promising results in the biocontrol of bacterial growth under in vitro conditions, suggesting that it may prove useful as an alternative agent for the

  17. In vivo dynamics of EBNA1-oriP interaction during latent and lytic replication of Epstein-Barr virus.

    PubMed

    Daikoku, Tohru; Kudoh, Ayumi; Fujita, Masatoshi; Sugaya, Yutaka; Isomura, Hiroki; Tsurumi, Tatsuya

    2004-12-24

    The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is required for maintenance of the viral genome DNA during the latent phase of EBV replication but continues to be synthesized after the induction of viral productive replication. An EBV genome-wide chromatin immunoprecipitation assay revealed that EBNA1 constantly binds to oriP of the EBV genome during not only latent but also lytic infection. Although the total levels of EBNA1 proved constant throughout the latter, the levels of the oriP-bound form were increased as lytic infection proceeded. EBV productive DNA replication occurs at discrete sites in nuclei, called replication compartments, where viral replication proteins are clustered. Confocal laser microscopic analyses revealed that whereas EBNA1 was distributed broadly in nuclei as fine punctate dots during the latent phase of infection, the protein became redistributed to the viral replication compartments and localized as distinct spots within and/or nearby the compartments after the induction of lytic replication. Taking these findings into consideration, oriP regions of the EBV genome might be organized by EBNA1 into replication domains that may set up scaffolding for lytic replication and transcription.

  18. MOF-Bacteriophage Biosensor for Highly Sensitive and Specific Detection of Staphylococcus aureus.

    PubMed

    Bhardwaj, Neha; Bhardwaj, Sanjeev K; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash

    2017-10-04

    To produce a sensitive and specific biosensor for Staphylococcus aureus, bacteriophages have been interfaced with a water-dispersible and environmentally stable metal-organic framework (MOF), NH 2 -MIL-53(Fe). The conjugation of the MOF with bacteriophages has been achieved through the use of glutaraldehyde as cross-linker. Highly sensitive detection of S. aureus in both synthetic and real samples was realized by the proposed MOF-bacteriophage biosensor based on the photoluminescence quenching phenomena: limit of detection (31 CFU/mL) and range of detection (40 to 4 × 10 8 CFU/mL). This is the first report exploiting the use of an MOF-bacteriophage complex for the biosensing of S. aureus. The results of our study highlight that the proposed biosensor is more sensitive than most of the previous methods while exhibiting some advanced features like specificity, regenerability, extended range of linear detection, and stability for long-term storage (even at room temperature).

  19. Effects of bacteriophage on the quality and shelf life of Paralichthys olivaceus during chilled storage.

    PubMed

    Li, Meng; Lin, Hong; Khan, Muhammad Naseem; Wang, Jingxue; Kong, Linghong

    2014-06-01

    The microbiological spoilage of fishery foods is mainly due to specific spoilage organisms (SSOs), with Shewanella putrefaciens being the SSO of most chilled marine fish. Bacteriophages have shown excellent capability to control micro-organisms. The aim of this study was to determine a specific bacteriophage to prevent spoilage by reducing SSO (S. putrefaciens) levels in the marine fish Paralichthys olivaceus (olive flounder) under chilled storage. Chilled flounder fillets were inoculated with S. putrefaciens and treated with different concentrations of bacteriophage Spp001 ranging from 10(4) to 10(8) plaque-forming units (pfu) mL(-1) . Bacterial growth (including total viable count and SSO) of the bacteriophage-treated groups was significantly inhibited compared with that of the negative control group (P < 0.05). Sensory evaluation and biochemical parameters revealed that the bacteriophage could extend the shelf life of chilled flounder fillets (from <4 to 14 days) with good esthetic quality, even at low temperature (4 °C). Furthermore, bacteriophage concentrations of 10(6) and 10(8) pfu mL(-1) were more effective than the chemical preservative potassium sorbate (5 g L(-1) ). The bacteriophage Spp001 offered effective biocontrol of S. putrefaciens under chilled conditions, retaining the quality characteristics of spiked fish fillets, and thus could be a potential candidate for use in chilled fish fillet biopreservation. © 2013 Society of Chemical Industry.

  20. Pulmonary Bacteriophage Therapy on Pseudomonas aeruginosa Cystic Fibrosis Strains: First Steps Towards Treatment and Prevention

    PubMed Central

    Morello, Eric; Saussereau, Emilie; Maura, Damien; Huerre, Michel; Touqui, Lhousseine; Debarbieux, Laurent

    2011-01-01

    Multidrug-resistant bacteria are the cause of an increasing number of deadly pulmonary infections. Because there is currently a paucity of novel antibiotics, phage therapy—the use of specific viruses that infect bacteria—is now more frequently being considered as a potential treatment for bacterial infections. Using a mouse lung-infection model caused by a multidrug resistant Pseudomonas aeruginosa mucoid strain isolated from a cystic fibrosis patient, we evaluated bacteriophage treatments. New bacteriophages were isolated from environmental samples and characterized. Bacteria and bacteriophages were applied intranasally to the immunocompetent mice. Survival was monitored and bronchoalveolar fluids were analysed. Quantification of bacteria, bacteriophages, pro-inflammatory and cytotoxicity markers, as well as histology and immunohistochemistry analyses were performed. A curative treatment (one single dose) administrated 2 h after the onset of the infection allowed over 95% survival. A four-day preventive treatment (one single dose) resulted in a 100% survival. All of the parameters measured correlated with the efficacy of both curative and preventive bacteriophage treatments. We also showed that in vitro optimization of a bacteriophage towards a clinical strain improved both its efficacy on in vivo treatments and its host range on a panel of 20 P. aeruginosa cystic fibrosis strains. This work provides an incentive to develop clinical studies on pulmonary bacteriophage therapy to combat multidrug-resistant lung infections. PMID:21347240

  1. Genomic and proteomic characterization of SuMu, a Mu-like bacteriophage infecting Haemophilus parasuis

    PubMed Central

    2012-01-01

    Background Haemophilus parasuis, the causative agent of Glässer’s disease, is prevalent in swine herds and clinical signs associated with this disease are meningitis, polyserositis, polyarthritis, and bacterial pneumonia. Six to eight week old pigs in segregated early weaning herds are particularly susceptible to the disease. Insufficient colostral antibody at weaning or the mixing of pigs with heterologous virulent H. parasuis strains from other farm sources in the nursery or grower-finisher stage are considered to be factors for the outbreak of Glässer’s disease. Previously, a Mu-like bacteriophage portal gene was detected in a virulent swine isolate of H. parasuis by nested polymerase chain reaction. Mu-like bacteriophages are related phyologenetically to enterobacteriophage Mu and are thought to carry virulence genes or to induce host expression of virulence genes. This study characterizes the Mu-like bacteriophage, named SuMu, isolated from a virulent H. parasuis isolate. Results Characterization was done by genomic comparison to enterobacteriophage Mu and proteomic identification of various homologs by mass spectrometry. This is the first report of isolation and characterization of this bacteriophage from the Myoviridae family, a double-stranded DNA bacteriophage with a contractile tail, from a virulent field isolate of H. parasuis. The genome size of bacteriophage SuMu was 37,151 bp. DNA sequencing revealed fifty five open reading frames, including twenty five homologs to Mu-like bacteriophage proteins: Nlp, phage transposase-C-terminal, COG2842, Gam-like protein, gp16, Mor, peptidoglycan recognition protein, gp29, gp30, gpG, gp32, gp34, gp36, gp37, gpL, phage tail tube protein, DNA circulation protein, gpP, gp45, gp46, gp47, COG3778, tail fiber protein gp37-C terminal, tail fiber assembly protein, and Com. The last open reading frame was homologous to IS1414. The G + C content of bacteriophage SuMu was 41.87% while its H. parasuis host genome

  2. Genomic and proteomic characterization of SuMu, a Mu-like bacteriophage infecting Haemophilus parasuis.

    PubMed

    Zehr, Emilie S; Tabatabai, Louisa B; Bayles, Darrell O

    2012-07-23

    Haemophilus parasuis, the causative agent of Glässer's disease, is prevalent in swine herds and clinical signs associated with this disease are meningitis, polyserositis, polyarthritis, and bacterial pneumonia. Six to eight week old pigs in segregated early weaning herds are particularly susceptible to the disease. Insufficient colostral antibody at weaning or the mixing of pigs with heterologous virulent H. parasuis strains from other farm sources in the nursery or grower-finisher stage are considered to be factors for the outbreak of Glässer's disease. Previously, a Mu-like bacteriophage portal gene was detected in a virulent swine isolate of H. parasuis by nested polymerase chain reaction. Mu-like bacteriophages are related phyologenetically to enterobacteriophage Mu and are thought to carry virulence genes or to induce host expression of virulence genes. This study characterizes the Mu-like bacteriophage, named SuMu, isolated from a virulent H. parasuis isolate. Characterization was done by genomic comparison to enterobacteriophage Mu and proteomic identification of various homologs by mass spectrometry. This is the first report of isolation and characterization of this bacteriophage from the Myoviridae family, a double-stranded DNA bacteriophage with a contractile tail, from a virulent field isolate of H. parasuis. The genome size of bacteriophage SuMu was 37,151 bp. DNA sequencing revealed fifty five open reading frames, including twenty five homologs to Mu-like bacteriophage proteins: Nlp, phage transposase-C-terminal, COG2842, Gam-like protein, gp16, Mor, peptidoglycan recognition protein, gp29, gp30, gpG, gp32, gp34, gp36, gp37, gpL, phage tail tube protein, DNA circulation protein, gpP, gp45, gp46, gp47, COG3778, tail fiber protein gp37-C terminal, tail fiber assembly protein, and Com. The last open reading frame was homologous to IS1414. The G + C content of bacteriophage SuMu was 41.87% while its H. parasuis host genome's G + C content was

  3. Lytic resistance of fibrin containing red blood cells

    PubMed Central

    Wohner, Nikolett; Sótonyi, Péter; Machovich, Raymund; Szabó, László; Tenekedjiev, Kiril; Silva, Marta M.C.G.; Longstaff, Colin; Kolev, Krasimir

    2012-01-01

    Objective Arterial thrombi contain variable amounts of red blood cell (RBC), which interact with fibrinogen through an eptifibatide-sensitive receptor and modify the structure of fibrin. Here we evaluate the modulator role of RBCs in the lytic susceptibility of fibrin. Methods and Results If fibrin is formed at increasing RBC counts, scanning electron microscopy evidenced a decrease in fiber diameter from 150 nm to 96 nm at 40 %(v/v) RBC, an effect susceptible to eptifibatide inhibition (restoring 140 nm diameter). RBC prolonged the lysis time in a homogeneous-phase fibrinolytic assay with tissue plasminogen activator (tPA) by up to 22.7±1.6 %, but not in the presence of eptifibatide. Confocal laser microscopy using green fluorescent protein (GFP)-labeled tPA and orange fluorescent fibrin showed that 20-40 %(v/v) RBC significantly slowed down the dissolution of the clots. tPA-GFP did not accumulate on the surface of fibrin containing RBC at any cell count above 10 %. The presence of RBC in the clot suppressed the tPA-induced plasminogen activation resulting in a 45 % less plasmin generated after 30 min activation at 40 %(v/v) RBC. Conclusion RBCs confer lytic resistance to fibrin resulting from modified fibrin structure and impaired plasminogen activation through a mechanism that involves eptifibatide-sensitive fibrinogen-RBC interactions. PMID:21737785

  4. Occurrence of bacteriophages infecting Aeromonas, Enterobacter, and Klebsiella in water and association with contamination sources in Thailand.

    PubMed

    Wangkahad, Bencharong; Bosup, Suchada; Mongkolsuk, Skorn; Sirikanchana, Kwanrawee

    2015-06-01

    The co-residence of bacteriophages and their bacterial hosts in humans, animals, and environmental sources directed the use of bacteriophages to track the origins of the pathogenic bacteria that can be found in contaminated water. The objective of this study was to enumerate bacteriophages of Aeromonas caviae (AecaKS148), Enterobacter sp. (EnspKS513), and Klebsiella pneumoniae (KlpnKS648) in water and evaluate their association with contamination sources (human vs. animals). Bacterial host strains were isolated from untreated wastewater in Bangkok, Thailand. A double-layer agar technique was used to detect bacteriophages. All three bacteriophages were detected in polluted canal samples, with likely contamination from human wastewater, whereas none was found in non-polluted river samples. AecaKS148 was found to be associated with human fecal sources, while EnspKS513 and KlpnKS648 seemed to be equally prevalent in both human and animal fecal sources. Both bacteriophages were also present in polluted canals that could receive contamination from other fecal sources or the environment. In conclusion, all three bacteriophages were successfully monitored in Bangkok, Thailand. This study provided an example of bacteriophages for potential use as source identifiers of pathogen contamination. The results from this study will assist in controlling sources of pathogen contamination, especially in developing countries.

  5. An Ensemble Method to Distinguish Bacteriophage Virion from Non-Virion Proteins Based on Protein Sequence Characteristics.

    PubMed

    Zhang, Lina; Zhang, Chengjin; Gao, Rui; Yang, Runtao

    2015-09-09

    Bacteriophage virion proteins and non-virion proteins have distinct functions in biological processes, such as specificity determination for host bacteria, bacteriophage replication and transcription. Accurate identification of bacteriophage virion proteins from bacteriophage protein sequences is significant to understand the complex virulence mechanism in host bacteria and the influence of bacteriophages on the development of antibacterial drugs. In this study, an ensemble method for bacteriophage virion protein prediction from bacteriophage protein sequences is put forward with hybrid feature spaces incorporating CTD (composition, transition and distribution), bi-profile Bayes, PseAAC (pseudo-amino acid composition) and PSSM (position-specific scoring matrix). When performing on the training dataset 10-fold cross-validation, the presented method achieves a satisfactory prediction result with a sensitivity of 0.870, a specificity of 0.830, an accuracy of 0.850 and Matthew's correlation coefficient (MCC) of 0.701, respectively. To evaluate the prediction performance objectively, an independent testing dataset is used to evaluate the proposed method. Encouragingly, our proposed method performs better than previous studies with a sensitivity of 0.853, a specificity of 0.815, an accuracy of 0.831 and MCC of 0.662 on the independent testing dataset. These results suggest that the proposed method can be a potential candidate for bacteriophage virion protein prediction, which may provide a useful tool to find novel antibacterial drugs and to understand the relationship between bacteriophage and host bacteria. For the convenience of the vast majority of experimental Int. J. Mol. Sci. 2015, 16,21735 scientists, a user-friendly and publicly-accessible web-server for the proposed ensemble method is established.

  6. Interference with propagation of typing bacteriophages by extrachromosomal elements in Salmonella typhimurium: bacteriophage type 505.

    PubMed Central

    van Embden, J D; van Leeuwen, W J; Guinée, P A

    1976-01-01

    Samonella typhimurium bacteriophage type 505 is the most frequently encountered phage type in the Netherlands and its neighboring countries. Phage type 505 was analyzed with regard o the interference with propagation of the typing phages by the prophages and plasmids, present in the type strain S. typhimurium 505... Images PMID:783145

  7. 76 FR 66187 - Bacteriophage of Clavibacter Michiganensis Subspecies Michiganensis; Exemption From the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... bacteria, which means they attach to, infect, and reproduce in bacteria, and are host-specific for bacteria... bacteria. In addition, there is no evidence for bacteriophage infecting any other life form, including humans, except bacteria (Refs. 7, 12, and 13). Humans and other animals commonly consume bacteriophage as...

  8. Molecular Biology and Biotechnology of Bacteriophage

    NASA Astrophysics Data System (ADS)

    Onodera, Kazukiyo

    The development of the molecular biology of bacteriophage such as T4, lambda and filamentous phages was described and the process that the fundamental knowledge obtained in this field has subsequently led us to the technology of phage display was introduced.

  9. Comparative persistence of human sewage-specific enterococcal bacteriophages in freshwater and seawater.

    PubMed

    Booncharoen, Namfon; Mongkolsuk, Skorn; Sirikanchana, Kwanrawee

    2018-07-01

    Enterococcus faecalis bacteria have been recently reported for their ability to host bacteriophages that are specifically from human sewage, suggesting their application to track human fecal contamination in water resources. However, little is known about the survivability of sewage-specific enterococcal bacteriophages in various water matrices under ambient and storage conditions. In this study, bacteriophages that were derived from the Thailand-isolated E. faecalis strains AIM06 and SR14 exhibited morphologies consistent with the Siphoviridae, Podoviridae, and Myoviridae families. Four representative bacteriophages were separately spiked into environmental water samples (n = 7) comprising freshwater and seawater with low- and high-pollution (LF, HF, LS, and HS, respectively) levels, defined according to Thailand Water Quality Standards. All bacteriophages decayed fastest in HS or HF samples at 30 °C, reaching a 5-log 10 reduction in 2.2 to 9.8 days, and slowest in LS samples, requiring 8.8 to 23.5 days. The decay rates were 5 to 53 times lower at a storage temperature of 5 °C. HF samples could be stored for as little as 2.5 days to prevent the decay of 50% of the phages. Myoviridae phages decayed faster than Siphoviridae phages and Podoviridae phages in most water matrices at 30 °C. Moreover, the decay rates were 1.8 to 92 times slower in filtered samples, emphasizing a strong role for water constituents, i.e., suspended solids and natural microorganisms, in phage persistence. This study emphasized that differential enterococcal bacteriophage persistence should be considered when planning the monitoring and interpreting of fecal sources by microbial source tracking.

  10. Use of encapsulated bacteriophages to enhance farm to fork food safety.

    PubMed

    Hussain, Malik A; Liu, Huan; Wang, Qi; Zhong, Fang; Guo, Qian; Balamurugan, Sampathkumar

    2017-09-02

    Bacteriophages have been successfully applied to control the growth of pathogens in foods and to reduce the colonization and shedding of pathogens by food animals. They are set to play a dominant role in food safety in the future. However, many food-processing operations and the microenvironments in food animals' guts inactivate phages and reduce their infectivity. Encapsulation technologies have been used successfully to protect phages against extreme environments, and have been shown to preserve their activity and enable their release in targeted environments. A number of encapsulation technologies have shown potential for use with bacteriophages. This review discusses the current state of knowledge about the use of encapsulation technologies with bacteriophages to control pathogens in foods and food animals.

  11. Complete genome sequence of Escherichia coli Phage vB_EcoS Sa179lw isolated from surface water in a produce-growing area in northern california

    USDA-ARS?s Scientific Manuscript database

    Non-O157 Shiga toxin-producing E. coli (STEC) can cause foodborne illness as severe as STEC O157 strains and have been associated with produce outbreaks in Europe and US. Due to the lytic nature to their bacterial hosts, these bacteriophages (phages) have the potential to control STEC strains. Here,...

  12. Occurrence and numbers of bacteriophages and bacterial indicators in faeces of yellow-legged seagull (Larus cachinnans).

    PubMed

    Muniesa, M; Jofre, J; Lucena, F

    1999-12-01

    Faeces from feral populations of yellow-legged seagulls from the northern coastal area of Catalonia (North-eastern Spain) contained variable amounts of faecal coliforms, faecal streptococci, somatic coliphages, F-specific bacteriophages and Bacteroides fragilis bacteriophages. Occurrence and numbers of bacterial indicators and bacteriophages in the faeces of yellow-legged seagulls are in the ranges described in the faeces of different animals. The ratios between numbers of bacterial indicators and numbers of bacteriophages are much higher in faeces of seagulls than in treated or raw sewage contributed by out-falls of the same area.

  13. Cooperation between Epstein-Barr Virus Immune Evasion Proteins Spreads Protection from CD8+ T Cell Recognition across All Three Phases of the Lytic Cycle

    PubMed Central

    Quinn, Laura L.; Zuo, Jianmin; Abbott, Rachel J. M.; Shannon-Lowe, Claire; Tierney, Rosemary J.; Hislop, Andrew D.; Rowe, Martin

    2014-01-01

    CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IElytic virus replication, and secondly identify lytic-cycle phase-specific effects that provide mechanistic insight

  14. Methods for generation of reporter phages and immobilization of active bacteriophages on a polymer surface

    NASA Technical Reports Server (NTRS)

    Morgan, Mark Thomas (Inventor); Kothapalli, Aparna (Inventor); Applegate, Bruce Michael (Inventor); Perry, Lynda Louise (Inventor)

    2012-01-01

    Novel reporter bacteriophages are provided. Provided are compositions and methods that allow bacteriophages that are used for specific detection or killing of E. coli 0157:H7 to be propagated in nonpathogenic E. coli, thereby eliminating the safety and security risks of propagation in E. coli 0157:H7. Provided are compositions and methods for attaching active bacteriophages to the surface of a polymer in order to kill target bacteria with which the phage comes into contact. Provided are modified bacteriophages immobilized to a surface, which capture E. coli 0157:H7 and cause the captured cells to emit light or fluorescence, allowing detection of the bacteria in a sample.

  15. Insights into Bacteriophage T5 Structure from Analysis of Its Morphogenesis Genes and Protein Components

    PubMed Central

    Zivanovic, Yvan; Confalonieri, Fabrice; Ponchon, Luc; Lurz, Rudi; Chami, Mohamed; Flayhan, Ali; Renouard, Madalena; Huet, Alexis; Decottignies, Paulette; Davidson, Alan R.; Breyton, Cécile

    2014-01-01

    Bacteriophage T5 represents a large family of lytic Siphoviridae infecting Gram-negative bacteria. The low-resolution structure of T5 showed the T=13 geometry of the capsid and the unusual trimeric organization of the tail tube, and the assembly pathway of the capsid was established. Although major structural proteins of T5 have been identified in these studies, most of the genes encoding the morphogenesis proteins remained to be identified. Here, we combine a proteomic analysis of T5 particles with a bioinformatic study and electron microscopic immunolocalization to assign function to the genes encoding the structural proteins, the packaging proteins, and other nonstructural components required for T5 assembly. A head maturation protease that likely accounts for the cleavage of the different capsid proteins is identified. Two other proteins involved in capsid maturation add originality to the T5 capsid assembly mechanism: the single head-to-tail joining protein, which closes the T5 capsid after DNA packaging, and the nicking endonuclease responsible for the single-strand interruptions in the T5 genome. We localize most of the tail proteins that were hitherto uncharacterized and provide a detailed description of the tail tip composition. Our findings highlight novel variations of viral assembly strategies and of virion particle architecture. They further recommend T5 for exploring phage structure and assembly and for deciphering conformational rearrangements that accompany DNA transfer from the capsid to the host cytoplasm. PMID:24198424

  16. Bacteriophages as vehicles for gene delivery into mammalian cells: prospects and problems.

    PubMed

    Bakhshinejad, Babak; Sadeghizadeh, Majid

    2014-10-01

    The identification of more efficient gene delivery vehicles (GDVs) is essential to fulfill the expectations of clinical gene therapy. Bacteriophages, due to their excellent safety profile, extreme stability under a variety of harsh environmental conditions and the capability for being genetically manipulated, have drawn a flurry of interest to be applied as a newly arisen category of gene delivery platforms. The incessant evolutionary interaction of bacteriophages with human cells has turned them into a part of our body's natural ecosystem. However, these carriers represent several barriers to gene transduction of mammalian cells. The lack of evolvement of specialized machinery for targeted cellular internalization, endosomal, lysosomal and proteasomal escape, cytoplasmic entry, nuclear localization and intranuclear transcription poses major challenges to the expression of the phage-carried gene. In this review, we describe pros and cons of bacteriophages as GDVs, provide an insight into numerous barriers that bacteriophages face for entry into and subsequent trafficking inside mammalian cells and elaborate on the strategies used to bypass these barriers. Tremendous genetic flexibility of bacteriophages to undergo numerous surface modifications through phage display technology has proven to be a turning point in the uncompromising efforts to surmount the limitations of phage-mediated gene expression. The revelatory outcomes of the studies undertaken within the recent years have been promising for phage-mediated gene delivery to move from concept to reality.

  17. ADSORPTION OF BACTERIOPHAGES ON CLAY MINERALS

    EPA Science Inventory

    Theability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and

  18. Soil-based systemic delivery and phyllosphere in vivo propagation of bacteriophages: Two possible strategies for improving bacteriophage persistence for plant disease control.

    PubMed

    Iriarte, Fanny B; Obradović, Aleksa; Wernsing, Mine H; Jackson, Lee E; Balogh, Botond; Hong, Jason A; Momol, M Timur; Jones, Jeffrey B; Vallad, Gary E

    2012-10-01

    Soil-based root applications and attenuated bacterial strains were evaluated as means to enhance bacteriophage persistence on plants for bacterial disease control. In addition, the systemic nature of phage applied to tomato roots was also evaluated. Several experiments were conducted applying either single phages or phage mixtures specific for Ralstonia solanacearum , Xanthomonas perforans or X. euvesicatoria to soil surrounding tomato plants and measuring the persistence and translocation of the phages over time. In general, all phages persisted in the roots of treated plants and were detected in stems and leaves; although phage level varied and persistence in stems and leaves was at a much lower level compared with persistence in roots. Bacterial wilt control was typically best if the phage or phage mixtures were applied to the soil surrounding tomatoes at the time of inoculation, less effective if applied 3 days before inoculation, and ineffective if applied 3 days after inoculation. The use of an attenuated X. perforans strain was also evaluated to improve the persistence of phage populations on tomato leaf surfaces. In greenhouse and field experiments, foliar applications of an attenuated mutant X. perforans 91-118:∆ OPGH strain prior to phage applications significantly improved phage persistence on tomato foliage compared with untreated tomato foliage. Both the soil-based bacteriophage delivery and the use of attenuated bacterial strains improved bacteriophage persistence on respective root and foliar tissues, with evidence of translocation with soil-based bacteriophage applications. Both strategies could lead to improved control of bacterial pathogens on plants.

  19. DNA Packaging Specificity of Bacteriophage N15 with an Excursion into the Genetics of a Cohesive End Mismatch

    PubMed Central

    Feiss, Michael; Young Min, Jea; Sultana, Sawsan; Patel, Priyal; Sippy, Jean

    2015-01-01

    During DNA replication by the λ-like bacteriophages, immature concatemeric DNA is produced by rolling circle replication. The concatemers are processed into mature chromosomes with cohesive ends, and packaged into prohead shells, during virion assembly. Cohesive ends are generated by the viral enzyme terminase, which introduces staggered nicks at cos, an approx. 200 bp-long sequence containing subsites cosQ, cosN and cosB. Interactions of cos subsites of immature concatemeric DNA with terminase orchestrate DNA processing and packaging. To initiate DNA packaging, terminase interacts with cosB and nicks cosN. The cohesive ends of N15 DNA differ from those of λ at 2/12 positions. Genetic experiments show that phages with chromosomes containing mismatched cohesive ends are functional. In at least some infections, the cohesive end mismatch persists through cyclization and replication, so that progeny phages of both allelic types are produced in the infected cell. N15 possesses an asymmetric packaging specificity: N15 DNA is not packaged by phages λ or 21, but surprisingly, N15-specific terminase packages λ DNA. Implications for genetic interactions among λ-like bacteriophages are discussed. PMID:26633301

  20. On the mechanism of peptidoglycan binding and cleavage by the endo-specific lytic transglycosylase MltE from Escherichia coli.

    PubMed

    Fibriansah, Guntur; Gliubich, Francesca I; Thunnissen, Andy-Mark W H

    2012-11-13

    The lytic transglycosylase MltE from Escherichia coli is a periplasmic, outer membrane-attached enzyme that cleaves the β-1,4-glycosidic bonds between N-acetylmuramic acid and N-acetylglucosamine residues in the cell wall peptidoglycan, producing 1,6-anhydromuropeptides. Here we report three crystal structures of MltE: in a substrate-free state, in a binary complex with chitopentaose, and in a ternary complex with the glycopeptide inhibitor bulgecin A and the murodipeptide N-acetylglucosaminyl-N-acetylmuramyl-l-Ala-d-Glu. The substrate-bound structures allowed a detailed analysis of the saccharide-binding interactions in six subsites of the peptidoglycan-binding groove (subsites -4 to +2) and, combined with site-directed mutagenesis analysis, confirmed the role of Glu64 as catalytic acid/base. The structures permitted the precise modeling of a short glycan strand of eight saccharide residues, providing evidence for two additional subsites (+3 and +4) and revealing the productive conformational state of the substrate at subsites -1 and +1, where the glycosidic bond is cleaved. Full accessibility of the peptidoglycan-binding groove and preferential binding of an N-acetylmuramic acid residue in a (4)C(1) chair conformation at subsite +2 explain why MltE shows only endo- and no exo-specific activity toward glycan strands. The results further indicate that catalysis of glycosidic bond cleavage by MltE proceeds via distortion toward a sofa-like conformation of the N-acetylmuramic acid sugar ring at subsite -1 and by anchimeric assistance of the sugar's N-acetyl group, as shown previously for the lytic transglycosylases Slt70 and MltB.

  1. Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication.

    PubMed

    Bilger, Andrea; Plowshay, Julie; Ma, Shidong; Nawandar, Dhananjay; Barlow, Elizabeth A; Romero-Masters, James C; Bristol, Jillian A; Li, Zhe; Tsai, Ming-Han; Delecluse, Henri-Jacques; Kenney, Shannon C

    2017-07-04

    EBV infection causes mononucleosis and is associated with specific subsets of B cell lymphomas. Immunosuppressed patients such as organ transplant recipients are particularly susceptible to EBV-induced lymphoproliferative disease (LPD), which can be fatal. Leflunomide (a drug used to treat rheumatoid arthritis) and its active metabolite teriflunomide (used to treat multiple sclerosis) inhibit de novo pyrimidine synthesis by targeting the cellular dihydroorotate dehydrogenase, thereby decreasing T cell proliferation. Leflunomide also inhibits the replication of cytomegalovirus and BK virus via both "on target" and "off target" mechanisms and is increasingly used to treat these viruses in organ transplant recipients. However, whether leflunomide/teriflunomide block EBV replication or inhibit EBV-mediated B cell transformation is currently unknown. We show that teriflunomide inhibits cellular proliferation, and promotes apoptosis, in EBV-transformed B cells in vitro at a clinically relevant dose. In addition, teriflunomide prevents the development of EBV-induced lymphomas in both a humanized mouse model and a xenograft model. Furthermore, teriflunomide inhibits lytic EBV infection in vitro both by preventing the initial steps of lytic viral reactivation, and by blocking lytic viral DNA replication. Leflunomide/teriflunomide might therefore be clinically useful for preventing EBV-induced LPD in patients who have high EBV loads yet require continued immunosuppression.

  2. MetaPhinder—Identifying Bacteriophage Sequences in Metagenomic Data Sets

    PubMed Central

    Villarroel, Julia; Lund, Ole; Voldby Larsen, Mette; Nielsen, Morten

    2016-01-01

    Bacteriophages are the most abundant biological entity on the planet, but at the same time do not account for much of the genetic material isolated from most environments due to their small genome sizes. They also show great genetic diversity and mosaic genomes making it challenging to analyze and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e.contigs) of phage origin in metagenomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic genome structure of many bacteriophages. The method is demonstrated to out-perform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder. PMID:27684958

  3. FRNA Bacteriophages as Viral Indicators of Faecal Contamination in Mexican Tropical Aquatic Systems.

    PubMed

    Arredondo-Hernandez, Luis Jose Rene; Diaz-Avalos, Carlos; Lopez-Vidal, Yolanda; Castillo-Rojas, Gonzalo; Mazari-Hiriart, Marisa

    2017-01-01

    A particular challenge to water safety in populous intertropical regions is the lack of reliable faecal indicators to detect microbiological contamination of water, while the numerical relationships of specific viral indicators remain largely unexplored. The aim of this study was to investigate the numerical relationships of FRNA-bacteriophage genotypes, adenovirus 41, and human adenoviruses (HADV) in Mexican surface water systems to assess sewage contamination. We studied the presence of HADV, HADV41 and FRNA bacteriophage genotypes in water samples and quantified by qPCR and RT-qPCR. Virus and water quality indicator variances, as analyzed by principal component analysis and partial least squared regression, followed along the major percentiles of water faecal enterococci. FRNA bacteriophages adequately deciphered viral and point source water contamination. The strongest correlation for HADV was with FRNA bacteriophage type II, in water samples higher than the 50th percentiles of faecal enterococci, thus indicating urban pollution. FRNA bacteriophage genotypes I and III virus indicator performances were assisted by their associations with electrical conductivity and faecal enterococci. In combination, our methods are useful for inferring water quality degradation caused by sewage contamination. The methods used have potential for determining source contamination in water and, specifically, the presence of enteric viruses where clean and contaminated water have mixed.

  4. FRNA Bacteriophages as Viral Indicators of Faecal Contamination in Mexican Tropical Aquatic Systems

    PubMed Central

    Diaz-Avalos, Carlos; Lopez-Vidal, Yolanda; Castillo-Rojas, Gonzalo; Mazari-Hiriart, Marisa

    2017-01-01

    A particular challenge to water safety in populous intertropical regions is the lack of reliable faecal indicators to detect microbiological contamination of water, while the numerical relationships of specific viral indicators remain largely unexplored. The aim of this study was to investigate the numerical relationships of FRNA-bacteriophage genotypes, adenovirus 41, and human adenoviruses (HADV) in Mexican surface water systems to assess sewage contamination. We studied the presence of HADV, HADV41 and FRNA bacteriophage genotypes in water samples and quantified by qPCR and RT-qPCR. Virus and water quality indicator variances, as analyzed by principal component analysis and partial least squared regression, followed along the major percentiles of water faecal enterococci. FRNA bacteriophages adequately deciphered viral and point source water contamination. The strongest correlation for HADV was with FRNA bacteriophage type II, in water samples higher than the 50th percentiles of faecal enterococci, thus indicating urban pollution. FRNA bacteriophage genotypes I and III virus indicator performances were assisted by their associations with electrical conductivity and faecal enterococci. In combination, our methods are useful for inferring water quality degradation caused by sewage contamination. The methods used have potential for determining source contamination in water and, specifically, the presence of enteric viruses where clean and contaminated water have mixed. PMID:28114378

  5. Transformation of Clostridium acetobutylicum Protoplasts with Bacteriophage DNA

    PubMed Central

    Reid, Sharon J.; Allcock, Errol R.; Jones, David T.; Woods, David R.

    1983-01-01

    Techniques for the transformation of Clostridium acetobutylicum protoplasts with bacteriophage DNA are described. Transformation required regeneration of protoplasts and a 2-h eclipse period. PMID:16346174

  6. Increased CD8+ T Cell Response to Epstein-Barr Virus Lytic Antigens in the Active Phase of Multiple Sclerosis

    PubMed Central

    Angelini, Daniela F.; Serafini, Barbara; Piras, Eleonora; Severa, Martina; Coccia, Eliana M.; Rosicarelli, Barbara; Ruggieri, Serena; Gasperini, Claudio; Buttari, Fabio; Centonze, Diego; Mechelli, Rosella; Salvetti, Marco; Borsellino, Giovanna; Aloisi, Francesca; Battistini, Luca

    2013-01-01

    It has long been known that multiple sclerosis (MS) is associated with an increased Epstein-Barr virus (EBV) seroprevalence and high immune reactivity to EBV and that infectious mononucleosis increases MS risk. This evidence led to postulate that EBV infection plays a role in MS etiopathogenesis, although the mechanisms are debated. This study was designed to assess the prevalence and magnitude of CD8+ T-cell responses to EBV latent (EBNA-3A, LMP-2A) and lytic (BZLF-1, BMLF-1) antigens in relapsing-remitting MS patients (n = 113) and healthy donors (HD) (n = 43) and to investigate whether the EBV-specific CD8+ T cell response correlates with disease activity, as defined by clinical evaluation and gadolinium-enhanced magnetic resonance imaging. Using HLA class I pentamers, lytic antigen-specific CD8+ T cell responses were detected in fewer untreated inactive MS patients than in active MS patients and HD while the frequency of CD8+ T cells specific for EBV lytic and latent antigens was higher in active and inactive MS patients, respectively. In contrast, the CD8+ T cell response to cytomegalovirus did not differ between HD and MS patients, irrespective of the disease phase. Marked differences in the prevalence of EBV-specific CD8+ T cell responses were observed in patients treated with interferon-β and natalizumab, two licensed drugs for relapsing-remitting MS. Longitudinal studies revealed expansion of CD8+ T cells specific for EBV lytic antigens during active disease in untreated MS patients but not in relapse-free, natalizumab-treated patients. Analysis of post-mortem MS brain samples showed expression of the EBV lytic protein BZLF-1 and interactions between cytotoxic CD8+ T cells and EBV lytically infected plasma cells in inflammatory white matter lesions and meninges. We therefore propose that inability to control EBV infection during inactive MS could set the stage for intracerebral viral reactivation and disease relapse. PMID:23592979

  7. Access to bacteriophage therapy: discouraging experiences from the human cell and tissue legal framework.

    PubMed

    Verbeken, G; Huys, I; De Vos, D; De Coninck, A; Roseeuw, D; Kets, E; Vanderkelen, A; Draye, J P; Rose, T; Jennes, S; Ceulemans, C; Pirnay, J P

    2016-02-01

    Cultures of human epithelial cells (keratinocytes) are used as an additional surgical tool to treat critically burnt patients. Initially, the production environment of keratinocyte grafts was regulated exclusively by national regulations. In 2004, the European Tissues and Cells Directive 2004/23/EC (transposed into Belgian Law) imposed requirements that resulted in increased production costs and no significant increase in quality and/or safety. In 2007, Europe published Regulation (EC) No. 1394/2007 on Advanced Therapy Medicinal Products. Overnight, cultured keratinocytes became (arguably) 'Advanced' Therapy Medicinal Products to be produced as human medicinal products. The practical impact of these amendments was (and still is) considerable. A similar development appears imminent in bacteriophage therapy. Bacteriophages are bacterial viruses that can be used for tackling the problem of bacterial resistance development to antibiotics. Therapeutic natural bacteriophages have been in clinical use for almost 100 years. Regulators today are framing the (re-)introduction of (natural) bacteriophage therapy into 'modern western' medicine as biological medicinal products, also subject to stringent regulatory medicinal products requirements. In this paper, we look back on a century of bacteriophage therapy to make the case that therapeutic natural bacteriophages should not be classified under the medicinal product regulatory frames as they exist today. It is our call to authorities to not repeat the mistake of the past. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. A filamentous bacteriophage targeted to carcinoembryonic antigen induces tumor regression in mouse models of colorectal cancer.

    PubMed

    Murgas, Paola; Bustamante, Nicolás; Araya, Nicole; Cruz-Gómez, Sebastián; Durán, Eduardo; Gaete, Diana; Oyarce, César; López, Ernesto; Herrada, Andrés Alonso; Ferreira, Nicolás; Pieringer, Hans; Lladser, Alvaro

    2018-02-01

    Colorectal cancer is a deadly disease, which is frequently diagnosed at advanced stages, where conventional treatments are no longer effective. Cancer immunotherapy has emerged as a new form to treat different malignancies by turning-on the immune system against tumors. However, tumors are able to evade antitumor immune responses by promoting an immunosuppressive microenvironment. Single-stranded DNA containing M13 bacteriophages are highly immunogenic and can be specifically targeted to the surface of tumor cells to trigger inflammation and infiltration of activated innate immune cells, overcoming tumor-associated immunosuppression and promoting antitumor immunity. Carcinoembryonic antigen (CEA) is highly expressed in colorectal cancers and has been shown to promote several malignant features of colorectal cancer cells. In this work, we targeted M13 bacteriophage to CEA, a tumor-associated antigen over-expressed in a high proportion of colorectal cancers but largely absent in normal cells. The CEA-targeted M13 bacteriophage was shown to specifically bind to purified CEA and CEA-expressing tumor cells in vitro. Both intratumoral and systemic administration of CEA-specific bacteriophages significantly reduced tumor growth of mouse models of colorectal cancer, as compared to PBS and control bacteriophage administration. CEA-specific bacteriophages promoted tumor infiltration of neutrophils and macrophages, as well as maturation dendritic cells in tumor-draining lymph nodes, suggesting that antitumor T-cell responses were elicited. Finally, we demonstrated that tumor protection provided by CEA-specific bacteriophage particles is mediated by CD8 + T cells, as depletion of circulating CD8 + T cells completely abrogated antitumor protection. In summary, we demonstrated that CEA-specific M13 bacteriophages represent a potential immunotherapy against colorectal cancer.

  9. Bacteriophages as indicators of human and animal faecal contamination in raw and treated wastewaters from Tunisia.

    PubMed

    Yahya, M; Hmaied, F; Jebri, S; Jofre, J; Hamdi, M

    2015-05-01

    We aimed at quantifying bacteriophages in raw and treated wastewaters of human and animal origin in Tunisia to assess their usefulness for tracking the origin of faecal pollution and in the follow-up of effectiveness of water treatments process. The concentrations of bacteriophages in wastewater samples were determined by double layer agar technique. Somatic coliphages and F-specific RNA bacteriophages were present in all types of samples in high concentrations. The values of Escherichia coli were variable depending on geographical location. On the other hand, bacteriophages infecting strain GA17 were detected preferably when human faecal contamination was occurred. Bacteriophages appear as a feasible and widely applicable manner to detect faecal contamination in Tunisia. On the other hand, phages infecting GA17 could be good markers for tracking the origin of faecal pollution in the area studied. The reuse of treated wastewaters can be a solution to meet the needs of water in the geographical area of study. Bacteriophages seem to predict differently the presence of faecal contamination in water than bacterial indicators. Consequently, they can be a valuable additional tool to improve water resources management for minimizing health risks. © 2015 The Society for Applied Microbiology.

  10. Mutation of M13 Bacteriophage Major Coat Protein for Increased Conjugation to Exogenous Compounds.

    PubMed

    Tridgett, Matthew; Lloyd, James R; Kennefick, Jack; Moore-Kelly, Charles; Dafforn, Timothy R

    2018-06-20

    Over the past ten years there has been increasing interest in the conjugation of exogenous compounds to the surface of the M13 bacteriophage. M13 offers a convenient scaffold for the development of nanoassemblies with useful functions, such as highly specific drug delivery and pathogen detection. However, the progress of these technologies has been hindered by the limited efficiency of conjugation to the bacteriophage. Here we generate a mutant version of M13 with an additional lysine residue expressed on the outer surface of the M13 major coat protein, pVIII. We show that this mutation is accommodated by the bacteriophage and that up to an additional 520 exogenous groups can be attached to the bacteriophage surface via amine-directed conjugation. These results could aid the development of high payload drug delivery nanoassemblies and pathogen detection systems with increased sensitivity.

  11. Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models.

    PubMed

    Dabrowska, Krystyna; Opolski, Adam; Wietrzyk, Joanna; Switala-Jelen, Kinga; Godlewska, Joanna; Boratynski, Janusz; Syper, Danuta; Weber-Dabrowska, Beata; Gorski, Andrzej

    2004-01-01

    Previously, we have shown the ability of the bacteriophage T4 and its substrain HAP1 (selected for a higher affinity to melanoma cells) to reveal antimetastatic activity in a mouse melanoma model. Here, we investigated the potential phage anticancer activity in primary tumour models. Mice were inoculated subcutaneously with B16 or LLC cells (collected from in vitro culture). Bacteriophages T4 and HAP1 were injected intraperitoneally daily (8 x 10(8)pfu/mouse, except the experiment concerning the dose-dependence). Treatment with purified preparations of bacteriophage T4 resulted in significant reduction of tumour size, the effect being dose-dependent. HAP1 was more effective than T4 and its activity was also dose-dependent. Parallel experiments with non-purified bacteriophage lysates resulted in significant stimulation of tumour growth. These data suggest that purified bacteriophages may inhibit tumour growth, a phenomenon with potentially important clinical implications in oncology.

  12. Efficient Translation of Epstein-Barr Virus (EBV) DNA Polymerase Contributes to the Enhanced Lytic Replication Phenotype of M81 EBV.

    PubMed

    Church, Trenton Mel; Verma, Dinesh; Thompson, Jacob; Swaminathan, Sankar

    2018-03-15

    Epstein-Barr virus (EBV) is linked to the development of both lymphoid and epithelial malignancies worldwide. The M81 strain of EBV, isolated from a Chinese patient with nasopharyngeal carcinoma (NPC), demonstrates spontaneous lytic replication and high-titer virus production in comparison to the prototype B95-8 EBV strain. Genetic comparisons of M81 and B95-8 EBVs were previously been performed in order to determine if the hyperlytic property of M81 is associated with sequence differences in essential lytic genes. EBV SM is an RNA-binding protein expressed during early lytic replication that is essential for virus production. We compared the functions of M81 SM and B95-8 SM and demonstrate that polymorphisms in SM do not contribute to the lytic phenotype of M81 EBV. However, the expression level of the EBV DNA polymerase protein was much higher in M81- than in B95-8-infected cells. The relative deficiency in the expression of B95-8 DNA polymerase was related to the B95-8 genome deletion, which truncates the BALF5 3' untranslated region (UTR). Similarly, the insertion of bacmid DNA into the widely used recombinant B95-8 bacmid creates an inefficient BALF5 3' UTR. We further showed that the while SM is required for and facilitates the efficient expression of both M81 and B95-8 mRNAs regardless of the 3' UTR, the BALF5 3' UTR sequence is important for BALF5 protein translation. These data indicate that the enhanced lytic replication and virus production of M81 compared to those of B95-8 are partly due to the robust translation of EBV DNA polymerase required for viral DNA replication due to a more efficient BALF5 3' UTR in M81. IMPORTANCE Epstein-Barr virus (EBV) infects more than 90% of the human population, but the incidence of EBV-associated tumors varies greatly in different parts of the world. Thus, understanding the connection between genetic polymorphisms from patient isolates of EBV, gene expression phenotypes, and disease is important and may help in

  13. A Bacteriophage-Related Chimeric Marine Virus Infecting Abalone

    PubMed Central

    Zhuang, Jun; Cai, Guiqin; Lin, Qiying; Wu, Zujian; Xie, Lianhui

    2010-01-01

    Marine viruses shape microbial communities with the most genetic diversity in the sea by multiple genetic exchanges and infect multiple marine organisms. Here we provide proof from experimental infection that abalone shriveling syndrome-associated virus (AbSV) can cause abalone shriveling syndrome. This malady produces histological necrosis and abnormally modified macromolecules (hemocyanin and ferritin). The AbSV genome is a 34.952-kilobase circular double-stranded DNA, containing putative genes with similarity to bacteriophages, eukaryotic viruses, bacteria and endosymbionts. Of the 28 predicted open reading frames (ORFs), eight ORF-encoded proteins have identifiable functional homologues. The 4 ORF products correspond to a predicted terminase large subunit and an endonuclease in bacteriophage, and both an integrase and an exonuclease from bacteria. The other four proteins are homologous to an endosymbiont-derived helicase, primase, single-stranded binding (SSB) protein, and thymidylate kinase, individually. Additionally, AbSV exhibits a common gene arrangement similar to the majority of bacteriophages. Unique to AbSV, the viral genome also contains genes associated with bacterial outer membrane proteins and may lack the structural protein-encoding ORFs. Genomic characterization of AbSV indicates that it may represent a transitional form of microbial evolution from viruses to bacteria. PMID:21079776

  14. Activity of Bacteriophages in Removing Biofilms of Pseudomonas aeruginosa Isolates from Chronic Rhinosinusitis Patients

    PubMed Central

    Fong, Stephanie A.; Drilling, Amanda; Morales, Sandra; Cornet, Marjolein E.; Woodworth, Bradford A.; Fokkens, Wytske J.; Psaltis, Alkis J.; Vreugde, Sarah; Wormald, Peter-John

    2017-01-01

    Introduction: Pseudomonas aeruginosa infections are prevalent amongst chronic rhinosinusitis (CRS) sufferers. Many P. aeruginosa strains form biofilms, leading to treatment failure. Lytic bacteriophages (phages) are viruses that infect, replicate within, and lyse bacteria, causing bacterial death. Aim: To assess the activity of a phage cocktail in eradicating biofilms of ex vivo P.aeruginosa isolates from CRS patients. Methods: P. aeruginosa isolates from CRS patients with and without cystic fibrosis (CF) across three continents were multi-locus sequence typed and tested for antibiotic resistance. Biofilms grown in vitro were treated with a cocktail of four phages (CT-PA). Biofilm biomass was measured after 24 and 48 h, using a crystal violet assay. Phage titrations were performed to confirm replication of the phages. A linear mixed effects model was applied to assess the effects of treatment, time, CF status, and multidrug resistance on the biomass of the biofilm. Results: The isolates included 44 strain types. CT-PA treatment significantly reduced biofilm biomass at both 24 and 48 h post-treatment (p < 0.0001), regardless of CF status or antibiotic resistance. Biomass was decreased by a median of 76% at 48 h. Decrease in biofilm was accompanied by a rise in phage titres for all except one strain. Conclusion: A single dose of phages is able to significantly reduce biofilms formed in vitro by a range of P.aeruginosa isolates from CRS patients. This represents an exciting potential and novel targeted treatment for P. aeruginosa biofilm infections and multidrug resistant bacteria. PMID:29018773

  15. Properties and mutation studies of a bacteriophage-derived chimeric recombinant staphylolytic protein P128

    PubMed Central

    Saravanan, Sanjeev Rajagopalan; Paul, Vivek Daniel; George, Shilpa; Sundarrajan, Sudarson; Kumar, Nirmal; Hebbur, Madhavi; Kumar, Naveen; Veena, Ananda; Maheshwari, Uma; Appaiah, Chemira Biddappa; Chidambaran, Muralidharan; Bhat, Anuradha Gopal; Hariharan, Sukumar; Padmanabhan, Sriram

    2013-01-01

    P128 is a chimeric anti-staphylococcal protein having a catalytic domain from a Staphylococcus bacteriophage K tail associated structural protein and a cell wall targeting domain from the Staphylococcus bacteriocin-lysostaphin. In this study, we disclose additional properties of P128 and compared the same with lysostaphin. While lysostaphin was found to get inactivated by heat and was inactive on its parent strain S. simulans biovar staphylolyticus, P128 was thermostable and was lytic towards S. simulans biovar staphylolyticus demonstrating a difference in their mechanism of action. Selected mutation studies of the catalytic domain of P128 showed that arginine and cysteine, at 40th and 76th positions respectively, are critical for the staphylolytic activity of P128, although these amino acids are not conserved residues. In comparison to native P128, only the R40S mutant (P301) was catalytically active on zymogram gel and had a similar secondary structure, as assessed by circular dichroism analysis and in silico modeling with similar cell binding properties. Mutation of the arginine residue at 40th position of the P128 molecule caused dramatic reduction in the Vmax (∆OD600 [mg/min]) value (nearly 270 fold) and the recombinant lysostaphin also showed lesser Vmax value (nearly 1.5 fold) in comparison to the unmodified P128 protein. The kinetic parameters such as apparent Km (Km APP) and apparent Kcat (KcatAPP) of the native P128 protein also showed significant differences in comparison to the values observed for P301 and lysostaphin. PMID:24251076

  16. Gold-Coated M13 Bacteriophage as a Template for Glucose Oxidase Biofuel Cells with Direct Electron Transfer.

    PubMed

    Blaik, Rita A; Lan, Esther; Huang, Yu; Dunn, Bruce

    2016-01-26

    Glucose oxidase-based biofuel cells are a promising source of alternative energy for small device applications, but still face the challenge of achieving robust electrical contact between the redox enzymes and the current collector. This paper reports on the design of an electrode consisting of glucose oxidase covalently attached to gold nanoparticles that are assembled onto a genetically engineered M13 bacteriophage using EDC-NHS chemistry. The engineered phage is modified at the pIII protein to attach onto a gold substrate and serves as a high-surface-area template. The resulting "nanomesh" architecture exhibits direct electron transfer (DET) and achieves a higher peak current per unit area of 1.2 mA/cm(2) compared to most other DET attachment schemes. The final enzyme surface coverage on the electrode was calculated to be approximately 4.74 × 10(-8) mol/cm(2), which is a significant improvement over most current glucose oxidase (GOx) DET attachment methods.

  17. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luo, T.; Sun, J.; Cai, L.; Liang, Y.; Jiao, N.; Zhang, R.

    2014-05-01

    As the most abundant biological entities in the ocean, viruses influence host mortality and nutrient recycling mainly through lytic infection. Yet, the ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In the present study, viral abundance and lytic infection were investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21 to 16.23 to 2.45-23.40, at the surface and 2000 m, respectively. Lytic viral production rates in surface and 2000 m waters were, on average, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1. Relatively high percentages of prokaryotic cells lysed by viruses at 1000 and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in the deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in these deep waters and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.

  18. Protozoacidal Trojan-Horse: use of a ligand-lytic peptide for selective destruction of symbiotic protozoa within termite guts.

    PubMed

    Sethi, Amit; Delatte, Jennifer; Foil, Lane; Husseneder, Claudia

    2014-01-01

    For novel biotechnology-based termite control, we developed a cellulose bait containing freeze-dried genetically engineered yeast which expresses a protozoacidal lytic peptide attached to a protozoa-recognizing ligand. The yeast acts as a 'Trojan-Horse' that kills the cellulose-digesting protozoa in the termite gut, which leads to the death of termites, presumably due to inefficient cellulose digestion. The ligand targets the lytic peptide specifically to protozoa, thereby increasing its protozoacidal efficiency while protecting non-target organisms. After ingestion of the bait, the yeast propagates in the termite's gut and is spread throughout the termite colony via social interactions. This novel paratransgenesis-based strategy could be a good supplement for current termite control using fortified biological control agents in addition to chemical insecticides. Moreover, this ligand-lytic peptide system could be used for drug development to selectively target disease-causing protozoa in humans or other vertebrates.

  19. Protozoacidal Trojan-Horse: Use of a Ligand-Lytic Peptide for Selective Destruction of Symbiotic Protozoa within Termite Guts

    PubMed Central

    Sethi, Amit; Delatte, Jennifer; Foil, Lane; Husseneder, Claudia

    2014-01-01

    For novel biotechnology-based termite control, we developed a cellulose bait containing freeze-dried genetically engineered yeast which expresses a protozoacidal lytic peptide attached to a protozoa-recognizing ligand. The yeast acts as a ‘Trojan-Horse’ that kills the cellulose-digesting protozoa in the termite gut, which leads to the death of termites, presumably due to inefficient cellulose digestion. The ligand targets the lytic peptide specifically to protozoa, thereby increasing its protozoacidal efficiency while protecting non-target organisms. After ingestion of the bait, the yeast propagates in the termite's gut and is spread throughout the termite colony via social interactions. This novel paratransgenesis-based strategy could be a good supplement for current termite control using fortified biological control agents in addition to chemical insecticides. Moreover, this ligand-lytic peptide system could be used for drug development to selectively target disease-causing protozoa in humans or other vertebrates. PMID:25198727

  20. Effectiveness of cooking to reduce norovirus and infectious F-specific RNA bacteriophage concentrations in Mytilus edulis.

    PubMed

    Flannery, J; Rajko-Nenow, P; Winterbourn, J B; Malham, S K; Jones, D L

    2014-08-01

    The aim of this study was to determine if domestic cooking practices can reduce concentrations of norovirus (NoV) and F-specific RNA (FRNA) bacteriophage in experimentally contaminated mussels. Mussels (n = 600) contaminated with NoV and FRNA bacteriophage underwent four different cooking experiments performed in triplicate at ~70°C and >90°C. Concentrations of infectious FRNA bacteriophage (using a plaque assay) were compared with concentrations of FRNA bacteriophage and NoV determined using a standardised RT-qPCR. Initial concentrations of infectious FRNA bacteriophage (7·05 log10  PFU g(-1) ) in mussels were not significantly reduced in simmering water (~70°C); however, cooking at higher temperatures (>90°C) reduced infectious FRNA bacteriophage to undetected levels within 3 min. Further investigation determined the time required for a 1-log reduction of infectious FRNA bacteriophage at 90°C to be 42 s therefore a >3-log reduction in infectious virus can be obtained by heating mussel digestive tissue to 90°C for 126 s. Domestic cooking practices based on shell opening alone do not inactivate infectious virus in mussels, however, cooking mussels at high temperatures is effective to reduce infectious virus concentrations and the risk of illness in consumers. The data will contribute towards evidence-based cooking recommendations for shellfish to provide a safe product for human consumption. © 2014 The Society for Applied Microbiology.