Science.gov

Sample records for bacteriophage phi29 dna

  1. Bacteriophage phi29 DNA replication arrest caused by codirectional collisions with the transcription machinery.

    PubMed Central

    Elías-Arnanz, M; Salas, M

    1997-01-01

    The consequences on replication of collisions between phi29 DNA polymerase, a monomeric replicase endowed with strand displacement capacity, and the transcription machinery have been studied in vitro. Codirectional collisions with stalled transcription ternary complexes at four different promoters in the phi29 genome were found to block replication fork progression. Upon collision, the DNA polymerase remained on the template and was able to resume elongation once the RNA polymerase was allowed to move. Collisions with RNA polymerase molecules moving in the same direction also interfered with replication, causing a decrease in the replication rate. These results lead to the proposal that in bacteriophage phi29 a transcription complex physically blocks the progression of a replication fork. We suggest that temporal regulation of transcription and the low probability that the replication and transcription processes colocalize in vivo contribute to achieving minimal interference between the two events. PMID:9312035

  2. Bacteriophage Nf DNA region controlling late transcription: structural and functional homology with bacteriophage phi 29.

    PubMed

    Nuez, B; Salas, M

    1993-06-25

    The putative region for the control of late transcription of the Bacillus subtilis phage Nf has been identified by DNA sequence homology with the equivalent region of the evolutionary related phage phi 29. A similar arrangement of early and late promoters has been detected in the two phages, suggesting that viral transcription could be regulated in a similar way at late times of the infection. Transcription of late genes requires the presence of a viral early protein, gpF in phage Nf and p4 in phage phi 29, being the latter known to bind to a DNA region located upstream from the phage phi 29 late promoter. We have identified a DNA region located upstream from the putative late promoter of phage Nf that is probably involved in binding protein gpF. Furthermore, we show that the phage phi 29 protein p4 is able to bind to this region and activate transcription from the phage Nf putative late promoter. Sequence alignment has also revealed the existence of significant internal homology between the two early promoters contained in this region of each phage.

  3. Fingerprinting of Peptides with a Large Channel of Bacteriophage Phi29 DNA Packaging Motor.

    PubMed

    Ji, Zhouxiang; Wang, Shaoying; Zhao, Zhengyi; Zhou, Zhi; Haque, Farzin; Guo, Peixuan

    2016-09-01

    Nanopore technology has become a highly sensitive and powerful tool for single molecule sensing of chemicals and biopolymers. Protein pores have the advantages of size amenability, channel homogeneity, and fabrication reproducibility. But most well-studied protein pores for sensing are too small for passage of peptide analytes that are typically a few nanometers in dimension. The funnel-shaped channel of bacteriophage phi29 DNA packaging motor has previously been inserted into a lipid membrane to serve as a larger pore with a narrowest N-terminal constriction of 3.6 nm and a wider C-terminal end of 6 nm. Here, the utility of phi29 motor channel for fingerprinting of various peptides using single molecule electrophysiological assays is reported. The translocation of peptides is proved unequivocally by single molecule fluorescence imaging. Current blockage percentage and distinctive current signatures are used to distinguish peptides with high confidence. Each peptide generated one or two distinct current blockage peaks, serving as typical fingerprint for each peptide. The oligomeric states of peptides can also be studied in real time at single molecule level. The results demonstrate the potential for further development of phi29 motor channel for detection of disease-associated peptide biomarkers.

  4. Structural changes of bacteriophage [phi]29 upon DNA packaging and release

    SciTech Connect

    Xiang, Y.; Morais, M.C.; Battisti, A.J.; Grimes, S.; Jardine, P.J.; Anderson, D.L.; Rossmann, M.G.

    2008-04-24

    Cryo-electron microscopy three-dimensional reconstructions have been made of mature and of emptied bacteriophage {phi}29 particles without making symmetry assumptions. Comparisons of these structures with each other and with the {phi}29 prohead indicate how conformational changes might initiate successive steps of assembly and infection. The 12 adsorption capable 'appendages' were found to have a structure homologous to the bacteriophage P22 tailspikes. Two of the appendages are extended radially outwards, away from the long axis of the virus, whereas the others are around and parallel to the phage axis. The appendage orientations are correlated with the symmetry-mismatched positions of the five-fold related head fibers, suggesting a mechanism for partial cell wall digestion upon rotation of the head about the tail when initiating infection. The narrow end of the head-tail connector is expanded in the mature virus. Gene product 3, bound to the 5-foot ends of the genome, appears to be positioned within the expanded connector, which may potentiate the release of DNA-packaging machine components, creating a binding site for attachment of the tail.

  5. Engineering Permissive Insertion Sites in the Bacteriophage Phi29 DNA-Linked Terminal Protein

    PubMed Central

    Gella, Pablo; Salas, Margarita

    2016-01-01

    Many different DNA delivery vehicles have been developed and tested, all with their advantages and disadvantages. The bacteriophage phi29 terminal protein (TP) is covalently linked to the 5’ ends of the phage genome during the DNA replication process. Our approach is to utilize this TP as a platform to incorporate different protein or peptide modules that can target the DNA to the interior of the cell, to the nucleus, or even to subcellular compartments. In order to be able to insert different peptide modules on the TP sequence to endow it with desired functions and/or eliminate unwanted regions of the protein, we have carried out a transposition screening to detect insertion-permissive points on the sequence of the TP. We report the functional characterization of 12 insertion mutants of the TP, and the identification of one site at position 38 that allows the insertion of peptides up to 17 amino acids in length while maintaining the ability of the TP to support DNA amplification in vitro. A protein with one insertion at that position containing a cysteine residue, a linker, and a thrombin recognition site was purified and its amplification activity was optimized. PMID:27780219

  6. Construction of Bacteriophage Phi29 DNA Packaging Motor and its Applications in Nanotechnology and Therapy

    PubMed Central

    Lee, Tae Jin; Schwartz, Chad; Guo, Peixuan

    2010-01-01

    Nanobiotechnology involves the creation, characterization, and modification of organized nanomaterials to serve as building blocks for constructing nanoscale devices in technology and medicine. Living systems contain a wide variety of nanomachines and highly ordered structures of macromolecules. The novelty and ingenious design of the bacterial virus phi29 DNA packaging motor and its parts inspired the synthesis of this motor and its components as biomimetics. This 30-nm nanomotor uses six copies of an ATP-binding pRNA to gear the motor. The structural versatility of pRNA has been utilized to construct dimers, trimers, hexamers, and patterned superstructures via the interaction of two interlocking loops. The approach, based on bottom-up assembly, has also been applied to nanomachine fabrication, pathogen detection and the delivery of drugs, siRNA, ribozymes, and genes to specific cells in vitro and in vivo. Another essential component of the motor is the connector, which contains 12 copies of a protein gp10 to form a 3.6-nm central channel as a path for DNA. This article will review current studies of the structure and function of the phi29 DNA packaging motor, as well as the mechanism of motion, the principle of in vitro construction, and its potential nanotechnological and medical applications. PMID:19495981

  7. Construction of bacteriophage phi29 DNA packaging motor and its applications in nanotechnology and therapy.

    PubMed

    Lee, Tae Jin; Schwartz, Chad; Guo, Peixuan

    2009-10-01

    Nanobiotechnology involves the creation, characterization, and modification of organized nanomaterials to serve as building blocks for constructing nanoscale devices in technology and medicine. Living systems contain a wide variety of nanomachines and highly ordered structures of macromolecules. The novelty and ingenious design of the bacterial virus phi29 DNA packaging motor and its parts inspired the synthesis of this motor and its components as biomimetics. This 30-nm nanomotor uses six copies of an ATP-binding pRNA to gear the motor. The structural versatility of pRNA has been utilized to construct dimers, trimers, hexamers, and patterned superstructures via the interaction of two interlocking loops. The approach, based on bottom-up assembly, has also been applied to nanomachine fabrication, pathogen detection and the delivery of drugs, siRNA, ribozymes, and genes to specific cells in vitro and in vivo. Another essential component of the motor is the connector, which contains 12 copies of a protein gp10 to form a 3.6-nm central channel as a path for DNA. This article will review current studies of the structure and function of the phi29 DNA packaging motor, as well as the mechanism of motion, the principle of in vitro construction, and its potential nanotechnological and medical applications.

  8. Single Pore Translocation of Folded, Double-Stranded, and Tetra-stranded DNA through Channel of Bacteriophage Phi29 DNA Packaging Motor

    PubMed Central

    Haque, Farzin; Wang, Shaoying; Stites, Chris; Chen, Li; Wang, Chi; Guo, Peixuan

    2015-01-01

    The elegant architecture of the channel of bacteriophage phi29 DNA packaging motor has inspired the development of biomimetics for biophysical and nanobiomedical applications. The reengineered channel inserted into a lipid membrane exhibits robust electrophysiological properties ideal for precise sensing and fingerprinting of dsDNA at the single-molecule level. Herein, we used single channel conduction assays to quantitatively evaluate the translocation dynamics of dsDNA as a function of the length and conformation of dsDNA. We extracted the speed of dsDNA translocation from the dwell time distribution and estimated the various forces involved in the translocation process. A ~35-fold slower speed of translocation per base pair was observed for long dsDNA, a significant contrast to the speed of dsDNA crossing synthetic pores. It was found that the channel could translocate both dsDNA with ~32% of channel current blockage and ~64% for tetra-stranded DNA (two parallel dsDNA). The calculation of both cross-sectional areas of the dsDNA and tetra-stranded DNA suggested that the blockage was purely proportional to the physical space of the channel lumen and the size of the DNA substrate. Folded dsDNA configuration was clearly reflected in their characteristic current signatures. The finding of translocation of tetra-stranded DNA with 64% blockage is in consent with the recently elucidated mechanism of viral DNA packaging via a revolution mode that requires a channel larger than the dsDNA diameter of 2 nm to provide room for viral DNA revolving without rotation. The understanding of the dynamics of dsDNA translocation in the phi29 system will enable us to design more sophisticated single pore DNA translocation devices for future applications in nanotechnology and personal medicine. PMID:25890769

  9. Replication of phage phi 29 DNA with purified terminal protein and DNA polymerase: synthesis of full-length phi 29 DNA.

    PubMed Central

    Blanco, L; Salas, M

    1985-01-01

    A system that replicates bacteriophage phi 29 DNA with protein p3 covalently attached to the two 5' ends, using as the only proteins the phi 29 DNA polymerase and the terminal protein, is described. Restriction analysis of the 32P-labeled DNA synthesized in vitro showed that all phi 29 DNA fragments were labeled. Analysis by alkaline sucrose gradient centrifugation of the DNA labeled during a 10-min pulse showed that, after a 20-min chase, about half of the DNA molecules had reached apparently full-length phi 29 DNA (approximately equal to 18,000 nucleotides). Ammonium ions strongly stimulated phi 29 DNA-protein p3 replication, the effect being due to stimulation of the initiation reaction. ATP was not required for phi 29 DNA-protein p3 replication, either in the initiation or elongation steps. The results show that the phi 29 DNA polymerase functions, not only in the formation of the p3-dAMP covalent initiation complex but also in the elongation of the latter, as the only DNA polymerase to produce full-length phi 29 DNA. Images PMID:3863101

  10. Bright-field analysis of phi29 DNA packaging motor using a magnetomechanical system.

    PubMed

    Chang, Chun-Li; Zhang, Hui; Shu, Dan; Guo, Peixuan; Savran, Cagri A

    2008-10-13

    We report a simple and robust magnetomechanical system for direct visual observation of the DNA packaging behavior of the bacteriophage phi29 in real time. The system comprises a micron-sized magnetic bead attached to the free end of the viral DNA, a magnet and a bright-field microscope. We show that the phi29 DNA packaging activity can be observed and dynamically analyzed at the single molecular level in bright field with a relatively simple system. With this system we also visually demonstrate the phi29 motor transporting a cargo 10 000 times the viral size.

  11. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage

    NASA Astrophysics Data System (ADS)

    Hao, Chenhui; Li, Xiang; Tian, Cheng; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2014-05-01

    RNA nanotechnology promises rational design of RNA nanostructures with wide array of structural diversities and functionalities. Such nanostructures could be used in applications such as small interfering RNA delivery and organization of in vivo chemical reactions. Though having impressive development in recent years, RNA nanotechnology is still quite limited and its programmability and complexity could not rival the degree of its closely related cousin: DNA nanotechnology. Novel strategies are needed for programmed RNA self-assembly. Here, we have assembled RNA nanocages by re-engineering a natural, biological RNA motif: the packaging RNA of phi29 bacteriophage. The resulting RNA nanostructures have been thoroughly characterized by gel electrophoresis, cryogenic electron microscopy imaging and dynamic light scattering.

  12. Characterization of the phage phi 29 protein p5 as a single-stranded DNA binding protein. Function in phi 29 DNA-protein p3 replication.

    PubMed Central

    Martín, G; Lázaro, J M; Méndez, E; Salas, M

    1989-01-01

    The phage phi 29 protein p5, required in vivo in the elongation step of phi 29 DNA replication, was highly purified from Escherichia coli cells harbouring a gene 5-containing plasmid and from phi 29-infected Bacillus subtilis. The protein was characterized as the gene 5 product by amino acid analysis and NH2-terminal sequence determination. The purified protein p5 was shown to bind to single-stranded DNA and to protect it against nuclease degradation. No effect of protein p5 was observed either on the formation of the p3-dAMP initiation complex or on the rate of elongation. However, protein p5 greatly stimulated phi 29 DNA-protein p3 replication at incubation times where the replication in the absence of p5 leveled off. Images PMID:2499869

  13. Template requirements for initiation of phage phi 29 DNA replication in vitro.

    PubMed Central

    García, J A; Peñalva, M A; Blanco, L; Salas, M

    1984-01-01

    The template requirements for the formation of the phi 29 protein p3-dAMP initiation complex in vitro have been studied. The initiation reaction requires the parental protein p3 but not an intact DNA molecule. Protein p3-containing fragments from the left- or right-hand DNA ends were active as template for formation of the initiation complex provided they had a minimal size: a 26-base-pair-long fragment was active whereas a 10-base-pair-long one was essentially inactive. However, the activity of the latter was restored by ligation of an unspecific DNA sequence. phi 29 DNA internal fragments, as well as denatured phi 29 DNA, were inactive as template for the initiation reaction. The terminal protein-DNA complex isolated from Bacillus phage phi 15 was active in formation of the phi 29 p3-dAMP complex, whereas the protein-DNA complex isolated from Bacillus phage GA-1 or from the pneumococcal phage Cp-1, both with a morphology similar to that of phage phi 29, as well as that obtained from adenovirus, were inactive. Images PMID:6320176

  14. Nucleotide sequence at the termini of the DNA of Bacillus subtilis phage phi 29.

    PubMed Central

    Escarmís, C; Salas, M

    1981-01-01

    Phage phi 29 DNA cannot be phosphorylated with polynucleotide kinase and [gamma-32P]ATP because of the presence of a viral protein covalently linked to the 5' termini. The 5' ends can, however, be made susceptible to phosphorylation by treatment with alkali and alkaline phosphatase. Restriction fragments Hpa II C and Hpa II F, corresponding to the right and left ends of phi 29 DNA, respectively, were labeled at the 5' ends with polynucleotide kinase and [gamma-32P]ATP or at the 3' ends with terminal transferase and [alpha-32P]ATP or [alpha-32P]cordycepin 5'-triphosphate. After a secondary cleavage of the labeled fragments, the sequence of the first 150-180 nucleotides at the termini of phi 29 DNA was determined by the method of Maxam and Gilbert. The ends of phi 29 DNA are flush, and a six-nucleotides-long inverted terminal repetition was found. The functional implications of the sequences determined are discussed. Images PMID:6262800

  15. Ultrastable pRNA hexameric ring gearing hexameric phi29 DNA-packaging motor by revolving without rotating and coiling.

    PubMed

    Schwartz, Chad; Guo, Peixuan

    2013-08-01

    Biomotors have previously been classified into two categories: linear and rotational motors. It has long been popularly believed that viral DNA packaging motors are rotation motors. We have recently found that the DNA-packaging motor of bacteriophage phi29 uses a third mechanism: revolution without rotation. phi29 motor consists of three-coaxial rings of hexameric RNA, a hexameric ATPase, and a dodecameric channel. The motor uses six ATP to revolve one helical turn of dsDNA around the hexameric ring of ATPase gp16. Each dodecameric segment tilts at a 30°-angle and runs anti-parallel to the dsDNA helix to facilitate translation in one direction. The negatively charged phosphate backbone interacts with four positively charged lysine rings, resulting in four steps of transition. This review will discuss how the novel pRNA meets motor requirements for translocation concerning structure, stoichiometry, and thermostability; how pRNA studies have led to the generation of the concept of RNA nanotechnology; and how pRNA is fabricated into nanoparticles to deliver siRNA, miRNA, and ribozymes to cancer and virus-infected cells.

  16. Real-time sensing and discrimination of single chemicals using the channel of phi29 DNA packaging nanomotor.

    PubMed

    Haque, Farzin; Lunn, Jennifer; Fang, Huaming; Smithrud, David; Guo, Peixuan

    2012-04-24

    A highly sensitive and reliable method to sense and identify a single chemical at extremely low concentrations and high contamination is important for environmental surveillance, homeland security, athlete drug monitoring, toxin/drug screening, and earlier disease diagnosis. This article reports a method for precise detection of single chemicals. The hub of the bacteriophage phi29 DNA packaging motor is a connector consisting of 12 protein subunits encircled into a 3.6 nm channel as a path for dsDNA to enter during packaging and to exit during infection. The connector has previously been inserted into a lipid bilayer to serve as a membrane-embedded channel. Herein we report the modification of the phi29 channel to develop a class of sensors to detect single chemicals. The lysine-234 of each protein subunit was mutated to cysteine, generating 12-SH ring lining the channel wall. Chemicals passing through this robust channel and interactions with the SH group generated extremely reliable, precise, and sensitive current signatures as revealed by single channel conductance assays. Ethane (57 Da), thymine (167 Da), and benzene (105 Da) with reactive thioester moieties were clearly discriminated upon interaction with the available set of cysteine residues. The covalent attachment of each analyte induced discrete stepwise blockage in current signature with a corresponding decrease in conductance due to the physical blocking of the channel. Transient binding of the chemicals also produced characteristic fingerprints that were deduced from the unique blockage amplitude and pattern of the signals. This study shows that the phi29 connector can be used to sense chemicals with reactive thioesters or maleimide using single channel conduction assays based on their distinct fingerprints. The results demonstrated that this channel system could be further developed into very sensitive sensing devices.

  17. Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase

    SciTech Connect

    Xu, Y.; Dunn, J.; Gao, S.; Bruno, J. F.; Luft, B. J.

    2008-10-31

    Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing as little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.

  18. Structural and functional analysis of temperature-sensitive mutants of the phage phi 29 DNA polymerase.

    PubMed Central

    Blasco, M A; Blanco, L; Parés, E; Salas, M; Bernad, A

    1990-01-01

    The cloning and complete sequencing of gene 2 from four independently isolated temperature-sensitive mutants in the phage phi 29 DNA polymerase (ts2 mutants) is reported. The results obtained indicate that, in vivo, the mutations only affect the initial steps of the replication process. Interestingly, three of these mutations consist in the single amino acid change Ala to Val at position 492 of the protein. The ts2(24) and ts2(98) mutant phi 29 DNA polymerases were expressed, purified and their thermosensitivity was studied at two different steps of DNA replication: 1) protein-primed initiation and 2) elongation of the DNA chain. Whereas the ts2(24) mutation gave rise to a temperature-sensitive phenotype in both reactions, the ts2(98) mutant protein was rather insensitive to the temperature increase. In addition, the ts2(98) mutant protein showed clear differences in the activation by divalent cations. The relationship of these results with structural and functional domains in the phi 29 DNA polymerase are discussed. Images PMID:2118623

  19. Random-primed, Phi29 DNA polymerase-based whole genome amplification.

    PubMed

    Nelson, John R

    2014-01-06

    Whole-genome amplification by multiple displacement amplification (MDA) is a patented method to generate potentially unlimited genomic material when researchers are challenged with trace samples, or the amount of genomic DNA required for analysis exceeds the amount on hand. It is an isothermal reaction, using Phi29 DNA polymerase and random hexamer primers for unbiased amplification of linear DNA molecules, such as genomic DNA. The random-primed MDA reaction provides extensive amplification coverage of the genome, generates extremely long DNA products, and provides high DNA yields. This unit explains the reaction, and describes use of the commercial kits available.

  20. Structure of bacteriophage [phi]29 head fibers has a supercoiled triple repeating helix-turn-helix motif

    SciTech Connect

    Xiang, Ye; Rossmann, Michael G.

    2011-12-22

    The tailed bacteriophage {phi}29 capsid is decorated with 55 fibers attached to quasi-3-fold symmetry positions. Each fiber is a homotrimer of gene product 8.5 (gp8.5) and consists of two major structural parts, a pseudohexagonal base and a protruding fibrous portion that is about 110 {angstrom} in length. The crystal structure of the C-terminal fibrous portion (residues 112-280) has been determined to a resolution of 1.6 {angstrom}. The structure is about 150 {angstrom} long and shows three distinct structural domains designated as head, neck, and stem. The stem region is a unique three-stranded helix-turn-helix supercoil that has not previously been described. When fitted into a cryoelectron microscope reconstruction of the virus, the head structure corresponded to a disconnected density at the distal end of the fiber and the neck structure was located in weak density connecting it to the fiber. Thin section studies of Bacillus subtilis cells infected with fibered or fiberless {phi}29 suggest that the fibers might enhance the attachment of the virions onto the host cell wall.

  1. Transfecting deoxyribonucleic acid of Bacillus bacteriophage phi 29 that is protease sensitive.

    PubMed

    Hirokawa, H

    1972-06-01

    The transfecting activity of Bacillus phage varphi29 DNA, extracted either by sodium lauroyl sarcosine-phenol or by 2 M perchlorate, was destroyed by treatment with proteolytic enzymes, although these enzymes did not effect transfecting DNAs of SPP1, SPO1, and SP50. These facts suggest that a protein is associated with transfective varphi29 DNA. Stabilization of protease-resistance during transfection appeared earlier than that of DNaseresistance, indicating that the protein associated with varphi29 DNA is necessary for initiation of the incorporation of DNA molecules into competent cells. The physical nature of varphi29 DNA before and after the trypsin treatment was investigated by sucrose and CsCl density gradient centrifugations. The trypsin treatment did not alter the sedimentation rate of the unit varphi29 DNA; however, it did convert the sedimentation rate of the aggregated material in the untreated DNA to that of the unit varphi29 DNA. The density of the trypsinized DNA was 0.009 g/cm(3) greater than that of the untreated DNA. The possible location of the protein on the DNA is discussed.

  2. Metal activation of synthetic and degradative activities of phi 29 DNA polymerase, a model enzyme for protein-primed DNA replication.

    PubMed

    Esteban, J A; Bernad, A; Salas, M; Blanco, L

    1992-01-21

    Analysis of metal activation on the synthetic and degradative activities of phi 29 DNA polymerase was carried out in comparison with T4 DNA polymerase and Escherichia coli DNA polymerase I (Klenow fragment). In the three DNA polymerases studied, both the polymerization and the 3'----5' exonuclease activity had clear differences in their metal ion requirements. The results obtained support the existence of independent metal binding sites for the synthetic and degradative activities of phi 29 DNA polymerase, according with the distant location of catalytic domains (N-terminal for the 3'----5' exonuclease and C-terminal for DNA polymerization) proposed for both Klenow fragment and phi 29 DNA polymerase. Furthermore, DNA competition experiments using phi 29 DNA polymerase suggested that the main differences observed in the metal usage to activate polymerization may be the consequence of metal-induced changes in the enzyme-DNA interactions, whose strength distinguishes processive and nonprocessive DNA polymerases. Interestingly, the initiation of DNA polymerization using a protein as a primer, a special synthetic activity carried out by phi 29 DNA polymerase, exhibited a strong preference for Mn2+ as metal activator. The molecular basis for this preference is mainly the result of a large increase in the affinity for dATP.

  3. Novel application of Phi29 DNA polymerase: RNA detection and analysis in vitro and in situ by target RNA-primed RCA

    PubMed Central

    Lagunavicius, Arunas; Merkiene, Egle; Kiveryte, Zivile; Savaneviciute, Agne; Zimbaite-Ruskuliene, Vilma; Radzvilavicius, Tomas; Janulaitis, Arvydas

    2009-01-01

    We present a novel Phi29 DNA polymerase application in RCA-based target RNA detection and analysis. The 3′→5′ RNase activity of Phi29 DNA polymerase converts target RNA into a primer and the polymerase uses this newly generated primer for RCA initiation. Therefore, using target RNA-primed RCA, padlock probes may be targeted to inner RNA sequences and their peculiarities can be analyzed directly. We demonstrate that the exoribonucleolytic activity of Phi29 DNA polymerase can be successfully applied in vitro and in situ. These findings expand the potential for detection and analysis of RNA sequences distanced from 3′-end. PMID:19244362

  4. The highly conserved amino acid sequence motif Tyr-Gly-Asp-Thr-Asp-Ser in alpha-like DNA polymerases is required by phage phi 29 DNA polymerase for protein-primed initiation and polymerization.

    PubMed Central

    Bernad, A; Lázaro, J M; Salas, M; Blanco, L

    1990-01-01

    The alpha-like DNA polymerases from bacteriophage phi 29 and other viruses, prokaryotes and eukaryotes contain an amino acid consensus sequence that has been proposed to form part of the dNTP binding site. We have used site-directed mutants to study five of the six highly conserved consecutive amino acids corresponding to the most conserved C-terminal segment (Tyr-Gly-Asp-Thr-Asp-Ser). Our results indicate that in phi 29 DNA polymerase this consensus sequence, although irrelevant for the 3'----5' exonuclease activity, is essential for initiation and elongation. Based on these results and on its homology with known or putative metal-binding amino acid sequences, we propose that in phi 29 DNA polymerase the Tyr-Gly-Asp-Thr-Asp-Ser consensus motif is part of the dNTP binding site, involved in the synthetic activities of the polymerase (i.e., initiation and polymerization), and that it is involved particularly in the metal binding associated with the dNTP site. Images PMID:2191296

  5. Location of the serine residue involved in the linkage between the terminal protein and the DNA of phage phi 29.

    PubMed Central

    Hermoso, J M; Méndez, E; Soriano, F; Salas, M

    1985-01-01

    B. subtilis phage phi 29 has a terminal protein, p3, covalently linked to the 5' ends of the DNA through a phosphodiester bond between a serine residue and 5'-dAMP. This protein acts as a primer in DNA replication by forming an initiation complex with the 5'-terminal nucleotide dAMP. The amino acid sequence of the terminal protein, deduced from the nucleotide sequence of gene 3, showed the presence of 18 serine residues in a total of 266 amino acids. In this paper we have identified the serine involved in the linkage with the DNA as the residue 232, located close to the C-terminus of the molecule. This result was obtained by amino acid analysis of the peptide that remains linked to the DNA after proteinase K digestion of the terminal protein-phi 29 DNA complex and automated Edman degradation of the corresponding [125I]-labeled tryptic peptide. Prediction of the secondary structure of the terminal protein suggested that the serine residue involved in the linkage with the DNA is placed in a beta-turn, probably located on the external part of the molecule, as indicated by hydropathic values. Images PMID:3934646

  6. In vitro transcription of the Bacillus subtilis phage phi 29 DNA by Bacillus subtilis and Escherichia coli RNA polymerases.

    PubMed Central

    Sogo, J M; Lozano, M; Salas, M

    1984-01-01

    The Escherichia coli RNA polymerase bound to phage phi 29 DNA has been visualized by electron microscopy. Thirteen specific binding sites have been observed at 1.7,2.6,5.5,10.4,13.7,25.2,25.7,26.3,33.5,59.5,69.2,91.7 and 99.6 DNA length units and they have been named A1,A1I,A1II,A1III,A1IV,A2,A2I, A3, A4,B1,B1I,C1 and C2, respectively. The binding sites A1,A2,A3,B1,C1 and C2 coincide with those found with Bacillus subtilis RNA polymerase. The transcription of phage phi 29 DNA with B. subtilis or E. coli RNA polymerases has been studied. With the B. subtilis RNA polymerase eight transcripts were found, starting at positions corresponding to the binding sites A1, A1III, A2,A3,B1I,B2,C1 and C2, respectively. With the E. coli RNA polymerase the same transcripts were found and a new one starting at position corresponding to the A4 binding site. The RNAs starting at binding sites A1,A1III,A2,B1I, B2,C1 and C2 are transcribed from right to left, as expected for early RNA. The RNAs which initiate at positions A3 and A4 are transcribed from left to right and probably correspond to late RNAs. Images PMID:6322128

  7. Structure of bacteriophage phi29 head fibers has a supercoiled triple repeating helix-turn-helix motif.

    PubMed

    Xiang, Ye; Rossmann, Michael G

    2011-03-22

    The tailed bacteriophage 29 capsid is decorated with 55 fibers attached to quasi-3-fold symmetry positions. Each fiber is a homotrimer of gene product 8.5 (gp8.5) and consists of two major structural parts, a pseudohexagonal base and a protruding fibrous portion that is about 110 Å in length. The crystal structure of the C-terminal fibrous portion (residues 112-280) has been determined to a resolution of 1.6 Å. The structure is about 150 Å long and shows three distinct structural domains designated as head, neck, and stem. The stem region is a unique three-stranded helix-turn-helix supercoil that has not previously been described. When fitted into a cryoelectron microscope reconstruction of the virus, the head structure corresponded to a disconnected density at the distal end of the fiber and the neck structure was located in weak density connecting it to the fiber. Thin section studies of Bacillus subtilis cells infected with fibered or fiberless 29 suggest that the fibers might enhance the attachment of the virions onto the host cell wall.

  8. Phi29 Connector-DNA Interactions Govern DNA Crunching and Rotation, Supporting the Check-Valve Model

    PubMed Central

    Kumar, Rajendra; Grubmüller, Helmut

    2016-01-01

    During replication of the ϕ29 bacteriophage inside a bacterial host cell, a DNA packaging motor transports the viral DNA into the procapsid against a pressure difference of up to 40 ± 20 atm. Several models have been proposed for the underlying molecular mechanism. Here we have used molecular dynamics simulations to examine the role of the connector part of the motor, and specifically the one-way revolution and the push-roll model. We have focused at the structure and intermolecular interactions between the DNA and the connector, for which a near-complete structure is available. The connector is found to induce considerable DNA deformations with respect to its canonical B-form. We further assessed by force-probe simulations to which extent the connector is able to prevent DNA leakage and found that the connector can act as a partial one-way valve by a check-valve mechanism via its mobile loops. Analysis of the geometry, flexibility, and energetics of channel lysine residues suggested that this arrangement of residues is incompatible with the observed DNA packaging step-size of ∼2.5 bp, such that the step-size is probably determined by the other components of the motor. Previously proposed DNA revolution and rolling motions inside the connector channel are both found implausible due to structural entanglement between the DNA and connector loops that have not been resolved in the crystal structure. Rather, in the simulations, the connector facilitates minor DNA rotation during the packaging process compatible with recent optical-tweezers experiments. Combined with the available experimental data, our simulation results suggest that the connector acts as a check-valve that prevents DNA leakage and induces DNA compression and rotation during DNA packaging. PMID:26789768

  9. Sequential action of six virus-encoded DNA-packaging RNAs during phage phi29 genomic DNA translocation.

    PubMed Central

    Chen, C; Guo, P

    1997-01-01

    A 120-base pRNA encoded by bacteriophage b29 has a novel and essential role in genomic DNA packaging. Six DNA-packaging RNAs (pRNAs) were bound to the sixfold symmetrical portal vertex of procapsids during the DNA translocation process and left the procapsid after the DNA-packaging reaction was completed, suggesting that the pRNA participated in the translocation of genomic DNA into procapsids. To further investigate the mechanism of DNA packaging, it is crucial to determine whether these six pRNA molecules work as an integrated entity or each pRNA acts as a functional individual. If pRNAs work individually, then do they work in sequence with communication or in random order without interaction? Results from compensation and complementation analysis did not support the integrated model. Computation of the probability of combination between wild-type and mutant pRNAs and experimental data of competitive inhibition excluded the random model while favoring the proposal that the six pRNAs functioned sequentially. Sequential action of the pRNA also explains why the pRNA is so sensitive to mutation, since the effect of a pRNA mutation will be amplified by 6 orders of magnitude after six consecutive steps, resulting in the observed complete loss of DNA-packaging activity caused by small alterations. When any one of the six pRNAs was replaced with an inactive one, complete blockage of DNA packaging resulted, strongly supporting the speculation that individual pRNAs, presumably together with other components such as the packaging ATPase gp16, take turns mediating successive steps of packaging. Although the data provided here could not exclude the integrated model completely, there is no evidence so far to argue against the model of sequential action. PMID:9094662

  10. The main early and late promoters of Bacillus subtilis phage phi 29 form unstable open complexes with sigma A-RNA polymerase that are stabilized by DNA supercoiling.

    PubMed Central

    Rojo, F; Nuez, B; Mencía, M; Salas, M

    1993-01-01

    Most Escherichia coli promoters studied so far form stable open complexes with sigma 70-RNA polymerase which have relatively long half-lives and, therefore, are resistant to a competitor challenge. A few exceptions are nevertheless known. The analysis of a number of promoters in Bacillus subtilis has suggested that the instability of open complexes formed by the vegetative sigma A-RNA polymerase may be a more general phenomenon than in Escherichia coli. We show that the main early and late promoters from the Bacillus subtilis phage phi 29 form unstable open complexes that are stabilized either by the formation of the first phosphodiester bond between the initiating nucleoside triphosphates or by DNA supercoiling. The functional characteristics of these two strong promoters suggest that they are not optimized for a tight and stable RNA polymerase binding. Their high activity is probably the consequence of the efficiency of further steps leading to the formation of an elongation complex. Images PMID:8451193

  11. The main early and late promoters of Bacillus subtilis phage phi 29 form unstable open complexes with sigma A-RNA polymerase that are stabilized by DNA supercoiling.

    PubMed

    Rojo, F; Nuez, B; Mencía, M; Salas, M

    1993-02-25

    Most Escherichia coli promoters studied so far form stable open complexes with sigma 70-RNA polymerase which have relatively long half-lives and, therefore, are resistant to a competitor challenge. A few exceptions are nevertheless known. The analysis of a number of promoters in Bacillus subtilis has suggested that the instability of open complexes formed by the vegetative sigma A-RNA polymerase may be a more general phenomenon than in Escherichia coli. We show that the main early and late promoters from the Bacillus subtilis phage phi 29 form unstable open complexes that are stabilized either by the formation of the first phosphodiester bond between the initiating nucleoside triphosphates or by DNA supercoiling. The functional characteristics of these two strong promoters suggest that they are not optimized for a tight and stable RNA polymerase binding. Their high activity is probably the consequence of the efficiency of further steps leading to the formation of an elongation complex.

  12. Factors involved in the initiation of phage phi 29 DNA replication in vitro: requirement of the gene 2 product for the formation of the protein p3-dAMP complex.

    PubMed Central

    Blanco, L; Garcìa, J A; Peñalva, M A; Salas, M

    1983-01-01

    To study the requirements for the in vitro formation of the protein p3-dAMP complex, the first step in phi29 DNA replication, extracts from B. subtilis infected with phi29 mutants in genes 2, 3, 5, 6 and 17, involved in DNA synthesis, have been used. The formation of the initiation complex is completely dependent on the presence of a functional gene 2 product, in addition to protein p3 and phi29 DNA-protein p3 as template. ATP is also required, although it can be replaced by other nucleotides. The products of genes 5, 6 and 17 do not seem to be needed in the formation of the initiation complex. Inhibitors of the host DNA polymerase III, DNA gyrase or RNA polymerase had no effect on the formation of the protein p3-dAMP complex, suggesting that these proteins are not involved in the initiation of phi29 DNA replication. ddATP or aphidicolin, inhibitors of DNA chain elongation, had also no effect on the formation of the initiation complex. Images PMID:6402761

  13. Assembly of phage phi 29 genome with viral protein p6 into a compact complex.

    PubMed Central

    Gutiérrez, C; Freire, R; Salas, M; Hermoso, J M

    1994-01-01

    The formation of a multimeric nucleoprotein complex by the phage phi 29 dsDNA binding protein p6 at the phi 29 DNA replication origins, leads to activation of viral DNA replication. In the present study, we have analysed protein p6-DNA complexes formed in vitro along the 19.3 kb phi 29 genome by electron microscopy and micrococcal nuclease digestion, and estimated binding parameters. Under conditions that greatly favour protein-DNA interaction, the saturated phi 29 DNA-protein p6 complex appears as a rigid, rod-like, homogeneous structure. Complex formation was analysed also by a psoralen crosslinking procedure that did not disrupt complexes. The whole phi 29 genome appears, under saturating conditions, as an irregularly spaced array of complexes approximately 200-300 bp long; however, the size of these complexes varies from approximately 2 kb to 130 bp. The minimal size of the complexes, confirmed by micrococcal nuclease digestion, probably reflects a structural requirement for stability. The values obtained for the affinity constant (K(eff) approximately 10(5) M-1) and the cooperativity parameter (omega approximately 100) indicate that the complex is highly dynamic. These results, together with the high abundance of protein p6 in infected cells, lead us to propose that protein p6-DNA complexes could have, at least at some stages, during infection, a structural role in the organization of the phi 29 genome into a nucleoid-type, compact nucleoprotein complex. Images PMID:8306969

  14. In vitro incorporation of the phage Phi29 connector complex

    SciTech Connect

    Fu Chiyu; Prevelige, Peter E.

    2009-11-10

    The incorporation of the DNA packaging connector complex during lambdoid phage assembly in vivo is strictly controlled-one and only one of the twelve identical icosahedral vertices is differentiated by the inclusion of a portal or connector dodecamer. Proposed control mechanisms include obligate nucleation from a connector containing complex, addition of the connector as the final step during assembly, and a connector-mediated increase in the growth rate. The inability to recapitulate connector incorporation in vitro has made it difficult to obtain direct biochemical evidence in support of one model over another. Here we report the development an in vitro assembly system for the well characterized dsDNA phage Phi29 which results in the co-assembly of connector with capsid and scaffolding proteins to form procapsid-like particles (PLPs). Immuno-electron microscopy demonstrates the specific incorporation of connector vertex in PLPs. The connector protein increases both the yield and the rate of capsid assembly suggesting that the incorporation of the connector in Phi29 likely promotes nucleation of assembly.

  15. Characterization of a DNA binding protein of bacteriophage PRD1 involved in DNA replication.

    PubMed Central

    Pakula, T M; Caldentey, J; Serrano, M; Gutierrez, C; Hermoso, J M; Salas, M; Bamford, D H

    1990-01-01

    Escherichia coli phage PRD1 protein P12, involved in PRD1 DNA replication in vivo, has been highly purified from E. coli cells harbouring a gene XII-containing plasmid. Protein P12 binds to single-stranded DNA as shown by gel retardation assays and nuclease protection experiments. Binding of protein P12 to single-stranded DNA increases about 14% the contour length of the DNA as revealed by electron microscopy. Binding to single-stranded DNA seems to be cooperative, and it is not sequence specific. Protein P12 also binds to double-stranded DNA although with an affinity 10 times lower than to single-stranded DNA. Using the in vitro phage phi 29 DNA replication system, it is shown that protein P12 stimulates the overall phi 29 DNA replication. Images PMID:2251117

  16. Entropy-Driven One-Step Formation of Phi29 pRNA 3WJ from Three RNA Fragments

    PubMed Central

    2015-01-01

    The emerging field of RNA nanotechnology necessitates creation of functional RNA nanoparticles but has been limited by particle instability. It has been shown that the three-way junction of bacteriophage phi29 motor pRNA has unusual stability and can self-assemble from three fragments with high efficiency. It is generally believed that RNA and DNA folding is energy landscape-dependent, and the folding of RNA is driven by enthalpy. Here we examine the thermodynamic characteristics of the 3WJ components as 2′-fluoro RNA, DNA, and RNA. It was seen that the three fragments existed either in 3WJ complex or as monomers, with the intermediate of dimers almost undetectable. It seems that the three fragments can lead to the formation of the 3WJ complex efficiently within a rapid time. A low dissociation constant (apparent KD) of 11.4 nM was determined for RNA, inclusion of 2′-F pyrimidines strengthened the KD to 4.5 nM, and substitution of DNA weakened it to 47.7 nM. The ΔG°37, were −36, −28, and −15 kcal/mol for 3WJ2′-F, 3WJRNA, and 3WJDNA, respectively. It is found that the formation of the three-component complex was governed by entropy, instead of enthalpy, as usually found in RNA complexes. PMID:24694349

  17. Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage [psi]29 tail

    SciTech Connect

    Xiang, Ye; Morais, Marc C.; Cohen, Daniel N.; Bowman, Valorie D.; Anderson, Dwight L.; Rossmann, Michael G.

    2009-08-28

    The small bacteriophage {phi}29 must penetrate the {approx}250-{angstrom} thick external peptidoglycan cell wall and cell membrane of the Gram-positive Bacillus subtilis, before ejecting its dsDNA genome through its tail into the bacterial cytoplasm. The tail of bacteriophage {phi}29 is noncontractile and {approx}380 {angstrom} long. A 1.8-{angstrom} resolution crystal structure of gene product 13 (gp13) shows that this tail protein has spatially well separated N- and C-terminal domains, whose structures resemble lysozyme-like enzymes and metallo-endopeptidases, respectively. CryoEM reconstructions of the WT bacteriophage and mutant bacteriophages missing some or most of gp13 shows that this enzyme is located at the distal end of the {phi}29 tail knob. This finding suggests that gp13 functions as a tail-associated, peptidoglycan-degrading enzyme able to cleave both the polysaccharide backbone and peptide cross-links of the peptidoglycan cell wall. Comparisons of the gp13{sup -} mutants with the {phi}29 mature and emptied phage structures suggest the sequence of events that occur during the penetration of the tail through the peptidoglycan layer.

  18. Purification in a functional form of the terminal protein of Bacillus subtilis phage phi 29.

    PubMed Central

    Prieto, I; Lázaro, J M; García, J A; Hermoso, J M; Salas, M

    1984-01-01

    Phage phi 29 terminal protein, p3, essentially pure, was isolated in a denatured form from viral particles, and anti-p3 antiserum was obtained. A radioimmunoassay to detect and quantitate protein p3 was developed. By using this assay, native protein p3 was highly purified from Escherichia coli cells harboring a gene 3-containing recombinant plasmid. After three purification steps, the protein was more than 96% pure; its amino acid composition was very similar to that deduced from the nucleotide sequence of gene 3. The purified protein was active in the formation of the covalent p3-dAMP initiation complex when supplemented with extracts of B. subtilis infected with a sus mutant of phi 29 in gene 3. No DNA polymerase or ATPase activities were present in the final preparation of protein p3. Images PMID:6424120

  19. Global Structure of a Three-Way Junction in a Phi29 Packaging RNA Dimer Determined Using Site-Directed Spin Labeling

    SciTech Connect

    Zhang, Xiaojun; Tung, Chang-Shung; Sowa, Glenna; Hatmal, Ma'mon M.; Haworth, Ian S.; Qin, Peter Z.

    2012-02-08

    The condensation of bacteriophage phi29 genomic DNA into its preformed procapsid requires the DNA packaging motor, which is the strongest known biological motor. The packaging motor is an intricate ring-shaped protein/RNA complex, and its function requires an RNA component called packaging RNA (pRNA). Current structural information on pRNA is limited, which hinders studies of motor function. Here, we used site-directed spin labeling to map the conformation of a pRNA three-way junction that bridges binding sites for the motor ATPase and the procapsid. The studies were carried out on a pRNA dimer, which is the simplest ring-shaped pRNA complex and serves as a functional intermediate during motor assembly. Using a nucleotide-independent labeling scheme, stable nitroxide radicals were attached to eight specific pRNA sites without perturbing RNA folding and dimer formation, and a total of 17 internitroxide distances spanning the three-way junction were measured using Double Electron-Electron Resonance spectroscopy. The measured distances, together with steric chemical constraints, were used to select 3662 viable three-way junction models from a pool of 65 billion. The results reveal a similar conformation among the viable models, with two of the helices (HT and HL) adopting an acute bend. This is in contrast to a recently reported pRNA tetramer crystal structure, in which HT and HL stack onto each other linearly. The studies establish a new method for mapping global structures of complex RNA molecules, and provide information on pRNA conformation that aids investigations of phi29 packaging motor and developments of pRNA-based nanomedicine and nanomaterial.

  20. Global Structure of a Three-Way Junction in a Phi29 Packaging RNA Dimer Determined Using Site-Directed Spin Labeling

    PubMed Central

    Zhang, Xiaojun; Tung, Chang-Shung; Sowa, Glenna Z.; Hatmal, Ma’mon M.; Haworth, Ian S.; Qin, Peter Z.

    2012-01-01

    The condensation of bacteriophage phi29 genomic DNA into its preformed procapsid requires the DNA packaging motor, which is the strongest known biological motor. The packaging motor is an intricate ring-shaped protein/ RNA complex, and its function requires an RNA component called packaging RNA (pRNA). Current structural information on pRNA is limited, which hinders studies of motor function. Here, we used site-directed spin labeling to map the conformation of a pRNA three-way junction that bridges binding sites for the motor ATPase and the procapsid. The studies were carried out on a pRNA dimer, which is the simplest ring-shaped pRNA complex and serves as a functional intermediate during motor assembly. Using a nucleotide-independent labeling scheme, stable nitroxide radicals were attached to eight specific pRNA sites without perturbing RNA folding and dimer formation, and a total of 17 internitroxide distances spanning the three-way junction were measured using Double Electron–Electron Resonance spectroscopy. The measured distances, together with steric chemical constraints, were used to select 3662 viable three-way junction models from a pool of 65 billion. The results reveal a similar conformation among the viable models, with two of the helices (HT and HL) adopting an acute bend. This is in contrast to a recently reported pRNA tetramer crystal structure, in which HT and HL stack onto each other linearly. The studies establish a new method for mapping global structures of complex RNA molecules, and provide information on pRNA conformation that aids investigations of phi29 packaging motor and developments of pRNA-based nanomedicine and nanomaterial. PMID:22229766

  1. DNA-DNA interaction inside bacteriophage modulated by multivalent counterions

    NASA Astrophysics Data System (ADS)

    Nguyen, Toan; Lee, Seil; Le, Tung

    2010-03-01

    The problem of inhibiting viral DNA ejection from bacteriophages by multivalent counterions, especially Mg^+2 counterions, is studied. Experimentally, it is known that MgSO4 salt has a strong and non-monotonic effect on the amount of DNA ejected. There exists an optimal concentration at which the least DNA is ejected from the virus. At lower or higher concentrations, more DNA is ejected from the capsid. We propose that this phenomenon is the result of DNA overcharging by Mg^+2 multivalent counterions. As Mg^+2 concentration increases from zero, DNA net charge changes from negative to positive. The optimal inhibition corresponds to the Mg^+2 concentration where DNA is neutral. At lower/higher concentrations, DNA genome is charged. It prefers to be in solution to lower its electrostatic self-energy, which consequently leads to an increase in DNA ejection. Our theory fits experimental data well. The strength of DNA - DNA short range attraction, mediated by Mg^+2, is found to be - 0.003 kBT per nucleotide base. Results from expanded ensemble Monte-Carlo simulation of hexagonal DNA bundles are discussed and are shown to be in good agreement with theoretical results.

  2. Identification of the sequences recognized by phage phi 29 transcriptional activator: possible interaction between the activator and the RNA polymerase.

    PubMed

    Nuez, B; Rojo, F; Barthelemy, I; Salas, M

    1991-05-11

    Expression of Bacillus subtilis phage phi 29 late genes requires the transcriptional activator protein p4. This activator binds to a region of the late A3 promoter spanning nucleotides -56 to -102 relative to the transcription start site, generating a strong bending Tin the DNA. In this work the target sequences recognized by protein p4 in the phage phi 29 late A3 promoter have been characterized. The binding of protein p4 to derivatives of the late A3 promoter harbouring deletions in the protein p4 binding site has been studied. When protein p4 recognition sequences were altered, the activator could only bind to the promoter in the presence of RNA polymerase. This strong cooperativity in the binding of protein p4 and RNA polymerase to the promoter suggests the presence of direct protein-protein contacts between them.

  3. Derivation of a restriction map of bacteriophage T3 DNA and comparison with the map of bacteriophage T7 DNA.

    PubMed Central

    Bailey, J N; Dembinski, D R; McAllister, W T

    1980-01-01

    The DNA of bacteriophage T3 was characterized by cleavage with seven restriction endonucleases. AvaI, XbaI, BglII, and HindIII each cut T3 DNA at 1 site, KpnI cleaved it at 2 sites, MboI cleaved it at 9 sites, and HpaI cleaved it at 17 sites. The sizes of the fragments produced by digestion with these enzymes were determined by using restriction fragments of T7 DNA as molecular weight standards. As a result of this analysis, the size of T3 DNA was estimated to be 38.74 kilobases. The fragments were ordered with respect to each other and to the genetic map to produce a restriction map of T3 DNA. The location and occurrence of the restriction sites in T3 DNA are compared with those in the DNA of the closely related bacteriophage T7. Images PMID:6251266

  4. Assembly of Multifunctional Phi29 pRNA Nanoparticles for Specific Delivery of SiRNA and other Therapeutics to Targeted Cells

    PubMed Central

    Shu, Yi; Cinier, Mathieu; Shu, Dan; Guo, Peixuan

    2011-01-01

    Recent advances in RNA nanotechnology have led to the emergence of a new field and brought vitality to the area of therapeutics (Guo P, The Emerging Field of RNA Nanotechnology, Nature Nanotechnology, 2010). Due to the complementary nature of the four nucleotides and its special catalytic activity, RNA can be manipulated with simplicity characteristic of DNA, while possessing versatile structure and diverse function similar to proteins. Loops and tertiary architecture serve as mounting dovetails or wedges to eliminate external linking dowels. Unique features in transcription, termination, self-assembly, self-processing, and acid-resistance enable in vivo production of nanoparticles harboring aptamer, siRNA, ribozyme, riboswitch, or other regulators for therapy, detection, regulation, and intracellular computation. The unique property of noncanonical base-pairing and stacking enables RNA to fold into well-defined structures for constructing nanoparticles with special functionalities. Bacteriophage phi29 DNA packaging motor is geared by a ring consisting of six packaging RNA (pRNA) molecules. pRNA is able to form a multimeric complex via the interaction of two reengineered interlocking loops. This unique feature makes it an ideal polyvalent vehicle for nanomachine fabrication, pathogen detection, and delivery of siRNA or other therapeutics. This review describes methods in using pRNA as a building block for the construction of RNA dimers, trimers and hexamers as nanoparticles in medical applications. Methods for industrial-scale production of large and stable RNA nanoparticles will be introduced. The unique favorable PK (pharmokinetics) profile with a half life (T1/2) of 5–10 hours comparing to 0.25 of conventional 2′-F siRNA, and advantageous in vivo features such as non-toxicity, non-induction of interferons or non-stimulating of cytokine response in animals will also be reviewed. PMID:21320601

  5. Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells.

    PubMed

    Shu, Yi; Cinier, Mathieu; Shu, Dan; Guo, Peixuan

    2011-06-01

    Recent advances in RNA nanotechnology have led to the emergence of a new field and brought vitality to the area of therapeutics [P. Guo, The emerging field of RNA nanotechnology, Nat. Nanotechnol., 2010]. Due to the complementary nature of the four nucleotides and its special catalytic activity, RNA can be manipulated with simplicity characteristic of DNA, while possessing versatile structure and diverse function similar to proteins. Loops and tertiary architecture serve as mounting dovetails or wedges to eliminate external linking dowels. Unique features in transcription, termination, self-assembly, self-processing, and acid-resistance enable in vivo production of nanoparticles harboring aptamer, siRNA, ribozyme, riboswitch, or other regulators for therapy, detection, regulation, and intracellular computation. The unique property of noncanonical base-pairing and stacking enables RNA to fold into well-defined structures for constructing nanoparticles with special functionalities. Bacteriophage phi29 DNA packaging motor is geared by a ring consisting of six packaging RNA (pRNA) molecules. pRNA is able to form a multimeric complex via the interaction of two reengineered interlocking loops. This unique feature makes it an ideal polyvalent vehicle for nanomachine fabrication, pathogen detection, and delivery of siRNA or other therapeutics. This review describes methods in using pRNA as a building block for the construction of RNA dimers, trimers, and hexamers as nanoparticles in medical applications. Methods for industrial-scale production of large and stable RNA nanoparticles will be introduced. The unique favorable PK (pharmacokinetics) profile with a half life (T(1/2)) of 5-10h comparing to 0.25 of conventional 2'-F siRNA, and advantageous in vivo features such as non-toxicity, non-induction of interferons or non-stimulating of cytokine response in animals will also be reviewed.

  6. Natural mummification of the human gut preserves bacteriophage DNA.

    PubMed

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Dowd, Scot E; Toranzos, Gary A; Marota, Isolina; Cano, Raul J

    2016-01-01

    The natural mummification process of the human gut represents a unique opportunity to study the resulting microbial community structure and composition. While results are providing insights into the preservation of bacteria, fungi, pathogenic eukaryotes and eukaryotic viruses, no studies have demonstrated that the process of natural mummification also results in the preservation of bacteriophage DNA. We characterized the gut microbiome of three pre-Columbian Andean mummies, namely FI3, FI9 and FI12, and found sequences homologous to viruses. From the sequences attributable to viruses, 50.4% (mummy FI3), 1.0% (mummy FI9) and 84.4% (mummy FI12) were homologous to bacteriophages. Sequences corresponding to the Siphoviridae, Myoviridae, Podoviridae and Microviridae families were identified. Predicted putative bacterial hosts corresponded mainly to the Firmicutes and Proteobacteria, and included Bacillus, Staphylococcus, Clostridium, Escherichia, Vibrio, Klebsiella, Pseudomonas and Yersinia. Predicted functional categories associated with bacteriophages showed a representation of structural, replication, integration and entry and lysis genes. The present study suggests that the natural mummification of the human gut results in the preservation of bacteriophage DNA, representing an opportunity to elucidate the ancient phageome and to hypothesize possible mechanisms of preservation.

  7. Capstan Friction Model for DNA Ejection from Bacteriophages

    NASA Astrophysics Data System (ADS)

    Ghosal, Sandip

    2012-12-01

    Bacteriophages infect cells by attaching to the outer membrane and injecting their DNA into the cell. The phage DNA is then transcribed by the cell’s transcription machinery. A number of physical mechanisms by which DNA can be translocated from the phage capsid into the cell have been identified. A fast ejection driven by the elastic and electrostatic potential energy of the compacted DNA within the viral capsid appears to be used by most phages, at least to initiate infection. In recent in vitro experiments, the speed of DNA translocation from a λ phage capsid has been measured as a function of ejected length over the entire duration of the event. Here, a mechanical model is proposed that is able to explain the observed dependence of exit velocity on ejected length, and that is also consistent with the accepted picture of the geometric arrangement of DNA within the viral capsid.

  8. REDOR NMR Characterization of DNA Packaging in Bacteriophage T4

    PubMed Central

    Yu, Tsyr-Yan; Schaefer, Jacob

    2008-01-01

    Bacteriophage T4 is a large-tailed E. coli virus whose capsid is 120 × 86 nm. ATP-driven DNA packaging of the T4 capsid results in the loading of a 171-kb genome in less than 5 minutes during viral infection. We have isolated 50-mg quantities of uniform 15N and [ε-15N]lysine-labeled bacteriophage T4. We have also introduced 15NH4+ into filled, unlabeled capsids from synthetic medium by exchange. We have examined lyo- and cryoprotected lyophilized T4 using 15N{31P} and 31P{15N} rotational-echo double resonance. The results of these experiments have shown that: (i) packaged DNA is in an unperturbed duplex B-form conformation; (ii) the DNA phosphate negative charge is balanced by lysyl amines (3.2%), polyamines (5.8%), and monovalent cations (40%); and (iii) 11% of lysyl amines, 40% of –NH2 groups of polyamines, and 80% of monovalent cations within the lyophilized T4 capsid, are involved in the DNA charge balance. The NMR evidence suggests that DNA enters the T4 capsid in a charge-unbalanced state. We propose that electrostatic interactions may provide free energy to supplement the nanomotor-driven T4 DNA packaging. PMID:18703073

  9. Requirement for an A-tract structure at the binding site of phage phi 29 transcriptional activator.

    PubMed

    Nuez, B; Rojo, F; Salas, M

    1994-03-25

    The Bacillus subtilis phage phi 29 transcriptional activator, protein p4, binds to the 5'-AACT-TTTT-15 base-pair spacer-AAAATGTT-3' inverted repeat. In this communication, we study the influence in protein p4 binding of the DNA helical structure within the protein p4 recognition sequences, 5'-AAAATAG-3'. Protein p4 could efficiently bind to a modified target in which the A-tracts had been changed into T-tracts (a different sequence with a similar structure). Binding was lost when the structure of the binding site was modified by an interrupting C residue. The results suggest that the DNA helical structure of the A-tracts is critical for p4 binding. Two models are described that would explain how protein p4 recognized its target sequences on the DNA.

  10. Inhibition of DNA ejection from bacteriophage by Mg+2 counterions

    NASA Astrophysics Data System (ADS)

    Lee, Sell; Tran, C. V.; Nguyen, T. T.

    2011-03-01

    The problem of inhibiting viral DNA ejection from bacteriophages by multivalent counterions, specifically Mg+2 counterions, is studied. Experimentally, it is known that MgSO4 salt has a strong and nonmonotonic effect on the amount of DNA ejected. There exists an optimal concentration at which the minimum amount of DNA is ejected from the virus. At lower or higher concentrations, more DNA is ejected from the capsid. We propose that this phenomenon is the result of DNA overcharging by Mg+2 multivalent counterions. As Mg+2 concentration increases from zero, the net charge of DNA changes from negative to positive. The optimal inhibition corresponds to the Mg+2 concentration where DNA is neutral. At lower/higher concentrations, DNA genome is charged. It prefers to be in solution to lower its electrostatic self-energy, which consequently leads to an increase in DNA ejection. By fitting our theory to available experimental data, the strength of DNA-DNA short range attraction energies, mediated by Mg+2, is found to be -0.004 kBT per nucleotide base. This and other fitted parameters agree well with known values from other experiments and computer simulations. The parameters are also in agreement qualitatively with values for tri- and tetravalent counterions.

  11. Inhibition of DNA ejection from bacteriophage by Mg^+2 counterions

    NASA Astrophysics Data System (ADS)

    Lee, Seil; Tran, Cathy V.; Nguyen, Toan T.

    2009-03-01

    The problem of inhibiting viral DNA ejection from bacteriophages by multivalent counterions, especially Mg^+2 counterions, is studied. Experimentally, it is known that MgSO4 salt has a strong and non-monotonic effect on the amount of DNA ejected. There exists an optimal concentration at which the least DNA is ejected from the virus. At lower or higher concentrations, more DNA is ejected from the capsid. We propose that this phenomenon is the result of DNA overcharging by Mg^+2 multivalent counterions. As Mg^+2 concentration increases from zero, DNA net charge changes from negative to positive. The optimal inhibition corresponds to the Mg^+2 concentration where DNA is neutral. At lower/higher concentrations, DNA genome is charged. It prefers to be in solution to lower its electrostatic self-energy, which consequently leads to an increase in DNA ejection. Our theory fits experimental data well. The strength of DNA-DNA short range attraction, mediated by Mg^+2, is found to be -0.003 kBT per nucleotide base.

  12. Transcriptional mapping of the bacteriophage Mu DNA.

    PubMed

    Barron, C; Bade, E G

    1988-02-01

    The transcription of temperate phage Mu throughout lytic development was analysed quantitatively by hybridization of pulse-labelled RNA to full-length Mu DNA and to plasmids that define Mu DNA segments covering the whole phage genome. The transcription rate (i.e. binding data corrected for the incorporation rate of the radioactive precursor, for the size of the DNA template, and for the number of phage genomes present in the bacterium at the time of analysis) revealed three defined phases of Mu transcription: early (0 to 9 min), intermediate (between 9 and the interval 14 to 17 min) and late (from the interval 14 to 17 min onward). The analysis also revealed that the region comprising the genes involved in phage morphogenesis was organized into two independent 'late' transcription units.

  13. Making Bacteriophage DNA into a Movie for Panspermia

    NASA Astrophysics Data System (ADS)

    Norris, Victor; Grondin, Yohann

    2011-12-01

    To satisfy the urge to communicate with another species, distant from our own in space or time, we explore the advantages of using the nucleic acid within a bacteriophage to encode a message and suggest how this might be achieved. We list some of the technical difficulties that need to be overcome and describe some of the advantages as a message-bearing medium that phage such as T5 possess. These advantages include those of stability in certain environments and DNA packed in a regular way within the capsid. We raise questions that would need to be answered and that would require close collaborations across the disciplines.

  14. Length quantization of DNA partially expelled from heads of a bacteriophage T3 mutant

    SciTech Connect

    Serwer, Philip; Wright, Elena T.; Liu, Zheng; Jiang, Wen

    2014-05-15

    DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNA missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. - Graphical abstract: Highlights: • We implement directed evolution- and DNA-sequencing-based phage assembly genetics. • We purify stable, mutant phage heads with a partially leaked mature DNA molecule. • Native gels and DNase-protection show leaked DNA segments to have quantized lengths. • Native gels after DNase I-removal of leaked DNA reveal the capsids to vary in radius. • Thus, we hypothesize leaked DNA quantization via variably quantized capsid radius.

  15. Choreography of bacteriophage T7 DNA replication.

    PubMed

    Lee, Seung-Joo; Richardson, Charles C

    2011-10-01

    The replication system of phage T7 provides a model for DNA replication. Biochemical, structural, and single-molecule analyses together provide insight into replisome mechanics. A complex of polymerase, a processivity factor, and helicase mediates leading strand synthesis. Establishment of the complex requires an interaction of the C-terminal tail of the helicase with the polymerase. During synthesis the complex is stabilized by other interactions to provide for a processivity of 5 kilobase (kb). The C-terminal tail also interacts with a distinct region of the polymerase to captures dissociating polymerase to increase the processivity to >17kb. The lagging strand is synthesized discontinuously within a loop that forms and resolves during each cycle of Okazaki fragment synthesis. The synthesis of a primer as well as the termination of a fragment signal loop resolution.

  16. DNA damage under simulated extraterrestrial conditions in bacteriophage T7

    NASA Astrophysics Data System (ADS)

    Fekete, A.; Kovács, G.; Hegedüs, M.; Módos, K.; Rontó, Gy.; Lammer, H.; Panitz, C.

    The experiment ``Phage and uracil response'' (PUR) will be accommodated in the EXPOSE facility of the ISS aiming to examine and quantify the effect of specific space conditions on bacteriophage T7 and isolated T7 DNA thin films. To achieve this new method was elaborated for the preparation of DNA and nucleoprotein thin films (1). During the EXPOSE Experiment Verification Tests (EVT) the samples were exposed to vacuum (10 -6 Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated, and we also studied the effect of temperature in vacuum as well as the influence of temperature fluctuations. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, DNA-DNA cross-links) accumulate throughout exposure. DNA damage was determined by quantitative PCR using 555 bp and 3826 bp fragments of T7 DNA (2) and by neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of the PCR products have been detected indicating the damage of isolated and intraphage DNA. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target. Fekete et al. J. Luminescence 102-103, 469-475, 2003 Hegedüs et al. Photochem. Photobiol. 78, 213-219, 2003

  17. Transfection of Lactobacillus bulgaricus protoplasts by bacteriophage DNA.

    PubMed

    Boizet, B; Flickinger, J L; Chassy, B M

    1988-12-01

    A protoplast transfection system has been developed for Lactobacillus bulgaricus. The procedure involves a polyethylene glycol-mediated fusion of bacteriophage DNA encapsulated in liposomes into mutanolysin-treated cells. With L. bulgaricus B004 and DNA isolated from the phage phi c5004, transfection reached a maximum when at least 95% of the cells were osmotically fragile. The incorporation of phage DNA into liposomes was essential; no transfectants were detected in the absence of liposomes. The largest number of transfectants was observed after longer periods (20 min) of fusion of mutanolysin-treated cells and liposomes with polyethylene glycol. The maximum efficiency of 5 x 10(7) PFU/microgram of DNA was reached after a 24-h incubation in growth media prior to plating transfected cells in an agar overlay to detect the appearance of plaques. A minimum of 4 h of incubation in growth medium after fusion was required to detect the production and release of virions. The possibility that the high frequencies observed were due to bursting of transfected cells and subsequent infection of additional cells was found not to be a factor. The number of transfectants observed was directly proportional to the quantity of DNA added. These results define conditions appropriate for the introduction of DNA into L. bulgaricus.

  18. Length Quantization of DNA Partially Expelled from Heads of a Bacteriophage T3 Mutant

    PubMed Central

    Serwer, Philip; Wright, Elena T.; Liu, Zheng; Jiang, Wen

    2014-01-01

    DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNA missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. PMID:24889235

  19. Stability and in vitro DNA packaging of bacteriophages: effects of dextrans, sugars, and polyols

    SciTech Connect

    Serwer, P.; Masker, W.E.; Allen, J.L.

    1983-02-01

    Attempts were made to increase the efficiency of infectious particle formation during the in vitro assembly of bacteriophage T7 from procapsids and DNA. It was found that dextrans and some smaller, related compounds (sucrose and sorbitol) increase this efficiency by a factor of 8 to 50. Dextrans also inhibited elevated temperature-induced emptying of DNA from bacteriophages T7, P22, and T4, suggesting that the stimulation of assembly is caused, at least in part, by the stabilization of packaged DNA in capsids. The data indicated that the sugars and polyols can slow DNA emptying from bacteriophages at elevated temperature whether they permeate the bacteriophage capsid or not. In contrast, the data suggested that permeation of some particle, probably a capsid, results in inhibition of in vitro T7 assembly.

  20. Double-stranded DNA organization in bacteriophage heads: An alternative toroid-based model

    SciTech Connect

    Hud, N.V.

    1995-10-01

    Studies of the organization of double-stranded DNA within bacteriophage heads during the past four decades have produced a wealth of data. However, despite the presentation of numerous models, the true organization of DNA within phage heads remains unresolved. The observations of toroidal DNA structures in electron micrographs of phage lysates have long been cited as support for the organization of DNA in a spool-like fashion. This particular model, like all other models, has not been found to be consistent with all available data. Recently, the authors proposed that DNA within toroidal condensates produced in vitro is organized in a manner significantly different from that suggested by the spool model. This new toroid model has allowed the development of an alternative model for DNA organization within bacteriophage heads that is consistent with a wide range of biophysical data. Here the authors propose that bacteriophage DNA is packaged in a toroid that is folded into a highly compact structure.

  1. Single molecule studies of DNA packaging by bacteriophages

    NASA Astrophysics Data System (ADS)

    Fuller, Derek Nathan

    The DNA packaging dynamics of bacteriophages φ29, gamma, and T4 were studied at the single molecule level using a dual trap optical tweezers. Also, a method for producing long DNA molecules by PCR for optical tweezers studies of protein DNA interactions is presented and thoroughly characterized. This DNA preparation technique provided DNA samples for the φ29 and T4 studies. In the studies of φ29, the role of charge was investigated by varying the ionic conditions of the packaging buffer. Ionic conditions in which the DNA charge was highly screened due to divalent and trivalent cations showed the lowest resistance to packaging of the DNA to high density. This confirmed the importance of counterions in shielding the DNA interstrand repulsion when packaged to high density. While the ionic nature of the packaging buffer had a strong effect on packaging velocities, there was no clear trend between the counterion-screened charge of the DNA and the maximum packaging velocity. The packaging studies of lambda and T4 served as systems for comparative studies with φ29. Each system showed similarities to the φ29 system and unique differences. Both the lambda and T4 packaging motors were capable of generating forces in excess of 50 pN and showed remarkably high processivity, similar to φ29. However, dynamic structural transitions were observed with lambda that are not observed with φ29. The packaging of the lambda genome showed capsid expansion at approximately 30 percent of the genome packaged and capsid rupture at 90 percent of the genome packaged in the absence of capsid stabilizing protein gpD. Unique to the T4 packaging motor, packaging dynamics showed a remarkable amount of variability in velocities. This variability was seen both within individual packaging phages and from one phage to the next. This is possibly due to different conformational states of the packaging machinery. Additionally, lambda and T4 had average packaging velocities under minimal load of 600

  2. Novel DNA packaging recognition in the unusual bacteriophage N15

    SciTech Connect

    Feiss, Michael; Geyer, Henriette; Klingberg, Franco; Moreno, Norma; Forystek, Amanda; Maluf, Nasib Karl; Sippy, Jean

    2015-08-15

    Phage lambda's cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos{sup N15}) is closely related to cos{sup λ}, but whereas the cosB{sup N15} subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB{sup λ}. A bioinformatic study of N15-like phages indicates that cosB{sup N15} also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15 plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approximately 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB–λ. The DNA binding domain of TerS-N15 is a dimer. - Highlights: • There are two classes of DNA packaging signals in N15-related phages. • Phage N15's TerS binding site: a critical site and a possible remote accessory site. • Viral DNA recognition signals by the λ-like bacteriophages: the odd case of N15.

  3. Visualization of Bacteriophage T3 Capsids with DNA Incompletely Packaged In Vivo

    PubMed Central

    Fang, Ping-An; Wright, Elena T.; Weintraub, Susan T.; Hakala, Kevin; Wu, Weimin; Serwer, Philip; Jiang, Wen

    2009-01-01

    The tightly packaged dsDNA genome in the mature particles of many tailed bacteriophages has been shown to form multiple concentric rings when reconstructed from cryo-electron micrographs. However, recent single-particle DNA packaging force measurements have suggested that incompletely packaged DNA (ipDNA) is less ordered when it is shorter than ∼25% of the full genome length. The study presented here initially achieves both the isolation and the ipDNA length-based fractionation of ipDNA-containing T3 phage capsids (ipDNA-capsids) produced by DNA packaging in vivo; some ipDNA has quantized lengths, as judged by high-resolution gel electrophoresis of expelled DNA. This is the first isolation of such particles among the tailed dsDNA bacteriophages. The ipDNA-capsids are a minor component (containing ∼10-4 of packaged DNA in all particles) and are initially detected by non-denaturing gel electrophoresis after partial purification by buoyant density centrifugation. The primary contaminants are aggregates of phage particles and empty capsids. This study then investigates ipDNA conformations by the first cryo-electron microscopy (cryo-EM) of ipDNA-capsids produced in vivo. The 3-D structures of DNA-free capsids, ipDNA-capsids with various lengths of ipDNA, and mature bacteriophage are reconstructed, which reveals the typical T=7l icosahedral shell of many tailed dsDNA bacteriophages. Though the icosahedral shell structures of these capsids are indistinguishable at the current resolution for the protein shell (∼15 Å), the conformations of the DNA inside the shell are drastically different. T3 ipDNA-capsids with 10.6 kb or shorter dsDNA (<28% of total genome) have an ipDNA conformation indistinguishable from random. However, T3 ipDNA-capsids with 22 kb DNA (58% of total genome) forms a single DNA ring next to the inner surface of the capsid shell. In contrast, dsDNA fully packaged (38.2 kb) in mature T3 phage particles forms multiple concentric rings like those seen

  4. Incorporation of viral DNA packaging motor channel in lipid bilayers for real-time, single-molecule sensing of chemicals and double-stranded DNA

    PubMed Central

    Haque, Farzin; Geng, Jia; Montemagno, Carlo; Guo, Peixuan

    2013-01-01

    Over the past decade, nanopores have rapidly emerged as stochastic biosensors. This protocol describes the cloning, expression, and purification of the channel of bacteriophage phi29 DNA packaging nanomotor and its subsequent incorporation into lipid membranes for single-pore sensing of dsDNA and chemicals. The membrane-embedded phi29 nanochannels remain functional and structurally intact under a range of conditions. When ions and macromolecules translocate through these nanochannels, reliable fingerprint changes in conductance are observed. Compared with other well studied biological pores, the phi29 nanochannel has a larger cross-sectional area, which enables the translocation of dsDNA. Furthermore, specific amino acids can be introduced by site-directed mutagenesis within the large cavity of the channel to conjugate receptors that are able to bind specific ligands or analytes for desired applications. The lipid membrane embedded nanochannel system has immense potential nanotechnological and biomedical applications in bioreactors, environmental sensing, drug monitoring, controlled drug delivery, early disease diagnosis, and high-throughput DNA sequencing. The total time required for completing one round of this protocol is around one month. PMID:23348364

  5. Magic-angle spinning NMR of intact bacteriophages: insights into the capsid, DNA and their interface.

    PubMed

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  6. Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface

    NASA Astrophysics Data System (ADS)

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  7. Different responses to Spo0A-mediated suppression of the related Bacillus subtilis phages Nf and phi29.

    PubMed

    Castilla-Llorente, Virginia; Salas, Margarita; Meijer, Wilfried J J

    2009-05-01

    The phi29 family of phages is divided in three groups. Members of groups 1 and 2 infect the spore-forming bacterium Bacillus subtilis. Previous studies showed that group 1 phage phi29 adapts its infection strategy to the physiological state of the host. Thus, the lytic cycle of phi29 is suppressed when cells are infected during the early stages of sporulation and the infecting genome becomes trapped into the spore. A major element of this adaptive strategy is a very sensitive response to the host-encoded Spo0A protein, the key regulator for sporulation activation, which is directly responsible for suppression of phi29 development. Here we analysed if this adaptation is conserved in phage Nf belonging to group 2. The results obtained show that although Nf also possesses the alternative infection strategy, it is clearly less sensitive to Spo0A-mediated suppression than phi29. Sequence determination of the Nf genome revealed striking differences in the number of Spo0A binding site sequences. The results provide evidence that the life style of two highly related phages is distinctly tuned by differences in binding sites for a host-encoded regulatory protein, being a good example of how viruses have evolved to optimally exploit features of their host.

  8. Antibiotic resistance genes in the bacteriophage DNA fraction of human fecal samples.

    PubMed

    Quirós, Pablo; Colomer-Lluch, Marta; Martínez-Castillo, Alexandre; Miró, Elisenda; Argente, Marc; Jofre, Juan; Navarro, Ferran; Muniesa, Maite

    2014-01-01

    A group of antibiotic resistance genes (ARGs) (blaTEM, blaCTX-M-1, mecA, armA, qnrA, and qnrS) were analyzed by real-time quantitative PCR (qPCR) in bacteriophage DNA isolated from feces from 80 healthy humans. Seventy-seven percent of the samples were positive in phage DNA for one or more ARGs. blaTEM, qnrA, and, blaCTX-M-1 were the most abundant, and armA, qnrS, and mecA were less prevalent. Free bacteriophages carrying ARGs may contribute to the mobilization of ARGs in intra- and extraintestinal environments.

  9. DNA analysis of temperate bacteriophage Aa(phi)23 isolated from actinobacillus actinomycetemcomitans.

    PubMed

    Willi, K; Meyer, J

    1998-05-01

    The DNA of the temperate bacteriophage Aaphi23 isolated from the oral bacterium Actinobacillus actinomycetemcomitans was examined structurally both in the phage head and in the prophage. The DNA in phage particles comprises 44 kb linear molecules with a terminal redundancy of 1.6 kb, which represent circular permutations. Thus, DNA is packaged into phage heads by the headful mechanism. The Aaphi23 prophage is integrated into the host chromosome.

  10. Purification in an active form of the phage phi 29 protein p4 that controls the viral late transcription.

    PubMed Central

    Barthelemy, I; Lázaro, J M; Méndez, E; Mellado, R P; Salas, M

    1987-01-01

    The phage phi 29 protein p4, that controls viral late transcription, was highly purified from Escherichia coli cells harbouring a gene 4-containing plasmid. This protein, representing about 6% of the total cellular protein, was obtained in a highly purified form. The protein was characterized as p4 by amino acid analysis and NH2-terminal sequence determination. The purified protein was active in an in vitro transcription assay, allowing specific initiation of transcription at the phi 29 A3 late promoter in the presence of Bacillus subtilis sigma 43-RNA polymerase holoenzyme. Images PMID:3671066

  11. Cloned bacteriophage phi X174 DNA sequence interferes with synthesis of the complementary strand of infecting bacteriophage phi X174.

    PubMed Central

    van der Avoort, H G; van Arkel, G A; Weisbeek, P J

    1982-01-01

    The insertion of a particular phi X DNA sequence in the plasmid pACYC177 strongly decreased the capacity of Escherichia coli cells containing such a plasmid to propagate bacteriophage phi X174. The smallest DNA sequence tested that showed the effect was the HindII fragment R4. This fragment does not code for a complete protein. It contains the sequence specifying the C-terminal part of the gene H protein and the N-terminal part of the gene A protein, as well as the noncoding region between these genes. Analysis of cells that contain plasmids with the "reduction sequence" showed that (i) the adsorption of the phages to the host cells is normal, (ii) in a single infection cycle much less phage is formed, (iii) only 10% of the infecting viral single-stranded DNA is converted to double-stranded replicative-form DNA, and (iv) less progeny replicative form DNA is synthesized. The reduction process is phi X174 specific, since the growth of the related G4 and St-1 phages was not affected in these cells. The effect of the recombinant plasmids on infecting phage DNA shows similarity to the process of superinfection exclusion. Images PMID:6211550

  12. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses

    PubMed Central

    Koonin, Eugene V; Krupovic, Mart; Yutin, Natalya

    2015-01-01

    Diverse eukaryotes including animals and protists are hosts to a broad variety of viruses with double-stranded (ds) DNA genomes, from the largest known viruses, such as pandoraviruses and mimiviruses, to tiny polyomaviruses. Recent comparative genomic analyses have revealed many evolutionary connections between dsDNA viruses of eukaryotes, bacteriophages, transposable elements, and linear DNA plasmids. These findings provide an evolutionary scenario that derives several major groups of eukaryotic dsDNA viruses, including the proposed order “Megavirales,” adenoviruses, and virophages from a group of large virus-like transposons known as Polintons (Mavericks). The Polintons have been recently shown to encode two capsid proteins, suggesting that these elements lead a dual lifestyle with both a transposon and a viral phase and should perhaps more appropriately be named polintoviruses. Here, we describe the recently identified evolutionary relationships between bacteriophages of the family Tectiviridae, polintoviruses, adenoviruses, virophages, large and giant DNA viruses of eukaryotes of the proposed order “Megavirales,” and linear mitochondrial and cytoplasmic plasmids. We outline an evolutionary scenario under which the polintoviruses were the first group of eukaryotic dsDNA viruses that evolved from bacteriophages and became the ancestors of most large DNA viruses of eukaryotes and a variety of other selfish elements. Distinct lines of origin are detectable only for herpesviruses (from a different bacteriophage root) and polyoma/papillomaviruses (from single-stranded DNA viruses and ultimately from plasmids). Phylogenomic analysis of giant viruses provides compelling evidence of their independent origins from smaller members of the putative order “Megavirales,” refuting the speculations on the evolution of these viruses from an extinct fourth domain of cellular life. PMID:25727355

  13. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses.

    PubMed

    Koonin, Eugene V; Krupovic, Mart; Yutin, Natalya

    2015-04-01

    Diverse eukaryotes including animals and protists are hosts to a broad variety of viruses with double-stranded (ds) DNA genomes, from the largest known viruses, such as pandoraviruses and mimiviruses, to tiny polyomaviruses. Recent comparative genomic analyses have revealed many evolutionary connections between dsDNA viruses of eukaryotes, bacteriophages, transposable elements, and linear DNA plasmids. These findings provide an evolutionary scenario that derives several major groups of eukaryotic dsDNA viruses, including the proposed order "Megavirales," adenoviruses, and virophages from a group of large virus-like transposons known as Polintons (Mavericks). The Polintons have been recently shown to encode two capsid proteins, suggesting that these elements lead a dual lifestyle with both a transposon and a viral phase and should perhaps more appropriately be named polintoviruses. Here, we describe the recently identified evolutionary relationships between bacteriophages of the family Tectiviridae, polintoviruses, adenoviruses, virophages, large and giant DNA viruses of eukaryotes of the proposed order "Megavirales," and linear mitochondrial and cytoplasmic plasmids. We outline an evolutionary scenario under which the polintoviruses were the first group of eukaryotic dsDNA viruses that evolved from bacteriophages and became the ancestors of most large DNA viruses of eukaryotes and a variety of other selfish elements. Distinct lines of origin are detectable only for herpesviruses (from a different bacteriophage root) and polyoma/papillomaviruses (from single-stranded DNA viruses and ultimately from plasmids). Phylogenomic analysis of giant viruses provides compelling evidence of their independent origins from smaller members of the putative order "Megavirales," refuting the speculations on the evolution of these viruses from an extinct fourth domain of cellular life.

  14. Single-event analysis of the packaging of bacteriophage T7 DNA concatemers in vitro.

    PubMed

    Sun, M; Louie, D; Serwer, P

    1999-09-01

    Bacteriophage T7 packages its double-stranded DNA genome in a preformed protein capsid (procapsid). The DNA substrate for packaging is a head-to-tail multimer (concatemer) of the mature 40-kilobase pair genome. Mature genomes are cleaved from the concatemer during packaging. In the present study, fluorescence microscopy is used to observe T7 concatemeric DNA packaging at the level of a single (microscopic) event. Metabolism-dependent cleavage to form several fragments is observed when T7 concatemers are incubated in an extract of T7-infected Escherichia coli (in vitro). The following observations indicate that the fragment-producing metabolic event is DNA packaging: 1) most fragments have the hydrodynamic radius (R(H)) of bacteriophage particles (+/-3%) when R(H) is determined by analysis of Brownian motion; 2) the fragments also have the fluorescence intensity (I) of bacteriophage particles (+/-6%); 3) as a fragment forms, a progressive decrease occurs in both R(H) and I. The decrease in I follows a pattern expected for intracapsid steric restriction of 4',6-diamidino-2-phenylindole (DAPI) binding to packaged DNA. The observed in vitro packaging of a concatemer's genomes always occurs in a synchronized cluster. Therefore, the following hypothesis is proposed: the observed packaging of concatemer-associated T7 genomes is cooperative.

  15. A bacteriophage T4 in vitro system to clone long DNA molecules. Final report, June 1, 1990--January 31, 1996

    SciTech Connect

    Rao, V.B.

    1997-09-01

    A summary is presented of the following objectives: development of a bacteriophage T4 in vitro system, and techniques to clone long segments of foreign DNA; development of a giant prohead DNA packaging system that could potentially be used to clone even a megabase size DNA; and development of techniques to rapidly map the cloned DNA inserts.

  16. [Bacteriophage lambda DNA replication--new discoveries made using an old experimental model].

    PubMed

    Wegrzyn, Grzegorz; Wegrzyn, Alicja

    2006-01-01

    Bacteriophage lamda is a model in molecular biology studies since over fifty years. Nevertheless, studies of recent years (similarly to previous time periods) resulted in many new experimental results which not only expanded our knowledge on molecular mechanisms of functions of this virus, but also shed new light on general rules of the transduction and transfer of genetic information. In this review, we present recent achievements of studies on mechanisms of regulation of bacteriophage lamda DNA replication. Between others, these studies led to determination of the composition of lamda inherited replication complex, indication of the biological role of rapid degradation of free lamda omicron protein, description of the proposal of regulation of the switch from early (theta) to late (sigma) lamda DNA replication mode, elucidation of the mechanism of transcription regulation by a replication protein DnaA and demonstration of the activity of transcription stimulator by another replication regulator--the SeqA protein. These results may be important to better understand regulation of DNA replication of not only bacteriophage lamda but also other organisms.

  17. The role of template superhelicity in the initiation of bacteriophage lambda DNA replication.

    PubMed Central

    Alfano, C; McMacken, R

    1988-01-01

    The prepriming steps in the initiation of bacteriophage lambda DNA replication depend on the action of the lambda O and P proteins and on the DnaB helicase, single-stranded DNA binding protein (SSB), and DnaJ and DnaK heat shock proteins of the E. coli host. The binding of multiple copies of the lambda O protein to the phage replication origin (ori lambda) initiates the ordered assembly of a series of nucleoprotein structures that form at ori lambda prior to DNA unwinding, priming and DNA synthesis steps. Since the initiation of lambda DNA replication is known to occur only on supercoiled templates in vivo and in vitro, we examined how the early steps in lambda DNA replication are influenced by superhelical tension. All initiation complexes formed prior to helicase-mediated DNA-unwinding form with high efficiency on relaxed ori lambda DNA. Nonetheless, the DNA templates in these structures must be negatively supertwisted before they can be replicated. Once DNA helicase unwinding is initiated at ori lambda, however, later steps in lambda DNA replication proceed efficiently in the absence of superhelical tension. We conclude that supercoiling is required during the initiation of lambda DNA replication to facilitate entry of a DNA helicase, presumably the DnaB protein, between the DNA strands. Images PMID:2847118

  18. Antibiotic Resistance Genes in the Bacteriophage DNA Fraction of Human Fecal Samples

    PubMed Central

    Quirós, Pablo; Colomer-Lluch, Marta; Martínez-Castillo, Alexandre; Miró, Elisenda; Argente, Marc; Jofre, Juan; Navarro, Ferran

    2014-01-01

    A group of antibiotic resistance genes (ARGs) (blaTEM, blaCTX-M-1, mecA, armA, qnrA, and qnrS) were analyzed by real-time quantitative PCR (qPCR) in bacteriophage DNA isolated from feces from 80 healthy humans. Seventy-seven percent of the samples were positive in phage DNA for one or more ARGs. blaTEM, qnrA, and, blaCTX-M-1 were the most abundant, and armA, qnrS, and mecA were less prevalent. Free bacteriophages carrying ARGs may contribute to the mobilization of ARGs in intra- and extraintestinal environments. PMID:24165177

  19. Residues in the central beta-hairpin of the DNA helicase of bacteriophage T7 are important in DNA unwinding.

    PubMed

    Satapathy, Ajit K; Kochaniak, Anna B; Mukherjee, Sourav; Crampton, Donald J; van Oijen, Antoine; Richardson, Charles C

    2010-04-13

    The ring-shaped helicase of bacteriophage T7 (gp4), the product of gene 4, has basic beta-hairpin loops lining its central core where they are postulated to be the major sites of DNA interaction. We have altered multiple residues within the beta-hairpin loop to determine their role during dTTPase-driven DNA unwinding. Residues His-465, Leu-466, and Asn-468 are essential for both DNA unwinding and DNA synthesis mediated by T7 DNA polymerase during leading-strand DNA synthesis. Gp4-K467A, gp4-K471A, and gp4-K473A form fewer hexamers than heptamers compared to wild-type helicase and alone are deficient in DNA unwinding. However, they complement for the growth of T7 bacteriophage lacking gene 4. Single-molecule studies show that these three altered helicases support rates of leading-strand DNA synthesis comparable to that observed with wild-type gp4. Gp4-K467A, devoid of unwinding activity alone, supports leading-strand synthesis in the presence of T7 DNA polymerase. We propose that DNA polymerase limits the backward movement of the helicase during unwinding as well as assisting the forward movement necessary for strand separation.

  20. Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA.

    PubMed

    Walkinshaw, M D; Taylor, P; Sturrock, S S; Atanasiu, C; Berge, T; Henderson, R M; Edwardson, J M; Dryden, D T F

    2002-01-01

    We have solved, by X-ray crystallography to a resolution of 1.8 A, the structure of a protein capable of mimicking approximately 20 base pairs of B-form DNA. This ocr protein, encoded by gene 0.3 of bacteriophage T7, mimics the size and shape of a bent DNA molecule and the arrangement of negative charges along the phosphate backbone of B-form DNA. We also demonstrate that ocr is an efficient inhibitor in vivo of all known families of the complex type I DNA restriction enzymes. Using atomic force microscopy, we have also observed that type I enzymes induce a bend in DNA of similar magnitude to the bend in the ocr molecule. This first structure of an antirestriction protein demonstrates the construction of structural mimetics of long segments of B-form DNA.

  1. Charting the Structure and Energetics of Packaged DNA in Bacteriophages

    NASA Astrophysics Data System (ADS)

    Qiu, Xiangyun; Rau, Donald C.; Parsegian, V. Adrian; Fang, Li Tai; Knobler, Charles M.; Gelbart, William M.

    2009-03-01

    Many bacterial viruses resort to pressure in order to infect bacteria, e.g., lambda phage stores its dsDNA genome at surprisingly high pressure and then uses this pressure to drive delivery of the genome. We report on a biophysical interrogation of the DNA configuration and pressure in lambda phage by combining structural and thermodynamic measurements with theoretical modeling. Changes in DNA organization in the capsid are monitored using solution small angle x-ray scattering (SAXS). We vary the DNA-DNA repulsion and DNA bending contributions to the capsid pressure by changing salt concentrations and packaged length, and augment SAXS data with osmotic stress measurements to elicit the evolving structure and energetics of the packaged DNA.

  2. (Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems): Final report

    SciTech Connect

    Friedberg, E.C.

    1987-08-01

    This study sought to exploit the use of uv radiation as a source of genomic damage. We explored the molecular mechanism of the repair of DNA damage at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian cells. Not only have observations obtained in one biological system suggested specific experimental approaches in others, but we have also learned that some biochemical pathways for DNA repair are unique to specific organisms. Our studies are summarized in terms of 4 major areas of research activity that span the past 16 years. 86 refs.

  3. Effect of Recipient Cell Concentration on Transfection with Bacteriophage DNA

    DTIC Science & Technology

    to the 7th power/ml rather than the usual 2 x 10 to the 8th power/ml. At low DNA concentrations, the slope of the dose - response curve was >1 at the...025 DNA, all having molecular weights of approximately 1 x 10 to the 8th power. However, 029 DNA gave a first-order dose - response curve at both high

  4. Phage phi 29 regulatory protein p4 stabilizes the binding of the RNA polymerase to the late promoter in a process involving direct protein-protein contacts.

    PubMed

    Nuez, B; Rojo, F; Salas, M

    1992-12-01

    Transcription from the late promoter, PA3, of Bacillus subtilis phage phi 29 is activated by the viral regulatory protein p4. A kinetic analysis of the activation process has revealed that the role of protein p4 is to stabilize the binding of RNA polymerase to the promoter as a closed complex without significantly affecting further steps of the initiation process. Electrophoretic band-shift assays performed with a DNA fragment spanning only the protein p4 binding site showed that RNA polymerase could efficiently retard the complex formed by protein p4 bound to the DNA. Similarly, when a DNA fragment containing only the RNA polymerase-binding region of PA3 was used, p4 greatly stimulated the binding of RNA polymerase to the DNA. These results strongly suggest that p4 and RNA polymerase contact each other at the PA3 promoter. In the light of current knowledge of the p4 activation mechanism, we propose that direct contacts between the two proteins participate in the activation process.

  5. The Structure and Function of the DNA from Bacteriophage Lambda

    PubMed Central

    Hogness, David S.

    1966-01-01

    The position and orientation of genes in lambda and lambda dg DNA are described. The position of six genes located in the right half of isolated lambda DNA was found to be -(N, iλ)--O-P---Q-R-(right end of DNA), which is their order on the genetic map of the vegetative phage. The order of the three genes of the galactose operon (k, t, and e) located in the left half of lambda dg DNA was found to be (left end of DNA)----k-t-e-, consistent with Campbell's model (5) for the formation of this variant. Gene orientation, defined as the direction of transcription along the DNA, is inferred to be from right to left for the galactose operon in lambda dg DNA. The strand of lambda DNA which functions as template in transcription of N, an "early" gene required for normal replication of lambda DNA, was determined as a first step in ascertaining the orientation of this gene. The method includes isolation of each strand, formation of each of two heteroduplex molecules consisting of one strand from wild-type and one from an N mutant) and comparison of their N activities. The second step, which consists of ascertaining the 5'-to-3' direction of each strand, is discussed, as is a determination of the orientation of gene R. PMID:5967430

  6. Molecular Cloning of Actinomyces Bacteriophage DNA in E. Coli.

    DTIC Science & Technology

    2007-11-02

    recombinant clones revealed the presence of the expected phi63 DNA fragments that were used in the subcloning and they were stably maintained in E . coli . Further...feasibility of cloning of Actinomyces phage DNA fragments onto an E . coli expression vector.

  7. Structure of the cro repressor from bacteriophage λ and its interaction with DNA

    NASA Astrophysics Data System (ADS)

    Anderson, W. F.; Ohlendorf, D. H.; Takeda, Y.; Matthews, B. W.

    1981-04-01

    The three-dimensional structure of the 66-amino acid cro repressor protein of bacteriophage λ suggests how it binds to its operator DNA. We propose that a dimer of cro protein is bound to the B-form of DNA with the 2-fold axis of the dimer coincident with the 2-fold axis of DNA. A pair of 2-fold-related α-helices of the represser, lying within successive major grooves of the DNA, seem to be a major determinant in recognition and binding. In addition, the C-terminal residues of the protein, some of which are disordered in the absence of DNA, appear to contribute to the binding.

  8. Simulation experiments of the effect of space environment on bacteriophage and DNA thin films

    NASA Technical Reports Server (NTRS)

    Fekete, A.; Ronto, Gy; Hegedus, M.; Modos, K.; Berces, A.; Kovacs, G.; Lammer, H.; Panitz, C.

    2004-01-01

    The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of the genetic material is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation (lambda=254 nm) and high vacuum (10(-4) Pa). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  9. Typing of bacteriophages by randomly amplified polymorphic DNA (RAPD)-PCR to assess genetic diversity.

    PubMed

    Gutiérrez, Diana; Martín-Platero, Antonio M; Rodríguez, Ana; Martínez-Bueno, Manuel; García, Pilar; Martínez, Beatriz

    2011-09-01

    The recent boom in phage therapy and phage biocontrol requires the design of suitable cocktails of genetically different bacteriophages. The current methods for typing phages need significant quantities of purified DNA, may require a priori genetic information and are cost and time consuming. We have evaluated the randomly amplified polymorphic DNA (RAPD)-PCR technique to produce unique and reproducible band patterns from 26 different bacteriophages infecting Staphylococcus epidermidis, Staphylococcus aureus, Lactococcus lactis, Escherichia coli, Streptococcus thermophilus, Bacillus subtilis and Lactobacillus casei bacterial strains. Initially, purified DNA and phage suspensions of seven selected phages were used as a template. The conditions that were found to be optimal 8 μM of 10-mer primers, 3 μM magnesium oxalacetate and 5% dimethyl sulfoxide. The RAPD genomic fingerprints using a phage titer suspension higher than 10(9) PFU mL(-1) were highly reproducible. Clustering by the Pearson correlation coefficient and the unweighted pair group method with arithmetic averages clustering algorithm correlated largely with genetically different phages infecting the same bacterial species, although closely related phages with a similar DNA restriction pattern were indistinguishable. The results support the use of RAPD-PCR for quick typing of phage isolates and preliminary assessment of their genetic diversity bypassing tedious DNA purification protocols and previous knowledge of their sequence.

  10. Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA

    NASA Astrophysics Data System (ADS)

    Shokri, Leila; Rouzina, Ioulia; Williams, Mark C.

    2009-06-01

    Bacteriophages T4 and T7 are well-studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination and repair. Here we summarize and discuss the results from two recently developed single-molecule methods to determine the salt-dependent DNA-binding kinetics and thermodynamics of the single-stranded DNA (ssDNA)-binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two-orders-of-magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four-orders-of-magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding is essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA-binding sites at the replication fork.

  11. Localization of single-chain interruptions in bacteriophage T5 DNA I. Electron microscopic studies.

    PubMed Central

    Scheible, P P; Rhoades, E A; Rhoades, M

    1977-01-01

    Bacteriophage T5 DNA was examined in an electron microscope after limited digestion with exonuclease III from Escherichia coli. The effect of the exonuclease treatment was to convert each naturally occurring single-chain interruption in T5 DNA into a short segment of single-stranded DNA. The locations of these segments were determined for T5st(+) DNA, T5st(0) DNA, and fragments of T5st(0) DNA generated by EcoRI restriction endonuclease. The results indicate that single-chain interruptions occurr in a variable, but nonrandom, manner in T5 DNA. T5st(+) DNA has four principal interruptions located at sites approximately 7.9, 18.5, 32.6, and 64.8% from one end of the molecule. Interruptions occur at these sites in 80 to 90% of the population. A large number of additional sites, located primarily at the ends of the DNA, contain interruptions at lower frequencies. The average number of interruptions per genome, as determined by this method, is 8. A similar distribution of breaks occurs in T5st(0) DNA, except that the 32.6% site is missing. At least one of the principal interruptions is reproducibly located within an interval of 0.2% of the entire DNA. Images PMID:330881

  12. In vitro synthesis of large peptide molecules using glucosylated single-stranded bacteriophage T4D DNA template.

    PubMed Central

    Hulen, C; Legault-Demare, J

    1975-01-01

    Denatured Bacteriophage T4D DNA is able to stimulate aminoacid incorporation into TCA-precipitable material in an in vitro protein synthesis system according to base DNA sequences. Newly synthesized polypeptides remain associated with ribosomes and have a molecular weight in range of 15,000 to 45,000 Daltons. PMID:1052527

  13. Identification of a protein bound to the termini of bacteriophage PRD1 DNA.

    PubMed Central

    Bamford, D; McGraw, T; MacKenzie, G; Mindich, L

    1983-01-01

    Lipid-containing bacteriophage PRD1 has a double-stranded DNA genome of about 14,500 nucleotide base pairs. The phage can infect Escherichia coli and Salmonella typhimurium as well as other gram-negative bacteria harboring an appropriate plasmid. [35S]methionine label is incorporated into the DNA band early in infection. The label remains associated with DNA through phenol extraction and boiling with sodium dodecyl sulfate. Nuclease treatment of the genome released a protein which migrated as an early phage-specific protein (P8). This protein is also necessary for phage DNA replication. By restriction enzyme analysis it was shown that protein was associated with the terminal restriction fragments. Extracts of infected cells catalyzed the labeling of protein P8 with [alpha-32P]dGTP. Images PMID:6620455

  14. Control of helicase loading in the coupled DNA replication and recombination systems of bacteriophage T4.

    PubMed

    Branagan, Amy M; Klein, Jenny A; Jordan, Christian S; Morrical, Scott W

    2014-01-31

    The Gp59 protein of bacteriophage T4 promotes DNA replication by loading the replicative helicase, Gp41, onto replication forks and recombination intermediates. Gp59 also blocks DNA synthesis by Gp43 polymerase until Gp41 is loaded, ensuring that synthesis is tightly coupled to unwinding. The distinct polymerase blocking and helicase loading activities of Gp59 likely involve different binding interactions with DNA and protein partners. Here, we investigate how interactions of Gp59 with DNA and Gp32, the T4 single-stranded DNA (ssDNA)-binding protein, are related to these activities. A previously characterized mutant, Gp59-I87A, exhibits markedly reduced affinity for ssDNA and pseudo-fork DNA substrates. We demonstrate that on Gp32-covered ssDNA, the DNA binding defect of Gp59-I87A is not detrimental to helicase loading and translocation. In contrast, on pseudo-fork DNA the I87A mutation is detrimental to helicase loading and unwinding in the presence or absence of Gp32. Other results indicate that Gp32 binding to lagging strand ssDNA relieves the blockage of Gp43 polymerase activity by Gp59, whereas the inhibition of Gp43 exonuclease activity is maintained. Our findings suggest that Gp59-Gp32 and Gp59-DNA interactions perform separate but complementary roles in T4 DNA metabolism; Gp59-Gp32 interactions are needed to load Gp41 onto D-loops, and other nucleoprotein structures containing clusters of Gp32. Gp59-DNA interactions are needed to load Gp41 onto nascent or collapsed replication forks lacking clusters of Gp32 and to coordinate bidirectional replication from T4 origins. The dual functionalities of Gp59 allow it to promote the initiation or re-start of DNA replication from a wide variety of recombination and replication intermediates.

  15. RNA Nanoparticles Derived from Three-Way Junction of Phi29 Motor pRNA Are Resistant to I-125 and Cs-131 Radiation

    PubMed Central

    Li, Hui; Rychahou, Piotr G.; Cui, Zheng; Pi, Fengmei; Evers, B. Mark; Shu, Dan

    2015-01-01

    Radiation reagents that specifically target tumors are in high demand for the treatment of cancer. The emerging field of RNA nanotechnology might provide new opportunities for targeted radiation therapy. This study investigates whether chemically modified RNA nanoparticles derived from the packaging RNA (pRNA) three-way junction (3WJ) of phi29 DNA-packaging motor are resistant to potent I-125 and Cs-131 radiation, which is a prerequisite for utilizing these RNA nanoparticles as carriers for targeted radiation therapy. pRNA 3WJ nanoparticles were constructed and characterized, and the stability of these nanoparticles under I-125 and Cs-131 irradiation with clinically relevant doses was examined. RNA nanoparticles derived from the pRNA 3WJ targeted tumors specifically and they were stable under irradiation of I-125 and Cs-131 with clinically relevant doses ranging from 1 to 90 Gy over a significantly long time up to 20 days, while control plasmid DNA was damaged at 20 Gy or higher. PMID:26017686

  16. DNA compaction by the bacteriophage protein Cox studied on the single DNA molecule level using nanofluidic channels.

    PubMed

    Frykholm, Karolin; Berntsson, Ronnie Per-Arne; Claesson, Magnus; de Battice, Laura; Odegrip, Richard; Stenmark, Pål; Westerlund, Fredrik

    2016-09-06

    The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA-Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions.

  17. DNA regions essential for the function of a bacteriophage fd promoter.

    PubMed Central

    Okamoto, T; Sugimoto, K; Sugisaki, H; Takanami, M

    1977-01-01

    The promoter for the major coat protein gene of bacteriophage fd contains a unique sequence. TATAAT, in the non-transcribed region corresponding to the Pribnow box. A R-Hha I cleavage site which destroys functions is located five pairs upstream from the TATAAT sequence (fifteen base pairs upstream from the RNA initiation site). The promoter was cleaved into two fragments by R-Hha I and each promoter fragment was joined to DNA fragments derived from other regions. Ligation of the TATAAT-containing fragment to any of the DNA fragments examined resulted in recovery of promoter function. The results suggest for this type of promoter that no unique sequence is necessary upstream from the R-Hha I cleavage site although a contiguous DNA chain must be present in this area. Images PMID:909770

  18. Early Extracellular Events in Infection of Competent Bacillus subtilis by DNA of Bacteriophage SP82G

    PubMed Central

    Williams, Gordon L.; Green, D. Macdonald

    1972-01-01

    Analysis, by the recovery of specific genetic “markers,” of the effects of DNase I, physical shear, and temperature shock on DNA-cell complexes demonstrates that sequential attachment of both ends of bacteriophage SP82G DNA to Bacillus subtilis precedes entry of the DNA molecule into the cell, and that each attachment is end-and time-specific. The first attachment involves an initial reversible phase, followed by irreversible binding. After a latent period, the second end then attaches to the cell. Entry of the molecule begins immediately after binding of the second end has occurred, and entry is complete within 3 min. The polarity of entry, as judged by attainment of resistance to DNase I, is the reverse of that observed in normal phage injection. PMID:4624760

  19. DNA compaction by the bacteriophage protein Cox studied on the single DNA molecule level using nanofluidic channels

    PubMed Central

    Frykholm, Karolin; Berntsson, Ronnie Per-Arne; Claesson, Magnus; de Battice, Laura; Odegrip, Richard; Stenmark, Pål; Westerlund, Fredrik

    2016-01-01

    The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA–Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions. PMID:27131370

  20. Conformational Dynamics of Bacteriophage T7 DNA Polymerase and its Processivity Factor, Escherichia coli thioredoxin

    SciTech Connect

    Akabayov, B.; Akabayov, S; Lee , S; Tabor, S; Kulczyk , A; Richardson, C

    2010-01-01

    Gene 5 of bacteriophage T7 encodes a DNA polymerase (gp5) responsible for the replication of the phage DNA. Gp5 polymerizes nucleotides with low processivity, dissociating after the incorporation of 1 to 50 nucleotides. Thioredoxin (trx) of Escherichia coli binds tightly (Kd = 5 nM) to a unique segment in the thumb subdomain of gp5 and increases processivity. We have probed the molecular basis for the increase in processivity. A single-molecule experiment reveals differences in rates of enzymatic activity and processivity between gp5 and gp5/trx. Small angle X-ray scattering studies combined with nuclease footprinting reveal two conformations of gp5, one in the free state and one upon binding to trx. Comparative analysis of the DNA binding clefts of DNA polymerases and DNA binding proteins show that the binding surface contains more hydrophobic residues than other DNA binding proteins. The balanced composition between hydrophobic and charged residues of the binding site allows for efficient sliding of gp5/trx on the DNA. We propose a model for trx-induced conformational changes in gp5 that enhance the processivity by increasing the interaction of gp5 with DNA.

  1. Kinetics of Mismatch Formation opposite Lesions by the Replicative DNA Polymerase from Bacteriophage RB69

    SciTech Connect

    Hogg, Matthew; Rudnicki, Jean; Midkiff, John; Reha-Krantz, Linda; Doubli, Sylvie; Wallace, Susan S.

    2010-04-12

    The fidelity of DNA replication is under constant threat from the formation of lesions within the genome. Oxidation of DNA bases leads to the formation of altered DNA bases such as 8-oxo-7,8-dihydroguanine, commonly called 8-oxoG, and 2-hydroxyadenenine, or 2-OHA. In this work we have examined the incorporation kinetics opposite these two oxidatively derived lesions as well as an abasic site analogue by the replicative DNA polymerase from bacteriophage RB69. We compared the kinetic parameters for both wild type and the low fidelity L561A variant. While nucleotide incorporation rates (k{sub pol}) were generally higher for the variant, the presence of a lesion in the templating position reduced the ability of both the wild-type and variant DNA polymerases to form ternary enzyme-DNA-dNTP complexes. Thus, the L561A substitution does not significantly affect the ability of the RB69 DNA polymerase to recognize damaged DNA; instead, the mutation increases the probability that nucleotide incorporation will occur. We have also solved the crystal structure of the L561A variant forming an 8-oxoG {center_dot} dATP mispair and show that the propensity for forming this mispair depends on an enlarged polymerase active site.

  2. Role of the CCA bulge of prohead RNA of bacteriophage ø29 in DNA packaging.

    PubMed

    Zhao, Wei; Morais, Marc C; Anderson, Dwight L; Jardine, Paul J; Grimes, Shelley

    2008-11-14

    The oligomeric ring of prohead RNA (pRNA) is an essential component of the ATP-driven DNA packaging motor of bacteriophage ø29. The A-helix of pRNA binds the DNA translocating ATPase gp16 (gene product 16) and the CCA bulge in this helix is essential for DNA packaging in vitro. Mutation of the bulge by base substitution or deletion showed that the size of the bulge, rather than its sequence, is primary in DNA packaging activity. Proheads reconstituted with CCA bulge mutant pRNAs bound the packaging ATPase gp16 and the packaging substrate DNA-gp3, although DNA translocation was not detected with several mutants. Prohead/bulge-mutant pRNA complexes with low packaging activity had a higher rate of ATP hydrolysis per base pair of DNA packaged than proheads with wild-type pRNA. Cryoelectron microscopy three-dimensional reconstruction of proheads reconstituted with a CCA deletion pRNA showed that the protruding pRNA spokes of the motor occupy a different position relative to the head when compared to particles with wild-type pRNA. Therefore, the CCA bulge seems to dictate the orientation of the pRNA spokes. The conformational changes observed for this mutant pRNA may affect gp16 conformation and/or subsequent ATPase-DNA interaction and, consequently, explain the decreased packaging activity observed for CCA mutants.

  3. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples.

    PubMed

    Colomer-Lluch, Marta; Jofre, Juan; Muniesa, Maite

    2011-03-03

    Antibiotic resistance is an increasing global problem resulting from the pressure of antibiotic usage, greater mobility of the population, and industrialization. Many antibiotic resistance genes are believed to have originated in microorganisms in the environment, and to have been transferred to other bacteria through mobile genetic elements. Among others, β-lactam antibiotics show clinical efficacy and low toxicity, and they are thus widely used as antimicrobials. Resistance to β-lactam antibiotics is conferred by β-lactamase genes and penicillin-binding proteins, which are chromosomal- or plasmid-encoded, although there is little information available on the contribution of other mobile genetic elements, such as phages. This study is focused on three genes that confer resistance to β-lactam antibiotics, namely two β-lactamase genes (blaTEM and blaCTX-M9) and one encoding a penicillin-binding protein (mecA) in bacteriophage DNA isolated from environmental water samples. The three genes were quantified in the DNA isolated from bacteriophages collected from 30 urban sewage and river water samples, using quantitative PCR amplification. All three genes were detected in the DNA of phages from all the samples tested, in some cases reaching 104 gene copies (GC) of blaTEM or 102 GC of blaCTX-M and mecA. These values are consistent with the amount of fecal pollution in the sample, except for mecA, which showed a higher number of copies in river water samples than in urban sewage. The bla genes from phage DNA were transferred by electroporation to sensitive host bacteria, which became resistant to ampicillin. blaTEM and blaCTX were detected in the DNA of the resistant clones after transfection. This study indicates that phages are reservoirs of resistance genes in the environment.

  4. Antibiotic Resistance Genes in the Bacteriophage DNA Fraction of Environmental Samples

    PubMed Central

    Colomer-Lluch, Marta; Jofre, Juan; Muniesa, Maite

    2011-01-01

    Antibiotic resistance is an increasing global problem resulting from the pressure of antibiotic usage, greater mobility of the population, and industrialization. Many antibiotic resistance genes are believed to have originated in microorganisms in the environment, and to have been transferred to other bacteria through mobile genetic elements. Among others, β-lactam antibiotics show clinical efficacy and low toxicity, and they are thus widely used as antimicrobials. Resistance to β-lactam antibiotics is conferred by β-lactamase genes and penicillin-binding proteins, which are chromosomal- or plasmid-encoded, although there is little information available on the contribution of other mobile genetic elements, such as phages. This study is focused on three genes that confer resistance to β-lactam antibiotics, namely two β-lactamase genes (blaTEM and blaCTX-M9) and one encoding a penicillin-binding protein (mecA) in bacteriophage DNA isolated from environmental water samples. The three genes were quantified in the DNA isolated from bacteriophages collected from 30 urban sewage and river water samples, using quantitative PCR amplification. All three genes were detected in the DNA of phages from all the samples tested, in some cases reaching 104 gene copies (GC) of blaTEM or 102 GC of blaCTX-M and mecA. These values are consistent with the amount of fecal pollution in the sample, except for mecA, which showed a higher number of copies in river water samples than in urban sewage. The bla genes from phage DNA were transferred by electroporation to sensitive host bacteria, which became resistant to ampicillin. blaTEM and blaCTX were detected in the DNA of the resistant clones after transfection. This study indicates that phages are reservoirs of resistance genes in the environment. PMID:21390233

  5. Inactivation of bacteriophage, DNA, and ribonuclease by thermal hydrogen atoms.

    PubMed

    Jung, H; Kürzinger, K

    1968-12-01

    T1 phage, BU-T1 phage, infectious DNA extracted from phage phiX 174, and chromatographically purified ribonuclease were exposed to thermal hydrogen atoms, and the loss of plaque-forming ability, infectivity, or enzymatic activity was determined after various exposure times. Atomic hydrogen was generated by two different methods: (1) by a high-frequency discharge in hydrogen gas and (2) by irradiating a foil of polyethyleneter-ephthalate with 2-MeV protons. With increasing exposure time the surviving fraction of all objects tested approaches a constant level. After subtracting this constant "indestructible" fraction in either system, all objects were inactivated according to exponential curves. Furthermore, no BU sensitization was found to occur in BU-T1 phage exposed to atomic hydrogen, whereas gamma irradiation of samples from the same batches revealed a BU effect of a factor of 2.2. These experiments demonstrate hydrogen atoms to be efficient in causing biological damage. Consequently the terminology of "direct" and "indirect" radiation effect may have to be redefined.

  6. Pilus-dependent, double-stranded DNA bacteriophage for Caulobacter.

    PubMed Central

    Scholl, D R; Jollick, J D

    1980-01-01

    Caulobacter phage phi 6, previously reported to adsorb specifically to bacterial flagella, was shown here to attach to pili more frequently than to flagella. Phage phi 6 was shown to contain double-stranded DNA by circular dichroism spectroscopy and thermal denaturation accompanied by a hyperchromic shift at 260 nm. Morphologically, phage phi 6 fits group B2 (H.-W. Ackermann, in A. I. Laskin and H. A. Lechevalier, ed., Handbook of Microbiology, vol. 1, p. 638-643, 1973) with a long, noncontractile tail and an elongate head. Pilus-less mutants of the host Caulobacter vibrioides CV6 are phage phi 6 resistant, whereas flagellum-less mutants, which produce pili, are phage susceptible. Treatments of susceptible cells which remove or immobilize pili and flagella, e.g., blending or cyanide, inhibited phage phi 6 infection. Our evidence suggests that phage of phi 6 initiates infection in a manner similar to the pilus-specific phages for Pseudomonas described previously (D. E. Bradley, Virology 51:489-492, 1973; D. E. Bradley and T. L. Pitt, J. Gen. Virol. 24:1-15, 1974). Images PMID:6106721

  7. Regulation of the switch from early to late bacteriophage lambda DNA replication.

    PubMed

    Baranska, S; Gabig, M; Wegrzyn, A; Konopa, G; Herman-Antosiewicz, A; Hernandez, P; Schvartzman, J B; Helinski, D R; Wegrzyn, G

    2001-03-01

    There are two modes of bacteriophage lambda DNA replication following infection of its host, Escherichia coli. Early after infection, replication occurs according to the theta (theta or circle-to-circle) mode, and is later switched to the sigma (sigma or rolling-circle) mode. It is not known how this switch, occurring at a specific time in the infection cycle, is regulated. Here it is demonstrated that in wild-type cells the replication starting from orilambda proceeds both bidirectionally and unidirectionally, whereas in bacteria devoid of a functional DnaA protein, replication from orilambda is predominantly unidirectional. The regulation of directionality of replication from orilambda is mediated by positive control of lambda p(R) promoter activity by DnaA, since the mode of replication of an artificial lambda replicon bearing the p(tet) promoter instead of p(R) was found to be independent of DnaA function. These findings and results of density-shift experiments suggest that in dnaA mutants infected with lambda, phage DNA replication proceeds predominantly according to the unidirectional theta mechanism and is switched early after infection to the sigma mode. It is proposed that in wild-type E. coli cells infected with lambda, phage DNA replication proceeds according to a bidirectional theta mechanism early after infection due to efficient transcriptional activation of orilambda, stimulated by the host DnaA protein. After a few rounds of this type of replication, the resulting increased copy number of lambda genomic DNA may cause a depletion of free DnaA protein because of its interaction with the multiple DnaA-binding sites in lambda DNA. It is proposed that this may lead to inefficient transcriptional activation of orilambda resulting in unidirectional theta replication followed by sigma type replication.

  8. Salt-Dependent DNA-DNA Spacings in Intact Bacteriophage lambda Reflect Relative Importance of DNA Self-Repulsion and Bending Energies

    SciTech Connect

    X Qiu; D Rau; V Parsegian; L Fang; C Knobler; W Gelbart

    2011-12-31

    Using solution synchrotron x-ray scattering, we measure the variation of DNA-DNA d spacings in bacteriophage {lambda} with mono-, di-, and polyvalent salt concentrations, for wild-type [48.5 x 10{sup 3} base pairs (bp)] and short-genome-mutant (37.8 kbp) strains. From the decrease in d spacings with increasing salt, we deduce the relative contributions of DNA self-repulsion and bending to the energetics of packaged phage genomes. We quantify the DNA-DNA interaction energies within the intact phage by combining the measured d spacings in the capsid with measurements of osmotic pressure in DNA assemblies under the same salt conditions in bulk solution. In the commonly used Tris-Mg buffer, the DNA-DNA interaction energies inside the phage capsids are shown to be about 1 kT/bp, an order of magnitude larger than the bending energies.

  9. Structure, assembly, and DNA packaging of the bacteriophage T4 head.

    PubMed

    Black, Lindsay W; Rao, Venigalla B

    2012-01-01

    The bacteriophage T4 head is an elongated icosahedron packed with 172 kb of linear double-stranded DNA and numerous proteins. The capsid is built from three essential proteins: gp23*, which forms the hexagonal capsid lattice; gp24*, which forms pentamers at 11 of the 12 vertices; and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. Intensive work over more than half a century has led to a deep understanding of the phage T4 head. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as numerous other icosahedral bacteriophages. However, phage T4 displays an unusual membrane and portal initiated assembly of a shape determining self-sufficient scaffolding core. Folding of gp23 requires the assistance of two chaperones, the Escherichia coli chaperone GroEL acting with the phage-coded gp23-specific cochaperone, gp31. The capsid also contains two nonessential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. Through binding to adjacent gp23 subunits, Soc reinforces the capsid structure. Hoc and Soc have been used extensively in bipartite peptide display libraries and to display pathogen antigens, including those from human immunodeficiency virus (HIV), Neisseria meningitides, Bacillus anthracis, and foot and mouth disease virus. The structure of Ip1*, one of a number of multiple (>100) copy proteins packed and injected with DNA from the full head, shows it to be an inhibitor of one specific restriction endonuclease specifically targeting glycosylated hydroxymethyl cytosine DNA. Extensive mutagenesis, combined with atomic structures of the DNA packaging/terminase proteins gp16 and gp17, elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. The cryoelectron microscopy structure of the T4 packaging

  10. Compressed wormlike chain moving out of confined space: A model of DNA ejection from bacteriophage

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Zeng; Li, Long; Gao, Hua-Jian

    2012-08-01

    The molecular biomechanics of DNA ejection from bacteriophage is of interest to not only fundamental biological understandings but also practical applications such as the design of advanced site-specific and controllable drug delivery systems. In this paper, we analyze the viscous motion of a semiflexible polymer chain coming out of a strongly confined space as a model to investigate the effects of various structure confinements and frictional resistances encountered during the DNA ejection process. The theoretically predicted relations between the ejection speed, ejection time, ejection length, and other physical parameters, such as the phage type, total genome length and ionic state of external buffer solutions, show excellent agreement with in vitro experimental observations in the literature.

  11. Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor

    NASA Astrophysics Data System (ADS)

    Migliori, Amy D.; Keller, Nicholas; Alam, Tanfis I.; Mahalingam, Marthandan; Rao, Venigalla B.; Arya, Gaurav; Smith, Douglas E.

    2014-06-01

    How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force and higher frequency of pauses and slips. We further show that the measured impairments correlate with computed changes in free-energy differences between the two states. These findings support the proposed structural mechanism and further suggest an energy landscape model of motor activity that couples the free-energy profile of motor conformational states with that of the ATP hydrolysis cycle.

  12. The Tip of the Tail Needle Affects the Rate of DNA Delivery by Bacteriophage P22

    PubMed Central

    Leavitt, Justin C.; Gogokhia, Lasha; Gilcrease, Eddie B.; Bhardwaj, Anshul; Cingolani, Gino; Casjens, Sherwood R.

    2013-01-01

    The P22-like bacteriophages have short tails. Their virions bind to their polysaccharide receptors through six trimeric tailspike proteins that surround the tail tip. These short tails also have a trimeric needle protein that extends beyond the tailspikes from the center of the tail tip, in a position that suggests that it should make first contact with the host’s outer membrane during the infection process. The base of the needle serves as a plug that keeps the DNA in the virion, but role of the needle during adsorption and DNA injection is not well understood. Among the P22-like phages are needle types with two completely different C-terminal distal tip domains. In the phage Sf6-type needle, unlike the other P22-type needle, the distal tip folds into a “knob” with a TNF-like fold, similar to the fiber knobs of bacteriophage PRD1 and Adenovirus. The phage HS1 knob is very similar to that of Sf6, and we report here its crystal structure which, like the Sf6 knob, contains three bound L-glutamate molecules. A chimeric P22 phage with a tail needle that contains the HS1 terminal knob efficiently infects the P22 host, Salmonella enterica, suggesting the knob does not confer host specificity. Likewise, mutations that should abrogate the binding of L-glutamate to the needle do not appear to affect virion function, but several different other genetic changes to the tip of the needle slow down potassium release from the host during infection. These findings suggest that the needle plays a role in phage P22 DNA delivery by controlling the kinetics of DNA ejection into the host. PMID:23951045

  13. Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T4

    PubMed Central

    Gao, Song; Zhang, Liang; Rao, Venigalla B.

    2016-01-01

    Tailed bacteriophages and herpes viruses use powerful molecular machines to package their genomes. The packaging machine consists of three components: portal, motor (large terminase; TerL) and regulator (small terminase; TerS). Portal, a dodecamer, and motor, a pentamer, form two concentric rings at the special five-fold vertex of the icosahedral capsid. Powered by ATPase, the motor ratchets DNA into the capsid through the portal channel. TerS is essential for packaging, particularly for genome recognition, but its mechanism is unknown and controversial. Structures of gear-shaped TerS rings inspired models that invoke DNA threading through the central channel. Here, we report that mutations of basic residues that line phage T4 TerS (gp16) channel do not disrupt DNA binding. Even deletion of the entire channel helix retained DNA binding and produced progeny phage in vivo. On the other hand, large oligomers of TerS (11-mers/12-mers), but not small oligomers (trimers to hexamers), bind DNA. These results suggest that TerS oligomerization creates a large outer surface, which, but not the interior of the channel, is critical for function, probably to wrap viral genome around the ring during packaging initiation. Hence, models involving TerS-mediated DNA threading may be excluded as an essential mechanism for viral genome packaging. PMID:26984529

  14. Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9

    PubMed Central

    Bryson, Alexandra L.; Hwang, Young; Sherrill-Mix, Scott; Wu, Gary D.; Lewis, James D.; Black, Lindsay; Clark, Tyson A.

    2015-01-01

    ABSTRACT The genomic DNAs of tailed bacteriophages are commonly modified by the attachment of chemical groups. Some forms of DNA modification are known to protect phage DNA from cleavage by restriction enzymes, but others are of unknown function. Recently, the CRISPR-Cas nuclease complexes were shown to mediate bacterial adaptive immunity by RNA-guided target recognition, raising the question of whether phage DNA modifications may also block attack by CRISPR-Cas9. We investigated phage T4 as a model system, where cytosine is replaced with glucosyl-hydroxymethylcytosine (glc-HMC). We first quantified the extent and distribution of covalent modifications in T4 DNA by single-molecule DNA sequencing and enzymatic probing. We then designed CRISPR spacer sequences targeting T4 and found that wild-type T4 containing glc-HMC was insensitive to attack by CRISPR-Cas9 but mutants with unmodified cytosine were sensitive. Phage with HMC showed only intermediate sensitivity. While this work was in progress, another group reported examples of heavily engineered CRISRP-Cas9 complexes that could, in fact, overcome the effects of T4 DNA modification, indicating that modifications can inhibit but do not always fully block attack. PMID:26081634

  15. Structural insight into DNA binding and oligomerization of the multifunctional Cox protein of bacteriophage P2.

    PubMed

    Berntsson, Ronnie P-A; Odegrip, Richard; Sehlén, Wilhelmina; Skaar, Karin; Svensson, Linda M; Massad, Tariq; Högbom, Martin; Haggård-Ljungquist, Elisabeth; Stenmark, Pål

    2014-02-01

    The Cox protein from bacteriophage P2 is a small multifunctional DNA-binding protein. It is involved in site-specific recombination leading to P2 prophage excision and functions as a transcriptional repressor of the P2 Pc promoter. Furthermore, it transcriptionally activates the unrelated, defective prophage P4 that depends on phage P2 late gene products for lytic growth. In this article, we have investigated the structural determinants to understand how P2 Cox performs these different functions. We have solved the structure of P2 Cox to 2.4 Å resolution. Interestingly, P2 Cox crystallized in a continuous oligomeric spiral with its DNA-binding helix and wing positioned outwards. The extended C-terminal part of P2 Cox is largely responsible for the oligomerization in the structure. The spacing between the repeating DNA-binding elements along the helical P2 Cox filament is consistent with DNA binding along the filament. Functional analyses of alanine mutants in P2 Cox argue for the importance of key residues for protein function. We here present the first structure from the Cox protein family and, together with previous biochemical observations, propose that P2 Cox achieves its various functions by specific binding of DNA while wrapping the DNA around its helical oligomer.

  16. Dissection of the DNA mimicry of the bacteriophage T7 Ocr protein using chemical modification.

    PubMed

    Stephanou, Augoustinos S; Roberts, Gareth A; Cooper, Laurie P; Clarke, David J; Thomson, Andrew R; MacKay, C Logan; Nutley, Margaret; Cooper, Alan; Dryden, David T F

    2009-08-21

    The homodimeric Ocr (overcome classical restriction) protein of bacteriophage T7 is a molecular mimic of double-stranded DNA and a highly effective competitive inhibitor of the bacterial type I restriction/modification system. The surface of Ocr is replete with acidic residues that mimic the phosphate backbone of DNA. In addition, Ocr also mimics the overall dimensions of a bent 24-bp DNA molecule. In this study, we attempted to delineate these two mechanisms of DNA mimicry by chemically modifying the negative charges on the Ocr surface. Our analysis reveals that removal of about 46% of the carboxylate groups per Ocr monomer results in an approximately 50-fold reduction in binding affinity for a methyltransferase from a model type I restriction/modification system. The reduced affinity between Ocr with this degree of modification and the methyltransferase is comparable with the affinity of DNA for the methyltransferase. Additional modification to remove approximately 86% of the carboxylate groups further reduces its binding affinity, although the modified Ocr still binds to the methyltransferase via a mechanism attributable to the shape mimicry of a bent DNA molecule. Our results show that the electrostatic mimicry of Ocr increases the binding affinity for its target enzyme by up to approximately 800-fold.

  17. Zinc-binding Domain of the Bacteriophage T7 DNA Primase Modulates Binding to the DNA Template*

    PubMed Central

    Lee, Seung-Joo; Zhu, Bin; Akabayov, Barak; Richardson, Charles C.

    2012-01-01

    The zinc-binding domain (ZBD) of prokaryotic DNA primases has been postulated to be crucial for recognition of specific sequences in the single-stranded DNA template. To determine the molecular basis for this role in recognition, we carried out homolog-scanning mutagenesis of the zinc-binding domain of DNA primase of bacteriophage T7 using a bacterial homolog from Geobacillus stearothermophilus. The ability of T7 DNA primase to catalyze template-directed oligoribonucleotide synthesis is eliminated by substitution of any five-amino acid residue-long segment within the ZBD. The most significant defect occurs upon substitution of a region (Pro-16 to Cys-20) spanning two cysteines that coordinate the zinc ion. The role of this region in primase function was further investigated by generating a protein library composed of multiple amino acid substitutions for Pro-16, Asp-18, and Asn-19 followed by genetic screening for functional proteins. Examination of proteins selected from the screening reveals no change in sequence-specific recognition. However, the more positively charged residues in the region facilitate DNA binding, leading to more efficient oligoribonucleotide synthesis on short templates. The results suggest that the zinc-binding mode alone is not responsible for sequence recognition, but rather its interaction with the RNA polymerase domain is critical for DNA binding and for sequence recognition. Consequently, any alteration in the ZBD that disturbs its conformation leads to loss of DNA-dependent oligoribonucleotide synthesis. PMID:23024359

  18. A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells.

    PubMed

    Erb, Marcella L; Kraemer, James A; Coker, Joanna K C; Chaikeeratisak, Vorrapon; Nonejuie, Poochit; Agard, David A; Pogliano, Joe

    2014-11-27

    Dynamic instability, polarity, and spatiotemporal organization are hallmarks of the microtubule cytoskeleton that allow formation of complex structures such as the eukaryotic spindle. No similar structure has been identified in prokaryotes. The bacteriophage-encoded tubulin PhuZ is required to position DNA at mid-cell, without which infectivity is compromised. Here, we show that PhuZ filaments, like microtubules, stochastically switch from growing in a distinctly polar manner to catastrophic depolymerization (dynamic instability) both in vitro and in vivo. One end of each PhuZ filament is stably anchored near the cell pole to form a spindle-like array that orients the growing ends toward the phage nucleoid so as to position it near mid-cell. Our results demonstrate how a bacteriophage can harness the properties of a tubulin-like cytoskeleton for efficient propagation. This represents the first identification of a prokaryotic tubulin with the dynamic instability of microtubules and the ability to form a simplified bipolar spindle.

  19. Characterization of DNA conformation inside bacterial viruses

    NASA Astrophysics Data System (ADS)

    Petrov, Anton S.; Locker, C. Rebecca; Harvey, Stephen C.

    2009-08-01

    In this study we develop a formalism to describe the organization of DNA inside bacteriophage capsids during genome packaging. We have previously shown that DNA inside bacteriophage phi29 (ϕ29) is organized into folded toroids [A. S. Petrov and S. C. Harvey, Structure 15, 21 (2007)], whereas epsilon15 (ɛ15) reveals the coaxial organization of the genetic material [A. S. Petrov, K. Lim-Hing, and S. C. Harvey, Structure 15, 807 (2007)]. We now show that each system undergoes two consecutive transitions. The first transition corresponds to the formation of global conformations and is analogous to a disorder-order conformational transition. The second transition is characterized by a significant loss of DNA mobility at the local level leading to glasslike dynamic behavior. Packing genetic material inside bacteriophages can be used as a general model to study the behavior of semiflexible chains inside confined spaces, and the proposed formalism developed here can be used to study other systems of linear polymer chains confined to closed spaces.

  20. Biological responses to the simulated Martian UV radiation of bacteriophages and isolated DNA.

    PubMed

    Fekete, Andrea; Kovács, Gáspár; Hegedüs, Márton; Módos, Károly; Lammer, Helmut

    2008-08-21

    Mars is considered as a main target for astrobiologically relevant exploration programmes. In this work the effect of simulated Martian solar UV radiation was examined on bacteriophage T7 and on isolated T7 DNA. A decrease of the biological activity of phages, characteristic changes in the absorption spectrum and in the electrophoretic pattern of isolated DNA/phage and the decrease of the amount of PCR products were detected indicating damage of isolated and intraphage T7 DNA by UV radiation. Further mechanistic insights into the UV-induced formation of intraphage/isolated T7 DNA photoproducts were gained from the application of appropriate enzymatic digestion and neutral/alkaline agarose gel electrophoresis. Our results showed that intraphage DNA was about ten times more sensitive to simulated Martian UV radiation than isolated T7 DNA indicating the role of phage proteins in the DNA damage. Compared to solar UV radiation the total amount of DNA damage determined by QPCR was about ten times larger in isolated DNA and phage T7 as well, and the types of the DNA photoproducts were different, besides cyclobutane pyrimidine dimers (CPD), double-strand breaks (dsb), and single-strand breaks (ssb), DNA-protein cross-links were produced as well. Surprisingly, energy deposition as low as 4-6 eV corresponding to 200-400 nm range could induce significant amount of ssb and dsb in phage/isolated DNA (in phage the ratio of ssb/dsb was approximately 23%/12% and approximately 32%/19% in isolated DNA). 5-8% of the CPD, 3-5% of the AP (apurinic/apyrimidinic) sites were located in clusters in DNA/phage, suggesting that clustering of damage occur in the form of multiple damaged sites and these can have a high probability to produce strand breaks. The amount of total DNA damage in samples which were irradiated in Tris buffer was reduced by a factor approximately 2, compared to samples in phosphate buffer, suggesting that some of the photoproducts were produced via radicals.

  1. Subunit Conformations and Assembly States of a DNA Translocating Motor: The Terminase of Bacteriophage P22

    PubMed Central

    Němeček, Daniel; Gilcrease, Eddie B.; Kang, Sebyung; Prevelige, Peter E.; Casjens, Sherwood; Thomas, George J.

    2007-01-01

    Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42 kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an α/β fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly α-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wildtype gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112 → Thr) that forms a ten subunit ring, despite a subunit fold indistinguishable from wildtype. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages. PMID:17945256

  2. Transfection of Actinomyces spp. by genomic DNA of bacteriophages from human dental plaque.

    PubMed

    Yeung, M K; Kozelsky, C S

    1997-01-01

    Bacteriophages that produced turbid or clear zones of lysis in strains of Actinomyces were isolated from 22 of 124 samples of fresh human dental plaque. All human and nonhuman strains of Actinomyces viscosus or Actinomyces naeslundii tested in this study were sensitive to infection by one or more of these phages. In contrast, none of the Actinomyces odontolyticus, Actinomyces israelii, or Actinomyces bovis strains tested were susceptible. Results of restriction endonuclease analyses indicated that the genomes of these phages consisted of double-stranded DNA molecules ranging in size between 16 and 60 kbp. Sequence homology under hybridization conditions of high stringency was observed among a few of the isolated phages. A lysogenized isolate of A. viscosus MG-1 was obtained following infection with a temperate phage, designated phi 225. Results of Southern blot analyses indicated that phi 225 replicated as a plasmid in the lysogenized strain. Genomic DNA from several lytic phages was used to establish conditions for transfection by electroporation of strains of Actinomyces spp. Efficiencies of DNA transfer ranged from 10(2) to 10(5) plaque-forming units per microgram of DNA were obtained under optimal transfection conditions. The results of these studies demonstrate that transfer of genetic information in Actinomyces spp. can be achieved by transfection.

  3. Isolation of bacteriophages from Bartonella vinsonii subsp. berkhoffii and the characterization of Pap31 gene sequences from bacterial and phage DNA.

    PubMed

    Maggi, Ricardo G; Breitschwerdt, Edward B

    2005-01-01

    Bacteriophages enhance bacterial survival, facilitate bacterial adaptation to new environmental conditions, assist in the adaptation to a new host species, and enhance bacterial evasion or inactivation of host defense mechanisms. We describe the detection and purification of a novel tailed bacteriophage from Bartonella vinsonii subsp. berkhoffii, which was previously described as a bacteriophage-negative species. We also compare B. vinsonii subsp. berkhoffi Pap31 bacteriophage gene sequences to B. henselae (Houston I), and B. quintana (Fuller) bacteriophage Pap31 sequences. Negative staining electron microscopy of log phase culturesof B. vinsonii subsp. berkhoffii identified bacteriophages, possessing a 50-nm icosahedric head diameter and a 60- to 80-nm contractile tail. Sequence analysis of the bacteriophage Pap31 gene from B. vinsonii subsp. berkhoffii showed three consensus sequences and a 12-bp insertion when compared with Pap31 gene sequences from B. henselae (Houston I) and B. quintana (Fuller) bacteriophages. Isolation of B. vinsonii subsp. berkhoffii bacteriophages containing a Pap31 gene suggests that this heme-binding protein gene might play an important role in bacterial virulence through the genetic exchange of DNA within this subspecies. Defining phage-associated genes may also contribute to the enhanced understanding of the evolutionary relationships among members of the genus Bartonella.

  4. Protease-sensitive transfection of Bacillus subtilis with bacteriophage GA-1 DNA: a probable case of heterologous transfection.

    PubMed

    Arwert, F; Venema, G

    1974-03-01

    The host bacterium of bacteriophage GA-1, Bacillus sp. G1R, was compared with respect to its taxonomic relationship to Bacillus subtilis, B. licheniformis, and B. pumilis. The physiological-biochemical properties of Bacillus sp. G1R are equal to those of B. licheniformis, but the thermal denaturation midpoint of G1R DNA differs by 3 C and the buoyant density by 0.005 g/cm(3) from that of B. licheniformis. Transformation with G1R donor DNA was neither observed in B. licheniformis nor in B. subtilis-competent recipients. Bacteriophage GA-1 shows neither infectivity on B. licheniformis nor on B. subtilis. However, infection of competent B. subtilis cultures with phenol-extracted GA-1 DNA results in the production of infective GA-1 particles. The transfecting activity of GA-1 DNA is destroyed by treatment with proteolytic enzymes. Resistance of transfecting DNA to inactivation by trypsin develops earlier than that to inactivation by DNase. Protease-treated GA-1 DNA competes with transforming DNA to approximately the same extent as does untreated GA-1 DNA, suggesting that uptake of GA-1 DNA is not affected by protease treatment. CsCl density gradient centrifugation reveals that the density of trypsinized GA-1 DNA is 0.004 g/cm(3) greater than that of untreated DNA.

  5. DNA driven self-assembly of micron-sized rods using DNA-grafted bacteriophage fd virions

    NASA Astrophysics Data System (ADS)

    Unwin, R. R.; Cabanas, R. A.; Yanagishima, T.; Blower, T. R.; Takahashi, H.; Salmond, G. P. C.; Edwardson, J. M.; Fraden, S.; Eiser, E.

    We have functionalized the sides of fd bacteriophage virions with oligonucleotides to induce DNA hybridization driven self-assembly of high aspect ratio filamentous particles. Potential impacts of this new structure range from an entirely new building block in DNA origami structures, inclusion of virions in DNA nanostructures and nanomachines, to a new means of adding thermotropic control to lyotropic liquid crystal systems. A protocol for producing the virions in bulk is reviewed. Thiolated oligonucleotides are attached to the viral capsid using a heterobifunctional chemical linker. A commonly used system is utilized, where a sticky, single-stranded DNA strand is connected to an inert double-stranded spacer to increase inter-particle connectivity. Solutions of fd virions carrying complementary strands are mixed, annealed, and their aggregation is studied using dynamic light scattering (DLS), fluorescence microscopy, and atomic force microscopy (AFM). Aggregation is clearly observed on cooling, with some degree of local order, and is reversible when temperature is cycled through the DNA hybridization transition.

  6. Structural analysis of bacteriophage T4 DNA replication: a review in the Virology Journal series on bacteriophage T4 and its relatives

    PubMed Central

    2010-01-01

    The bacteriophage T4 encodes 10 proteins, known collectively as the replisome, that are responsible for the replication of the phage genome. The replisomal proteins can be subdivided into three activities; the replicase, responsible for duplicating DNA, the primosomal proteins, responsible for unwinding and Okazaki fragment initiation, and the Okazaki repair proteins. The replicase includes the gp43 DNA polymerase, the gp45 processivity clamp, the gp44/62 clamp loader complex, and the gp32 single-stranded DNA binding protein. The primosomal proteins include the gp41 hexameric helicase, the gp61 primase, and the gp59 helicase loading protein. The RNaseH, a 5' to 3' exonuclease and T4 DNA ligase comprise the activities necessary for Okazaki repair. The T4 provides a model system for DNA replication. As a consequence, significant effort has been put forth to solve the crystallographic structures of these replisomal proteins. In this review, we discuss the structures that are available and provide comparison to related proteins when the T4 structures are unavailable. Three of the ten full-length T4 replisomal proteins have been determined; the gp59 helicase loading protein, the RNase H, and the gp45 processivity clamp. The core of T4 gp32 and two proteins from the T4 related phage RB69, the gp43 polymerase and the gp45 clamp are also solved. The T4 gp44/62 clamp loader has not been crystallized but a comparison to the E. coli gamma complex is provided. The structures of T4 gp41 helicase, gp61 primase, and T4 DNA ligase are unknown, structures from bacteriophage T7 proteins are discussed instead. To better understand the functionality of T4 DNA replication, in depth structural analysis will require complexes between proteins and DNA substrates. A DNA primer template bound by gp43 polymerase, a fork DNA substrate bound by RNase H, gp43 polymerase bound to gp32 protein, and RNase H bound to gp32 have been crystallographically determined. The preparation and

  7. Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus

    NASA Astrophysics Data System (ADS)

    Jiang, Wen; Chang, Juan; Jakana, Joanita; Weigele, Peter; King, Jonathan; Chiu, Wah

    2006-02-01

    The critical viral components for packaging DNA, recognizing and binding to host cells, and injecting the condensed DNA into the host are organized at a single vertex of many icosahedral viruses. These component structures do not share icosahedral symmetry and cannot be resolved using a conventional icosahedral averaging method. Here we report the structure of the entire infectious Salmonella bacteriophage epsilon15 (ref. 1) determined from single-particle cryo-electron microscopy, without icosahedral averaging. This structure displays not only the icosahedral shell of 60 hexamers and 11 pentamers, but also the non-icosahedral components at one pentameric vertex. The densities at this vertex can be identified as the 12-subunit portal complex sandwiched between an internal cylindrical core and an external tail hub connecting to six projecting trimeric tailspikes. The viral genome is packed as coaxial coils in at least three outer layers with ~90 terminal nucleotides extending through the protein core and the portal complex and poised for injection. The shell protein from icosahedral reconstruction at higher resolution exhibits a similar fold to that of other double-stranded DNA viruses including herpesvirus, suggesting a common ancestor among these diverse viruses. The image reconstruction approach should be applicable to studying other biological nanomachines with components of mixed symmetries.

  8. DNA Recognition by the DNA Primase of Bacteriophage T7: A Structure Function Study of the Zinc-Binding Domain

    SciTech Connect

    Akabayov, B.; Lee, S; Akabayov, S; Rekhi, S; Zhu, B; Richardson, C

    2009-01-01

    Synthesis of oligoribonucleotide primers for lagging-strand DNA synthesis in the DNA replication system of bacteriophage T7 is catalyzed by the primase domain of the gene 4 helicase-primase. The primase consists of a zinc-binding domain (ZBD) and an RNA polymerase (RPD) domain. The ZBD is responsible for recognition of a specific sequence in the ssDNA template whereas catalytic activity resides in the RPD. The ZBD contains a zinc ion coordinated with four cysteine residues. We have examined the ligation state of the zinc ion by X-ray absorption spectroscopy and biochemical analysis of genetically altered primases. The ZBD of primase engaged in catalysis exhibits considerable asymmetry in coordination to zinc, as evidenced by a gradual increase in electron density of the zinc together with elongation of the zinc-sulfur bonds. Both wild-type primase and primase reconstituted from purified ZBD and RPD have a similar electronic change in the level of the zinc ion as well as the configuration of the ZBD. Single amino acid replacements in the ZBD (H33A and C36S) result in the loss of both zinc binding and its structural integrity. Thus the zinc in the ZBD may act as a charge modulation indicator for the surrounding sulfur atoms necessary for recognition of specific DNA sequences.

  9. Conversion of bacteriophage G4 single-stranded viral DNA to double-stranded replicative form in dna mutants of Escherichia coli.

    PubMed

    Kodaira, K I; Taketo, A

    1977-05-17

    Host functions involved in synthesis of parental replicative form of bacteriophage G4 were investigated using various replication mutants of Escheria coli. In dna+ bacteria, conversion of single-stranded viral DNA to replicative form DNA was insensitive to 200 microng/ml of rifampicin or 25 microng/ml of chloramphenicol. At high temperature, synthesis of parental replicative form was unaffected in mutants thermosensitive for dnaA, dnaB, dnaC(D), dnaE or dnaH. In dnaG or dnaZ mutants, however, parental replicative from DNA synthesis was clearly thermosensitive at 43 degrees C. Although the host rep product was essential for viral multiplication, the conversion of single stranded to replicative form was independent of the rep function.

  10. Induction of single strand scission in bacteriophage phi X174 replicative form I DNA by mitomycin C.

    PubMed

    Ueda, K; Morita, J; Komano, T

    1981-03-01

    The action of mitomycin C on double-stranded replicative form I DNA (RF I DNA; supercoiled, covalently closed, circular duplex DNA) of bacteriophage phi X174 was investigated using the technique of agarose gel electrophoresis. Mitomycin C reduced with sodium hydrosulfite (sodium dithionite, Na2S2O4) caused single strand scission in phi X174 RF I DNA in the presence of Cu2+. Cu2+ was essential for this DNA cleave action, and other transition metal ions such as Fe2+, Fe3+, Mn2+, Co2+ and Zn2+ were of no effect. This DNA strand scission was inhibited by catalase (EC 1.11.1.6) and various radical scavengers. This DNA strand scission was caused by free oxygen radicals generated during autoxidation of reduced mitomycin C in the presence of Cu2+.

  11. Transfer of plasmid DNA to clinical coagulase-negative staphylococcal pathogens by using a unique bacteriophage.

    PubMed

    Winstel, Volker; Kühner, Petra; Krismer, Bernhard; Peschel, Andreas; Rohde, Holger

    2015-04-01

    Genetic manipulation of emerging bacterial pathogens, such as coagulase-negative staphylococci (CoNS), is a major hurdle in clinical and basic microbiological research. Strong genetic barriers, such as restriction modification systems or clustered regularly interspaced short palindromic repeats (CRISPR), usually interfere with available techniques for DNA transformation and therefore complicate manipulation of CoNS or render it impossible. Thus, current knowledge of pathogenicity and virulence determinants of CoNS is very limited. Here, a rapid, efficient, and highly reliable technique is presented to transfer plasmid DNA essential for genetic engineering to important CoNS pathogens from a unique Staphylococcus aureus strain via a specific S. aureus bacteriophage, Φ187. Even strains refractory to electroporation can be transduced by this technique once donor and recipient strains share similar Φ187 receptor properties. As a proof of principle, this technique was used to delete the alternative transcription factor sigma B (SigB) via allelic replacement in nasal and clinical Staphylococcus epidermidis isolates at high efficiencies. The described approach will allow the genetic manipulation of a wide range of CoNS pathogens and might inspire research activities to manipulate other important pathogens in a similar fashion.

  12. The roles of tryptophans in primer synthesis by the DNA primase of bacteriophage T7.

    PubMed

    Zhang, Huidong; Lee, Seung-Joo; Richardson, Charles C

    2012-07-06

    DNA primases catalyze the synthesis of oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Prokaryotic primases consist of a zinc-binding domain (ZBD) necessary for recognition of a specific template sequence and a catalytic RNA polymerase domain. Interactions of both domains with the DNA template and ribonucleotides are required for primer synthesis. Five tryptophan residues are dispersed in the primase of bacteriophage T7: Trp-42 in the ZBD and Trp-69, -97, -147, and -255 in the RNA polymerase domain. Previous studies showed that replacement of Trp-42 with alanine in the ZBD decreases primer synthesis, whereas substitution of non-aromatic residues for Trp-69 impairs both primer synthesis and delivery. However, the roles of tryptophan at position 97, 147, or 255 remain elusive. To investigate the essential roles of these residues, we replaced each tryptophan with the structurally similar tyrosine and examined the effect of this subtle alteration on primer synthesis. The substitution at position 42, 97, or 147 reduced primer synthesis, whereas substitution at position 69 or 255 did not. The functions of the tryptophans were further examined at each step of primer synthesis. Alteration of residue 42 disturbed the conformation of the ZBD and resulted in partial loss of the zinc ion, impairing binding to the ssDNA template. Replacement of Trp-97 with tyrosine reduced the binding affinity to NTP and the catalysis step. The replacement of Trp-147 with tyrosine also impaired the catalytic step. Therefore, Trp-42 is important in maintaining the conformation of the ZBD for template binding; Trp-97 contributes to NTP binding and the catalysis step; and Trp-147 maintains the catalysis step.

  13. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication

    PubMed Central

    Salas, Margarita; Holguera, Isabel; Redrejo-Rodríguez, Modesto; de Vega, Miguel

    2016-01-01

    Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5′ ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3′–5′ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and

  14. Tailed bacteriophages: the order caudovirales.

    PubMed

    Ackermann, H W

    1998-01-01

    genes preceding tail genes. Lytic enzymes were probably coded for. A part of the phage genome was nonessential and possibly bacterial. Were tailed phages general transductants since the beginning? 3. The virus infected its host from the outside, injecting its DNA. Replication involved transcription in several waves and formation of DNA concatemers. Novel phages were released by burst of the infected cell after lysis of host membranes by a peptidoglycan hydrolase (and a holin?). a. Capsids were assembled from a starting point, the connector, and around a scaffold. They underwent an elaborate maturation process involving protein cleavage and capsid expansion. Heads and tails were assembled separately and joined later. b. The DNA was cut to size and entered preformed capsids by a headful mechanism. 4. Subsequently, tailed phages diversified by: a. Evolving contractile or short tails and elongated heads. b. Exchanging genes or gene fragments with other phages. c. Becoming temperate by acquiring an integrase-excisionase complex, plasmid parts, or transposons. d. Acquiring DNA and RNA polymerases and other replication enzymes. e. Exchanging lysin genes with their hosts. f. Losing the ability to form concatemers as a consequence of acquiring transposons (Mu) or proteinprimed DNA polymerases (phi 29). Present-day tailed phages appear as chimeras, but their monophyletic origin is still inscribed in their morphology, genome structure, and replication strategy. It may also be evident in the three-dimensional structure of capsid and tail proteins. It is unlikely to be found in amino acid sequences because constitutive proteins must be so old that relationships were obliterated and most or all replication-, lysogeny-, and lysis-related proteins appear to have been borrowed. However, the sum of tailed phage properties and behavior is so characteristic that tailed phages cannot be confused with other viruses.

  15. Global gene expression analysis of two Streptococcus thermophilus bacteriophages using DNA microarray.

    PubMed

    Duplessis, Martin; Russell, W Michael; Romero, Dennis A; Moineau, Sylvain

    2005-09-30

    A custom microarray was developed to study the temporal gene expression of the two groups of phages infecting the Gram-positive lactic acid bacterium Streptococcus thermophilus. The complete genomic sequence of the virulent cos-type phage DT1 (34,815 bp) and the pac-type phage 2972 (34,704 bp) were used for the construction of the microarray. Gene expression was measured at nine time intervals (0, 2, 7, 12, 17, 22, 27, 32 and 37 min) during phage infection and an expression curve was determined for each gene. Each phage gene was then classified into one of the three traditional transcription classes and these data were used to generate the complete transcriptional map of DT1 and 2972. Phage DT1 possesses 18 early genes, 12 middle genes and 12 late-expressed genes whereas 2972 has 16 early, 11 middle and 14 late genes. The trends of the phage gene expression profiles were also confirmed by slot blot hybridizations. Significant differences were observed when comparing the transcriptional maps of DT1 and 2972 with those already available for the S. thermophilus phages Sfi19 and Sfi21. To our knowledge, this report presents the first complete transcription analysis of bacteriophages infecting Gram-positive bacteria using the DNA microarray technology.

  16. Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages

    SciTech Connect

    Sun, Siyang; Gao, Song; Kondabagil, Kiran; Xiang, Ye; Rossmann, Michael G.; Rao, Venigalla B.

    2012-04-04

    Tailed DNA bacteriophages assemble empty procapsids that are subsequently filled with the viral genome by means of a DNA packaging machine situated at a special fivefold vertex. The packaging machine consists of a 'small terminase' and a 'large terminase' component. One of the functions of the small terminase is to initiate packaging of the viral genome, whereas the large terminase is responsible for the ATP-powered translocation of DNA. The small terminase subunit has three domains, an N-terminal DNA-binding domain, a central oligomerization domain, and a C-terminal domain for interacting with the large terminase. Here we report structures of the central domain in two different oligomerization states for a small terminase from the T4 family of phages. In addition, we report biochemical studies that establish the function for each of the small terminase domains. On the basis of the structural and biochemical information, we propose a model for DNA packaging initiation.

  17. The scrunchworm hypothesis: transitions between A-DNA and B-DNA provide the driving force for genome packaging in double-stranded DNA bacteriophages.

    PubMed

    Harvey, Stephen C

    2015-01-01

    Double-stranded DNA bacteriophages have motors that drive the genome into preformed capsids, using the energy released by hydrolysis of ATP to overcome the forces opposing DNA packaging. Viral packaging motors are the strongest of all biological motors, but it is not known how they generate these forces. Several models for the process of mechanochemical force generation have been put forward, but there is no consensus on which, if any, of these is correct. All the existing models assume that protein-generated forces drive the DNA forward. The scrunchworm hypothesis proposes that the DNA molecule is the active force-generating core of the motor, not simply a substrate on which the motor operates. The protein components of the motor dehydrate a section of the DNA, converting it from the B form to the A form and shortening it by about 23%. The proteins then rehydrate the DNA, which converts back to the B form. Other regions of the motor grip and release the DNA to capture the shortening-lengthening motions of the B→A→B cycle ("scrunching"), so that DNA is pulled into the motor and pushed forward into the capsid. This DNA-centric mechanism provides a quantitative physical explanation for the magnitude of the forces generated by viral packaging motors. It also provides a simple explanation for the fact that each of the steps in the burst cycle advances the DNA by 2.5 base pairs. The scrunchworm hypothesis is consistent with a large body of published data, and it makes four experimentally testable predictions.

  18. ELECTRON MICROSCOPY OF SINGLE-STRANDED DNA: CIRCULARITY OF DNA OF BACTERIOPHAGE PHI-X174.

    PubMed

    FREIFELDER, D; KLEINSCHMIDT, A K; SINSHEIMER, R L

    1964-10-09

    The single-stranded DNA of coliphage X174 has been examined with the electron microscope by a modification of the protein-monolayer-adsorption technique. The molecules were found to be circular with a total length of 1.77 +/- 0.13 microns.

  19. In vitro construction of bacteriophage lambda carrying segments of the Escherichia coli chromosome: selection of hybrids containing the gene for DNA ligase.

    PubMed Central

    Cameron, J R; Panasenko, S M; Lehman, I R; Davis, R W

    1975-01-01

    DNA from lambdagt-lambdaB bacteriophage was cleaved with EcoRI endonuclease and fragments from EcoRI-digested E. coli DNA were inserted. This DNA was used to infect E. coli, and phages containing the gene for DNA ligase were isolated by genetic selection. Two different hybrids were found with the same E. coli segment inserted in opposite orientations. Both hybrids produced similar levels of ligase as measured in crude extracts of infected cells. Images PMID:1103146

  20. Structure and Energetics of Encapsidated DNA in Bacteriophage HK97 Studied by Scanning Calorimetry and Cryo-electron Microscopy

    PubMed Central

    Duda, Robert L.; Ross, Philip D.; Cheng, Naiqian; Firek, Brian A.; Hendrix, Roger W.; Conway, James F.; Steven, Alasdair C.

    2009-01-01

    Encapsidation of duplex DNA by bacteriophages represents an extreme case of genome condensation, reaching near-crystalline concentrations of DNA. The HK97 system is well suited to study this phenomenon in view of detailed knowledge of its capsid structure. To characterize the interactions involved, we combined calorimetry with cryo-EM and native gel electrophoresis. We found that, as in other phages, HK97 DNA is organized in coaxially wound nested shells. When scanned in buffer containing 1mM [Mg++], filled capsids exhibit a complex thermal profile between 82° and 96°, to which DNA melting and capsid denaturation both contribute. In the absence of (unbound) [Mg++], DNA melting shifts to lower temperatures and the two events are resolved. Filled capsids release their DNA at temperatures well below the onset of DNA melting or capsid denaturation. On heating, the internal pressure increases, causing the DNA to exit – probably, via the portal vertex; the capsid, although largely intact, sustains local damage that leads to an earlier onset of thermal denaturation. Filled capsids differ structurally from empty capsids in the curvature of their protein shell, a change attributable to outwards pressure exerted by the DNA. We propose that this transition is sensed by the portal which is embedded in the capsid wall, whereupon the portal's structure and its interactions with terminase, the packaging enzyme, are altered, thus signaling that packaging is at or approaching completion. PMID:19540242

  1. A mutational analysis of DNA mimicry by ocr, the gene 0.3 antirestriction protein of bacteriophage T7.

    PubMed

    Stephanou, Augoustinos S; Roberts, Gareth A; Tock, Mark R; Pritchard, Emily H; Turkington, Rachel; Nutley, Margaret; Cooper, Alan; Dryden, David T F

    2009-01-02

    The ocr protein of bacteriophage T7 is a structural and electrostatic mimic of approximately 24 base pairs of double-stranded B-form DNA. As such, it inhibits all Type I restriction and modification (R/M) enzymes by blocking their DNA binding grooves and inactivates them. This allows the infection of the bacterial cell by T7 to proceed unhindered by the action of the R/M defence system. We have mutated aspartate and glutamate residues on the surface of ocr to investigate their contribution to the tight binding between the EcoKI Type I R/M enzyme and ocr. Contrary to expectations, all of the single and double site mutations of ocr constructed were active as anti-R/M proteins in vivo and in vitro indicating that the mimicry of DNA by ocr is very resistant to change.

  2. Bacteriophage P1 pac sites inserted into the chromosome greatly increase packaging and transduction of Escherichia coli genomic DNA.

    PubMed

    Huang, Haomin; Masters, Millicent

    2014-11-01

    The Escherichia coli bacteriophage P1 packages host chromosome separately from phage DNA, and transfers it to recipient cells at low frequency in a process called generalized transduction. Phage genomes are packaged from concatemers beginning at a specific site, pac. To increase transduction rate, we have inserted pac into the chromosome at up to five equally spaced positions; at least this many are fully tolerated in the absence of P1 infection. A single chromosomal pac greatly increases transduction of downstream markers without decreasing phage yields; 3.5 × as much total chromosomal DNA is packaged. Additional insertions decrease phage yield by > 90% and also decrease phage DNA synthesis, although less dramatically. Packaging of chromosomal markers near to and downstream of each inserted pac site is, at the same time, increased by greater than 10 fold. Transduction of markers near an inserted pac site can be increased by over 1000-fold, potentially allowing identification of such transductants by screening.

  3. Interaction of a DNA-binding protein, the gene product of D5 of bacteriophage T5, with double-stranded DNA. Analysis by metrizamide gradient centrifugation.

    PubMed

    Fujimura, R K; Roop, B C

    1982-12-25

    Interactions of DNA and the gene product D5 (gpD5) of bacteriophage T5, a DNA-binding protein that binds preferentially and cooperatively to double-stranded DNA, were analyzed by metrizamide gradient centrifugation. Conditions were set so that DNA and DNA protein complex sedimented to apparent equilibrium positions. DNA has a buoyant density of 1.12 g/cm3, and DNA saturated with gpD5 has a buoyant density of 1.17 g/cm3. These values are independent of DNA size and base composition in the range studied. At gpD5 concentration below the saturation value in a low ionic strength buffer, DNA distribution is bimodal, indicating cooperative binding of gpD5 to DNA. However, in the presence of 10 mM MgCl2, the binding process becomes distributive, with the buoyant density increasing linearly with the amount of gpD5 added until the saturation. From these data, one molecule of gpD5 is calculated to cover 40 base pairs at saturation. The technique as described has general applicability to the study of any interaction between DNA and dNA-binding proteins that bind in sufficient amount to cause detectable changes in buoyant density.

  4. Targeted Delivery of Mutant Tolerant Anti-Coxsackievirus Artificial MicroRNAs Using Folate Conjugated Bacteriophage Phi29 pRNA

    PubMed Central

    Ye, Xin; Liu, Zhen; Hemida, Maged Gomaa; Yang, Decheng

    2011-01-01

    Background Myocarditis is the major heart disease in infants and young adults. It is very commonly caused by coxsackievirus B3 (CVB3) infection; however, no specific treatment or vaccine is available at present. RNA interference (RNAi)-based anti-viral therapy has shown potential to inhibit viral replication, but this strategy faces two major challenges; viral mutational escape from drug suppression and targeted delivery of the reagents to specific cell populations. Methodology/Principal Findings In this study, we designed artificial microRNAs (AmiRs) targeting the 3′untranslated region (3′UTR) of CVB3 genome with mismatches to the central region of their targeting sites. Antiviral evaluation showed that AmiR-1 and AmiR-2 reduced CVB3 (Kandolf and CG strains) replication approximately 100-fold in both HeLa cells and HL-1 cardiomyoctes. To achieve specific delivery, we linked AmiRs to the folate-conjugated bacterial phage packaging RNA (pRNA) and delivered the complexes into HeLa cells, a folate receptor positive cancer cells widely used as an in vitro model for CVB3 infection, via folate-mediated specific internalization. We found that our designed pRNA-AmiRs conjugates were tolerable to target mutations and have great potential to suppress viral mutational escape with little effect on triggering interferon induction. Conclusion/Significance This study provides important clues for designing AmiRs targeting the 3′UTR of viral genome. It also proves the feasibility of specific deliver of AmiRs using conjugated pRNA vehicles. These small AmiRs combined with pRNA-folate conjugates could form a promising system for antiviral drug development. PMID:21698212

  5. A novel method for diagnosis of smear-negative tuberculosis patients by combining a random unbiased Phi29 amplification with a specific real-time PCR.

    PubMed

    Pang, Yu; Lu, Jie; Yang, Jian; Wang, Yufeng; Cohen, Chad; Ni, Xin; Zhao, Yanlin

    2015-07-01

    In this study, we develop a novel method for diagnosis of smear-negative tuberculosis patients by performing a random unbiased Phi29 amplification prior to the use of a specific real-time PCR. The limit of detection (LOD) of the conventional real-time PCR was 100 colony-forming units (CFU) of MTB genome/reaction, while the REPLI real-time PCR assay could detect 0.4 CFU/reaction. In comparison with the conventional real-time PCR, REPLI real-time PCR shows better sensitivity for the detection of smear-negative tuberculosis (P = 0.015).

  6. The 29 DNA Polymerase: Protein-Primer Structure Suggests a Model of the Initiation to Elongation Transition

    SciTech Connect

    Kamtekar,S.; Berman, A.; Wang, J.; Lazaro, J.; Vega, M.; Blanco, L.; Salas, M.; Steitz, T.

    2006-01-01

    The absolute requirement for primers in the initiation of DNA synthesis poses a problem for replicating the ends of linear chromosomes. The DNA polymerase of bacteriophage {phi}29 solves this problem by using a serine hydroxyl of terminal protein to prime replication. The 3.0 Angstroms resolution structure shows one domain of terminal protein making no interactions, a second binding the polymerase and a third domain containing the priming serine occupying the same binding cleft in the polymerase as duplex DNA does during elongation. Thus, the progressively elongating DNA duplex product must displace this priming domain. Further, this heterodimer of polymerase and terminal protein cannot accommodate upstream template DNA, thereby explaining its specificity for initiating DNA synthesis only at the ends of the bacteriophage genome. We propose a model for the transition from the initiation to the elongation phases in which the priming domain of terminal protein moves out of the active site as polymerase elongates the primer strand. The model indicates that terminal protein should dissociate from polymerase after the incorporation of approximately six nucleotides.

  7. Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli

    PubMed Central

    Thomason, Lynn C.; Costantino, Nina

    2016-01-01

    ABSTRACT Recombineering, in vivo genetic engineering with bacteriophage homologous recombination systems, is a powerful technique for making genetic modifications in bacteria. Two systems widely used in Escherichia coli are the Red system from phage λ and RecET from the defective Rac prophage. We investigated the in vivo dependence of recombineering on DNA replication of the recombining substrate using plasmid targets. For λ Red recombination, when DNA replication of a circular target plasmid is prevented, recombination with single-stranded DNA oligonucleotides is greatly reduced compared to that under replicating conditions. For RecET recombination, when DNA replication of the targeted plasmid is prevented, the recombination frequency is also reduced, to a level identical to that seen for the Red system in the absence of replication. The very low level of oligonucleotide recombination observed in the absence of any phage recombination functions is the same in the presence or absence of DNA replication. In contrast, both the Red and RecET systems recombine a nonreplicating linear dimer plasmid with high efficiency to yield a circular monomer. Therefore, the DNA replication requirement is substrate dependent. Our data are consistent with recombination by both the Red and RecET systems occurring predominately by single-strand annealing rather than by strand invasion. PMID:27624131

  8. Mapping the interactions of the single-stranded DNA binding protein of bacteriophage T4 (gp32) with DNA lattices at single nucleotide resolution: gp32 monomer binding

    PubMed Central

    Jose, Davis; Weitzel, Steven E.; Baase, Walter A.; von Hippel, Peter H.

    2015-01-01

    Combining biophysical measurements on T4 bacteriophage replication complexes with detailed structural information can illuminate the molecular mechanisms of these ‘macromolecular machines’. Here we use the low energy circular dichroism (CD) and fluorescent properties of site-specifically introduced base analogues to map and quantify the equilibrium binding interactions of short (8 nts) ssDNA oligomers with gp32 monomers at single nucleotide resolution. We show that single gp32 molecules interact most directly and specifically near the 3′-end of these ssDNA oligomers, thus defining the polarity of gp32 binding with respect to the ssDNA lattice, and that only 2–3 nts are directly involved in this tight binding interaction. The loss of exciton coupling in the CD spectra of dimer 2-AP (2-aminopurine) probes at various positions in the ssDNA constructs, together with increases in fluorescence intensity, suggest that gp32 binding directly extends the sugar-phosphate backbone of this ssDNA oligomer, particularly at the 3′-end and facilitates base unstacking along the entire 8-mer lattice. These results provide a model (and ‘DNA map’) for the isolated gp32 binding to ssDNA targets, which serves as the nucleation step for the cooperative binding that occurs at transiently exposed ssDNA sequences within the functioning T4 DNA replication complex. PMID:26275775

  9. Pyrovanadolysis: a Pyrophosphorolysis-like Reaction Mediated by Pyrovanadate MN2plus and DNA Polymerase of Bacteriophage T7

    SciTech Connect

    B Akabayov; A Kulczyk; S Akabayov; C Thiele; L McLaughlin; B Beauchamp; C Richardson

    2011-12-31

    DNA polymerases catalyze the 3'-5'-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PP{sub i}). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5'-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PP{sub i}, a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-V distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PP{sub i} complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn{sup 2+}, larger than Mg{sup 2+}, fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our results may be the first documentation that vanadium can substitute for phosphorus in biological processes.

  10. Characterization of the defects in bacteriophage T7 DNA synthesis during growth in the Escherichia coli mutant tsnB.

    PubMed Central

    DeWyngaert, M A; Hinkle, D C

    1980-01-01

    The Escherichia coli mutant tsnB (M. Chamberlin, J. Virol. 14:509-516, 1974) is unable to support the growth of bacteriophage T7, although all classes of phage proteins are produced and the host is killed by the infection. During growth in this mutant host, the rate of phage DNA synthesis is reduced and the DNA is not packaged into stable, phagelike particles. The replicating DNA forms concatemers but the very large replicative intermediates (approximately 440S) identified by Paetkau et al. (J. Virol. 22:130-141, 1977) are not detected in T7+-infected tsnB cells. These large structures are formed in tsnB cells infected with a T7 gene 3 (endonuclease) mutant, where normal processing of the large intermediates into shorter concatemers is blocked. At later times during infection of tsnB cells, the replicating DNA accumulates in molecules about 30% shorter than unit length. Analysis of this DNA with a restriction endonuclease indicates that it is missing sequences from the ends (particularly the left end) of the genome. The loss of these specific sequences does not occur during infections with T7 gene 10 (head protein) or gene 19 (maturation protein) mutants. This suggests that the processing of concatemers into unit-length DNA molecules may occur normally in T7 -infected tsnB cells and that the shortened DNA arises from exonucleolytic degradation of the mature DNA molecules. These results are discussed in relation to our recent observation (M. A. DeWyngaert and D. C. Hinkle, J. Biol. Chem. 254:11247-11253, 1979) that E. coli tsnB produces an altered RNA polymerase which is resistance to inhibition by the T7 gene 2 protein. Images PMID:6997508

  11. Characterization of the defects in bacteriophage T7 DNA synthesis during growth in the Escherichia coli mutant tsnB.

    PubMed

    DeWyngaert, M A; Hinkle, D C

    1980-02-01

    The Escherichia coli mutant tsnB (M. Chamberlin, J. Virol. 14:509-516, 1974) is unable to support the growth of bacteriophage T7, although all classes of phage proteins are produced and the host is killed by the infection. During growth in this mutant host, the rate of phage DNA synthesis is reduced and the DNA is not packaged into stable, phagelike particles. The replicating DNA forms concatemers but the very large replicative intermediates (approximately 440S) identified by Paetkau et al. (J. Virol. 22:130-141, 1977) are not detected in T7+-infected tsnB cells. These large structures are formed in tsnB cells infected with a T7 gene 3 (endonuclease) mutant, where normal processing of the large intermediates into shorter concatemers is blocked. At later times during infection of tsnB cells, the replicating DNA accumulates in molecules about 30% shorter than unit length. Analysis of this DNA with a restriction endonuclease indicates that it is missing sequences from the ends (particularly the left end) of the genome. The loss of these specific sequences does not occur during infections with T7 gene 10 (head protein) or gene 19 (maturation protein) mutants. This suggests that the processing of concatemers into unit-length DNA molecules may occur normally in T7 -infected tsnB cells and that the shortened DNA arises from exonucleolytic degradation of the mature DNA molecules. These results are discussed in relation to our recent observation (M. A. DeWyngaert and D. C. Hinkle, J. Biol. Chem. 254:11247-11253, 1979) that E. coli tsnB produces an altered RNA polymerase which is resistance to inhibition by the T7 gene 2 protein.

  12. Binding of Mn-deoxyribonucleoside Triphosphates to the Active Site of the DNA Polymerase of Bacteriophage T7

    SciTech Connect

    B Akabayov; C Richardson

    2011-12-31

    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg{sup 2+}, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg{sup 2+} to an active site because Mg{sup 2+} is spectroscopically silent and Mg{sup 2+} binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg{sup 2+} with Mn{sup 2+}:Mn{sup 2+} that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn{sup 2+} is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn{sup 2+} that is free in solution and Mn{sup 2+} bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.

  13. Second-step transfer of bacteriophage T5 DNA: purification and characterization of the T5 gene A2 protein.

    PubMed Central

    Snyder, C E; Benzinger, R H

    1981-01-01

    Second-step transfer of bacteriophage T5 DNA requires the function of the T5 pre-early proteins A1 and A2. We have isolated and characterized the gene A2 protein as part of an effort to determine the mechanism of second-step transfer. The A2 protein was purified by DNA-cellulose column chromatography followed by gel filtration and ion-exchange column chromatography. The A2 protein's identity was confirmed by two-dimensional gel electrophoresis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and thin-layer gel filtration in 6 M guanidine hydrochloride demonstrated a molecular weight of 15,000 for the A2 polypeptide. Migration of the A2 protein through gel filtration columns under nondenaturing conditions, in combination with sedimentation behavior, indicated dimerization of the A2 polypeptide. The existence of the A2 dimer was confirmed by protein cross-linking with dimethyl suberimidate and analysis of the cross-linked proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid composition, degree of polymerization, DNA-binding ability, and physical characteristics of the T5 gene A2 protein are consistent with a function of the A2 protein in DNA transfer. Images PMID:7288924

  14. Differential bacteriophage mortality on exposure to copper.

    PubMed

    Li, Jinyu; Dennehy, John J

    2011-10-01

    Many studies report that copper can be used to control microbial growth, including that of viruses. We determined the rates of copper-mediated inactivation for a wide range of bacteriophages. We used two methods to test the effect of copper on bacteriophage survival. One method involved placing small volumes of bacteriophage lysate on copper and stainless steel coupons. Following exposure, metal coupons were rinsed with lysogeny broth, and the resulting fluid was serially diluted and plated on agar with the corresponding bacterial host. The second method involved adding copper sulfate (CuSO(4)) to bacteriophage lysates to a final concentration of 5 mM. Aliquots were removed from the mixture, serially diluted, and plated with the appropriate bacterial host. Significant mortality was observed among the double-stranded RNA (dsRNA) bacteriophages Φ6 and Φ8, the single-stranded RNA (ssRNA) bacteriophage PP7, the ssDNA bacteriophage ΦX174, and the dsDNA bacteriophage PM2. However, the dsDNA bacteriophages PRD1, T4, and λ were relatively unaffected by copper. Interestingly, lipid-containing bacteriophages were most susceptible to copper toxicity. In addition, in the first experimental method, the pattern of bacteriophage Φ6 survival over time showed a plateau in mortality after lysates dried out. This finding suggests that copper's effect on bacteriophage is mediated by the presence of water.

  15. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions

    PubMed Central

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction. PMID:24995125

  16. Inhibition of transcription of cytosine-containing DNA in vitro by the alc gene product of bacteriophage T4.

    PubMed Central

    Drivdahl, R H; Kutter, E M

    1990-01-01

    The alc gene product (gpalc) of bacteriophage T4 inhibits the transcription of cytosine-containing DNA in vivo. We examined its effect on transcription in vitro by comparing RNA polymerase isolated from Escherichia coli infected with either wild-type T4D+ or alc mutants. A 50 to 60% decline in RNA polymerase activity, measured on phage T7 DNA, was observed by 1 min after infection with either T4D+ or alc mutants; this did not occur when the infecting phage lacked gpalt. In the case of the T4D+ strain but not alc mutants, this was followed by a further decrease. By 5 min after infection the activity of alc mutants was 1.5 to 2.5 times greater than that of the wild type on various cytosine-containing DNA templates, whereas there was little or no difference in activity on T4 HMdC-DNA, in agreement with the in vivo specificity. Effects on transcript initiation and elongation were distinguished by using a T7 phage DNA template. Rifampin challenge, end-labeling with [gamma-32P]ATP, and selective initiation with a dinucleotide all indicate that the decreased in vitro activity of the wild-type polymerase relative to that of the alc mutants was due to inhibition of elongation, not to any difference in initiation rates. Wild-type (but not mutated) gpalc copurified with RNA polymerase on heparin agarose but not in subsequent steps. Immunoprecipitation of modified RNA polymerase also indicated that gpalc was not tightly bound to RNA polymerase intracellularly. It thus appears likely that gpalc inhibits transcript elongation on cytosine-containing DNA by interacting with actively transcribing core polymerase as a complex with the enzyme and cytosine-rich stretches of the template. Images PMID:2185231

  17. DPS - a rapid method for genome sequencing of DNA-containing bacteriophages directly from a single plaque.

    PubMed

    Kot, Witold; Vogensen, Finn K; Sørensen, Søren J; Hansen, Lars H

    2014-02-01

    Bacteriophages (phages) coexist with bacteria in all environments and influence microbial diversity, evolution and industrial production processes. As a result of this major impact of phages on microbes, tools that allow rapid characterization of phages are needed. Today, one of the most powerful methods for characterization of phages is determination of the whole genome using high throughput sequencing approaches. Here a direct plaque sequencing (DPS) is described, which is a rapid method that allows easy full genome sequencing of DNA-containing phages using the Nextera XT™ kit. A combination of host-DNA removal followed by purification and concentration of the viral DNA, allowed the construction of Illumina-compatible sequencing libraries using the Nextera™ XT technology directly from single phage plaques without any whole genome amplification step. This method was tested on three Caudovirales phages; ϕ29 Podoviridae, P113g Siphoviridae and T4 Myovirdae, which are representative of >96% of all known phages, and were sequenced using the Illumina MiSeq platform. Successful de novo assembly of the viral genomes was possible.

  18. Location of the unique integration site on an Escherichia coli chromosome by bacteriophage lambda DNA in vivo

    PubMed Central

    Tal, Asaf; Arbel-Goren, Rinat; Costantino, Nina; Court, Donald L.; Stavans, Joel

    2014-01-01

    The search for specific sequences on long genomes is a key process in many biological contexts. How can specific target sequences be located with high efficiency, within physiologically relevant times? We addressed this question for viral integration, a fundamental mechanism of horizontal gene transfer driving prokaryotic evolution, using the infection of Escherichia coli bacteria with bacteriophage λ and following the establishment of a lysogenic state. Following the targeting process in individual live E. coli cells in real time revealed that λ DNA remains confined near the entry point of a cell following infection. The encounter between the 15-bp-long target sequence on the chromosome and the recombination site on the viral genome is facilitated by the directed motion of bacterial DNA generated during chromosome replication, in conjunction with constrained diffusion of phage DNA. Moving the native bacterial integration site to different locations on the genome and measuring the integration frequency in these strains reveals that the frequencies of the native site and a site symmetric to it relative to the origin are similar, whereas both are significantly higher than when the integration site is moved near the terminus, consistent with the replication-driven mechanism we propose. This novel search mechanism is yet another example of the exquisite coevolution of λ with its host. PMID:24799672

  19. Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase

    PubMed Central

    Morin, José A.; Cao, Francisco J.; Lázaro, José M.; Arias-Gonzalez, J. Ricardo; Valpuesta, José M.; Carrascosa, José L.; Salas, Margarita; Ibarra, Borja

    2015-01-01

    During DNA replication replicative polymerases move in discrete mechanical steps along the DNA template. To address how the chemical cycle is coupled to mechanical motion of the enzyme, here we use optical tweezers to study the translocation mechanism of individual bacteriophage Phi29 DNA polymerases during processive DNA replication. We determine the main kinetic parameters of the nucleotide incorporation cycle and their dependence on external load and nucleotide (dNTP) concentration. The data is inconsistent with power stroke models for translocation, instead supports a loose-coupling mechanism between chemical catalysis and mechanical translocation during DNA replication. According to this mechanism the DNA polymerase works by alternating between a dNTP/PPi-free state, which diffuses thermally between pre- and post-translocated states, and a dNTP/PPi-bound state where dNTP binding stabilizes the post-translocated state. We show how this thermal ratchet mechanism is used by the polymerase to generate work against large opposing loads (∼50 pN). PMID:25800740

  20. Photodynamic Inactivation of Antigenic Determinants of Single-Stranded DNA Bacteriophage φX174

    PubMed Central

    Khan, Narayan C.; Poddar, Ramendra K.

    1974-01-01

    Bacteriophage φX174 when photodynamically inactivated (i.e., when rendered unable to produce plaques as a result of exposure to visible light in air in the presence of proflavine) progressively lost their capacity to bind efficiently with homologous antiserum. Such loss of serum-blocking power was evident with heat-inactivated but not with UV-irradiated phage. The ability of the phages to adsorb to host cells, however, remained practically unaltered even after photodynamic inactivation. It thus appears that photodynamic damages in the so-called “jacket” component of the φX174 coat proteins are partly responsible for the loss of plaque-forming ability, whereas the “spikes” are either poor antigens or insensitive to photodynamic treatment. PMID:4132921

  1. Genetic recombination induced by DNA double-strand break in bacteriophage T4: nature of the left/right bias.

    PubMed

    Shcherbakov, Victor P; Shcherbakova, Tamara; Plugina, Lidiya; Sizova, Svetlana; Kudryashova, Elena; Granovsky, Igor

    2008-06-01

    The experimental system combining double-strand breaks (DSBs), produced site-specifically by SegC endonuclease, with the famous advantages of the bacteriophage T4 rII mutant recombination analysis was used here to elucidate the origin of the recombination bias on two sides of the DSB, especially pronounced in gene 39 (topoisomerase II) and gene 59 (41-helicase loader) mutants. Three sources were found to contribute to the bias: (1) the SegC endonuclease may remain bound to the end of the broken DNA and thus protect it from exonuclease degradation; (2) in heteroduplex heterozygotes (HHs), arising as the recombinant products in the left-hand crosses, the transcribed strands are of rII mutant phenotype, so they, in contrast to the right-hand HHs, do not produce plaques on the lawn of the lambda-lysogenic host; and (3) the intrinsic polarity of T4 chromosome, reflected in transcription, may be a cause for discrimination of promoter-proximal and promoter-distal DNA sequences. It is shown that the apparent recombination bias does not imply one-sidedness of the DSB repair but just reflects a different depth of the end processing. It is inferred that the cause, underlying the "intrinsic" bias, might be interference between strand exchange and transcription. Topoisomerase and helicase functions are necessary to turn the process in favor of strand exchange. The idea is substantiated that the double-stranded to single-stranded DNA transition edge (not ss-DNA tip) serves as an actual recombinogenic element.

  2. Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor

    PubMed Central

    Reyes-Aldrete, Emilio; Sherman, Michael B.; Woodson, Michael; Atz, Rockney; Grimes, Shelley; Jardine, Paul J.; Morais, Marc C.

    2016-01-01

    SUMMARY Ring NTPases are a class of ubiquitous molecular motors involved in basic biological partitioning processes. dsDNA viruses encode ring ATPases that translocate their genomes to near-crystalline densities within pre-assembled viral capsids. Here, X-ray crystallography, cryoEM, and biochemical analyses of the dsDNA packaging motor in bacteriophage phi29 show how individual subunits are arranged in a pentameric ATPase ring, and suggest how their activities are coordinated to translocate dsDNA. The resulting pseudo-atomic structure of the motor and accompanying functional analyses show how ATP is bound in the ATPase active site; identify two DNA contacts, including a potential DNA translocating loop; demonstrate that a trans-acting arginine finger is involved in coordinating hydrolysis around the ring; and suggest a functional coupling between the arginine finger and the DNA translocating loop. The ability to visualize the motor in action illuminates how the different motor components interact with each other and with their DNA substrate. PMID:26904950

  3. Development of a New Method for Detection and Identification of Oenococcus oeni Bacteriophages Based on Endolysin Gene Sequence and Randomly Amplified Polymorphic DNA

    PubMed Central

    Doria, Francesca; Napoli, Chiara; Costantini, Antonella; Berta, Graziella; Saiz, Juan-Carlos

    2013-01-01

    Malolactic fermentation (MLF) is a biochemical transformation conducted by lactic acid bacteria (LAB) that occurs in wine at the end of alcoholic fermentation. Oenococcus oeni is the main species responsible for MLF in most wines. As in other fermented foods, where bacteriophages represent a potential risk for the fermentative process, O. oeni bacteriophages have been reported to be a possible cause of unsuccessful MLF in wine. Thus, preparation of commercial starters that take into account the different sensitivities of O. oeni strains to different phages would be advisable. However, currently, no methods have been described to identify phages infecting O. oeni. In this study, two factors are addressed: detection and typing of bacteriophages. First, a simple PCR method was devised targeting a conserved region of the endolysin (lys) gene to detect temperate O. oeni bacteriophages. For this purpose, 37 O. oeni strains isolated from Italian wines during different phases of the vinification process were analyzed by PCR for the presence of the lys gene, and 25 strains gave a band of the expected size (1,160 bp). This is the first method to be developed that allows identification of lysogenic O. oeni strains without the need for time-consuming phage bacterial-lysis induction methods. Moreover, a phylogenetic analysis was conducted to type bacteriophages. After the treatment of bacteria with UV light, lysis was obtained for 15 strains, and the 15 phage DNAs isolated were subjected to two randomly amplified polymorphic DNA (RAPD)-PCRs. By combining the RAPD profiles and lys sequences, 12 different O. oeni phages were clearly distinguished. PMID:23728816

  4. Development of a new method for detection and identification of Oenococcus oeni bacteriophages based on endolysin gene sequence and randomly amplified polymorphic DNA.

    PubMed

    Doria, Francesca; Napoli, Chiara; Costantini, Antonella; Berta, Graziella; Saiz, Juan-Carlos; Garcia-Moruno, Emilia

    2013-08-01

    Malolactic fermentation (MLF) is a biochemical transformation conducted by lactic acid bacteria (LAB) that occurs in wine at the end of alcoholic fermentation. Oenococcus oeni is the main species responsible for MLF in most wines. As in other fermented foods, where bacteriophages represent a potential risk for the fermentative process, O. oeni bacteriophages have been reported to be a possible cause of unsuccessful MLF in wine. Thus, preparation of commercial starters that take into account the different sensitivities of O. oeni strains to different phages would be advisable. However, currently, no methods have been described to identify phages infecting O. oeni. In this study, two factors are addressed: detection and typing of bacteriophages. First, a simple PCR method was devised targeting a conserved region of the endolysin (lys) gene to detect temperate O. oeni bacteriophages. For this purpose, 37 O. oeni strains isolated from Italian wines during different phases of the vinification process were analyzed by PCR for the presence of the lys gene, and 25 strains gave a band of the expected size (1,160 bp). This is the first method to be developed that allows identification of lysogenic O. oeni strains without the need for time-consuming phage bacterial-lysis induction methods. Moreover, a phylogenetic analysis was conducted to type bacteriophages. After the treatment of bacteria with UV light, lysis was obtained for 15 strains, and the 15 phage DNAs isolated were subjected to two randomly amplified polymorphic DNA (RAPD)-PCRs. By combining the RAPD profiles and lys sequences, 12 different O. oeni phages were clearly distinguished.

  5. The annotated complete DNA sequence of Enterococcus faecalis bacteriophage φEf11 and its comparison with all available phage and predicted prophage genomes.

    PubMed

    Stevens, Roy H; Ektefaie, Mahmoud R; Fouts, Derrick E

    2011-04-01

    φEf11 is a temperate Siphoviridae bacteriophage isolated by induction from a lysogenic Enterococcus faecalis strain. The φEf11 DNA was completely sequenced and found to be 42,822 bp in length, with a G+C mol% of 34.4%. Genome analysis revealed 65 ORFs, accounting for 92.8% of the DNA content. All except for seven of the ORFs displayed sequence similarities to previously characterized proteins. The genes were arranged in functional modules, organized similar to that of several other phages of low GC Gram-positive bacteria; however, the number and arrangement of lysis-related genes were atypical of these bacteriophages. A 159 bp noncoding region between predicted cI and cro genes is highly similar to the functionally characterized early promoter region of lactococcal temperate phage TP901-1, and possessed a predicted stem-loop structure in between predicted P(L) and P(R) promoters, suggesting a novel mechanism of repression of these two bacteriophages from the λ paradigm. Comparison with all available phage and predicted prophage genomes revealed that the φEf11 genome displays unique features, suggesting that φEf11 may be a novel member of a larger family of temperate prophages that also includes lactococcal phages. Trees based on the blast score ratio grouped this family by tail fiber similarity, suggesting that these trees are useful for identifying phages with similar tail fibers.

  6. Mechanism of termination of bacteriophage DNA packaging investigated with optical tweezers

    NASA Astrophysics Data System (ADS)

    delToro, Damian J.; Smith, Douglas E.

    2012-10-01

    The genomes of many dsDNA viruses are replicated by a mechanism that produces a long concatemer of multiple genomes. These viruses utilize multifunctional molecular motor complexes referred to as "terminases" that can excise a unit genome length of DNA and package it into preformed viral shells. Remarkably, the terminase motor can initiate packaging at the appropriate start point, translocate DNA, sense when a sufficient length has been packaged, and then switch into a mode where it arrests and cleaves the DNA to release a filled virus particle. We have recently developed an improved method to measure single phage lambda DNA packaging using dual-trap optical tweezers and pre-stalled motor-DNA-procapsid complexes. We are applying this method to test proposed mechanisms for the sensor that triggers termination; specifically a velocity-monitor model vs. energy-monitor model vs. capsid-filling monitor model.

  7. Synergistic effect of heat and solar UV on DNA damage and water disinfection of E. coli and bacteriophage MS2.

    PubMed

    Theitler, Dana Jennifer; Nasser, Abid; Gerchman, Yoram; Kribus, Abraham; Mamane, Hadas

    2012-12-01

    The response of a representative virus and indicator bacteria to heating, solar irradiation, or their combination, was investigated in a controlled solar simulator and under real sun conditions. Heating showed higher inactivation of Escherichia coli compared to the bacteriophage MS2. Heating combined with natural or simulated solar irradiation demonstrated a synergistic effect on the inactivation of E. coli, with up to 3-log difference for 50 °C and natural sun insolation of 2,000 kJ m(-2) (compared to the sum of the separate treatments). Similar synergistic effect was also evident when solar-UV induced DNA damage to E. coli was assessed using the endonuclease sensitive site assay (ESS). MS2 was found to be highly resistant to irradiation and heat, with a slightly synergistic effect observed only at 59 °C and natural sun insolation of 5,580 kJ m(-2). Heat treatment also hindered light-dependent recovery of E. coli making the treatment much more effective.

  8. Recombinational Repair of DNA Damage in Escherichia coli and Bacteriophage λ

    PubMed Central

    Kuzminov, Andrei

    1999-01-01

    Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage λ recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation. PMID:10585965

  9. Active DNA unwinding dynamics during processive DNA replication.

    PubMed

    Morin, José A; Cao, Francisco J; Lázaro, José M; Arias-Gonzalez, J Ricardo; Valpuesta, José M; Carrascosa, José L; Salas, Margarita; Ibarra, Borja

    2012-05-22

    Duplication of double-stranded DNA (dsDNA) requires a fine-tuned coordination between the DNA replication and unwinding reactions. Using optical tweezers, we probed the coupling dynamics between these two activities when they are simultaneously carried out by individual Phi29 DNA polymerase molecules replicating a dsDNA hairpin. We used the wild-type and an unwinding deficient polymerase variant and found that mechanical tension applied on the DNA and the DNA sequence modulate in different ways the replication, unwinding rates, and pause kinetics of each polymerase. However, incorporation of pause kinetics in a model to quantify the unwinding reaction reveals that both polymerases destabilize the fork with the same active mechanism and offers insights into the topological strategies that could be used by the Phi29 DNA polymerase and other DNA replication systems to couple unwinding and replication reactions.

  10. Cloning, molecular characterization and expression of a DNA-ligase from a new bacteriophage: Phax1.

    PubMed

    Setayesh, Neda; Sabouri-Shahrbabak, Saleheh; Bakherad, Hamid; Sepehrizadeh, Zargham

    2013-12-01

    DNA ligases join 3' hydroxyl and 5' phosphate ends in double stranded DNA and are necessary for maintaining the integrity of genome. The gene encoding a new Escherichia phage (Phax1) DNA ligase was cloned and sequenced. The gene contains an open reading frame with 1,428 base pairs, encoding 475 amino acid residues. Alignment of the entire amino acid sequence showed that Phax1 DNA ligase has a high degree of sequence homology with ligases from Escherichia (vB_EcoM_CBA120), Salmonella (PhiSH19 and SFP10), Shigella (phiSboM-AG3), and Deftia (phiW-14) phages. The Phax1 DNA ligase gene was expressed under the control of the T7lac promoter on the pET-16b (+) in Escherichia coli Rossetta gami. The enzyme was then homogeneously purified by a metal affinity column. Enzymatic activity of the recombinant DNA ligase was assayed by an in-house PCR-based method.

  11. Structural Basis for DNA-Hairpin Promoter Recognition by the Bacteriophage N4 Virion RNA Polymerase

    SciTech Connect

    Gleghorn, M.; Davydova, E; Rothman-Denes, L; Murakami, K

    2008-01-01

    Coliphage N4 virion-encapsidated RNA polymerase (vRNAP) is a member of the phage T7-like single-subunit RNA polymerase (RNAP) family. Its central domain (mini-vRNAP) contains all RNAP functions of the full-length vRNAP, which recognizes a 5 to 7 base pair stem and 3 nucleotide loop hairpin DNA promoter. Here, we report the X-ray crystal structures of mini-vRNAP bound to promoters. Mini-vRNAP uses four structural motifs to recognize DNA sequences at the hairpin loop and stem and to unwind DNA. Despite their low sequence similarity, three out of four motifs are shared with T7 RNAP that recognizes a double-stranded DNA promoter. The binary complex structure and results of engineered disulfide linkage experiments reveal that the plug and motif B loop, which block the access of template DNA to the active site in the apo-form mini-vRNAP, undergo a large-scale conformational change upon promoter binding, explaining the restricted promoter specificity that is critical for N4 phage early transcription.

  12. Overproduction of single-stranded-DNA-binding protein specifically inhibits recombination of UV-irradiated bacteriophage DNA in Escherichia coli.

    PubMed Central

    Moreau, P L

    1988-01-01

    Overproduction of single-stranded DNA (ssDNA)-binding protein (SSB) in uvr Escherichia coli mutants results in a wide range of altered phenotypes. (i) Cell survival after UV irradiation is decreased; (ii) expression of the recA-lexA regulon is slightly reduced after UV irradiation, whereas it is increased without irradiation; and (iii) recombination of UV-damaged lambda DNA is inhibited, whereas recombination of nonirradiated DNA is unaffected. These results are consistent with the idea that in UV-damaged bacteria, SSB is first required to allow the formation of short complexes of RecA protein and ssDNA that mediate cleavage of the LexA protein. However, in a second stage, SSB should be displaced from ssDNA to permit the production of longer RecA-ssDNA nucleoprotein filaments that are required for strand pairing and, hence, recombinational repair. Since bacteria overproducing SSB appear identical in physiological respects to recF mutant bacteria, it is suggested that the RecF protein (alone or with other proteins of the RecF pathway) may help RecA protein to release SSB from ssDNA. PMID:2836358

  13. Designing disordered materials using DNA-coated colloids of bacteriophage fd and gold.

    PubMed

    Ruff, Z; Nathan, S H; Unwin, R R; Zupkauskas, M; Joshi, D; Salmond, G P C; Grey, C P; Eiser, E

    2016-01-01

    DNA has emerged as an exciting binding agent for programmable colloidal self-assembly. Its popularity derives from its unique properties: it provides highly specific short-ranged interactions and at the same time it acts as a steric stabilizer against non-specific van der Waals and Coulomb interactions. Because complementary DNA strands are linked only via hydrogen bonds, DNA-mediated binding is thermally reversible: it provides an effective attraction that can be switched off by raising the temperature only by a few degrees. In this article we introduce a new binary system made of DNA-functionalized filamentous fd viruses of ∼880 nm length with an aspect ratio of ∼100, and 50 nm gold nanoparticles (gold NPs) coated with the complementary DNA strands. When quenching mixtures below the melt temperature Tm, at which the attraction is switched on, we observe aggregation. Conversely, above Tm the system melts into a homogenous particulate 'gas'. We present the aggregation behavior of three different gold NP to virus ratios and compare them to a gel made solely of gold NPs. In particular, we have investigated the aggregate structures as a function of cooling rate and determine how they evolve as function of time for given quench depths, employing fluorescence microscopy. Structural information was extracted in the form of an effective structure factor and chord length distributions. Rapid cooling rates lead to open aggregates, while slower controlled cooling rates closer to equilibrium DNA hybridization lead to more fine-stranded gels. Despite the different structures we find that for both cooling rates the quench into the two-phase region leads to initial spinodal decomposition, which becomes arrested. Surprisingly, although the fine-stranded gel is disordered, the overall structure and the corresponding length scale distributions in the system are remarkably reproducible. Such highly porous systems can be developed into new functional materials.

  14. A small (58-nm) attached sphere perturbs the sieving of 40-80-kilobase DNA in 0.2-2.5% agarose gels: analysis of bacteriophage T7 capsid-DNA complexes by use of pulsed field electrophoresis.

    PubMed

    Serwer, P; Hayes, S J; Moreno, E T; Park, C Y

    1992-09-15

    Although the icosahedral bacteriophage T7 capsid has a diameter (58 nm) that is 234-fold smaller than the length of the linear, double-stranded T7 DNA, binding of a T7 capsid to T7 DNA is found here to have dramatic effects on the migration of the DNA during both pulsed field agarose gel electrophoresis (PFGE; the field inversion mode is used) and constant field agarose gel electrophoresis (CFGE). For these studies, capsid-DNA complexes were obtained by expelling DNA from mature bacteriophage T7; this procedure yields DNA with capsids bound at a variable position on the DNA. When subjected to CFGE at 2-6 V/cm in 0.20-2.5% agarose gels, capsid-DNA complexes arrest at the electrophoretic origin. Progressively lowering the electrical potential gradient to 0.5 V/cm results in migration; most complexes form a single band. The elevated electrical potential gradient (3 V/cm) induced arrest of capsid-DNA complexes is reversed when PFGE is used instead of CFGE. For some conditions of PFGE, the mobility of capsid-DNA complexes is a function of the position of the capsid on the DNA. During either CFGE (0.5 V/cm) or PFGE, capsid-DNA complexes increasingly separate from capsid-free DNA as the percentage of agarose increases. During these studies, capsid-DNA complexes are identified by electron microscopy of enzymatically-digested pieces of agarose gel; this is apparently the first successful electron microscopy of DNA from an agarose gel.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Genetics of critical contacts and clashes in the DNA packaging specificities of bacteriophages λ and 21.

    PubMed

    Sippy, Jean; Patel, Priyal; Vahanian, Nicole; Sippy, Rachel; Feiss, Michael

    2015-02-01

    The cos sites in λ and 21 chromosomes contain binding sites that recruit terminase to initiate DNA packaging. The small subunits of terminase, gpNu1 (λ) and gp1 (21), have winged helix-turn-helix DNA binding domains, where the recognition helixes differ in four of nine residues. To initiate packaging, the small subunit binds three R sequences in the cosB subsite. λ and 21 cannot package each other׳s DNA, due to recognition helix and R sequence differences. In λ and 21 cosBs, two bp, tri1 and tri2, are conserved in the R sequences yet differ between the phages; they are proposed to play a role in phage-specific packaging by λ and 21. Genetic experiments done with mixed and matched terminase and cosB alleles show packaging specificity depends on favorable contacts and clashes. These interactions indicate that the recognition helixes orient with residues 20 and 24 proximal to tri2 and tri1, respectively.

  16. Campylobacter bacteriophages and bacteriophage therapy.

    PubMed

    Connerton, P L; Timms, A R; Connerton, I F

    2011-08-01

    Members of the genus Campylobacter are frequently responsible for human enteric disease with occasionally very serious outcomes. Much of this disease burden is thought to arise from consumption of contaminated poultry products. More than 80% of poultry in the UK harbour Campylobacter as a part of their intestinal flora. To address this unacceptably high prevalence, various interventions have been suggested and evaluated. Among these is the novel approach of using Campylobacter-specific bacteriophages, which are natural predators of the pathogen. To optimize their use as therapeutic agents, it is important to have a comprehensive understanding of the bacteriophages that infect Campylobacter, and how they can affect their host bacteria. This review will focus on many aspects of Campylobacter-specific bacteriophages including: their first isolation in the 1960s, their use in bacteriophage typing schemes, their isolation from the different biological sources and genomic characterization. As well as their use as therapeutic agents to reduce Campylobacter in poultry their future potential, including their use in bio-sanitization of food, will be explored. The evolutionary consequences of naturally occurring bacteriophage infection that have come to light through investigations of bacteriophages in the poultry ecosystem will also be discussed.

  17. Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation.

    PubMed

    Zhang, Hui; Guo, Peixuan

    2014-05-15

    Direct counting of biomolecules within biological complexes or nanomachines is demanding. Single molecule counting using optical microscopy is challenging due to the diffraction limit. The single molecule photobleaching (SMPB) technology for direct counting developed by our team (Shu et al., 2007 [18]; Zhang et al., 2007 [19]) offers a simple and straightforward method to determine the stoichiometry of molecules or subunits within biocomplexes or nanomachines at nanometer scales. Stoichiometry is determined by real-time observation of the number of descending steps resulted from the photobleaching of individual fluorophore. This technology has now been used extensively for single molecule counting of protein, RNA, and other macromolecules in a variety of complexes or nanostructures. Here, we elucidate the SMPB technology, using the counting of RNA molecules within a bacteriophage phi29 DNA-packaging biomotor as an example. The method described here can be applied to the single molecule counting of other molecules in other systems. The construction of a concise, simple and economical single molecule total internal reflection fluorescence (TIRF) microscope combining prism-type and objective-type TIRF is described. The imaging system contains a deep-cooled sensitive EMCCD camera with single fluorophore detection sensitivity, a laser combiner for simultaneous dual-color excitation, and a Dual-View™ imager to split the multiple outcome signals to different detector channels based on their wavelengths. Methodology of the single molecule photobleaching assay used to elucidate the stoichiometry of RNA on phi29 DNA packaging motor and the mechanism of protein/RNA interaction are described. Different methods for single fluorophore labeling of RNA molecules are reviewed. The process of statistical modeling to reveal the true copy number of the biomolecules based on binomial distribution is also described.

  18. In Vitro Ligation of Oligodeoxynucleotides Containing C8-Oxidized Purine Lesions using Bacteriophage T4 DNA Ligase†

    PubMed Central

    Zhao, Xiaobei; Muller, James G.; Halasyam, Mohan; David, Sheila S.; Burrows, Cynthia J.

    2008-01-01

    Ligases conduct the final stage of repair of DNA damage by sealing a single-stranded nick after excision of damaged nucleotides and reinsertion of correct nucleotides. Depending upon the circumstances and the success of the repair process, lesions may remain at the ligation site, either in the template or at the oligomer termini to be joined. Ligation experiments using bacteriophage T4 DNA ligase were carried out with purine lesions in four positions surrounding the nick site in a total of 96 different duplexes. The oxidized lesion 8-oxo-7,8-dihydroguanosine (OG) showed, as expected, that the enzyme is most sensitive to lesions on the 3′ end of the nick compared to the 5′ end and to lesions located in the intact template strand. In general, substrates containing the OG·A mismatch were more readily ligated than OG·C. Ligations of duplexes containing the OA·T base pair (OA=8-oxo-7,8- dihydroadenosine) that could adopt an anti-anti conformation proceeded in high efficiencies. An OI·Acontaining duplex (OI = 8-oxo-7,8-dihydroinosine) behaved similarly to OG·A. Due to its low reduction potential, OG is readily oxidized to secondary oxidation products, such as the guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) nucleosides; these lesions also contain an oxo group at the original C8 position of the purine. Ligation of oligomers containing Gh and Sp occurred when opposite A and G although the overall ligation efficiencies were much lower than most OG base pairs. Steady-state kinetic studies were carried out for representative examples of lesions in the template. Km increased by 90–100-fold for OG·C, OI·C, OI·A and OA·T containing duplexes compared to G·C. Substrates containing Gh·A, Gh·G, Sp·A and Sp·G base pairs showed Km values 20–70-fold higher than G·C while the Km value for OG·A was 5 times lower than G·C. PMID:17323928

  19. Double strand-breaks and DNA-to-protein cross-links induced by fast neutrons in bacteriophage DNA.

    PubMed

    Hawkins, R B

    1979-01-01

    Coliphage T7 was suspended in tryptone broth and exposed to a mixture of fast neutrons and gamma radiation. Plaque survival, double strand-breaks and DNA-to-protein cross-linkage were examined and the results compared with those found in phage exposed to gamma radiation alone. Neutral sucrose density sedimentation patterns indicate that neutron-induced double strand-breaks sometimes occur in clusters of more than 100 in the same phage and that the effeciency with which double strand-breaks form is about 50 times that of gamma-induced double strand-breaks. Neutron-induced protein-to-DNA cross-links probably also occur in clusters with enhanced efficiency relative to low LET radiation.

  20. Bacteriophage assembly.

    PubMed

    Aksyuk, Anastasia A; Rossmann, Michael G

    2011-03-01

    Bacteriophages have been a model system to study assembly processes for over half a century. Formation of infectious phage particles involves specific protein-protein and protein-nucleic acid interactions, as well as large conformational changes of assembly precursors. The sequence and molecular mechanisms of phage assembly have been elucidated by a variety of methods. Differences and similarities of assembly processes in several different groups of bacteriophages are discussed in this review. The general principles of phage assembly are applicable to many macromolecular complexes.

  1. Lytic bacteriophages

    PubMed Central

    Sharma, Manan

    2013-01-01

    Foodborne illnesses resulting from the consumption of produce commodities contaminated with enteric pathogens continue to be a significant public health issue. Lytic bacteriophages may provide an effective and natural intervention to reduce bacterial pathogens on fresh and fresh-cut produce commodities. The use of multi-phage cocktails specific for a single pathogen has been most frequently assessed on produce commodities to minimize the development of bacteriophage insensitive mutants (BIM) in target pathogen populations. Regulatory approval for the use of several lytic phage products specific for bacterial pathogens such as Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes in foods and on food processing surfaces has been granted by various agencies in the US and other countries, possibly allowing for the more widespread use of bacteriophages in the decontamination of fresh and minimally processed produce. Research studies have shown lytic bacteriophages specific for E. coli O157:H7, Salmonella spp. and Listeria monocytogenes have been effective in reducing pathogen populations on leafy greens, sprouts and tomatoes. PMID:24228223

  2. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F.W.; Rosenberg, A.H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest. 1 fig.

  3. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F. William; Rosenberg, Alan H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.

  4. Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems. Comprehensive report, 1 February 1981-15 September 1983

    SciTech Connect

    Friedberg, E.C.

    1983-01-01

    We have explored the molecular mechanism of the repair of DNA at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian (including human) cells. We have demonstrated that uv endonuclease of phage T4 not only possesses pyrimidine dimer (PD)-DNA glycosylase activity but also apyrimidinic (AP) endonuclease activity. The demonstration of both activities provided an explanation for the specific endonucleosytic cleavage of DNA at sites of pyrimidine dimers catalyzed by this small protein. A new apurinic/apyrimidinic (AP) endonuclease, specific for sites of of base loss in single stranded DNA has been isolated from E. celi and presumably recognizes these lesions in single stranded regions of duplex DNA. We have partially purified this enzyme and have carried out a preliminary characterization of the activity. We treated xeroderma pigmentosum and normal cells with sodium butyrate in the hope of restoring normal levels of excision repair to the former. Although this result was not obtained, we established that all cells treated with sodium butyrate show enhanced levels of repair synthesis, thus providing a means for increasing the sensitivity of this commonly used technique for measuring DNA repair in mammalian cells in culture.

  5. The MotA transcription factor from bacteriophage T4 contains a novel DNA-binding domain : the 'double wing' motif.

    SciTech Connect

    Li, N.; Sickmier, E. A.; Zhang, R.; Joachimiak, A.; White, S. W.; Biosciences Division; St. Jude Children's Research Hospital; Univ. of Tennessee Health Science Center; Corixa Inc.

    2002-01-01

    MotA is a transcription factor from bacteriophage T4 that helps adapt the host Escherichia coli transcription apparatus to T4 middle promoters. We have determined the crystal structure of the C-terminal DNA-binding domain of MotA (MotCF) to 1.6 A resolution using multiwavelength, anomalous diffraction methods. The structure reveals a novel DNA-binding alpha/beta motif that contains an exposed beta-sheet surface that mediates interactions with the DNA. Independent biochemical experiments have shown that MotCF binds to one surface of a single turn of DNA through interactions in adjacent major and minor grooves. We present a model of the interaction in which beta-ribbons at opposite corners of the six-stranded beta-sheet penetrate the DNA grooves, and call the motif a 'double wing' to emphasize similarities to the 'winged-helix' motif. The model is consistent with data on how MotA functions at middle promoters, and provides an explanation for why MotA can form non-specific multimers on DNA.

  6. A Novel Method to Couple Electrophysiological Measurements and Fluorescence Imaging of Suspended Lipid Membranes: The Example of T5 Bacteriophage DNA Ejection

    PubMed Central

    Chiaruttini, Nicolas; Letellier, Lucienne; Viasnoff, Virgile

    2013-01-01

    We present an innovative method to couple electrophysiological measurements with fluorescence imaging of functionalized suspended bilayers. Our method combines several advantages: it is well suited to study transmembrane proteins that are difficult to incorporate in suspended bilayers, it allows single molecule resolution both in terms of electrophysiological measurements and fluorescence imaging, and it enables mechanical stimulations of the membrane. The approach comprises of two steps: first the reconstitution of membrane proteins in giant unilamellar vesicles; then the formation of a suspended bilayer spanning a 5 to 15 micron-wide aperture that can be visualized by high NA microscope objectives. We exemplified how the technique can be used to detect in real time the translocation of T5 DNA across the bilayer during its ejection from the bacteriophage capsid. PMID:24376806

  7. Deformation of DNA during site-specific recombination of bacteriophage lambda: replacement of IHF protein by HU protein or sequence-directed bends.

    PubMed Central

    Goodman, S D; Nicholson, S C; Nash, H A

    1992-01-01

    Escherichia coli IHF protein is a prominent component of bacteriophage lambda integration and excision that binds specifically to DNA. We find that the homologous protein HU, a nonspecific DNA binding protein, can substitute for IHF during excisive recombination of a plasmid containing the prophage attachment sites attL and attR but not during integrative recombination between attP and attB. We have examined whether IHF and HU function in excisive recombination is mediated through DNA bending. Our strategy has been to construct chimeric attachment sites in which IHF binding sites are replaced by an alternative source of DNA deformation. Previously, we demonstrated that properly phased bends can substitute for the binding of IHF at one site in attP. Although this result is highly suggestive of a critical role of IHF-promoted bending in lambda integration, its interpretation is obscured by the continued need for IHF binding to the remaining IHF sites of these constructs. In the present work, we engineered a population of sequence-directed bends in the vicinity of the two essential IHF sites found in attR and attL. Even in the absence of IHF or HU, pairs of these attachment sites with properly phased bends are active for both in vitro and in vivo excision. This success, although tempered by the limited efficiency of these systems, reinforces our interpretation that IHF functions primarily as an architectural element. Images PMID:1465417

  8. Single-molecule FRET studies of the cooperative and non-cooperative binding kinetics of the bacteriophage T4 single-stranded DNA binding protein (gp32) to ssDNA lattices at replication fork junctions

    PubMed Central

    Lee, Wonbae; Gillies, John P.; Jose, Davis; Israels, Brett A.; von Hippel, Peter H.; Marcus, Andrew H.

    2016-01-01

    Gene 32 protein (gp32) is the single-stranded (ss) DNA binding protein of the bacteriophage T4. It binds transiently and cooperatively to ssDNA sequences exposed during the DNA replication process and regulates the interactions of the other sub-assemblies of the replication complex during the replication cycle. We here use single-molecule FRET techniques to build on previous thermodynamic studies of gp32 binding to initiate studies of the dynamics of the isolated and cooperative binding of gp32 molecules within the replication complex. DNA primer/template (p/t) constructs are used as models to determine the effects of ssDNA lattice length, gp32 concentration, salt concentration, binding cooperativity and binding polarity at p/t junctions. Hidden Markov models (HMMs) and transition density plots (TDPs) are used to characterize the dynamics of the multi-step assembly pathway of gp32 at p/t junctions of differing polarity, and show that isolated gp32 molecules bind to their ssDNA targets weakly and dissociate quickly, while cooperatively bound dimeric or trimeric clusters of gp32 bind much more tightly, can ‘slide’ on ssDNA sequences, and exhibit binding dynamics that depend on p/t junction polarities. The potential relationships of these binding dynamics to interactions with other components of the T4 DNA replication complex are discussed. PMID:27694621

  9. Crystallographic Insights into the Autocatalytic Assembly Mechanism of a Bacteriophage Tail Spike

    SciTech Connect

    Xiang, Ye; Leiman, Petr G.; Li, Long; Grimes, Shelley; Anderson, Dwight L.; Rossmann, Michael G.

    2010-02-03

    The tailed bacteriophage phi29 has 12 'appendages' (gene product 12, gp12) attached to its neck region that participate in host cell recognition and entry. In the cell, monomeric gp12 undergoes proteolytic processing that releases the C-terminal domain during assembly into trimers. We report here crystal structures of the protein before and after catalytic processing and show that the C-terminal domain of gp12 is an 'autochaperone' that aids trimerization. We also show that autocleavage of the C-terminal domain is a posttrimerization event that is followed by a unique ATP-dependent release. The posttranslationally modified N-terminal part has three domains that function to attach the appendages to the phage, digest the cell wall teichoic acids, and bind irreversibly to the host, respectively. Structural and sequence comparisons suggest that some eukaryotic and bacterial viruses as well as bacterial adhesins might have a similar maturation mechanism as is performed by phi29 gp12 for Bacillus subtilis.

  10. Effects of pulling forces, osmotic pressure, condensing agents and viscosity on the thermodynamics and kinetics of DNA ejection from bacteriophages to bacterial cells: a computational study

    NASA Astrophysics Data System (ADS)

    Petrov, Anton S.; Douglas, Scott S.; Harvey, Stephen C.

    2013-03-01

    In this work, we report on simulations of double-stranded DNA (dsDNA) ejection from bacteriophage ϕ29 into a bacterial cell. The ejection was studied with a coarse-grained model, in which viral dsDNA was represented by beads on a torsion-less string. The bacteriophage’s capsid and the bacterial cell were defined by sets of spherical constraints. To account for the effects of the viscous medium inside the bacterial cell, the simulations were carried out using a Langevin dynamics protocol. Our simplest simulations (involving constant viscosity and no external biasing forces) produced results compatible with the push-pull model of DNA ejection, with an ejection rate significantly higher in the first part of ejection than in the latter parts. Additionally, we performed more complicated simulations, in which we included additional factors such as external forces, osmotic pressure, condensing agents and ejection-dependent viscosity. The effects of these factors (independently and in combination) on the thermodynamics and kinetics of DNA ejection were studied. We found that, in general, the dependence of ejection forces and ejection rates on the amount of DNA ejected becomes more complex if the ejection is modeled with a broader, more realistic set of parameters and influences (such as variation in the solvent’s viscosity and the application of an external force). However, certain combinations of factors and numerical parameters led to the opposition of some ejection-driving and ejection-inhibiting influences, ultimately causing an apparent simplification of the ejection profiles.

  11. The C-terminal domain of the bacteriophage T4 terminase docks on the prohead portal clip region during DNA packaging.

    PubMed

    Dixit, Aparna Banerjee; Ray, Krishanu; Thomas, Julie A; Black, Lindsay W

    2013-11-01

    Bacteriophage ATP-based packaging motors translocate DNA into a pre-formed prohead through a dodecameric portal ring channel to high density. We investigated portal-terminase docking interactions at specifically localized residues within a terminase-interaction region (aa279-316) in the phage T4 portal protein gp20 equated to the clip domain of the SPP1 portal crystal structure by 3D modeling. Within this region, three residues allowed A to C mutations whereas three others did not, consistent with informatics analyses showing the tolerated residues are not strongly conserved evolutionarily. About 7.5nm was calculated by FCS-FRET studies employing maleimide Alexa488 dye labeled A316C proheads and gp17 CT-ReAsH supporting previous work docking the C-terminal end of the T4 terminase (gp17) closer to the N-terminal GFP-labeled portal (gp20) than the N-terminal end of the terminase. Such a terminase-portal orientation fits better to a proposed "DNA crunching" compression packaging motor and to portal determined DNA headful cutting.

  12. The C-terminal domain of the bacteriophage T4 terminase docks on the prohead portal clip region during DNA packaging

    PubMed Central

    Dixit, Aparna Banerjee; Ray, Krishanu; Thomas, Julie A.; Black, Lindsay W.

    2013-01-01

    Bacteriophage ATP-based packaging motors translocate DNA into a pre-formed prohead through a dodecameric portal ring channel to high density. We investigated portal–terminase docking interactions at specifically localized residues within a terminase-interaction region (aa279–316) in the phage T4 portal protein gp20 equated to the clip domain of the SPP1 portal crystal structure by 3D modeling. Within this region, three residues allowed A to C mutations whereas three others did not, consistent with informatics analyses showing the tolerated residues are not strongly conserved evolutionarily. About 7.5 nm was calculated by FCS-FRET studies employing maleimide Alexa488 dye labeled A316C proheads and gp17 CT-ReAsH supporting previous work docking the C-terminal end of the T4 terminase (gp17) closer to the N-terminal GFP-labeled portal (gp20) than the N-terminal end of the terminase. Such a terminase–portal orientation fits better to a proposed “DNA crunching” compression packaging motor and to portal determined DNA headful cutting. PMID:24074593

  13. Chlamydia bacteriophages.

    PubMed

    Śliwa-Dominiak, Joanna; Suszyńska, Ewa; Pawlikowska, Małgorzata; Deptuła, Wiesław

    2013-11-01

    Phages are called "good viruses" due to their ability to infect and kill pathogenic bacteria. Chlamydia are small, Gram-negative (G-) microbes that can be dangerous to human and animals. In humans, these bacteria are etiological agents of diseases such as psittacosis or respiratory tract diseases, while in animals, the infection may result in enteritis in cattle and chronic bowel diseases, as well as miscarriages in sheep. The first-known representative of chlamydiaphages was Chp1. It was discovered in Chlamydia psittaci isolates. Since then, four more species of chlamydiaphages have been identified [Chp2, Chp3, φCPG1 φCPAR39 (φCpn1) and Chp4]. All of them were shown to infect Chlamydia species. This paper described all known chlamydiaphages. They were characterised in terms of origin, host range, and their molecular structure. The review concerns the characterisation of bacteriophages that infects pathogenic and dangerous bacteria with unusual, intracellular life cycles that are pathogenic. In the era of antibiotic resistance, it is difficult to cure chlamydophilosis. Those bacteriophages can be an alternative to antibiotics, but before this happens, we need to get to know chlamydiaphages better.

  14. Selective inhibition by methoxyamine of the apurinic/apyrimidinic endonuclease activity associated with pyrimidine dimer-DNA glycosylases from Micrococcus luteus and bacteriophage T4

    SciTech Connect

    Liuzzi, M.; Weinfeld, M.; Paterson, M.C.

    1987-06-16

    The UV endonucleases from Micrococcus luteus and bacteriophage T4 possess two catalytic activities specific for the site of cyclobutane pyrimidine dimers in UV-irradiated DNA: a DNA glycosylase that cleaves the 5'-glycosyl bond of the dimerized pyrimidines and an apurinic/apyrimidinic (AP) endonuclease that thereupon incises the phosphodiester bond 3' to the resulting apyrimidinic site. The authors have explored the potential use of methoxyamine, a chemical that reacts at neutral pH with AP sites in DNA, as a selective inhibitor of the AP endonuclease activities residing in the M. luteus and T4 enzymes. The presence of 50 mM methoxyamine during incubation of UV-treated, (/sup 3/H)thymine-labeled poly(dA) x poly(dT) with either enzyme preparation was found to protect completely the irradiated copolymer from endonucleolytic attack at dimer sites, as assayed by yield of acid-soluble radioactivity. In contrast, the dimer-DNA glycosylase activity of each enzyme remained fully functional, as monitored retrospectively by release of free thymine after either photochemical-(5 kJ/m/sup 2/, 254 nm) or photoenzymic- (Escherichia coli photolyase plus visible light) induced reversal of pyrimidine dimers in the UV-damaged substrate. The data demonstrate that the inhibition of the strand-incision reaction arises because of chemical modification of the AP sites and is not due to inactivation of the enzyme by methoxyamine. The results, combined with earlier findings for 5'-acting AP endonucleases, strongly suggest that methoxyamine is a highly specific inhibitor of virtually all AP endonucleases, irrespective of their modes of action, and may therefore prove useful in a wide variety of DNA repair studies.

  15. Physical mapping of the restriction fragments obtained from bacteriophage T4 dC-DNA with the restriction endonucleases SmaI, KpnI and BglII.

    PubMed

    Kiko, H; Niggemann, E; Rüger, W

    1979-01-01

    The cytosine-containing DNA of a mutant of bacteriophage T4 was digested with restriction endonucleases SmaI, KpnI and BglII producing 5, 7 and 13 fragments respectively. Complete physical maps of the T4 genome were constructed with the enzymes SmaI and KpnI and an almost complete map with the enzyme BglII.

  16. Large Preferred Region for Packaging of Bacterial DNA by phiC725A, a Novel Pseudomonas aeruginosa F116-Like Bacteriophage

    PubMed Central

    Pourcel, Christine; Midoux, Cédric; Hauck, Yolande; Vergnaud, Gilles; Latino, Libera

    2017-01-01

    Bacteriophage vB_PaeP_PAO1_phiC725A (short name phiC725A) was isolated following mitomycin C induction of C7-25, a clinical Pseudomonas aeruginosa strain carrying phiC725A as a prophage. The phiC725A genome sequence shows similarity to F116, a P. aeruginosa podovirus capable of generalized transduction. Likewise, phiC725A is a podovirus with long tail fibers. PhiC725A was able to lysogenize two additional P. aeruginosa strains in which it was maintained both as a prophage and in an episomal state. Investigation by deep sequencing showed that bacterial DNA carried inside phage particles originated predominantly from a 700-800kb region, immediately flanking the attL prophage insertion site, whether the phages were induced from a lysogen or recovered after infection. This indicates that during productive replication, recombination of phage genomes with the bacterial chromosome at the att site occurs occasionally, allowing packaging of adjacent bacterial DNA. PMID:28060939

  17. Integration Host Factor Assembly at the Cohesive End Site of the Bacteriophage Lambda Genome: Implications for Viral DNA Packaging and Bacterial Gene Regulation

    PubMed Central

    2015-01-01

    Integration host factor (IHF) is an Escherichia coli protein involved in (i) condensation of the bacterial nucleoid and (ii) regulation of a variety of cellular functions. In its regulatory role, IHF binds to a specific sequence to introduce a strong bend into the DNA; this provides a duplex architecture conducive to the assembly of site-specific nucleoprotein complexes. Alternatively, the protein can bind in a sequence-independent manner that weakly bends and wraps the duplex to promote nucleoid formation. IHF is also required for the development of several viruses, including bacteriophage lambda, where it promotes site-specific assembly of a genome packaging motor required for lytic development. Multiple IHF consensus sequences have been identified within the packaging initiation site (cos), and we here interrogate IHF–cos binding interactions using complementary electrophoretic mobility shift (EMS) and analytical ultracentrifugation (AUC) approaches. IHF recognizes a single consensus sequence within cos (I1) to afford a strongly bent nucleoprotein complex. In contrast, IHF binds weakly but with positive cooperativity to nonspecific DNA to afford an ensemble of complexes with increasing masses and levels of condensation. Global analysis of the EMS and AUC data provides constrained thermodynamic binding constants and nearest neighbor cooperativity factors for binding of IHF to I1 and to nonspecific DNA substrates. At elevated IHF concentrations, the nucleoprotein complexes undergo a transition from a condensed to an extended rodlike conformation; specific binding of IHF to I1 imparts a significant energy barrier to the transition. The results provide insight into how IHF can assemble specific regulatory complexes in the background of extensive nonspecific DNA condensation. PMID:25335823

  18. Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site

    PubMed Central

    Blanca, Giuseppina; Delagoutte, Emmanuelle; Tanguy le gac, Nicolas; Johnson, Neil P.; Baldacci, Giuseppe; Villani, Giuseppe

    2006-01-01

    Replicative DNA polymerases, such as T4 polymerase, possess both elongation and 3′–5′ exonuclease proofreading catalytic activities. They arrest at the base preceding DNA damage on the coding DNA strand and specialized DNA polymerases have evolved to replicate across the lesion by a process known as TLS (translesion DNA synthesis). TLS is considered to take place in two steps that often require different enzymes, insertion of a nucleotide opposite the damaged template base followed by extension from the inserted nucleotide. We and others have observed that inactivation of the 3′–5′ exonuclease function of T4 polymerase enables TLS across a single site-specific abasic [AP (apurinic/apyrimidinic)] lesion. In the present study we report a role for auxiliary replicative factors in this reaction. When replication is performed with a large excess of DNA template over DNA polymerase in the absence of auxiliary factors, the exo− polymerase (T4 DNA polymerase deficient in the 3′–5′ exonuclease activity) inserts one nucleotide opposite the AP site but does not extend past the lesion. Addition of the clamp processivity factor and the clamp loader complex restores primer extension across an AP lesion on a circular AP-containing DNA substrate by the exo− polymerase, but has no effect on the wild-type enzyme. Hence T4 DNA polymerase exhibits a variety of responses to DNA damage. It can behave as a replicative polymerase or (in the absence of proofreading activity) as a specialized DNA polymerase and carry out TLS. As a specialized polymerase it can function either as an inserter or (with the help of accessory proteins) as an extender. The capacity to separate these distinct functions in a single DNA polymerase provides insight into the biochemical requirements for translesion DNA synthesis. PMID:17064253

  19. RNA and DNA bacteriophages as molecular diagnosis controls in clinical virology: a comprehensive study of more than 45,000 routine PCR tests.

    PubMed

    Ninove, Laetitia; Nougairede, Antoine; Gazin, Celine; Thirion, Laurence; Delogu, Ilenia; Zandotti, Christine; Charrel, Remi N; De Lamballerie, Xavier

    2011-02-09

    Real-time PCR techniques are now commonly used for the detection of viral genomes in various human specimens and require for validation both external and internal controls (ECs and ICs). In particular, ICs added to clinical samples are necessary to monitor the extraction, reverse transcription, and amplification steps in order to detect false-negative results resulting from PCR-inhibition or errors in the technical procedure. Here, we performed a large scale evaluation of the use of bacteriophages as ICs in routine molecular diagnosis. This allowed to propose simple standardized procedures (i) to design specific ECs for both DNA and RNA viruses and (ii) to use T4 (DNA) or MS2 (RNA) phages as ICs in routine diagnosis. Various technical formats for using phages as ICs were optimised and validated. Subsequently, T4 and MS2 ICs were evaluated in routine real-time PCR or RT-PCR virological diagnostic tests, using a series of 8,950 clinical samples (representing 36 distinct specimen types) sent to our laboratory for the detection of a variety of DNA and RNA viruses. The frequency of inefficient detection of ICs was analyzed according to the nature of the sample. Inhibitors of enzymatic reactions were detected at high frequency in specific sample types such as heparinized blood and bone marrow (>70%), broncho-alveolar liquid (41%) and stools (36%). The use of T4 and MS2 phages as ICs proved to be cost-effective, flexible and adaptable to various technical procedures of real-time PCR detection in virology. It represents a valuable strategy for enhancing the quality of routine molecular diagnosis in laboratories that use in-house designed diagnostic systems, which can conveniently be associated to the use of specific synthetic ECs. The high rate of inhibitors observed in a variety of specimen types should stimulate the elaboration of improved technical protocols for the extraction and amplification of nucleic acids.

  20. [THE IDENTIFICATION AND DIFFERENTIATION OF BACTERIOPHAGES OF HUMAN PATHOGENIC VIBRIO].

    PubMed

    Gaevskaia, N E; Kudriakova, T A; Makedonova, L D; Kachkina, G V

    2015-04-01

    The issue of identification and differentiation of large group of bacteriophages of human pathogenic vibrio is still unresolved. In research and practical applied purposes it is important to consider characteristics of bacteriophages for establishing similarity and differences between them. The actual study was carried out to analyze specimens of DNA-containing bacteriophages of pathogenic vibrio. The overwhelming majority of them characterized by complicated type of symmetry--phages with double-helical DNA and also phages with mono-helical DNA structure discovered recently in vibrio. For the first time, the general framework of identification and differentiation of bacteriophages of pathogenic vibrio was developed. This achievement increases possibility to establish species assignment of phages and to compare with phages registered in the database. "The collection of bacteriophages and test-strains of human pathogenic vibrio" (No2010620549 of 24.09.210).

  1. Specificity of mutagenesis by 4-aminobiphenyl: mutations at G residues in bacteriophage M13 DNA and G-->C transversions at a unique dG(8-ABP) lesion in single-stranded DNA.

    PubMed

    Verghis, S B; Essigmann, J M; Kadlubar, F F; Morningstar, M L; Lasko, D D

    1997-12-01

    Mutagenesis by the human bladder carcinogen 4-aminobiphenyl (ABP) was studied in single-stranded DNA from a bacteriophage M13 cloning vector. In comparison to ABP lesions in double-stranded DNA, lesions in single-stranded DNA were approximately 70-fold more mutagenic and 50-fold more genotoxic. Sequencing analysis of ABP-induced mutations in the lacZ gene revealed exclusively base-pair substitutions, with over 80% of the mutations occurring at G sites; the G at position 6310 accounted for 25% of the observed mutations. Among the sequence changes at G sites, G-->T transversions predominated, followed by G-->C transversions and G-->A transitions. In order to further elucidate the mutagenic mechanism of ABP, an oligonucleotide containing the major DNA adduct, N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG(8-ABP)), was situated within the PstI site of a single-stranded M13 genome. After in vivo replication of the adduct containing ABP-modified and control (unadducted) genomes, the mutational frequency and mutational specificity of the dG(8-ABP) lesion were determined. The targeted mutational efficiency was approximately 0.01%, and the primary mutation observed was the G-->C transversion. Thus dG(8-ABP), albeit weakly mutagenic at the PstI site, can contribute to the mutational spectrum of ABP lesions.

  2. Alterations of the portal protein, gpB, of bacteriophage lambda suppress mutations in cosQ, the site required for termination of DNA packaging.

    PubMed Central

    Wieczorek, Douglas J; Didion, Lisa; Feiss, Michael

    2002-01-01

    The cosQ site of bacteriophage lambda is required for DNA packaging termination. Previous studies have shown that cosQ mutations can be suppressed in three ways: by a local suppressor within cosQ, an increase in the length of the lambda chromosome, and missense mutations affecting the prohead's portal protein, gpB. In the present work, revertants of a set of lethal cosQ mutants were screened for suppressors. Seven new cosQ suppressors affected gene B, which encodes the portal protein of the prohead. All seven were allele-nonspecific suppressors of cosQ mutations. Experiments with several phages having two cosQ suppressors showed that the suppression effects were additive. Furthermore, these double suppressors had minimal effects on the growth of cosQ(+) phages. These trans-acting suppressors affecting the portal protein are proposed to allow the mutant cosQ site to be more efficiently recognized, due to the slowing of the rate of translocation. PMID:12019220

  3. An N-terminal mutation in the bacteriophage T4 motA gene yields a protein that binds DNA but is defective for activation of transcription.

    PubMed Central

    Gerber, J S; Hinton, D M

    1996-01-01

    The bacteriophage T4 MotA protein is a transcriptional activator of T4-modified host RNA polymerase and is required for activation of the middle class of T4 promoters. MotA alone binds to the -30 region of T4 middle promoters, a region that contains the MotA box consensus sequence [(t/a)(t/a)TGCTT(t/c)A]. We report the isolation and characterization of a protein designated Mot21, in which the first 8 codons of the wild-type motA sequence have been replaced with 11 different codons. In gel retardation assays, Mot21 and MotA bind DNA containing the T4 middle promoter P(uvsX) similarly, and the proteins yield similar footprints on P(uvsX). However, Mot21 is severely defective in the activation of transcription. On native protein gels, a new protein species is seen after incubation of the sigma70 subunit of RNA polymerase and wild-type MotA protein, suggesting a direct protein-protein contact between MotA and sigma70. Mot21 fails to form this complex, suggesting that this interaction is necessary for transcriptional activation and that the Mot21 defect arises because Mot21 cannot form this contact like the wild-type activator. PMID:8892810

  4. Bacteriophage prehistory

    PubMed Central

    Thomas-Abedon, Cameron; Thomas, Anne; Mazure, Hubert

    2011-01-01

    We identified 30 actual or presumptive “bacteriophage” references dating between the years 1895 and 1917 and have further explored one of the oldest: Hankin's 1896 study of a bactericidal action associated with the waters of the Ganges and Jumna rivers in India. As Hankin's work took place approximately 20 years prior to the actual discovery of bacteriophages, no claims were made as to a possible phage nature of the phenomenon. Here we suggest that it may be imprudent to assume nevertheless that it represents an early observation of phagemediated bactericidal activity. Our principal argument is that the antibacterial aspect of these river waters was able to retain full potency following “heating” for one-half hour in hermetically sealed tubes, where heating in “open” tubes resulted in loss of antibacterial activity. We also suggest that environmental phage counts would have had to have been unusually high—greater than 106/ml impacting a single host strain—to achieve the rates of bacterial loss that Hankin observed. PMID:22164351

  5. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer

    PubMed Central

    Mosig, Gisela; Gewin, John; Luder, Andreas; Colowick, Nancy; Vo, Daniel

    2001-01-01

    Two major pathways of recombination-dependent DNA replication, “join-copy” and “join-cut-copy,” can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses. PMID:11459968

  6. Partial replication of UV-irradiated T4 bacteriophage DNA results in amplification of specific genetic areas

    SciTech Connect

    Ling, S.; Vogelbacker, H.H.; Restifo, L.L.; Mattson, T.; Kozinski, A.W.

    1981-11-01

    Upon infection of Escherichia coli with bormodeoxyuridine-labeled T4 phage that had received 10 lethal hits of UV irradiation, a sizable amount of phage DNA was synthesized (approximately 36 phage equivalent units of DNA per infected bacterium), although very little multiplicity reactivation occurs. This progeny DNA was isolated and analyzed. This DNA was biased in its genetic representation, as shown by hybridization to cloned segments of the T4 genome immobilized on nitrocellulose filters. Preferentially amplified areas corresponded to regions containing origins of T4 DNA replication. The size of the progeny DNA increased with time after infection, possibly due to recombination between partial replicas and nonreplicated subunits or due to the gradual overcoming of the UV damage. As the size of the progeny DNA increased, all of the genes were more equally represented, resulting in a decrease in the genetic bias. Amplification of specific genetic areas was also observed upon infection with UV-irradiated, non-bromo-deoxyuridine-substituted (light) phage. However, the genetic bias observed in this case was not as great as that observed with bromodeoxyuridine-substituted phage. This is most likely due to the higher efficiency of multiplicity reactivation of the light phage.

  7. Abortive infection of Bacillus subtilis bacteriophage PBS1 in the presence of actinomycin D.

    PubMed

    Pritikin, W B; Reiter, H

    1969-06-01

    Actinomycin D caused the irreversible loss of PBS1 phage infectious centers and PBS1-mediated transductants. The loss of infectious centers occurred only within the first 4 min after the addition of phage to cells. Actinomycin did not inactivate free phage or inhibit phage adsorption. Electron micrographs indicated that phage adsorbed to cells in the presence of actinomycin ejected their deoxyribonucleic acid (DNA) normally. However, when cells were infected in the presence of actinomycin, 15 to 22% of their (32)P-labeled DNA appeared in the medium, whereas only 1.5 to 7.2% of the (32)P-labeled DNA appeared in the medium during normal infection. Neither 8-azaguanine nor chloramphenicol caused a similar loss of PBS1 infectious centers or transductants. Actinomycin also caused the loss of SP10 infectious centers but it had no effect on SP01 or phi29 infections. We conclude that actinomycin causes abortion of PBS1 infection by inhibiting the uptake or retention of phage DNA into host cells. The immunity of SP01 and phi29 infections to actinomycin probably reflects differences in the penetration mechanisms of these phages.

  8. Formation of oligomeric structures from plasmid DNA carrying cos lambda that is packaged into bacteriophage lambda heads.

    PubMed Central

    Miwa, T; Matsubara, K

    1983-01-01

    Plasmids that carry cos lambda, the region necessary for lambda phage packaging and that are as small as four kilobases in size can be packaged into lambda phage heads in head-to-tail tandem oligomeric structures. Multimeric oligomers as large as undecamers have been detected. Oligomer formation depends upon the products of red and gam of lambda, and the general recombination occurs between different plasmids that share homologous DNA regions. The packaging efficiency of plasmids depends on its copy number in cells and its genome size. Upon injection into a cell, the DNA establishes itself as a plasmid in a tandem structure. When such a plasmid in a high oligomeric structure is used as the source of packaging DNA, the packaging efficiency of the plasmids is elevated. The oligomers are stable in recA cells, whereas they drift toward lower oligomers in recA+ cells. Images PMID:6217189

  9. Models for the Binary Complex of Bacteriophage T4 Gp59 Helicase Loading Protein. GP32 Single-Stranded DNA-Binding Protein and Ternary Complex with Pseudo-Y Junction DNA

    SciTech Connect

    Hinerman, Jennifer M.; Dignam, J. David; Mueser, Timothy C.

    2012-04-05

    The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable with that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).

  10. Minute amounts of RNA are synthesized from several regions of the bacteriophage Mu DNA during the lysogenic state.

    PubMed

    Barron, C; Bade, E G

    1989-11-30

    The transcription of phage Mu DNA during the lysogenic state has been quantitatively analysed. For this purpose pulse-labelled RNA from two lysogens and from their nonlysogenic parental strains were hybridized to non-overlapping Mu DNA restriction fragments covering the whole phage genome. The data revealed that all regions of the prophage are transcribed at low rates and that phage promoters are involved in this transcription. For this study an improved assay for quantitative filter hybridization was employed. The high sensitivity and reproducibility that can be obtained with the assay make it suitable for the quantitative analysis of minute amounts of mRNA.

  11. A bacteriophage-encoded J-domain protein interacts with the DnaK/Hsp70 chaperone and stabilizes the heat-shock factor σ32 of Escherichia coli.

    PubMed

    Perrody, Elsa; Cirinesi, Anne-Marie; Desplats, Carine; Keppel, France; Schwager, Françoise; Tranier, Samuel; Georgopoulos, Costa; Genevaux, Pierre

    2012-01-01

    The universally conserved J-domain proteins (JDPs) are obligate cochaperone partners of the Hsp70 (DnaK) chaperone. They stimulate Hsp70's ATPase activity, facilitate substrate delivery, and confer specific cellular localization to Hsp70. In this work, we have identified and characterized the first functional JDP protein encoded by a bacteriophage. Specifically, we show that the ORFan gene 057w of the T4-related enterobacteriophage RB43 encodes a bona fide JDP protein, named Rki, which specifically interacts with the Escherichia coli host multifunctional DnaK chaperone. However, in sharp contrast with the three known host JDP cochaperones of DnaK encoded by E. coli, Rki does not act as a generic cochaperone in vivo or in vitro. Expression of Rki alone is highly toxic for wild-type E. coli, but toxicity is abolished in the absence of endogenous DnaK or when the conserved J-domain of Rki is mutated. Further in vivo analyses revealed that Rki is expressed early after infection by RB43 and that deletion of the rki gene significantly impairs RB43 proliferation. Furthermore, we show that mutations in the host dnaK gene efficiently suppress the growth phenotype of the RB43 rki deletion mutant, thus indicating that Rki specifically interferes with DnaK cellular function. Finally, we show that the interaction of Rki with the host DnaK chaperone rapidly results in the stabilization of the heat-shock factor σ(32), which is normally targeted for degradation by DnaK. The mechanism by which the Rki-dependent stabilization of σ(32) facilitates RB43 bacteriophage proliferation is discussed.

  12. ATOMIC AND MOLECULAR PHYSICS: Modelling of a DNA packaging motor

    NASA Astrophysics Data System (ADS)

    Qian, Jun; Xie, Ping; Xue, Xiao-Guang; Wang, Peng-Ye

    2009-11-01

    During the assembly of many viruses, a powerful molecular motor packages the genome into a preassembled capsid. The Bacillus subtilis phage phi29 is an excellent model system to investigate the DNA packaging mechanism because of its highly efficient in vitro DNA packaging activity and the development of a single-molecule packaging assay. Here we make use of structural and biochemical experimental data to build a physical model of DNA packaging by the phi29 DNA packaging motor. Based on the model, various dynamic behaviours such as the packaging rate, pause frequency and slip frequency under different ATP concentrations, ADP concentrations, external loads as well as capsid fillings are studied by using Monte Carlo simulation. Good agreement is obtained between the simulated and available experimental results. Moreover, we make testable predictions that should guide future experiments related to motor function.

  13. Coordination and processing of DNA ends during double-strand break repair: the role of the bacteriophage T4 Mre11/Rad50 (MR) complex.

    PubMed

    Almond, Joshua R; Stohr, Bradley A; Panigrahi, Anil K; Albrecht, Dustin W; Nelson, Scott W; Kreuzer, Kenneth N

    2013-11-01

    The in vivo functions of the bacteriophage T4 Mre11/Rad50 (MR) complex (gp46/47) in double-strand-end processing, double-strand break repair, and recombination-dependent replication were investigated. The complex is essential for T4 growth, but we wanted to investigate the in vivo function during productive infections. We therefore generated a suppressed triple amber mutant in the Rad50 subunit to substantially reduce the level of complex and thereby reduce phage growth. Growth-limiting amounts of the complex caused a concordant decrease in phage genomic recombination-dependent replication. However, the efficiencies of double-strand break repair and of plasmid-based recombination-dependent replication remained relatively normal. Genetic analyses of linked markers indicated that double-strand ends were less protected from nuclease erosion in the depleted infection and also that end coordination during repair was compromised. We discuss models for why phage genomic recombination-dependent replication is more dependent on Mre11/Rad50 levels when compared to plasmid recombination-dependent replication. We also tested the importance of the conserved histidine residue in nuclease motif I of the T4 Mre11 protein. Substitution with multiple different amino acids (including serine) failed to support phage growth, completely blocked plasmid recombination-dependent replication, and led to the stabilization of double-strand ends. We also constructed and expressed an Mre11 mutant protein with the conserved histidine changed to serine. The mutant protein was found to be completely defective for nuclease activities, but retained the ability to bind the Rad50 subunit and double-stranded DNA. These results indicate that the nuclease activity of Mre11 is critical for phage growth and recombination-dependent replication during T4 infections.

  14. Mapping the interactions of the single-stranded DNA binding protein of bacteriophage T4 (gp32) with DNA lattices at single nucleotide resolution: polynucleotide binding and cooperativity

    PubMed Central

    Jose, Davis; Weitzel, Steven E.; Baase, Walter A.; Michael, Miya M.; von Hippel, Peter H.

    2015-01-01

    We here use our site-specific base analog mapping approach to study the interactions and binding equilibria of cooperatively-bound clusters of the single-stranded DNA binding protein (gp32) of the T4 DNA replication complex with longer ssDNA (and dsDNA) lattices. We show that in cooperatively bound clusters the binding free energy appears to be equi-partitioned between the gp32 monomers of the cluster, so that all bind to the ssDNA lattice with comparable affinity, but also that the outer domains of the gp32 monomers at the ends of the cluster can fluctuate on and off the lattice and that the clusters of gp32 monomers can slide along the ssDNA. We also show that at very low binding densities gp32 monomers bind to the ssDNA lattice at random, but that cooperatively bound gp32 clusters bind preferentially at the 5′-end of the ssDNA lattice. We use these results and the gp32 monomer-binding results of the companion paper to propose a detailed model for how gp32 might bind to and interact with ssDNA lattices in its various binding modes, and also consider how these clusters might interact with other components of the T4 DNA replication complex. PMID:26275774

  15. Map of restriction sites on bacteriophage T4 cytosine-containing DNA for endonucleases bamHI, BglII, KpnI, PvuI, SalI, and XbaI.

    PubMed Central

    Marsh, R C; Hepburn, M L

    1981-01-01

    A complete map of the cleavage sites of restriction endonucleases BamHI, BglII, KpnI, PvuI, SalI, and XbaI was determined for the cytosine-containing DNA of a bacteriophage T4 alc mutant. The 56 sequence-specific sites were assigned map coordinates based on a least-squares analysis of measured fragment lengths. Altogether, the lengths of 118 fragments from single and double enzyme digestions were measured by electrophoresis of the fragments in agarose gels. DNA fragments of known sequence or DNA fragments calibrated with fragments of known sequence were used as standards. The greatest deviation between an experimentally measured fragment length and its computed map coordinates was 3.0%; the average deviation was 0.8%. The total length of the wild-type T4 genome was calculated to be 166,200 base pairs. Images PMID:6264096

  16. Isolation and characterization of bacteriophages of Salmonella enterica serovar Pullorum.

    PubMed

    Bao, H; Zhang, H; Wang, R

    2011-10-01

    In this study, 2 bacteriophages of Salmonella Pullorum were isolated using an enrichment protocol and the double agar layer method. They were named PSPu-95 and PSPu-4-116, respectively, against clinical isolates of Salmonella Pullorum SPu-95 and SPu-116. The host ranges of the 2 bacteriophages were determined by performing spot tests with 20 bacteria strains. Both bacteriophages had wide host ranges. Bacteriophage PSPu-95 had a lytic effect on 17 of the 20 isolates (85%), and PSPu-4-116 produced a lytic effect on 14 isolates (70%) and was the only bacteriophage that produced a clear plaque on enterotoxigenic Escherichia coli K88. Transmission electron microscopy revealed the bacteriophages belonged to the order Caudovirales. Bacteriophage PSPu-95 was a member of the family Siphoviridae, but bacteriophage PSPu-4-116 belonged to the family Myoviridae. Both had a double-stranded DNA, which was digested with HindIII or EcoRI, that was estimated to be 58.3 kbp (PSPu-95) and 45.2 kbp (PSPu-4-116) by 1% agar electrophoresis. One-step growth kinetics showed that the latent periods were all less than 20 min, and the burst size was 77.5 pfu/cell for PSPu-95 and 86 pfu/cell for PSPu-4-116. The bacteriophages were able to survive in a pH range between 4 and 10, and they were able to survive in a treatment of 70°C for 60 min. The characterizations of these 2 bacteriophages were helpful in establishing a basis for adopting the most effective bacteriophage to control bacteria in the poultry industry.

  17. A new protein domain for binding to DNA through the minor groove.

    PubMed Central

    Freire, R; Salas, M; Hermoso, J M

    1994-01-01

    Protein p6 of the Bacillus subtilis phage phi 29 binds with low sequence specificity to DNA through the minor groove, forming a multimeric nucleoprotein complex that activates the initiation of phi 29 DNA replication. Deletion analysis suggested that the N-terminal part of protein p6, predicted to form an amphipathic alpha-helix, is involved in DNA binding. We have constructed site-directed mutants at the polar side of the putative alpha-helix. DNA binding and activation of initiation of phi 29 DNA replication were impaired in most of the mutant proteins obtained. A 19 amino acid peptide comprising the N-terminus of protein p6 interacted with a DNA fragment containing high-affinity signals for protein p6 binding with approximately 50-fold higher affinity than the peptide corresponding to an inactive mutant. Both wild-type peptide and protein p6 recognized the same sequences in this DNA fragment. This result, together with distamycin competition experiments, suggested that the wild-type peptide also binds to DNA through the minor groove. In addition, CD spectra of the wild-type peptide showed an increase in the alpha-helical content when bound to DNA. All these results indicate that an alpha-helical structure located in the N-terminal region of protein p6 is involved in DNA binding through the minor groove. Images PMID:7925279

  18. Bacteriophages infecting Propionibacterium acnes.

    PubMed

    Brüggemann, Holger; Lood, Rolf

    2013-01-01

    Viruses specifically infecting bacteria, or bacteriophages, are the most common biological entity in the biosphere. As such, they greatly influence bacteria, both in terms of enhancing their virulence and in terms of killing them. Since the first identification of bacteriophages in the beginning of the 20th century, researchers have been fascinated by these microorganisms and their ability to eradicate bacteria. In this review, we will cover the history of the Propionibacterium acnes bacteriophage research and point out how bacteriophage research has been an important part of the research on P. acnes itself. We will further discuss recent findings from phage genome sequencing and the identification of phage sequence signatures in clustered regularly interspaced short palindromic repeats (CRISPRs). Finally, the potential to use P. acnes bacteriophages as a therapeutic strategy to combat P. acnes-associated diseases will be discussed.

  19. Complete Genome Sequence of Salmonella enterica Serovar Enteritidis Bacteriophage f18SE, Isolated in Chile

    PubMed Central

    Segovia, Cristopher; Vasquez, Ignacio; Maracaja-Coutinho, Vinicius; Robeson, James

    2015-01-01

    Bacteriophage f18SE was isolated from poultry sewage in Olmue, Chile, and lytic activity was demonstrated against Salmonella enterica serovar Enteritidis and serovar Pullorum strains. This bacteriophage has a 41,868-bp double-stranded DNA (ds-DNA) genome encoding 53 coding sequences (CDSs) and belongs to the family Siphoviridae, subfamily Jerseyvirinae. PMID:26450716

  20. Genome Sequences of Two Bacillus cereus Group Bacteriophages, Eyuki and AvesoBmore

    PubMed Central

    2015-01-01

    The genomes of two double-stranded DNA (dsDNA) bacteriophages isolated on Bacillus thuringiensis show similarity to previously sequenced phages and provide evidence of the mosaicism of phage genomes. PMID:26472840

  1. Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation.

    PubMed

    Guo, Peixuan; Zhao, Zhengyi; Haak, Jeannie; Wang, Shaoying; Wu, Dong; Meng, Bing; Weitao, Tao

    2014-01-01

    Biomotors were once described into two categories: linear motor and rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24h, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, and T7 as well as bacterial DNA translocase FtsK and SpoIIIE or the large eukaryotic dsDNA viruses such as mimivirus and vaccinia virus as examples to elucidate the puzzles. These motors use ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, that is the size of dsDNA, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-chiral arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism that avoids DNA coiling in translocating the lengthy genomic

  2. Template reporter bacteriophage platform and multiple bacterial detection assays based thereon

    NASA Technical Reports Server (NTRS)

    Goodridge, Lawrence (Inventor)

    2007-01-01

    The invention is a method for the development of assays for the simultaneous detection of multiple bacteria. A bacteria of interest is selected. A host bacteria containing plasmid DNA from a T even bacteriophage that infects the bacteria of interest is infected with T4 reporter bacteriophage. After infection, the progeny bacteriophage are plating onto the bacteria of interest. The invention also includes single-tube, fast and sensitive assays which utilize the novel method.

  3. The Pasteurella multocida toxin is encoded within a lysogenic bacteriophage.

    PubMed

    Pullinger, Gillian D; Bevir, Thomas; Lax, Alistair J

    2004-01-01

    Toxigenic strains of Pasteurella multocida produce a 146 kDa toxin (PMT) that acts as a potent mitogen. Sequence analysis of the structural gene for PMT, toxA, previously suggested it was horizontally acquired, because it had a low G + C content relative to the P. multocida genome. To address this, the sequence of DNA flanking toxA was determined. The sequence analysis showed the presence of homologues to bacteriophage tail protein genes and a bacteriophage antirepressor, suggesting that the toxin gene resides within a prophage. In addition to phage genes, the toxA flanking DNA contained a homologue of a restriction/modification system that was shown to be functional. The presence of a bacteriophage was demonstrated in spent medium from toxigenic P. multocida isolates. Its production was increased by mitomycin C addition, a treatment that is known to induce the lytic cycle of many temperate bacteriophages. The genomes of bacteriophages from three different toxigenic P. multocida strains had similar but not identical restriction profiles, and were approximately 45-50 kb in length. The prophages from two of these had integrated at the same site in the chromosome, in a tRNA gene. Southern blot analysis confirmed that these bacteriophages contained the toxA gene.

  4. Bacteria vs. Bacteriophages: Parallel Evolution of Immune Arsenals

    PubMed Central

    Shabbir, Muhammad A. B.; Hao, Haihong; Shabbir, Muhammad Z.; Wu, Qin; Sattar, Adeel; Yuan, Zonghui

    2016-01-01

    Bacteriophages are the most common entities on earth and represent a constant challenge to bacterial populations. To fend off bacteriophage infection, bacteria evolved immune systems to avert phage adsorption and block invader DNA entry. They developed restriction–modification systems and mechanisms to abort infection and interfere with virion assembly, as well as newly recognized clustered regularly interspaced short palindromic repeats (CRISPR). In response to bacterial immune systems, bacteriophages synchronously evolved resistance mechanisms, such as the anti-CRISPR systems to counterattack bacterial CRISPR-cas systems, in a continuing evolutionary arms race between virus and host. In turn, it is fundamental to the survival of the bacterial cell to evolve a system to combat bacteriophage immune strategies. PMID:27582740

  5. Bacteria vs. Bacteriophages: Parallel Evolution of Immune Arsenals.

    PubMed

    Shabbir, Muhammad A B; Hao, Haihong; Shabbir, Muhammad Z; Wu, Qin; Sattar, Adeel; Yuan, Zonghui

    2016-01-01

    Bacteriophages are the most common entities on earth and represent a constant challenge to bacterial populations. To fend off bacteriophage infection, bacteria evolved immune systems to avert phage adsorption and block invader DNA entry. They developed restriction-modification systems and mechanisms to abort infection and interfere with virion assembly, as well as newly recognized clustered regularly interspaced short palindromic repeats (CRISPR). In response to bacterial immune systems, bacteriophages synchronously evolved resistance mechanisms, such as the anti-CRISPR systems to counterattack bacterial CRISPR-cas systems, in a continuing evolutionary arms race between virus and host. In turn, it is fundamental to the survival of the bacterial cell to evolve a system to combat bacteriophage immune strategies.

  6. Hyperexpansion of RNA Bacteriophage Diversity

    PubMed Central

    Krishnamurthy, Siddharth R.; Janowski, Andrew B.; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-01-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. PMID:27010970

  7. Hyperexpansion of RNA Bacteriophage Diversity.

    PubMed

    Krishnamurthy, Siddharth R; Janowski, Andrew B; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-03-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent.

  8. Multiple roles of genome-attached bacteriophage terminal proteins

    SciTech Connect

    Redrejo-Rodríguez, Modesto; Salas, Margarita

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.

  9. BACTERIOPHAGE THERAPY AND CAMPYLOBACTER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The book chapter reports efforts to exploit Campylobacter-specific bacteriophages to reduce the numbers of Campylobacter jejuni and C. coli colonizing poultry and contaminating poultry meat products. Controlling campylobacters in poultry represents one of the greatest challenges to the agriculture a...

  10. Bacteriophages of Clostridium perfringens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The specific aims of the book chapter are to: (1) Briefly review the nomenclature of bacteriophages and how these agents are classified. (2) Discuss the problems associated with addition/removal of antibiotics in commercial animal feeds. (3) Provide a brief overview of Clostridium perfringens biolog...

  11. Chlamydial plasmids and bacteriophages.

    PubMed

    Pawlikowska-Warych, Małgorzata; Śliwa-Dominiak, Joanna; Deptuła, Wiesław

    2015-01-01

    Chlamydia are absolute pathogens of humans and animals; despite being rather well recognised, they are still open for discovery. One such discovery is the occurrence of extrachromosomal carriers of genetic information. In prokaryotes, such carriers include plasmids and bacteriophages, which are present only among some Chlamydia species. Plasmids were found exclusively in Chlamydia (C.) trachomatis, C. psittaci, C. pneumoniae, C. suis, C. felis, C. muridarum and C. caviae. In prokaryotic organisms, plasmids usually code for genes that facilitate survival of the bacteria in the environment (although they are not essential). In chlamydia, their role has not been definitely recognised, apart from the fact that they participate in the synthesis of glycogen and encode proteins responsible for their virulence. Furthermore, in C. suis it was evidenced that the plasmid is integrated in a genomic island and contains the tetracycline-resistance gene. Bacteriophages specific for chlamydia (chlamydiaphages) were detected only in six species: C. psittaci, C. abortus, C. felis, C. caviae C. pecorum and C. pneumoniae. These chlamydiaphages cause inhibition of the developmental cycle, and delay transformation of reticulate bodies (RBs) into elementary bodies (EBs), thus reducing the possibility of infecting other cells in time. Plasmids and bacteriophages can be used in the diagnostics of chlamydioses; although especially in the case of plasmids, they are already used for detection of chlamydial infections. In addition, bacteriophages could be used as therapeutic agents to replace antibiotics, potentially addressing the problem of increasing antibiotic-resistance among chlamydia.

  12. [Bacteriophages as antibacterial agents].

    PubMed

    Shasha, Shaul M; Sharon, Nehama; Inbar, Michael

    2004-02-01

    Bacteriophages are viruses that only infect bacteria. They have played an important role in the development of molecular biology and have been used as anti-bacterial agents. Since their independent discovery by Twort and d'Herelle, they have been extensively used to prevent and treat bacterial infections, mainly in Eastern Europe and the former Soviet Union. In western countries this method has been sporadically employed on humans and domesticated animals. However, the discovery and widespread use of antibiotics, coupled with doubts about the efficacy of phage therapy, led to an eclipse in the use of phage in medicine. The emergence of antibiotic resistant bacteria, especially strains that are multiply resistant, has resulted in a renewed interest in alternatives to conventional drugs. One of the possible replacements for antibiotics is the use of bacteriophages as antimicrobial agents. This brief review aims to describe the history of bacteriophage and early clinical studies on their use in bacterial disease prophylaxis and therapy, and discuss the advantages and disadvantages of bacteriophage in this regard.

  13. Isolation and characterization of a bacteriophage lytic for Desulfovibrio salexigens, a salt-requiring, sulfate-reducing bacterium

    SciTech Connect

    Kamimura, Kazuo; Araki, Michio )

    1989-03-01

    A bacteriophage that lysed Desulfovibrio salexigens cells was isolated from marine sediments and preliminarily characterized by electron microscopy and electrophoretic analysis of structural proteins and genomic nucleic acid. The bacteriophage had an icosahedral head and a long flexible tail, and the buoyant density of the bacteriophage particles was 1.468 g/ml in cesium chloride. The particles consisted of a double-stranded DNA molecule about 33 kilobase pairs long and at least 11 structural proteins.

  14. Genomic impact of CRISPR immunization against bacteriophages.

    PubMed

    Barrangou, Rodolphe; Coûté-Monvoisin, Anne-Claire; Stahl, Buffy; Chavichvily, Isabelle; Damange, Florian; Romero, Dennis A; Boyaval, Patrick; Fremaux, Christophe; Horvath, Philippe

    2013-12-01

    CRISPR (clustered regularly interspaced short palindromic repeats) together with CAS (RISPR-associated) genes form the CRISPR-Cas immune system, which provides sequence-specific adaptive immunity against foreign genetic elements in bacteria and archaea. Immunity is acquired by the integration of short stretches of invasive DNA as novel 'spacers' into CRISPR loci. Subsequently, these immune markers are transcribed and generate small non-coding interfering RNAs that specifically guide nucleases for sequence-specific cleavage of complementary sequences. Among the four CRISPR-Cas systems present in Streptococcus thermophilus, CRISPR1 and CRISPR3 have the ability to readily acquire new spacers following bacteriophage or plasmid exposure. In order to investigate the impact of building CRISPR-encoded immunity on the host chromosome, we determined the genome sequence of a BIM (bacteriophage-insensitive mutant) derived from the DGCC7710 model organism, after four consecutive rounds of bacteriophage challenge. As expected, active CRISPR loci evolved via polarized addition of several novel spacers following exposure to bacteriophages. Although analysis of the draft genome sequence revealed a variety of SNPs (single nucleotide polymorphisms) and INDELs (insertions/deletions), most of the in silico differences were not validated by Sanger re-sequencing. In addition, two SNPs and two small INDELs were identified and tracked in the intermediate variants. Overall, building CRISPR-encoded immunity does not significantly affect the genome, which allows the maintenance of important functional properties in isogenic CRISPR mutants. This is critical for the development and formulation of sustainable and robust next-generation starter cultures with increased industrial lifespans.

  15. M13 Bacteriophage Based Protein Sensors

    NASA Astrophysics Data System (ADS)

    Lee, Ju Hun

    Despite significant progress in biotechnology and biosensing, early detection and disease diagnosis remains a critical issue for improving patient survival rates and well-being. Many of the typical detection schemes currently used possess issues such as low sensitivity and accuracy and are also time consuming to run and expensive. In addition, multiplexed detection remains difficult to achieve. Therefore, developing advanced approaches for reliable, simple, quantitative analysis of multiple markers in solution that also are highly sensitive are still in demand. In recent years, much of the research has primarily focused on improving two key components of biosensors: the bio-recognition agent (bio-receptor) and the transducer. Particular bio-receptors that have been used include antibodies, aptamers, molecular imprinted polymers, and small affinity peptides. In terms of transducing agents, nanomaterials have been considered as attractive candidates due to their inherent nanoscale size, durability and unique chemical and physical properties. The key focus of this thesis is the design of a protein detection and identification system that is based on chemically engineered M13 bacteriophage coupled with nanomaterials. The first chapter provides an introduction of biosensors and M13 bacteriophage in general, where the advantages of each are provided. In chapter 2, an efficient and enzyme-free sensor is demonstrated from modified M13 bacteriophage to generate highly sensitive colorimetric signals from gold nanocrystals. In chapter 3, DNA conjugated M13 were used to enable facile and rapid detection of antigens in solution that also provides modalities for identification. Lastly, high DNA loadings per phage was achieved via hydrozone chemistry and these were applied in conjunction with Raman active DNA-gold/silver core/shell nanoparticles toward highly sensitive SERS sensing.

  16. Excision and duplication of su3+-transducing fragments carried by bacteriophage phi 80. I. Novel structure of phi 80sus2psu3+ DNA molecule.

    PubMed Central

    Yamagishi, H; Inokuchi, H; Ozeki, H

    1976-01-01

    DNA molecules of phi 80sus2psu3+ and phi 80dsu3+ isolated by Andoh and Ozeki (1968) were studied by the electron microscope heteroduplex method. The phi 80sus2psu3+ and phi 80dsu3+ DNA lengths were found to be 108.7 and 103.3% of the phi 80 DNA, respectively. The phi 80sus2psu3+/phi 80 heteroduplex shows an insertion loop of 8.7% of the phi 80 DNA which migrates from 7.7 to 9.7%, as measured relative to the left (0%) and right (100%) termini of the mature phi 80 DNA molecule. The region of loop migration occupies the central region of the phi 80 head gene cluster. The presence of su3+-containing Escherichia coli DNA of 6.7% phi 80 unit flanked by two homologous regions of phage DNA of 2.0% of phi 80 unit gives rise to a movable insertion loop. In phi 80dsu3+, from which phi 80sus2psu3+ was derived, 50.5% of the phi 80 DNA at the left arm was replaced by E. coli DNA containing the su3+ gene, equivalent to about 53.8% phi 80 unit in length. The phi 80sus2psu3+/phi 80dsu3+ heteroduplex appears as a double-stranded molecule that bifurcates into two clearly visible single-stranded regions, rejoins, bifurcates, and rejoins again. The middle double-stranded stretches of 6.7% phi 80 unit correspond to the E. coli DNA inserted in phi 80sus2psu3+. Therefore the transducing fragment carried by phi 80sus2psu3+ originates from the inside region of the transducing fragment of defective phage phi 80dsu3+ by at least two illegitimate recombination events. Images PMID:1271527

  17. Bacteriophage biosensors for antibiotic-resistant bacteria.

    PubMed

    Sorokulova, Irina; Olsen, Eric; Vodyanoy, Vitaly

    2014-03-01

    An increasing number of disease-causing bacteria are resistant to one or more anti-bacterial drugs utilized for therapy. Early and speedy detection of these pathogens is therefore very important. Traditional pathogen detection techniques, that include microbiological and biochemical assays are long and labor-intensive, while antibody or DNA-based methods require substantial sample preparation and purification. Biosensors based on bacteriophages have demonstrated remarkable potential to surmount these restrictions and to offer rapid, efficient and sensitive detection technique for antibiotic-resistant bacteria.

  18. Complete Genome Sequences of 38 Gordonia sp. Bacteriophages

    PubMed Central

    Montgomery, Matthew T.; Bonilla, J. Alfred; Dejong, Randall; Garlena, Rebecca A.; Guerrero Bustamante, Carlos; Klyczek, Karen K.; Russell, Daniel A.; Wertz, John T.; Jacobs-Sera, Deborah; Hatfull, Graham F.

    2017-01-01

    ABSTRACT We report here the genome sequences of 38 newly isolated bacteriophages using Gordonia terrae 3612 (ATCC 25594) and Gordonia neofelifaecis NRRL59395 as bacterial hosts. All of the phages are double-stranded DNA (dsDNA) tail phages with siphoviral morphologies, with genome sizes ranging from 17,118 bp to 93,843 bp and spanning considerable nucleotide sequence diversity. PMID:28057748

  19. Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part I: Isolation and lytic activity estimation of bacteriophages.

    PubMed

    Bicalho, R C; Santos, T M A; Gilbert, R O; Caixeta, L S; Teixeira, L M; Bicalho, M L S; Machado, V S

    2010-01-01

    The objective of this study was to isolate bacteriophages from environmental samples of 2 large commercial dairy farms using Escherichia coli isolated from the uteri of postpartum Holstein dairy cows as hosts. A total of 11 bacteriophage preparations were isolated from manure systems of commercial dairy farms and characterized for in vitro antimicrobial activity. In addition, a total of 57 E. coli uterine isolates from 5 dairy cows were phylogenetically grouped by triplex PCR. Each E. coli bacterial host from the uterus was inoculated with their respective bacteriophage preparation at several different multiplicities of infections (MOI) to determine minimum inhibitory MOI. The effect of a single dose (MOI=10(2)) of bacteriophage on the growth curve of all 57 E. coli isolates was assessed using a microplate technique. Furthermore, genetic diversity within and between the different bacteriophage preparations was assessed by bacteriophage purification followed by DNA extraction, restriction, and agarose gel electrophoresis. Phylogenetic grouping based on triplex PCR showed that all isolates of E. coli belonged to phylogroup B1. Bacterial growth was completely inhibited at considerably low MOI, and the effect of a single dose (MOI=10(2)) of bacteriophage preparations on the growth curve of all 57 E. coli isolates showed that all bacteriophage preparations significantly decreased the growth rate of the isolates. Bacteriophage preparation 1230-10 had the greatest antimicrobial activity and completely inhibited the growth of 71.7% (n=57) of the isolates. The combined action of bacteriophage preparations 1230-10, 6375-10, 2540-4, and 6547-2, each at MOI=10(2), had the broadest spectrum of action and completely inhibited the growth (final optical density at 600 nm

  20. New Insights into the Phage Genetic Switch: Effects of Bacteriophage Lambda Operator Mutations on DNA Looping and Regulation of PR, PL, and PRM.

    PubMed

    Lewis, Dale E A; Gussin, Gary N; Adhya, Sankar

    2016-11-06

    One of the best understood systems in genetic regulatory biology is the so-called "genetic switch" that determines the choice the phage-encoded CI repressor binds cooperatively to tripartite operators, OL and OR, in a defined pattern, thus blocking the transcription at two lytic promoters, PL and PR, and auto-regulating the promoter, PRM, which directs CI synthesis by the prophage. Fine-tuning of the maintenance of lysogeny is facilitated by interactions between CI dimers bound to OR and OL through the formation of a loop by the intervening DNA segment. By using a purified in vitro transcription system, we have genetically dissected the roles of individual operator sites in the formation of the DNA loop and thus have gained several new and unexpected insights into the system. First, although both OR and OL are tripartite, the presence of only a single active CI binding site in one of the two operators is sufficient for DNA loop formation. Second, in PL, unlike in PR, the promoter distal operator site, OL3, is sufficient to directly repress PL. Third, DNA looping mediated by the formation of CI octamers arising through the interaction of pairs of dimers bound to adjacent operator sites in OR and OL does not require OR and OL to be aligned "in register", that is, CI bound to "out-of-register" sub-operators, for example, OL1~Ol2 and OR2~OR3, can also mediate loop formation. Finally, based on an examination of the mechanism of activation of PRM when only OR1 or OR2 are wild type, we hypothesize that RNA polymerase bound at PR interferes with DNA loop formation. Thus, the formation of DNA loops involves potential interactions between proteins bound at numerous cis-acting sites, which therefore very subtly contribute to the regulation of the "switch".

  1. Bacteriophage T5 gene A2 protein alters the outer membrane of Escherichia coli.

    PubMed Central

    Snyder, C E

    1984-01-01

    Evidence for changes in Escherichia coli envelope structure caused by the bacteriophage T5 gene A2 protein was obtained by the use of mutant bacteriophages, envelope fractionation procedures, electrophoretic analysis, and in vitro binding studies with purified gene A2 protein. The results suggested that the T5 gene A2 protein perturbs the host envelope as it functions to promote DNA transfer. Images PMID:6389511

  2. Excision repair and patch size in UV-irradiated bacteriophage T4

    SciTech Connect

    Yarosh, D.B.; Rosenstein, B.S.; Setlow, R.B.

    1981-11-01

    We determined the average size of excision repair patches in repair of UV lesions in bacteriophage T4 by measuring the photolysis of bromodeoxyuridine incorporated during repair. The average patch was small, approximately four nucleotides long. In control, experiments with the denV/sub 1/ excision-deificient mutant, we encountered an artifact, a protein(s) which remained bound to phenol-extracted DNA and prevented nicking by the UV-specific endonucleases of Micrococcus luteus and bacteriophage T4.

  3. Excision repair and patch size in UV-irradiated bacteriophage T4

    SciTech Connect

    Yarosh, D.B.; Rosenstein, B.S.; Setlow, R.B.

    1981-11-01

    We determined the average size of excision repair patches in repair of UV lesions in bacteriophage T4 by measuring the photolysis of bromodeoxyuridine incorporated during repair. The average patch was small, approximately four nucleotides long. In control experiments with the denV1 excision-deficient mutant, we encountered an artifact, a protein(s) which remained bound to phenol-extracted DNA and prevented nicking by the UV-specific endonucleases of Micrococcus luteus and bacteriophage T4.

  4. Transfection with replicating DNA from the temperate Bacillus bacteriophage phi 105 and with T4-ligase treated phi105 DNA: the importance in transfection of being longer than genome-length.

    PubMed

    Flock, J I

    1978-07-06

    Replicating phage DNA extracted from Bacillus subtilis infected with phage phi 105 has a higher activity in transfection than mature DNA. By heteroduplex analysis it was shown that this DNA contains concatemeric molecules. Concatemers, constructed in vitro by treatment of mature DNA with T4-ligase also have an increased activity in transfection. DNA showing an increased activity in transfection does not have a requirement for more than one molecule per transfection event as is typically found for transfection with mature phi 105 DNA. An explanation is given for this difference suggesting that the structure of the ends of the transfecting molecules play an important role intransfection.

  5. IMPORTANCE OF THE DYNAMICS OF BACTERIOPHAGE-HOST INTERACTIONS TO BACTERIAL ABUNDANCE AND GENETIC DIVERSITY IN AQUATIC ENVIRONMENTS (RESEARCH BRIEF)

    EPA Science Inventory

    Using Pseudomonas aeruginosa and its bacteriophages as a model system, we have clearly demonstrated a significant potential for viral-mediated gene transfer (transduction) of both plasmid and chromosomal DNA in freshwater microbial populations. These investigations have predicted...

  6. Bacteriophage in polar inland waters

    USGS Publications Warehouse

    Säwström, Christin; Lisle, John; Anesio, A.M.; Priscu, John C.; Laybourn-Parry, J.

    2008-01-01

    Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in polar inland waters are scant but the indications are that they play an active and dynamic role in these microbially dominated polar ecosystems. This review summarises what is presently known about polar inland bacteriophages, ranging from subglacial Antarctic lakes to glacial ecosystems in the Arctic. The review examines interactions between bacteriophages and their hosts and the abiotic and biotic variables that influence these interactions in polar inland waters. In addition, we consider the proportion of the bacteria in Arctic and Antarctic lake and glacial waters that are lysogenic and visibly infected with viruses. We assess the relevance of bacteriophages in the microbial loop in the extreme environments of Antarctic and Arctic inland waters with an emphasis on carbon cycling.

  7. Genetically modified bacteriophages.

    PubMed

    Sagona, Antonia P; Grigonyte, Aurelija M; MacDonald, Paul R; Jaramillo, Alfonso

    2016-04-18

    Phages or bacteriophages, viruses that infect and replicate inside bacteria, are the most abundant microorganisms on earth. The realization that antibiotic resistance poses a substantial risk to the world's health and global economy is revitalizing phage therapy as a potential solution. The increasing ease by which phage genomes can be modified, owing to the influx of new technologies, has led to an expansion of their natural capabilities, and a reduced dependence on phage isolation from environmental sources. This review will discuss the way synthetic biology has accelerated the construction of genetically modified phages and will describe the wide range of their applications. It will further provide insight into the societal and economic benefits that derive from the use of recombinant phages in various sectors, from health to biodetection, biocontrol and the food industry.

  8. Jumbo Bacteriophages: An Overview

    PubMed Central

    Yuan, Yihui; Gao, Meiying

    2017-01-01

    Tailed bacteriophages with genomes larger than 200 kbp are classified as Jumbo phages, and are rarely isolated by conventional methods. These phages are designated “jumbo” owing to their most notable features of a large phage virion and large genome size. However, in addition to these, jumbo phages also exhibit several novel characteristics that have not been observed for phages with smaller genomes, which differentiate jumbo phages in terms of genome organization, virion structure, progeny propagation, and evolution. In this review, we summarize available reports on jumbo phages and discuss the differences between jumbo phages and small-genome phages. We also discuss data suggesting that jumbo phages might have evolved from phages with smaller genomes by acquiring additional functional genes, and that these additional genes reduce the dependence of the jumbo phages on the host bacteria. PMID:28352259

  9. Bacteriophages of Erwinia amylovora

    PubMed Central

    Gill, J. J.; Svircev, A. M.; Smith, R.; Castle, A. J.

    2003-01-01

    Fifty bacteriophage isolates of Erwinia amylovora, the causal agent of fire blight, were collected from sites in and around the Niagara region of southern Ontario and the Royal Botanical Gardens, Hamilton, Ontario. Forty-two phages survived the isolation, purification, and storage processes. The majority of the phages in the collection were isolated from the soil surrounding trees exhibiting fire blight symptoms. Only five phages were isolated from infected aerial tissue in pear and apple orchards. To avoid any single-host selection bias, six bacterial host strains were used in the initial isolation and enrichment processes. Molecular characterization of the phages with a combination of PCR and restriction endonuclease digestions showed that six distinct phage types, described as groups 1 to 6, were recovered. Ten phage isolates were related to the previously characterized E. amylovora PEa1, with some divergence of molecular markers between phages isolated from different sites. A study of the host ranges of the phages revealed that certain types were unable to efficiently lyse some E. amylovora strains and that some isolates were able to lyse the epiphytic bacterium Pantoea agglomerans. Representatives from the six molecular groups were studied by electron microscopy to determine their morphology. The phages exhibited distinct morphologies when examined by an electron microscope. Group 1 and 2 phages were tailed and contractile, and phages belonging to groups 3 to 6 had short tails or openings with thin appendages. Based on morphotypes, the bacteriophages of E. amylovora were placed in the order Caudovirales, in the families Myoviridae and Podoviridae. PMID:12676693

  10. Characterization of the first double-stranded RNA bacteriophage infecting Pseudomonas aeruginosa

    PubMed Central

    Yang, Yuhui; Lu, Shuguang; Shen, Wei; Zhao, Xia; Shen, Mengyu; Tan, Yinling; Li, Gang; Li, Ming; Wang, Jing; Hu, Fuquan; Le, Shuai

    2016-01-01

    Bacteriophages (phages) are widely distributed in the biosphere and play a key role in modulating microbial ecology in the soil, ocean, and humans. Although the role of DNA bacteriophages is well described, the biology of RNA bacteriophages is poorly understood. More than 1900 phage genomes are currently deposited in NCBI, but only 6 dsRNA bacteriophages and 12 ssRNA bacteriophages genome sequences are reported. The 6 dsRNA bacteriophages were isolated from legume samples or lakes with Pseudomonas syringae as the host. Here, we report the first Pseudomonas aeruginosa phage phiYY with a three-segmented dsRNA genome. phiYY was isolated from hospital sewage in China with the clinical P. aeruginosa strain, PAO38, as a host. Moreover, the dsRNA phage phiYY has a broad host range, which infects 99 out of 233 clinical P. aeruginosa strains isolated from four provinces in China. This work presented a detailed characterization of the dsRNA bacteriophage infecting P. aeruginosa. PMID:27934909

  11. Isolation and Characterization of Bacteriophages Against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit.

    PubMed

    Yu, Ji-Gang; Lim, Jeong-A; Song, Yu-Rim; Heu, Sunggi; Kim, Gyoung Hee; Koh, Young Jin; Oh, Chang-Sik

    2016-02-01

    Pseudomonas syringae pv. actinidiae causes bacterial canker disease in kiwifruit. Owing to the prohibition of agricultural antibiotic use in major kiwifruit-cultivating countries, alternative methods need to be developed to manage this disease. Bacteriophages are viruses that specifically infect target bacteria and have recently been reconsidered as potential biological control agents for bacterial pathogens owing to their specificity in terms of host range. In this study, we isolated bacteriophages against P. syringae pv. actinidiae from soils collected from kiwifruit orchards in Korea and selected seven bacteriophages for further characterization based on restriction enzyme digestion patterns of genomic DNA. Among the studied bacteriophages, two belong to the Myoviridae family and three belong to the Podoviridae family, based on morphology observed by transmission electron microscopy. The host range of the selected bacteriophages was confirmed using 18 strains of P. syringae pv. actinidiae, including the Psa2 and Psa3 groups, and some were also effective against other P. syringae pathovars. Lytic activity of the selected bacteriophages was sustained in vitro until 80 h, and their activity remained stable up to 50°C, at pH 11, and under UV-B light. These results indicate that the isolated bacteriophages are specific to P. syringae species and are resistant to various environmental factors, implying their potential use in control of bacterial canker disease in kiwifruits.

  12. A transcription and translation-coupled DNA replication system using rolling-circle replication.

    PubMed

    Sakatani, Yoshihiro; Ichihashi, Norikazu; Kazuta, Yasuaki; Yomo, Tetsuya

    2015-05-27

    All living organisms have a genome replication system in which genomic DNA is replicated by a DNA polymerase translated from mRNA transcribed from the genome. The artificial reconstitution of this genome replication system is a great challenge in in vitro synthetic biology. In this study, we attempted to construct a transcription- and translation-coupled DNA replication (TTcDR) system using circular genomic DNA encoding phi29 DNA polymerase and a reconstituted transcription and translation system. In this system, phi29 DNA polymerase was translated from the genome and replicated the genome in a rolling-circle manner. When using a traditional translation system composition, almost no DNA replication was observed, because the tRNA and nucleoside triphosphates included in the translation system significantly inhibited DNA replication. To minimize these inhibitory effects, we optimized the composition of the TTcDR system and improved replication by approximately 100-fold. Using our system, genomic DNA was replicated up to 10 times in 12 hours at 30 °C. This system provides a step toward the in vitro construction of an artificial genome replication system, which is a prerequisite for the construction of an artificial cell.

  13. Preliminary crystallographic analysis of the bacteriophage P22 portal protein.

    PubMed

    Cingolani, Gino; Moore, Sean D; Prevelige, Peter E; Johnson, John E

    2002-07-01

    Portal proteins are components of large oligomeric dsDNA pumps connecting the icosahedral capsid of tailed bacteriophages to the tail. Prior to the tail attachment, dsDNA is actively pumped through a central cavity formed by the subunits. We have studied the portal protein of bacteriophage P22, which is the largest connector characterized among the tailed bacteriophages. The molecular weight of the monomer is 82.7 kDa, and it spontaneously assembles into an oligomeric structure of approximately 1.0 MDa. Here we present a preliminary biochemical and crystallographic characterization of this large macromolecular complex. The main difficulties related to the crystallization of P22 portal protein lay in the intrinsic dynamic nature of the portal oligomer. Recombinant connectors assembled from portal monomers expressed in Escherichia coli form rings of different stoichiometry in solution, which cannot be separated on the basis of their size. To overcome this intrinsic heterogeneity we devised a biochemical purification that separates different ring populations on the basis of their charge. Small ordered crystals were grown from drops containing a high concentration of the kosmotropic agent tert-butanol and used for data collection. A preliminary crystallographic analysis to 7.0-A resolution revealed that the P22 portal protein crystallized in space group I4 with unit cell dimensions a=b=409.4A, c=260.4A. This unit cell contains a total of eight connectors. Analysis of the noncrystallographic symmetry by the self-rotation function unambiguously confirmed that bacteriophage P22 portal protein is a dodecamer with a periodicity of 30 degrees. The cryo-EM reconstruction of the dodecahedral bacteriophage T3 portal protein will be used as a model to initiate phase extension and structure determination.

  14. Requirements for bypass of UV-induced lesions in single-stranded DNA of bacteriophage phi X174 in Salmonella typhimurium.

    PubMed Central

    Slater, S C; Maurer, R

    1991-01-01

    According to the current model for mutagenic bypass of UV-induced lesions, efficient bypass requires three proteins: activated RecA (RecA*) and either activated UmuD (UmuD') and UmuC or their plasmid-encoded analogues, MucA' and MucB. RecA* aids synthesis of UmuD' and UmuC (and MucA'/MucB) at two levels: by inactivation of the LexA transcriptional repressor of these genes and by cleavage of UmuD (and MucA) to produce the active fragments, UmuD' (MucA'). A third role for RecA is revealed when these two roles are otherwise satisfied in a suitably engineered strain. An often-suggested possible role for RecA in bypass is inhibition of editing by the epsilon subunit of DNA polymerase III. Here, by demonstrating that elimination of epsilon by deletion of its gene, dnaQ, does not relieve the requirement for the third function of RecA, we show that RecA must perform some function other than, or in addition to, inhibition of epsilon. We also show that elimination of epsilon does not relieve the requirement for either Muc protein. Moreover, we observed reactivation of irradiated phi X174 in unirradiated cells expressing MucA' and MucB. This finding makes it unlikely that the additional role of recA involves derepression of an unidentified gene or cleavage of an unidentified protein and makes it more likely that RecA participates directly in bypass. PMID:1847514

  15. Requirements for bypass of UV-induced lesions in single-stranded DNA of bacteriophage phi X174 in Salmonella typhimurium

    SciTech Connect

    Slater, S.C.; Maurer, R. )

    1991-02-15

    According to the current model for mutagenic bypass of UV-induced lesions, efficient bypass requires three proteins: activated RecA (RecA*) and either activated UmuD (UmuD') and UmuC or their plasmid-encoded analogues, MucA' and MucB. RecA* aids synthesis of UmuD' and UmuC (and MucA'/MucB) at two levels: by inactivation of the LexA transcriptional repressor of these genes and by cleavage of UmuD (and MucA) to produce the active fragments, UmuD' (MucA'). A third role for RecA is revealed when these two roles are otherwise satisfied in a suitably engineered strain. An often-suggested possible role for RecA in bypass is inhibition of editing by the epsilon subunit of DNA polymerase III. Here, by demonstrating that elimination of epsilon by deletion of its gene, dnaQ, does not relieve the requirement for the third function of RecA, we show that RecA must perform some function other than, or in addition to, inhibition of epsilon. We also show that elimination of epsilon does not relieve the requirement for either Muc protein. Moreover, we observed reactivation of irradiated phi X174 in unirradiated cells expressing MucA' and MucB. This finding makes it unlikely that the additional role of recA involves derepression of an unidentified gene or cleavage of an unidentified protein and makes it more likely that RecA participates directly in bypass.

  16. How long can bacteriophage λ change its mind?

    PubMed Central

    Semsey, Szabolcs; Campion, Christopher; Mohamed, Abdu; Svenningsen, Sine Lo

    2015-01-01

    A key event in the lifecycle of a temperate bacteriophage is the choice between lysis and lysogeny upon infection of a susceptible host cell. In a recent paper, we showed that a prolonged period exists after the decision to lysogenize, during which bacteriophage λ can abandon the initial decision, and instead develop lytically, as a response to the accumulation of the late lytic regulatory protein Q. Here, we present evidence that expression of Q does not induce replication of λ DNA, suggesting that the DNA to be packaged into the resulting phage progeny was already present at the time of the initial decision to lysogenize. We summarize our findings in a working model of the key determinants of the duration of the post-decision period during which it is possible for the infected cell to switch from the lysogeny decision to successful lytic development. PMID:26459429

  17. Bacteriophage lysis: mechanism and regulation.

    PubMed Central

    Young, R

    1992-01-01

    Bacteriophage lysis involves at least two fundamentally different strategies. Most phages elaborate at least two proteins, one of which is a murein hydrolase, or lysin, and the other is a membrane protein, which is given the designation holin in this review. The function of the holin is to create a lesion in the cytoplasmic membrane through which the murein hydrolase passes to gain access to the murein layer. This is necessary because phage-encoded lysins never have secretory signal sequences and are thus incapable of unassisted escape from the cytoplasm. The holins, whose prototype is the lambda S protein, share a common organization in terms of the arrangement of charged and hydrophobic residues, and they may all contain at least two transmembrane helical domains. The available evidence suggests that holins oligomerize to form nonspecific holes and that this hole-forming step is the regulated step in phage lysis. The correct scheduling of the lysis event is as much an essential feature of holin function as is the hole formation itself. In the second strategy of lysis, used by the small single-stranded DNA phage phi X174 and the single-stranded RNA phage MS2, no murein hydrolase activity is synthesized. Instead, there is a single species of small membrane protein, unlike the holins in primary structure, which somehow causes disruption of the envelope. These lysis proteins function by activation of cellular autolysins. A host locus is required for the lytic function of the phi X174 lysis gene E. Images PMID:1406491

  18. Bacteriophage association of streptococcal pyrogenic exotoxin type C.

    PubMed Central

    Goshorn, S C; Schlievert, P M

    1989-01-01

    A gene encoding streptococcal pyrogenic exotoxin type C (SPE C) was isolated from bacteriophage DNA derived from Streptococcus pyogenes CS112. The gene, designated speC2, was shown to reside near the phage attachment site of phage CS112. A restriction endonuclease map of the CS112 phage was generated, and the location and orientation of the speC2 gene were determined. Hybridization analyses of eight SPE C-producing strains revealed restriction fragment length polymorphism of the speC gene-containing DNA fragments and further showed that each speC was linked to a common CS112 phage-derived DNA fragment. Images PMID:2566595

  19. Making temporal maps using bacterial luciferase: Bacteriophage

    NASA Astrophysics Data System (ADS)

    Kuhn, Jonathan; Broza, Rachel; Verkin, Ekaterina

    2004-06-01

    A method for making temporal maps in bacteria, plasmids and bacteriophages is described. A cassette containing both the genes for bacterial luciferase and kanamycin resistance can be introduced at precise sites. The technique involves clonging followed by genetic recombination. The result is formation of structures that have the luciferase genes in place of the normal DNA and this allows the very precise measurement of transcription/translation of the substituted regions. Very low levels of transcription as well as the kinetics of induction can be easily ascertained. As a specific demonstration of this general method, the technique was used with bacteriophage λ, one of the best known organisms. By measuring light emission, the expression of luciferase was followed after induction for both early and late genes. The exact timing of initial expression of genes was also determined by sampling at very short intervals. The results show that the early genes express almost without delay implying that the function of the N antitermination system is not temporal regulation.

  20. The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12.

    PubMed Central

    Weeks, C R; Ferretti, J J

    1984-01-01

    The infection of Streptococcus pyogenes T25(3) with the temperate bacteriophage T12 results in the conversion of the nontoxigenic strain to type A streptococcal exotoxin (erythrogenic toxin) production. Although previous research has established that integration of the bacteriophage genome into the host chromosome is not essential for exotoxin production, the location of the gene on the bacteriophage or bacterial chromosome had not been determined. In the present investigation, recombinant DNA techniques were used to determine whether the gene specifying type A streptococcal exotoxin (speA) production is located on the bacteriophage chromosome. Bacteriophage T12 was obtained from S. pyogenes T25(3)(T12) by induction with mitomycin C, and after isolation of bacteriophage DNA by phenol-chloroform extraction, the DNA was digested with restriction enzymes and ligated with Escherichia coli plasmid pHP34 or the Streptococcus-E. coli shuttle vector pSA3. Transformation of E. coli HB101 with the recombinant molecules allowed selection of E. coli clones containing bacteriophage T12 genes. Immunological assays with specific antibody revealed the presence of type A streptococcal exotoxin in sonicates of E. coli transformants. Subcloning experiments localized the speA gene to a 1.7-kilobase segment of the bacteriophage T12 genome flanked by SalI and HindIII sites. Introduction of the pSA3 vector containing the speA gene into Streptococcus sanguis (Challis) resulted in transformants that secreted the type A exotoxin. Immunological analysis showed that the type A streptococcal exotoxin produced by E. coli and S. sanguis transformants was identical to the type A exotoxin produced by S. pyogenes T25(3)(T12). Southern blot hybridizations with the cloned fragment confirmed its presence in the bacteriophage T12 genome and its absence in the T25(3) nonlysogen. Therefore, the gene for type A streptococcal exotoxin is located in the bacteriophage genome, and conversion of S. pyogenes T

  1. Heavy ion induced double strand breaks in bacteria and bacteriophages

    NASA Astrophysics Data System (ADS)

    Micke, U.; Schäfer, M.; Anton, A.; Horneck, G.; Bücker, H.

    DNA damage induced by heavy ions in bacterial cells and bacteriophages such as Bacillus subtilis, E. coli and Bacteriophage Tl were investigated by analyzing the double strand breaks in the chromosomal DNA. This kind of lesion is considered as one of the main reasons for lethal events. To analyze double strand breaks in long molecules of DNA - up to some Mbp in length - the technique of pulse field agarose gel electrophoresis has been used. This allows the detection of one double strand break per genome. Cell lysis and DNA isolation were performed in small agarose blocks directly. This procedure secured minimum DNA destruction by shearing forces. After running a gel, the DNA was stained with ethidium bromide. The light intensity of ethidium bromide fluorescence for both the outcoming (running) DNA and the remaining intact DNA were measured by scanning. The mean number of double strand breaks was calculated by determining the quotient of these intensities. Strand break induction after heavy ion and X-ray irradiation was compared.

  2. Bacteriophage typing of Shigella sonnei.

    PubMed

    Pruneda, R C; Farmer, J J

    1977-01-01

    A bacteriophage-typing schema was developed for differentiating strains of Shigella sonnei. Sixty-seven bacteriophages were obtained from other collections, and 36 bacteriophages were isolated from sewage. From these 103 bacteriophages, a provisional set of 12 was chosen by computer analysis as being the most sensitive in differentiating strains of S. sonnei isolated in the United States. The provisional schema was used to type 265 strains from different geographical areas. It divided them into 87 different lysis patterns, and all 265 strains were typable. Smooth and rough colonial variants of the same strain had different lysis patterns, so the technique was standardized to type rough colonies only. Reproducibility was difficult to obtain until all conditions were carefully standardized. Changes in results were noted even on different lot numbers of Trypticase soy agar, which was defined as the standard medium. So that the medium would not be a variable, 100 pounds (ca 453.5 kg) of the same lot number was purchased. Bacteriophage typing was very useful in differentiating strains, and work should continue on establishing a standarized schema.

  3. Lysogenic bacteriophage isolated from acidophilium

    DOEpatents

    Ward, Thomas W.; Bruhn, Debby F.; Bulmer, Deborah K.

    1992-01-01

    A bacteriophage identified as .phi.Ac1 capable of infecting acidophilic heterotropic bacteria (such as Acidiphilium sp.) and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phase having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element form ore or coal.

  4. Bacteriophage lambda: early pioneer and still relevant

    PubMed Central

    Casjens, Sherwood R.; Hendrix, Roger W.

    2015-01-01

    Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid 1950's to mid 1980's was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives have continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle. PMID:25742714

  5. Structure and function of bacteriophage T4

    PubMed Central

    Yap, Moh Lan; Rossmann, Michael G

    2014-01-01

    Bacteriophage T4 is the most well-studied member of Myoviridae, the most complex family of tailed phages. T4 assembly is divided into three independent pathways: the head, the tail and the long tail fibers. The prolate head encapsidates a 172 kbp concatemeric dsDNA genome. The 925 Å-long tail is surrounded by the contractile sheath and ends with a hexagonal baseplate. Six long tail fibers are attached to the baseplate’s periphery and are the host cell’s recognition sensors. The sheath and the baseplate undergo large conformational changes during infection. X-ray crystallography and cryo-electron microscopy have provided structural information on protein–protein and protein–nucleic acid interactions that regulate conformational changes during assembly and infection of Escherichia coli cells. PMID:25517898

  6. Bacteriophage lambda: Early pioneer and still relevant.

    PubMed

    Casjens, Sherwood R; Hendrix, Roger W

    2015-05-01

    Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle.

  7. Structural and functional characterization of deep-sea thermophilic bacteriophage GVE2 HNH endonuclease

    PubMed Central

    Zhang, Likui; Xu, Dandan; Huang, Yanchao; Zhu, Xinyuan; Rui, Mianwen; Wan, Ting; Zheng, Xin; Shen, Yulong; Chen, Xiangdong; Ma, Kesen; Gong, Yong

    2017-01-01

    HNH endonucleases in bacteriophages play a variety of roles in the phage lifecycle as key components of phage DNA packaging machines. The deep-sea thermophilic bacteriophage Geobacillus virus E2 (GVE2) encodes an HNH endonuclease (GVE2 HNHE). Here, the crystal structure of GVE2 HNHE is reported. This is the first structural study of a thermostable HNH endonuclease from a thermophilic bacteriophage. Structural comparison reveals that GVE2 HNHE possesses a typical ββα-metal fold and Zn-finger motif similar to those of HNH endonucleases from other bacteriophages, apart from containing an extra α-helix, suggesting conservation of these enzymes among bacteriophages. Biochemical analysis suggests that the alanine substitutions of the conserved residues (H93, N109 and H118) in the HNH motif of GVE2 HNHE abolished 94%, 60% and 83% of nicking activity, respectively. Compared to the wild type enzyme, the H93A mutant displayed almost the same conformation while the N108A and H118A mutants had different conformations. In addition, the wild type enzyme was more thermostable than the mutants. In the presence of Mn2+ or Zn2+, the wild type enzyme displayed distinct DNA nicking patterns. However, high Mn2+ concentrations were needed for the N109A and H118A mutants to nick DNA while Zn2+ inactivated their nicking activity. PMID:28211904

  8. Bacteriophage endolysins as novel antimicrobials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endolysins are enzymes used by bacteriophages at the end of their replication cycle to degrade the peptidoglycan of the bacterial host from within, resulting in cell lysis and release of progeny virions. Due to the absence of an outer membrane in the Gram-positive bacterial cell wall, endolysins can...

  9. Bacteriophage therapy in animal production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concerns over the consequences of bacterial resistance to antibiotics with the use of antibiotics in animal production have led to an increase in research on alternatives to antibiotics. Bacteriophages kill bacteria, are natural, safe, plentiful, self replicating, self limiting, can be used to spec...

  10. Bacteriophages and their implications on future biotechnology: a review.

    PubMed

    Haq, Irshad Ul; Chaudhry, Waqas Nasir; Akhtar, Maha Nadeem; Andleeb, Saadia; Qadri, Ishtiaq

    2012-01-10

    Recently it has been recognized that bacteriophages, the natural predators of bacteria can be used efficiently in modern biotechnology. They have been proposed as alternatives to antibiotics for many antibiotic resistant bacterial strains. Phages can be used as biocontrol agents in agriculture and petroleum industry. Moreover phages are used as vehicles for vaccines both DNA and protein, for the detection of pathogenic bacterial strain, as display system for many proteins and antibodies. Bacteriophages are diverse group of viruses which are easily manipulated and therefore they have potential uses in biotechnology, research, and therapeutics. The aim of this review article is to enable the wide range of researchers, scientists, and biotechnologist who are putting phages into practice, to accelerate the progress and development in the field of biotechnology.

  11. Bacteriophages and their implications on future biotechnology: a review

    PubMed Central

    2012-01-01

    Recently it has been recognized that bacteriophages, the natural predators of bacteria can be used efficiently in modern biotechnology. They have been proposed as alternatives to antibiotics for many antibiotic resistant bacterial strains. Phages can be used as biocontrol agents in agriculture and petroleum industry. Moreover phages are used as vehicles for vaccines both DNA and protein, for the detection of pathogenic bacterial strain, as display system for many proteins and antibodies. Bacteriophages are diverse group of viruses which are easily manipulated and therefore they have potential uses in biotechnology, research, and therapeutics. The aim of this review article is to enable the wide range of researchers, scientists, and biotechnologist who are putting phages into practice, to accelerate the progress and development in the field of biotechnology. PMID:22234269

  12. Sequence and comparative analysis of Leuconostoc dairy bacteriophages.

    PubMed

    Kot, Witold; Hansen, Lars H; Neve, Horst; Hammer, Karin; Jacobsen, Susanne; Pedersen, Per D; Sørensen, Søren J; Heller, Knut J; Vogensen, Finn K

    2014-04-17

    Bacteriophages attacking Leuconostoc species may significantly influence the quality of the final product. There is however limited knowledge of this group of phages in the literature. We have determined the complete genome sequences of nine Leuconostoc bacteriophages virulent to either Leuconostoc mesenteroides or Leuconostoc pseudomesenteroides strains. The phages have dsDNA genomes with sizes ranging from 25.7 to 28.4 kb. Comparative genomics analysis helped classify the 9 phages into two classes, which correlates with the host species. High percentage of similarity within the classes on both nucleotide and protein levels was observed. Genome comparison also revealed very high conservation of the overall genomic organization between the classes. The genes were organized in functional modules responsible for replication, packaging, head and tail morphogenesis, cell lysis and regulation and modification, respectively. No lysogeny modules were detected. To our knowledge this report provides the first comparative genomic work done on Leuconostoc dairy phages.

  13. My Life with Bacteriophage φ29

    PubMed Central

    Salas, Margarita

    2012-01-01

    This article is a survey of my scientific work over 52 years. During my postdoctoral stay in Severo Ochoa's laboratory, I determined the direction of reading of the genetic message, and I discovered two proteins that I showed to be involved in the initiation of protein synthesis. The work I have done in Spain with bacteriophage φ29 for 45 years has been very rewarding. I can say that I was lucky because I did not expect that φ29 would give so many interesting results, but I worked hard, with a lot of dedication and enthusiasm, and I was there when the luck arrived. I would like to emphasize our work on the control of φ29 DNA transcription and, in particular, the finding for the first time of a protein covalently linked to the 5′-ends of φ29 DNA that we later showed to be the primer for the initiation of phage DNA replication. Very relevant was the discovery of the φ29 DNA polymerase, with its properties of extremely high processivity and strand displacement capacity, together with its high fidelity. The φ29 DNA polymerase has become an ideal enzyme for DNA amplification, both rolling-circle and whole-genome linear amplification. I am also very proud of the many brilliant students and collaborators with whom I have worked over the years and who have become excellent scientists. This Reflections article is not intended to be the end of my scientific career. I expect to work for many years to come. PMID:23124207

  14. Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages.

    PubMed

    Redrejo-Rodríguez, Modesto; Muñoz-Espín, Daniel; Holguera, Isabel; Mencía, Mario; Salas, Margarita

    2012-11-06

    A number of prokaryotic proteins have been shown to contain nuclear localization signals (NLSs), although its biological role remains sometimes unclear. Terminal proteins (TPs) of bacteriophages prime DNA replication and become covalently linked to the genome ends. We predicted NLSs within the TPs of bacteriophages from diverse families and hosts and, indeed, the TPs of Φ29, Nf, PRD1, Bam35, and Cp-1, out of seven TPs tested, were found to localize to the nucleus when expressed in mammalian cells. Detailed analysis of Φ29 TP led us to identify a bona fide NLS within residues 1-37. Importantly, gene delivery into the eukaryotic nucleus is enhanced by the presence of Φ29 TP attached to the 5' DNA ends. These findings show a common feature of TPs from diverse bacteriophages targeting the eukaryotic nucleus and suggest a possible common function by facilitating the horizontal transfer of genes between prokaryotes and eukaryotes.

  15. Genome of Bacteriophage P1†

    PubMed Central

    Łobocka, Małgorzata B.; Rose, Debra J.; Plunkett, Guy; Rusin, Marek; Samojedny, Arkadiusz; Lehnherr, Hansjörg; Yarmolinsky, Michael B.; Blattner, Frederick R.

    2004-01-01

    P1 is a bacteriophage of Escherichia coli and other enteric bacteria. It lysogenizes its hosts as a circular, low-copy-number plasmid. We have determined the complete nucleotide sequences of two strains of a P1 thermoinducible mutant, P1 c1-100. The P1 genome (93,601 bp) contains at least 117 genes, of which almost two-thirds had not been sequenced previously and 49 have no homologs in other organisms. Protein-coding genes occupy 92% of the genome and are organized in 45 operons, of which four are decisive for the choice between lysis and lysogeny. Four others ensure plasmid maintenance. The majority of the remaining 37 operons are involved in lytic development. Seventeen operons are transcribed from σ70 promoters directly controlled by the master phage repressor C1. Late operons are transcribed from promoters recognized by the E. coli RNA polymerase holoenzyme in the presence of the Lpa protein, the product of a C1-controlled P1 gene. Three species of P1-encoded tRNAs provide differential controls of translation, and a P1-encoded DNA methyltransferase with putative bifunctionality influences transcription, replication, and DNA packaging. The genome is particularly rich in Chi recombinogenic sites. The base content and distribution in P1 DNA indicate that replication of P1 from its plasmid origin had more impact on the base compositional asymmetries of the P1 genome than replication from the lytic origin of replication. PMID:15489417

  16. Bacteriophages in dairy products: pros and cons.

    PubMed

    Mc Grath, Stephen; Fitzgerald, Gerald F; van Sinderen, Douwe

    2007-04-01

    Since the time bacteriophages were first identified as a major cause of fermentation failure in the dairy industry, researchers have been struggling to develop strategies to exclude them from the dairy environment. Over 70 years of research has led to huge improvements in the consistency and quality of fermented dairy products, while also facilitating an appreciation of the beneficial properties of bacteriophages with respect to dairy product development. With specific reference to Lactococcus lactis and cheese production, this review outlines some recently reported novel methods aimed at limiting the bacteriophage infection as well as highlighting some beneficial aspects of bacteriophage activity.

  17. DNA sequencing using electrical conductance measurements of a DNA polymerase

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Shiun; Lee, Chia-Hui; Hung, Meng-Yen; Pan, Hsu-An; Chiou, Jin-Chern; Huang, G. Steven

    2013-06-01

    The development of personalized medicine--in which medical treatment is customized to an individual on the basis of genetic information--requires techniques that can sequence DNA quickly and cheaply. Single-molecule sequencing technologies, such as nanopores, can potentially be used to sequence long strands of DNA without labels or amplification, but a viable technique has yet to be established. Here, we show that single DNA molecules can be sequenced by monitoring the electrical conductance of a phi29 DNA polymerase as it incorporates unlabelled nucleotides into a template strand of DNA. The conductance of the polymerase is measured by attaching it to a protein transistor that consists of an antibody molecule (immunoglobulin G) bound to two gold nanoparticles, which are in turn connected to source and drain electrodes. The electrical conductance of the DNA polymerase exhibits well-separated plateaux that are ~3 pA in height. Each plateau corresponds to an individual base and is formed at a rate of ~22 nucleotides per second. Additional spikes appear on top of the plateaux and can be used to discriminate between the four different nucleotides. We also show that the sequencing platform works with a variety of DNA polymerases and can sequence difficult templates such as homopolymers.

  18. Bacteriophage Procurement for Therapeutic Purposes

    PubMed Central

    Weber-Dąbrowska, Beata; Jończyk-Matysiak, Ewa; Żaczek, Maciej; Łobocka, Małgorzata; Łusiak-Szelachowska, Marzanna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages), discovered 100 years ago, are able to infect and destroy only bacterial cells. In the current crisis of antibiotic efficacy, phage therapy is considered as a supplementary or even alternative therapeutic approach. Evolution of multidrug-resistant and pandrug-resistant bacterial strains poses a real threat, so it is extremely important to have the possibility to isolate new phages for therapeutic purposes. Our phage laboratory and therapy center has extensive experience with phage isolation, characterization, and therapeutic application. In this article we present current progress in bacteriophages isolation and use for therapeutic purposes, our experience in this field and its practical implications for phage therapy. We attempt to summarize the state of the art: properties of phages, the methods for their isolation, criteria of phage selection for therapeutic purposes and limitations of their use. Perspectives for the use of genetically engineered phages to specifically target bacterial virulence-associated genes are also briefly presented. PMID:27570518

  19. Bacteriophages as vehicles of the resistome in cystic fibrosis.

    PubMed

    Rolain, Jean Marc; Fancello, Laura; Desnues, Christelle; Raoult, Didier

    2011-11-01

    Environmental microbial communities and human microbiota represent a huge reservoir of mobilizable genes, the 'mobilome', including a pool of genes encoding antimicrobial resistance, the 'resistome'. Whole-genome sequencing of bacterial genomes from cystic fibrosis (CF) patients has demonstrated that bacteriophages contribute significantly to bacterial genome alterations, and metagenomic analysis of respiratory tract DNA viral communities has revealed the presence of genes encoding antimicrobial resistance in bacteriophages of CF patients. CF airways should now be considered as the site of complex microbiota, where bacteriophages are vehicles for the adaptation of bacteria to this specific environment and for the emergence and selection of multidrug-resistant bacteria with chimeric repertoires. As phages are already known to be mobilized during chronic infection of the lungs of patients with CF, it seems particularly important to improve the understanding of the mechanisms of phage induction to prevent the spread of virulence and/or antimicrobial resistance determinants within the CF population as well as in the community. Such a modern point of view may be a seminal reflection for clinical practice in the future since current antimicrobial therapy guidelines in the context of CF may lead to the emergence of genes encoding antimicrobial resistance.

  20. Bacteriophage Transduction in Staphylococcus epidermidis

    PubMed Central

    Olson, Michael E.; Horswill, Alexander R.

    2016-01-01

    The genetic manipulation of Staphylococcus epidermidis for molecular experimentation has long been an area of difficulty. Many of the traditional laboratory techniques for strain construction are laborious and hampered by poor efficiency. The ability to move chromosomal genetic markers and plasmids using bacteriophage transduction has greatly increased the speed and ease of S. epidermidis studies. These molecular genetic advances have advanced the S. epidermidis research field beyond a select few genetically tractable strains and facilitated investigations of clinically relevant isolates. PMID:24222465

  1. Damages of Biological Components in Bacteria and Bacteriophages Exposed to Atmospheric Non-thermal Plasma

    NASA Astrophysics Data System (ADS)

    Mizuno, Akira; Yasuda, Hachiro

    Mechanism of inactivation of bio-particles exposed to dielectric barrier discharge, DBD, has been studied using E. coli and bacteriophages. States of different biological components were monitored during the course of inactivation. Analysis of green fluorescent protein, GFP, introduced into E.coli cells proved that Non-thermal Plasma, NTP causes a prominent protein damages without cutting peptide bonds. We have developed a biological assay which evaluates in vitro DNA damage of the bacteriophages. Bacteriophage λ having double stranded DNA was exposed to DBD, then DNA was purified and subjected to in vitro DNA packaging reactions. The re-packaged phages consist of the DNA from discharged phages and brand-new coat proteins. Survival curves of the re-packaged phages showed extremely large D value (D = 25 s) compared to the previous D value (D = 3 s) from the discharged phages. The results indicate that DNA damage hardly contributed to the inactivation, and the damage in coat proteins is responsible for inactivation of the phages. M13 phages having single stranded DNA were also examined with the same manner. In this case, damage to DNA was as severe as that of the coat proteins.

  2. Isolation and Characterization of Lytic Properties of Bacteriophages Specific for M. haemolytica Strains

    PubMed Central

    Urban-Chmiel, Renata; Wernicki, Andrzej; Stęgierska, Diana; Dec, Marta; Dudzic, Anna; Puchalski, Andrzej

    2015-01-01

    Aim of Study The objective of this study was isolation and morphological characterization of temperate bacteriophages obtained from M. haemolytica strains and evaluation of their lytic properties in vitro against M. haemolytica isolated from the respiratory tract of calves. Material and Methods The material for the study consisted of the reference strain M. haemolytica serotype 1 (ATCC®) BAA-410™, reference serotypes A1, A2, A5, A6, A7, A9 and A11, and wild-type isolates of M. haemolytica. Bacteriophages were induced from an overnight bacterial starter culture of all examined M. haemolytica strains treated with mitomycin C. The lytic properties and host ranges were determined by plaque assays. The morphology of the bacteriophages was examined in negative-stained smears with 5% uranyl acetate solution using a transmission electron microscope. The genetic analysis of the bacteriophages was followed by restriction analysis of bacteriophage DNA. This was followed by analysis of genetic material by polymerase chain reaction (PCR). Results Eight bacteriophages were obtained, like typical of the families Myoviridae, Siphoviridae and Podoviridae. Most of the bacteriophages exhibited lytic properties against the M. haemolytica strains. Restriction analysis revealed similarities to the P2-like phage obtained from the strain M. haemolytica BAA-410. The most similar profiles were observed in the case of bacteriophages φA1 and φA5. All of the bacteriophages obtained were characterized by the presence of additional fragments in the restriction profiles with respect to the P2-like reference phage. In the analysis of PCR products for the P2-like reference phage phi-MhaA1-PHL101 (DQ426904) and the phages of the M. haemolytica serotypes, a 734-bp phage PCR product was obtained. The primers were programmed in Primer-Blast software using the structure of the sequence DQ426904 of reference phage PHL101. Conclusions The results obtained indicate the need for further research aimed

  3. Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein

    PubMed Central

    Hooton, Steven P. T.; Connerton, Ian F.

    2015-01-01

    Campylobacter jejuni is a worldwide cause of human diarrhoeal disease. Clustered Repetitively Interspaced Palindromic Repeats (CRISPRs) and associated proteins allow Bacteria and Archaea to evade bacteriophage and plasmid infection. Type II CRISPR systems are found in association with combinations of genes encoding the CRISPR-associated Cas1, Cas2, Cas4 or Csn2, and Cas9 proteins. C. jejuni possesses a minimal subtype II-C CRISPR system containing cas1, cas2, and cas9 genes whilst cas4 is notably absent. Cas4 proteins possess 5′-3′ exonuclease activity to create recombinogenic-ends for spacer acquisition. Here we report a conserved Cas4-like protein in Campylobacter bacteriophages that creates a novel split arrangement between the bacteriophage and host that represents a new twist in the bacteriophage/host co-evolutionary arms race. The continuous association of bacteriophage and host in the carrier state life cycle of C. jejuni provided an opportunity to study spacer acquisition in this species. Remarkably all the spacer sequences observed were of host origin. We hypothesize that Campylobacter bacteriophages can use Cas4-like protein to activate spacer acquisition to use host DNA as an effective decoy to bacteriophage DNA. Bacteria that acquire self-spacers and escape phage infection must overcome CRISPR-mediated autoimmunity either by loss of the interference functions leaving them susceptible to foreign DNA incursion or tolerate changes in gene regulation. PMID:25601859

  4. Novel bacteriophages containing a genome of another bacteriophage within their genomes.

    PubMed

    Swanson, Maud M; Reavy, Brian; Makarova, Kira S; Cock, Peter J; Hopkins, David W; Torrance, Lesley; Koonin, Eugene V; Taliansky, Michael

    2012-01-01

    A novel bacteriophage infecting Staphylococus pasteuri was isolated during a screen for phages in Antarctic soils. The phage named SpaA1 is morphologically similar to phages of the family Siphoviridae. The 42,784 bp genome of SpaA1 is a linear, double-stranded DNA molecule with 3' protruding cohesive ends. The SpaA1 genome encompasses 63 predicted protein-coding genes which cluster within three regions of the genome, each of apparently different origin, in a mosaic pattern. In two of these regions, the gene sets resemble those in prophages of Bacillus thuringiensis kurstaki str. T03a001 (genes involved in DNA replication/transcription, cell entry and exit) and B. cereus AH676 (additional regulatory and recombination genes), respectively. The third region represents an almost complete genome (except for the short terminal segments) of a distinct bacteriophage, MZTP02. Nearly the same gene module was identified in prophages of B. thuringiensis serovar monterrey BGSC 4AJ1 and B. cereus Rock4-2. These findings suggest that MZTP02 can be shuttled between genomes of other bacteriophages and prophages, leading to the formation of chimeric genomes. The presence of a complete phage genome in the genome of other phages apparently has not been described previously and might represent a 'fast track' route of virus evolution and horizontal gene transfer. Another phage (BceA1) nearly identical in sequence to SpaA1, and also including the almost complete MZTP02 genome within its own genome, was isolated from a bacterium of the B. cereus/B. thuringiensis group. Remarkably, both SpaA1 and BceA1 phages can infect B. cereus and B. thuringiensis, but only one of them, SpaA1, can infect S. pasteuri. This finding is best compatible with a scenario in which MZTP02 was originally contained in BceA1 infecting Bacillus spp, the common hosts for these two phages, followed by emergence of SpaA1 infecting S. pasteuri.

  5. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry.

    PubMed

    Colomer-Lluch, Marta; Imamovic, Lejla; Jofre, Juan; Muniesa, Maite

    2011-10-01

    This study evaluates the occurrence of bacteriophages carrying antibiotic resistance genes in animal environments. bla(TEM), bla(CTX-M) (clusters 1 and 9), and mecA were quantified by quantitative PCR in 71 phage DNA samples from pigs, poultry, and cattle fecal wastes. Densities of 3 to 4 log(10) gene copies (GC) of bla(TEM), 2 to 3 log(10) GC of bla(CTX-M), and 1 to 3 log(10) GC of mecA per milliliter or gram of sample were detected, suggesting that bacteriophages can be environmental vectors for the horizontal transfer of antibiotic resistance genes.

  6. Use of Bacteriophages to control bacterial pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lytic bacteriophages can provide a natural method and an effective alternative to antibiotics to reduce bacterial pathogens in animals, foods, and other environments. Bacteriophages (phages) are viruses which infect bacterial cells and eventually kill them through lysis, and represent the most abun...

  7. Nanoscale bacteriophage biosensors beyond phage display.

    PubMed

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology.

  8. Bacteriophage: laboratorial diagnosis and phage therapy

    PubMed Central

    Silva, Joas L. Da; Hirata, Rosario D.C.; Hirata, Mario H.

    2009-01-01

    Bacteriophages have been researched as a new alternative to antibiotics. These viruses inject their genetic material into bacteria and use their host machinery to multiply themselves. The research of bacteriophages in Brazil will certainly provide low-cost treatment of multidrug resistant bacteria, new microbiological diagnosis and advantages for the Brazilian food industry. PMID:24031398

  9. Presence of bacteriophage Aa phi 23 correlates with the population genetic structure of Actinobacillus actinomycetemcomitans.

    PubMed

    Haubek, D; Willi, K; Poulsen, K; Meyer, J; Kilian, M

    1997-02-01

    Several bacteriophages associated with the oral bacterium Actinobacillus actinomycetemcomitans have been identified. Lysogeny might affect the virulence of this bacterium, which has been implicated in the etiology of juvenile and adult periodontitis. We have determined the presence of bacteriophage Aa phi 23-related DNA sequences among 185 A. actinomycetemcomitans strains belonging to 2 well-characterized collections and have related the findings to the population genetic structure of the collections. 2 cloned Aa phi 23-specific DNA probes were used in Southern blot hybridization experiments to detect homologous sequences in whole-cell DNA of the strains. DNA from 65 (35%) of the 185 strains hybridized to either of the DNA probes. The majority (74%) of the hybridizing strains showed an identical hybridization pattern, indicating presence of phage Aa phi 23. Whole-cell DNA from the remaining hybridizing strains hybridized to the probes with different patterns, indicating that DNA sequences related to but different from phage Aa phi 23 occur in these strains. The majority (81%) of the strains which harbored phage Aa phi 23 were of serotype a, whereas serotype d strains appeared to be resistant to infection with this phage. There was a clear correlation between hybridization patterns and genetic subdivisions based on our previous population genetic analyses of A. actinomycetemcomitans. However, there was no significant correlation between occurrence of Aa phi 23 among A. actinomycetemcomitans strains and the periodontal status of the patients from whom the isolates were obtained, suggesting that this bacteriophage does not significantly influence the virulence of A. actinomycetemcomitans.

  10. Isolation and characterization of a bacteriophage for bacillus licheniformis A5

    SciTech Connect

    Schreier, H.J.; Vonada, E.K.; Yasbin, R.E.; Bernlohr, R.W.

    1982-01-01

    The isolation of a virulent bacteriophage for Bacillus licheniformis A5 is reported. This bacteriophage, designated NLP-1, has an icosahedral head 100 nm in diameter and a contractible tail with a maximum length of 130 nm. Its DNA has a density of 1.741 g/cm/sup 3/ and a T/sub m/ of 78.4/sup 0/C. Base composition analysis showed that thymine is absent and is replaced by hydroxymethyluracil. NLP-1 appears to belong to the Bacillus group of bacteriophages that includes SP01 and SP82. It will infect B. cereus T and B. brevis 8185, but will not infect B. subtilis W23 or 168.

  11. Bacteriophage T5 gene D10 encodes a branch-migration protein

    PubMed Central

    Wong, Io Nam; Sayers, Jon R.; Sanders, Cyril M.

    2016-01-01

    Helicases catalyze the unwinding of double-stranded nucleic acids where structure and phosphate backbone contacts, rather than nucleobase sequence, usually determines substrate specificity. We have expressed and purified a putative helicase encoded by the D10 gene of bacteriophage T5. Here we report that this hitherto uncharacterized protein possesses branch migration and DNA unwinding activity. The initiation of substrate unwinding showed some sequence dependency, while DNA binding and DNA-dependent ATPase activity did not. DNA footprinting and purine-base interference assays demonstrated that D10 engages these substrates with a defined polarity that may be established by protein-nucleobase contacts. Bioinformatic analysis of the nucleotide databases revealed genes predicted to encode proteins related to D10 in archaebacteria, bacteriophages and in viruses known to infect a range of eukaryotic organisms. PMID:28009009

  12. Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli

    SciTech Connect

    Liu Jun; Chen Chengyen; Shiomi, Daisuke; Niki, Hironori; Margolin, William

    2011-09-01

    Bacteriophage P1 has a contractile tail that targets the conserved lipopolysaccharide on the outer membrane surface of the host for initial adsorption. The mechanism by which P1 DNA enters the host cell is not well understood, mainly because the transient molecular interactions between bacteriophage and bacteria have been difficult to study by conventional approaches. Here, we engineered tiny E. coli host cells so that the initial stages of P1-host interactions could be captured in unprecedented detail by cryo-electron tomography. Analysis of three-dimensional reconstructions of frozen-hydrated specimens revealed three predominant configurations: an extended tail stage with DNA present in the phage head, a contracted tail stage with DNA, and a contracted tail stage without DNA. Comparative analysis of various conformations indicated that there is uniform penetration of the inner tail tube into the E. coli periplasm and a significant movement of the baseplate away from the outer membrane during tail contraction.

  13. Characterization of recombinant bacteriophages containing mosquito ribosomal RNA genes

    SciTech Connect

    Park, Y.J.

    1988-01-01

    A family of nine recombinant bacteriophages containing rRNA genes from cultured cells of the mosquito, Aedes albopictus, has been isolated by screening two different genomic DNA libraries - Charon 30 and EMBL 3 using {sup 32}P-labeled 18S and 28S rRNA as probes. These nine recombinant bacteriophages were characterized by restriction mapping, Southern blotting, and S1 nuclease analysis. The 18S rRNA coding region contains an evolutionarily conserved EcoRI site near the 3{prime}-end, and measures 1800 bp. The 28S rRNA genes were divided into {alpha} and {beta} coding regions measuring 1750 bp and 2000 bp, respectively. The gap between these two regions measures about 340 bp. No insertion sequences were found in the rRNA coding regions. The entire rDNA repeat unit had a minimum length of 15.6 kb, including a nontranscribed spacer region. The non-transcribed spacer region of cloned A. albopictus rDNA contained a common series of seven PvuI sites within a 1250 bp region upstream of the 18S rRNA coding region, and a proportion of this region also showed heterogeneity both in the length and in the restriction sites.

  14. Isolation and genetic analysis of haloalkaliphilic bacteriophages in a North American Soda Lake.

    PubMed

    Sabet, Shereen; Chu, Weiping; Jiang, Sunny C

    2006-05-01

    Mono Lake is a meromictic, hypersaline, soda lake that harbors a diverse and abundant microbial community. A previous report documented the high viral abundance in Mono Lake, and pulsed-field gel electrophoresis analysis of viral DNA from lake water samples showed a diverse population based on a broad range of viral genome sizes. To better understand the ecology of bacteriophages and their hosts in this unique environment, water samples were collected between February 2001 and July 2004 for isolation of bacteriophages by using four indigenous bacterial hosts. Plaque assay results showed a differential seasonal expression of cultured bacteriophages. To reveal the diversity of uncultured bacteriophages, viral DNA from lake water samples was used to construct clone libraries. Sequence analysis of viral clones revealed homology to viral as well as bacterial proteins. Furthermore, dot blot DNA hybridization analyses showed that the uncultured viruses are more prevalent during most seasons, whereas the viral isolates (Aphi and phi2) were less prevalent, confirming the belief that uncultured viruses represent the dominant members of the community, whereas cultured isolates represent the minority species.

  15. Genome Sequence of Klebsiella pneumoniae Bacteriophage PMBT1 Isolated from Raw Sewage

    PubMed Central

    Brinks, Erik; Fiedler, Gregor; Hüsing, Christina; Cho, Gyu-Sung; Hoeppner, Marc P.; Heller, Knut J.; Neve, Horst; Franz, Charles M. A. P.

    2017-01-01

    ABSTRACT A bacteriophage virulent for extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae strain 182 was isolated from sewage. The double-stranded DNA (dsDNA) genome showed high similarity to the genomes of other Klebsiella pneumoniae phages. It comprises 175,206 bp with a mol% G+C content of 41.9 and contains 276 putative open reading frames (ORFs) and one tRNA. PMID:28232430

  16. Bacteriophage-induced Inhibition of Host Functions 1

    PubMed Central

    Warren, Richard J.; Bose, Subir K.

    1968-01-01

    The kinetics of degradation of bacterial deoxyribonucleic acid (DNA) after infection of Escherichia coli with T4D, ultraviolet-irradiated T4D, and two amber mutants, N122 and N94, was studied by zone sedimentation through linear glycerol gradients. Within 5 min after infection with any of the bacteriophages, breakdown of host genome was evident. The first product was a high-molecular-weight material (50S to 70S) and further degradation appeared to occur in discrete steps. Rapid and extensive breakdown of bacterial DNA was seen after infection with am N122 and T4D. Infection with ultraviolet-irradiated phage or with am N94 resulted in an accumulation of high-molecular-weight material. These results suggest that the observed degradation of host DNA begins early and requires sequential action of several phage-induced endo- as well as exodeoxyribonucleases. PMID:4911847

  17. Transcription regulation mechanisms of bacteriophages

    PubMed Central

    Yang, Haiquan; Ma, Yingfang; Wang, Yitian; Yang, Haixia; Shen, Wei; Chen, Xianzhong

    2014-01-01

    Phage diversity significantly contributes to ecology and evolution of new bacterial species through horizontal gene transfer. Therefore, it is essential to understand the mechanisms underlying phage-host interactions. After initial infection, the phage utilizes the transcriptional machinery of the host to direct the expression of its own genes. This review presents a view on the transcriptional regulation mechanisms of bacteriophages, and its contribution to phage diversity and classification. Through this review, we aim to broaden the understanding of phage-host interactions while providing a reference source for researchers studying the regulation of phage transcription. PMID:25482231

  18. The future of bacteriophage biology.

    PubMed

    Campbell, Allan

    2003-06-01

    After an illustrious history as one of the primary tools that established the foundations of molecular biology, bacteriophage research is now undergoing a renaissance in which the primary focus is on the phages themselves rather than the molecular mechanisms that they explain. Studies of the evolution of phages and their role in natural ecosystems are flourishing. Practical questions, such as how to use phages to combat human diseases that are caused by bacteria, how to eradicate phage pests in the food industry and what role they have in the causation of human diseases, are receiving increased attention. Phages are also useful in the deeper exploration of basic molecular and biophysical questions.

  19. Genomics of Three New Bacteriophages Useful in the Biocontrol of Salmonella

    PubMed Central

    Bardina, Carlota; Colom, Joan; Spricigo, Denis A.; Otero, Jennifer; Sánchez-Osuna, Miquel; Cortés, Pilar; Llagostera, Montserrat

    2016-01-01

    Non-typhoid Salmonella is the principal pathogen related to food-borne diseases throughout the world. Widespread antibiotic resistance has adversely affected human health and has encouraged the search for alternative antimicrobial agents. The advances in bacteriophage therapy highlight their use in controlling a broad spectrum of food-borne pathogens. One requirement for the use of bacteriophages as antibacterials is the characterization of their genomes. In this work, complete genome sequencing and molecular analyses were carried out for three new virulent Salmonella-specific bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) able to infect a broad range of Salmonella strains. Sequence analysis of the genomes of UAB_Phi20, UAB_Phi78, and UAB_Phi87 bacteriophages did not evidence the presence of known virulence-associated and antibiotic resistance genes, and potential immunoreactive food allergens. The UAB_Phi20 genome comprised 41,809 base pairs with 80 open reading frames (ORFs); 24 of them with assigned function. Genome sequence showed a high homology of UAB_Phi20 with Salmonella bacteriophage P22 and other P22likeviruses genus of the Podoviridae family, including ST64T and ST104. The DNA of UAB_Phi78 contained 44,110 bp including direct terminal repeats (DTR) of 179 bp and 58 putative ORFs were predicted and 20 were assigned function. This bacteriophage was assigned to the SP6likeviruses genus of the Podoviridae family based on its high similarity not only with SP6 but also with the K1-5, K1E, and K1F bacteriophages, all of which infect Escherichia coli. The UAB_Phi87 genome sequence consisted of 87,669 bp with terminal direct repeats of 608 bp; although 148 ORFs were identified, putative functions could be assigned to only 29 of them. Sequence comparisons revealed the mosaic structure of UAB_Phi87 and its high similarity with bacteriophages Felix O1 and wV8 of E. coli with respect to genetic content and functional organization. Phylogenetic analysis of large

  20. Preparation of RNA from bacteria infected with bacteriophages: a case study from the marine unicellular Synechococcus sp. WH7803 infected by phage S-PM2.

    PubMed

    Shan, Jinyu; Clokie, Martha

    2009-01-01

    Bacteriophages manipulate bacterial gene expression in order to express their own genes or influence bacterial metabolism. Gene expression can be studied using real-time PCR or microarrays. Either technique requires the prior isolation of high quality RNA uncontaminated by the presence of genomic DNA. We outline the considerations necessary when working with bacteriophage infected bacterial cells. We also give an example of a protocol for extraction and quantification of high quality RNA from infected bacterial cells, using the marine cyanobacterium WH7803 and the phage S-PM2 as a case study. This protocol can be modified to extract RNA from the host/bacteriophage of interest.

  1. Bacteriophage T4 genome.

    PubMed

    Miller, Eric S; Kutter, Elizabeth; Mosig, Gisela; Arisaka, Fumio; Kunisawa, Takashi; Rüger, Wolfgang

    2003-03-01

    Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex

  2. Bacteriophage T4 Genome†

    PubMed Central

    Miller, Eric S.; Kutter, Elizabeth; Mosig, Gisela; Arisaka, Fumio; Kunisawa, Takashi; Rüger, Wolfgang

    2003-01-01

    Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the “cell-puncturing device,” combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the

  3. Bacteriophage Infection of Model Metal Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Weber, K. A.; Bender, K. S.; Gandhi, K.; Coates, J. D.

    2008-12-01

    Microbially-mediated metal reduction plays a significant role controlling contaminant mobility in aqueous, soil, and sedimentary environments. From among environmentally relevant microorganisms mediating metal reduction, Geobacter spp. have been identified as predominant metal-reducing bacteria under acetate- oxidizing conditions. Due to the significance of these bacteria in environmental systems, it is necessary to understand factors influencing their metabolic physiology. Examination of the annotated finished genome sequence of G. sulfurreducens PCA, G. uraniumreducens Rf4, G. metallireduceans GS-15 as well as a draft genome sequence of Geobacter sp. FRC-32 have identified gene sequences of putative bacteriophage origin. Presence of these sequences indicates that these bacteria are susceptible to phage infection. Polymerase chain reaction (PCR) primer sets designed tested for the presence of 12 of 25 annotated phage-like sequences in G. sulfurreducens PCA and 9 of 17 phage-like sequences in FRC- 32. The following genes were successfully amplified in G. sulfurreducens PCA: prophage type transcription regulator, phage-induced endonuclease, phage tail sheath, 2 phage tail proteins, phage protein D, phage base plate protein, phage-related DNA polymerase, integrase, phage transcriptional regulator, and Cro-like transcription regulator. Nine of the following sequences were present in FRC-32: 4 separate phage- related proteins, phage-related tail component, viron core protein, phage Mu protein, phage base plate, and phage tail sheath. In addition to the bioinformatics evidence, incubation of G. sulfurreducens PCA with 1 μg mL-1 mytomycin C (mutagen stimulating prophage induction) during mid-log phase resulted in significant cell lysis relative to cultures that remained unamended. Cell lysis was concurrent with an increase in viral like particles enumerated using epifluorescent microscopy. In addition, samples collected following this lytic event (~44hours) were

  4. Dynamics of bacteriophage genome ejection in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Panja, Debabrata; Molineux, Ian J.

    2010-12-01

    Bacteriophages, phages for short, are viruses of bacteria. The majority of phages contain a double-stranded DNA genome packaged in a capsid at a density of ~500 mg ml-1. This high density requires substantial compression of the normal B-form helix, leading to the conjecture that DNA in mature phage virions is under significant pressure, and that pressure is used to eject the DNA during infection. A large number of theoretical, computer simulation and in vitro experimental studies surrounding this conjecture have revealed many—though often isolated and/or contradictory—aspects of packaged DNA. This prompts us to present a unified view of the statistical physics and thermodynamics of DNA packaged in phage capsids. We argue that the DNA in a mature phage is in a (meta)stable state, wherein electrostatic self-repulsion is balanced by curvature stress due to confinement in the capsid. We show that in addition to the osmotic pressure associated with the packaged DNA and its counterions, there are four different pressures within the capsid: pressure on the DNA, hydrostatic pressure, the pressure experienced by the capsid and the pressure associated with the chemical potential of DNA ejection. Significantly, we analyze the mechanism of force transmission in the packaged DNA and demonstrate that the pressure on DNA is not important for ejection. We derive equations showing a strong hydrostatic pressure difference across the capsid shell. We propose that when a phage is triggered to eject by interaction with its receptor in vitro, the (thermodynamic) incentive of water molecules to enter the phage capsid flushes the DNA out of the capsid. In vivo, the difference between the osmotic pressures in the bacterial cell cytoplasm and the culture medium similarly results in a water flow that drags the DNA out of the capsid and into the bacterial cell.

  5. Langevin Dynamics Simulations of Genome Packing in Bacteriophage

    PubMed Central

    Forrey, Christopher; Muthukumar, M.

    2006-01-01

    We use Langevin dynamics simulations to study the process by which a coarse-grained DNA chain is packaged within an icosahedral container. We focus our inquiry on three areas of interest in viral packing: the evolving structure of the packaged DNA condensate; the packing velocity; and the internal buildup of energy and resultant forces. Each of these areas has been studied experimentally, and we find that we can qualitatively reproduce experimental results. However, our findings also suggest that the phage genome packing process is fundamentally different than that suggested by the inverse spool model. We suggest that packing in general does not proceed in the deterministic fashion of the inverse-spool model, but rather is stochastic in character. As the chain configuration becomes compressed within the capsid, the structure, energy, and packing velocity all become dependent upon polymer dynamics. That many observed features of the packing process are rooted in condensed-phase polymer dynamics suggests that statistical mechanics, rather than mechanics, should serve as the proper theoretical basis for genome packing. Finally we suggest that, as a result of an internal protein unique to bacteriophage T7, the T7 genome may be significantly more ordered than is true for bacteriophage in general. PMID:16617089

  6. The bacteriophage ϕ29 tail possesses a pore-forming loop for cell membrane penetration.

    PubMed

    Xu, Jingwei; Gui, Miao; Wang, Dianhong; Xiang, Ye

    2016-06-23

    Most bacteriophages are tailed bacteriophages with an isometric or a prolate head attached to a long contractile, long non-contractile, or short non-contractile tail. The tail is a complex machine that plays a central role in host cell recognition and attachment, cell wall and membrane penetration, and viral genome ejection. The mechanisms involved in the penetration of the inner host cell membrane by bacteriophage tails are not well understood. Here we describe structural and functional studies of the bacteriophage ϕ29 tail knob protein gene product 9 (gp9). The 2.0 Å crystal structure of gp9 shows that six gp9 molecules form a hexameric tube structure with six flexible hydrophobic loops blocking one end of the tube before DNA ejection. Sequence and structural analyses suggest that the loops in the tube could be membrane active. Further biochemical assays and electron microscopy structural analyses show that the six hydrophobic loops in the tube exit upon DNA ejection and form a channel that spans the lipid bilayer of the membrane and allows the release of the bacteriophage genomic DNA, suggesting that cell membrane penetration involves a pore-forming mechanism similar to that of certain non-enveloped eukaryotic viruses. A search of other phage tail proteins identified similar hydrophobic loops, which indicates that a common mechanism might be used for membrane penetration by prokaryotic viruses. These findings suggest that although prokaryotic and eukaryotic viruses use apparently very different mechanisms for infection, they have evolved similar mechanisms for breaching the cell membrane.

  7. Lytic Clostridium perfringens Bacteriophage 39-O Genomic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Screening for bacteriophages lytic for Clostridium perfringens was completed utilizing filtered samples obtained from poultry (intestinal material), soil, sewage and poultry processing drainage water. Following limit dilution cloning and three rounds of plaque purification lytic phage preparations ...

  8. The next generation of bacteriophage therapy.

    PubMed

    Lu, Timothy K; Koeris, Michael S

    2011-10-01

    Bacteriophage therapy for bacterial infections is a concept with an extensive but controversial history. There has been a recent resurgence of interest into bacteriophages owing to the increasing incidence of antibiotic resistance and virulent bacterial pathogens. Despite these efforts, bacteriophage therapy remains an underutilized option in Western medicine due to challenges such as regulation, limited host range, bacterial resistance to phages, manufacturing, side effects of bacterial lysis, and delivery. Recent advances in biotechnology, bacterial diagnostics, macromolecule delivery, and synthetic biology may help to overcome these technical hurdles. These research efforts must be coupled with practical and rigorous approaches at academic, commercial, and regulatory levels in order to successfully advance bacteriophage therapy into clinical settings.

  9. [Spontaneous bacteriophage induction in Bacillus thuringiensis].

    PubMed

    Besaeva, S G; Mikhaĭlov, A A; Petrova, T M; Tur, A I; Bystrova, E V

    1987-01-01

    The production of temperate bacteriophages was studied in the process of batch cultivation of three Bacillus thuringiensis lysogenic strains. Phage titres were determined using an indicator culture (IPM-1148). The growth of bacteriophages was induced when thermoactivated spores germinated. Some cells (1.10(-3)-2.10(-3)) underwent lysis without their division. The subsequent lytic cycles occurred in the actively growing culture. Phage titres ceased to rise before the exponential growth phase was over.

  10. Arthrobacter globiformis and its bacteriophage in soil

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.; Liu, K.-C.

    1974-01-01

    An attempt was made to correlate bacteriophages for Arthrobacter globiformis with soils containing that bacterium. The phages were not detected unless the soil was nutritionally amended (with glucose or sucrose) and incubated for several days. Phage was continuously produced after amendment without the addition of host Arthrobacter. These results indicate that the bacteriophage is present in a masked state and that the bacteria are present in an insensitive form which becomes sensitive after addition of nutrient.

  11. Role of osmotic and hydrostatic pressures in bacteriophage genome ejection

    NASA Astrophysics Data System (ADS)

    Lemay, Serge G.; Panja, Debabrata; Molineux, Ian J.

    2013-02-01

    A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly in vitro, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been interpreted in terms of the decrease in free energy of the densely packed DNA associated with genome ejection. Here we detail a simple model of genome ejection in terms of the hydrostatic and osmotic pressures inside the phage, a bacterium, and a buffer solution or culture medium. We argue that the hydrodynamic flow associated with the water movement from the buffer solution into the phage capsid and further drainage into the bacterial cytoplasm, driven by the osmotic gradient between the bacterial cytoplasm and culture medium, provides an alternative mechanism for phage genome ejection in vivo; the mechanism is perfectly consistent with phage genome ejection in vitro.

  12. Efficient epitope mapping by bacteriophage {lambda} surface display

    SciTech Connect

    Kuwabara, I.; Maruyama, H.; Zuberi, R.I.

    1997-01-01

    A bacteriophage {lambda} surface expression system, {lambda}foo, was used for epitope mapping of human galectin-3. We constructed random epitope and peptide libraries and compared their efficiencies in the mapping. The galectin-3 cDNA was randomly digested by DNase I to make random epitope libraries. The libraries were screened by affinity selection using a microtiter plate coated with monoclonal antibodies. Direct DNA sequencing of the selected clones defined two distinct epitope sites consisting of nine and 11 amino-acid residues. Affinity selection of random peptide libraries recovered a number of sequences that were similar to each other but distinct from the galectin-3 sequence. These results demonstrate that a single affinity selection of epitope libraries with antibodies is able to define an epitope determinant as small as nine residues long and is more efficient in epitope mapping than random peptide libraries. 25 refs., 4 figs., 1 tab.

  13. Taking Bacteriophage Therapy Seriously: A Moral Argument

    PubMed Central

    Verbeken, Gilbert; Huys, Isabelle; Jennes, Serge; Chanishvili, Nina; Górski, Andrzej; De Vos, Daniel

    2014-01-01

    The excessive and improper use of antibiotics has led to an increasing incidence of bacterial resistance. In Europe the yearly number of infections caused by multidrug resistant bacteria is more than 400.000, each year resulting in 25.000 attributable deaths. Few new antibiotics are in the pipeline of the pharmaceutical industry. Early in the 20th century, bacteriophages were described as entities that can control bacterial populations. Although bacteriophage therapy was developed and practiced in Europe and the former Soviet republics, the use of bacteriophages in clinical setting was neglected in Western Europe since the introduction of traditional antibiotics. Given the worldwide antibiotic crisis there is now a growing interest in making bacteriophage therapy available for use in modern western medicine. Despite the growing interest, access to bacteriophage therapy remains highly problematic. In this paper, we argue that the current state of affairs is morally unacceptable and that all stakeholders (pharmaceutical industry, competent authorities, lawmakers, regulators, and politicians) have the moral duty and the shared responsibility towards making bacteriophage therapy urgently available for all patients in need. PMID:24868534

  14. Assembly of bacteriophage T7. Dimensions of the bacteriophage and its capsids.

    PubMed Central

    Stroud, R M; Serwer, P; Ross, M J

    1981-01-01

    The dimensions of bacteriophage T7 and T7 capsids have been investigated by small-angle x-ray scattering. Phage T7 behaves like a sphere of uniform density with an outer radius of 301 +/- 2 A (excluding the phage tail) and a calculated volume for protein plus nucleic acid of 1.14 +/- 0.05 x 10(-16) ml. The outer radius determined for T7 phage in solution is approximately 30% greater than the radius measured from electron micrographs, which indicates that considerable shrinkage occurs during preparation for electron microscopy. Capsids that have a phagelike envelope and do not contain DNA were obtained from lysates of T7-infected Escherichia coli (capsid II) and by separating the capsid component of T7 phage from the phage DNA by means of temperature shock (capsid IV). In both cases the peak protein density is at a radius of 275 A; the outer radius is 286 +/- 4 A, approximately 5% smaller than the envelope of T7 phage. The thickness of the envelope of capsid II is 22 +/- 4 A, consistent with the thickness of protein estimated to be 23 +/- 5 A in whole T7 phage, as seen on electron micrographs in which the internal DNA is positively stained. The volume in T7 phage available to package DNA is estimated to be 9.2 +/- 0.4 x 10(-17) ml. The packaged DNA adopts a regular packing with 23.6 A interplanar spacing between, DNA strands. The angular width of the 23.6 A reflection shows that the mean DNA-DNA spacing throughout the phage head is 27.5 +/- less than 2.2 A. A T7 precursor capsid (capsid I) expands when pelleted for x-ray scattering in the ultracentrifuge to essentially the same outer dimensions as for capsids II and IV. This expansion of capsid I can be prevented by fixing with glutaraldehyde; fixed capsid I has peak density at a radius of 247 A, 10% less than capsid II or IV. Images FIGURE 2 FIGURE 3 PMID:7326332

  15. Incidence of Vibrio parahaemolyticus Bacteriophages and Other Vibrio Bacteriophages in Marine Samples †

    PubMed Central

    Baross, John A.; Liston, John; Morita, Richard Y.

    1978-01-01

    Vibrio bacteriophages were isolated by enrichment from 177 of 643 samples of marine molluscan shellfish, crustaceans, seawater, and sediments. The predominant bacteriophage types isolated were specific for some strains of Vibrio parahaemolyticus. A high frequency of phage isolations was also observed with strains of agar-digesting vibrios (21 of 56) and psychrophilic vibrios (14 of 72) that were originally isolated from non-shellfish growing areas. No bacteriophages were isolated against V. alginolyticus and only rarely for V. anguillarum even though these were the two most abundant species found in near-shore environments. No V. cholerae phages were isolated. It was also determined from quantitative studies on the Pacific oyster (Crassostrea gigas) obtained from two environments in Washington and Oregon that the titers of V. parahaemolyticus bacteriophages increased with increasing seasonal water temperatures and that this was proportional to the increase in numbers of mesophilic vibrios and not with the incidence of V. parahaemolyticus. Titers of V. parahaemolyticus bacteriophages occasionally exceeded 106 per g of oyster during the summer months. Specific V. parahaemolyticus bacteriophages were also isolated from market seafoods and other marine samples that originated in cold environments where no mesophilic vibrios are expected to be found. The possibility that V. parahaemolyticus bacteriophages originate from Vibrio spp. other than V. parahaemolyticus and the role of these bacteriophages in the ecology of marine vibrios are discussed. PMID:727781

  16. Tradeoffs in bacteriophage life histories.

    PubMed

    Keen, Eric C

    2014-01-01

    Viruses are the most abundant biological entities on the planet, yet most classical principles of evolutionary biology and ecology were not developed with viruses in mind. Here, the concept of biological tradeoffs, a fundamental tenet of life history theory, is examined in the context of bacteriophage biology. Specifically, several important parameters of phage life histories-replication, persistence, host range, and adsorption-are evaluated for tradeoffs. Available data indicate that replication rate is strongly negatively correlated with both persistence and host range, suggesting that the well-documented tradeoff in macroorganisms between offspring production and offspring quality also applies to phages. The biological tradeoffs that appear to characterize viruses' life histories have potential importance for viral evolution, ecology, and pathogenesis.

  17. Pathogen detection using engineered bacteriophages.

    PubMed

    Smartt, Abby E; Xu, Tingting; Jegier, Patricia; Carswell, Jessica J; Blount, Samuel A; Sayler, Gary S; Ripp, Steven

    2012-04-01

    Bacteriophages, or phages, are bacterial viruses that can infect a broad or narrow range of host organisms. Knowing the host range of a phage allows it to be exploited in targeting various pathogens. Applying phages for the identification of microorganisms related to food and waterborne pathogens and pathogens of clinical significance to humans and animals has a long history, and there has to some extent been a recent revival in these applications as phages have become more extensively integrated into novel detection, identification, and monitoring technologies. Biotechnological and genetic engineering strategies applied to phages are responsible for some of these new methods, but even natural unmodified phages are widely applicable when paired with appropriate innovative detector platforms. This review highlights the use of phages as pathogen detector interfaces to provide the reader with an up-to-date inventory of phage-based biodetection strategies.

  18. The Bacteriophage Carrier State of Campylobacter jejuni Features Changes in Host Non-coding RNAs and the Acquisition of New Host-derived CRISPR Spacer Sequences

    PubMed Central

    Hooton, Steven P. T.; Brathwaite, Kelly J.; Connerton, Ian F.

    2016-01-01

    Incorporation of self-derived CRISPR DNA protospacers in Campylobacter jejuni PT14 occurs in the presence of bacteriophages encoding a CRISPR-like Cas4 protein. This phenomenon was evident in carrier state infections where both bacteriophages and host are maintained for seemingly indefinite periods as stable populations following serial passage. Carrier state cultures of C. jejuni PT14 have greater aerotolerance in nutrient limited conditions, and may have arisen as an evolutionary response to selective pressures imposed during periods in the extra-intestinal environment. A consequence of this is that bacteriophage and host remain associated and able to survive transition periods where the chances of replicative success are greatly diminished. The majority of the bacteriophage population do not commit to lytic infection, and conversely the bacterial population tolerates low-level bacteriophage replication. We recently examined the effects of Campylobacter bacteriophage/C. jejuni PT14 CRISPR spacer acquisition using deep sequencing strategies of DNA and RNA-Seq to analyze carrier state cultures. This approach identified de novo spacer acquisition in C. jejuni PT14 associated with Class III Campylobacter phages CP8/CP30A but spacer acquisition was oriented toward the capture of host DNA. In the absence of bacteriophage predation the CRISPR spacers in uninfected C. jejuni PT14 cultures remain unchanged. A distinct preference was observed for incorporation of self-derived protospacers into the third spacer position of the C. jejuni PT14 CRISPR array, with the first and second spacers remaining fixed. RNA-Seq also revealed the variation in the synthesis of non-coding RNAs with the potential to bind bacteriophage genes and/or transcript sequences. PMID:27047470

  19. Photoreactivation of bacteriophages after UV disinfection: role of genome structure and impacts of UV source.

    PubMed

    Rodriguez, Roberto A; Bounty, Sarah; Beck, Sara; Chan, Connie; McGuire, Christian; Linden, Karl G

    2014-05-15

    The UV inactivation kinetics of bacteriophages MS2, PhiX174, T1 and PRD1 and the potential of bacterial UV repair mechanisms to reactivate these bacteriophages is described here. The selected bacteriophages represent a range of genome size, single and double stranded genomes, circular and linear organization and RNA and DNA. Bacteriophages were exposed to UV irradiation from two different collimated beam UV irradiation sources (medium-pressure (MP) mercury lamps and low-pressure (LP) mercury lamps) and assayed during which host-phage cultures were exposed to photoreactivating light for 6 h, then incubated overnight at 37 °C in the dark. Dark controls following UV exposure were performed in parallel. UV inactivation kinetics (using dark controls) showed that circular ssDNA phage (PhiX174) was the most sensitive and linear ssRNA phage (MS2) was the more resistant phage. No photoreactivation was observed for MS2 (RNA phage) and the highest photoreactivation was observed for PRD1. In the case of PRD1, the dose required for 4-log reduction (dark control) was around 35 mJ/cm(2), with a similar dose observed for both UV sources (MP and LP). When the photoreactivation step was added, the dose required for 4-log reduction using LP lamps was 103 mJ/cm(2) and for MP lamps was 60 mJ/cm(2). Genome organization differences between bacteriophages play an important role in resistance to UV inactivation and potential photoreactivation mediated by bacterial host mechanisms. The use of photoreactivation during the assay of PRD1 creates a more conservative surrogate for potential use in UV challenge testing.

  20. Molecular characterization of a new lytic bacteriophage isolated from cheese whey.

    PubMed

    Eller, M R; Dias, R S; De Moraes, C A; De Carvalho, A F; Oliveira, L L; Silva, E A M; da Silva, C C; De Paula, S O

    2012-12-01

    In this study, we isolated and characterized a lytic Lactococcus lactis bacteriophage from the sera of a failed fermentation. The phage was isolated and cultured in L. lactis subsp. cremoris in M17 medium. The isolated bacteriophage was characterized by multiplex PCR, pulsed-field electrophoresis, DNA restriction digestion, analysis of the N-terminal sequence of the phage major structural protein, transmission electron microscopy and sequencing and analysis of a conserved fragment of its genome. Analysis of the viral genome indicates that its genome is composed of a DNA strand of approximately 48 kb in length, and PCR and microscopy confirmed that IL-P1 belongs to the group of 936-type phages in the family Siphoviridae, which is the most abundant type of lactococcal virus in dairy products worldwide. To our knowledge, this is the first report of a virus within this family that has a presumptive genome larger than 40 kb.

  1. 21 CFR 866.2050 - Staphylococcal typing bacteriophage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Staphylococcal typing bacteriophage. 866.2050 Section 866.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Staphylococcal typing bacteriophage. (a) Identification. A staphylococcal typing bacteriophage is a...

  2. 21 CFR 866.2050 - Staphylococcal typing bacteriophage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Staphylococcal typing bacteriophage. 866.2050 Section 866.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Staphylococcal typing bacteriophage. (a) Identification. A staphylococcal typing bacteriophage is a...

  3. 21 CFR 866.2050 - Staphylococcal typing bacteriophage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Staphylococcal typing bacteriophage. 866.2050 Section 866.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Staphylococcal typing bacteriophage. (a) Identification. A staphylococcal typing bacteriophage is a...

  4. 21 CFR 172.785 - Listeria-specific bacteriophage preparation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Listeria-specific bacteriophage preparation. 172... FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.785 Listeria-specific bacteriophage...) bacteriophages (phages) specific against L. monocytogenes. (2) Each phage is deposited at, and assigned...

  5. 21 CFR 172.785 - Listeria-specific bacteriophage preparation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Listeria-specific bacteriophage preparation. 172... FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.785 Listeria-specific bacteriophage...) bacteriophages (phages) specific against L. monocytogenes. (2) Each phage is deposited at, and assigned...

  6. 21 CFR 172.785 - Listeria-specific bacteriophage preparation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Listeria-specific bacteriophage preparation. 172... FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.785 Listeria -specific bacteriophage...) bacteriophages (phages) specific against L. monocytogenes. (2) Each phage is deposited at, and assigned...

  7. 21 CFR 172.785 - Listeria-specific bacteriophage preparation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Listeria-specific bacteriophage preparation. 172... FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.785 Listeria-specific bacteriophage...) bacteriophages (phages) specific against L. monocytogenes. (2) Each phage is deposited at, and assigned...

  8. 21 CFR 866.2050 - Staphylococcal typing bacteriophage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Staphylococcal typing bacteriophage. 866.2050 Section 866.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Staphylococcal typing bacteriophage. (a) Identification. A staphylococcal typing bacteriophage is a...

  9. Isolation and Characterization of a Bacteriophage Preying an Antifungal Bacterium.

    PubMed

    Rahimi-Midani, Aryan; Kim, Kyoung-Ho; Lee, Seon-Woo; Jung, Sang Bong; Choi, Tae-Jin

    2016-12-01

    Several Bacillus species were isolated from rice field soils, and 16S rRNA gene sequence analysis showed that Bacillus cereus was the most abundant. A strain named BC1 showed antifungal activity against Rhizoctonia solani. Bacteriophages infecting strain BC1 were isolated from the same soil sample. The isolated phage PK16 had an icosahedral head of 100 ± 5 nm and tail of 200 ± 5 nm, indicating that it belonged to the family Myoviridae. Analysis of the complete linear dsDNA genome revealed a 158,127-bp genome with G + C content of 39.9% comprising 235 open reading frames as well as 19 tRNA genes (including 1 pseudogene). Blastp analysis showed that the proteins encoded by the PK16 genome had the closest hits to proteins of seven different bacteriophages. A neighbor-joining phylogenetic tree based on the major capsid protein showed a robust clustering of phage PK16 with phage JBP901 and BCP8-2 isolated from Korean fermented food.

  10. Isolation and Characterization of a Bacteriophage Preying an Antifungal Bacterium

    PubMed Central

    Rahimi-Midani, Aryan; Kim, Kyoung-Ho; Lee, Seon-Woo; Jung, Sang Bong; Choi, Tae-Jin

    2016-01-01

    Several Bacillus species were isolated from rice field soils, and 16S rRNA gene sequence analysis showed that Bacillus cereus was the most abundant. A strain named BC1 showed antifungal activity against Rhizoctonia solani. Bacteriophages infecting strain BC1 were isolated from the same soil sample. The isolated phage PK16 had an icosahedral head of 100 ± 5 nm and tail of 200 ± 5 nm, indicating that it belonged to the family Myoviridae. Analysis of the complete linear dsDNA genome revealed a 158,127-bp genome with G + C content of 39.9% comprising 235 open reading frames as well as 19 tRNA genes (including 1 pseudogene). Blastp analysis showed that the proteins encoded by the PK16 genome had the closest hits to proteins of seven different bacteriophages. A neighbor-joining phylogenetic tree based on the major capsid protein showed a robust clustering of phage PK16 with phage JBP901 and BCP8-2 isolated from Korean fermented food. PMID:27904467

  11. Exposure of conjugative plasmid carrying Escherichia coli biofilms to male-specific bacteriophages

    PubMed Central

    May, Thithiwat; Tsuruta, Kenji; Okabe, Satoshi

    2011-01-01

    Escherichia coli carrying a natural conjugative F-plasmid generates F-pili mating pairs, which is important for early biofilm formation. In this study, we investigated the effect of male-specific filamentous single stranded DNA bacteriophage (f1) and RNA bacteriophage (MS2) on the formation of biofilms by E. coli carrying a natural conjugative F-plasmid. We showed that the early biofilm formation was completely inhibited by addition of the f1 phage, but not the MS2 phage. This suggests that the tip of F-pili is the specific attachment site for mating pairs formation and the side of F-pili has a non-obligatory role during biofilm formation. The inhibitory effect of the f1 phage was dependent on the time of addition during the biofilm formation. No inhibitory effect was observed when the f1 phages were added to the mature biofilms. This resistant mechanism of the mature biofilms could be attributed to the biofilm-specific phenotypes representing that the F-pili mating pairs were already formed and then the curli production commenced during the biofilm maturation. The pre-formed mating pairs seemed to resist the f1 phages. Altogether, our results indicate a close relationship between the presence of conjugative plasmid and male-specific bacteriophages within sessile biofilm communities, as well as the possibility of using the male-specific bacteriophages to control biofilm formation. PMID:20962879

  12. Molecular mechanisms in alkylation mutagenesis. Induced reversion of bacteriophage T4rII AP72 by ethyl methanesulphonate in relation to extent and mode of ethylation of purines in bacteriophage deoxyribonucleic acid.

    PubMed Central

    Lawley, P D; Martin, C N

    1975-01-01

    Survival and reversion to T4r+ of bacteriophage T4rII AP72 after treatment with ethyl methanesulphonate at 37 degrees or 45 degrees C were studied in relation to the extent and mode of alkylation of purines in DNA of ethylated bacteriophage. A single-burst technique was used for reversion assay. Survival was lower at 45 degrees C than at 37 degrees C at a given extent of ethylation of bacteriophage DNA, confirming that events subsequent to ethylation, probably depurinations, are the main cause of decreased survival. Reversion was positively correlated (approximately linearly except at low extents at 37 degrees C) with ethylation of bacteriophage DNA, showing that ethylation itself causes mutation. Following the concept that reversion results from G-C leads to A-T transition at a single site (Krieg, 1963a,b) and the suggestion that O6-alkylation of guanine generates the miscoding base (Loveless, 1969), it was calculated that about one-third of induced O6-ethylguanines at this site would miscode to induce mutation. PMID:172067

  13. Comparison of the cleavage of pyrimidine dimers by the bacteriophage T4 and Micrococcus luteus uv-specific endonucleases

    SciTech Connect

    Gordon, L.K.; Haseltine, W.A.

    1980-12-25

    A comparison was made of the activity of the uv-specific endonucleases of bacteriophage T4 (T4 endonuclease V) and of Micrococcus luteus on ultraviolet light-irradiated DNA substrates of defined sequence. The two enzyms cleave DNA at the site of pyrimidine dimers with the same frequency. The products of the cleavage reaction are the same. The pyrimidine dimer DNA-glycosylase activity of both enzymes is more active on double-stranded DNA than it is on single-stranded DNA.

  14. Bacteriophages and Bacterial Plant Diseases.

    PubMed

    Buttimer, Colin; McAuliffe, Olivia; Ross, R P; Hill, Colin; O'Mahony, Jim; Coffey, Aidan

    2017-01-01

    Losses in crop yields due to disease need to be reduced in order to meet increasing global food demands associated with growth in the human population. There is a well-recognized need to develop new environmentally friendly control strategies to combat bacterial crop disease. Current control measures involving the use of traditional chemicals or antibiotics are losing their efficacy due to the natural development of bacterial resistance to these agents. In addition, there is an increasing awareness that their use is environmentally unfriendly. Bacteriophages, the viruses of bacteria, have received increased research interest in recent years as a realistic environmentally friendly means of controlling bacterial diseases. Their use presents a viable control measure for a number of destructive bacterial crop diseases, with some phage-based products already becoming available on the market. Phage biocontrol possesses advantages over chemical controls in that tailor-made phage cocktails can be adapted to target specific disease-causing bacteria. Unlike chemical control measures, phage mixtures can be easily adapted for bacterial resistance which may develop over time. In this review, we will examine the progress and challenges for phage-based disease biocontrol in food crops.

  15. Bacteriophages and Bacterial Plant Diseases

    PubMed Central

    Buttimer, Colin; McAuliffe, Olivia; Ross, R. P.; Hill, Colin; O’Mahony, Jim; Coffey, Aidan

    2017-01-01

    Losses in crop yields due to disease need to be reduced in order to meet increasing global food demands associated with growth in the human population. There is a well-recognized need to develop new environmentally friendly control strategies to combat bacterial crop disease. Current control measures involving the use of traditional chemicals or antibiotics are losing their efficacy due to the natural development of bacterial resistance to these agents. In addition, there is an increasing awareness that their use is environmentally unfriendly. Bacteriophages, the viruses of bacteria, have received increased research interest in recent years as a realistic environmentally friendly means of controlling bacterial diseases. Their use presents a viable control measure for a number of destructive bacterial crop diseases, with some phage-based products already becoming available on the market. Phage biocontrol possesses advantages over chemical controls in that tailor-made phage cocktails can be adapted to target specific disease-causing bacteria. Unlike chemical control measures, phage mixtures can be easily adapted for bacterial resistance which may develop over time. In this review, we will examine the progress and challenges for phage-based disease biocontrol in food crops. PMID:28163700

  16. Characterization of Bacillus subtilis Bacteriophages

    PubMed Central

    Brodetsky, Anna M.; Romig, W. R.

    1965-01-01

    Brodetsky, Anna M. (University of California, Los Angeles), and W. R. Romig. Characterization of Bacillus subtilis bacteriophages. J. Bacteriol. 90:1655–1663. 1965.—A group of six phages, SP5, SP6, SP7, SP8, SP9, and SP13, which use the Marburg strain of Bacillus subtilis as host was characterized. These phages, referred to as group 1, were examined for the following properties: host range, plaque morphology, stability, adsorption kinetics, one-step growth characteristics, calcium requirements, serum neutralization, thermal inactivation, and inactivation by ultraviolet irradiation. Five unrelated B. subtilis phages, SP3, SP10, PBS1, SP alpha, and SP beta, were included in the studies. When first isolated, none of the group 1 phages was able to replicate efficiently on B. subtilis SB19, a mutant of the “transforming” B. subtilis 168. Host range mutants capable of growth in SB19 were isolated for all of the group 1 phages except SP13, and are designated the “star” phages (SP5* through SP9*). For characterization, SB19 was used as host for the star phages, and another B. subtilis mutant, 168B, was host for SP13. PMID:4955056

  17. Bacteriophage-Based Pathogen Detection

    NASA Astrophysics Data System (ADS)

    Ripp, Steven

    Considered the most abundant organism on Earth, at a population approaching 1031, bacteriophage, or phage for short, mediate interactions with myriad bacterial hosts that has for decades been exploited in phage typing schemes for signature identification of clinical, food-borne, and water-borne pathogens. With over 5,000 phage being morphologically characterized and grouped as to susceptible host, there exists an enormous cache of bacterial-specific sensors that has more recently been incorporated into novel bio-recognition assays with heightened sensitivity, specificity, and speed. These assays take many forms, ranging from straightforward visualization of labeled phage as they attach to their specific bacterial hosts to reporter phage that genetically deposit trackable signals within their bacterial hosts to the detection of progeny phage or other uniquely identifiable elements released from infected host cells. A comprehensive review of these and other phage-based detection assays, as directed towards the detection and monitoring of bacterial pathogens, will be provided in this chapter.

  18. Photodynamic inactivation of mammalian viruses and bacteriophages.

    PubMed

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  19. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  20. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  1. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    PubMed

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  2. Characterization of a thermophilic bacteriophage of Geobacillus kaustophilus.

    PubMed

    Marks, Timothy J; Hamilton, Paul T

    2014-10-01

    GBK2 is a bacteriophage, isolated from a backyard compost pile, that infects the thermophile Geobacillus kaustophilus. GBK2 has a circularly permuted genome of 39,078 bp with a G+C content of 43 %. Annotation of the genome reveals 62 putative open reading frames (ORFs), 25 of which (40.3 %) show homology to known proteins and 37 of which (59.7 %) are proteins with unknown functions. Twelve of the identified ORFs had the greatest homology to genes from the phage SPP1, a phage that infects the mesophile Bacillus subtilis. The overall genomic arrangement of GBK2 is similar to that of SPP1, with the majority of GBK2 SPP1-like genes coding for proteins involved in DNA replication and metabolism.

  3. Comparison of five bacteriophages as models for viral aerosol studies.

    PubMed

    Turgeon, Nathalie; Toulouse, Marie-Josée; Martel, Bruno; Moineau, Sylvain; Duchaine, Caroline

    2014-07-01

    Bacteriophages are perceived to be good models for the study of airborne viruses because they are safe to use, some of them display structural features similar to those of human and animal viruses, and they are relatively easy to produce in large quantities. Yet, only a few studies have investigated them as models. It has previously been demonstrated that aerosolization, environmental conditions, and sampling conditions affect viral infectivity, but viral infectivity is virus dependent. Thus, several virus models are likely needed to study their general behavior in aerosols. The aim of this study was to compare the effects of aerosolization and sampling on the infectivity of five tail-less bacteriophages and two pathogenic viruses: MS2 (a single-stranded RNA [ssRNA] phage of the Leviviridae family), Φ6 (a segmented double-stranded RNA [dsRNA] phage of the Cystoviridae family), ΦX174 (a single-stranded DNA [ssDNA] phage of the Microviridae family), PM2 (a double-stranded DNA [dsDNA] phage of the Corticoviridae family), PR772 (a dsDNA phage of the Tectiviridae family), human influenza A virus H1N1 (an ssRNA virus of the Orthomyxoviridae family), and the poultry virus Newcastle disease virus (NDV; an ssRNA virus of the Paramyxoviridae family). Three nebulizers and two nebulization salt buffers (with or without organic fluid) were tested, as were two aerosol sampling devices, a liquid cyclone (SKC BioSampler) and a dry cyclone (National Institute for Occupational Safety and Health two-stage cyclone bioaerosol sampler). The presence of viruses in collected air samples was detected by culture and quantitative PCR (qPCR). Our results showed that these selected five phages behave differently when aerosolized and sampled. RNA phage MS2 and ssDNA phage ΦX174 were the most resistant to aerosolization and sampling. The presence of organic fluid in the nebulization buffer protected phages PR772 and Φ6 throughout the aerosolization and sampling with dry cyclones. In this

  4. Bacteriophages as Potential Treatment for Urinary Tract Infections

    PubMed Central

    Sybesma, Wilbert; Zbinden, Reinhard; Chanishvili, Nino; Kutateladze, Mzia; Chkhotua, Archil; Ujmajuridze, Aleksandre; Mehnert, Ulrich; Kessler, Thomas M.

    2016-01-01

    Background: Urinary tract infections (UTIs) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming so that well-tolerated, highly effective therapeutic alternatives are urgently needed. Objective: To investigate the effect of bacteriophages on Escherichia coli and Klebsiella pneumoniae strains isolated from the urine of patients suffering from UTIs. Material and methods: Forty-one E. coli and 9 K. pneumoniae strains, isolated from the urine of patients suffering from UTIs, were tested in vitro for their susceptibility toward bacteriophages. The bacteriophages originated from either commercially available bacteriophage cocktails registered in Georgia or from the bacteriophage collection of the George Eliava Institute of Bacteriophage, Microbiology and Virology. In vitro screening of bacterial strains was performed by use of the spot-test method. The experiments were implemented three times by different groups of scientists. Results: The lytic activity of the commercial bacteriophage cocktails on the 41 E. coli strains varied between 66% (Pyo bacteriophage) and 93% (Enko bacteriophage). After bacteriophage adaptation of the Pyo bacteriophage cocktail, its lytic activity was increased from 66 to 93% and only one E. coli strain remained resistant. One bacteriophage of the Eliava collection could lyse all 9 K. pneumoniae strains. Conclusions: Based on the high lytic activity and the potential of resistance optimization by direct adaption of bacteriophages as reported in this study, and in view of the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a promising treatment option for UTIs highly warranting randomized controlled trials. PMID:27148173

  5. The Tape Measure Protein of the Staphylococcus aureus Bacteriophage vB_SauS-phiIPLA35 Has an Active Muramidase Domain

    PubMed Central

    Rodríguez-Rubio, Lorena; Gutiérrez, Dolores; Martínez, Beatriz; Rodríguez, Ana; Götz, Friedrich

    2012-01-01

    Tailed double-stranded DNA (dsDNA) bacteriophages frequently harbor structural proteins displaying peptidoglycan hydrolytic activities. The tape measure protein from Staphylococcus aureus bacteriophage vB_SauS-phiIPLA35 has a lysozyme-like and a peptidase_M23 domain. This report shows that the lysozyme-like domain (TG1) has muramidase activity and exhibits in vitro lytic activity against live S. aureus cells, an activity that could eventually find use in the treatment of infections. PMID:22729533

  6. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex.

    PubMed

    Golshahi, Laleh; Seed, Kimberley D; Dennis, Jonathan J; Finlay, Warren H

    2008-12-01

    Antibiotic-resistant bacterial infections have renewed interest in finding substitute methods of treatment. The purpose of the present in vitro study was to investigate the possibility of respiratory delivery of a Burkholderia cepacia complex (BCC) bacteriophage by nebulized aerosol administration. Bacteriophages in isotonic saline were aerosolized with Pari LC star and eFlow nebulizers, at titers with mean value (standard deviation) of 2.15 x 10(8) (1.63 x 10(8)) plaque-forming unit (PFU)/mL in 2.5-mL nebulizer fills. The breathing pattern of an adult was simulated using a pulmonary waveform generator. During breath simulation, the size distributions of the nebulized aerosol were measured using phase doppler anemometry (PDA). Efficiency of nebulizer delivery was subsequently determined by collection of aerosol on low resistance filters and measurement of bacteriophage titers. These filter titers were used as input data to a mathematical lung deposition model to predict regional deposition of bacteriophages in the lung and initial bacteriophage titers in the liquid surface layer of each conducting airway generation. The results suggest that BCC bacteriophages can be nebulized successfully within a reasonable delivery time and predicted titers in the lung indicate that this method may hold potential for treatment of bacterial lung infections common among cystic fibrosis patients.

  7. Comparative genomics of Shiga toxin encoding bacteriophages

    PubMed Central

    2012-01-01

    Background Stx bacteriophages are responsible for driving the dissemination of Stx toxin genes (stx) across their bacterial host range. Lysogens carrying Stx phages can cause severe, life-threatening disease and Stx toxin is an integral virulence factor. The Stx-bacteriophage vB_EcoP-24B, commonly referred to as Ф24B, is capable of multiply infecting a single bacterial host cell at a high frequency, with secondary infection increasing the rate at which subsequent bacteriophage infections can occur. This is biologically unusual, therefore determining the genomic content and context of Ф24B compared to other lambdoid Stx phages is important to understanding the factors controlling this phenomenon and determining whether they occur in other Stx phages. Results The genome of the Stx2 encoding phage, Ф24B was sequenced and annotated. The genomic organisation and general features are similar to other sequenced Stx bacteriophages induced from Enterohaemorrhagic Escherichia coli (EHEC), however Ф24B possesses significant regions of heterogeneity, with implications for phage biology and behaviour. The Ф24B genome was compared to other sequenced Stx phages and the archetypal lambdoid phage, lambda, using the Circos genome comparison tool and a PCR-based multi-loci comparison system. Conclusions The data support the hypothesis that Stx phages are mosaic, and recombination events between the host, phages and their remnants within the same infected bacterial cell will continue to drive the evolution of Stx phage variants and the subsequent dissemination of shigatoxigenic potential. PMID:22799768

  8. ADSORPTION OF BACTERIOPHAGES ON CLAY MINERALS

    EPA Science Inventory

    Theability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and

  9. Use of wide-host-range bacteriophages to reduce Salmonella on poultry products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophages used to treat infections are typically amplified in a pathogenic host. However, this practice introduces the risk of administering any remaining bacteriophage-resistant pathogen during bacteriophage application if separate techniques are less than perfect. In this study, bacteriopha...

  10. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.

    PubMed

    Kiro, Ruth; Shitrit, Dror; Qimron, Udi

    2014-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system has recently been used to engineer genomes of various organisms, but surprisingly, not those of bacteriophages (phages). Here we present a method to genetically engineer the Escherichia coli phage T7 using the type I-E CRISPR-Cas system. T7 phage genome is edited by homologous recombination with a DNA sequence flanked by sequences homologous to the desired location. Non-edited genomes are targeted by the CRISPR-Cas system, thus enabling isolation of the desired recombinant phages. This method broadens CRISPR Cas-based editing to phages and uses a CRISPR-Cas type other than type II. The method may be adjusted to genetically engineer any bacteriophage genome.

  11. Identifying and analyzing bacteriophages in human fecal samples: what could we discover?

    PubMed

    Muniesa, Maite; Jofre, Juan

    2014-01-01

    The human gut is a complex ecosystem, densely populated with microbes including enormous amounts of phages. Metagenomic studies indicate a great diversity of bacteriophages, and because of the variety of gut bacterial species, the human or animal gut is probably a perfect ecological niche for phages that can infect and propagate in their bacterial communities. In addition, some phages have the capacity to mobilize genes, as demonstrated by the enormous fraction of phage particles in feces that contain bacterial DNA. All these facts indicate that, through predation and horizontal gene transfer, bacteriophages play a key role in shaping the size, structure and function of intestinal microbiomes, although our understanding of their effects on gut bacterial populations is only just beginning.

  12. Crystallization and preliminary crystallographic characterization of the origin-binding domain of the bacteriophage λ O replication initiator

    SciTech Connect

    Struble, E. B.; Bianchet, M. A.; McMacken, R.

    2007-06-01

    Crystallization and preliminary diffraction data of the N-terminal 19–139 fragment of the origin-binding domain of bacteriophage λ O replication initiator are reported. The bacteriophage λ O protein binds to the λ replication origin (oriλ) and serves as the primary replication initiator for the viral genome. The binding energy derived from the binding of O to oriλ is thought to help drive DNA opening to facilitate initiation of DNA replication. Detailed understanding of this process is severely limited by the lack of high-resolution structures of O protein or of any lambdoid phage-encoded paralogs either with or without DNA. The production of crystals of the origin-binding domain of λ O that diffract to 2.5 Å is reported. Anomalous dispersion methods will be used to solve this structure.

  13. STUDIES ON THE PURIFICATION OF BACTERIOPHAGE.

    PubMed

    Kalmanson, G; Bronfenbrenner, J

    1939-11-20

    A simple method of concentrating and purifying bacteriophage has been described. The procedure consisted essentially in collecting the active agent on a reinforced collodion membrane of a porosity that would just retain all the active agent and permit extraneous material to pass through. Advantage was taken of the fact that B. coli will proliferate and regenerate bacteriophage in a completely diffusible synthetic medium with ammonia as the only source of nitrogen, which permitted the purification of the bacteriophage by copious washing. The material thus obtained was concentrated by suction and after thorough washing possessed all the activity of the original filtrate. It was labile, losing its activity in a few days on standing, and was quickly and completely inactivated upon drying. This material contained approximately 15 per cent of nitrogen and with 2 or 3 mg. samples of inactive dry residue it was possible to obtain positive protein color tests. The concentrated and purified bacteriophage has about 10(-14) mg. of nitrogen, or 6 x 10(-17) gm. of protein per unit of lytic activity. Assuming that each unit of activity represents a molecule, the calculated maximum average molecular weight would be approximately 36,000,000, and on the assumption of a spherical shape of particles and a density of 1.3, the calculated radius would be about 22 millimicra. By measurement of the diffusion rate, the average radius of particle of the fraction of the purified bacteriophage which diffuses most readily through a porous plate was found to be of the order of magnitude of 9 millimicra, or of a calculated molecular weight of 2,250,000. Furthermore, when this purified bacteriophage was fractionated by forcing it through a thin collodion membrane, which permits the passage of only the smaller particles, it was possible to demonstrate in the ultrafiltrate active particles of about 2 millimicra in radius, and of a calculated molecular weight of 25,000. It was of interest to apply

  14. Isolation and characterization of bacteriophages infecting Xanthomonas arboricola pv. juglandis, the causal agent of walnut blight disease.

    PubMed

    Romero-Suarez, Sandra; Jordan, Brian; Heinemann, Jack A

    2012-05-01

    Walnut orchards suffer from a blight caused by the bacteria Xanthomonas arboricola pv. juglandis. These bacteria can be infected by viral bacteriophages and this study was carried out to isolate and characterize bacteriophages from walnut orchards located throughout the South Island of New Zealand. Twenty six X. arboricola phages were isolated from three hundred and twenty six samples of plant material representing phyllosphere and rhizosphere ecosystems. The phage isolates were characterized by host-range, plaque and particle morphology, restriction digest and phylogenetic analysis and stability under various storage conditions. From capsid and tail dimensions the bacteriophages were considered to belong to the double-stranded DNA families Podoviridae and Siphoviridae. Of the twenty six bacteriophages, sixteen belonged to Podoviridae and were found both in the phyllosphere and rhizosphere. In contrast, Siphoviridae were present only in the rhizosphere isolates. Phage genome sizes ranged from 38.0 to 52.0 kb from a Hind III restriction digestion and had in common a 400 kb fragment that was identical at the DNA level. Despite the similar restriction patterns, maximum parsimony bootstrap analysis showed that the phage were members of different groups. Finally, we hypothesise that these phage might have use in a biocontrol strategy and therefore storage stability and efficacy was tested. Titres declined more than 50% over a 12-months storage period. Deep-freezing temperatures (-34°C) increased while chloroform decreased the stability.

  15. Continuous in vitro evolution of bacteriophage RNA polymerase promoters

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Banerji, A.; Joyce, G. F.

    1994-01-01

    Rapid in vitro evolution of bacteriophage T7, T3, and SP6 RNA polymerase promoters was achieved by a method that allows continuous enrichment of DNAs that contain functional promoter elements. This method exploits the ability of a special class of nucleic acid molecules to replicate continuously in the presence of both a reverse transcriptase and a DNA-dependent RNA polymerase. Replication involves the synthesis of both RNA and cDNA intermediates. The cDNA strand contains an embedded promoter sequence, which becomes converted to a functional double-stranded promoter element, leading to the production of RNA transcripts. Synthetic cDNAs, including those that contain randomized promoter sequences, can be used to initiate the amplification cycle. However, only those cDNAs that contain functional promoter sequences are able to produce RNA transcripts. Furthermore, each RNA transcript encodes the RNA polymerase promoter sequence that was responsible for initiation of its own transcription. Thus, the population of amplifying molecules quickly becomes enriched for those templates that encode functional promoters. Optimal promoter sequences for phage T7, T3, and SP6 RNA polymerase were identified after a 2-h amplification reaction, initiated in each case with a pool of synthetic cDNAs encoding greater than 10(10) promoter sequence variants.

  16. Type III restriction is alleviated by bacteriophage (RecE) homologous recombination function but enhanced by bacterial (RecBCD) function.

    PubMed

    Handa, Naofumi; Kobayashi, Ichizo

    2005-11-01

    Previous works have demonstrated that DNA breaks generated by restriction enzymes stimulate, and are repaired by, homologous recombination with an intact, homologous DNA region through the function of lambdoid bacteriophages lambda and Rac. In the present work, we examined the effect of bacteriophage functions, expressed in bacterial cells, on restriction of an infecting tester phage in a simple plaque formation assay. The efficiency of plaque formation on an Escherichia coli host carrying EcoRI, a type II restriction system, is not increased by the presence of Rac prophage-presumably because, under the single-infection conditions of the plaque assay, a broken phage DNA cannot find a homologue with which to recombine. To our surprise, however, we found that the efficiency of plaque formation in the presence of a type III restriction system, EcoP1 or EcoP15, is increased by the bacteriophage-mediated homologous recombination functions recE and recT of Rac prophage. This type III restriction alleviation does not depend on lar on Rac, unlike type I restriction alleviation. On the other hand, bacterial RecBCD-homologous recombination function enhances type III restriction. These results led us to hypothesize that the action of type III restriction enzymes takes place on replicated or replicating DNA in vivo and leaves daughter DNAs with breaks at nonallelic sites, that bacteriophage-mediated homologous recombination reconstitutes an intact DNA from them, and that RecBCD exonuclease blocks this repair by degradation from the restriction breaks.

  17. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  18. Bacteriophages and genetic mobilization in sewage and faecally polluted environments.

    PubMed

    Muniesa, Maite; Imamovic, Lejla; Jofre, Juan

    2011-11-01

    Bacteriophages are one of the most abundant entities on the planet and are present in high concentrations within humans and animals, mostly in the gut. Phages that infect intestinal bacteria are released by defecation and remain free in extra-intestinal environments, where they usually persist for longer than their bacterial hosts. Recent studies indicate that a large amount of the genetic information in bacterial genomes and in natural environments is of phage origin. In addition, metagenomic analysis reveals that a substantial number of bacterial genes are present in viral DNA in different environments. These facts support the belief that phages can play a significant role in horizontal gene transfer between bacteria. Bacteriophages are known to transfer genes by generalized and specialized transduction and indeed there are some examples of phages found in the environment carrying and transducing genes of bacterial origin. A successful transduction in the environment requires certain conditions, e.g. phage and bacterial numbers need to exceed certain threshold concentrations, the bacteria need to exist in an infection-competent physiological state, and lastly, the physical conditions in the environment (pH, temperature, etc. of the supporting matrix) have to be suitable for phage infection. All three factors are reviewed here, and the available information suggests: (i) that the number of intestinal bacteria and phages in faecally contaminated environments guarantees bacteria-phage encounters, (ii) that transduction to intestinal bacteria in the environment is probable, and (iii) that transduction is more frequent than previously thought. Therefore, we suggest that phage-mediated horizontal transfer between intestinal bacteria, or between intestinal and autochthonous bacteria in extra-intestinal environments, might take place and that its relevance for the emergence of new bacterial strains and potential pathogens should not be ignored.

  19. Bacteriophages and genetic mobilization in sewage and faecally polluted environments

    PubMed Central

    Muniesa, Maite; Imamovic, Lejla; Jofre, Juan

    2011-01-01

    Summary Bacteriophages are one of the most abundant entities on the planet and are present in high concentrations within humans and animals, mostly in the gut. Phages that infect intestinal bacteria are released by defecation and remain free in extra‐intestinal environments, where they usually persist for longer than their bacterial hosts. Recent studies indicate that a large amount of the genetic information in bacterial genomes and in natural environments is of phage origin. In addition, metagenomic analysis reveals that a substantial number of bacterial genes are present in viral DNA in different environments. These facts support the belief that phages can play a significant role in horizontal gene transfer between bacteria. Bacteriophages are known to transfer genes by generalized and specialized transduction and indeed there are some examples of phages found in the environment carrying and transducing genes of bacterial origin. A successful transduction in the environment requires certain conditions, e.g. phage and bacterial numbers need to exceed certain threshold concentrations, the bacteria need to exist in an infection‐competent physiological state, and lastly, the physical conditions in the environment (pH, temperature, etc. of the supporting matrix) have to be suitable for phage infection. All three factors are reviewed here, and the available information suggests: (i) that the number of intestinal bacteria and phages in faecally contaminated environments guarantees bacteria–phage encounters, (ii) that transduction to intestinal bacteria in the environment is probable, and (iii) that transduction is more frequent than previously thought. Therefore, we suggest that phage‐mediated horizontal transfer between intestinal bacteria, or between intestinal and autochthonous bacteria in extra‐intestinal environments, might take place and that its relevance for the emergence of new bacterial strains and potential pathogens should not be ignored. PMID

  20. Functional relationship between bacteriophages G4 and phi X174.

    PubMed Central

    Borrias, W E; Hagenaar, M; Van Den Brekel, R; Kühlemeijer, C; Weisbeek, P J

    1979-01-01

    Mutants of bacteriophage G4 were isolated and characterized, and their mutations were mapped. They constitute six different genes, namely, A, B, E, F, G, and H. The functional relationship with bacteriophage phi X174 was determined by complementation experiments using amber mutants of phi X and amber mutants of G4. Bacteriophage phi X was able to use the products of G4 genes E, F, G, and H. In bacteriophage G4, however, only the phi X gene H product was functional. Images PMID:480475

  1. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis.

    PubMed

    Golkar, Zhabiz; Bagasra, Omar; Pace, Donald Gene

    2014-02-13

    The emergence of multiple drug-resistant bacteria has prompted interest in alternatives to conventional antimicrobials. One of the possible replacement options for antibiotics is the use of bacteriophages as antimicrobial agents. Phage therapy is an important alternative to antibiotics in the current era of drug-resistant pathogens. Bacteriophages have played an important role in the expansion of molecular biology and have been used as antibacterial agents since 1966. In this review, we describe a brief history of bacteriophages and clinical studies on their use in bacterial disease prophylaxis and therapy. We discuss the advantages and disadvantages of bacteriophages as therapeutic agents in this regard.

  2. Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria.

    PubMed

    Nakonieczna, A; Cooper, C J; Gryko, R

    2015-09-01

    Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage-derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram-positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors.

  3. Inflammation boosts bacteriophage transfer between Salmonella spp.

    PubMed

    Diard, Médéric; Bakkeren, Erik; Cornuault, Jeffrey K; Moor, Kathrin; Hausmann, Annika; Sellin, Mikael E; Loverdo, Claude; Aertsen, Abram; Ackermann, Martin; De Paepe, Marianne; Slack, Emma; Hardt, Wolf-Dietrich

    2017-03-17

    Bacteriophage transfer (lysogenic conversion) promotes bacterial virulence evolution. There is limited understanding of the factors that determine lysogenic conversion dynamics within infected hosts. A murine Salmonella Typhimurium (STm) diarrhea model was used to study the transfer of SopEΦ, a prophage from STm SL1344, to STm ATCC14028S. Gut inflammation and enteric disease triggered >55% lysogenic conversion of ATCC14028S within 3 days. Without inflammation, SopEΦ transfer was reduced by up to 10(5)-fold. This was because inflammation (e.g., reactive oxygen species, reactive nitrogen species, hypochlorite) triggers the bacterial SOS response, boosts expression of the phage antirepressor Tum, and thereby promotes free phage production and subsequent transfer. Mucosal vaccination prevented a dense intestinal STm population from inducing inflammation and consequently abolished SopEΦ transfer. Vaccination may be a general strategy for blocking pathogen evolution that requires disease-driven transfer of temperate bacteriophages.

  4. Bacteriophage ecology in environmental biotechnology processes.

    PubMed

    Shapiro, Orr H; Kushmaro, Ariel

    2011-06-01

    Heterotrophic bacteria are an integral part of any environmental biotechnology process (EBP). Therefore, factors controlling bacterial abundance, activity, and community composition are central to the understanding of such processes. Among these factors, top-down control by bacteriophage predation has so far received very limited attention. With over 10(8) particles per ml, phage appear to be the most numerous biological entities in EBP. Phage populations in EBP appear to be highly dynamic and to correlate with the population dynamics of their hosts and genomic evidence suggests bacteria evolve to avoid phage predation. Clearly, there is much to learn regarding bacteriophage in EBP before we can truly understand the microbial ecology of these globally important systems.

  5. Application of bacteriophages in sensor development.

    PubMed

    Peltomaa, Riikka; López-Perolio, Irene; Benito-Peña, Elena; Barderas, Rodrigo; Moreno-Bondi, María Cruz

    2016-03-01

    Bacteriophage-based bioassays are a promising alternative to traditional antibody-based immunoassays. Bacteriophages, shortened to phages, can be easily conjugated or genetically engineered. Phages are robust, ubiquitous in nature, and harmless to humans. Notably, phages do not usually require inoculation and killing of animals; and thus, the production of phages is simple and economical. In recent years, phage-based biosensors have been developed featuring excellent robustness, sensitivity, and selectivity in combination with the ease of integration into transduction devices. This review provides a critical overview of phage-based bioassays and biosensors developed in the last few years using different interrogation methods such as colorimetric, enzymatic, fluorescence, surface plasmon resonance, quartz crystal microbalance, magnetoelastic, Raman, or electrochemical techniques.

  6. Detection of bacteria with bioluminescent reporter bacteriophage.

    PubMed

    Klumpp, Jochen; Loessner, Martin J

    2014-01-01

    Bacteriophages are viruses that exclusively infect bacteria. They are ideally suited for the development of highly specific diagnostic assay systems. Bioluminescent reporter bacteriophages are designed and constructed by integration of a luciferase gene in the virus genome. Relying on the host specificity of the phage, the system enables rapid, sensitive, and specific detection of bacterial pathogens. A bioluminescent reporter phage assay is superior to any other molecular detection method, because gene expression and light emission are dependent on an active metabolism of the bacterial cell, and only viable cells will yield a signal. In this chapter we introduce the concept of creating reporter phages, discuss their advantages and disadvantages, and illustrate the advances made in developing such systems for different Gram-negative and Gram-positive pathogens. The application of bioluminescent reporter phages for the detection of foodborne pathogens is emphasized.

  7. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display.

    PubMed

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-11-14

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.

  8. Characterization of a new ViI-like Erwinia amylovora bacteriophage phiEa2809.

    PubMed

    Lagonenko, Alexander L; Sadovskaya, Olga; Valentovich, Leonid N; Evtushenkov, Anatoly N

    2015-04-01

    Erwinia amylovora is a Gram-negative plant pathogenic bacteria causing fire blight disease in many Rosaceae species. A novel E. amylovora bacteriophage, phiEa2809, was isolated from symptomless apple leaf sample collected in Belarus. This phage was also able to infect Pantoea agglomerans strains. The genome of phiEa2809 is a double-stranded linear DNA 162,160 bp in length, including 145 ORFs and one tRNA gene. The phiEa2809 genomic sequence is similar to the genomes of the Serratia plymutica phage MAM1, Shigella phage AG-3, Dickeya phage vB DsoM LIMEstone1 and Salmonella phage ViI and lacks similarity to described E. amylovora phage genomes. Based on virion morphology (an icosahedral head, long contractile tail) and genome structure, phiEa2809 was classified as a member of Myoviridae, ViI-like bacteriophages group. PhiEa2809 is the firstly characterized ViI-like bacteriophage able to lyse E. amylovora.

  9. Small regulatory RNAs in lambdoid bacteriophages and phage-derived plasmids: Not only antisense.

    PubMed

    Nejman-Faleńczyk, Bożena; Bloch, Sylwia; Licznerska, Katarzyna; Felczykowska, Agnieszka; Dydecka, Aleksandra; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2015-03-01

    Until recently, only two small regulatory RNAs encoded by lambdoid bacteriophages were known. These transcripts are derived from paQ and pO promoters. The former one is supposed to act as an antisense RNA for expression of the Q gene, encoding a transcription antitermination protein. The latter transcript, called oop RNA, was initially proposed to have a double role, in establishing expression of the cI gene and in providing a primer for DNA replication. Although the initially proposed mechanisms by which oop RNA could influence the choice between two alternative developmental pathways of the phage and the initiation of phage DNA replication were found not true, the pO promoter has been demonstrated to be important for both regulation of phage development and control of DNA replication. Namely, the pO-derived transcript is an antisense RNA for expression of the cII gene, and pO is a part of a dual promoter system responsible for regulation of initiation of DNA synthesis from the oriλ region. Very recent studies identified a battery of small RNAs encoded by lambdoid bacteriophages existing as prophages in chromosomes of enterohemorrhagic Escherichia coli strains. Some of them have very interesting functions, like anti-small RNAs.

  10. Large Terminase Conformational Change Induced by Connector Binding in Bacteriophage T7*

    PubMed Central

    Daudén, María I.; Martín-Benito, Jaime; Sánchez-Ferrero, Juan C.; Pulido-Cid, Mar; Valpuesta, José M.; Carrascosa, José L.

    2013-01-01

    During bacteriophage morphogenesis DNA is translocated into a preformed prohead by the complex formed by the portal protein, or connector, plus the terminase, which are located at an especial prohead vertex. The terminase is a powerful motor that converts ATP hydrolysis into mechanical movement of the DNA. Here, we have determined the structure of the T7 large terminase by electron microscopy. The five terminase subunits assemble in a toroid that encloses a channel wide enough to accommodate dsDNA. The structure of the complete connector-terminase complex is also reported, revealing the coupling between the terminase and the connector forming a continuous channel. The structure of the terminase assembled into the complex showed a different conformation when compared with the isolated terminase pentamer. To understand in molecular terms the terminase morphological change, we generated the terminase atomic model based on the crystallographic structure of its phage T4 counterpart. The docking of the threaded model in both terminase conformations showed that the transition between the two states can be achieved by rigid body subunit rotation in the pentameric assembly. The existence of two terminase conformations and its possible relation to the sequential DNA translocation may shed light into the molecular bases of the packaging mechanism of bacteriophage T7. PMID:23632014

  11. Template-free generation of RNA species that replicate with bacteriophage T7 RNA polymerase.

    PubMed Central

    Biebricher, C K; Luce, R

    1996-01-01

    A large variety of different RNA species that are replicated by DNA-dependent RNA polymerase from bacteriophage T7 have been generated by incubating high concentrations of this enzyme with substrate for extended time periods. The products differed from sample to sample in molecular weight and sequence, their chain lengths ranging from 60 to 120. The mechanism of autocatalytic amplification of RNA by T7 RNA polymerase proved to be analogous to that observed with viral RNA-dependent RNA polymerases (replicases): only single-stranded templates are accepted and complementary replica strands are synthesized. With enzyme in excess, exponential growth was observed; linear growth resulted when the enzyme was saturated by RNA template. The plus strands, present at 90% of the replicating RNA species, were found to have GG residues at both termini. Consensus sequences were not found among the sequences of the replicating RNA species. The secondary structures of all species sequenced turned out to be hairpins. The RNA species were specifically replicated by T7 RNA polymerase; they were not accepted as templates by the RNA polymerases from Escherichia coli or bacteriophage SP6 or by Qbeta replicase; T3 RNA polymerase was partially active. Template-free production of RNA was completely suppressed by addition of DNA to the incubation mixture. When both DNA and RNA templates were present, transcription and replication competed, but T7 RNA polymerase preferred DNA as a template. No replicating RNA species were detected in vivo in cells expressing T7 RNA polymerase. Images PMID:8670848

  12. Characterization of a novel non-specific nuclease from thermophilic bacteriophage GBSV1

    PubMed Central

    Song, Qing; Zhang, Xiaobo

    2008-01-01

    Background Thermostable enzymes from thermophiles have attracted extensive studies. In this investigation, a nuclease-encoding gene (designated as GBSV1-NSN) was obtained from a thermophilic bacteriophage GBSV1 for the first time. Results After recombinant expression in Escherichia coli, the purified GBSV1-NSN exhibited non-specific nuclease activity, being able to degrade various nucleic acids, including RNA, single-stranded DNA and double-stranded DNA that was circular or linear. Based on sequence analysis, the nuclease shared no homology with any known nucleases, suggesting that it was a novel nuclease. The characterization of the recombinant GBSV1-NSN showed that its optimal temperature and pH were 60°C and 7.5, respectively. The results indicated that the enzymatic activity was inhibited by enzyme inhibitors or detergents, such as ethylene diamine tetraacetic acid, citrate, dithiothreitol, β-mercaptoethanol, guanidine hydrochloride, urea and SDS. In contrast, the nuclease activity was enhanced by TritonX-100, Tween-20 or chaps to approximately 124.5% – 141.6%. The Km of GBSV1-NSN nuclease was 231, 61 and 92 μM, while its kcat was 1278, 241 and 300 s-1 for the cleavage of dsDNA, ssDNA and RNA, respectively. Conclusion Our study, therefore, presented a novel thermostable non-specific nuclease from thermophilic bacteriophage and its overexpression and purification for scientific research and applications. PMID:18439318

  13. Reentrant Behavior of Divalent-Counterion-Mediated DNA-DNA Electrostatic Interaction

    NASA Astrophysics Data System (ADS)

    Lee, Seil; Le, Tung T.; Nguyen, Toan T.

    2010-12-01

    The problem of DNA-DNA interaction mediated by divalent counterions is studied using computer simulation. Although divalent counterions cannot condense free DNA molecules in solution, we show that if DNA configurational entropy is restricted, divalent counterions can cause DNA reentrant condensation similar to that caused by tri- or tetravalent counterions. DNA-DNA interaction is strongly repulsive at small or large counterion concentration and is negligible or slightly attractive for a concentration in between. Implications of our results to experiments of DNA ejection from bacteriophages are discussed. The quantitative result serves to understand electrostatic effects in other experiments involving DNA and divalent counterions.

  14. Isolation of Bacteriophages Active Against Neisseria meningitidis

    PubMed Central

    Cary, Sylvia G.; Hunter, Donald H.

    1967-01-01

    Five distinct bacteriophages have been isolated from strains of Neisseria meningitidis. Filtrates with titers of 10−4 to 10−6 were produced with a modified Swanstrom and Adams semisolid agar procedure, employing Eugonbroth with added agar and an incubation temperature of 30 C. Of 49 strains of N. meningitidis (groups B and C), 25 were lysed by one or more of the phages, but there was no lysis of other Neisseria and Mima polymorpha strains. Images PMID:4990042

  15. Drugs against superbugs: private lessons from bacteriophages.

    PubMed

    Brown, Eric D

    2004-09-01

    Bacterial genomics has provided a plethora of potential targets for antibacterial drug discovery, however, success in the hunt for new antibiotics will hinge on selecting targets with the highest potential. A recent paper by Liu and coworkers describes a new approach to target selection that uncovers strategies used by bacteriophage to disable bacteria. The method uses key phage proteins to identify and validate vulnerable targets and exploits them further in the identification of new antibacterial leads.

  16. Genetically modified bacteriophages in applied microbiology.

    PubMed

    Bárdy, P; Pantůček, R; Benešík, M; Doškař, J

    2016-09-01

    Bacteriophages represent a simple viral model of basic research with many possibilities for practical application. Due to their ability to infect and kill bacteria, their potential in the treatment of bacterial infection has been examined since their discovery. With advances in molecular biology and gene engineering, the phage application spectrum has been expanded to various medical and biotechnological fields. The construction of bacteriophages with an extended host range or longer viability in the mammalian bloodstream enhances their potential as an alternative to conventional antibiotic treatment. Insertion of active depolymerase genes to their genomes can enforce the biofilm disposal. They can also be engineered to transfer various compounds to the eukaryotic organisms and the bacterial culture, applicable for the vaccine, drug or gene delivery. Phage recombinant lytic enzymes can be applied as enzybiotics in medicine as well as in biotechnology for pathogen detection or programmed cell death in bacterial expression strains. Besides, modified bacteriophages with high specificity can be applied as bioprobes in detection tools to estimate the presence of pathogens in food industry, or utilized in the control of food-borne pathogens as part of the constructed phage-based biosorbents.

  17. Adsorption of bacteriophages on clay minerals

    USGS Publications Warehouse

    Chattopadhyay, Sandip; Puls, Robert W.

    1999-01-01

    The ability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and φX-174) on clays (hectorite, saponite, kaolinite, and clay fraction of samples collected from a landfill site). The thermodynamic study not only determines the feasibility of the process but also provides information on the relative magnitudes of the different forces under a particular set of conditions. The total free energy of interaction during sorption of bacteriophages on clays (ΔG) has been assumed to be the summation of ΔGH (ΔG due to hydrophobic interactions) and ΔGEL (ΔG due to electrostatic interactions). The magnitude of ΔGH was determined from the different interfacial tensions (γ) present in the system, while ΔGEL was calculated from ζ-potentials of the colloidal particles. Calculated results show that surface hydrophobicities of the selected sorbents and sorbates dictate sorption. Among the selected bacteriophages, maximum sorption was observed with T-2, while hectorite has the maximum sorption capacity. Experimental results obtained from the batch adsorption studies also corroborated those obtained from the theoretical study.

  18. Call for a dedicated European legal framework for bacteriophage therapy.

    PubMed

    Verbeken, Gilbert; Pirnay, Jean-Paul; Lavigne, Rob; Jennes, Serge; De Vos, Daniel; Casteels, Minne; Huys, Isabelle

    2014-04-01

    The worldwide emergence of antibiotic resistances and the drying up of the antibiotic pipeline have spurred a search for alternative or complementary antibacterial therapies. Bacteriophages are bacterial viruses that have been used for almost a century to combat bacterial infections, particularly in Poland and the former Soviet Union. The antibiotic crisis has triggered a renewed clinical and agricultural interest in bacteriophages. This, combined with new scientific insights, has pushed bacteriophages to the forefront of the search for new approaches to fighting bacterial infections. But before bacteriophage therapy can be introduced into clinical practice in the European Union, several challenges must be overcome. One of these is the conceptualization and classification of bacteriophage therapy itself and the extent to which it constitutes a human medicinal product regulated under the European Human Code for Medicines (Directive 2001/83/EC). Can therapeutic products containing natural bacteriophages be categorized under the current European regulatory framework, or should this framework be adapted? Various actors in the field have discussed the need for an adapted (or entirely new) regulatory framework for the reintroduction of bacteriophage therapy in Europe. This led to the identification of several characteristics specific to natural bacteriophages that should be taken into consideration by regulators when evaluating bacteriophage therapy. One important consideration is whether bacteriophage therapy development occurs on an industrial scale or a hospital-based, patient-specific scale. More suitable regulatory standards may create opportunities to improve insights into this promising therapeutic approach. In light of this, we argue for the creation of a new, dedicated European regulatory framework for bacteriophage therapy.

  19. The life cycles of the temperate lactococcal bacteriophage phiLC3 monitored by a quantitative PCR method.

    PubMed

    Lunde, M; Blatny, J M; Kaper, F; Nes, I F; Lillehaug, D

    2000-11-01

    We present here a new and general approach for monitoring the life cycles of temperate bacteriophages which establish lysogeny by inserting their genomes site-specifically into the bacterial host chromosome. The method is based on quantitative amplification of specific DNA sites involved in various cut-and-join events during the life cycles of the phages (i.e. the cos, attP, attB, attL and attR sites) with the use of sequence-specific primers. By comparing the amounts of these specific DNA sites at different intervals, we were able to follow the development of the lytic and lysogenic life cycles of the temperate lactococcal bacteriophage phiLC3 after infection of its bacterial host Lactococcus lactis ssp. cremoris IMN-C18.

  20. Temperate bacteriophage {phi}O18P from an Aeromonas media isolate: Characterization and complete genome sequence

    SciTech Connect

    Beilstein, Frauke

    2008-03-30

    A group of 74 Aeromonas isolates from surface water of three ponds in Bielefeld, Germany was screened for prophage induction after UV irradiation. The phage {phi}O18P was induced from the Aeromonas media isolate O18. {phi}O18P belongs to the Myoviridae phage family. The complete nucleotide sequence of the double stranded DNA genome of bacteriophage {phi}O18P consists of 33,985 bp. The genome has 5' protruding cohesive ends of 16 bases. On the {phi}O18P genome 46 open reading frames (orfs) were identified which are organized in the modules integration and regulation, replication, head, packaging, tail and lysis. Additionally the phage DNA includes a methylase gene. Comparison of the genome architecture with those of other bacteriophages revealed significant similarities to the P2 phage family and especially to the prophages of Aeromonas salmonicida and the Vibrio cholerae phage K139.

  1. Bacteriophage P70: unique morphology and unrelatedness to other Listeria bacteriophages.

    PubMed

    Schmuki, Martina M; Erne, Doris; Loessner, Martin J; Klumpp, Jochen

    2012-12-01

    Listeria monocytogenes is an important food-borne pathogen, and its bacteriophages find many uses in detection and biocontrol of its host. The novel broad-host-range virulent phage P70 has a unique morphology with an elongated capsid. Its genome sequence was determined by a hybrid sequencing strategy employing Sanger and PacBio techniques. The P70 genome contains 67,170 bp and 119 open reading frames (ORFs). Our analyses suggest that P70 represents an archetype of virus unrelated to other known Listeria bacteriophages.

  2. Complete Genome Sequences of Five Paenibacillus larvae Bacteriophages.

    PubMed

    Sheflo, Michael A; Gardner, Adam V; Merrill, Bryan D; Fisher, Joshua N B; Lunt, Bryce L; Breakwell, Donald P; Grose, Julianne H; Burnett, Sandra H

    2013-11-14

    Paenibacillus larvae is a pathogen of honeybees that causes American foulbrood (AFB). We isolated bacteriophages from soil containing bee debris collected near beehives in Utah. We announce five high-quality complete genome sequences, which represent the first completed genome sequences submitted to GenBank for any P. larvae bacteriophage.

  3. Seven Bacteriophages Isolated from the Female Urinary Microbiota

    PubMed Central

    Malki, Kema; Sible, Emily; Cooper, Alexandria; Garretto, Andrea; Bruder, Katherine; Watkins, Siobhan C.

    2016-01-01

    Recent research has debunked the myth that urine is sterile, having uncovered bacteria within the bladders of healthy individuals. However, the identity, diversity, and putative roles of bacteriophages in the bladder are unknown. We report the draft genome sequences of seven bacteriophages isolated from microbial communities from adult female bladders. PMID:27881533

  4. Expression of a bioactive bacteriophage endolysin in Nicotiana benthamiana plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence and spread of antibiotic-resistant pathogens has led to an increased interest in alternative antimicrobial treatments, such as bacteriophage, bacteriophage-encoded peptidoglycan hydrolases (endolysins) and antimicrobial peptides. In our study, the antimicrobial activity of the CP933 en...

  5. 21 CFR 172.785 - Listeria-specific bacteriophage preparation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Listeria-specific bacteriophage preparation. 172... Specific Usage Additives § 172.785 Listeria-specific bacteriophage preparation. The additive may be safely... proportions of six different individually purified lytic-type (lacking lysogenic activity)...

  6. Critical Evaluation of Bacteriophage to Prevent and Treat Colibacillosis in Poultry.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophage are viruses that infect and kill bacteria. Bacteriophage do not infect animal and plant cells making them a potentially safe alternative to antibiotics. We have conducted research on the efficacy of bacteriophage to both prevent and treat colibacillosis in poultry. Bacteriophage lyt...

  7. Biochemical characterization of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2.

    PubMed

    Zhang, Likui; Huang, Yanchao; Xu, Dandan; Yang, Lixiang; Qian, Kaicheng; Chang, Guozhu; Gong, Yong; Zhou, Xiaojian; Ma, Kesen

    2016-09-01

    His-Asn-His (HNH) proteins are a very common family of small nucleic acid-binding proteins that are generally associated with endonuclease activity and are found in all kingdoms of life. Although HNH endonucleases from mesophiles have been widely investigated, the biochemical functions of HNH endonucleases from thermophilic bacteriophages remain unknown. Here, we characterized the biochemical properties of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2. The recombinant GVE2 HNH endonuclease exhibited non-specific cleavage activity at high temperature. The optimal temperature of the GVE2 HNH endonuclease for cleaving DNA was 60-65 °C, and the enzyme retained its DNA cleavage activity even after heating at 100 °C for 30 min, suggesting the enzyme is a thermostable endonuclease. The GVE2 HNH endonuclease cleaved DNA over a wide pH spectrum, ranging from 5.5 to 9.0, and the optimal pH for the enzyme activity was 8.0-9.0. Furthermore, the GVE2 HNH endonuclease activity was dependent on a divalent metal ion. While the enzyme is inactive in the presence of Cu(2+), the GVE2 HNH endonuclease displayed cleavage activity of varied efficiency with Mn(2+), Mg(2+), Ca(2+), Fe(2+), Co(2+), Zn(2+), and Ni(2+). The GVE2 HNH endonuclease activity was inhibited by NaCl. This study provides the basis for determining the role of this endonuclease in life cycle of the bacteriophage GVE2 and suggests the potential application of the enzyme in molecular biology and biotechnology.

  8. The effects of bacteriophage and nanoparticles on microbial processes

    NASA Astrophysics Data System (ADS)

    Moody, Austin L.

    There are approximately 1031 tailed phages in the biosphere, making them the most abundant organism. Bacteriophages are viruses that infect bacteria. Due to the large diversity and abundance, no two bacteriophages that have been isolated are genetically the same. Phage products have potential in disease therapy to solve bacteria-related problems, such as infections resulting from resistant strains of Staphylococcus aureus. A bacteriophage capable of infecting methicillin-resistant S. aureus (MRSA) was isolated from bovine hair. The bacteriophage, named JB phage, was characterized using purification, amplification, cesium chloride banding, scanning electron microscopy, and transmission electron microscopy. JB phage and nanoparticles were used in various in vitro and in vivo models to test their effects on microbial processes. Scanning and transmission electron microscopy studies revealed strong interactions between JB phage and nanoparticles, which resulted in increased bacteriophage infectivity. JB phage and nanoparticle cocktails were used as a therapeutic to treat skin and systemic infections in mice caused by MRSA.

  9. Molecular basis of RNA polymerase promoter specificity switch revealed through studies of Thermus bacteriophage transcription regulator

    PubMed Central

    Severinov, Konstantin; Minakhin, Leonid; Sekine, Shun-ichi; Lopatina, Anna; Yokoyama, Shigeyuki

    2014-01-01

    Transcription initiation is the central point of gene expression regulation. Understanding of molecular mechanism of transcription regulation requires, ultimately, the structural understanding of consequences of transcription factors binding to DNA-dependent RNA polymerase (RNAP), the enzyme of transcription. We recently determined a structure of a complex between transcription factor gp39 encoded by a Thermus bacteriophage and Thermus RNAP holoenzyme. In this addendum to the original publication, we highlight structural insights that explain the ability of gp39 to act as an RNAP specificity switch which inhibits transcription initiation from a major class of bacterial promoters, while allowing transcription from a minor promoter class to continue. PMID:25105059

  10. Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes.

    PubMed

    Subirats, Jéssica; Sànchez-Melsió, Alexandre; Borrego, Carles M; Balcázar, José Luis; Simonet, Pascal

    2016-08-01

    A metagenomics approach was applied to explore the presence of antibiotic resistance genes (ARGs) in bacteriophages from hospital wastewater. Metagenomic analysis showed that most phage sequences affiliated to the order Caudovirales, comprising the tailed phage families Podoviridae, Siphoviridae and Myoviridae. Moreover, the relative abundance of ARGs in the phage DNA fraction (0.26%) was higher than in the bacterial DNA fraction (0.18%). These differences were particularly evident for genes encoding ATP-binding cassette (ABC) and resistance-nodulation-cell division (RND) proteins, phosphotransferases, β-lactamases and plasmid-mediated quinolone resistance. Analysis of assembled contigs also revealed that blaOXA-10, blaOXA-58 and blaOXA-24 genes belonging to class D β-lactamases as well as a novel blaTEM (98.9% sequence similarity to the blaTEM-1 gene) belonging to class A β-lactamases were detected in a higher proportion in phage DNA. Although preliminary, these findings corroborate the role of bacteriophages as reservoirs of resistance genes and thus highlight the necessity to include them in future studies on the emergence and spread of antibiotic resistance in the environment.

  11. Isolation, characterization, and complete genome analysis of P1312, a thermostable bacteriophage that infects Thermobifida fusca

    PubMed Central

    Cheepudom, Jatuporn; Lee, Cheng-Cheng; Cai, Bingfu; Meng, Menghsiao

    2015-01-01

    Thermobifida fusca is a moderately thermophilic and cellulolytic actinobacterium. It is of particular interest due to its ability to not only produce a variety of biotechnologically relevant enzymes but also serve as an alternative host for metabolic engineering for the production of valuable chemicals from lignocellulosic agricultural wastes. No bacteriophage that infects T. fusca has been reported, despite its potential impacts on the utilization of T. fusca. In this study, an extremely thermostable bacteriophage P1312 that infects T. fusca was isolated from manure compost. Electron microscopy showed that P1312 has an icosahedral head and a long flexible non-contractile tail, a characteristic of the family Siphoviridae. P1312 has a double-stranded DNA genome of 60,284 bp with 93 potential ORFs. Thirty-one ORFs encode proteins having putative biological functions. The genes involved in phage particle formation cluster together in a region of approximately 16 kb, followed by a segment containing genes presumably for DNA degradation/modification and cell wall disruption. The genes required for DNA replication and transcriptional control are dispersed within the rest of the genome. Phylogenetic analysis of large terminase subunit suggests that P1312 is a headful packaging phage containing a chromosome with circularly permuted direct terminal repeats. PMID:26441893

  12. Bacterial genome remodeling through bacteriophage recombination.

    PubMed

    Menouni, Rachid; Hutinet, Geoffrey; Petit, Marie-Agnès; Ansaldi, Mireille

    2015-01-01

    Bacteriophages co-exist and co-evolve with their hosts in natural environments. Virulent phages lyse infected cells through lytic cycles, whereas temperate phages often remain dormant and can undergo lysogenic or lytic cycles. In their lysogenic state, prophages are actually part of the host genome and replicate passively in rhythm with host division. However, prophages are far from being passive residents: they can modify or bring new properties to their host. In this review, we focus on two important phage-encoded recombination mechanisms, i.e. site-specific recombination and homologous recombination, and how they remodel bacterial genomes.

  13. [The structure, function and recent reseach of pRNA].

    PubMed

    Zhou, Hui; Lu, Xiang-Yang; Tian, Yun; Huang, Cheng-Jiang

    2006-09-01

    In the bacteriophage phi29, a virus-encoded RNA(pRNA) is required for the packaging of its genomic DNA. Six pRNAs form a hexamer through pRNA/pRNA interaction to drive the DNA translocation motor, and ATP as the energy resource. Chimeric pRNAs can steadily combine with siRNA, ribozymes and anti-sense RNA, and then be transferred into the cancer cells and viral-infected cells by RNA nanotechnology. The continued study of pRNA will help us to understand the origin of the life and explore its possible applications.

  14. Nanoscale detection of bacteriophage triggered ion cascade (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Dobozi-King, Maria; Seo, Sungkyu; Kim, Jong U.; Cheng, Mosong; Kish, Laszlo B.; Young, Ryland

    2005-05-01

    In an era of potential bioterrorism and pandemics of antibiotic-resistant microbes, bacterial contaminations of food and water supplies is a major concern. There is an urgent need for the rapid, inexpensive and specific identification of bacteria under field conditions. Here we describe a method that combines the specificity and avidity of bacteriophages with fluctuation analysis of electrical noise. The method is based on the massive, transitory ion leakage that occurs at the moment of phage DNA injection into the host cell. The ion fluxes require only that the cells be physiologically viable (i.e., have energized membranes) and can occur within seconds after mixing the cells with sufficient concentrations of phage particles. To detect these fluxes, we have constructed a nano-well, a lateral, micron-size capacitor of titanium electrodes with gap size of 150 nm, and used it to measure the electrical field fluctuations in microliter (mm3) samples containing phage and bacteria. In mixtures where the analyte bacteria were sensitive to the phage, large stochastic waves with various time and amplitude scales were observed, with power spectra of approximately 1/f2 shape over at 1 - 10 Hz. Development of this SEPTIC (SEnsing of Phage-Triggered Ion Cascades) technology could provide rapid detection and identification of live, pathogenic bacteria on the scale of minutes, with unparalleled specificity. The method has a potential ultimate sensitivity of 1 bacterium/microliter (1 bacterium/mm3).

  15. Structural proteins of Enterococcus faecalis bacteriophage ϕEf11

    PubMed Central

    Stevens, Roy H.; Zhang, Hongming; Hsiao, Chaiwing; Kachlany, Scott; Tinoco, Eduardo M. B.; DePew, Jessica; Fouts, Derrick E.

    2016-01-01

    ABSTRACT ϕEf11, a temperate Siphoviridae bacteriophage, was isolated by induction from a root canal isolate of Enterococcus faecalis. Sequence analysis suggested that the ϕEf11 genome included a contiguous 8 gene module whose function was related to head structure assembly and another module of 10 contiguous genes whose products were responsible for tail structure assembly. SDS-PAGE analysis of virions of a ϕEf11 derivative revealed 11 well-resolved protein bands. To unify the deduced functional gene assignments emanating from the DNA sequence data, with the structural protein analysis of the purified virus, 6 of the SDS-PAGE bands were subjected to mass spectrometry analysis. 5 of the 6 protein bands analyzed by mass spectrometry displayed identical amino acid sequences to those predicted to be specified by 4 of the ORFs identified in the ϕEf11 genome. These included: ORF8 (predicted scaffold protein), ORF10 (predicted major head protein), ORF15 (predicted major tail protein), and ORF23 (presumptive antireceptor). PMID:28090386

  16. Structural characteristics of the Corynebacterium lilium bacteriophage CL31.

    PubMed Central

    Trautwetter, A; Blanco, C; Sicard, A M

    1987-01-01

    Bacteriophage CL31 was isolated on a Corynebacterium lilium strain. Out of 30 strains tested, only CL31 was able to form plaques on Corynebacterium glutamicum ATCC 13287, Brevibacterium lactofermentum ATCC 21086, and Arthrobacter sp. strain SI55, but at a very low frequency. This phage belongs to group B of Bradley's classification (D. E. Bradley, Bacteriol. Rev. 31:230-314; 1967). Its head is 53 nm in diameter, and its tail is 396 nm in length. The phage capsid contains three major proteins, of 12.5, 29.0, and 37.0 kilodaltons, and five minor ones (23.9, 26.0, 27.0, 40.0, and 55.4 kilodaltons). CL31 DNA is a linear molecule of 48 kilobases with cohesive ends. Restriction mapping was performed for endonucleases BglII, EcoRI, SalI, and KpnI. The expression of CL31 genes in Escherichia coli was studied by the maxicell technique; 12 different proteins were detected. Images PMID:3033280

  17. Bacteriophage-Mediated Dispersal of Campylobacter jejuni Biofilms ▿

    PubMed Central

    Siringan, Patcharin; Connerton, Phillippa L.; Payne, Robert J. H.; Connerton, Ian F.

    2011-01-01

    Bacteria in their natural environments frequently exist as mixed surface-associated communities, protected by extracellular material, termed biofilms. Biofilms formed by the human pathogen Campylobacter jejuni may arise in the gastrointestinal tract of animals but also in water pipes and other industrial situations, leading to their possible transmission into the human food chain either directly or via farm animals. Bacteriophages are natural predators of bacteria that usually kill their prey by cell lysis and have potential application for the biocontrol and dispersal of target bacteria in biofilms. The effects of virulent Campylobacter specific-bacteriophages CP8 and CP30 on C. jejuni biofilms formed on glass by strains NCTC 11168 and PT14 at 37°C under microaerobic conditions were investigated. Independent bacteriophage treatments (n ≥ 3) led to 1 to 3 log10 CFU/cm2 reductions in the viable count 24 h postinfection compared with control levels. In contrast, bacteriophages applied under these conditions effected a reduction of less than 1 log10 CFU/ml in planktonic cells. Resistance to bacteriophage in bacteria surviving bacteriophage treatment of C. jejuni NCTC 11168 biofilms was 84% and 90% for CP8 and CP30, respectively, whereas bacteriophage resistance was not found in similarly recovered C. jejuni PT14 cells. Dispersal of the biofilm matrix by bacteriophage was demonstrated by crystal violet staining and transmission electron microscopy. Bacteriophage may play an important role in the control of attachment and biofilm formation by Campylobacter in situations where biofilms occur in nature, and they have the potential for application in industrial situations leading to improvements in food safety. PMID:21441325

  18. Characterization of Plys-proximal morphogenetic genes of transposable bacteriophage Mu.

    PubMed

    Siboo, I R; Sieder, F; Kumar, K; Howe, M M; DuBow, M S

    2004-02-01

    Late during the bacteriophage Mu lytic cycle, Mu DNA must be matured and packaged from its dispersed integration sites in the host DNA in order to produce progeny virions. Whereas control of late gene transcription in Mu is becoming well understood, less is known about the phage morphogenetic process. To investigate the latter, we cloned and sequenced a approximately 4.3-kb region of the phage DNA beginning just upstream of the leftmost late promoter Plys. Previous mapping of amber mutations had located the lysis (lys) and proposed DNA maturation genes D and E in this region. When the DNA sequence was analyzed, seven potential open reading frames were found. DNA sequence analysis of amber mutations in genes D and E identified the sixth and seventh open reading frames as D and E, respectively. Cloning and expression of this region enabled production of cell-free protein extracts that specifically recognize the phage-encoded packaging sequence (pac), a characteristic exhibited by phage maturation enzymes. In addition, the E protein was found to share homology with the large subunit of many phage DNA maturation enzymes. These results support the hypothesis that D and E encode subunits of the Mu DNA maturation enzyme.

  19. The role of bacteriophages in periodontal health and disease.

    PubMed

    Pinto, Graça; Silva, Maria Daniela; Peddey, Mark; Sillankorva, Sanna; Azeredo, Joana

    2016-10-01

    The human periodontium health is commonly compromised by chronic inflammatory conditions and has become a major public health concern. Dental plaque, the precursor of periodontal disease, is a complex biofilm consisting mainly of bacteria, but also archaea, protozoa, fungi and viruses. Viruses that specifically infect bacteria - bacteriophages - are most common in the oral cavity. Despite this, their role in the progression of periodontal disease remains poorly explored. This review aims to summarize how bacteriophages interact with the oral microbiota, their ability to increase bacterial virulence and mediate the transfer of resistance genes and suggests how bacteriophages can be used as an alternative to the current periodontal disease therapies.

  20. Complete Genome Sequence of Phytopathogenic Pectobacterium atrosepticum Bacteriophage Peat1

    PubMed Central

    Kalischuk, Melanie; Hachey, John

    2015-01-01

    Pectobacterium atrosepticum is a common phytopathogen causing significant economic losses worldwide. To develop a biocontrol strategy for this blackleg pathogen of solanaceous plants, P. atrosepticum bacteriophage Peat1 was isolated and its genome completely sequenced. Interestingly, morphological and sequence analyses of the 45,633-bp genome revealed that phage Peat1 is a member of the family Podoviridae and most closely resembles the Klebsiella pneumoniae bacteriophage KP34. This is the first published complete genome sequence of a phytopathogenic P. atrosepticum bacteriophage, and details provide important information for the development of biocontrol by advancing our understanding of phage-phytopathogen interactions. PMID:26272557

  1. Complete Genome Sequence of Phytopathogenic Pectobacterium atrosepticum Bacteriophage Peat1.

    PubMed

    Kalischuk, Melanie; Hachey, John; Kawchuk, Lawrence

    2015-08-13

    Pectobacterium atrosepticum is a common phytopathogen causing significant economic losses worldwide. To develop a biocontrol strategy for this blackleg pathogen of solanaceous plants, P. atrosepticum bacteriophage Peat1 was isolated and its genome completely sequenced. Interestingly, morphological and sequence analyses of the 45,633-bp genome revealed that phage Peat1 is a member of the family Podoviridae and most closely resembles the Klebsiella pneumoniae bacteriophage KP34. This is the first published complete genome sequence of a phytopathogenic P. atrosepticum bacteriophage, and details provide important information for the development of biocontrol by advancing our understanding of phage-phytopathogen interactions.

  2. Respirable bacteriophages for the treatment of bacterial lung infections.

    PubMed

    Hoe, Susan; Semler, Diana D; Goudie, Amanda D; Lynch, Karlene H; Matinkhoo, Sadaf; Finlay, Warren H; Dennis, Jonathan J; Vehring, Reinhard

    2013-12-01

    This review article discusses the development of respiratory therapeutics containing bacteriophages indicated for lung infections, specifically those that have become increasingly difficult to treat because of antibiotic resistance. Recent achievements and remaining problems are presented for each step necessary to develop a bacteriophage-containing dosage form for respiratory drug delivery, including selection of appropriate bacteriophages for therapy, processing and purification of phage preparations, formulation into a stable, solid dosage form, and delivery device selection. Safety and efficacy studies in animals and human subjects are also reviewed.

  3. [TL, the new bacteriophage of Pseudomonas aeruginosa and its application for the search of halo-producing bacteriophages].

    PubMed

    Pleteneva, E A; Burkal'tseva, M V; Shaburova, O V; Krylov, S V; Pechnikova, E V; Sokolova, O S; Krylov, V N

    2011-01-01

    The properties of new virulent bacteriophage TL of Pseudomonas aeruginosa belonging to the family Podoviridae (genome size of 46 kb) were investigated. This bacteriophage is capable of lysogenizing the bacterial lawn in halo zones around negative colonies (NC) of other bacteriophages. TL forms large NC, that are hardly distinguishable on the lawn of P. aeruginisa PAO1. At the same time, on the lawns of some phage-resistant PAO1 mutants, as well as on those produced by a number of clinical isolates, TL forms more transparent NC. It is suggested that more effective growth of the bacteriophage TL NC is associated with the differences in outer lipopolysaccharide (LPS) layer of the cell walls of different bacterial strains, as well as of the bacteria inside and outside of the halos. This TL property was used to optimize selection of bacteriophages producing halos around NC on the lawn of P. aeruginosa PAO1. As a result, a group of bacteriophages differing in the patterns of interaction between their halos and TL bacteriophage, as well as in some characters was identified. Taking into consideration the importance of cell-surfaced structures of P. aeruginosa in manifestation of virulence and pathogenicity, possible utilization of specific phage enzymes, polysacchadide depolymerases, for more effective treatment of P. aeruginosa infections is discussed.

  4. Enteroviruses and Bacteriophages in Bathing Waters

    PubMed Central

    Mocé-Llivina, Laura; Lucena, Francisco; Jofre, Juan

    2005-01-01

    A new procedure for detecting and counting enteroviruses based on the VIRADEN method applied to 10 liters of seawater was examined. It improved the efficiency of detection by taking into account both the number of positive isolations and numbers found with traditional methods. It was then used to quantify viruses in bathing waters. A number of bacterial indicators and bacteriophages were also tested. Cultivable enteroviruses were detected in 55% of the samples, most of which complied with bacteriological criteria. In contrast, viral genomes were only detected in 20% of the samples by reverse transcription-PCR. Somatic coliphages outnumbered all other indicators. F-specific RNA phages were detected in only 15% of the samples, whereas phages infecting Bacteroides thetaiotaomicron were detected in 70% of samples. A numerical relationship between the numbers of enteroviruses and the numbers of enterococci and somatic coliphages was observed. In situ inactivation experiments showed that viruses persisted significantly longer than the bacterial indicators. Only somatic coliphages and bacteriophages infecting Bacteroides persisted longer than the viruses. These results explain the numbers of enteroviruses and indicators in bathing waters attending the numbers usually found in sewage in the area. Somatic coliphages show a very good potential to predict the risk of viruses being present in bathing waters. PMID:16269717

  5. Bacteriophages and Their Role in Food Safety

    PubMed Central

    Sillankorva, Sanna M.; Oliveira, Hugo; Azeredo, Joana

    2012-01-01

    The interest for natural antimicrobial compounds has increased due to alterations in consumer positions towards the use of chemical preservatives in foodstuff and food processing surfaces. Bacteriophages fit in the class of natural antimicrobial and their effectiveness in controlling bacterial pathogens in agro-food industry has led to the development of different phage products already approved by USFDA and USDA. The majority of these products are to be used in farm animals or animal products such as carcasses, meats and also in agricultural and horticultural products. Treatment with specific phages in the food industry can prevent the decay of products and the spread of bacterial diseases and ultimately promote safe environments in animal and plant food production, processing, and handling. This is an overview of recent work carried out with phages as tools to promote food safety, starting with a general introduction describing the prevalence of foodborne pathogens and bacteriophages and a more detailed discussion on the use of phage therapy to prevent and treat experimentally induced infections of animals against the most common foodborne pathogens, the use of phages as biocontrol agents in foods, and also their use as biosanitizers of food contact surfaces. PMID:23316235

  6. Immobilization of bacteriophages on modified silica particles.

    PubMed

    Cademartiri, Rebecca; Anany, Hany; Gross, Isabelle; Bhayani, Rahul; Griffiths, Mansel; Brook, Michael A

    2010-03-01

    Bacteriophages are selective anti-bacterial agents, which are receiving increasing acceptance by regulatory agencies for use both in the food industry and in clinical settings for biocontrol. While immobilized phage could be particularly useful to create antimicrobial surfaces, current immobilization strategies require chemical bioconjugation to surfaces or more difficult processes involving modification of their head proteins to express specific binding moieties, for example, biotin or cellulose binding domains; procedures that are both time and money intensive. We report that morphologically different bacteriophages, active against a variety of food-borne bacteria: Escherichia coli; Salmonella enterica; Listeria monocytogenes; and Shigella boydii, will effectively physisorb to silica particles, prepared by silica surface modification with poly(ethylene glycol), carboxylic acid groups, or amines. The phages remain infective to their host bacteria while adsorbed on the surface of the silica particles. The number of infective phage bound to the silica is enhanced by the presence of ionic surfaces, with greater surface charge - to a maximum - correlating with greater concentration of adsorbed phage. Above the maximum charge concentration, the number of active phage drops.

  7. Bacteriophage therapy in children: facts and prospects.

    PubMed

    Fortuna, Wojciech; Miedzybrodzki, Ryszard; Weber-Dabrowska, Beata; Górski, Andrzej

    2008-08-01

    Data from the World Health Organization confirm a decrease in the effectiveness of antibiotic therapy. The spread of bacteria resistant to several groups of antibiotics creates more problems in the treatment of various diseases, especially in children. It is possible that pharmacological agents may prove to be ineffective in curing infections caused by resistant pathogens, and this could lead to a post-antibiotic era. It is necessary to extend the arsenal of the available therapeutic tools. Bacteriophages have long been used therapeutically and prophylactically in children. In the beginnings of phage therapy, enthusiasm prevailed over the rational methods used in contemporary controlled studies. Many people dealing with phages described cases of successful therapy, but did not conduct comparative studies. Nevertheless, phage administration seems to be safe, even in children after intravenous administration. The therapeutic and prophylactic application of phages is now experiencing a renaissance of interest. The authors' own recent analysis demonstrated the cost effectiveness of phages over antibiotic especially in the treatment of infections caused by multidrug-resistant bacteria. It can be concluded that the results of the therapeutic and prophylactic application of phages against multi-drug resistant pathogens are encouraging. It seems clear that bacteriophages need further evaluation regarding the control of bacterial infection in children.

  8. Understanding Bacteriophage Specificity in Natural Microbial Communities

    PubMed Central

    Koskella, Britt; Meaden, Sean

    2013-01-01

    Studying the coevolutionary dynamics between bacteria and the bacteriophage viruses that infect them is critical to understanding both microbial diversity and ecosystem functioning. Phages can play a key role in shaping bacterial population dynamics and can significantly alter both intra- and inter-specific competition among bacterial hosts. Predicting how phages might influence community stability and apparent competition, however, requires an understanding of how bacteria-phage interaction networks evolve as a function of host diversity and community dynamics. Here, we first review the progress that has been made in understanding phage specificity, including the use of experimental evolution, we then introduce a new dataset on natural bacteriophages collected from the phyllosphere of horse chestnut trees, and finally we highlight that bacterial sensitivity to phage is rarely a binary trait and that this variation should be taken into account and reported. We emphasize that there is currently insufficient evidence to make broad generalizations about phage host range in natural populations, the limits of phage adaptation to novel hosts, or the implications of phage specificity in shaping microbial communities. However, the combination of experimental and genomic approaches with the study of natural communities will allow new insight to the evolution and impact of phage specificity within complex bacterial communities. PMID:23478639

  9. Complete genome sequence of 285P, a novel T7-like polyvalent E. coli bacteriophage.

    PubMed

    Xu, Bin; Ma, Xiangyu; Xiong, Hongyan; Li, Yafei

    2014-06-01

    Bacteriophages are considered potential biological agents for the control of infectious diseases and environmental disinfection. Here, we describe a novel T7-like polyvalent Escherichia coli bacteriophage, designated "285P," which can lyse several strains of E. coli. The genome, which consists of 39,270 base pairs with a G+C content of 48.73 %, was sequenced and annotated. Forty-three potential open reading frames were identified using bioinformatics tools. Based on whole-genome sequence comparison, phage 285P was identified as a novel strain of subgroup T7. It showed strongest sequence similarity to Kluyvera phage Kvp1. The phylogenetic analyses of both non-structural proteins (endonuclease gp3, amidase gp3.5, DNA primase/helicase gp4, DNA polymerase gp5, and exonuclease gp6) and structural protein (tail fiber protein gp17) led to the identification of 285P as T7-like phage. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analyses verified the annotation of the structural proteins (major capsid protein gp10a, tail protein gp12, and tail fiber protein gp17).

  10. Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation.

    PubMed

    Keen, Eric C; Bliskovsky, Valery V; Malagon, Francisco; Baker, James D; Prince, Jeffrey S; Klaus, James S; Adhya, Sankar L

    2017-01-17

    Bacteriophages infect an estimated 10(23) to 10(25) bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub "superspreaders," releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications.

  11. Assembly-associated structural changes of bacteriophage T7 capsids. Detection by use of a protein-specific probe.

    PubMed Central

    Khan, S A; Griess, G A; Serwer, P

    1992-01-01

    To detect changes in capsid structure that occur when a preassembled bacteriophage T7 capsid both packages and cleaves to mature-size longer (concatameric) DNA, the kinetics and thermodynamics are determined here for the binding of the protein-specific probe, 1,1'-bi(4-anilino)naphthalene-5,5'-di-sulfonic acid (bis-ANS), to bacteriophage T7, a T7 DNA deletion (8.4%) mutant, and a DNA-free T7 capsid (metrizamide low density capsid II) known to be a DNA packaging intermediate that has a permeability barrier not present in a related capsid (metrizamide high density capsid II). Initially, some binding to either bacteriophage or metrizamide low density capsid II occurs too rapidly to quantify (phase 1, duration < 10 s). Subsequent binding (phase 2) occurs with first-order kinetics. Only the phase 1 binding occurs for metrizamide high density capsid II. These observations, together with both the kinetics of the quenching by ethidium of bound bis-ANS fluorescence and the nature of bis-ANS-induced protein alterations, are explained by the hypothesis that the phase 2 binding occurs at internal sites. The number of these internal sites increases as the density of the packaged DNA decreases. The accompanying change in structure is potentially the signal for initiating cleavage of a concatemer. Evidence for the following was also obtained: (a) a previously undetected packaging-associated change in the conformation of the major protein of the outer capsid shell and (b) partitioning by a permeability barrier of the interior of the T7 capsid. Images FIGURE 5 PMID:1477280

  12. Assembly and dynamics of the bacteriophage T4 homologous recombination machinery.

    PubMed

    Liu, Jie; Morrical, Scott W

    2010-12-03

    Homologous recombination (HR), a process involving the physical exchange of strands between homologous or nearly homologous DNA molecules, is critical for maintaining the genetic diversity and genome stability of species. Bacteriophage T4 is one of the classic systems for studies of homologous recombination. T4 uses HR for high-frequency genetic exchanges, for homology-directed DNA repair (HDR) processes including DNA double-strand break repair, and for the initiation of DNA replication (RDR). T4 recombination proteins are expressed at high levels during T4 infection in E. coli, and share strong sequence, structural, and/or functional conservation with their counterparts in cellular organisms. Biochemical studies of T4 recombination have provided key insights on DNA strand exchange mechanisms, on the structure and function of recombination proteins, and on the coordination of recombination and DNA synthesis activities during RDR and HDR. Recent years have seen the development of detailed biochemical models for the assembly and dynamics of presynaptic filaments in the T4 recombination system, for the atomic structure of T4 UvsX recombinase, and for the roles of DNA helicases in T4 recombination. The goal of this chapter is to review these recent advances and their implications for HR and HDR mechanisms in all organisms.

  13. Bacteriophages as potential new therapeutics to replace or supplement antibiotics.

    PubMed

    Kutateladze, Mzia; Adamia, Revaz

    2010-12-01

    Over recent decades, a growing body of literature has validated the use of bacteriophages for therapy and prophylaxis in the war against drug-resistant bacteria. Today, much more is known about bacteriophages than in the 1930s when phage therapy first appeared and began to spread to many countries. With rapid dissemination of multi-drug-resistant bacterial pathogens, the interest in alternative remedies to antibiotics, including bacteriophage treatments, is gaining new ground. Based on recent experience and current results of bacteriophage applications against bacterial infections in countries where this alternative therapy is approved, many scientists and companies have come to believe that the use of phages for treating and preventing bacterial diseases will be successful.

  14. Bacteriophages as indicators of fecal pollution and enteric virus removal.

    PubMed

    McMinn, Brian R; Ashbolt, Nicholas J; Korajkic, Asja

    2017-03-17

    Bacteriophages are an attractive alternative to fecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. This article is protected by copyright. All rights reserved.

  15. Antimicrobial bacteriophage-derived proteins and therapeutic applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotics have the remarkable power to control bacterial infections. Unfortunately, widespread use, whether regarded as prudent or not, has favored the emergence and persistence of antibiotic resistant strains of human pathogenic bacteria, resulting in a global health threat. Bacteriophages (pha...

  16. Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA.

    PubMed

    Chen, Xin Jie

    2013-09-01

    Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells.

  17. Bacteriophage-based nanoprobes for rapid bacteria separation

    NASA Astrophysics Data System (ADS)

    Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.

    2015-10-01

    The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying

  18. Lytic bacteriophages reduce Escherichia coli O157

    PubMed Central

    Ferguson, Sean; Roberts, Cheryl; Handy, Eric; Sharma, Manan

    2013-01-01

    The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield™) or a control (phosphate buffered saline, PBS) was applied to lettuce by either; (1) immersion of lettuce in 500 ml of EcoShield™ 8.3 log PFU/ml or 9.8 log PFU/ml for up to 2 min before inoculation with E. coli O157:H7; (2) spray-application of EcoShield™ (9.3 log PFU/ml) to lettuce after inoculation with E. coli O157:H7 (4.10 CFU/cm2) following exposure to 50 μg/ml chlorine for 30 sec. After immersion studies, lettuce was spot-inoculated with E. coli O157:H7 (2.38 CFU/cm2). Phage-treated, inoculated lettuce pieces were stored at 4°C for and analyzed for E. coli O157:H7 populations for up to 7 d. Immersion of lettuce in 9.8 log PFU/ml EcoShield™ for 2 min significantly (p < 0.05) reduced E. coli O157:H7 populations after 24 h when stored at 4°C compared with controls. Immersion of lettuce in suspensions containing high concentrations of EcoShield™ (9.8 log PFU/ml) resulted in the deposition of high concentrations (7.8 log log PFU/cm2) of bacteriophages on the surface of fresh cut lettuce, potentially contributing to the efficacy of the lytic phages on lettuce. Spraying phages on to inoculated fresh cut lettuce after being washed in hypochlorite solution was significantly more effective in reducing E. coli O157:H7 populations (2.22 log CFU/cm2) on day 0 compared with control treatments (4.10 log CFU/cm2). Both immersion and spray treatments provided protection from E. coli O157:H7 contamination on lettuce, but spray application of lytic bacteriophages to lettuce was more effective in immediately reducing E. coli O157:H7 populations fresh cut lettuce. PMID:23819106

  19. Simulated hatchery system to assess bacteriophage efficacy against Vibrio harveyi.

    PubMed

    Raghu Patil, J; Desai, Srividya Narayanamurthy; Roy, Panchali; Durgaiah, Murali; Saravanan, R Sanjeev; Vipra, Aradhana

    2014-12-02

    Vibriosis caused by luminous Vibrio harveyi commonly contributes to poor survival in shrimp hatcheries and aquaculture ponds. Lytic bacteriophages pathogenic for V. harveyi are currently being investigated as an alternative to antibiotics to prevent vibriosis. Here, 8 bacteriophages were isolated from oysters and clams using V. harveyi strains as baiting hosts. Among these bacteriophages, 1 strain (VHP6b) identified as broadly pathogenic for 27 V. harveyi strains examined was further characterized by electron microscopy and genome sequence analysis. Phage VHP6b possessed a tail and morphology consistent with it being a member of the family Siphoviridae, and its genome and proteome were most closely related to the Vibrio phages SSP02 and MAR10. An integrase gene essential for lysogeny was not evident. The ability of bacteriophage VHP6b to protect shrimp postlarvae against vibriosis caused by V. harveyi strain VH6 was demonstrated in a model system designed to simulate typical hatchery conditions. Bacteriophage treatment improved survival of postlarvae by 40 to 60% under these conditions, so therapies based on this or other bacteriophages may be useful in shrimp hatcheries.

  20. Bacteriophages may bias outcome of bacterial enrichment cultures.

    PubMed

    Muniesa, Maite; Blanch, Anicet R; Lucena, Francisco; Jofre, Juan

    2005-08-01

    Enrichment cultures are widely used for the isolation of bacteria in clinical, biotechnological, and environmental studies. However, competition, relative growth rates, or inhibitory effects may alter the outcome of enrichment cultures, causing the phenomenon known as enrichment bias. Bacteriophages are a major component in many microbial systems, and it abounds in natural settings. This abundance means that bacteriophages are likely to be present in many laboratory enrichment cultures. Our hypothesis was that bacteriophages present in the sample might bias the enriched subpopulation, since it can infect and lyse the target bacteria during the enrichment step once the bacteria reach a given density. Here we show that the presence of bacteriophages in Salmonella and Shigella enrichment cultures produced a significant reduction (more than 1 log unit) in the number of these bacteria compared with samples in which bacteriophages had been reduced by filtration through 0.45-microm non-protein-binding membranes. Furthermore, our data indicate that the Salmonella biotypes isolated after the enrichment culture change if bacteriophages are present, thus distorting the results of the analysis.

  1. Innate and acquired bacteriophage-mediated immunity

    PubMed Central

    Barr, Jeremy J.; Youle, Merry; Rohwer, Forest

    2013-01-01

    We recently described a novel, non-host-derived, phage-mediated immunity active at mucosal surfaces, the main site of pathogen entry in metazoans. In that work, we showed that phage T4 adheres to mucus glycoproteins via immunoglobulin-like domains displayed on its capsid. This adherence positions the phage in mucus surfaces where they are more likely to encounter and kill bacteria, thereby benefiting both the phage and its metazoan host. We presented this phage-metazoan symbiosis based on an exclusively lytic model of phage infection. Here we extend our bacteriophage adherence to mucus (BAM) model to consider the undoubtedly more complex dynamics in vivo. We hypothesize how mucus-adherent phages, both lytic and temperate, might impact the commensal microbiota as well as protect the metazoan epithelium from bacterial invasion. We suggest that BAM may provide both an innate and an acquired antimicrobial immunity. PMID:24228227

  2. Why Be Temperate: Lessons from Bacteriophage λ.

    PubMed

    Gandon, Sylvain

    2016-05-01

    Many pathogens have evolved the ability to induce latent infections of their hosts. The bacteriophage λ is a classical model for exploring the regulation and the evolution of latency. Here, I review recent experimental studies on phage λ that identify specific conditions promoting the evolution of lysogenic life cycles. In addition, I present specific adaptations of phage λ that allow this virus to react plastically to variations in the environment and to reactivate its lytic life cycle. All of these different examples are discussed in the light of evolutionary epidemiology theory to disentangle the different evolutionary forces acting on temperate phages. Understanding phage λ adaptations yield important insights into the evolution of latency in other microbes, including several life-threatening human pathogens.

  3. Engineering of filamentous bacteriophage for protein sensing

    NASA Astrophysics Data System (ADS)

    Brasino, Michael

    Methods of high throughput, sensitive and cost effective quantification of proteins enables personalized medicine by allowing healthcare professionals to better monitor patient condition and response to treatment. My doctoral research has attempted to advance these methods through the use of filamentous bacteriophage (phage). These bacterial viruses are particularly amenable to both genetic and chemical engineering and can be produced efficiently in large amounts. Here, I discuss several strategies for modifying phage for use in protein sensing assays. These include the expression of bio-orthogonal conjugation handles on the phage coat, the incorporation of specific recognition sequences within the phage genome, and the creation of antibody-phage conjugates via a photo-crosslinking non-canonical amino acid. The physical and chemical characterization of these engineered phage and the results of their use in modified protein sensing assays will be presented.

  4. Head Proteins from T-Even Bacteriophage

    PubMed Central

    Forrest, Gerald L.; Cummings, Donald J.

    1970-01-01

    T-even bacteriophage capsid proteins were separated on 6% agarose columns by use of 6 m guanidine hydrochloride containing 5 mm dithiothreitol both to dissociate and to elute the proteins. The head capsids of T2H, T4B, T4B01, T4D, and T6r+ contained at least three structural proteins with molecular weights of 40,000, 18,000, and 11,000 daltons, amounting to 76, 2, and 8%, respectively, of the total capsid protein. On the other hand, T2L head capsids contained only two structural proteins with molecular weights of 40,000 and 18,000 daltons (81 and 2.5%, respectively, of the total protein). A discussion of the possible role of these structural head proteins and a T-even phage head model suggesting a structural arrangement of the 40,000 dalton subunit are presented. Images PMID:5438109

  5. Bacteriophage gene targeting vectors generated by transplacement.

    PubMed

    Aoyama, C; Woltjen, K; Mansergh, F C; Ishidate, K; Rancourt, D E

    2002-10-01

    A rate-determining step in gene targeting is the generation of the targeting vector. We have developed bacteriophage gene targeting vectorology, which shortens the timeline of targeting vector construction. Using retro-recombination screening, we can rapidly isolate targeting vectors from an embryonic stem cell genomic library via integrative and excisive recombination. We have demonstrated that recombination can be used to introduce specific point mutations or unique restriction sites into gene targeting vectors via transplacement. Using the choline/ethanolamine kinase alpha and beta genes as models, we demonstrate that transplacement can also be used to introduce specifically a neo resistance cassette into a gene targeting phage. In our experience, the lambdaTK gene targeting system offers considerable flexibility and efficiency in TV construction, which makes generating multiple vectors in one week's time possible.

  6. Bacteriophages as biocontrol agents in food.

    PubMed

    Hudson, J A; Billington, C; Carey-Smith, G; Greening, G

    2005-02-01

    Bacteriophages possess attributes that appear to be attractive to those searching for novel ways to control foodborne pathogens and spoilage organisms. These phages have a history of safe use, can be highly host specific, and replicate in the presence of a host. Campylobacter, Salmonella, and Listeria monocytogenes and various spoilage organisms have responded to phage control on some foods. However, the use of phages as biocontrol agents is complicated by factors such as an apparent requirement for a threshold level of host before replication can proceed and by suboptimal performance, at best, at temperatures beneath the optimum for the host. This review is a summary of the information on these issues and includes brief descriptions of alternative phage-based strategies for control of foodborne pathogens.

  7. Bacteriophage: A Model System for Active Learning

    PubMed Central

    LUCIANO, CARL S.; YOUNG, MATTHEW W.; PATTERSON, ROBIN R.

    2002-01-01

    Although bacteriophage provided a useful model system for the development of molecular biology, its simplicity, accessibility, and familiarity have not been fully exploited in the classroom. We describe a student-centered laboratory course in which student teams selected phage from sewage samples and characterized the phage in a semester-long project that modeled real-life scientific research. The course used an instructional approach that included active learning, collaboration, and learning by inquiry. Cooperative student teams had primary responsibility for organizing the content of the course, writing to learn using a journal article format, involving the entire group in shared laboratory responsibilities, and applying knowledge to the choice of new experiments. The results of student evaluations indicated a high level of satisfaction with the course. Our positive experience with this course suggests that phage provides an attractive model system for an active-learning classroom. PMID:23653543

  8. DNA Equation of State: In Vitro vs In Viro.

    PubMed

    Podgornik, Rudolf; Aksoyoglu, M Alphan; Yasar, Selcuk; Svenšek, Daniel; Parsegian, V Adrian

    2016-07-07

    We formulate a continuum approach to the equation of state (density dependence of osmotic pressure) of bulk DNA and encapsidated DNA, as well as review the phase diagram of DNA in the regime of densities relevant for DNA packing in bacteriophages. We derive the first integral of the equilibrium equations that connects the behavior of DNA in the bulk and in nanoscale enclosures, and we delineate the changes wrought upon the mesophase equilibria of encapsidated DNA. We show how multiphase equilibria and complicated spatial distribution of DNA density and orientation can emerge due to the curvature contribution to the DNA osmotic pressure within the capsid.

  9. Visualization of uncorrelated, tandem symmetry mismatches in the internal genome packaging apparatus of bacteriophage T7.

    PubMed

    Guo, Fei; Liu, Zheng; Vago, Frank; Ren, Yue; Wu, Weimin; Wright, Elena T; Serwer, Philip; Jiang, Wen

    2013-04-23

    Motor-driven packaging of a dsDNA genome into a preformed protein capsid through a unique portal vertex is essential in the life cycle of a large number of dsDNA viruses. We have used single-particle electron cryomicroscopy to study the multilayer structure of the portal vertex of the bacteriophage T7 procapsid, the recipient of T7 DNA in packaging. A focused asymmetric reconstruction method was developed and applied to selectively resolve neighboring pairs of symmetry-mismatched layers of the portal vertex. However, structural features in all layers of the multilayer portal vertex could not be resolved simultaneously. Our results imply that layers with mismatched symmetries can join together in several different relative orientations, and that orientations at different interfaces assort independently to produce structural isomers, a process that we call combinatorial assembly isomerism. This isomerism explains rotational smearing in previously reported asymmetric reconstructions of the portal vertex of T7 and other bacteriophages. Combinatorial assembly isomerism may represent a new regime of structural biology in which globally varying structures assemble from a common set of components. Our reconstructions collectively validate previously proposed symmetries, compositions, and sequential order of T7 portal vertex layers, resolving in tandem the 5-fold gene product 10 (gp10) shell, 12-fold gp8 portal ring, and an internal core stack consisting of 12-fold gp14 adaptor ring, 8-fold bowl-shaped gp15, and 4-fold gp16 tip. We also found a small tilt of the core stack relative to the icosahedral fivefold axis and propose that this tilt assists DNA spooling without tangling during packaging.

  10. Systematic mutation of bacteriophage T4 lysozyme.

    PubMed

    Rennell, D; Bouvier, S E; Hardy, L W; Poteete, A R

    1991-11-05

    Amber mutations were introduced into every codon (except the initiating AUG) of the bacteriophage T4 lysozyme gene. The amber alleles were introduced into a bacteriophage P22 hybrid, called P22 e416, in which the normal P22 lysozyme gene is replaced by its T4 homologue, and which consequently depends upon T4 lysozyme for its ability to form a plaque. The resulting amber mutants were tested for plaque formation on amber suppressor strains of Salmonella typhimurium. Experiments with other hybrid phages engineered to produce different amounts of wild-type T4 lysozyme have shown that, to score as deleterious, a mutation must reduce lysozyme activity to less than 3% of that produced by wild-type P22 e416. Plating the collection of amber mutants covering 163 of the 164 codons of T4 lysozyme, on 13 suppressor strains that each insert a different amino acid substitutions at every position in the protein (except the first). Of the resulting 2015 single amino acid substitutions in T4 lysozyme, 328 were found to be sufficiently deleterious to inhibit plaque formation. More than half (55%) of the positions in the protein tolerated all substitutions examined. Among (N-terminal) amber fragments, only those of 161 or more residues are active. The effects of many of the deleterious substitutions are interpretable in light of the known structure of T4 lysozyme. Residues in the molecule that are refractory to replacements generally have solvent-inaccessible side-chains; the catalytic Glu11 and Asp20 residues are notable exceptions. Especially sensitive sites include residues involved in buried salt bridges near the catalytic site (Asp10, Arg145 and Arg148) and a few others that may have critical structural roles (Gly30, Trp138 and Tyr161).

  11. Bacteriophages of Leuconostoc, Oenococcus, and Weissella

    PubMed Central

    Kot, Witold; Neve, Horst; Heller, Knut J.; Vogensen, Finn K.

    2014-01-01

    Leuconostoc (Ln.), Weissella, and Oenococcus form a group of related genera of lactic acid bacteria, which once all shared the name Leuconostoc. They are associated with plants, fermented vegetable products, raw milk, dairy products, meat, and fish. Most of industrially relevant Leuconostoc strains can be classified as either Ln. mesenteroides or Ln. pseudomesenteroides. They are important flavor producers in dairy fermentations and they initiate nearly all vegetable fermentations. Therefore, bacteriophages attacking Leuconostoc strains may negatively influence the production process. Bacteriophages attacking Leuconostoc strains were first reported in 1946. Since then, the majority of described Leuconostoc phages was isolated from either dairy products or fermented vegetable products. Both lytic and temperate phages of Leuconostoc were reported. Most of Leuconostoc phages examined using electron microscopy belong to the Siphoviridae family and differ in morphological details. Hybridization and comparative genomic studies of Leuconostoc phages suggest that they can be divided into several groups, however overall diversity of Leuconostoc phages is much lower as compared to, e.g., lactococcal phages. Several fully sequenced genomes of Leuconostoc phages have been deposited in public databases. Lytic phages of Leuconostoc can be divided into two host species-specific groups with similarly organized genomes that shared very low nucleotide similarity. Phages of dairy Leuconostoc have rather limited host-ranges. The receptor binding proteins of two lytic Ln. pseudomesenteroides phages have been identified. Molecular tools for detection of dairy Leuconostoc phages have been developed. The rather limited data on phages of Oenococcus and Weissella show that (i) lysogeny seems to be abundant in Oenococcus strains, and (ii) several phages infecting Weissella cibaria are also able to productively infect strains of other Weissella species and even strains of the genus

  12. Montmorillonite-induced Bacteriophage φ6 Disassembly

    NASA Astrophysics Data System (ADS)

    Trusiak, A.; Gottlieb, P.; Katz, A.; Alimova, A.; Steiner, J. C.; Block, K. A.

    2012-12-01

    It is estimated that there are 1031 virus particles on Earth making viruses an order of magnitude more prevalent in number than prokaryotes with the vast majority of viruses being bacteriophages. Clays are a major component of soils and aquatic sediments and can react with RNA, proteins and bacterial biofilms. The clays in soils serve as an important moderator between phage and their host bacteria, helping to preserve the evolutionary balance. Studies on the effects of clays on viral infectivity have given somewhat contradictory results; possibly a consequence of clay-virus interactions being dependent on the unique structure of particular viruses. In this work, the interaction between montmorillonite and the bacteriophage φ6 is investigated. φ6 is a member of the cystovirus family that infects Pseudomonas syringe, a common plant pathogen. As a member of the cystovirus family with an enveloped structure, φ6 serves as a model for reoviruses, a human pathogen. Experiments were conducted with φ6 suspended in dilute, purified homoionic commercial-grade montmorillonite over a range of virus:clay ratios. At a 1:100000 virus:clay ratio, the clay reduced viral infectivity by 99%. The minimum clay to virus ratio which results in a measurable reduction of P. syringae infection is 1:1. Electron microscopy demonstrates that mixed suspensions of smectite and virus co-aggregate to form flocs encompassing virions within the smectite. Both free viral particles as well as those imbedded in the flocs are seen in the micrographs to be missing the envelope- leaving only the nucleocapsid (NC) intact; indicating that smectite inactivates the virus by envelope disassembly. These results have strong implications in the evolution of both the φ6 virus and its P. syringae host cells. TEM of aggregate showing several disassembled NCs.

  13. Characterization and Genome Sequencing of a Novel Bacteriophage PH101 Infecting Pseudoalteromonas marina BH101 from the Yellow Sea of China.

    PubMed

    Wang, Duo-bing; Sun, Meng-qi; Shao, Hong-bing; Li, Yan; Meng, Xue; Liu, Zhao-yang; Wang, Min

    2015-11-01

    A novel Pseudoalteromonas marina bacteriophage, PH101, specifically infecting Pseudoalteromonas BH101 was isolated from the water sample of the Yellow Sea of China using the agar overlay method. 16S rDNA sequence identification was used to identify the host bacteria. Efficiency of infection, multiplicity of infection value, morphological characterization, one-step growth curve, and host range of the bacteriophage were determined. Purified PH101 genomic DNA was extracted and its genome was completely sequenced and analyzed. The phage morphology showed that PH101 belongs to the Myoviridae family with a head of 60 nm in diameter and a tail of 40 nm with a tail fiber of 10-20 nm. Microbiological characterization demonstrated that phage PH101 is stable at a wide range of temperatures (0-70 °C) and showed acid and alkaline resistance (pH 3-12). The one-step growth curve showed a latent period of about 20 min, a rise period of 20 min, and a burst size of about 31.6 virions. The genome sequencing and bioinformatic analysis shows that phage PH101 was a novel bacteriophage which was found to consist of a linear, double-stranded 131,903-bp DNA molecule with a GC content of 37.36 % and 228 putative open reading frames without RNA, which were classified into seven functional groups, including phage structure, adsorption, packaging, gene transfer protease, terminase, DNA binding, and regulation.

  14. Evaluation of alternative host bacteria as vehicles for oral administration of bacteriophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Survival of bacteriophages through the upper gastrointestinal tract (UGIT) and persistence in the lower gastrointestinal tract (LGIT) is essential for treatment of enteric bacterial infections. We have hypothesized that non-pathogenic Alternative Host Bacteriophage (AHB), originally isolated from p...

  15. Influence of Bacteriophage PBS1 and φW-14 Deoxyribonucleic Acids on Homologous Deoxyribonucleic Acid Uptake and Transformation in Competent Bacillus subtilis

    PubMed Central

    López, Paloma; Espinosa, Manuel; Piechowska, Mirosława; Shugar, David

    1980-01-01

    Both bacteriophage PBS1 deoxyribonucleic acid (DNA) (in which all the thymine residues are replaced by uracil) and phage φW-14 DNA [in which half the thymine residues are replaced by 5-(aminobutylaminomethyl)uracil or 5-putrescinylthymine] exhibit comparable competing abilities for uptake of homologous DNA in a Bacillus subtilis competent system. But, whereas PBS1 DNA leads to a decrease in transformation frequencies compatible with its competing ability for DNA uptake, φW-14 DNA decreases transformation frequencies by a factor up to eightfold higher. The effect of φW-14 DNA on transformation frequencies is visible even at a concentration level that does not decrease transforming DNA uptake. No such effect was observed with heterologous DNA containing presumably ionically bound putrescine. Low concentrations of φW-14 DNA decreased the number of double (nonlinked) transformants more than single transformants. The influence on transformation was abolished when φW-14 DNA was added 20 min after addition of transforming DNA, i.e., when the recombination process was terminated. The putrescine-containing DNA also decreased retention of trichloroacetic acid-precipitable radioactivity of homologous DNA taken up. We conclude that φW-14 DNA inhibits some intracellular process(es) at the level of recombination. In addition, there is evidence that φW-14 DNA, but not heterologous DNA with ionically bound putrescine, binds also to site(s) on the cell surface other than receptors for homologous DNA. PMID:6772635

  16. Preliminary crystallographic analysis of the major capsid protein P2 of the lipid-containing bacteriophage PM2

    SciTech Connect

    Abrescia, Nicola G. A.; Kivelä, Hanna M.; Grimes, Jonathan M.; Bamford, Jaana K. H.; Bamford, Dennis H.; Stuart, David I.

    2005-08-01

    The viral capsid protein P2 of bacteriophage PM2 has been crystallized. Preliminary X-ray analysis demonstrates the position and orientation of the two trimers in the asymmetric unit. PM2 (Corticoviridae) is a dsDNA bacteriophage which contains a lipid membrane beneath its icosahedral capsid. In this respect it resembles bacteriophage PRD1 (Tectiviridae), although it is not known whether the similarity extends to the detailed molecular architecture of the virus, for instance the fold of the major coat protein P2. Structural analysis of PM2 has been initiated and virus-derived P2 has been crystallized by sitting-nanodrop vapour diffusion. Crystals of P2 have been obtained in space group P2{sub 1}2{sub 1}2, with two trimers in the asymmetric unit and unit-cell parameters a = 171.1, b = 78.7, c = 130.1 Å. The crystals diffract to 4 Å resolution at the ESRF BM14 beamline (Grenoble, France) and the orientation of the non-crystallographic threefold axes, the spatial relationship between the two trimers and the packing of the trimers within the unit cell have been determined. The trimers form tightly packed layers consistent with the crystal morphology, possibly recapitulating aspects of the arrangement of subunits in the virus.

  17. A metagenomic approach to characterize temperate bacteriophage populations from Cystic Fibrosis and non-Cystic Fibrosis bronchiectasis patients

    PubMed Central

    Tariq, Mohammad A.; Everest, Francesca L. C.; Cowley, Lauren A.; De Soyza, Anthony; Holt, Giles S.; Bridge, Simon H.; Perry, Audrey; Perry, John D.; Bourke, Stephen J.; Cummings, Stephen P.; Lanyon, Clare V.; Barr, Jeremy J.; Smith, Darren L.

    2015-01-01

    Pseudomonas aeruginosa (Pa), normally a soil commensal, is an important opportunistic pathogen in Cystic Fibrosis (CF) and non-Cystic Fibrosis Bronchiectasis (nCFBR). Persistent infection correlates with accelerated decline in lung function and early mortality. The horizontal transfer of DNA by temperate bacteriophages can add gene function and selective advantages to their bacterial host within the constrained environment of the lower lung. In this study, we chemically induce temperate bacteriophages from clonal cultures of Pa and identify their mixed viral communities employing metagenomic approaches. We compared 92 temperate phage metagenomes stratified from these clinical backgrounds (47 CF and 45 nCFBR Pa isolates) using MG-RAST and GeneWise2. KEGG analysis shows the complexity of temperate phage accessory gene carriage increases with duration and severity of the disease. Furthermore, we identify the presence of Ig-like motifs within phage structural genes linked to bacterial adhesion and carbohydrate binding including Big_2, He_Pig, and Fn3. This study provides the first clinical support to the proposed bacteriophage adherence to mucus (BAM) model and the evolution of phages interacting at these mucosal surfaces over time. PMID:25741327

  18. Minor coat protein composition and location of the A protein in bacteriophage f1 spheroids and I-forms.

    PubMed Central

    Lopez, J; Webster, R E

    1982-01-01

    The filamentous bacteriophage f1 can be transformed into a spherical particle (spheroid) or an intermediate shortened filament with a flared end (I-forms) by exposure to a chloroform-water interface at 22 or 4 degrees C, respectively. The protein composition of bacteriophage f1 spheroids and I-forms was examined by separating the proteins from the purified. [35S]cysteine-labeled particles by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis. Quantitation of the radioactivity on the gels showed that I-forms and spheroids contain the same complement of minor coat proteins as do untreated f1 phage. This composition is unchanged after removal of the DNA, either by digestion with micrococcal nuclease or by centrifugation of the particles through CsCl density gradients, indicating that none of the minor coat proteins is held in the particles solely through an interaction with the DNA. We also examined the location of the A protein in I-forms by decoration with ferritin-conjugated antibodies and examination under the electron microscope and found that the A protein is located specifically at the flared end of the I-form particle, through which the DNA is extruded and at which contraction into spheroids begins. The implications of these results with regard to the orientation of the DNA within the capsid and the process of infection are discussed. Images PMID:7097858

  19. Bacteriophage cocktail for biocontrol of Salmonella in dried pet food.

    PubMed

    Heyse, Serena; Hanna, Leigh Farris; Woolston, Joelle; Sulakvelidze, Alexander; Charbonneau, Duane

    2015-01-01

    Human salmonellosis has been associated with contaminated pet foods and treats. Therefore, there is interest in identifying novel approaches for reducing the risk of Salmonella contamination within pet food manufacturing environments. The use of lytic bacteriophages shows promise as a safe and effective way to mitigate Salmonella contamination in various food products. Bacteriophages are safe, natural, highly targeted antibacterial agents that specifically kill bacteria and can be targeted to kill food pathogens without affecting other microbiota. In this study, we show that a cocktail containing six bacteriophages had a broadspectrum activity in vitro against a library of 930 Salmonella enterica strains representing 44 known serovars. The cocktail was effective against 95% of the strains in this tested library. In liquid culture dose-ranging experiments, bacteriophage cocktail concentrations of ≥10(8) PFU/ml inactivated more than 90% of the Salmonella population (10(1) to 10(3) CFU/ml). Dried pet food inoculated with a mixture containing equal proportions of Salmonella serovars Enteritidis (ATCC 4931), Montevideo (ATCC 8387), Senftenberg (ATCC 8400), and Typhimurium (ATCC 13311) and then surface treated with the six-bacteriophage cocktail (≥2.5 ± 1.5 × 10(6) PFU/g) achieved a greater than 1-log (P < 0.001) reduction compared with the phosphate-buffered saline-treated control in measured viable Salmonella within 60 min. Moreover, this bacteriophage cocktail reduced natural contamination in samples taken from an undistributed lot of commercial dried dog food that tested positive for Salmonella. Our results indicate that bacteriophage biocontrol of S. enterica in dried pet food is technically feasible.

  20. Properties of pseudo-complementary DNA substituted with weakly pairing analogs of guanine or cytosine.

    PubMed

    Lahoud, Georges; Timoshchuk, Victor; Lebedev, Alexandre; Arar, Khalil; Hou, Ya-Ming; Gamper, Howard

    2008-12-01

    A straightforward enzymatic protocol for converting regular DNA into pseudo-complementary DNA could improve the performance of oligonucleotide microarrays by generating readily hybridizable structure-free targets. Here we screened several highly destabilizing analogs of G and C for one that could be used with 2-aminoadenine (nA) and 2-thiothymine (sT) to generate structure-free DNA that is fully accessible to complementary probes. The analogs, which included bioactive bases such as 6-thioguanine (sG), 5-nitrocytosine (NitroC), 2-pyrimidinone (P; the free base of zebularine) and 6-methylfuranopyrimidinone (MefP), were prepared as dNTPs and evaluated as substrates for T7 and Phi29 DNA polymerases that lacked editor function. Pairing properties of the analogs were characterized by solution hybridization assays using modified oligonucleotides or primer extension products. P and MeP did not support robust primer extension whereas sG and NitroC did. In hybridization assays, however, sG lacked discrimination and NitroC paired too strongly to C. The dNTPs of two other base analogs, 7-nitro-7-deazahypoxanthine (NitrocH) and 2-thiocytosine (sC), exhibited the greatest promise. Either analog could be used with nA and sT to generate DNA that was nearly structure-free. Hybridization of probes to these modified DNAs will require the development of base analogs that pair strongly to NitrocH or sC.

  1. Insertional inactivation of the Staphylococcus aureus beta-toxin by bacteriophage phi 13 occurs by site- and orientation-specific integration of the phi 13 genome.

    PubMed

    Coleman, D; Knights, J; Russell, R; Shanley, D; Birkbeck, T H; Dougan, G; Charles, I

    1991-04-01

    Lysogenization of Staphylococcus aureus by the serotype F converting bacteriophage phi 13 results in loss of beta-toxin expression. Sequence analysis of the S. aureus beta-toxin gene (hlb), the attachment site (attP)-containing region of phi 13 DNA and the chromosome/bacteriophage DNA junctions of a phi 13 lysogen, revealed that the molecular mechanism of loss of beta-toxin expression was due to insertion of the phi 13 genome into the 5' end of hlb. The insertion site (attB) within hlb contained a 14 base pair core sequence in common with attP and both ends of the integrated linear prophage genome of a phi 13 lysogen. These findings indicate that integration of the phi 13 genome into hlb is site- and orientation-specific.

  2. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  3. Molecular characterization of bacteriophages for microbial source tracking in Korea.

    PubMed

    Lee, Jung Eun; Lim, Mi Young; Kim, Sei Yoon; Lee, Sunghee; Lee, Heetae; Oh, Hyun-Myung; Hur, Hor-Gil; Ko, Gwangpyo

    2009-11-01

    We investigated coliphages from various fecal sources, including humans and animals, for microbial source tracking in South Korea. Both somatic and F+-specific coliphages were isolated from 43 fecal samples from farms, wild animal habitats, and human wastewater plants. Somatic coliphages were more prevalent and abundant than F+ coliphages in all of the tested fecal samples. We further characterized 311 F+ coliphage isolates using RNase sensitivity assays, PCR and reverse transcription-PCR, and nucleic acid sequencing. Phylogenetic analyses were performed based on the partial nucleic acid sequences of 311 F+ coliphages from various sources. F+ RNA coliphages were most prevalent among geese (95%) and were least prevalent in cows (5%). Among the genogroups of F+ RNA coliphages, most F+ coliphages isolated from animal fecal sources belonged to either group I or group IV, and most from human wastewater sources were in group II or III. Some of the group I coliphages were present in both human and animal source samples. F+ RNA coliphages isolated from various sources were divided into two main clusters. All F+ RNA coliphages isolated from human wastewater were grouped with Qbeta-like phages, while phages isolated from most animal sources were grouped with MS2-like phages. UniFrac significance statistical analyses revealed significant differences between human and animal bacteriophages. In the principal coordinate analysis (PCoA), F+ RNA coliphages isolated from human waste were distinctively separate from those isolated from other animal sources. However, F+ DNA coliphages were not significantly different or separate in the PCoA. These results demonstrate that proper analysis of F+ RNA coliphages can effectively distinguish fecal sources.

  4. Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies.

    PubMed

    Mašlaňová, Ivana; Doškař, Jiří; Varga, Marian; Kuntová, Lucie; Mužík, Jan; Malúšková, Denisa; Růžičková, Vladislava; Pantůček, Roman

    2013-02-01

    Staphylococcus aureus is a serious human and veterinary pathogen in which new strains with increasing virulence and antimicrobial resistance occur due to acquiring new genes by horizontal transfer. It is generally accepted that temperate bacteriophages play a major role in gene transfer. In this study, we proved the presence of various bacterial genes of the S. aureus COL strain directly within the phage particles via qPCR and quantified their packaging frequency. Non-parametric statistical analysis showed that transducing bacteriophages φ11, φ80 and φ80α of serogroup B, in contrast to serogroup A bacteriophage φ81, efficiently package selected chromosomal genes localized in 4 various loci of the chromosome and 8 genes carried on variable elements, such as staphylococcal cassette chromosome SCCmec, staphylococcal pathogenicity island SaPI1, genomic islands vSaα and vSaβ, and plasmids with various frequency. Bacterial gene copy number per ng of DNA isolated from phage particles ranged between 1.05 × 10(2) for the tetK plasmid gene and 3.86 × 10(5) for the SaPI1 integrase gene. The new and crucial finding that serogroup B bacteriophages can package concurrently ccrA1 (1.16 × 10(4)) and mecA (1.26 × 10(4)) located at SCCmec type I into their capsids indicates that generalized transduction plays an important role in the evolution and emergence of new methicillin-resistant clones.

  5. Gammasphaerolipovirus, a newly proposed bacteriophage genus, unifies viruses of halophilic archaea and thermophilic bacteria within the novel family Sphaerolipoviridae.

    PubMed

    Pawlowski, Alice; Rissanen, Ilona; Bamford, Jaana K H; Krupovic, Mart; Jalasvuori, Matti

    2014-06-01

    A new family of viruses named Sphaerolipoviridae has been proposed recently. It comprises icosahedral, tailless haloarchaeal viruses with an internal lipid membrane located between the protein capsid and the dsDNA genome. The proposed family Sphaerolipoviridae was divided into two genera: Alphasphaerolipovirus, including Haloarcula hispanica viruses SH1, PH1 and HHIV-2, and Betasphaerolipovirus, including Natrinema virus SNJ1. Here, we propose to expand the family Sphaerolipoviridae to include a group of bacteriophages infecting extreme thermophilic Thermus thermophilus and sharing a number of structural and genomic properties with archaeal sphaerolipoviruses. This new group comprises two members, lytic phage P23-77 and temperate phage IN93, as well as putative members P23-72 and P23-65H. In addition, several related proviruses have been discovered as integrated elements in bacterial genomes of the families Thermus and Meiothermus. Morphology of the virus particles and the overall capsid architecture of these bacteriophages resembles that of archaeal members of the Sphaerolipoviridae, including an unusual capsid arrangement in a T = 28 dextro lattice. Alpha- and betasphaerolipoviruses share with P23-77-like bacteriophages a conserved block of core genes that encode a putative genome-packaging ATPase and the two major capsid proteins (MCPs). The recently determined X-ray structure of the small and large MCPs of P23-77 revealed a single beta-barrel (jelly-roll) fold that is superimposable with the cryo-EM density maps of the SH1 capsomers. Given the common features of these viruses, we propose to include the so far unclassified P23-77-like bacteriophages into a new genus, "Gammasphaerolipovirus", within the family Sphaerolipoviridae.

  6. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato....

  7. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato....

  8. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato....

  9. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage...

  10. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato....

  11. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato....

  12. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage...

  13. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage...

  14. The isolation and characterization of Campylobacter jejuni bacteriophages from free range and indoor poultry.

    PubMed

    Owens, Jane; Barton, Mary D; Heuzenroeder, Michael W

    2013-02-22

    Six hundred and sixty one samples - primarily fresh chicken faeces - were processed to isolate wild type Campylobacter jejuni bacteriophages, via overlay agar methods using C. jejuni NCTC 12662. The aims of this study were to isolate and purify bacteriophages and then test for their ability to lyse field strains of C. jejuni in vitro. Of all samples processed, 130 were positive for bacteriophages. A distinct difference was observed between samples from different poultry enterprises. No bacteriophages could be isolated from indoor broilers. The majority of bacteriophages were isolated from free range poultry - both broilers and egg layers. Bacteriophages were purified and then selected for characterization based on their ability to produce clear lysis on plaque assay, as opposed to turbid plaques. Two hundred and forty one C. jejuni field isolates were tested for sensitivity to the bacteriophages. Lysis was graded subjectively and any minimal lysis was excluded. Using this system, 59.0% of the C. jejuni isolates showed significant sensitivity to at least one bacteriophage. The sensitivity to individual bacteriophages ranged from 10.0% to 32.5% of the C. jejuni isolates. Five bacteriophages were examined by electron microscopy and determined to belong to the Myoviridae family. The physical size, predicted genetic composition and genome size of the bacteriophages correlated well with other reported Campylobacter bacteriophages. The reasons for the observed difference between indoor broilers and free range poultry is unknown, but are postulated to be due to differences in the Campylobacter population in birds under different rearing conditions.

  15. Isolation and characterisation of lytic bacteriophages of Klebsiella pneumoniae and Klebsiella oxytoca.

    PubMed

    Karumidze, Natia; Kusradze, Ia; Rigvava, Sophio; Goderdzishvili, Marine; Rajakumar, Kumar; Alavidze, Zemphira

    2013-03-01

    Klebsiella bacteria have emerged as an increasingly important cause of community-acquired nosocomial infections. Extensive use of broad-spectrum antibiotics in hospitalised patients has led to both increased carriage of Klebsiella and the development of multidrug-resistant strains that frequently produce extended-spectrum β-lactamases and/or other defences against antibiotics. Many of these strains are highly virulent and exhibit a strong propensity to spread. In this study, six lytic Klebsiella bacteriophages were isolated from sewage-contaminated river water in Georgia and characterised as phage therapy candidates. Two of the phages were investigated in greater detail. Biological properties, including phage morphology, nucleic acid composition, host range, growth phenotype, and thermal and pH stability were studied for all six phages. Limited sample sequencing was performed to define the phylogeny of the K. pneumoniae- and K. oxytoca-specific bacteriophages vB_Klp_5 and vB_Klox_2, respectively. Both of the latter phages had large burst sizes, efficient rates of adsorption and were stable under different adverse conditions. Phages reported in this study are double-stranded DNA bacterial viruses belonging to the families Podoviridae and Siphoviridae. One or more of the six phages was capable of efficiently lysing ~63 % of Klebsiella strains comprising a collection of 123 clinical isolates from Georgia and the United Kingdom. These phages exhibit a number of properties indicative of potential utility in phage therapy cocktails.

  16. Embryonic stem cell gene targeting using bacteriophage lambda vectors generated by phage-plasmid recombination.

    PubMed Central

    Tsuzuki, T; Rancourt, D E

    1998-01-01

    Targeted mutagenesis is an extremely useful experimental approach in molecular medicine, allowing the generation of specialized animals that are mutant for any gene of interest. Currently the rate determining step in any gene targeting experiment is construction of the targeting vector (TV). In order to streamline gene targeting methods and avoid problems encountered with plasmid TVs, we describe the direct application of lambda phage in targeted mutagenesis. The recombination-proficient phage vector lambda2TK permits generation of TVs by conventional restriction-ligation or recombination-mediated methods. The resulting lambdaTV DNA can then be cleaved with restriction endonucleases to release the bacteriophage arms and can subsequently be electroporated directly into ES cells to yield gene targets. We demonstrate that in vivo phage-plasmid recombination can be used to introduce neo and lacZ - neo mutations into precise positions within a lambda2TK subclone via double crossover recombination. We describe two methods for eliminating single crossover recombinants, spi selection and size restriction, both of which result in phage TVs bearing double crossover insertions. Thus TVs can be easily and quickly generated in bacteriophage without plasmid subcloning and with little genomic sequence or restriction site information. PMID:9461458

  17. Identification and molecular characterization of bacteriophage phiAxp-2 of Achromobacter xylosoxidans

    PubMed Central

    Li, Erna; Yin, Zhe; Ma, Yanyan; Li, Huan; Lin, Weishi; Wei, Xiao; Zhao, Ruixiang; Jiang, Aimin; Yuan, Jing; Zhao, Xiangna

    2016-01-01

    A novel Achromobacter xylosoxidans bacteriophage, phiAxp-2, was isolated from hospital sewage in China. The phage was morphologically and microbiologically characterized, and its one-step growth curve, host range, genomic sequence, and receptor were determined. Its morphology showed that phiAxp-2 belongs to the family Siphoviridae. Microbiological characterization demonstrated that pH 7 is most suitable for phage phiAxp-2; its titer decreased when the temperature exceeded 50 °C; phiAxp-2 is sensitive to ethanol and isopropanol; and the presence of calcium and magnesium ions is necessary to accelerate cell lysis and improve the formation of phiAxp-2 plaques. Genomic sequencing and a bioinformatic analysis showed that phage phiAxp-2 is a novel bacteriophage, consisting of a circular, double-stranded 62,220-bp DNA molecule with a GC content of 60.11% that encodes 86 putative open reading frames (ORFs). The lipopolysaccharide of A. xylosoxidans is involved in the adsorption of phiAxp-2. PMID:27669904

  18. Interplay between the mechanics of bacteriophage fibers and the strength of virus-host links.

    PubMed

    Ares, P; Garcia-Doval, C; Llauró, A; Gómez-Herrero, J; van Raaij, M J; de Pablo, P J

    2014-05-01

    Viral fibers play a central role in many virus infection mechanisms since they recognize the corresponding host and establish a mechanical link to its surface. Specifically, bacteriophages have to anchor to bacteria through the fibers surrounding the tail before starting the viral DNA translocation into the host. The protein gene product (gp) 37 from bacteriophage T4 long tail fibers forms a fibrous parallel homotrimer located at the distal end of the long tail fibers. Biochemical data indicate that, at least, three of these fibers are required for initial host cell interaction but do not reveal why three and no other numbers are required. By using atomic force microscopy, we obtained high-resolution images of gp37 fibers adsorbed on a mica substrate in buffer conditions and probed their local mechanical properties. Our experiments of radial indentation at the nanometer scale provided a radial stiffness of ∼ 0.08 N/m and a breaking force of ∼ 120 pN. In addition, we performed finite element analysis and determined a Young's modulus of ∼ 20 MPa. From these mechanical parameters, we hypothesize that three viral fibers provide enough mechanical strength to prevent a T4 virus from being detached from the bacteria by the viral particle Brownian motion, delivering a biophysical justification for the previous biochemical data.

  19. Pseudomonas aeruginosa Keratitis in Mice: Effects of Topical Bacteriophage KPP12 Administration

    PubMed Central

    Fukuda, Ken; Ishida, Waka; Uchiyama, Jumpei; Rashel, Mohammad; Kato, Shin-ichiro; Morita, Tamae; Muraoka, Asako; Sumi, Tamaki; Matsuzaki, Shigenobu; Daibata, Masanori; Fukushima, Atsuki

    2012-01-01

    The therapeutic effects of bacteriophage (phage) KPP12 in Pseudomonas aeruginosa keratitis were investigated in mice. Morphological analysis showed that phage KPP12 is a member of the family Myoviridae, morphotype A1, and DNA sequence analysis revealed that phage KPP12 is similar to PB1-like viruses. Analysis of the phage KPP12 genome did not identify any genes related to drug resistance, pathogenicity or lysogenicity, and so phage KPP12 may be a good candidate for therapeutic. KPP12 showed a broad host range for P. aeruginosa strains isolated from clinical ophthalmic infections. Inoculation of the scarified cornea with P. aeruginosa caused severe keratitis and eventual corneal perforation. Subsequent single-dose administration of KPP12 eye-drops significantly improved disease outcome, and preserved the structural integrity and transparency of the infected cornea. KPP12 treatment resulted in the suppression of neutrophil infiltration and greatly enhanced bacterial clearance in the infected cornea. These results indicate that bacteriophage eye-drops may be a novel adjunctive or alternative therapeutic agent for the treatment of infectious keratitis secondary to antibiotic-resistant bacteria. PMID:23082205

  20. Interplay between the mechanics of bacteriophage fibers and the strength of virus-host links

    NASA Astrophysics Data System (ADS)

    Ares, P.; Garcia-Doval, C.; Llauró, A.; Gómez-Herrero, J.; van Raaij, M. J.; de Pablo, P. J.

    2014-05-01

    Viral fibers play a central role in many virus infection mechanisms since they recognize the corresponding host and establish a mechanical link to its surface. Specifically, bacteriophages have to anchor to bacteria through the fibers surrounding the tail before starting the viral DNA translocation into the host. The protein gene product (gp) 37 from bacteriophage T4 long tail fibers forms a fibrous parallel homotrimer located at the distal end of the long tail fibers. Biochemical data indicate that, at least, three of these fibers are required for initial host cell interaction but do not reveal why three and no other numbers are required. By using atomic force microscopy, we obtained high-resolution images of gp37 fibers adsorbed on a mica substrate in buffer conditions and probed their local mechanical properties. Our experiments of radial indentation at the nanometer scale provided a radial stiffness of ˜0.08 N/m and a breaking force of ˜120 pN. In addition, we performed finite element analysis and determined a Young's modulus of ˜20 MPa. From these mechanical parameters, we hypothesize that three viral fibers provide enough mechanical strength to prevent a T4 virus from being detached from the bacteria by the viral particle Brownian motion, delivering a biophysical justification for the previous biochemical data.

  1. Treponema denticola biofilm-induced expression of a bacteriophage, toxin-antitoxin systems and transposases.

    PubMed

    Mitchell, Helen L; Dashper, Stuart G; Catmull, Deanne V; Paolini, Rita A; Cleal, Steven M; Slakeski, Nada; Tan, Kheng H; Reynolds, Eric C

    2010-03-01

    Treponema denticola is an oral spirochaete that has been strongly associated with chronic periodontitis. The bacterium exists as part of a dense biofilm (subgingival dental plaque) accreted to the tooth. To determine T. denticola gene products important for persistence as a biofilm we developed a continuous-culture biofilm model and conducted a genome-wide transcriptomic analysis of biofilm and planktonic cells. A total of 126 genes were differentially expressed with a fold change of 1.5 or greater. This analysis identified the upregulation of putative prophage genes in the T. denticola 35405 genome. Intact bacteriophage particles were isolated from T. denticola and circular phage DNA was detected by PCR analysis. This represents the first, to our knowledge, functional bacteriophage isolated from T. denticola, which we have designated varphitd1. In biofilm cells there was also an upregulation of genes encoding several virulence factors, toxin-antitoxin systems and a family of putative transposases. Together, these data indicate that there is a higher potential for genetic mobility in T. denticola when growing as a biofilm and that these systems are important for the biofilm persistence and therefore virulence of this bacterium.

  2. Isolation and molecular characterisation of Achromobacter phage phiAxp-3, an N4-like bacteriophage

    PubMed Central

    Ma, Yanyan; Li, Erna; Qi, Zhizhen; Li, Huan; Wei, Xiao; Lin, Weishi; Zhao, Ruixiang; Jiang, Aimin; Yang, Huiying; Yin, Zhe; Yuan, Jing; Zhao, Xiangna

    2016-01-01

    Achromobacter xylosoxidans, an opportunistic pathogen, is responsible for various nosocomial and community-acquired infections. We isolated phiAxp-3, an N4-like bacteriophage that infects A. xylosoxidans, from hospital waste and studied its genomic and biological properties. Transmission electron microscopy revealed that, with a 67-nm diameter icosahedral head and a 20-nm non-contractile tail, phiAxp-3 has features characteristic of Podoviridae bacteriophages (order Caudovirales). With a burst size of 9000 plaque-forming units and a latent period of 80 min, phiAxp-3 had a host range limited to only four A. xylosoxidans strains of the 35 strains that were tested. The 72,825 bp phiAxp-3 DNA genome, with 416-bp terminal redundant ends, contains 80 predicted open reading frames, none of which are related to virulence or drug resistance. Genome sequence comparisons place phiAxp-3 more closely with JWAlpha and JWDelta Achromobacter phages than with other N4 viruses. Using proteomics, we identified 25 viral proteins from purified phiAxp-3 particles. Notably, investigation of the phage phiAxp-3 receptor on the surface of the host cell revealed that lipopolysaccharide serves as the receptor for the adsorption of phage phiAxp-3. Our findings advance current knowledge about A. xylosoxidans phages in an age where alternative therapies to combat antibiotic-resistant bacteria are urgently needed. PMID:27094846

  3. Construction and use of a broad-host-range plasmid expressing the lamB gene for utilization of bacteriophage lambda vectors in the marine bacterium Vibrio harveyi.

    PubMed

    Jasiecki, J; Czy, A; Gabig, M; Wegrzyn, G

    2001-07-01

    The remarkable success of Escherichia coli as a model organism in molecular genetics was dependent, among other things, on its susceptibility to genetic manipulation. Many versatile and sophisticated genetic tools for molecular biology studies are derived from bacteriophage lambda. However, this bacteriophage is specific for E. coli, and thus lambda-based techniques have been restricted to this bacterium. Plasmids expressing the E. coli gene coding for bacteriophage lambda receptor were reported previously, and introduction of such plasmids into cells of some other bacteria made them sensitive to phage lambda infection. However, we found that these systems were not efficient for Vibrio harveyi, one of the most frequently investigated species of marine bacteria. Here we describe construction of a broad-host-range plasmid expressing the lamB gene. Introduction of this plasmid to V. harveyi cells and expression of lamB made this strain susceptible to bacteriophage lambda adsorption and lambda DNA injection. Foreign genetic material could be introduced into cells of this strain using a cosmid vector.

  4. Genomic characterization of two Staphylococcus epidermidis bacteriophages with anti-biofilm potential

    PubMed Central

    2012-01-01

    Background Staphylococcus epidermidis is a commensal bacterium but can colonize the hospital environment due to its ability to form biofilms favouring adhesion to host tissues, medical devices and increasing resistance to antibiotics. In this context, the use of phages to destroy biofilms is an interesting alternative. Results The complete genomes of two Staphylococcus epidermidis bacteriophages, vB_SepiS-phiIPLA5 and vB_SepiS-phiIPLA7, have been analyzed. Their genomes are 43,581 bp and 42,123 bp, and contain 67 and 59 orfs. Bioinformatic analyses enabled the assignment of putative functions to 36 and 29 gene products, respectively, including DNA packaging and morphogenetic proteins, lysis components, and proteins necessary for DNA recombination, regulation, modification and replication. A point mutation in vB_SepiS-phiIPLA5 lysogeny control-associated genes explained its strictly lytic behaviour. Comparative analysis of phi-IPLA5 and phi-IPLA7 genome structure resembled those of S. epidermidis ϕPH15 and ϕCNPH82 phages. A mosaic structure of S. epidermidis prophage genomes was revealed by PCR analysis of three marker genes (integrase, major head protein and holin). Using these genes, high prevalence (73%) of phage DNA in a representative S. epidermidis strain collection consisting of 60 isolates from women with mastitis and healthy women was determined. Putative pectin lyase-like domains detected in virion-associated proteins of both phages could be involved in exopolysaccharide (EPS) depolymerization, as evidenced by both the presence of a clear halo surrounding the phage lysis zone and the phage-mediated biofilm degradation. Conclusions Staphylococcus epidermidis bacteriophages, vB_SepiS-phiIPLA5 and vB_SepiS-phiIPLA7, have a mosaic structure similar to other widespread S. epidermidis prophages. Virions of these phages are provided of pectin lyase-like domains, which may be regarded as promising anti-biofilm tools. PMID:22681775

  5. On the mutagenicity of homologous recombination and double-strand break repair in bacteriophage.

    PubMed

    Shcherbakov, Victor P; Plugina, Lidiya; Shcherbakova, Tamara; Sizova, Svetlana; Kudryashova, Elena

    2011-01-02

    The double-strand break (DSB) repair via homologous recombination is generally construed as a high-fidelity process. However, some molecular genetic observations show that the recombination and the recombinational DSB repair may be mutagenic and even highly mutagenic. Here we developed an effective and precise method for studying the fidelity of DSB repair in vivo by combining DSBs produced site-specifically by the SegC endonuclease with the famous advantages of the recombination analysis of bacteriophage T4 rII mutants. The method is based on the comparison of the rate of reversion of rII mutation in the presence and in the absence of a DSB repair event initiated in the proximity of the mutation. We observed that DSB repair may moderately (up to 6-fold) increase the apparent reversion frequency, the effect of being dependent on the mutation structure. We also studied the effect of the T4 recombinase deficiency (amber mutation in the uvsX gene) on the fidelity of DSB repair. We observed that DSBs are still repaired via homologous recombination in the uvsX mutants, and the apparent fidelity of this repair is higher than that seen in the wild-type background. The mutator effect of the DSB repair may look unexpected given that most of the normal DNA synthesis in bacteriophage T4 is performed via a recombination-dependent replication (RDR) pathway, which is thought to be indistinguishable from DSB repair. There are three possible explanations for the observed mutagenicity of DSB repair: (1) the origin-dependent (early) DNA replication may be more accurate than the RDR; (2) the step of replication initiation may be more mutagenic than the process of elongation; and (3) the apparent mutagenicity may just reflect some non-randomness in the pool of replicating DNA, i.e., preferential replication of the sequences already involved in replication. We discuss the DSB repair pathway in the absence of UvsX recombinase.

  6. Characterisation of the structure of ocr, the gene 0.3 protein of bacteriophage T7.

    PubMed

    Atanasiu, C; Byron, O; McMiken, H; Sturrock, S S; Dryden, D T

    2001-07-15

    The product of gene 0.3 of bacteriophage T7, ocr, is a potent inhibitor of type I DNA restriction and modification enzymes. We have used biophysical methods to examine the mass, stability, shape and surface charge distribution of ocr. Ocr is a dimeric protein with hydrodynamic behaviour equivalent to a prolate ellipsoid of axial ratio 4.3 +/- 0.7:1 and mass of 27 kDa. The protein is resistant to denaturation but removal of the C-terminal region reduces stability substantially. Six amino acids, N4, D25, N43, D62, S68 and W94, are all located on the surface of the protein and N4 and S68 are also located at the interface between the two 116 amino acid monomers. Negatively charged amino acid side chains surround W94 but these side chains are not part of the highly acidic C-terminus after W94. Ocr is able to displace a short DNA duplex from the binding site of a type I enzyme with a dissociation constant of the order of 100 pM or better. These results suggest that ocr is of a suitable size and shape to effectively block the DNA binding site of a type I enzyme and has a large negatively charged patch on its surface. This charge distribution may be complementary to the charge distribution within the DNA binding site of type I DNA restriction and modification enzymes.

  7. Single-molecule studies of polymerase dynamics and stoichiometry at the bacteriophage T7 replication machinery

    PubMed Central

    Geertsema, Hylkje J.; Kulczyk, Arkadiusz W.; Richardson, Charles C.; van Oijen, Antoine M.

    2014-01-01

    Replication of DNA plays a central role in transmitting hereditary information from cell to cell. To achieve reliable DNA replication, multiple proteins form a stable complex, known as the replisome, enabling them to act together in a highly coordinated fashion. Over the past decade, the roles of the various proteins within the replisome have been determined. Although many of their interactions have been characterized, it remains poorly understood how replication proteins enter and leave the replisome. In this study, we visualize fluorescently labeled bacteriophage T7 DNA polymerases within the replisome while we simultaneously observe the kinetics of the replication process. This combination of observables allows us to monitor both the activity and dynamics of individual polymerases during coordinated leading- and lagging-strand synthesis. Our data suggest that lagging-strand polymerases are exchanged at a frequency similar to that of Okazaki fragment synthesis and that two or more polymerases are present in the replisome during DNA replication. Our studies imply a highly dynamic picture of the replisome with lagging-strand DNA polymerases residing at the fork for the synthesis of only a few Okazaki fragments. Further, new lagging-strand polymerases are readily recruited from a pool of polymerases that are proximally bound to the replisome and continuously replenished from solution. PMID:24591606

  8. Electron Microscopic Evidence for Linear Insertion of Bacteriophage MU-1 in Lysogenic Bacteria

    PubMed Central

    Martuscelli, J.; Taylor, A. L.; Cummings, D. J.; Chapman, V. A.; DeLong, S. S.; Cañedo, L.

    1971-01-01

    Temperate bacteriophage Mu-1 was used to generate a lysogenic derivative of the F′lac episome of Escherichia coli. Intact, covalently circular molecules of F′lac and lysogenic F′lac Mu+ deoxyribonucleic acid (DNA) were isolated and examined by electron microscopy. The mean contour lengths of F′lac and F′lac Mu+ molecules were 37.6 ± 0.4 μm and 53.2 ± 0.4 μm, respectively. The mean difference, 15.6 μm, is similar to the mean contour length of 12.9 ± 0.1 μm obtained for linear DNA molecules released by osmotic shock from mature phage Mu-1 virions. These results provide direct physical evidence that phage Mu-1 integrates by linear insertion of its genome into the DNA of lysogenic host bacteria. Chemical and physical analyses of phage Mu-1 DNA indicate that it is similar to E. coli DNA in respect of gross base composition, buoyant density, and melting temperature. Images PMID:4943078

  9. Bacteriophages as an alternative strategy for fighting biofilm development.

    PubMed

    Parasion, Sylwia; Kwiatek, Magdalena; Gryko, Romuald; Mizak, Lidia; Malm, Anna

    2014-01-01

    The ability of microbes to form biofilms is an important element of their pathogenicity, and biofilm formation is a serious challenge for today's medicine. Fighting the clinical complications associated with biofilm formation is very difficult and linked to a high risk of failure, especially in a time of increasing bacterial resistance to antibiotics. Bacterial species most commonly isolated from biofilms include coagulase-negative staphylococci, Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. The frequent failure of antibiotic therapy led researchers to look for alternative methods and experiment with the use of antibacterial factors with a mechanism of action different from that of antibiotics. Experimental studies with bacteriophages and mixtures thereof, expressing lytic properties against numerous biofilm-forming bacterial species showed that bacteriophages may both prevent biofilm formation and contribute to eradication of biofilm bacteria. A specific role is played here by phage depolymerases, which facilitate the degradation of extracellular polymeric substances (EPS) and thus the permeation of bacteriophages into deeper biofilm layers and lysis of the susceptible bacterial cells. Much hope is placed in genetic modifications of bacteriophages that would allow the equipping bacteriophages with the function of depolymerase synthesis. The use of phage cocktails prevents the development of phage-resistant bacteria.

  10. Potential impact of environmental bacteriophages in spreading antibiotic resistance genes.

    PubMed

    Muniesa, Maite; Colomer-Lluch, Marta; Jofre, Juan

    2013-06-01

    The idea that bacteriophage transduction plays a role in the horizontal transfer of antibiotic resistance genes is gaining momentum. Such transduction might be vital in horizontal transfer from environmental to human body-associated biomes and here we review many lines of evidence supporting this notion. It is well accepted that bacteriophages are the most abundant entities in most environments, where they have been shown to be quite persistent. This fact, together with the ability of many phages to infect bacteria belonging to different taxa, makes them suitable vehicles for gene transfer. Metagenomic studies confirm that substantial percentages of the bacteriophage particles present in most environments contain bacterial genes, including mobile genetic elements and antibiotic resistance genes. When specific genes of resistance to antibiotics are detected by real-time PCR in the bacteriophage populations of different environments, only tenfold lower numbers of these genes are observed, compared with those found in the corresponding bacterial populations. In addition, the antibiotic resistance genes from these bacteriophages are functional and generate resistance to the bacteria when these genes are transfected. Finally, reports about the transduction of antibiotic resistance genes are on the increase.

  11. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni.

    PubMed

    Siringan, Patcharin; Connerton, Phillippa L; Cummings, Nicola J; Connerton, Ian F

    2014-03-26

    Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage.

  12. The Crystal Structure of Bacteriophage HK97 gp6: Defining a Large Family of Head-Tail Connector Proteins

    SciTech Connect

    Cardarelli, Lia; Lam, Robert; Tuite, Ashleigh; Baker, Lindsay A; Sadowski, Paul D; Radford, Devon R; Rubinstein, John L; Battaile, Kevin P; Chirgadze, Nickolay; Maxwell, Karen L; Davidson, Alan R

    2010-08-17

    The final step in the morphogenesis of long-tailed double-stranded DNA bacteriophages is the joining of the DNA-filled head to the tail. The connector is a specialized structure of the head that serves as the interface for tail attachment and the point of egress for DNA from the head during infection. Here, we report the determination of a 2.1 {angstrom} crystal structure of gp6 of bacteriophage HK97. Through structural comparisons, functional studies, and bioinformatic analysis, gp6 has been determined to be a component of the connector of phage HK97 that is evolutionarily related to gp15, a well-characterized connector component of bacteriophage SPP1. Whereas the structure of gp15 was solved in a monomeric form, gp6 crystallized as an oligomeric ring with the dimensions expected for a connector protein. Although this ring is composed of 13 subunits, which does not match the symmetry of the connector within the phage, sequence conservation and modeling of this structure into the cryo-electron microscopy density of the SPP1 connector indicate that this oligomeric structure represents the arrangement of gp6 subunits within the mature phage particle. Through sequence searches and genomic position analysis, we determined that gp6 is a member of a large family of connector proteins that are present in long-tailed phages. We have also identified gp7 of HK97 as a homologue of gp16 of phage SPP1, which is the second component of the connector of this phage. These proteins are members of another large protein family involved in connector assembly.

  13. The Crystal Structure of Bacteriophage HK97 gp6: Defining a Large Family of Head-Tail Connector Proteins

    SciTech Connect

    Cardarelli, Lia; Lam, Robert; Tuite, Ashleigh; Baker, Lindsay A; Sadowski, Paul D; Radford, Devon R; Rubinstein, John L; Battaile, Kevin P; Chirgadze, Nickolay; Maxwell, Karen L; Davidson, Alan R

    2011-11-23

    The final step in the morphogenesis of long-tailed double-stranded DNA bacteriophages is the joining of the DNA-filled head to the tail. The connector is a specialized structure of the head that serves as the interface for tail attachment and the point of egress for DNA from the head during infection. Here, we report the determination of a 2.1 Å crystal structure of gp6 of bacteriophage HK97. Through structural comparisons, functional studies, and bioinformatic analysis, gp6 has been determined to be a component of the connector of phage HK97 that is evolutionarily related to gp15, a well-characterized connector component of bacteriophage SPP1. Whereas the structure of gp15 was solved in a monomeric form, gp6 crystallized as an oligomeric ring with the dimensions expected for a connector protein. Although this ring is composed of 13 subunits, which does not match the symmetry of the connector within the phage, sequence conservation and modeling of this structure into the cryo-electron microscopy density of the SPP1 connector indicate that this oligomeric structure represents the arrangement of gp6 subunits within the mature phage particle. Through sequence searches and genomic position analysis, we determined that gp6 is a member of a large family of connector proteins that are present in long-tailed phages. We have also identified gp7 of HK97 as a homologue of gp16 of phage SPP1, which is the second component of the connector of this phage. These proteins are members of another large protein family involved in connector assembly.

  14. Characterization of T-Even Bacteriophage Substructures

    PubMed Central

    Cummings, Donald J.; Kusy, A. R.; Chapman, V. A.; DeLong, S. S.; Stone, K. R.

    1970-01-01

    T-even bacteriophages were grown and purified in bulk quantities. The protein coats were disrupted into their component substructures by treatment with 67% dimethyl sulfoxide (DMSO). Tail fibers and tubes were purified on glycerol-CsCl-D2O gradients and examined with respect to sedimentation properties, subunit molecular weights, amino acid composition, isoelectric points, and morphology. It was found that intact tail fibers had a sedimentation coefficient of 12 to 13S and that dissociated fibers consisted of three classes of proteins having molecular weights of 150 K ± 10, 42 K ± 4, and 28 K ± 3 daltons. A model was constructed in which the 150-K subunit folded back on itself twice to give a three-stranded rope. Each 150-K subunit then represented a half-fiber and it was proposed that the role of the 42- and 28-K subunits was to hold each half-fiber together as well as serve as a possible link with other substructures. Isoelectric point studies also indicated that there were three different proteins with pI values of 3.5, 5.7, and 8.0. Amino acid analyses indicated that fibers had a composition distinct from other phage substructures. In addition, a striking difference was noted in the content of tryptophan among the phages examined. T4B had three to five times more tryptophan than did T2L, T2H, T4D, and T6. Intact tail tubes had an S20,w of 31 to 38S and dissociated tubes consisted of three proteins of molecular weights 57 K ± 5, 38 K ± 4, and 25 K ± 3 daltons. Based on degradation studies with DMSO, it was proposed that these three proteins were arranged in a helical array yielding the tube structure. Isoelectric point studies indicated that there were three major proteins in the tube whose pI values were 5.1, 5.7, and 8.5. No significant differences were observed in the amino acid content of tubes obtained from all the T-even bacteriophages. Images PMID:5497900

  15. Effects of DNA-binding drugs on T4 DNA ligase.

    PubMed Central

    Montecucco, A; Pedrali-Noy, G; Spadari, S; Lestingi, M; Ciarrocchi, G

    1990-01-01

    A number of DNA intercalating and externally binding drugs have been found to inhibit nick sealing, cohesive and blunt end ligation, AMP-dependent DNA topoisomerization and EDTA-induced DNA nicking mediated by bacteriophage T4 DNA ligase. The inhibition seems to arise from drug-substrate interaction so that formation of active DNA-Mg2(+)-AMP-enzyme complex is impaired while assembled and active complexes are not disturbed by drug binding to the substrate. Images Fig. 2. Fig. 4. Fig. 5. PMID:2156493

  16. Whole genome sequencing of environmental Vibrio cholerae O1 from 10 nanograms of DNA using short reads.

    PubMed

    Pérez Chaparro, Paula Juliana; McCulloch, John Anthony; Cerdeira, Louise Teixeira; Al-Dilaimi, Arwa; Canto de Sá, Lena Lillian; de Oliveira, Rodrigo; Tauch, Andreas; de Carvalho Azevedo, Vasco Ariston; Cruz Schneider, Maria Paula; da Silva, Artur Luiz da Costa

    2011-11-01

    Multiple Displacement Amplification (MDA) of DNA using φ29 (phi29) DNA polymerase amplifies DNA several billion-fold, which has proved to be potentially very useful for evaluating genome information in a culture-independent manner. Whole genome sequencing using DNA from a single prokaryotic genome copy amplified by MDA has not yet been achieved due to the formation of chimeras and skewed amplification of genomic regions during the MDA step, which then precludes genome assembly. We have hereby addressed the issue by using 10 ng of genomic Vibrio cholerae DNA extracted within an agarose plug to ensure circularity as a starting point for MDA and then sequencing the amplified yield using the SOLiD platform. We successfully managed to assemble the entire genome of V. cholerae strain LMA3984-4 (environmental O1 strain isolated in urban Amazonia) using a hybrid de novo assembly strategy. Using our method, only 178 out of 16,713 (1%) of contigs were not able to be inserted into either chromosome scaffold, and out of these 178, only 3 appeared to be chimeras. The other contigs seem to be the result of template-independent non-specific amplification during MDA, yielding spurious reads. Extraction of genomic DNA within an agarose plug in order to ensure circularity of the extracted genome might be key to minimizing amplification bias by MDA for WGS.

  17. DNA endonuclease activities on psoralen plus ultraviolet light treated DNA

    SciTech Connect

    Lambert, M.W.; Clark, M.

    1986-03-01

    Activities of nuclear DNA endonucleases (Endos) from normal human lymphoblastoid cells on DNA treated with the DNA interstrand cross-linking agents 4,5'8-trimethyl psoralen (TMP) or 8-methoxypsoralen (MOP) plus long-wavelength (320-400 nm) ultraviolet light (UVA) were examined. Chromatin-associated DNA Endos were isolated from both cell lines and subjected to isoelectric focusing (IF). Each IF fraction was assayed for DNA Endo activity. Peaks of activity were pooled and assayed for activity on undamaged PM2 bacteriophage DNA and on PM2 DNA that had been treated with 15 ..mu..g/ml TMP or MOP in the dark and then exposed to UVA light. Unbound psoralen was removed by dialysis and a second dose of UVA light was given in order to increase the number of DNA cross-links. Two Endo activities were found which were active on TMP- and MOP-DNA: a major one, pI 4.6, which is also active on intercalated DNA, and a second, lesser one, pI 7.6, which is active on UVC (254 nm) light irradiated DNA. These results indicate that there are two different DNA Endos which act on both TMP- and MOP-treated DNA and that the major activity recognizes the intercalation of, and/or the cross-link produced by interaction of, psoralen with DNA.

  18. Bacteriophages and its applications: an overview.

    PubMed

    Sharma, Sonika; Chatterjee, Soumya; Datta, Sibnarayan; Prasad, Rishika; Dubey, Dharmendra; Prasad, Rajesh Kumar; Vairale, Mohan G

    2017-01-01

    Bacteriophages (or phages), the most abundant viral entity of the planet, are omni-present in all the ecosystems. On the basis of their unique characteristics and anti-bacterial property, phages are being freshly evaluated taxonomically. Phages replicate inside the host either by lytic or lysogenic mode after infecting and using the cellular machinery of a bacterium. Since their discovery by Twort and d'Herelle in the early 1900s, phage became an important agent for combating pathogenic bacteria in clinical treatments and its related research gained momentum. However, due to recent emergence of bacterial resistance on antibiotics, applications of phage (phage therapy) become an inevitable option of research. Phage particles become popular as a biotechnological tool and treatment of pathogenic bacteria in a range of applied areas. However, there are few concerns over the application of phage-based solutions. This review deals with the updated phage taxonomy (ICTV 2015 Release and subsequent revision) and phage biology and the recent development of its application in the areas of biotechnology, biosensor, therapeutic medicine, food preservation, aquaculture diseases, pollution remediation, and wastewater treatment and issues related with limitations of phage-based remedy.

  19. A bacteriophage endolysin that eliminates intracellular streptococci

    PubMed Central

    Shen, Yang; Barros, Marilia; Vennemann, Tarek; Gallagher, D Travis; Yin, Yizhou; Linden, Sara B; Heselpoth, Ryan D; Spencer, Dennis J; Donovan, David M; Moult, John; Fischetti, Vincent A; Heinrich, Frank; Lösche, Mathias; Nelson, Daniel C

    2016-01-01

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB–PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities. DOI: http://dx.doi.org/10.7554/eLife.13152.001 PMID:26978792

  20. Hurdles in bacteriophage therapy: deconstructing the parameters.

    PubMed

    Tsonos, Jessica; Vandenheuvel, Dieter; Briers, Yves; De Greve, Henri; Hernalsteens, Jean-Pierre; Lavigne, Rob

    2014-07-16

    Bacterial infections in animals impact our food production, leading to economic losses due to food rejection and the need for preventive and curative measures. Since the onset of the antibiotic era, the rise of antibiotic-resistant pathogens is causing scares in health care and food producing facilities worldwide. In the search of new therapeutics, re-evaluation of bacteriophage (phage) therapy, using naturally occurring bacterial viruses to tackle infections, is gaining interest. Many studies report about phage therapy success, showing the value and power of these natural viruses. Although phages carry some interesting traits and their basic biology is now well understood, this review argues that phage therapy has not revealed all of its secrets and many parameters remain understudied, making the outcome of phage therapy highly variable depending on the disease incidence. These difficulties include poorly understood mechanisms of phage penetration and distribution throughout the body, the variable expression and accessibility of phage receptors on the bacterial host in in vivo conditions and the unusual (non-linear) phage pharmacokinetics. These parameters are not easily measured in realistic in vivo settings, but are nevertheless important hurdles to overcome the high variability of phage therapy trials. This critical approach is in accordance with Goethe's statement; "Difficulties increase the nearer we get to the goal". However, since the importance of the goal itself also rises, both difficulties and goal justify the need for additional in depth research in this domain.

  1. Ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon mediated circular strand displacement polymerization and hyperbranched rolling circle amplification.

    PubMed

    Li, Xiaolu; Guo, Jing; Zhai, Qian; Xia, Jing; Yi, Gang

    2016-08-31

    Using a cascade signal amplification strategy, an ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon (MB) mediated circular strand displacement polymerization (CSDP) and hyperbranched rolling circle amplification (HRCA) was proposed. The hybridization of MB probe to target DNA resulted in a conformational change of the MB and triggered the CSDP in the presence of bio-primer and Klenow fragment (KF exo(-)), leading to multiple biotin-tagged DNA duplex. Furthermore, the HRCA was implemented to product amounts of double-stranded DNA (ds-DNA) fragments using phi29 DNA polymerase via biotin-streptavidin interaction. After the product of HRCA binded numerous biotinylated detection probes, an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor exhibited excellent detection sensitivity and specificity with a log-linear response to target DNA from 0.01 fM to 10 pM as low as 8.9 aM. The proposed method allowed DNA detection with simplicity, rapidness, low cost and high specificity, which might have the potential for application in clinical molecular diagnostics and environmental monitoring.

  2. Lipopolysaccharide-specific bacteriophage for Klebsiella pneumoniae C3.

    PubMed Central

    Tomás, J M; Jofre, J T

    1985-01-01

    Bacteriophage FC3-1 is one of several specific bacteriophages of Klebsiella pneumoniae C3 isolated in our laboratory. Unlike receptors for other Klebsiella phages, the bacteriophage FC3-1 receptor was shown to be lipopolysaccharide, specifically the polysaccharide fraction (O-antigen and core region). We concluded that capsular polysaccharide, outer membrane proteins, and lipid A were not involved in phage binding. Mutants resistant to this phage were isolated and were found to be devoid of lipopolysaccharide O-antigen by several criteria but to contain capsular material serologically identical to that of the wild type. The polysaccharide fraction was concluded to be the primary phage receptor, indicating that it is available to the phage. Images PMID:3888963

  3. Bacteriophages active against Bacteroides fragilis in sewage-polluted waters.

    PubMed Central

    Tartera, C; Jofre, J

    1987-01-01

    Twelve strains of different Bacteroides species were tested for their efficiency of detection of bacteriophages from sewage. The host range of several isolated phages was investigated. The results indicated that there was a high degree of strain specificity. Then, by using Bacteroides fragilis HSP 40 as the host, which proved to be the most efficient for the detection of phages, feces from humans and several animal species and raw sewage, river water, water from lagoons, seawater, groundwater, and sediments were tested for the presence of bacteriophages that were active against B. fragilis HSP 40. Phages were detected in feces of 10% of the human fecal samples tested and was never detected in feces of the other animal species studied. Moreover, bacteriophages were always recovered from sewage and sewage-polluted samples of waters and sediments, but not from nonpolluted samples. The titers recovered were dependent on the degree of pollution in analyzed waters and sediments. PMID:3662510

  4. Bacteriophage typing of Proteus mirabilis, Proteus vulgaris, and Proteus morganii.

    PubMed

    Schmidt, W C; Jeffries, C D

    1974-01-01

    A bacteriphage typing scheme for differentiating Proteus isolated from clinical specimens was developed. Twenty-one distinct patterns of lysis were seen when 15 bacteriophages isolated on 8 Proteus mirabilis, 1 P. vulgaris, and 1 P. morganii were used to type 162 of 189 (85.7%) P. mirabilis and P. vulgaris isolates. Seven phages isolated on 3 P. morganii were used to type 13 of 19 (68.4%) P. morganii isolates. Overall, 84.1% of the 208 isolates were lysed by at least 1 phage at routine test dilution (RTD) or 1,000 x RTD. Fifty isolates, retyped several weeks after the initial testing, showed no changes in lytic patterns. The phages retained their titers after storage at 4 C for several months. A computer analysis of the data showed that there was no relationship between the source of the isolate and bacteriophage type. This bacteriophage typing system may provide epidemiological information on strains involved in human infections.

  5. Considerations for using bacteriophages for plant disease control

    PubMed Central

    Jones, Jeffrey B.; Vallad, Gary E.; Iriarte, Fanny B.; Obradović, Aleksa; Wernsing, Mine H.; Jackson, Lee E.; Balogh, Botond; Hong, Jason C.; Momol, M.Timur

    2012-01-01

    The use of bacteriophages as an effective phage therapy strategy faces significant challenges for controlling plant diseases in the phyllosphere. A number of factors must be taken into account when considering phage therapy for bacterial plant pathogens. Given that effective mitigation requires high populations of phage be present in close proximity to the pathogen at critical times in the disease cycle, the single biggest impediment that affects the efficacy of bacteriophages is their inability to persist on plant surfaces over time due to environmental factors. Inactivation by UV light is the biggest factor reducing bacteriophage persistence on plant surfaces. Therefore, designing strategies that minimize this effect are critical. For instance, application timing can be altered: instead of morning or afternoon application, phages can be applied late in the day to minimize the adverse effects of UV and extend the time high populations of phage persist on leaf surfaces. Protective formulations have been identified which prolong phage viability on the leaf surface; however, UV inactivation continues to be the major limiting factor in developing more effective bacteriophage treatments for bacterial plant pathogens. Other strategies, which have been developed to potentially increase persistence of phages on leaf surfaces, rely on establishing non-pathogenic or attenuated bacterial strains in the phyllosphere that are sensitive to the phage(s) specific to the target bacterium. We have also learned that selecting the correct phages for disease control is critical. This requires careful monitoring of bacterial strains in the field to minimize development of bacterial strains with resistance to the deployed bacteriophages. We also have data that indicate that selecting the phages based on in vivo assays may also be important when developing use for field application. Although bacteriophages have potential in biological control for plant disease control, there are major

  6. Bacteriophages as potential treatment option for antibiotic resistant bacteria.

    PubMed

    Bragg, Robert; van der Westhuizen, Wouter; Lee, Ji-Yun; Coetsee, Elke; Boucher, Charlotte

    2014-01-01

    The world is facing an ever-increasing problem with antibiotic resistant bacteria and we are rapidly heading for a post-antibiotic era. There is an urgent need to investigate alterative treatment options while there are still a few antibiotics left. Bacteriophages are viruses that specifically target bacteria. Before the development of antibiotics, some efforts were made to use bacteriophages as a treatment option, but most of this research stopped soon after the discovery of antibiotics. There are two different replication options which bacteriophages employ. These are the lytic and lysogenic life cycles. Both these life cycles have potential as treatment options. There are various advantages and disadvantages to the use of bacteriophages as treatment options. The main advantage is the specificity of bacteriophages and treatments can be designed to specifically target pathogenic bacteria while not negatively affecting the normal microbiota. There are various advantages to this. However, the high level of specificity also creates potential problems, the main being the requirement of highly specific diagnostic procedures. Another potential problem with phage therapy includes the development of immunity and limitations with the registration of phage therapy options. The latter is driving research toward the expression of phage genes which break the bacterial cell wall, which could then be used as a treatment option. Various aspects of phage therapy have been investigated in studies undertaken by our research group. We have investigated specificity of phages to various avian pathogenic E. coli isolates. Furthermore, the exciting NanoSAM technology has been employed to investigate bacteriophage replication and aspects of this will be discussed.

  7. Molecular and chemical engineering of bacteriophages for potential medical applications.

    PubMed

    Hodyra, Katarzyna; Dąbrowska, Krystyna

    2015-04-01

    Recent progress in molecular engineering has contributed to the great progress of medicine. However, there are still difficult problems constituting a challenge for molecular biology and biotechnology, e.g. new generation of anticancer agents, alternative biosensors or vaccines. As a biotechnological tool, bacteriophages (phages) offer a promising alternative to traditional approaches. They can be applied as anticancer agents, novel platforms in vaccine design, or as target carriers in drug discovery. Phages also offer solutions for modern cell imaging, biosensor construction or food pathogen detection. Here we present a review of bacteriophage research as a dynamically developing field with promising prospects for further development of medicine and biotechnology.

  8. Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry.

    PubMed

    Grant, Ar'Quette; Hashem, Fawzy; Parveen, Salina

    2016-02-01

    Salmonella and Campylobacter are major causes of foodborne related illness and are traditionally associated with consuming undercooked poultry and/or consuming products that have been cross contaminated with raw poultry. Many of the isolated Salmonella and Campylobacter that can cause disease have displayed antimicrobial resistance phenotypes. Although poultry producers have reduced on-the-farm overuse of antimicrobials, antimicrobial resistant Salmonella and Campylobacter strains still persist. One method of bio-control, that is producing promising results, is the use of lytic bacteriophages. This review will highlight the current emergence and persistence of antimicrobial resistant Salmonella and Campylobacter recovered from poultry as well as bacteriophage research interventions and limitations.

  9. Bacteriophages of Soft Rot Enterobacteriaceae-a minireview.

    PubMed

    Czajkowski, Robert

    2016-01-01

    Soft rot Enterobacteriaceae (Pectobacterium spp. and Dickeya spp., formerly pectinolytic Erwinia spp.) are ubiquitous necrotrophic bacterial pathogens that infect a large number of different plant species worldwide, including economically important crops. Despite the fact that these bacteria have been studied for more than 50 years, little is known of their corresponding predators: bacteriophages, both lytic and lysogenic. The aim of this minireview is to critically summarize recent ecological, biological and molecular research on bacteriophages infecting Pectobacterium spp. and Dickeya spp. with the main focus on current and future perspectives in that field.

  10. Genome sequence of Streptococcus mutans bacteriophage M102.

    PubMed

    van der Ploeg, Jan R

    2007-10-01

    Bacteriophage M102 is a lytic phage specific for serotype c strains of Streptococcus mutans, a causative agent of dental caries. In this study, the complete genome sequence of M102 was determined. The genome is 31,147 bp in size and contains 41 ORFs. Most of the ORFs encoding putative phage structural proteins show similarity to those from bacteriophages from Streptococcus thermophilus. Bioinformatic analysis indicated that the M102 genome contains an unusual lysis cassette, which encodes a holin and two lytic enzymes.

  11. Engineered enzymatically active bacteriophages and methods of uses thereof

    DOEpatents

    Collins, James J [Newton, MA; Kobayashi, Hideki [Yokohama, JP; Kearn, Mads [Ottawa, CA; Araki, Michihiro [Minatoku, JP; Friedland, Ari [Boston, MA; Lu, Timothy Kuan-Ta [Palo Alto, CA

    2012-05-22

    The present invention provides engineered bacteriophages that express at least one biofilm degrading enzyme on their surface and uses thereof for degrading bacterial biofilms. The invention also provides genetically engineered bacteriophages expressing the biofilm degrading enzymes and proteins necessary for the phage to replicate in different naturally occurring biofilm producing bacteria. The phages of the invention allow a method of biofilm degradation by the use of one or only a few administration of the phage because the system using these phages is self perpetuating, and capable of degrading biofilm even when the concentration of bacteria within the biofilm is low.

  12. Effects of solar ultraviolet radiations on Bacillus subtilis spores and T-7 bacteriophage

    NASA Technical Reports Server (NTRS)

    Spizizen, J.; Isherwood, J. E.; Taylor, G. R.

    1975-01-01

    Spores of Bacillus subtilis HA 101 and the DNA polymerase I-defective mutant HA 101 (59)F were exposed to selected wavelengths of solar ultraviolet light and space vacuum during the return of Apollo 16. In addition, coliphage T-7 suspensions were exposed to solar ultraviolet radiation as part of the Microbial Response to Space Environment Experiment. Optical filters were employed to provide different energy levels at wavelengths 254 nm and 280 nm. Dose-response curves for lethal and mutagenic effects were compared with ground-based data. A close parallel was observed between the results of solar radiation and ground tests with spores of the two strains. However, significantly greater inactivation of T-7 bacteriophage was observed after exposure to solar ultraviolet radiation.

  13. Genomic characterization and comparison of seven Myoviridae bacteriophage infecting Bacillus thuringiensis.

    PubMed

    Sauder, Amber Brooke; Quinn, McKenzie Rea; Brouillette, Alexis; Caruso, Steven; Cresawn, Steven; Erill, Ivan; Lewis, Lynn; Loesser-Casey, Kathryn; Pate, Morgan; Scott, Crystal; Stockwell, Stephanie; Temple, Louise

    2016-02-01

    Bacillus thuringiensis Kurstaki, a bacterium that is a source of biopesticides and a safe simulant for pathogenic Bacillus species, was used to isolate seven unique bacteriophages. The phage genomes were sequenced and ranged in size from 158,100 to 163,019 bp encoding 290-299 genes, and the GC content of ~38% was similar to that of the host bacterium. All phages had terminal repeats 2-3 kb long. Three of the phages encoded tRNAs and three contained a self-splicing intron in the DNA polymerase gene. They were categorized as a single cluster (>60% nucleotide conservation) containing three subclusters (>80% nucleotide conservation), supported by genomic synteny and phylogenetic analysis. Considering the published genomes of phages that infect the genus Bacillus and noting the ability of many of the Bacillus cereus group phages to infect multiple species, a clustering system based on gene content is proposed.

  14. Use of PRD1 bacteriophage in groundwater viral transport, inactivation, and attachment studies

    USGS Publications Warehouse

    Harvey, Ronald W.; Ryan, Joseph N.

    2004-01-01

    PRD1, an icosahedra-shaped, 62 nm (diameter), double-stranded DNA bacteriophage with an internal membrane, has emerged as an important model virus for studying the manner in which microorganisms are transported through a variety of groundwater environments. The popularity of this phage for use in transport studies involving geologic media is due, in part, to its relative stability over a range of temperatures and low degree of attachment in aquifer sediments. Laboratory and field investigations employing PRD1 are leading to a better understanding of viral attachment and transport behaviors in saturated geologic media and to improved methods for describing mathematically subsurface microbial transport at environmentally significant field scales. Radioisotopic labeling of PRD1 is facilitating additional information about the nature of viral interactions with solid surfaces in geologic media, the importance of iron oxide surfaces, and allowing differentiation between inactivation and attachment in field-scale tracer tests.

  15. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  16. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  17. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  18. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  19. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.

    1984-03-30

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties.

  20. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1990-01-01

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.