Sample records for bacteriophage t4 displaying

  1. Purification of phage display-modified bacteriophage T4 by affinity chromatography

    PubMed Central

    2011-01-01

    Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be

  2. Cryo-electron microscopy study of bacteriophage T4 displaying anthrax toxin proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokine, Andrei; Bowman, Valorie D.; Battisti, Anthony J.

    2007-10-25

    The bacteriophage T4 capsid contains two accessory surface proteins, the small outer capsid protein (Soc, 870 copies) and the highly antigenic outer capsid protein (Hoc, 155 copies). As these are dispensable for capsid formation, they can be used for displaying proteins and macromolecular complexes on the T4 capsid surface. Anthrax toxin components were attached to the T4 capsid as a fusion protein of the N-terminal domain of the anthrax lethal factor (LFn) with Soc. The LFn-Soc fusion protein was complexed in vitro with Hoc{sup -}Soc{sup -}T4 phage. Subsequently, cleaved anthrax protective antigen heptamers (PA63){sub 7} were attached to the exposedmore » LFn domains. A cryo-electron microscopy study of the decorated T4 particles shows the complex of PA63 heptamers with LFn-Soc on the phage surface. Although the cryo-electron microscopy reconstruction is unable to differentiate on its own between different proposed models of the anthrax toxin, the density is consistent with a model that had predicted the orientation and position of three LFn molecules bound to one PA63 heptamer.« less

  3. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F.W.; Rosenberg, A.H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest. 1 fig.

  4. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F. William; Rosenberg, Alan H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.

  5. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display.

    PubMed

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-11-14

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.

  6. Nanoscale bacteriophage biosensors beyond phage display.

    PubMed

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology.

  7. Nanoscale bacteriophage biosensors beyond phage display

    PubMed Central

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology. PMID:24143096

  8. Incorporation of T4 bacteriophage in electrospun fibres.

    PubMed

    Korehei, R; Kadla, J

    2013-05-01

    Antibacterial food packaging materials, such as bacteriophage-activated electrospun fibrous mats, may address concerns triggered by waves of bacterial food contamination. To address this, we investigated several efficient methods for incorporating T4 bacteriophage into electrospun fibrous mats. The incorporation of T4 bacteriophage using simple suspension electrospinning led to more than five orders of magnitude decrease in bacteriophage activity. To better maintain bacteriophage viability, emulsion electrospinning was developed where the T4 bacteriophage was pre-encapsulated in an alginate reservoir via an emulsification process and subsequently electrospun into fibres. This resulted in an increase in bacteriophage viability, but there was still two orders of magnitude drop in activity. Using a coaxial electrospinning process, full bacteriophage activity could be maintained. In this process, a core/shell fibre structure was formed with the T4 bacteriophage being directly incorporated into the fibre core. The core/shell fibre encapsulated bacteriophage exhibited full bacteriophage viability after storing for several weeks at +4°C. Coaxial electrospinning was shown to be capable of encapsulating bacteriophages with high loading capacity, high viability and long storage time. These results are significant in the context of controlling and preventing bacterial infections in perishable foods during storage. © 2013 The Society for Applied Microbiology.

  9. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display

    PubMed Central

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-01-01

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840

  10. Bacteriophage T4 as a Nanoparticle Platform to Display and Deliver Pathogen Antigens: Construction of an Effective Anthrax Vaccine.

    PubMed

    Tao, Pan; Li, Qin; Shivachandra, Sathish B; Rao, Venigalla B

    2017-01-01

    Protein-based subunit vaccines represent a safer alternative to the whole pathogen in vaccine development. However, limitations of physiological instability and low immunogenicity of such vaccines demand an efficient delivery system to stimulate robust immune responses. The bacteriophage T4 capsid-based antigen delivery system can robustly elicit both humoral and cellular immune responses without any adjuvant. Therefore, it offers a strong promise as a novel antigen delivery system. Currently Bacillus anthracis, the causative agent of anthrax, is a serious biothreat agent and no FDA-approved anthrax vaccine is available for mass vaccination. Here, we describe a potential anthrax vaccine using a T4 capsid platform to display and deliver the 83 kDa protective antigen, PA, a key component of the anthrax toxin. This T4 vaccine platform might serve as a universal antigen delivery system that can be adapted to develop vaccines against any infectious disease.

  11. T4 bacteriophage conjugated magnetic particles for E. coli capturing: Influence of bacteriophage loading, temperature and tryptone.

    PubMed

    Liana, Ayu Ekajayanthi; Marquis, Christopher P; Gunawan, Cindy; Gooding, J Justin; Amal, Rose

    2017-03-01

    This work demonstrates the use of bacteriophage conjugated magnetic particles (Fe 3 O 4 ) for the rapid capturing and isolation of Escherichia coli. The investigation of T4 bacteriophage adsorption to silane functionalised Fe 3 O 4 with amine (NH 2 ), carboxylic (COOH) and methyl (CH 3 ) surface functional groups reveals the domination of net electrostatic and hydrophobic interactions in governing bacteriophage adsorption. The bare Fe 3 O 4 and Fe 3 O 4 -NH 2 with high T4 loading captured 3-fold more E. coli (∼70% capturing efficiency) compared to the low loading T4 on Fe 3 O 4 -COOH, suggesting the significance of T4 loading in E. coli capturing efficiency. Importantly, it is further revealed that E. coli capture is highly dependent on the incubation temperature and the presence of tryptone in the media. Effective E. coli capturing only occurs at 37°C in tryptone-containing media with the absence of either conditions resulted in poor bacteria capture. The incubation temperature dictates the capturing ability of Fe 3 O 4 /T4, whereby T4 and E. coli need to establish an irreversible binding that occurred at 37°C. The presence of tryptophan-rich tryptone in the suspending media was also critical, as shown by a 3-fold increase in E. coli capture efficiency of Fe 3 O 4 /T4 in tryptone-containing media compared to that in tryptone-free media. This highlights for the first time that successful bacteria capturing requires not only an optimum tailoring of the particle's surface physicochemical properties for favourable bacteriophage loading, but also an in-depth understanding of how factors, such as temperature and solution chemistry influence the subsequent bacteriophage-bacteria interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Antigenic properties of HCMV peptides displayed by filamentous bacteriophages vs. synthetic peptides.

    PubMed

    Ulivieri, Cristina; Citro, Alessandra; Ivaldi, Federico; Mascolo, Dina; Ghittoni, Raffaella; Fanigliulo, Daniela; Manca, Fabrizio; Baldari, Cosima Tatiana; Li Pira, Giuseppina; Del Pozzo, Giovanna

    2008-08-15

    Several efforts have been invested in the identification of CTL and Th epitopes, as well as in the characterization of their immunodominance and MHC restriction, for the generation of a peptide-based HCMV vaccine. Small synthetic peptides are, however, poor antigens and carrier proteins are important for improving the efficacy of synthetic peptide vaccines. Recombinant bacteriophages appear as promising tools in the design of subunit vaccines. To investigate the antigenicity of peptides carried by recombinant bacteriophages we displayed different HCMV MHCII restricted peptides on the capsid of filamentous bacteriophage (fd) and found that hybrid bacteriophages are processed by human APC and activate HCMV-specific CD4 T-cells. Furthermore we constructed a reporter T-cell hybridoma expressing a chimeric TCR comprising murine alphabeta constant regions and human variable regions specific for the HLA-A2 restricted immunodominant NLV peptide of HCMV. Using the filamentous bacteriophage as an epitope carrier, we detected a more robust and long lasting response of the reporter T-cell hybridoma compared to peptide stimulation. Our results show a general enhancement of T-cell responses when antigenic peptides are carried by phages.

  13. Valyl-tRNA synthetase modification-dependent restriction of bacteriophage T4.

    PubMed Central

    Olson, N J; Marchin, G L

    1984-01-01

    A strain of Escherichia coli, CP 790302, severely restricts the growth of wild-type bacteriophage T4. In broth culture, most infections of single cells are abortive, although a few infected cells exhibit reduced burst sizes. In contrast, bacteriophage T4 mutants impaired in the ability to modify valyl-tRNA synthetase develop normally on this strain. Biochemical evidence indicates that the phage-modified valyl-tRNA synthetase in CP 790302 is different from that previously described. Although the enzyme is able to support normal protein synthesis, a disproportionate amount of phage structural protein (serum blocking power) fails to mature into particles of the appropriate density. The results with host strain CP 790302 are consistent with either a gratuitous inhibition of phage assembly by faulty modification or abrogation of an unknown role that valyl-tRNA synthetase might normally play in viral assembly. PMID:6374167

  14. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: A strategy for efficient display of large full-length proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shivachandra, Sathish B.; Rao, Mangala; Janosi, Laszlo

    2006-02-05

    An in vitro binding system is described to display large full-length proteins on bacteriophage T4 capsid surface at high density. The phage T4 icosahedral capsid features 155 copies of a nonessential highly antigenic outer capsid protein, Hoc, at the center of each major capsid protein hexon. Gene fusions were engineered to express the 83-kDa protective antigen (PA) from Bacillus anthracis fused to the N-terminus of Hoc and the 130-kDa PA-Hoc protein was expressed in Escherichia coli and purified. The purified PA-Hoc was assembled in vitro on hoc {sup -} phage particles. Binding was specific, stable, and of high affinity. Thismore » defined in vitro system allowed manipulation of the copy number of displayed PA and imposed no significant limitation on the size of the displayed antigen. In contrast to in vivo display systems, the in vitro approach allows all the capsid binding sites to be occupied by the 130-kDa PA-Hoc fusion protein. The PA-T4 particles were immunogenic in mice in the absence of an adjuvant, eliciting strong PA-specific antibodies and anthrax lethal toxin neutralizing antibodies. The in vitro display on phage T4 offers a novel platform for potential construction of customized vaccines against anthrax and other infectious diseases.« less

  15. Structure, Assembly, and DNA Packaging of the Bacteriophage T4 Head

    PubMed Central

    Black, Lindsay W.; Rao, Venigalla B.

    2014-01-01

    The bacteriophage T4 head is an elongated icosahedron packed with 172 kb of linear double-stranded DNA and numerous proteins. The capsid is built from three essential proteins: gp23*, which forms the hexagonal capsid lattice; gp24*, which forms pentamers at 11 of the 12 vertices; and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. Intensive work over more than half a century has led to a deep understanding of the phage T4 head. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as numerous other icosahedral bacteriophages. However, phage T4 displays an unusual membrane and portal initiated assembly of a shape determining self-sufficient scaffolding core. Folding of gp23 requires the assistance of two chaperones, the Escherichia coli chaperone GroEL acting with the phage-coded gp23-specific cochaperone, gp31. The capsid also contains two nonessential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. Through binding to adjacent gp23 subunits, Soc reinforces the capsid structure. Hoc and Soc have been used extensively in bipartite peptide display libraries and to display pathogen antigens, including those from human immunodeficiency virus (HIV), Neisseria meningitides, Bacillus anthracis, and foot and mouth disease virus. The structure of Ip1*, one of a number of multiple (>100) copy proteins packed and injected with DNA from the full head, shows it to be an inhibitor of one specific restriction endonuclease specifically targeting glycosylated hydroxymethyl cytosine DNA. Extensive mutagenesis, combined with atomic structures of the DNA packaging/terminase proteins gp16 and gp17, elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. The cryoelectron microscopy structure of the T4 packaging

  16. Structure of the Three N-Terminal Immunoglobulin Domains of the Highly Immunogenic Outer Capsid Protein from a T4-Like Bacteriophage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokine, Andrei; Islam, Mohammad Z.; Zhang, Zhihong

    2011-09-16

    The head of bacteriophage T4 is decorated with 155 copies of the highly antigenic outer capsid protein (Hoc). One Hoc molecule binds near the center of each hexameric capsomer. Hoc is dispensable for capsid assembly and has been used to display pathogenic antigens on the surface of T4. Here we report the crystal structure of a protein containing the first three of four domains of Hoc from bacteriophage RB49, a close relative of T4. The structure shows an approximately linear arrangement of the protein domains. Each of these domains has an immunoglobulin-like fold, frequently found in cell attachment molecules. Inmore » addition, we report biochemical data suggesting that Hoc can bind to Escherichia coli, supporting the hypothesis that Hoc could attach the phage capsids to bacterial surfaces and perhaps also to other organisms. The capacity for such reversible adhesion probably provides survival advantages to the bacteriophage.« less

  17. Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models.

    PubMed

    Dabrowska, Krystyna; Opolski, Adam; Wietrzyk, Joanna; Switala-Jelen, Kinga; Godlewska, Joanna; Boratynski, Janusz; Syper, Danuta; Weber-Dabrowska, Beata; Gorski, Andrzej

    2004-01-01

    Previously, we have shown the ability of the bacteriophage T4 and its substrain HAP1 (selected for a higher affinity to melanoma cells) to reveal antimetastatic activity in a mouse melanoma model. Here, we investigated the potential phage anticancer activity in primary tumour models. Mice were inoculated subcutaneously with B16 or LLC cells (collected from in vitro culture). Bacteriophages T4 and HAP1 were injected intraperitoneally daily (8 x 10(8)pfu/mouse, except the experiment concerning the dose-dependence). Treatment with purified preparations of bacteriophage T4 resulted in significant reduction of tumour size, the effect being dose-dependent. HAP1 was more effective than T4 and its activity was also dose-dependent. Parallel experiments with non-purified bacteriophage lysates resulted in significant stimulation of tumour growth. These data suggest that purified bacteriophages may inhibit tumour growth, a phenomenon with potentially important clinical implications in oncology.

  18. Stabilization of T4 bacteriophage at acidic and basic pH by adsorption on paper.

    PubMed

    Meyer, Abigail; Greene, Melissa; Kimmelshue, Chad; Cademartiri, Rebecca

    2017-12-01

    Bacteriophages find applications in agriculture, medicine, and food safety. Many of these applications can expose bacteriophages to stresses that inactivate them including acidic and basic pH. Bacteriophages can be stabilized against these stresses by materials including paper, a common material in packaging and consumer products. Combining paper and bacteriophages creates antibacterial materials, which can reduce the use of antibiotics. Here we show that adsorption on paper protects T4, T5, and T7 bacteriophage from acidic and basic pH. We added bacteriophages to filter paper functionalized with carboxylic acid (carboxyl methyl cellulose) or amine (chitosan) groups, and exposed them to pH from 5.6 to 14. We determined the number of infective bacteriophages after exposure directly on the paper. All papers extended the lifetime of infective bacteriophage by at least a factor of four with some papers stabilizing bacteriophages for up to one week. The degree of stabilization depended on five main factors (i) the family of the bacteriophage, (ii) the charge of the paper and bacteriophages, (iii) the location of the bacteriophages within the paper, (iv) the ability of the paper to prevent bacteriophage-bacteriophage aggregation, and (v) the sensitivity of the bacteriophage proteins to the tested pH. Even when adsorbed on paper the bacteriophages were able to remove E. coli in milk. Choosing the right paper modification or material will protect bacteriophages adsorbed on that material against detrimental pH and other environmental challenges increasing the range of applications of bacteriophages on materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Bacteriophage T4 capsid packaging and unpackaging of DNA and proteins.

    PubMed

    Mullaney, Julienne M; Black, Lindsay W

    2014-01-01

    Bacteriophage T4 has proven itself readily amenable to phage-based DNA and protein packaging, expression, and display systems due to its physical resiliency and genomic flexibility. As a large dsDNA phage with dispensable internal proteins and dispensable outer capsid proteins it can be adapted to package both DNA and proteins of interest within the capsid and to display peptides and proteins externally on the capsid. A single 170 kb linear DNA, or single or multiple copies of shorter linear DNAs, of any sequence can be packaged by the large terminase subunit in vitro into protein-containing proheads and give full or partially full capsids. The prohead receptacles for DNA packaging can also display peptides or full-length proteins from capsid display proteins HOC and SOC. Our laboratory has also developed a protein expression, packaging, and processing (PEPP) system which we have found to have advantages over mammalian and bacterial cell systems, including high yield, increased stability, and simplified downstream processing. Proteins that we have produced by the phage PEPP platform include human HIV-1 protease, micrococcal endonuclease from Staphylococcus aureus, restriction endonuclease EcoRI, luciferase, human granulocyte colony stimulating factor (GCSF), green fluorescent protein (GFP), and the 99 amino acid C-terminus of amyloid precursor protein (APP). Difficult to produce proteins that are toxic in mammalian protein expression systems are easily produced, packaged, and processed with the PEPP platform. APP is one example of such a highly refractory protein that has been produced successfully. The methods below describe the procedures for in vitro packaging of proheads with DNA and for producing recombinant T4 phage that carry a gene of interest in the phage genome and produce and internally package the corresponding protein of interest.

  20. Development of a bacteriophage displayed peptide library and biosensor

    NASA Astrophysics Data System (ADS)

    Chin, Robert C.; Salazar, Noe; Mayo, Michael W.; Villavicencio, Victor I.; Taylor, Richard B.; Chambers, James P.; Valdes, James J.

    1996-04-01

    A miniaturized, handheld biosensor for identification of hazardous biowarfare agents with high specificity is being developed. An innovative biological recognition system based on bacteriophage displayed peptide receptors will be utilized in conjunction with the miniature biosensor technology being developed. A bacteriophage library has been constructed to provide the artificial receptors. The library can contain millions of bacteriophage with randomly displayed peptide sequences in the phage outer protein coat which act as binding sites for the agents of interest. This library will be used to 'bio-pan' for phages that bind to a number of toxins and infectious agents and can, thus, provide an endless supply of low cost, reliable, specific, and stable artificial receptors. The biosensor instrument will utilize evanescent wave, planar waveguide, far-red dyes, diode laser and miniature circuit technologies for performance and portability.

  1. Structure of the bacteriophage T4 long tail fiber receptor-binding tip

    PubMed Central

    Bartual, Sergio G.; Otero, José M.; Garcia-Doval, Carmela; Llamas-Saiz, Antonio L.; Kahn, Richard; Fox, Gavin C.; van Raaij, Mark J.

    2010-01-01

    Bacteriophages are the most numerous organisms in the biosphere. In spite of their biological significance and the spectrum of potential applications, little high-resolution structural detail is available on their receptor-binding fibers. Here we present the crystal structure of the receptor-binding tip of the bacteriophage T4 long tail fiber, which is highly homologous to the tip of the bacteriophage lambda side tail fibers. This structure reveals an unusual elongated six-stranded antiparallel beta-strand needle domain containing seven iron ions coordinated by histidine residues arranged colinearly along the core of the biological unit. At the end of the tip, the three chains intertwine forming a broader head domain, which contains the putative receptor interaction site. The structure reveals a previously unknown beta-structured fibrous fold, provides insights into the remarkable stability of the fiber, and suggests a framework for mutations to expand or modulate receptor-binding specificity. PMID:21041684

  2. Immunization with M2e-Displaying T7 Bacteriophage Nanoparticles Protects against Influenza A Virus Challenge

    PubMed Central

    Hashemi, Hamidreza; Pouyanfard, Somayeh; Bandehpour, Mojgan; Noroozbabaei, Zahra; Kazemi, Bahram; Saelens, Xavier; Mokhtari-Azad, Talat

    2012-01-01

    Considering the emergence of highly pathogenic influenza viruses and threat of worldwide pandemics, there is an urgent need to develop broadly-protective influenza vaccines. In this study, we demonstrate the potential of T7 bacteriophage-based nanoparticles with genetically fused ectodomain of influenza A virus M2 protein (T7-M2e) as a candidate universal flu vaccine. Immunization of mice with non-adjuvanted T7-M2e elicited M2e-specific serum antibody responses that were similar in magnitude to those elicited by M2e peptide administered in Freund’s adjuvant. Comparable IgG responses directed against T7 phage capsomers were induced following vaccination with wild type T7 or T7-M2e. T7-M2e immunization induced balanced amounts of IgG1 and IgG2a antibodies and these antibodies specifically recognized native M2 on the surface of influenza A virus-infected mammalian cells. The frequency of IFN-γ-secreting T cells induced by T7-M2e nanoparticles was comparable to those elicited by M2e peptide emulsified in Freund’s adjuvant. Emulsification of T7-M2e nanoparticles in Freund’s adjuvant, however, induced a significantly stronger T cell response. Furthermore, T7-M2e-immunized mice were protected against lethal challenge with an H1N1 or an H3N2 virus, implying the induction of hetero-subtypic immunity in our mouse model. T7-M2e-immunized mice displayed considerable weight loss and had significantly reduced viral load in their lungs compared to controls. We conclude that display of M2e on the surface of T7 phage nanoparticles offers an efficient and economical opportunity to induce cross-protective M2e-based immunity against influenza A. PMID:23029232

  3. Advances in the T7 phage display system (Review).

    PubMed

    Deng, Xiangying; Wang, Li; You, Xiaolong; Dai, Pei; Zeng, Yanhua

    2018-01-01

    The present review describes the advantages and updated applications of the T7 phage display system in bioscience and medical science. Current phage display systems are based on various bacteriophage vectors, including M13, T7, T4 and f1. Of these, the M13 phage display is the most frequently used, however, the present review highlights the advantages of the T7 system. As a phage display platform, M13 contains single‑stranded DNA, while the T7 phage consists of double‑stranded DNA, which exhibits increased stability and is less prone to mutation during replication. Additional characteristics of the T7 phage include the following: The T7 phage does not depend on a protein secretion pathway in the lytic cycle; expressed peptides and proteins are usually located on the C‑terminal region of capsid protein gp10B, which avoids problems associated with steric hindrance; and T7 phage particles exhibit high stability under various extreme conditions, including high temperature and low pH, which facilitates effective high‑throughput affinity elutriation. Recent applications of the T7 phage display system have been instrumental in uncovering mechanisms of molecular interaction, particularly in the fields of antigen discovery, vaccine development, protein interaction, and cancer diagnosis and treatment.

  4. M13 bacteriophage coat proteins engineered for improved phage display.

    PubMed

    Sidhu, Sachdev S; Feld, Birte K; Weiss, Gregory A

    2007-01-01

    This chapter describes a method for increasing levels of protein fusions displayed on the surfaces of M13 bacteriophage particles. By introducing mutations into the anchoring M13 coat protein, protein display levels can be increased by up to two orders of magnitude. Experimental methods are presented for the design, construction, and screening of phage-displayed libraries for improved protein display.

  5. IgA response of BALB/c mice to orally administered Salmonella typhimurium flagellin-displaying T2 bacteriophages.

    PubMed

    Synnott, Aidan; Ohshima, Kazuhito; Nakai, Yutaka; Tanji, Yasunori

    2009-01-01

    Salmonella typhimurium antigens were displayed on the capsid of a T2 bacteriophage to explore the potential of phage display for an oral vaccine. Segments of the flagellin proteins FliC (H1 antigen) and FljB (H2) were fused to the N-terminal of T2 phage SOC to give two recombinant phages, T2FliCm and T2FljBm. Over 14 days, 19 BALB/c mice were orally administered twice, either with purified recombinant FliCm and FljBm protein, or T2FliCm and T2FljBm with or without host Escherichia coli. Feces were sampled over 10 weeks and examined for phage by plaque assay and for the presence of mucosal IgA by ELISA. Relatively few phages were detected relative to the amount administered (up to 8.21 x 10(3) PFU/g faeces) and none were detected five days after initial administration. The administration of a large number of phages appeared to cause no clinical symptoms. IgA concentration in feces peaked around four weeks after the second administration and subsided after eight weeks. The highest relative titers were observed in the protein group (0.37% for anti-FliCm and 0.22% for anti-FljBm) and the mouse group which received no E. coli (0.33% and 0.35%) despite the theoretical amount of protein contained in a phage dose being at least 80-465 times lower than the protein dose administered. The possibility that the immuno-stimulatory properties of the phage create an adjuvant effect to enhance the immunogenic properties of the displayed proteins is discussed. We conclude that phage may be valuable as a vector for oral vaccines. (c) 2009 American Institute of Chemical Engineers Biotechnol.

  6. Genetic and Immunological Studies of Bacteriophage T4 Thymidylate Synthetase

    PubMed Central

    Krauss, S. W.; Stollar, B. D.; Friedkin, M.

    1973-01-01

    Thymidylate synthetase, which appears after infection of Escherichia coli with bacteriophage T4, has been partially purified. The phage enzyme is immunologically distinct from the host enzyme and has a molecular weight of 50,000 in comparison to 68,000 for the host enzyme. A system has been developed to characterize T4 td mutants previously known to have impaired expression of phage thymidylate synthetase. For this system, an E. coli host lacking thymidylate synthetase was isolated. Known genetic suppressors were transduced into this host. The resulting isogenic hosts were infected with phage T4 td mutants. The specific activities and amounts of cross-reacting material induced by several different types of phage mutants under conditions of suppression or non-suppression have been examined. The results show that the phage carries the structural gene specifying the thymidylate synthetase which appears after phage infection, and that the combination of plaque morphology, enzyme activity assays, and an assay for immunologically cross-reacting material provides a means for identifying true amber mutants of the phage gene. Images PMID:4575286

  7. Preparation of isolated biomolecules for SFM observations: T4 bacteriophage as a test sample.

    PubMed Central

    Droz, E; Taborelli, M; Wells, T N; Descouts, P

    1993-01-01

    The T4 bacteriophage has been used to investigate protocols for the preparation of samples for scanning force microscopy in air, in order to obtaining reproducible images. The resolution of images and the distribution of bacteriophages on the substrate depends on the buffer type, its concentration, the surface treatment of substrate, and the method of deposition. The best imaging conditions for the phages require dilution in a volatile buffer at low ionic strength and adsorption onto hydrophilic surfaces. When imaging with the scanning force microscopy the quality of the images is influenced by the vertical and lateral forces applied on the sample and by the tip geometry. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 PMID:8241398

  8. The Effects of T4 and A3/R Bacteriophages on Differentiation of Human Myeloid Dendritic Cells

    PubMed Central

    Bocian, Katarzyna; Borysowski, Jan; Zarzycki, Michał; Pacek, Magdalena; Weber-Dąbrowska, Beata; Machcińska, Maja; Korczak-Kowalska, Grażyna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages) are viruses of bacteria. Here we evaluated the effects of T4 and A3/R bacteriophages, as well as phage-generated bacterial lysates, on differentiation of human myeloid dendritic cells (DCs) from monocytes. Neither of the phages significantly reduced the expression of markers associated with differentiation of DCs and their role in the activation of T cells (CD40, CD80, CD83, CD86, CD1c, CD11c, MHC II, PD-L1, PD-L2, TLR2, TLR4, and CCR7) and phagocytosis receptors (CD64 and DEC-205). By contrast, bacterial lysate of T4 phage significantly decreased the percentages of DEC-205- and CD1c-positive cells. The percentage of DEC-205-positive cells was also significantly reduced in DCs differentiated in the presence of lysate of A3/R phage. Thus while bacteriophages do not substantially affect differentiation of DCs, some products of phage-induced lysis of bacterial cells may influence the differentiation and potentially also some functions of DCs. Our results have important implications for phage therapy of bacterial infections because during infections monocytes recruited to the site of inflammation are an important source of inflammatory DCs. PMID:27582733

  9. Immunogenicity of T7 bacteriophage nanoparticles displaying G-H loop of foot-and-mouth disease virus (FMDV).

    PubMed

    Xu, Hai; Bao, Xi; Lu, Yu; Liu, Yamei; Deng, Bihua; Wang, Yiwei; Xu, Yue; Hou, Jibo

    2017-06-01

    Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals that causes severe economic losses worldwide. The G-H loop of the FMDV VP1 structural protein is the major neutralizing antigenic site. However, a fully protective G-H loop peptide vaccine requires the addition of promiscuous Th sites from a source outside VP1. Thus, we demonstrated the potential of T7 bacteriophage based nanoparticles displaying a genetically fused G-H loop peptide (T7-GH) as a FMDV vaccine candidate. Recombinant T7-GH phage was constructed by inserting the G-H loop coding region into the T7 Select 415-1b vector. Purified T7-GH phage nanoparticles were analyzed by SDS-PAGE, Western blot and Dot-ELISA. Pigs seronegative for FMDV exposure were immunized with T7-GH nanoparticles along with the adjuvant Montanide ISA206, and two commercially available FMDV vaccines (InactVac and PepVac). Humoral and cellular immune responses, as well as protection against virulent homologous virus challenge were assessed following single dose immunization. Pigs immunized T7-GH developed comparable anti-VP1 antibody titers to PepVac, although lower LPBE titers than was induced by InactVac. Antigen specific lymphocyte proliferation was detected in T7-GH group similar to that of PepVac group, however, weaker than InactVac group. Pigs immunized with T7-GH developed a neutralizing antibody response stronger than PepVac, but weaker than InactVac. Furthermore, 80% (4/5) of T7-GH immunized pigs were protected from challenge with virulent homologous virus. These findings demonstrate that the T7-GH phage nanoparticles were effective in eliciting antigen specific immune responses in pigs, highlighting the value of such an approach in the research and development of FMDV vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Molecular Biology and Biotechnology of Bacteriophage

    NASA Astrophysics Data System (ADS)

    Onodera, Kazukiyo

    The development of the molecular biology of bacteriophage such as T4, lambda and filamentous phages was described and the process that the fundamental knowledge obtained in this field has subsequently led us to the technology of phage display was introduced.

  11. Latent injury in frozen-thawed bacteriophage T4Bo.

    PubMed Central

    Steele, P. R.

    1976-01-01

    Two interesting new phenomena have been observed in suspensions of T4Bo bacteriophage which were frozen to temperatures below the eutectic temperature of the salt (sodium chloride) in the suspending medium. Approximately 10% of the phage appeared to survive such a phase change as determined by plaque titre. However, exposure of these survivors to ultrasonic vibration or repeated freezing showed them to be hypersensitive and thus latently injured. The hypersensitivity was lost on incubating the phage at 37 degrees C. for 3 hr. Furthermore, following a eutectic phase change, the surviving phage could be inactivated by rapid cooling to -90 degrees C. followed by slow rewarming. Such inactivation cannot be accounted for by accepted theories of freezing injury. PMID:1068188

  12. Analysis of capsid portal protein and terminase functional domains: interaction sites required for DNA packaging in bacteriophage T4.

    PubMed

    Lin, H; Rao, V B; Black, L W

    1999-06-04

    Bacteriophage DNA packaging results from an ATP-driven translocation of concatemeric DNA into the prohead by the phage terminase complexed with the portal vertex dodecamer of the prohead. Functional domains of the bacteriophage T4 terminase and portal gene 20 product (gp20) were determined by mutant analysis and sequence localization within the structural genes. Interaction regions of the portal vertex and large terminase subunit (gp17) were determined by genetic (terminase-portal intergenic suppressor mutations), biochemical (column retention of gp17 and inhibition of in vitro DNA packaging by gp20 peptides), and immunological (co-immunoprecipitation of polymerized gp20 peptide and gp17) studies. The specificity of the interaction was tested by means of a phage T4 HOC (highly antigenicoutercapsid protein) display system in which wild-type, cs20, and scrambled portal peptide sequences were displayed on the HOC protein of phage T4. Binding affinities of these recombinant phages as determined by the retention of these phages by a His-tag immobilized gp17 column, and by co-immunoprecipitation with purified terminase supported the specific nature of the portal protein and terminase interaction sites. In further support of specificity, a gp20 peptide corresponding to a portion of the identified site inhibited packaging whereas the scrambled sequence peptide did not block DNA packaging in vitro. The portal interaction site is localized to 28 residues in the central portion of the linear sequence of gp20 (524 residues). As judged by two pairs of intergenic portal-terminase suppressor mutations, two separate regions of the terminase large subunit gp17 (central and COOH-terminal) interact through hydrophobic contacts at the portal site. Although the terminase apparently interacts with this gp20 portal peptide, polyclonal antibody against the portal peptide appears unable to access it in the native structure, suggesting intimate association of gp20 and gp17 possibly

  13. Bacteriophage vehicles for phage display: biology, mechanism, and application.

    PubMed

    Ebrahimizadeh, Walead; Rajabibazl, Masoumeh

    2014-08-01

    The phage display technique is a powerful tool for selection of various biological agents. This technique allows construction of large libraries from the antibody repertoire of different hosts and provides a fast and high-throughput selection method. Specific antibodies can be isolated based on distinctive characteristics from a library consisting of millions of members. These features made phage display technology preferred method for antibody selection and engineering. There are several phage display methods available and each has its unique merits and application. Selection of appropriate display technique requires basic knowledge of available methods and their mechanism. In this review, we describe different phage display techniques, available bacteriophage vehicles, and their mechanism.

  14. Focused genetic recombination of bacteriophage t4 initiated by double-strand breaks.

    PubMed Central

    Shcherbakov, Victor; Granovsky, Igor; Plugina, Lidiya; Shcherbakova, Tamara; Sizova, Svetlana; Pyatkov, Konstantin; Shlyapnikov, Michael; Shubina, Olga

    2002-01-01

    A model system for studying double-strand-break (DSB)-induced genetic recombination in vivo based on the ets1 segCDelta strain of bacteriophage T4 was developed. The ets1, a 66-bp DNA fragment of phage T2L containing the cleavage site for the T4 SegC site-specific endonuclease, was inserted into the proximal part of the T4 rIIB gene. Under segC(+) conditions, the ets1 behaves as a recombination hotspot. Crosses of the ets1 against rII markers located to the left and to the right of ets1 gave similar results, thus demonstrating the equal and symmetrical initiation of recombination by either part of the broken chromosome. Frequency/distance relationships were studied in a series of two- and three-factor crosses with other rIIB and rIIA mutants (all segC(+)) separated from ets1 by 12-2100 bp. The observed relationships were readily interpretable in terms of the modified splice/patch coupling model. The advantages of this localized or focused recombination over that distributed along the chromosome, as a model for studying the recombination-replication pathway in T4 in vivo, are discussed. PMID:12399370

  15. Focused genetic recombination of bacteriophage t4 initiated by double-strand breaks.

    PubMed

    Shcherbakov, Victor; Granovsky, Igor; Plugina, Lidiya; Shcherbakova, Tamara; Sizova, Svetlana; Pyatkov, Konstantin; Shlyapnikov, Michael; Shubina, Olga

    2002-10-01

    A model system for studying double-strand-break (DSB)-induced genetic recombination in vivo based on the ets1 segCDelta strain of bacteriophage T4 was developed. The ets1, a 66-bp DNA fragment of phage T2L containing the cleavage site for the T4 SegC site-specific endonuclease, was inserted into the proximal part of the T4 rIIB gene. Under segC(+) conditions, the ets1 behaves as a recombination hotspot. Crosses of the ets1 against rII markers located to the left and to the right of ets1 gave similar results, thus demonstrating the equal and symmetrical initiation of recombination by either part of the broken chromosome. Frequency/distance relationships were studied in a series of two- and three-factor crosses with other rIIB and rIIA mutants (all segC(+)) separated from ets1 by 12-2100 bp. The observed relationships were readily interpretable in terms of the modified splice/patch coupling model. The advantages of this localized or focused recombination over that distributed along the chromosome, as a model for studying the recombination-replication pathway in T4 in vivo, are discussed.

  16. Effect of Osmotic Shock and Low Salt Concentration on Survival and Density of Bacteriophages T4B and T4Bo1

    PubMed Central

    Leibo, Stanley P.; Mazur, Peter

    1966-01-01

    Measurements of survival and buoyant densities of bacteriophages T4B, T4Bo1, and T4D have demonstrated the following: (a) After suspension in a concentrated salt solution, T4B and T4D are sensitive both to osmotic shock and to subsequent exposure to low monovalent salt concentrations. (b) Sensitivity of T4B to dilution from a concentrated salt solution is dependent on dilution rate, that of T4D is less dependent, and that of T4Bo1 is independent. (c) Sensitivity of all three phages to low salt concentrations depends on initial salt concentrations to a variable extent. (d) Density gradient profiles indicate that nearly half of osmotically shocked T4B retain their DNA. Similar analysis demonstrates that few, if any, T4Bo1 lose DNA when subjected to a treatment causing 90% loss of infectivity. (e) The effective buoyant densities of T4B and T4Bo1 depend significantly on the dilution treatments to which the phages are subjected prior to centrifugation in CsCl gradients. These data are explicable in terms of the different relative permeabilities of the phages to water and solutes, and of alterations in the counterion distribution surrounding the DNA within the phage heads. PMID:5972376

  17. Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector.

    PubMed

    Xu, Hai; Bao, Xi; Wang, Yiwei; Xu, Yue; Deng, Bihua; Lu, Yu; Hou, Jibo

    2018-03-20

    DNA delivery with bacteriophage by surface-displayed mammalian cell penetrating peptides has been reported. Although, various phages have been used to facilitate DNA transfer by surface displaying the protein transduction domain of human immunodeficiency virus type 1 Tat protein (Tat peptide), no similar study has been conducted using T7 phage. In this study, we engineeredT7 phage as a DNA targeting delivery vector to facilitate cellular internalization. We constructed recombinant T7 phages that displayed Tat peptide on their surface and carried eukaryotic expression box (EEB) as a part of their genomes (T7-EEB-Tat). We demonstrated that T7 phage harboring foreign gene insertion had packaged into infective progeny phage particles. Moreover, when mammalian cells that were briefly exposed to T7-EEB-Tat, expressed a significant higher level of the marker gene with the control cells infected with the wide type phage without displaying Tat peptides. These data suggested that the potential of T7 phage as an effective delivery vector for DNA vaccine transfer.

  18. The activity of mouse Kupffer cells following intravenous injection of T4 bacteriophage

    PubMed Central

    Inchley, C. J.

    1969-01-01

    The response of macrophages from the livers and spleens of mice given a single immunizing dose of T4 bacteriophage has been studied. Following their rapid removal from the circulation, phage particles were found to be concentrated in the liver to a level twelve times that for the spleen. Investigation of the fate of ingested phage showed that it was disposed of more rapidly in the liver than in the spleen, as measured by the disappearance of viable T4 particles and by the loss of radioactive label following injection of [131I]T4. It was also found that antigen-containing Kupffer cells could elicit little or no antibody synthesis on transfer into normal syngeneic recipients, or on incubation with lymphoid cells in vitro. It is suggested that these macrophages differ from other components of the reticulo-endothelial system in their treatment of T4 antigen, and may be concerned mainly with its breakdown and disposal rather than with providing a stimulus for the initiation of antibody synthesis. PMID:5370053

  19. Gene transfer of Hodgkin cell lines via multivalent anti-CD30 scFv displaying bacteriophage.

    PubMed

    Chung, Yoon-Suk A; Sabel, Katja; Krönke, Martin; Klimka, Alexander

    2008-04-16

    The display of binding ligands, such as recombinant antibody fragments, on the surface of filamentous phage makes it possible to specifically attach these phage particles to target cells. After uptake of the phage, their internal single-stranded DNA is processed by the host cell, which allows transient expression of an encoded eukaryotic gene cassette. This opens the possibility to use bacteriophage as vectors for targeted gene therapy, although the transduction efficiency is very low. Here we demonstrate the display of an anti-CD30 single chain variable fragment fused to the major coat protein pVIII on the surface of bacteriophage. These phage particles showed an improved binding and transduction efficiency of CD30 positive Hodgkin-lymphoma cells, compared to bacteriophage with the anti-CD30 single chain variable fragment fused to the minor coat protein pIII. We can conclude from the results that the postulated multivalency of the anti-CD30-pVIII displaying bacteriophage combined with disseminated display of the anti-CD30 scFv on the whole particle surface is responsible for the improved gene transfer rate. These results mark an important step towards the use of phage particles as a cheap and safe gene transfer vehicle for the gene delivery of the desired target cells via their specific surface receptors.

  20. Crystallization of the carboxy-terminal region of the bacteriophage T4 proximal long tail fibre protein gp34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granell, Meritxell; Namura, Mikiyoshi; Alvira, Sara

    2014-06-19

    The crystallization of three C-terminal fragments of the bacteriophage T4 protein gp34 is reported. Diffraction data have been obtained for three native crystal forms and two selenomethionine derivatives, one of which contained high-quality anomalous signal.

  1. Bacteriophage T5 encodes a homolog of the eukaryotic transcription coactivator PC4 implicated in recombination-dependent DNA replication.

    PubMed

    Steigemann, Birthe; Schulz, Annina; Werten, Sebastiaan

    2013-11-15

    The RNA polymerase II cofactor PC4 globally regulates transcription of protein-encoding genes through interactions with unwinding DNA, the basal transcription machinery and transcription activators. Here, we report the surprising identification of PC4 homologs in all sequenced representatives of the T5 family of bacteriophages, as well as in an archaeon and seven phyla of eubacteria. We have solved the crystal structure of the full-length T5 protein at 1.9Å, revealing a striking resemblance to the characteristic single-stranded DNA (ssDNA)-binding core domain of PC4. Intriguing novel structural features include a potential regulatory region at the N-terminus and a C-terminal extension of the homodimerisation interface. The genome organisation of T5-related bacteriophages points at involvement of the PC4 homolog in recombination-dependent DNA replication, strongly suggesting that the protein corresponds to the hitherto elusive replicative ssDNA-binding protein of the T5 family. Our findings imply that PC4-like factors intervene in multiple unwinding-related processes by acting as versatile modifiers of nucleic acid conformation and raise the possibility that the eukaryotic transcription coactivator derives from ancestral DNA replication, recombination and repair factors. © 2013.

  2. Production and Purification of Recombinant Filamentous Bacteriophages Displaying Immunogenic Heterologous Epitopes.

    PubMed

    Deng, Lei; Linero, Florencia; Saelens, Xavier

    2016-01-01

    Viruslike particles often combine high physical stability with robust immunogenicity. Furthermore, when such particles are based on bacteriophages, they can be produced in high amounts at minimal cost and typically will require only standard biologically contained facilities. We provide protocols for the characterization and purification of recombinant viruslike particles derived from filamentous bacteriophages. As an example, we focus on filamentous Escherichia coli fd phage displaying a conserved influenza A virus epitope that is fused genetically to the N-terminus of the major coat protein of this phage. A step-by-step procedure to obtain a high-titer, pure recombinant phage preparation is provided. We also describe a quality control experiment based on a biological readout of the purified fd phage preparation. These protocols together with the highlighted critical steps may facilitate generic implementation of the provided procedures for the display of other epitopes by recombinant fd phages.

  3. Bacteriophage T5 DNA ejection under pressure.

    PubMed

    Leforestier, A; Brasilès, S; de Frutos, M; Raspaud, E; Letellier, L; Tavares, P; Livolant, F

    2008-12-19

    The transfer of the bacteriophage genome from the capsid into the host cell is a key step of the infectious process. In bacteriophage T5, DNA ejection can be triggered in vitro by simple binding of the phage to its purified Escherichia coli receptor FhuA. Using electrophoresis and cryo-electron microscopy, we measure the extent of DNA ejection as a function of the external osmotic pressure. In the high pressure range (7-16 atm), the amount of DNA ejected decreases with increasing pressure, as theoretically predicted and observed for lambda and SPP1 bacteriophages. In the low and moderate pressure range (2-7 atm), T5 exhibits an unexpected behavior. Instead of a unique ejected length, multiple populations coexist. Some phages eject their complete genome, whereas others stop at some nonrandom states that do not depend on the applied pressure. We show that contrarily to what is observed for the phages SPP1 and lambda, T5 ejection cannot be explained as resulting from a simple pressure equilibrium between the inside and outside of the capsid. Kinetics parameters and/or structural characteristics of the ejection machinery could play a determinant role in T5 DNA ejection.

  4. RGD peptide-displaying M13 bacteriophage/PLGA nanofibers as cell-adhesive matrices for smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Oh Seong; Lee, Eun Ji; Jin, Lin Hua; Kim, Chang-Seok; Hong, Suck Won; Han, Dong-Wook; Kim, Chuntae; Oh, Jin-Woo

    2015-01-01

    Extracellular matrices (ECMs) are network structures that play an essential role in regulating cellular growth and differentiation. In this study, novel nanofibrous matrices were fabricated by electrospinning M13 bacteriophage and poly(lactic- co-glycolic acid) (PLGA) and were shown to be structurally and functionally similar to natural ECMs. A genetically-engineered M13 bacteriophage was constructed to display Arg-Gly-Asp (RGD) peptides on its surface. The physicochemical properties of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage)/PLGA nanofibers were characterized by using scanning electron microscopy and Fourier-transform infrared spectroscopy. We used immunofluorescence staining to confirm that M13 bacteriophages were homogenously distributed in RGD-M13 phage/PLGA matrices. Furthermore, RGD-M13 phage/PLGA nanofibrous matrices, having excellent biocompatibility, can enhance the behaviors of vascular smooth muscle cells. This result suggests that RGD-M13 phage/PLGA nanofibrous matrices have potentials to serve as tissue engineering scaffolds.

  5. Rates of Spontaneous Mutation in Bacteriophage T4 Are Independent of Host Fidelity Determinants

    PubMed Central

    Santos, M. E.; Drake, J. W.

    1994-01-01

    Bacteriophage T4 encodes most of the genes whose products are required for its DNA metabolism, and host (Escherichia coli) genes can only infrequently complement mutationally inactivated T4 genes. We screened the following host mutator mutations for effects on spontaneous mutation rates in T4: mutT (destruction of aberrant dGTPs), polA, polB and polC (DNA polymerases), dnaQ (exonucleolytic proofreading), mutH, mutS, mutL and uvrD (methyl-directed DNA mismatch repair), mutM and mutY (excision repair of oxygen-damaged DNA), mutA (function unknown), and topB and osmZ (affecting DNA topology). None increased T4 spontaneous mutation rates within a resolving power of about twofold (nor did optA, which is not a mutator but overexpresses a host dGTPase). Previous screens in T4 have revealed strong mutator mutations only in the gene encoding the viral DNA polymerase and proofreading 3'-exonuclease, plus weak mutators in several polymerase accessory proteins or determinants of dNTP pool sizes. T4 maintains a spontaneous mutation rate per base pair about 30-fold greater than that of its host. Thus, the joint high fidelity of insertion by T4 DNA polymerase and proofreading by its associated 3'-exonuclease appear to determine the T4 spontaneous mutation rate, whereas the host requires numerous additional systems to achieve high replication fidelity. PMID:7851754

  6. Purification and Properties of Bacteriophage T4-Induced RNA Ligase*

    PubMed Central

    Silber, Robert; Malathi, V. G.; Hurwitz, Jerard

    1972-01-01

    An enzyme, purified 300-fold from Escherichia coli infected with bacteriophage T4, catalyzes the conversion of 5′-termini of polyribonucleotides to internal phosphodiester bonds. The reaction requires ATP and Mg++. For every 5′-32P terminus rendered resistant to alkaline phosphatase, an equal amount of AMP and PPi are formed. Various polyribonucleotides are substrates in the reaction; to date, the best substrate is [5′-32P]polyriboadenylate. With the latter substrate, no evidence of intermolecular reaction was obtained. However, the 5′-32P termini of poly(A) rendered resistant to alkaline phosphatase are also resistant to attack by RNase II, polynucleotide phosphorylase, and low concentrations of venom phosphodiesterase. Since the product formed with poly(A) lacks 3′-hydroxyl ends, as measured with these exonucleases, the enzyme appears to convert linear molecules of polyriboadenylate to a circular form by the intramolecular covalent linkage of the 5′-phosphate end to the 3′-hydroxyl terminus. Images PMID:4342972

  7. The immunogenicity of phagocytosed T4 bacteriophage: cell replacement studies with splenectomized and irradiated mice

    PubMed Central

    Inchley, C. J.; Howard, J. G.

    1969-01-01

    The role of phagocytosed antigen in the production of antibody to bacteriophage T4 has been studied. The ability of mice to give an antibody response to this antigen was first impaired either by splenectomy or by X-irradiation, and then restored by injection of syngeneic lymphoid cells given at various times relative to the injection of T4. In splenectomized animals administration of lymphoid cells had only a marginal effect on the severely depressed response to T4. It was concluded that the presence of an intact spleen is essential to the development of the normal immune response, and that circulating immunocompetent cells are unable to respond to circulating antigen or to antigen sequestered within the liver. On the other hand, in irradiated mice, there was a faster and more complete restoration of the anti-T4 response, confirming the ability of antigen localized within the spleen to stimulate competent cells. It was also found that the immunogenicity of T4 within this organ was not lost at a rate which corresponded to its gross breakdown but persisted without decrease for at least 48 hr. A similar observation was made for sheep red blood cells when this antigen was used in conjunction with T4. PMID:5370054

  8. Silica formation with nanofiber morphology via helical display of the silaffin R5 peptide on a filamentous bacteriophage.

    PubMed

    Song, In-Wong; Park, Hyojung; Park, Jung Han; Kim, Hyunook; Kim, Seong Hun; Yi, Sung; Jaworski, Justyn; Sang, Byoung-In

    2017-11-24

    Biological systems often generate unique and useful structures, which can have industrial relevance either as direct components or as an inspiration for biomimetic materials. For fabrication of nanoscale silica structures, we explored the use of the silaffin R5 peptide from Cylindrotheca fusiformis expressed on the surface of the fd bacteriophage. By utilizing the biomineralizing peptide component displayed on the bacteriophage surface, we found that low concentrations (0.09 mg/mL of the R5 bacteriophage, below the concentration range used in other studies) could be used to create silica nanofibers. An additional benefit of this approach is the ability of our R5-displaying phage to form silica materials without the need for supplementary components, such as aminopropyl triethoxysilane, that are typically used in such processes. Because this method for silica formation can occur under mild conditions when implementing our R5 displaying phage system, we may provide a relatively simple, economical, and environmentally friendly process for creating silica nanomaterials.

  9. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation

    PubMed Central

    2010-01-01

    Over 50 years of biological research with bacteriophage T4 includes notable discoveries in post-transcriptional control, including the genetic code, mRNA, and tRNA; the very foundations of molecular biology. In this review we compile the past 10 - 15 year literature on RNA-protein interactions with T4 and some of its related phages, with particular focus on advances in mRNA decay and processing, and on translational repression. Binding of T4 proteins RegB, RegA, gp32 and gp43 to their cognate target RNAs has been characterized. For several of these, further study is needed for an atomic-level perspective, where resolved structures of RNA-protein complexes are awaiting investigation. Other features of post-transcriptional control are also summarized. These include: RNA structure at translation initiation regions that either inhibit or promote translation initiation; programmed translational bypassing, where T4 orchestrates ribosome bypass of a 50 nucleotide mRNA sequence; phage exclusion systems that involve T4-mediated activation of a latent endoribonuclease (PrrC) and cofactor-assisted activation of EF-Tu proteolysis (Gol-Lit); and potentially important findings on ADP-ribosylation (by Alt and Mod enzymes) of ribosome-associated proteins that might broadly impact protein synthesis in the infected cell. Many of these problems can continue to be addressed with T4, whereas the growing database of T4-related phage genome sequences provides new resources and potentially new phage-host systems to extend the work into a broader biological, evolutionary context. PMID:21129205

  10. Genomes of the T4-related bacteriophages as windows on microbial genome evolution.

    PubMed

    Petrov, Vasiliy M; Ratnayaka, Swarnamala; Nolan, James M; Miller, Eric S; Karam, Jim D

    2010-10-28

    The T4-related bacteriophages are a group of bacterial viruses that share morphological similarities and genetic homologies with the well-studied Escherichia coli phage T4, but that diverge from T4 and each other by a number of genetically determined characteristics including the bacterial hosts they infect, the sizes of their linear double-stranded (ds) DNA genomes and the predicted compositions of their proteomes. The genomes of about 40 of these phages have been sequenced and annotated over the last several years and are compared here in the context of the factors that have determined their diversity and the diversity of other microbial genomes in evolution. The genomes of the T4 relatives analyzed so far range in size between ~160,000 and ~250,000 base pairs (bp) and are mosaics of one another, consisting of clusters of homology between them that are interspersed with segments that vary considerably in genetic composition between the different phage lineages. Based on the known biological and biochemical properties of phage T4 and the proteins encoded by the T4 genome, the T4 relatives reviewed here are predicted to share a genetic core, or "Core Genome" that determines the structural design of their dsDNA chromosomes, their distinctive morphology and the process of their assembly into infectious agents (phage morphogenesis). The Core Genome appears to be the most ancient genetic component of this phage group and constitutes a mere 12-15% of the total protein encoding potential of the typical T4-related phage genome. The high degree of genetic heterogeneity that exists outside of this shared core suggests that horizontal DNA transfer involving many genetic sources has played a major role in diversification of the T4-related phages and their spread to a wide spectrum of bacterial species domains in evolution. We discuss some of the factors and pathways that might have shaped the evolution of these phages and point out several parallels between their diversity

  11. Genomes of the T4-related bacteriophages as windows on microbial genome evolution

    PubMed Central

    2010-01-01

    The T4-related bacteriophages are a group of bacterial viruses that share morphological similarities and genetic homologies with the well-studied Escherichia coli phage T4, but that diverge from T4 and each other by a number of genetically determined characteristics including the bacterial hosts they infect, the sizes of their linear double-stranded (ds) DNA genomes and the predicted compositions of their proteomes. The genomes of about 40 of these phages have been sequenced and annotated over the last several years and are compared here in the context of the factors that have determined their diversity and the diversity of other microbial genomes in evolution. The genomes of the T4 relatives analyzed so far range in size between ~160,000 and ~250,000 base pairs (bp) and are mosaics of one another, consisting of clusters of homology between them that are interspersed with segments that vary considerably in genetic composition between the different phage lineages. Based on the known biological and biochemical properties of phage T4 and the proteins encoded by the T4 genome, the T4 relatives reviewed here are predicted to share a genetic core, or "Core Genome" that determines the structural design of their dsDNA chromosomes, their distinctive morphology and the process of their assembly into infectious agents (phage morphogenesis). The Core Genome appears to be the most ancient genetic component of this phage group and constitutes a mere 12-15% of the total protein encoding potential of the typical T4-related phage genome. The high degree of genetic heterogeneity that exists outside of this shared core suggests that horizontal DNA transfer involving many genetic sources has played a major role in diversification of the T4-related phages and their spread to a wide spectrum of bacterial species domains in evolution. We discuss some of the factors and pathways that might have shaped the evolution of these phages and point out several parallels between their diversity

  12. Phage display on the base of filamentous bacteriophages: application for recombinant antibodies selection.

    PubMed

    Tikunova, N V; Morozova, V V

    2009-10-01

    The display of peptides and proteins on the surface of filamentous bacteriophage is a powerful methodology for selection of peptides and protein domains, including antibodies. An advantage of this methodology is the direct physical link between the phenotype and the genotype, as an analyzed polypeptide and its encoding DNA fragment exist in one phage particle. Development of phage display antibody libraries provides repertoires of phage particles exposing antibody fragments of great diversity. The biopanning procedure facilitates selection of antibodies with high affinity and specificity for almost any target. This review is an introduction to phage display methodology. It presents recombinant antibodies display in more details:, construction of phage libraries of antibody fragments and different strategies for the biopanning procedure.

  13. Impact of iron particles in groundwater on the UV inactivation of bacteriophages MS2 and T4.

    PubMed

    Templeton, M R; Andrews, R C; Hofmann, R

    2006-09-01

    To investigate the impact of iron particles in groundwater on the inactivation of two model viruses, bacteriophages MS2 and T4, by 254-nm ultraviolet (UV) light. One-litre samples of groundwater with high iron content (from the Indianapolis Water Company, mean dissolved iron concentration 1.3 mg l(-1)) were stirred vigorously while exposed to air, which oxidized and precipitated the dissolved iron. In parallel samples, ethylenediaminetetra-acetic acid (EDTA) was added to chelate the iron and prevent formation of iron precipitate. The average turbidity in the samples without EDTA (called the 'raw' samples) after 210 min of stirring was 2.7 +/- 0.1 NTU while the average turbidity of the samples containing EDTA (called the 'preserved' samples) was 1.0 +/- 0.1 NTU. 'Raw' and 'preserved' samples containing bacteriophage MS2 were exposed to 254-nm UV light at doses of 20, 40, or 60 mJ (cm(2))(-1), while samples containing bacteriophage T4 were exposed to 2 or 5 mJ (cm(2))(-1), using a low pressure UV collimated beam. The UV inactivation of both phages in the 'raw' groundwater was lower than in the EDTA-'preserved' groundwater to a statistically significant degree (alpha = 0.05), due to the association of phage with the UV-absorbing iron precipitate particles. A phage elution technique confirmed that a large fraction of the phage that survived the UV exposures were particle-associated. Phages that are associated with iron oxide particles in groundwater are shielded from UV light to a measurable and statistically significant degree at a turbidity level of 2.7 NTU when the phage particle association is induced under experimental conditions. While the particle association of the phage in this study was induced experimentally, the findings provide further evidence that certain particles in natural waters and wastewaters (e.g. iron oxide particles) may have the potential to shield viruses from UV light.

  14. Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress.

    PubMed Central

    Odijk, T

    1998-01-01

    A continuum computation is proposed for the bending stress stabilizing DNA that is hexagonally packed within bacteriophage T7. Because the inner radius of the DNA spool is rather small, the stress of the curved DNA genome is strong enough to balance its electrostatic self-repulsion so as to form a stable hexagonal phase. The theory is in accord with the microscopically determined structure of bacteriophage T7 filled with DNA within the experimental margin of error. PMID:9726924

  15. T7 lytic phage-displayed peptide libraries: construction and diversity characterization.

    PubMed

    Krumpe, Lauren R H; Mori, Toshiyuki

    2014-01-01

    In this chapter, we describe the construction of T7 bacteriophage (phage)-displayed peptide libraries and the diversity analyses of random amino acid sequences obtained from the libraries. We used commercially available reagents, Novagen's T7Select system, to construct the libraries. Using a combination of biotinylated extension primer and streptavidin-coupled magnetic beads, we were able to prepare library DNA without applying gel purification, resulting in extremely high ligation efficiencies. Further, we describe the use of bioinformatics tools to characterize library diversity. Amino acid frequency and positional amino acid diversity and hydropathy are estimated using the REceptor LIgand Contacts website http://relic.bio.anl.gov. Peptide net charge analysis and peptide hydropathy analysis are conducted using the Genetics Computer Group Wisconsin Package computational tools. A comprehensive collection of the estimated number of recombinants and titers of T7 phage-displayed peptide libraries constructed in our lab is included.

  16. Identification and Characterization of T5-Like Bacteriophages Representing Two Novel Subgroups from Food Products

    PubMed Central

    Sváb, Domonkos; Falgenhauer, Linda; Rohde, Manfred; Szabó, Judit; Chakraborty, Trinad; Tóth, István

    2018-01-01

    During recent years, interest in the use of bacteriophages as biocontrol agents against foodborne pathogens has increased, particularly for members of the family Enterobacteriaceae, with pathogenic Escherichia coli, Shigella, and Salmonella strains among them. Here, we report the isolation and characterisation of 12 novel T5-like bacteriophages from confiscated food samples. All bacterophages effectively lysed E. coli K-12 strains and were able to infect pathogenic E. coli strains representing enterohaemorrhagic (EHEC), enteropathogenic (EPEC), enterotoxigenic (ETEC), and enteroinvasive (EIEC) pathotypes, Shigella dysenteriae, S. sonnei strains, as well as multidrug-resistant (MDR) E. coli and multiple strains representing different Salmonella enterica serovars. All the bacteriophages exhibited Siphoviridae morphology. Whole genome sequencing of the novel T5-like bacteriophages showed that they represent two distinct groups, with the genome-based grouping correlating to the different host spectra. As these bacteriophages are of food origin, their stability and lack of any virulence genes, as well as their broad and mutually complementary host spectrum makes these new T5-like bacteriophages valuable candidates for use as biocontrol agents against foodborne pathogenic enterobacteria. PMID:29487585

  17. The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksyuk, Anastasia A.; Leiman, Petr G.; Kurochkina, Lidia P.

    2009-07-22

    The contractile tail of bacteriophage T4 is a molecular machine that facilitates very high viral infection efficiency. Its major component is a tail sheath, which contracts during infection to less than half of its initial length. The sheath consists of 138 copies of the tail sheath protein, gene product (gp) 18, which surrounds the central non-contractile tail tube. The contraction of the sheath drives the tail tube through the outer membrane, creating a channel for the viral genome delivery. A crystal structure of about three quarters of gp18 has been determined and was fitted into cryo-electron microscopy reconstructions of themore » tail sheath before and after contraction. It was shown that during contraction, gp18 subunits slide over each other with no apparent change in their structure.« less

  18. Elucidating the pH-Dependent Structural Transition of T7 Bacteriophage Endolysin.

    PubMed

    Sharma, Meenakshi; Kumar, Dinesh; Poluri, Krishna Mohan

    2016-08-23

    Bacteriophages are the most abundant and diverse biological entities on earth. Bacteriophage endolysins are unique peptidoglycan hydrolases and have huge potential as effective enzybiotics in various infectious models. T7 bacteriophage endolysin (T7L), also known as N-acetylmuramoyl-l-alanine amidase or T7 lysozyme, is a 17 kDa protein that lyses a range of Gram-negative bacteria by hydrolyzing the amide bond between N-acetylmuramoyl residues and the l-alanine of the peptidoglycan layer. Although the activity profiles of several of the T7 family members have been known for many years, the molecular basis for their pH-dependent differential activity is not clear. In this study, we explored the pH-induced structural, stability, and activity characteristics of T7L by applying a variety of biophysical techniques and protein nuclear magnetic resonance (NMR) spectroscopy. Our studies established a reversible structural transition of T7L below pH 6 and the formation of a partially denatured conformation at pH 3. This low-pH conformation is thermally stable and exposed its hydrophobic pockets. Further, NMR relaxation measurements and structural analysis unraveled that T7L is highly dynamic in its native state and a network of His residues are responsible for the observed pH-dependent conformational dynamics and transitions. As bacteriophage chimeric and engineered endolysins are being developed as novel therapeutics against multiple drug resistance pathogens, we believe that our results are of great help in designing these entities as broadband antimicrobial and/or antibacterial agents.

  19. Uptake and processing of modified bacteriophage M13 in mice: implications for phage display.

    PubMed

    Molenaar, Tom J M; Michon, Ingrid; de Haas, Sonja A M; van Berkel, Theo J C; Kuiper, Johan; Biessen, Erik A L

    2002-02-01

    Internalization and degradation of filamentous bacteriophage M13 by a specific target cell may have major consequences for the recovery of phage in in vivo biopanning of phage libraries. Therefore, we investigated the pharmacokinetics and processing of native and receptor-targeted phage in mice. (35)S-radiolabeled M13 was chemically modified by conjugation of either galactose (lacM13) or succinic acid groups (sucM13) to the coat protein of the phage to stimulate uptake by galactose recognizing hepatic receptors and scavenger receptors, respectively. Receptor-mediated endocytosis of modified phage reduced the plasma half-life of native M13 (t(1/2) = 4.5 h) to 18 min for lactosylated and 1.5 min for succinylated bacterophage. Internalization of sucM13 was complete within 30 min after injection and resulted in up to 5000-fold reduction of bioactive phage within 90 min. In conclusion, these data provide information on the in vivo behavior of wild-type and receptor-targeted M13, which has important implications for future in vivo phage display experiments and for the potential use of M13 as a viral gene delivery vehicle.

  20. Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters.

    PubMed

    Barr, Jeremy J; Auro, Rita; Sam-Soon, Nicholas; Kassegne, Sam; Peters, Gregory; Bonilla, Natasha; Hatay, Mark; Mourtada, Sarah; Bailey, Barbara; Youle, Merry; Felts, Ben; Baljon, Arlette; Nulton, Jim; Salamon, Peter; Rohwer, Forest

    2015-11-03

    Bacteriophages (phages) defend mucosal surfaces against bacterial infections. However, their complex interactions with their bacterial hosts and with the mucus-covered epithelium remain mostly unexplored. Our previous work demonstrated that T4 phage with Hoc proteins exposed on their capsid adhered to mucin glycoproteins and protected mucus-producing tissue culture cells in vitro. On this basis, we proposed our bacteriophage adherence to mucus (BAM) model of immunity. Here, to test this model, we developed a microfluidic device (chip) that emulates a mucosal surface experiencing constant fluid flow and mucin secretion dynamics. Using mucus-producing human cells and Escherichia coli in the chip, we observed similar accumulation and persistence of mucus-adherent T4 phage and nonadherent T4∆hoc phage in the mucus. Nevertheless, T4 phage reduced bacterial colonization of the epithelium >4,000-fold compared with T4∆hoc phage. This suggests that phage adherence to mucus increases encounters with bacterial hosts by some other mechanism. Phages are traditionally thought to be completely dependent on normal diffusion, driven by random Brownian motion, for host contact. We demonstrated that T4 phage particles displayed subdiffusive motion in mucus, whereas T4∆hoc particles displayed normal diffusion. Experiments and modeling indicate that subdiffusive motion increases phage-host encounters when bacterial concentration is low. By concentrating phages in an optimal mucus zone, subdiffusion increases their host encounters and antimicrobial action. Our revised BAM model proposes that the fundamental mechanism of mucosal immunity is subdiffusion resulting from adherence to mucus. These findings suggest intriguing possibilities for engineering phages to manipulate and personalize the mucosal microbiome.

  1. Bacteriophage T7 RNA polymerase-based expression in Pichia pastoris.

    PubMed

    Hobl, Birgit; Hock, Björn; Schneck, Sandra; Fischer, Reinhard; Mack, Matthias

    2013-11-01

    A novel Pichia pastoris expression vector (pEZT7) for the production of recombinant proteins employing prokaryotic bacteriophage T7 RNA polymerase (T7 RNAP) (EC 2.7.7.6) and the corresponding promoter pT7 was constructed. The gene for T7 RNAP was stably introduced into the P. pastoris chromosome 2 under control of the (endogenous) constitutive P. pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter (pGAP). The gene product T7 RNAP was engineered to contain a nuclear localization signal, which directed recombinant T7 RNAP to the P. pastoris nucleus. To promote translation of uncapped T7 RNAP derived transcripts, the internal ribosomal entry site from hepatitis C virus (HCV-IRES) was inserted directly upstream of the multiple cloning site of pEZT7. A P. pastoris autonomous replicating sequence (PARS1) was integrated into pEZT7 enabling propagation and recovery of plasmids from P. pastoris. Rapid amplification of 5' complementary DNA ends (5' RACE) experiments employing the test plasmid pEZT7-EGFP revealed that transcripts indeed initiated at pT7. HCV-IRES mediated translation of the latter mRNAs, however, was not observed. Surprisingly, HCV-IRES and the reverse complement of PARS1 (PARS1rc) were both found to display significant promoter activity as shown by 5' RACE. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Control of Bacteriophage T4 Tail Lysozyme Activity During the Infection Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanamaru, Shuji; Ishiwata, Yasutaka; Suzuki, Toshiharu

    2010-07-19

    Bacteriophage T4 has an efficient mechanism for injecting the host Escherichia coli cell with genomic DNA. Its gene product 5 (gp5) has a needle-like structure attached to the end of a tube through which the DNA passes on its way out of the head and into the host. The gp5 needle punctures the outer cell membrane and then digests the peptidoglycan cell wall in the periplasmic space. gp5 is normally post-translationally cleaved between residues 351 and 352. The function of this process in controlling the lysozyme activity of gp5 has now been investigated. When gp5 is over-expressed in E. coli,more » two mutants (S351H and S351A) showed a reduction of cleavage products and five other mutants (S351L, S351K, S351Y, S351Q, and S351T) showed no cleavage. Furthermore, in a complementation assay at 20 C, the mutants that had no cleavage of gp5 produced a reduced number of plaques compared to wild-type T4. The crystal structure of the non-cleavage phenotype mutant of gp5, S351L, complexed with gene product 27, showed that the 18 residues in the vicinity of the potential cleavage site (disordered in the wild-type structure) had visible electron density. The polypeptide around the potential cleavage site is exposed, thus allowing access for an E. coli protease. The lysozyme activity is inhibited in the wild-type structure by a loop from the adjacent gp5 monomer that binds into the substrate-binding site. The same inhibition is apparent in the mutant structure, showing that the lysozyme is inhibited before gp5 is cleaved and, presumably, the lysozyme is activated only after gp5 has penetrated the outer membrane.« less

  3. Cloning and identification of bacteriophage T4 gene 2 product gp2 and action of gp2 on infecting DNA in vivo.

    PubMed Central

    Lipinska, B; Rao, A S; Bolten, B M; Balakrishnan, R; Goldberg, E B

    1989-01-01

    We sequenced bacteriophage T4 genes 2 and 3 and the putative C-terminal portion of gene 50. They were found to have appropriate open reading frames directed counterclockwise on the T4 map. Mutations in genes 2 and 64 were shown to be in the same open reading frame, which we now call gene 2. This gene codes for a protein of 27,068 daltons. The open reading frame corresponding to gene 3 codes for a protein of 20,634 daltons. Appropriate bands on polyacrylamide gels were identified at 30 and 20 kilodaltons, respectively. We found that the product of the cloned gene 2 can protect T4 DNA double-stranded ends from exonuclease V action. Images PMID:2644202

  4. Functional analysis of the bacteriophage T4 DNA-packaging ATPase motor.

    PubMed

    Mitchell, Michael S; Rao, Venigalla B

    2006-01-06

    Packaging of double-stranded DNA into bacteriophage capsids is driven by one of the most powerful force-generating motors reported to date. The phage T4 motor is constituted by gene product 16 (gp16) (18 kDa; small terminase), gp17 (70 kDa; large terminase), and gp20 (61 kDa; dodecameric portal). Extensive sequence alignments revealed that numerous phage and viral large terminases encode a common Walker-B motif in the N-terminal ATPase domain. The gp17 motif consists of a highly conserved aspartate (Asp255) preceded by four hydrophobic residues (251MIYI254), which are predicted to form a beta-strand. Combinatorial mutagenesis demonstrated that mutations that compromised hydrophobicity, or integrity of the beta-strand, resulted in a null phenotype, whereas certain changes in hydrophobicity resulted in cs/ts phenotypes. No substitutions, including a highly conservative glutamate, are tolerated at the conserved aspartate. Biochemical analyses revealed that the Asp255 mutants showed no detectable in vitro DNA packaging activity. The purified D255E, D255N, D255T, D255V, and D255E/E256D mutant proteins exhibited defective ATP binding and very low or no gp16-stimulated ATPase activity. The nuclease activity of gp17 is, however, retained, albeit at a greatly reduced level. These data define the N-terminal ATPase center in terminases and show for the first time that subtle defects in the ATP-Mg complex formation at this center lead to a profound loss of phage DNA packaging.

  5. M13 bacteriophage displaying DOPA on surfaces: fabrication of various nanostructured inorganic materials without time-consuming screening processes.

    PubMed

    Park, Joseph P; Do, Minjae; Jin, Hyo-Eon; Lee, Seung-Wuk; Lee, Haeshin

    2014-01-01

    M13 bacteriophage (phage) was engineered for the use as a versatile template for preparing various nanostructured materials via genetic engineering coupled to enzymatic chemical conversions. First, we engineered the M13 phage to display TyrGluGluGlu (YEEE) on the pVIII coat protein and then enzymatically converted the Tyr residue to 3,4-dihydroxyl-l-phenylalanine (DOPA). The DOPA-displayed M13 phage could perform two functions: assembly and nucleation. The engineered phage assembles various noble metals, metal oxides, and semiconducting nanoparticles into one-dimensional arrays. Furthermore, the DOPA-displayed phage triggered the nucleation and growth of gold, silver, platinum, bimetallic cobalt-platinum, and bimetallic iron-platinum nanowires. This versatile phage template enables rapid preparation of phage-based prototype devices by eliminating the screening process, thus reducing effort and time.

  6. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  7. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-10-20

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  8. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-11-03

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  9. Bacteriophages as scaffolds for bipartite display: designing swiss army knives on a nanoscale.

    PubMed

    Molek, Peter; Bratkovič, Tomaž

    2015-03-18

    Bacteriophages have been exploited as cloning vectors and display vehicles for decades owing to their genetic and structural simplicity. In bipartite display setting, phage takes on the role of a handle to which two modules are attached, each endowing it with specific functionality, much like the Swiss army knife. This concept offers unprecedented potential for phage applications in nanobiotechnology. Here, we compare common phage display platforms and discuss approaches to simultaneously append two or more different (poly)peptides or synthetic compounds to phage coat using genetic fusions, chemical or enzymatic conjugations, and in vitro noncovalent decoration techniques. We also review current reports on design of phage frameworks to link multiple effectors, and their use in diverse scientific disciplines. Bipartite phage display had left its mark in development of biosensors, vaccines, and targeted delivery vehicles. Furthermore, multifunctionalized phages have been utilized to template assembly of inorganic materials and protein complexes, showing promise as scaffolds in material sciences and structural biology, respectively.

  10. Specificity of interactions among the DNA-packaging machine components of T4-related bacteriophages.

    PubMed

    Gao, Song; Rao, Venigalla B

    2011-02-04

    Tailed bacteriophages use powerful molecular motors to package the viral genome into a preformed capsid. Packaging at a rate of up to ∼2000 bp/s and generating a power density twice that of an automobile engine, the phage T4 motor is the fastest and most powerful reported to date. Central to DNA packaging are dynamic interactions among the packaging components, capsid (gp23), portal (gp20), motor (gp17, large "terminase"), and regulator (gp16, small terminase), leading to precise orchestration of the packaging process, but the mechanisms are poorly understood. Here we analyzed the interactions between small and large terminases of T4-related phages. Our results show that the gp17 packaging ATPase is maximally stimulated by homologous, but not heterologous, gp16. Multiple interaction sites are identified in both gp16 and gp17. The specificity determinants in gp16 are clustered in the diverged N- and C-terminal domains (regions I-III). Swapping of diverged region(s), such as replacing C-terminal RB49 region III with that of T4, switched ATPase stimulation specificity. Two specificity regions, amino acids 37-52 and 290-315, are identified in or near the gp17-ATPase "transmission" subdomain II. gp16 binding at these sites might cause a conformational change positioning the ATPase-coupling residues into the catalytic pocket, triggering ATP hydrolysis. These results lead to a model in which multiple weak interactions between motor and regulator allow dynamic assembly and disassembly of various packaging complexes, depending on the functional state of the packaging machine. This might be a general mechanism for regulation of the phage packaging machine and other complex molecular machines.

  11. Simultaneous display of two large proteins on the head and tail of bacteriophage lambda

    PubMed Central

    2013-01-01

    Background Consistent progress in the development of bacteriophage lambda display platform as an alternative to filamentous phage display system was achieved in the recent years. The lambda phage has been engineered to display efficiently multiple copies of peptides or even large protein domains providing a powerful tool for screening libraries of peptides, proteins and cDNA. Results In the present work we describe an original method for dual display of large proteins on the surface of lambda particles. An anti-CEA single-chain antibody fragment and green fluorescent protein or alkaline phosphatase were simultaneously displayed by engineering both gpD and gpV lambda proteins. Conclusions Here we show that such modified phage particles can be used for the detection of target molecules in vitro and in vivo. Dual expression of functional moieties on the surface of the lambda phage might open the way to generation of a new class of diagnostic and therapeutic targeted nanoparticles. PMID:24073829

  12. Simultaneous display of two large proteins on the head and tail of bacteriophage lambda.

    PubMed

    Pavoni, Emiliano; Vaccaro, Paola; D'Alessio, Valeria; De Santis, Rita; Minenkova, Olga

    2013-09-30

    Consistent progress in the development of bacteriophage lambda display platform as an alternative to filamentous phage display system was achieved in the recent years. The lambda phage has been engineered to display efficiently multiple copies of peptides or even large protein domains providing a powerful tool for screening libraries of peptides, proteins and cDNA. In the present work we describe an original method for dual display of large proteins on the surface of lambda particles. An anti-CEA single-chain antibody fragment and green fluorescent protein or alkaline phosphatase were simultaneously displayed by engineering both gpD and gpV lambda proteins. Here we show that such modified phage particles can be used for the detection of target molecules in vitro and in vivo. Dual expression of functional moieties on the surface of the lambda phage might open the way to generation of a new class of diagnostic and therapeutic targeted nanoparticles.

  13. A general insert label for peptide display on chimeric filamentous bacteriophages.

    PubMed

    Kaplan, Gilad; Gershoni, Jonathan M

    2012-01-01

    The foreign insert intended to be displayed via recombinant phage proteins can have a negative effect on protein expression and phage assembly. A typical example is the case of display of peptides longer than 6 amino acid residues on the major coat protein, protein VIII of the filamentous bacteriophages M13 and fd. A solution to this problem has been the use of "two-gene systems" generating chimeric phages that concomitantly express wild-type protein VIII along with recombinant protein VIII. Although the two-gene systems are much more permissive in regard to insert length and composition, some cases can still adversely affect phage assembly. Although these phages genotypically contain the desired DNA of the insert, they appear to be phenotypically wild type. To avoid false-negative results when using chimeric phages in binding studies, it is necessary to confirm that the observed lack of phage recognition is not due to faulty assembly and display of the intended insert. Here we describe a strategy for generating antibodies that specifically recognize recombinant protein VIII regardless of the nature of its foreign insert. These antibodies can be used as a general monitor of the display of recombinant protein VIII into phage particles. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Differential bacteriophage mortality on exposure to copper.

    PubMed

    Li, Jinyu; Dennehy, John J

    2011-10-01

    Many studies report that copper can be used to control microbial growth, including that of viruses. We determined the rates of copper-mediated inactivation for a wide range of bacteriophages. We used two methods to test the effect of copper on bacteriophage survival. One method involved placing small volumes of bacteriophage lysate on copper and stainless steel coupons. Following exposure, metal coupons were rinsed with lysogeny broth, and the resulting fluid was serially diluted and plated on agar with the corresponding bacterial host. The second method involved adding copper sulfate (CuSO(4)) to bacteriophage lysates to a final concentration of 5 mM. Aliquots were removed from the mixture, serially diluted, and plated with the appropriate bacterial host. Significant mortality was observed among the double-stranded RNA (dsRNA) bacteriophages Φ6 and Φ8, the single-stranded RNA (ssRNA) bacteriophage PP7, the ssDNA bacteriophage ΦX174, and the dsDNA bacteriophage PM2. However, the dsDNA bacteriophages PRD1, T4, and λ were relatively unaffected by copper. Interestingly, lipid-containing bacteriophages were most susceptible to copper toxicity. In addition, in the first experimental method, the pattern of bacteriophage Φ6 survival over time showed a plateau in mortality after lysates dried out. This finding suggests that copper's effect on bacteriophage is mediated by the presence of water.

  15. Cloning and expression of autogenes encoding RNA poly,erases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  16. Complete Genome Sequence of the Broad-Host-Range Vibriophage KVP40: Comparative Genomics of a T4-Related Bacteriophage

    PubMed Central

    Miller, Eric S.; Heidelberg, John F.; Eisen, Jonathan A.; Nelson, William C.; Durkin, A. Scott; Ciecko, Ann; Feldblyum, Tamara V.; White, Owen; Paulsen, Ian T.; Nierman, William C.; Lee, Jong; Szczypinski, Bridget; Fraser, Claire M.

    2003-01-01

    The complete genome sequence of the T4-like, broad-host-range vibriophage KVP40 has been determined. The genome sequence is 244,835 bp, with an overall G+C content of 42.6%. It encodes 386 putative protein-encoding open reading frames (CDSs), 30 tRNAs, 33 T4-like late promoters, and 57 potential rho-independent terminators. Overall, 92.1% of the KVP40 genome is coding, with an average CDS size of 587 bp. While 65% of the CDSs were unique to KVP40 and had no known function, the genome sequence and organization show specific regions of extensive conservation with phage T4. At least 99 KVP40 CDSs have homologs in the T4 genome (Blast alignments of 45 to 68% amino acid similarity). The shared CDSs represent 36% of all T4 CDSs but only 26% of those from KVP40. There is extensive representation of the DNA replication, recombination, and repair enzymes as well as the viral capsid and tail structural genes. KVP40 lacks several T4 enzymes involved in host DNA degradation, appears not to synthesize the modified cytosine (hydroxymethyl glucose) present in T-even phages, and lacks group I introns. KVP40 likely utilizes the T4-type sigma-55 late transcription apparatus, but features of early- or middle-mode transcription were not identified. There are 26 CDSs that have no viral homolog, and many did not necessarily originate from Vibrio spp., suggesting an even broader host range for KVP40. From these latter CDSs, an NAD salvage pathway was inferred that appears to be unique among bacteriophages. Features of the KVP40 genome that distinguish it from T4 are presented, as well as those, such as the replication and virion gene clusters, that are substantially conserved. PMID:12923095

  17. Complete genome sequence of IME15, the first T7-like bacteriophage lytic to pan-antibiotic-resistant Stenotrophomonas maltophilia.

    PubMed

    Huang, Yong; Fan, Huahao; Pei, Guangqian; Fan, Hang; Zhang, Zhiyi; An, Xiaoping; Mi, Zhiqiang; Shi, Taoxing; Tong, Yigang

    2012-12-01

    T7-like bacteriophages are a class of virulent bacteriophages which have a clearer genetic background and smaller genomes than other phages. In addition, it grows faster and is easier to culture than other phages. At present, the numbers of available T7-like bacteriophage genomes and Stenotrophomonas maltophilia genomes are small, and IME15 is the first T7-like virulent Stenotrophomonas phage whose sequence has been reported. It shows effective lysis of S. maltophilia. Here we announce its complete genome, and major findings from its annotation are described.

  18. Template reporter bacteriophage platform and multiple bacterial detection assays based thereon

    NASA Technical Reports Server (NTRS)

    Goodridge, Lawrence (Inventor)

    2007-01-01

    The invention is a method for the development of assays for the simultaneous detection of multiple bacteria. A bacteria of interest is selected. A host bacteria containing plasmid DNA from a T even bacteriophage that infects the bacteria of interest is infected with T4 reporter bacteriophage. After infection, the progeny bacteriophage are plating onto the bacteria of interest. The invention also includes single-tube, fast and sensitive assays which utilize the novel method.

  19. Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor.

    PubMed

    Migliori, Amy D; Keller, Nicholas; Alam, Tanfis I; Mahalingam, Marthandan; Rao, Venigalla B; Arya, Gaurav; Smith, Douglas E

    2014-06-17

    How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force and higher frequency of pauses and slips. We further show that the measured impairments correlate with computed changes in free-energy differences between the two states. These findings support the proposed structural mechanism and further suggest an energy landscape model of motor activity that couples the free-energy profile of motor conformational states with that of the ATP hydrolysis cycle.

  20. Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor

    NASA Astrophysics Data System (ADS)

    Migliori, Amy D.; Keller, Nicholas; Alam, Tanfis I.; Mahalingam, Marthandan; Rao, Venigalla B.; Arya, Gaurav; Smith, Douglas E.

    2014-06-01

    How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force and higher frequency of pauses and slips. We further show that the measured impairments correlate with computed changes in free-energy differences between the two states. These findings support the proposed structural mechanism and further suggest an energy landscape model of motor activity that couples the free-energy profile of motor conformational states with that of the ATP hydrolysis cycle.

  1. Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor

    PubMed Central

    Migliori, Amy D.; Keller, Nicholas; Alam, Tanfis I.; Mahalingam, Marthandan; Rao, Venigalla B.; Arya, Gaurav; Smith, Douglas E

    2014-01-01

    How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here, we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force, and higher frequency of pauses and slips. We further show that the measured impairments correlate with computed changes in free energy differences between the two states. These findings support the proposed structural mechanism and further suggest an energy landscape model of motor activity that couples the free energy profile of motor conformational states with that of the ATP hydrolysis cycle. PMID:24937091

  2. Antibody modified gold nanoparticles for fast and selective, colorimetric T7 bacteriophage detection.

    PubMed

    Lesniewski, Adam; Los, Marcin; Jonsson-Niedziółka, Martin; Krajewska, Anna; Szot, Katarzyna; Los, Joanna M; Niedziolka-Jonsson, Joanna

    2014-04-16

    Herein, we report a colorimetric immunosensor for T7 bacteriophage based on gold nanoparticles modified with covalently bonded anti-T7 antibodies. The new immunosensor allows for a fast, simple, and selective detection of T7 virus. T7 virions form immunological complexes with the antibody modified gold nanoparticles which causes them to aggregate. The aggregation can be observed with the naked eye as a color change from red to purple, as well as with a UV-vis spectrophotometer. The aggregate formation was confirmed with SEM imaging. Sensor selectivity against the M13 bacteriophage was demonstrated. The limit of detection (LOD) is 1.08 × 10(10) PFU/mL (18 pM) T7. The new method was compared with a traditional plaque test. In contrast to biological tests the colorimetric method allows for detection of all T7 phages, not only those biologically active. This includes phage ghosts and fragments of virions. T7 virus has been chosen as a model organism for adenoviruses. The described method has several advantages over the traditional ones. It is much faster than a standard plaque test. It is more robust since no bacteria-virus interactions are utilized in the detection process. Since antibodies are available for a large variety of pathogenic viruses, the described concept is very flexible and can be adapted to detect many different viruses, not only bacteriophages. Contrary to the classical immunoassays, it is a one-step detection method, and no additional amplification, e.g., enzymatic, is needed to read the result.

  3. Architecture of the bacteriophage T4 activator MotA/promoter DNA interaction during sigma appropriation.

    PubMed

    Hsieh, Meng-Lun; James, Tamara D; Knipling, Leslie; Waddell, M Brett; White, Stephen; Hinton, Deborah M

    2013-09-20

    Gene expression can be regulated through factors that direct RNA polymerase to the correct promoter sequence at the correct time. Bacteriophage T4 controls its development in this way using phage proteins that interact with host RNA polymerase. Using a process called σ appropriation, the T4 co-activator AsiA structurally remodels the σ(70) subunit of host RNA polymerase, while a T4 activator, MotA, engages the C terminus of σ(70) and binds to a DNA promoter element, the MotA box. Structures for the N-terminal (NTD) and C-terminal (CTD) domains of MotA are available, but no structure exists for MotA with or without DNA. We report the first molecular map of the MotA/DNA interaction within the σ-appropriated complex, which we obtained by using the cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). We conjugated surface-exposed, single cysteines in MotA with FeBABE and performed cleavage reactions in the context of stable transcription complexes. The DNA cleavage sites were analyzed using ICM Molsoft software and three-dimensional physical models of MotA(NTD), MotA(CTD), and the DNA to investigate shape complementarity between the protein and the DNA and to position MotA on the DNA. We found that the unusual "double wing" motif present within MotA(CTD) resides in the major groove of the MotA box. In addition, we have used surface plasmon resonance to show that MotA alone is in a very dynamic equilibrium with the MotA element. Our results demonstrate the utility of fine resolution FeBABE mapping to determine the architecture of protein-DNA complexes that have been recalcitrant to traditional structure analyses.

  4. Cell-adhesive RGD peptide-displaying M13 bacteriophage/PLGA nanofiber matrices for growth of fibroblasts.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Linhua; Kim, Min Jeong; Oh, Jin-Woo; Kim, Tai Wan; Han, Dong-Wook

    2014-01-01

    M13 bacteriophages can be readily fabricated as nanofibers due to non-toxic bacterial virus with a nanofiber-like shape. In the present study, we prepared hybrid nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 bacteriophages which were genetically modified to display the RGD peptide on their surface (RGD-M13 phage). The surface morphology and chemical composition of hybrid nanofiber matrices were characterized by scanning electron microscopy (SEM) and Raman spectroscopy, respectively. Immunofluorescence staining was conducted to investigate the existence of M13 bacteriophages in RGD-M13 phage/PLGA hybrid nanofibers. In addition, the attachment and proliferation of three different types of fibroblasts on RGD-M13 phage/PLGA nanofiber matrices were evaluated to explore how fibroblasts interact with these matrices. SEM images showed that RGD-M13 phage/PLGA hybrid matrices had the non-woven porous structure, quite similar to that of natural extracellular matrices, having an average fiber diameter of about 190 nm. Immunofluorescence images and Raman spectra revealed that RGD-M13 phages were homogeneously distributed in entire matrices. Moreover, the attachment and proliferation of fibroblasts cultured on RGD-M13 phage/PLGA matrices were significantly enhanced due to enriched RGD moieties on hybrid matrices. These results suggest that RGD-M13 phage/PLGA matrices can be efficiently used as biomimetic scaffolds for tissue engineering applications.

  5. Response of bacteriophage T7 biological dosimeter to dehydration and extraterrestrial solar UV radiation

    NASA Astrophysics Data System (ADS)

    Hegedüs, M.; Fekete, A.; Módos, K.; Kovács, G.; Rontó, Gy.; Lammer, H.; Panitz, C.

    2007-02-01

    The experiment "Phage and uracil response" (PUR) will be accommodated in the EXPOSE facility of the ISS. Bacteriophage T7/isolated T7 DNA will be exposed to different subsets of extreme environmental parameters in space, in order to study the Responses of Organisms to the Space Environment (ROSE). Launch into orbit is preceded by EXPOSE Experiment Verification Tests (EVT) to optimize the methods and the evaluation. Bacteriophage T7/isolated T7 DNA thin layers were exposed to vacuum ( 10-6Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well as in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated. The effect of temperature fluctuation in vacuum was also studied. The structural/chemical effects on bacteriophage T7/isolated T7 DNA were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum and in the electrophoretic pattern of phage/DNA have been detected indicating the damage of isolated and intraphage DNA. DNA damage was also determined by quantitative PCR (QPCR) using 555 and 3826 bp fragments of T7 DNA. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, cyclobutane pirimidine dimers (CPDs) etc.) accumulate throughout exposure. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target.

  6. Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage

    PubMed Central

    Qimron, Udi; Marintcheva, Boriana; Tabor, Stanley; Richardson, Charles C.

    2006-01-01

    Use of bacteriophages as a therapy for bacterial infection has been attempted over the last century. Such an endeavor requires the elucidation of basic aspects of the host–virus interactions and the resistance mechanisms of the host. Two recently developed bacterial collections now enable a genomewide search of the genetic interactions between Escherichia coli and bacteriophages. We have screened >85% of the E. coli genes for their ability to inhibit growth of T7 phage and >90% of the host genes for their ability to be used by the virus. In addition to identifying all of the known interactions, several other interactions have been identified. E. coli CMP kinase is essential for T7 growth, whereas overexpression of the E. coli uridine/cytidine kinase inhibits T7 growth. Mutations in any one of nine genes that encode enzymes for the synthesis of the E. coli lipopolysaccharide receptor for T7 adsorption leads to T7 resistance. Selection of T7 phage that can recognize these altered receptors has enabled the construction of phage to which the host is 100-fold less resistant. PMID:17135349

  7. Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates.

    PubMed

    Marinelli, Laura J; Fitz-Gibbon, Sorel; Hayes, Clarmyra; Bowman, Charles; Inkeles, Megan; Loncaric, Anya; Russell, Daniel A; Jacobs-Sera, Deborah; Cokus, Shawn; Pellegrini, Matteo; Kim, Jenny; Miller, Jeff F; Hatfull, Graham F; Modlin, Robert L

    2012-01-01

    Investigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (>85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne. Propionibacterium acnes is a dominant member of the skin microflora and has also been implicated in the pathogenesis of acne; however, little is known about the bacteriophages that coexist with and infect this bacterium. Here we present the novel genome sequences of 11 P. acnes phages, thereby substantially increasing the amount of available genomic information about this phage population

  8. [Preparation and activity validation of PP7 bacteriophage-like particles displaying PAP114-128 peptide].

    PubMed

    Sun, Yanli; Sun, Yanhua

    2016-10-01

    Objective To obtain the PP7 bacteriophage-like particles carrying the peptide of prostatic acid phosphatase PAP 114-128 , and prove that they retain the original biological activity. Methods First, the plasmid pETDuet-2PP7 was constructed as follows: the gene of PP7 coat protein dimer was amplified by gene mutation combined with overlapping PCR technology, and inserted into the vector pETDuet-1. Following that, the plasmid pETDuet-2PP7-PAP 114-128 was constructed as follows: the PP7 coat protein gene carrying the coding gene of PAP 114-128 peptide was amplified using PCR, and then inserted into the vector pETDuet-2PP7. Both pETDuet-2PP7 and pETDuet-2PP7-PAP 114-128 were transformed into E.coli and expressed. The expression product was verified by SDS-PAGE, double immunodiffusion assay and ELISA. Results The gene fragment of PP7 coat protein dimer was obtained by overlapping PCR using Ex Taq DNA polymerase, and the antigenicity of its expression product was the same as that of the coat protein of wild-type PP7 bacteriophage. Moreover, the PAP 114-128 peptide epitope that was displayed on the surface of PP7 bacteriophage was identical with the corresponding epitope of natural human PAP, and it was able to induce high levels of antibodies. Conclusion The gene of PP7 coat protein dimer with repeated sequences can be prepared by gene mutation combined with overlapping PCR. Based on this, PP7 bacteriophage-like particles carrying PAP peptide can be prepared, which not only solves the problem of the instability of the peptides, but also lays a foundation for the study on their delivery and function.

  9. Complete genome sequence of 285P, a novel T7-like polyvalent E. coli bacteriophage.

    PubMed

    Xu, Bin; Ma, Xiangyu; Xiong, Hongyan; Li, Yafei

    2014-06-01

    Bacteriophages are considered potential biological agents for the control of infectious diseases and environmental disinfection. Here, we describe a novel T7-like polyvalent Escherichia coli bacteriophage, designated "285P," which can lyse several strains of E. coli. The genome, which consists of 39,270 base pairs with a G+C content of 48.73 %, was sequenced and annotated. Forty-three potential open reading frames were identified using bioinformatics tools. Based on whole-genome sequence comparison, phage 285P was identified as a novel strain of subgroup T7. It showed strongest sequence similarity to Kluyvera phage Kvp1. The phylogenetic analyses of both non-structural proteins (endonuclease gp3, amidase gp3.5, DNA primase/helicase gp4, DNA polymerase gp5, and exonuclease gp6) and structural protein (tail fiber protein gp17) led to the identification of 285P as T7-like phage. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analyses verified the annotation of the structural proteins (major capsid protein gp10a, tail protein gp12, and tail fiber protein gp17).

  10. The rational design of a 'type 88' genetically stable peptide display vector in the filamentous bacteriophage fd.

    PubMed

    Enshell-Seijffers, D; Smelyanski, L; Gershoni, J M

    2001-05-15

    Filamentous bacteriophages are particularly efficient for the expression and display of combinatorial random peptides. Two phage proteins are often employed for peptide display: the infectivity protein, PIII, and the major coat protein, PVIII. The use of PVIII typically requires the expression of two pVIII genes: the wild-type and the recombinant pVIII gene, to generate mosaic phages. 'Type 88' vectors contain two pVIII genes in one phage genome. In this study a novel 'type 88' expression vector has been rationally designed and constructed. Two factors were taken into account: the insertion site and the genetic stability of the second pVIII gene. It was found that selective deletion of recombinant genes was encountered when inserts were cloned into either of the two non-coding regions of the phage genome. The deletions were independent of recA yet required a functional F-episome. Transcription was also found to be a positive factor for deletion. Taking the above into account led to the generation of a novel vector, designated fth1, which can be used to express recombinant peptides as pVIII chimeric proteins in mosaic bacteriophages. The fth1 vector is not only genetically stable but also of high copy number and produces high titers of recombinant phages.

  11. The Structure of Gene Product 6 of Bacteriophage T4, the Hinge-Pin of the Baseplate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksyuk, Anastasia A.; Leiman, Petr G.; Shneider, Mikhail M.

    2009-07-21

    The baseplate of bacteriophage T4 is a multicomponent protein complex, which controls phage attachment to the host. It assembles from six wedges and a central hub. During infection the baseplate undergoes a large conformational change from a dome-shaped to a flat, star-shaped structure. We report the crystal structure of the C-terminal half of gene product (gp) 6 and investigate its motion with respect to the other proteins during the baseplate rearrangement. Six gp6 dimers interdigitate, forming a ring that maintains the integrity of the baseplate in both conformations. One baseplate wedge contains an N-terminal dimer of gp6, whereas neighboring wedgesmore » are tied together through the C-terminal dimer of gp6. The dimeric interactions are preserved throughout the rearrangement of the baseplate. However, the hinge angle between the N- and C-terminal parts of gp6 changes by {approx}15{sup o}, accounting for a 10 {angstrom} radial increase in the diameter of the gp6 ring.« less

  12. Structure-function analysis of the DNA translocating portal of the bacteriophage T4 packaging machine.

    PubMed

    Padilla-Sanchez, Victor; Gao, Song; Kim, Hyung Rae; Kihara, Daisuke; Sun, Lei; Rossmann, Michael G; Rao, Venigalla B

    2014-03-06

    Tailed bacteriophages and herpesviruses consist of a structurally well conserved dodecameric portal at a special 5-fold vertex of the capsid. The portal plays critical roles in head assembly, genome packaging, neck/tail attachment, and genome ejection. Although the structures of portals from phages φ29, SPP1, and P22 have been determined, their mechanistic roles have not been well understood. Structural analysis of phage T4 portal (gp20) has been hampered because of its unusual interaction with the Escherichia coli inner membrane. Here, we predict atomic models for the T4 portal monomer and dodecamer, and we fit the dodecamer into the cryo-electron microscopy density of the phage portal vertex. The core structure, like that from other phages, is cone shaped with the wider end containing the "wing" and "crown" domains inside the phage head. A long "stem" encloses a central channel, and a narrow "stalk" protrudes outside the capsid. A biochemical approach was developed to analyze portal function by incorporating plasmid-expressed portal protein into phage heads and determining the effect of mutations on head assembly, DNA translocation, and virion production. We found that the protruding loops of the stalk domain are involved in assembling the DNA packaging motor. A loop that connects the stalk to the channel might be required for communication between the motor and the portal. The "tunnel" loops that project into the channel are essential for sealing the packaged head. These studies established that the portal is required throughout the DNA packaging process, with different domains participating at different stages of genome packaging. © 2013.

  13. Structure-Function Analysis of the DNA Translocating Portal of the Bacteriophage T4 Packaging Machine

    PubMed Central

    Padilla-Sanchez, Victor; Gao, Song; Kim, Hyung Rae; Kihara, Daisuke; Sun, Lei; Rossmann, Michael G.; Rao, Venigalla B.

    2013-01-01

    Tailed bacteriophages and herpesviruses consist of a structurally well conserved dodecameric portal at a special five-fold vertex of the capsid. The portal plays critical roles in head assembly, genome packaging, neck/tail attachment, and genome ejection. Although the structures of portals from phages φ29, SPP1 and P22 have been determined, their mechanistic roles have not been well understood. Structural analysis of phage T4 portal (gp20) has been hampered because of its unusual interaction with the E. coli inner membrane. Here, we predict atomic models for the T4 portal monomer and dodecamer, and fit the dodecamer into the cryoEM density of the phage portal vertex. The core structure, like that from other phages, is cone-shaped with the wider end containing the “wing” and “crown” domains inside the phage head. A long “stem” encloses a central channel, and a narrow “stalk” protrudes outside the capsid. A biochemical approach was developed to analyze portal function by incorporating plasmid-expressed portal protein into phage heads and determining the effect of mutations on head assembly, DNA translocation, and virion production. We found that the protruding loops of the stalk domain are involved in assembling the DNA packaging motor. A loop that connects the stalk to the channel might be required for communication between the motor and portal. The “tunnel” loops that project into the channel are essential for sealing the packaged head. These studies established that the portal is required throughout the DNA packaging process, with different domains participating at different stages of genome packaging. PMID:24126213

  14. Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Siyang; Gao, Song; Kondabagil, Kiran

    2012-04-04

    Tailed DNA bacteriophages assemble empty procapsids that are subsequently filled with the viral genome by means of a DNA packaging machine situated at a special fivefold vertex. The packaging machine consists of a 'small terminase' and a 'large terminase' component. One of the functions of the small terminase is to initiate packaging of the viral genome, whereas the large terminase is responsible for the ATP-powered translocation of DNA. The small terminase subunit has three domains, an N-terminal DNA-binding domain, a central oligomerization domain, and a C-terminal domain for interacting with the large terminase. Here we report structures of the centralmore » domain in two different oligomerization states for a small terminase from the T4 family of phages. In addition, we report biochemical studies that establish the function for each of the small terminase domains. On the basis of the structural and biochemical information, we propose a model for DNA packaging initiation.« less

  15. Capture and detection of T7 bacteriophages on a nanostructured interface.

    PubMed

    Han, Jin-Hee; Wang, Min S; Das, Jayanti; Sudheendra, L; Vonasek, Erica; Nitin, Nitin; Kennedy, Ian M

    2014-04-09

    A highly ordered array of T7 bacteriophages was created by the electrophoretic capture of phages onto a nanostructured array with wells that accommodated the phages. Electrophoresis of bacteriophages was achieved by applying a positive potential on an indium tin oxide electrode at the bottom of the nanowells. Nanoscale arrays of phages with different surface densities were obtained by changing the electric field applied to the bottom of the nanowells. The applied voltage was shown to be the critical factor in generating a well-ordered phage array. The number of wells occupied by a phage, and hence the concentration of phages in a sample solution, could be quantified by using a DNA intercalating dye that rapidly stains the T7 phage. The fluorescence signal was enhanced by the intrinsic photonic effect made available by the geometry of the platform. It was shown that the quantification of phages on the array was 6 orders of magnitude better than could be obtained with a fluorescent plate reader. The device opens up the possibility that phages can be detected directly without enrichment or culturing, and by detecting phages that specifically infect bacteria of interest, rapid pathogen detection becomes possible.

  16. Capture and Detection of T7 Bacteriophages on a Nanostructured Interface

    PubMed Central

    2015-01-01

    A highly ordered array of T7 bacteriophages was created by the electrophoretic capture of phages onto a nanostructured array with wells that accommodated the phages. Electrophoresis of bacteriophages was achieved by applying a positive potential on an indium tin oxide electrode at the bottom of the nanowells. Nanoscale arrays of phages with different surface densities were obtained by changing the electric field applied to the bottom of the nanowells. The applied voltage was shown to be the critical factor in generating a well-ordered phage array. The number of wells occupied by a phage, and hence the concentration of phages in a sample solution, could be quantified by using a DNA intercalating dye that rapidly stains the T7 phage. The fluorescence signal was enhanced by the intrinsic photonic effect made available by the geometry of the platform. It was shown that the quantification of phages on the array was 6 orders of magnitude better than could be obtained with a fluorescent plate reader. The device opens up the possibility that phages can be detected directly without enrichment or culturing, and by detecting phages that specifically infect bacteria of interest, rapid pathogen detection becomes possible. PMID:24650205

  17. Bacteriophages of Gordonia spp. Display a Spectrum of Diversity and Genetic Relationships.

    PubMed

    Pope, Welkin H; Mavrich, Travis N; Garlena, Rebecca A; Guerrero-Bustamante, Carlos A; Jacobs-Sera, Deborah; Montgomery, Matthew T; Russell, Daniel A; Warner, Marcie H; Hatfull, Graham F

    2017-08-15

    The global bacteriophage population is large, dynamic, old, and highly diverse genetically. Many phages are tailed and contain double-stranded DNA, but these remain poorly characterized genomically. A collection of over 1,000 phages infecting Mycobacterium smegmatis reveals the diversity of phages of a common bacterial host, but their relationships to phages of phylogenetically proximal hosts are not known. Comparative sequence analysis of 79 phages isolated on Gordonia shows these also to be diverse and that the phages can be grouped into 14 clusters of related genomes, with an additional 14 phages that are "singletons" with no closely related genomes. One group of six phages is closely related to Cluster A mycobacteriophages, but the other Gordonia phages are distant relatives and share only 10% of their genes with the mycobacteriophages. The Gordonia phage genomes vary in genome length (17.1 to 103.4 kb), percentage of GC content (47 to 68.8%), and genome architecture and contain a variety of features not seen in other phage genomes. Like the mycobacteriophages, the highly mosaic Gordonia phages demonstrate a spectrum of genetic relationships. We show this is a general property of bacteriophages and suggest that any barriers to genetic exchange are soft and readily violable. IMPORTANCE Despite the numerical dominance of bacteriophages in the biosphere, there is a dearth of complete genomic sequences. Current genomic information reveals that phages are highly diverse genomically and have mosaic architectures formed by extensive horizontal genetic exchange. Comparative analysis of 79 phages of Gordonia shows them to not only be highly diverse, but to present a spectrum of relatedness. Most are distantly related to phages of the phylogenetically proximal host Mycobacterium smegmatis , although one group of Gordonia phages is more closely related to mycobacteriophages than to the other Gordonia phages. Phage genome sequence space remains largely unexplored, but

  18. Screening of Pro-Asp Sequences Exposed on Bacteriophage M13 as an Ideal Anchor for Gold Nanocubes.

    PubMed

    Lee, Hwa Kyoung; Lee, Yujean; Kim, Hyori; Lee, Hye-Eun; Chang, Hyejin; Nam, Ki Tae; Jeong, Dae Hong; Chung, Junho

    2017-09-15

    Bacteriophages are thought to be ideal vehicles for linking antibodies to nanoparticles. Here, we define the sequence of peptides exposed as a fusion protein on M13 bacteriophages to yield optimal binding of gold nanocubes and efficient bacteriophage amplification. We generated five helper bacteriophage libraries using AE(X) 2 DP, AE(X) 3 DP, AE(X) 4 DP, AE(X) 5 DP, and AE(X) 6 DP as the exposed portion of pVIII, in which X was a randomized amino acid residue encoded by the nucleotide sequence NNK. Efficient phage amplification was achievable only in the AE(X) 2 DP, AE(X) 3 DP, and AE(X) 4 DP libraries. Through biopanning with gold nanocubes, we enriched the phage clones and selected the clone with the highest fold change after enrichment. This clone displayed Pro-Asp on the surface of the bacteriophage and had amplification yields similar to those of the wild-type helper bacteriophage (VCSM13). The clone displayed even binding of gold nanocubes along its length and minimal aggregation after binding. We conclude that, for efficient amplification, the exposed pVIII amino acid length should be limited to six residues and Ala-Glu-Pro-Asp-Asp-Pro (AEPDDP) is the ideal fusion protein sequence for guaranteeing the optimal formation of a complex with gold nanocubes.

  19. Microneedle-mediated transdermal bacteriophage delivery

    PubMed Central

    Ryan, Elizabeth; Garland, Martin J.; Singh, Thakur Raghu Raj; Bambury, Eoin; O’Dea, John; Migalska, Katarzyna; Gorman, Sean P.; McCarthy, Helen O.; Gilmore, Brendan F.; Donnelly, Ryan F.

    2012-01-01

    Interest in bacteriophages as therapeutic agents has recently been reawakened. Parenteral delivery is the most routinely-employed method of administration. However, injection of phages has numerous disadvantages, such as the requirement of a health professional for administration and the possibility of cross-contamination. Transdermal delivery offers one potential means of overcoming many of these problems. The present study utilized a novel poly (carbonate) (PC) hollow microneedle (MN) device for the transdermal delivery of Escherichia coli-specific T4 bacteriophages both in vitro and in vivo. MN successfully achieved bacteriophage delivery in vitro across dermatomed and full thickness skin. A concentration of 2.67 × 106 PFU/ml (plaque forming units per ml) was detected in the receiver compartment when delivered across dermatomed skin and 4.0 × 103 PFU/ml was detected in the receiver compartment when delivered across full thickness skin. An in vivo study resulted in 4.13 × 103 PFU/ml being detected in blood 30 min following initial MN-mediated phage administration. Clearance occurred rapidly, with phages being completely cleared from the systemic circulation within 24 h, which was expected in the absence of infection. We have shown here that MN-mediated delivery allows successful systemic phage absorption. Accordingly, bacteriophage-based therapeutics may now have an alternative route for systemic delivery. Once fully-investigated, this could lead to more widespread investigation of these interesting therapeutic viruses. PMID:22750416

  20. Structure of the Small Outer Capsid Protein, Soc: A Clamp for Stabilizing Capsids of T4-like Phages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Li; Fokine, Andrei; O'Donnell, Erin

    2010-07-22

    Many viruses need to stabilize their capsid structure against DNA pressure and for survival in hostile environments. The 9-kDa outer capsid protein (Soc) of bacteriophage T4, which stabilizes the virus, attaches to the capsid during the final stage of maturation. There are 870 Soc molecules that act as a 'glue' between neighboring hexameric capsomers, forming a 'cage' that stabilizes the T4 capsid against extremes of pH and temperature. Here we report a 1.9 {angstrom} resolution crystal structure of Soc from the bacteriophage RB69, a close relative of T4. The RB69 crystal structure and a homology model of T4 Soc weremore » fitted into the cryoelectron microscopy reconstruction of the T4 capsid. This established the region of Soc that interacts with the major capsid protein and suggested a mechanism, verified by extensive mutational and biochemical studies, for stabilization of the capsid in which the Soc trimers act as clamps between neighboring capsomers. The results demonstrate the factors involved in stabilizing not only the capsids of T4-like bacteriophages but also many other virus capsids.« less

  1. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    PubMed

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hoc protein regulates the biological effects of T4 phage in mammals.

    PubMed

    Dabrowska, Krystyna; Zembala, Maria; Boratynski, Janusz; Switala-Jelen, Kinga; Wietrzyk, Joanna; Opolski, Adam; Szczaurska, Katarzyna; Kujawa, Marek; Godlewska, Joanna; Gorski, Andrzej

    2007-06-01

    We previously investigated the biological, non-antibacterial effects of bacteriophage T4 in mammals (binding to cancer cells in vitro and attenuating tumour growth and metastases in vivo); we selected the phage mutant HAP1 that was significantly more effective than T4. In this study we describe a non-sense mutation in the hoc gene that differentiates bacteriophage HAP1 and its parental strain T4. We found no substantial effects of the mutation on the mutant morphology, and its effects on electrophoretic mobility and hydrodynamic size were moderate. Only the high ionic strength of the environment resulted in a size difference of about 10 nm between T4 and HAP1. We compared the antimetastatic activity of the T2 phage, which does not express protein Hoc, with those of T4 and HAP1 (B16 melanoma lung colonies). We found that HAP1 and T2 decreased metastases with equal effect, more strongly than did T4. We also investigated concentrations of T4 and HAP1 in the murine blood, tumour (B16), spleen, liver, or muscle. We found that HAP1 was rapidly cleared from the organism, most probably by the liver. Although HAP1 was previously defined to bind cancer cells more effectively (than T4), its rapid elimination precluded its higher concentration in tumours.

  3. Single substitution in bacteriophage T4 RNase H alters the ratio between its exo- and endonuclease activities.

    PubMed

    Kholod, Natalia; Sivogrivov, Dmitry; Latypov, Oleg; Mayorov, Sergey; Kuznitsyn, Rafail; Kajava, Andrey V; Shlyapnikov, Mikhail; Granovsky, Igor

    2015-11-01

    The article describes substitutions in bacteriophage T4 RNase H which provide so called das-effect. Phage T4 DNA arrest suppression (das) mutations have been described to be capable of partially suppressing the phage DNA arrest phenotype caused by a dysfunction in genes 46 and/or 47 (also known as Mre11/Rad50 complex). Genetic mapping of das13 (one of the das mutations) has shown it to be in the region of the rnh gene encoding RNase H. Here we report that Das13 mutant of RNase H has substitutions of valine 43 and leucine 242 with isoleucines. To investigate the influence of these mutations on RNase H nuclease properties we have designed a novel in vitro assay that allows us to separate and quantify exo- or endonuclease activities of flap endonuclease. The nuclease assay in vitro showed that V43I substitution increased the ratio between exonuclease/endonuclease activities of RNase H whereas L242I substitution did not affect the nuclease activity of RNase H in vitro. However, both mutations were necessary for the full das effect in vivo. Molecular modelling of the nuclease structure suggests that V43I substitution may lead to disposition of H4 helix, responsible for the interaction with the first base pairs of 5'end of branched DNA. These structural changes may affect unwinding of the first base pairs of gapped or nicked DNA generating a short flap and therefore may stabilize the DNA-enzyme complex. L242I substitution did not affect the structure of RNase H and its role in providing das-effect remains unclear. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes.

    PubMed

    Pei, Ruoting; Lamas-Samanamud, Gisella R

    2014-09-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Inhibition of Biofilm Formation by T7 Bacteriophages Producing Quorum-Quenching Enzymes

    PubMed Central

    Lamas-Samanamud, Gisella R.

    2014-01-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings. PMID:24951790

  6. Effects of Bacteriophage Supplementation on Egg Performance, Egg Quality, Excreta Microflora, and Moisture Content in Laying Hens

    PubMed Central

    Zhao, P. Y.; Baek, H. Y.; Kim, I. H.

    2012-01-01

    An experiment was conducted to evaluate the effects of bacteriophage supplementation on egg performance, egg quality, excreta microflora, and moisture content in laying hens. A total of 288 Hy-line brown commercial laying hens (36-wk-old) were randomly allotted to 4 treatments in this 6-wk trial and dietary treatments included: i) CON, basal diet; ii) T1, CON+0.020% bacteriophage; iii) T2, CON+0.035% bacteriophage; iv) T3, CON+0.050% bacteriophage. There were 6 replicates for each treatment with 6 adjacent cages (2 hens/cage). Laying hens in T2 and T3 treatments had higher (p<0.05) egg production than those in CON and T1 treatments during wk 0 to 3. In addition, egg production in T1, T2, and T3 treatments was increased (p<0.05) compared with that in CON treatment during wk 4 to 6. At wk 4 and 5, birds in T2 group had higher (p<0.05) HU than those in CON. In addition, at wk 5 and 6, HU in birds fed T1 and T3 diets was greater (p<0.05) than those fed CON diet. E. coli and Salmonella spp. concentrations in excreta were decreased (p<0.05) by T1, T2, and T3 treatments. However, egg weight, egg shell color, yolk height, yolk color unit, egg shell strength, egg shell thickness, egg gravity, and excreta moisture content were not influenced by dietary treatments during the entire experimental period. In conclusion, bacteriophage supplementation has beneficial effects on egg production, egg albumen, and excreta microflora concentration in laying hens. PMID:25049658

  7. Detection of Escherichia coli in drinking water using T7 bacteriophage-conjugated magnetic probe.

    PubMed

    Chen, Juhong; Alcaine, Samuel D; Jiang, Ziwen; Rotello, Vincent M; Nugen, Sam R

    2015-09-01

    In this study, we demonstrate a bacteriophage (phage)-based magnetic separation scheme for the rapid detection of Escherichia coli (E. coli) in drinking water. T7 phage is a lytic phage with a broad host range specificity for E. coli. Our scheme was as follows: (1) T7 bacteriophage-conjugated magnetic beads were used to capture and separate E. coli BL21 from drinking water; (2) subsequent phage-mediated lysis was used to release endemic β-galactosidase (β-gal) from the bound bacterial cells; (3) the release of β-gal was detected using chlorophenol red-β-d-galactopyranoside (CRPG), a colorimetric substrate which changes from yellow to red in the presence of β-gal. Using this strategy, we were able to detect E. coli at a concentration of 1 × 10(4) CFU·mL(-1) within 2.5 h. The specificity of the proposed magnetic probes toward E. coli was demonstrated against a background of competing bacteria. By incorporating a pre-enrichment step in Luria-Bertani (LB) broth supplemented with isopropyl β-d-thiogalactopyranoside (IPTG), we were able to detect 10 CFU·mL(-1) in drinking water after 6 h of pre-enrichment. The colorimetric change can be determined either by visual observation or with a reader, allowing for a simple, rapid quantification of E. coli in resource-limited settings.

  8. Genetic recombination induced by DNA double-strand break in bacteriophage T4: nature of the left/right bias.

    PubMed

    Shcherbakov, Victor P; Shcherbakova, Tamara; Plugina, Lidiya; Sizova, Svetlana; Kudryashova, Elena; Granovsky, Igor

    2008-06-01

    The experimental system combining double-strand breaks (DSBs), produced site-specifically by SegC endonuclease, with the famous advantages of the bacteriophage T4 rII mutant recombination analysis was used here to elucidate the origin of the recombination bias on two sides of the DSB, especially pronounced in gene 39 (topoisomerase II) and gene 59 (41-helicase loader) mutants. Three sources were found to contribute to the bias: (1) the SegC endonuclease may remain bound to the end of the broken DNA and thus protect it from exonuclease degradation; (2) in heteroduplex heterozygotes (HHs), arising as the recombinant products in the left-hand crosses, the transcribed strands are of rII mutant phenotype, so they, in contrast to the right-hand HHs, do not produce plaques on the lawn of the lambda-lysogenic host; and (3) the intrinsic polarity of T4 chromosome, reflected in transcription, may be a cause for discrimination of promoter-proximal and promoter-distal DNA sequences. It is shown that the apparent recombination bias does not imply one-sidedness of the DSB repair but just reflects a different depth of the end processing. It is inferred that the cause, underlying the "intrinsic" bias, might be interference between strand exchange and transcription. Topoisomerase and helicase functions are necessary to turn the process in favor of strand exchange. The idea is substantiated that the double-stranded to single-stranded DNA transition edge (not ss-DNA tip) serves as an actual recombinogenic element.

  9. M13 bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins.

    PubMed

    Hess, Gaelen T; Cragnolini, Juan J; Popp, Maximilian W; Allen, Mark A; Dougan, Stephanie K; Spooner, Eric; Ploegh, Hidde L; Belcher, Angela M; Guimaraes, Carla P

    2012-07-18

    We exploit bacterial sortases to attach a variety of moieties to the capsid proteins of M13 bacteriophage. We show that pIII, pIX, and pVIII can be functionalized with entities ranging from small molecules (e.g., fluorophores, biotin) to correctly folded proteins (e.g., GFP, antibodies, streptavidin) in a site-specific manner, and with yields that surpass those of any reported using phage display technology. A case in point is modification of pVIII. While a phage vector limits the size of the insert into pVIII to a few amino acids, a phagemid system limits the number of copies actually displayed at the surface of M13. Using sortase-based reactions, a 100-fold increase in the efficiency of display of GFP onto pVIII is achieved. Taking advantage of orthogonal sortases, we can simultaneously target two distinct capsid proteins in the same phage particle and maintain excellent specificity of labeling. As demonstrated in this work, this is a simple and effective method for creating a variety of structures, thus expanding the use of M13 for materials science applications and as a biological tool.

  10. Mass Spectrometry Immuno Assay (MSIA™) Streptavidin Disposable Automation Research Tips (D.A.R.T's®) Antibody Phage Display Biopanning.

    PubMed

    Chin, Chai Fung; Choong, Yee Siew; Lim, Theam Soon

    2018-01-01

    Antibody phage display has been widely established as the method of choice to generate monoclonal antibodies with various efficacies post hybridoma technology. This technique is a popular method which takes precedence over ease of methodology, time- and cost-savings with comparable outcomes to conventional methods. Phage display technology manipulates the genome of M13 bacteriophage to display large diverse collection of antibodies that is capable of binding to various targets (nucleic acids, peptides, proteins, and carbohydrates). This subsequently leads to the discovery of target-related antibody binders. There have been several different approaches adapted for antibody phage display over the years. This chapter focuses on the semi-automated phage display antibody biopanning method utilizing the MSIA™ streptavidin D.A.R.T's ® system. The system employs the use of electronic multichannel pipettes with predefined programs to carry out the panning process. The method should also be adaptable to larger liquid handling instrumentations for higher throughput.

  11. 33 CFR 165.T08-0080 - Safety Zone; Cincinnati Reds Fireworks Displays Ohio River, Mile 470.1-470.4, Cincinnati, OH.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fireworks Displays Ohio River, Mile 470.1-470.4, Cincinnati, OH. 165.T08-0080 Section 165.T08-0080... Displays Ohio River, Mile 470.1-470.4, Cincinnati, OH. (a) Location. The following area is a temporary safety zone: all waters of the Ohio River, surface to bottom, from mile 470.1 to mile 470.4 on the Ohio...

  12. [Determination of Azospirillum Brasilense Cells With Bacteriophages via Electrooptical Analysis of Microbial Suspensions].

    PubMed

    Gulii, O I; Karavayeva, O A; Pavlii, S A; Sokolov, O I; Bunin, V D; Ignatov, O V

    2015-01-01

    The dependence-of changes in the electrooptical properties of Azospirillum brasilense cell suspension Sp7 during interaction with bacteriophage ΦAb-Sp7 on the number and time of interactions was studied. Incubation of cells with bacteriophage significantly changed the electrooptical signal within one minute. The selective effect of bacteriophage ΦAb on 18 strains of bacteria of the genus Azospirillum was studied: A. amazonense Ami4, A. brasilense Sp7, Cd, Sp107, Sp245, Jm6B2, Brl4, KR77, S17, S27, SR55, SR75, A. halopraeferans Au4, A. irakense KBC1, K A3, A. lipoferum Sp59b, SR65 and RG20a. We determined the limit of reliable determination of microbial cells infected with bacteriophage: - 10(4) cells/mL. The presence of foreign cell cultures of E. coli B-878 and E. coli XL-1 did not complicate the detection of A brasilense Sp7 cells with the use of bacteriophage ΦAb-Sp7. The results demonstrated that bacteriophage (ΦAb-Sp7 can be used for the detection of Azospirillum microbial cells via t electrooptical analysis of cell suspensions.

  13. Bacteriophage T4 Infection of Stationary Phase E. coli: Life after Log from a Phage Perspective

    PubMed Central

    Bryan, Daniel; El-Shibiny, Ayman; Hobbs, Zack; Porter, Jillian; Kutter, Elizabeth M.

    2016-01-01

    Virtually all studies of phage infections investigate bacteria growing exponentially in rich media. In nature, however, phages largely encounter non-growing cells. Bacteria entering stationary phase often activate well-studied stress defense mechanisms that drastically alter the cell, facilitating its long-term survival. An understanding of phage-host interactions in such conditions is of major importance from both an ecological and therapeutic standpoint. Here, we show that bacteriophage T4 can efficiently bind to, infect and kill E. coli in stationary phase, both in the presence and absence of a functional stationary-phase sigma factor, and explore the response of T4-infected stationary phase cells to the addition of fresh nutrients 5 or 24 h after that infection. An unexpected new mode of response has been identified. “Hibernation” mode is a persistent but reversible dormant state in which the infected cells make at least some phage enzymes, but halt phage development until appropriate nutrients become available before producing phage particles. Our evidence indicates that the block in hibernation mode occurs after the middle-mode stage of phage development; host DNA breakdown and the incorporation of the released nucleotides into phage DNA indicate that the enzymes of the nucleotide synthesizing complex, under middle-mode control, have been made and assembled into a functional state. Once fresh glucose and amino acids become available, the standard lytic infection process rapidly resumes and concentrations of up to 1011 progeny phage (an average of about 40 phage per initially present cell) are produced. All evidence is consistent with the hibernation-mode control point lying between middle mode and late mode T4 gene expression. We have also observed a “scavenger” response, where the infecting phage takes advantage of whatever few nutrients are available to produce small quantities of progeny within 2 to 5 h after infection. The scavenger response seems

  14. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold

    PubMed Central

    Henry, Kevin A.; Arbabi-Ghahroudi, Mehdi; Scott, Jamie K.

    2015-01-01

    For the past 25 years, phage display technology has been an invaluable tool for studies of protein–protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage’s potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage’s large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use. PMID:26300850

  15. Regulation of Bacteriophage T5 Development by ColI Factors

    PubMed Central

    Moyer, R. W.; Fu, A. S.; Szabo, C.

    1972-01-01

    The I-type colicinogenic factor ColIb transforms Escherichia coli from a permissive to a nonpermissive host for bacteriophage T5 reproduction by preventing complete expression of the phage genome. T5-infected ColIb+ cells synthesize only class I (early) phage protein and ribonucleic acid (RNA). Neither phage-specific class II proteins [associated with viral deoxyribonucleic acid (DNA) replication] nor class III proteins (phage structural components) are formed due to the failure of the infected ColIb+ cells to synthesize class II or class III phage-specific messenger RNA. Comparable studies with T5-infected cells colicinogenic for the related ColIa factor revealed no decrease in the yield of progeny phage although the presence of the ColIa factor leads to a significant reduction in the amount of phage-directed class III protein synthesis. Images PMID:4554465

  16. An M13 bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins

    PubMed Central

    Hess, Gaelen T.; Cragnolini, Juan J.; Popp, Maximilian W.; Allen, Mark A.; Dougan, Stephanie K.; Spooner, Eric; Ploegh, Hidde L.; Belcher, Angela M.; Guimaraes, Carla P.

    2013-01-01

    We exploit bacterial sortases to attach a variety of moieties to the capsid proteins of M13 bacteriophage. We show that pIII, pIX, and pVIII can be functionalized with entities ranging from small molecules (e.g., fluorophores, biotin) to correctly folded proteins (e.g., GFP, antibodies, streptavidin) in a site-specific manner, and with yields that surpass those of any reported using phage display technology. A case in point is modification of pVIII. While a phage vector limits the size of the insert into pVIII to a few amino acids, a phagemid system limits the number of copies actually displayed at the surface of M13. Using sortase-based reactions, a 100-fold increase in the efficiency of display of GFP onto pVIII is achieved. Taking advantage of orthogonal sortases, we can simultaneously target two distinct capsid proteins in the same phage particle and maintain excellent specificity of labeling. As demonstrated in this work, this is a simple and effective method for creating a variety of structures, thus expanding the use of M13 for materials science applications and as a biological tool. PMID:22759232

  17. Differential mechanisms of binding of anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA to E. coli RNA polymerase lead to diverse physiological consequences.

    PubMed

    Sharma, Umender K; Chatterji, Dipankar

    2008-05-01

    Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, sigma(70), of E. coli. Though both factors are known to interact with the C-terminal region of sigma(70), the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to sigma(70) with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with sigma(70) studied by using the yeast two-hybrid system revealed that region 4 of sigma(70) is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of sigma(70) as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to sigma(70).

  18. Differential Mechanisms of Binding of Anti-Sigma Factors Escherichia coli Rsd and Bacteriophage T4 AsiA to E. coli RNA Polymerase Lead to Diverse Physiological Consequences▿

    PubMed Central

    Sharma, Umender K.; Chatterji, Dipankar

    2008-01-01

    Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, σ70, of E. coli. Though both factors are known to interact with the C-terminal region of σ70, the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to σ70 with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with σ70 studied by using the yeast two-hybrid system revealed that region 4 of σ70 is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of σ70 as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to σ70. PMID:18359804

  19. Virulent Bacteriophages Can Target O104:H4 Enteroaggregative Escherichia coli in the Mouse Intestine

    PubMed Central

    Maura, Damien; Galtier, Matthieu; Le Bouguénec, Chantal

    2012-01-01

    In vivo bacteriophage targeting of enteroaggregative Escherichia coli (EAEC) was assessed using a mouse intestinal model of colonization with the O104:H4 55989Str strain and a cocktail of three virulent bacteriophages. The colonization model was shown to mimic asymptomatic intestinal carriage found in humans. The addition of the cocktail to drinking water for 24 h strongly decreased ileal and weakly decreased fecal 55989Str concentrations in a dose-dependent manner. These decreases in ileal and fecal bacterial concentrations were only transient, since 55989Str concentrations returned to their original levels 3 days later. These transient decreases were independent of the mouse microbiota, as similar results were obtained with axenic mice. We studied the infectivity of each bacteriophage in the ileal and fecal environments and found that 55989Str bacteria in the mouse ileum were permissive to all three bacteriophages, whereas those in the feces were permissive to only one bacteriophage. Our results provide the first demonstration that bacterial permissivity to infection with virulent bacteriophages is not uniform throughout the gut; this highlights the need for a detailed characterization of the interactions between bacteria and bacteriophages in vivo for the further development of phage therapy targeting intestinal pathogens found in the gut of asymptomatic human carriers. PMID:23006754

  20. Expression of a DNA Replication Gene Cluster in Bacteriophage T4: Genetic Linkage and the Control of Gene Product Interactions

    PubMed Central

    Gerald, W. L.; Karam, J. D.

    1984-01-01

    The results of this study bear on the relationship between genetic linkage and control of interactions between the protein products of different cistrons. In T4 bacteriophage, genes 45 and 44 encode essential components of the phage DNA replication multiprotein complex. T4 gene 45 maps directly upstream of gene 44 relative to the overall direction of reading of this region of the phage chromosome, but it is not known whether these two genes are cotranscribed. It has been shown that a nonsense lesion of T4 gene 45 exerts a cis-dominant inhibitory effect on growth of a missense mutant of gene 44 but not on growth of phage carrying the wild-type gene 44 allele. In previous work, we confirmed these observations on polarity of the gene 45 mutation but detected no polar effects by this lesion on synthesis of either mutant or wild-type gene 44 protein. In the present study, we demonstrate that mRNA for gene 44 protein is separable by gel electrophoresis from gene 45-protein-encoding mRNA. That is, the two proteins are not synthesized from one polycistronic message, and the cis-dominant inhibitory effect of the gene 45 mutation on gene 44 function is probably expressed at a posttranslational stage. We propose that close genetic linkage, whether or not it provides shared transcriptional and translational regulatory signals for certain clusters of functionally related cistrons, may determine the intracellular compartmentalization for synthesis of proteins encoded by these clusters. In prokaryotes, such linkage-dependent compartmentation may minimize the diffusion distances between gene products that are synthesized at low levels and are destined to interact. PMID:6745641

  1. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.

    1984-03-30

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties.

  2. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    NASA Astrophysics Data System (ADS)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  3. Bacteriophage 5' untranslated regions for control of plastid transgene expression.

    PubMed

    Yang, Huijun; Gray, Benjamin N; Ahner, Beth A; Hanson, Maureen R

    2013-02-01

    Expression of foreign proteins from transgenes incorporated into plastid genomes requires regulatory sequences that can be recognized by the plastid transcription and translation machinery. Translation signals harbored by the 5' untranslated region (UTR) of plastid transcripts can profoundly affect the level of accumulation of proteins expressed from chimeric transgenes. Both endogenous 5' UTRs and the bacteriophage T7 gene 10 (T7g10) 5' UTR have been found to be effective in combination with particular coding regions to mediate high-level expression of foreign proteins. We investigated whether two other bacteriophage 5' UTRs could be utilized in plastid transgenes by fusing them to the aadA (aminoglycoside-3'-adenyltransferase) coding region that is commonly used as a selectable marker in plastid transformation. Transplastomic plants containing either the T7g1.3 or T4g23 5' UTRs fused to Myc-epitope-tagged aadA were successfully obtained, demonstrating the ability of these 5' UTRs to regulate gene expression in plastids. Placing the Thermobifida fusca cel6A gene under the control of the T7g1.3 or T4g23 5' UTRs, along with a tetC downstream box, resulted in poor expression of the cellulase in contrast with high-level accumulation while using the T7g10 5' UTR. However, transplastomic plants with the bacteriophage 5' UTRs controlling the aadA coding region exhibited fewer undesired recombinant species than plants containing the same marker gene regulated by the Nicotiana tabacum psbA 5' UTR. Furthermore, expression of the T7g1.3 and T4g23 5' UTR::aadA fusions downstream of the cel6A gene provided sufficient spectinomycin resistance to allow selection of homoplasmic transgenic plants and had no effect on Cel6A accumulation.

  4. Self-Assembled Nanoporous Biofilms from Functionalized Nanofibrous M13 Bacteriophage.

    PubMed

    Devaraj, Vasanthan; Han, Jiye; Kim, Chuntae; Kang, Yong-Cheol; Oh, Jin-Woo

    2018-06-12

    Highly periodic and uniform nanostructures, based on a genetically engineered M13 bacteriophage, displayed unique properties at the nanoscale that have the potential for a variety of applications. In this work, we report a multilayer biofilm with self-assembled nanoporous surfaces involving a nanofiber-like genetically engineered 4E-type M13 bacteriophage, which was fabricated using a simple pulling method. The nanoporous surfaces were effectively formed by using the networking-like structural layers of the M13 bacteriophage during self-assembly. Therefore, an external template was not required. The actual M13 bacteriophage-based fabricated multilayered biofilm with porous nanostructures agreed well with experimental and simulation results. Pores formed in the final layer had a diameter of about 150⁻500 nm and a depth of about 15⁻30 nm. We outline a filter application for this multilayered biofilm that enables selected ions to be extracted from a sodium chloride solution. Here, we describe a simple, environmentally friendly, and inexpensive fabrication approach with large-scale production potential. The technique and the multi-layered biofilms produced may be applied to sensor, filter, plasmonics, and bio-mimetic fields.

  5. Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor.

    PubMed

    Nanduri, Bindu; Byrd, Alicia K; Eoff, Robert L; Tackett, Alan J; Raney, Kevin D

    2002-11-12

    Helicases are molecular motor enzymes that unwind and translocate nucleic acids. One of the central questions regarding helicase activity is whether the process of coupling ATP hydrolysis to DNA unwinding requires an oligomeric form of the enzyme. We have applied a pre-steady-state kinetics approach to address this question with the bacteriophage T4 Dda helicase. If a helicase can function as a monomer, then the burst amplitude in the pre-steady state might be similar to the concentration of enzyme, whereas if the helicase required oligomerization, then the amplitude would be significantly less than the enzyme concentration. DNA unwinding of an oligonucleotide substrate was conducted by using a Kintek rapid quench-flow instrument. The substrate consisted of 12 bp adjacent to 12 nucleotides of single-stranded DNA. Dda (4 nM) was incubated with substrate (16 nM) in buffer, and the unwinding reaction was initiated by the addition of ATP (5 mM) and Mg(2+) (10 mM). The reaction was stopped by the addition of 400 mM EDTA. Product formation exhibited biphasic kinetics, and the data were fit to the equation for a single exponential followed by a steady state. The amplitude of the first phase was 3.5 +/- 0.2 nM, consistent with a monomeric helicase. The burst amplitude of product formation was measured over a range of enzyme and substrate concentrations and remained consistent with a functional monomer. Thus, Dda can rapidly unwind oligonucleotide substrates as a monomer, indicating that the functional molecular motor component of a helicase can reside within a single polypeptide.

  6. Propionibacterium acnes Bacteriophages Display Limited Genetic Diversity and Broad Killing Activity against Bacterial Skin Isolates

    PubMed Central

    Marinelli, Laura J.; Fitz-Gibbon, Sorel; Hayes, Clarmyra; Bowman, Charles; Inkeles, Megan; Loncaric, Anya; Russell, Daniel A.; Jacobs-Sera, Deborah; Cokus, Shawn; Pellegrini, Matteo; Kim, Jenny; Miller, Jeff F.; Hatfull, Graham F.; Modlin, Robert L.

    2012-01-01

    ABSTRACT Investigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (>85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne. PMID:23015740

  7. Analyzing indirect secondary electron contrast of unstained bacteriophage T4 based on SEM images and Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp

    2009-03-06

    The indirect secondary electron contrast (ISEC) condition of the scanning electron microscopy (SEM) produces high contrast detection with minimal damage of unstained biological samples mounted under a thin carbon film. The high contrast image is created by a secondary electron signal produced under the carbon film by a low acceleration voltage. Here, we show that ISEC condition is clearly able to detect unstained bacteriophage T4 under a thin carbon film (10-15 nm) by using high-resolution field emission (FE) SEM. The results show that FE-SEM provides higher resolution than thermionic emission SEM. Furthermore, we investigated the scattered electron area within themore » carbon film under ISEC conditions using Monte Carlo simulation. The simulations indicated that the image resolution difference is related to the scattering width in the carbon film and the electron beam spot size. Using ISEC conditions on unstained virus samples would produce low electronic damage, because the electron beam does not directly irradiate the sample. In addition to the routine analysis, this method can be utilized for structural analysis of various biological samples like viruses, bacteria, and protein complexes.« less

  8. Bacteriophages of Gordonia spp. Display a Spectrum of Diversity and Genetic Relationships

    PubMed Central

    Pope, Welkin H.; Mavrich, Travis N.; Garlena, Rebecca A.; Guerrero-Bustamante, Carlos A.; Jacobs-Sera, Deborah; Montgomery, Matthew T.; Russell, Daniel A.; Warner, Marcie H.

    2017-01-01

    ABSTRACT The global bacteriophage population is large, dynamic, old, and highly diverse genetically. Many phages are tailed and contain double-stranded DNA, but these remain poorly characterized genomically. A collection of over 1,000 phages infecting Mycobacterium smegmatis reveals the diversity of phages of a common bacterial host, but their relationships to phages of phylogenetically proximal hosts are not known. Comparative sequence analysis of 79 phages isolated on Gordonia shows these also to be diverse and that the phages can be grouped into 14 clusters of related genomes, with an additional 14 phages that are “singletons” with no closely related genomes. One group of six phages is closely related to Cluster A mycobacteriophages, but the other Gordonia phages are distant relatives and share only 10% of their genes with the mycobacteriophages. The Gordonia phage genomes vary in genome length (17.1 to 103.4 kb), percentage of GC content (47 to 68.8%), and genome architecture and contain a variety of features not seen in other phage genomes. Like the mycobacteriophages, the highly mosaic Gordonia phages demonstrate a spectrum of genetic relationships. We show this is a general property of bacteriophages and suggest that any barriers to genetic exchange are soft and readily violable. PMID:28811342

  9. Genetic evolution of bacteriophage. I. Hybrids between unrelated bacteriophages P22 and Fels 2.

    PubMed

    Yamamoto, N

    1969-01-01

    A new bacteriophage species, designated F22, was isolated from phage P22 stocks grown on Salmonella typhimurium Q1 lysogenic for Fels 2 at a frequency of less than 10(-11). P22 has a very short tail with a hexagonal base plate and six spikes. Phage Fels 2 is morphologically similar to E. coli T-even phages, having a long tail with a contractile sheath and carrying no genetic region related to P22. Phage F22 is morphologically and serologically indistinguishable from Fels 2, but carries the c(c(1), c(2), and c(3)) markers of P22. The color markers h(21), g, and m(3) of P22 do not appear in F22. Thus, F22 is evidently a recombinant between the unrelated bacteriophages P22 and Fels 2. The recombination between unrelated bacteriophages could play an important role in the evolution of bacteriophages.

  10. The Genome of S-PM2, a “Photosynthetic” T4-Type Bacteriophage That Infects Marine Synechococcus Strains

    PubMed Central

    Mann, Nicholas H.; Clokie, Martha R. J.; Millard, Andrew; Cook, Annabel; Wilson, William H.; Wheatley, Peter J.; Letarov, Andrey; Krisch, H. M.

    2005-01-01

    Bacteriophage S-PM2 infects several strains of the abundant and ecologically important marine cyanobacterium Synechococcus. A large lytic phage with an isometric icosahedral head, S-PM2 has a contractile tail and by this criterion is classified as a myovirus (1). The linear, circularly permuted, 196,280-bp double-stranded DNA genome of S-PM2 contains 37.8% G+C residues. It encodes 239 open reading frames (ORFs) and 25 tRNAs. Of these ORFs, 19 appear to encode proteins associated with the cell envelope, including a putative S-layer-associated protein. Twenty additional S-PM2 ORFs have homologues in the genomes of their cyanobacterial hosts. There is a group I self-splicing intron within the gene encoding the D1 protein. A total of 40 ORFs, organized into discrete clusters, encode homologues of T4 proteins involved in virion morphogenesis, nucleotide metabolism, gene regulation, and DNA replication and repair. The S-PM2 genome encodes a few surprisingly large (e.g., 3,779 amino acids) ORFs of unknown function. Our analysis of the S-PM2 genome suggests that many of the unknown S-PM2 functions may be involved in the adaptation of the metabolism of the host cell to the requirements of phage infection. This hypothesis originates from the identification of multiple phage-mediated modifications of the host's photosynthetic apparatus that appear to be essential for maintaining energy production during the lytic cycle. PMID:15838046

  11. DNA injection and genetic recombination of alkylated bacteriophage T7 in the presence of nalidixic acid.

    PubMed Central

    Karska-Wysocki, B; Mamet-Bratley, M D; Przewlocki, G

    1977-01-01

    Marker rescue experiments with alkylated T7 bacteriophage carried out in the presence and in the absence of nalidixic acid suggest that the gradient in rescue is due to two alkylation-induced causes: a DNA injection defect and an interference with DNA synthesis. PMID:916036

  12. GENETIC EVOLUTION OF BACTERIOPHAGE, I. HYBRIDS BETWEEN UNRELATED BACTERIOPHAGES P22 AND FELS 2*

    PubMed Central

    Yamamoto, Nobuto

    1969-01-01

    A new bacteriophage species, designated F22, was isolated from phage P22 stocks grown on Salmonella typhimurium Q1 lysogenic for Fels 2 at a frequency of less than 10-11. P22 has a very short tail with a hexagonal base plate and six spikes. Phage Fels 2 is morphologically similar to E. coli T-even phages, having a long tail with a contractile sheath and carrying no genetic region related to P22. Phage F22 is morphologically and serologically indistinguishable from Fels 2, but carries the c(c1, c2, and c3) markers of P22. The color markers h21, g, and m3 of P22 do not appear in F22. Thus, F22 is evidently a recombinant between the unrelated bacteriophages P22 and Fels 2. The recombination between unrelated bacteriophages could play an important role in the evolution of bacteriophages. Images PMID:4890254

  13. DNA damage under simulated extraterrestrial conditions in bacteriophage T7

    NASA Astrophysics Data System (ADS)

    Fekete, A.; Módos, K.; Hegedüs, M.; Kovács, G.; Rontó, Gy.; Péter, Á.; Lammer, H.; Panitz, C.

    The experiment "Phage and Uracil response" will be accommodated in the EXPOSE facility of the International Space Station. Its objective is to examine and quantify the effect of specific space conditions on nucleic acid models, especially on bacteriophage T7 and isolated T7 DNA thin films. In order to define the environmental and technical requirements of the EXPOSE, the samples were subjected to the experiment verification test (EVT). During EVT, the samples were exposed to vacuum (10 -4-10 -6 Pa) and polychromatic UV-radiation (200-400 nm) in air, in inert atmosphere, as well as in simulated space vacuum. The effect of extreme temperature in vacuum and the influence of temperature fluctuations around 0 °C were also studied. The total intraphage/isolated DNA damage was determined by quantitative PCR using 555 and 3826 bp fragments of T7 DNA. The type of the damage was resolved using a combination of enzymatic probes and neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. We obtained substantial evidence that DNA lesions accumulate throughout exposure, but the amount of damage depends on the thickness of the layers. According to our preliminary results, the damages by exposure to conditions of dehydration and UV-irradiation are larger than the sum of vacuum alone, or radiation alone case, suggesting a synergistic action of space vacuum and UV radiation with DNA being the critical target.

  14. Aligning the unalignable: bacteriophage whole genome alignments.

    PubMed

    Bérard, Sèverine; Chateau, Annie; Pompidor, Nicolas; Guertin, Paul; Bergeron, Anne; Swenson, Krister M

    2016-01-13

    In recent years, many studies focused on the description and comparison of large sets of related bacteriophage genomes. Due to the peculiar mosaic structure of these genomes, few informative approaches for comparing whole genomes exist: dot plots diagrams give a mostly qualitative assessment of the similarity/dissimilarity between two or more genomes, and clustering techniques are used to classify genomes. Multiple alignments are conspicuously absent from this scene. Indeed, whole genome aligners interpret lack of similarity between sequences as an indication of rearrangements, insertions, or losses. This behavior makes them ill-prepared to align bacteriophage genomes, where even closely related strains can accomplish the same biological function with highly dissimilar sequences. In this paper, we propose a multiple alignment strategy that exploits functional collinearity shared by related strains of bacteriophages, and uses partial orders to capture mosaicism of sets of genomes. As classical alignments do, the computed alignments can be used to predict that genes have the same biological function, even in the absence of detectable similarity. The Alpha aligner implements these ideas in visual interactive displays, and is used to compute several examples of alignments of Staphylococcus aureus and Mycobacterium bacteriophages, involving up to 29 genomes. Using these datasets, we prove that Alpha alignments are at least as good as those computed by standard aligners. Comparison with the progressive Mauve aligner - which implements a partial order strategy, but whose alignments are linearized - shows a greatly improved interactive graphic display, while avoiding misalignments. Multiple alignments of whole bacteriophage genomes work, and will become an important conceptual and visual tool in comparative genomics of sets of related strains. A python implementation of Alpha, along with installation instructions for Ubuntu and OSX, is available on bitbucket (https://bitbucket.org/thekswenson/alpha).

  15. Campylobacter bacteriophages and bacteriophage therapy.

    PubMed

    Connerton, P L; Timms, A R; Connerton, I F

    2011-08-01

    Members of the genus Campylobacter are frequently responsible for human enteric disease with occasionally very serious outcomes. Much of this disease burden is thought to arise from consumption of contaminated poultry products. More than 80% of poultry in the UK harbour Campylobacter as a part of their intestinal flora. To address this unacceptably high prevalence, various interventions have been suggested and evaluated. Among these is the novel approach of using Campylobacter-specific bacteriophages, which are natural predators of the pathogen. To optimize their use as therapeutic agents, it is important to have a comprehensive understanding of the bacteriophages that infect Campylobacter, and how they can affect their host bacteria. This review will focus on many aspects of Campylobacter-specific bacteriophages including: their first isolation in the 1960s, their use in bacteriophage typing schemes, their isolation from the different biological sources and genomic characterization. As well as their use as therapeutic agents to reduce Campylobacter in poultry their future potential, including their use in bio-sanitization of food, will be explored. The evolutionary consequences of naturally occurring bacteriophage infection that have come to light through investigations of bacteriophages in the poultry ecosystem will also be discussed. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  16. GP0.4 from bacteriophage T7: in silico characterisation of its structure and interaction with E. coli FtsZ.

    PubMed

    Simpkin, Adam J; Rigden, Daniel J

    2016-07-13

    Proteins produced by bacteriophages can have potent antimicrobial activity. The study of phage-host interactions can therefore inform small molecule drug discovery by revealing and characterising new drug targets. Here we characterise in silico the predicted interaction of gene protein 0.4 (GP0.4) from the Escherichia coli (E. coli) phage T7 with E. coli filamenting temperature-sensitive mutant Z division protein (FtsZ). FtsZ is a tubulin homolog which plays a key role in bacterial cell division and that has been proposed as a drug target. Using ab initio, fragment assembly structure modelling, we predicted the structure of GP0.4 with two programs. A structure similarity-based network was used to identify a U-shaped helix-turn-helix candidate fold as being favoured. ClusPro was used to dock this structure prediction to a homology model of E. coli FtsZ resulting in a favourable predicted interaction mode. Alternative docking methods supported the proposed mode which offered an immediate explanation for the anti-filamenting activity of GP0.4. Importantly, further strong support derived from a previously characterised insertion mutation, known to abolish GP0.4 activity, that is positioned in close proximity to the proposed GP0.4/FtsZ interface. The mode of interaction predicted by bioinformatics techniques strongly suggests a mechanism through which GP0.4 inhibits FtsZ and further establishes the latter's druggable intrafilament interface as a potential drug target.

  17. Molecular Dissection of the Homotrimeric Sliding Clamp of T4 Phage: Two Domains of a Subunit Display Asymmetric Characteristics.

    PubMed

    Singh, Manika Indrajit; Jain, Vikas

    2016-01-26

    Sliding clamp proteins are circular dimers or trimers that encircle DNA and serve as processivity factors during DNA replication. Their presence in all the three domains of life and in bacteriophages clearly indicates their high level of significance. T4 gp45, besides functioning as the DNA polymerase processivity factor, also moonlights as the late promoter transcription determinant. Here we report a detailed biophysical analysis of gp45. The chemical denaturation of gp45 probed by circular dichroism spectroscopy, tryptophan fluorescence anisotropy, and blue-native polyacrylamide gel electrophoresis suggests that the protein follows a three-state denaturation profile and displays an intermediate molten globule-like state. The three-state transition was found to be the result of the sequential unfolding of the two domains, the N-terminal domain (NTD) and the C-terminal domain (CTD), of gp45. The experiments involving Trp fluorescence quenching by acrylamide demonstrate that the CTD undergoes substantial changes in conformation during formation of the intermediate state. Further biophysical dissection of the individual domain reveals contrasting properties of the two domains. The NTD unfolds at low urea concentrations and is also susceptible to protease cleavage, whereas the CTD resists urea-mediated denaturation and is not amenable to protease digestion even at higher urea concentrations. These experiments allow us to conclude that the two domains of gp45 differ in their dynamics. While the CTD shows stability and rigidity, we find that the NTD is unstable and flexible. We believe that the asymmetric characteristics of the two domains and the interface they form hold significance in gp45 structure and function.

  18. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1990-01-01

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  19. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    PubMed

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.

  20. Genetic requirements for sensitivity of bacteriophage t7 to dideoxythymidine.

    PubMed

    Tran, Ngoc Q; Tabor, Stanley; Richardson, Charles C

    2014-08-01

    We previously reported that the presence of dideoxythymidine (ddT) in the growth medium selectively inhibits the ability of bacteriophage T7 to infect Escherichia coli by inhibiting phage DNA synthese (N. Q. Tran, L. F. Rezende, U. Qimron, C. C. Richardson, and S. Tabor, Proc. Natl. Acad. Sci. U. S. A. 105:9373-9378, 2008, doi:10.1073/pnas.0804164105). In the presence of T7 gene 1.7 protein, ddT is taken up into the E. coli cell and converted to ddTTP. ddTTP is incorporated into DNA as ddTMP by the T7 DNA polymerase, resulting in chain termination. We have identified the pathway by which exogenous ddT is converted to ddTTP. The pathway consists of ddT transport by host nucleoside permeases and phosphorylation to ddTMP by the host thymidine kinase. T7 gene 1.7 protein phosphorylates ddTMP and ddTDP, resulting in ddTTP. A 74-residue peptide of the gene 1.7 protein confers ddT sensitivity to the same extent as the 196-residue wild-type gene 1.7 protein. We also show that cleavage of thymidine to thymine and deoxyribose-1-phosphate by the host thymidine phosphorylase greatly increases the sensitivity of phage T7 to ddT. Finally, a mutation in T7 DNA polymerase that leads to discrimination against the incorporation of ddTMP eliminates ddT sensitivity. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Genetic Requirements for Sensitivity of Bacteriophage T7 to Dideoxythymidine

    PubMed Central

    Tran, Ngoc Q.; Tabor, Stanley

    2014-01-01

    We previously reported that the presence of dideoxythymidine (ddT) in the growth medium selectively inhibits the ability of bacteriophage T7 to infect Escherichia coli by inhibiting phage DNA synthese (N. Q. Tran, L. F. Rezende, U. Qimron, C. C. Richardson, and S. Tabor, Proc. Natl. Acad. Sci. U. S. A. 105:9373–9378, 2008, doi:10.1073/pnas.0804164105). In the presence of T7 gene 1.7 protein, ddT is taken up into the E. coli cell and converted to ddTTP. ddTTP is incorporated into DNA as ddTMP by the T7 DNA polymerase, resulting in chain termination. We have identified the pathway by which exogenous ddT is converted to ddTTP. The pathway consists of ddT transport by host nucleoside permeases and phosphorylation to ddTMP by the host thymidine kinase. T7 gene 1.7 protein phosphorylates ddTMP and ddTDP, resulting in ddTTP. A 74-residue peptide of the gene 1.7 protein confers ddT sensitivity to the same extent as the 196-residue wild-type gene 1.7 protein. We also show that cleavage of thymidine to thymine and deoxyribose-1-phosphate by the host thymidine phosphorylase greatly increases the sensitivity of phage T7 to ddT. Finally, a mutation in T7 DNA polymerase that leads to discrimination against the incorporation of ddTMP eliminates ddT sensitivity. PMID:24858186

  2. Activity of foreign proteins targeted within the bacteriophage T4 head and prohead: implications for packaged DNA structure.

    PubMed

    Mullaney, J M; Black, L W

    1998-11-13

    The phage-derived expression, packaging, and processing (PEPP) system was used to target foreign proteins into the bacteriophage capsid to probe the intracapsid environment and the structure of packaged DNA. Small proteins with minimal requirements for activity were selected, staphylococcal nuclease (SN) and green fluorescent protein (GFP). These proteins were targeted into the T4 head by means of IPIII (internal protein III) fusions or CTS (capsid targeting sequence) fusions. Additional evidence is provided that foreign proteins are targeted into T4 by the N-terminal ten amino acid residue consensus CTS of IPIII identified in previous work. Fusion proteins were produced within host bacteria by expression from plasmids or by produc tion from recombinant phage carrying the fusion genes. Packaged fusion proteins CTS IPIII SN, CTS IPIII TSN, CTS IPIII GFP, CTS IPIII TGFP, and CTS GFP, where [symbol: see text] indicates a linkage peptide sequence Leu(Ile)-N-Glu cleaved by the T4 head morphogenetic proteinase gp21 during head maturation, are observed to exhibit intracapsid activity. SN activity within the head is demonstrated by loss of phage viability and by digested genomic DNA patterns visualized by gel electrophoresis when viable phage are incubated in Ca2+. Green fluorescent phage result immediately after packaging GFP produced at 30 degreesC and below, and continue to give green fluorescence under 470 nm light after CsCl purification. Non-fluorescent GFP-fusions are produced in bacteria at 37 degreesC, and phage packaged with these proteins achieve a fluorescent state after incubation for several months at 4 degreesC. GFP-packaged phage and proheads analyzed by fluorescence spectroscopy show that the mature head and the DNA-empty prohead package identical numbers of GFP-fusion proteins. Encapsidated GFP and SN can be injected into bacteria and rapidly exhibit intracellular activity. In vivo SN digestion of encapsidated DNA gives an intriguing pattern of DNA

  3. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  4. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  5. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  6. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  7. Bacteriophage-based nanoprobes for rapid bacteria separation

    NASA Astrophysics Data System (ADS)

    Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.

    2015-10-01

    The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying

  8. Effects of space environment on T-7 bacteriophage and spores of Bacillus subtilis 168

    NASA Technical Reports Server (NTRS)

    Spizizen, J.; Isherwood, J. E.

    1973-01-01

    Two strains of Bacillus subtilis were exposed to components of the ultraviolet spectrum in space. Both strains possess multiple genetic markers, and one of the strains is defective in the ability to repair ultraviolet damage. The T-7 bacteriophage of Escherichia coli was also exposed to selected wavelengths and energy levels of ultraviolet light in space. Preliminary findings do not reveal anomalies in survival rates. Data are not yet available on detailed genetic analyses.

  9. Inhibition of tumor angiogenesis in lung cancer by T4 phage surface displaying mVEGFR2 vaccine.

    PubMed

    Ren, Shunxiang; Fengyu; Zuo, Shuguang; Zhao, Minyi; Wang, Xiaobin; Wang, Xicai; Chen, Yan; Wu, Zhiping; Ren, Zhaojun

    2011-08-05

    Vascular endothelial growth factor (VEGF) has been known as a potential vasculogenic and angiogenic factor and its receptor (VEGFR2) is a major receptor to response to the angiogenic activity of VEGF. The technique that to break the immune tolerance of "self-antigens" associated with angiogenesis is an attractive approach for cancer therapy with T4 phage display system. In this experiment, mouse VEGFR2 was constructed on T4 phage nanometer-particle surface as a recombinant vaccine. T4-mVEGFR2 recombinant vaccine was identified by PCR and western blot assay. Immunotherapy with T4-mVEGFR2 was confirmed by protective immunity against Lewis lung carcinoma (LLC) in mice. The antibody against mVEGFR2 was detected by ELISPOT, ELISA and Dot ELISA. The inhibitive effects against angiogenesis were studied using CD31 and CD105 via histological analysis. VEGF-mediated endothelial cells proliferation and tube formation were inhibited in vitro by immunoglobulin induced by T4-mVEGFR2. The antitumor activity was substantiated from the adoptive transfer of the purified immunoglobulin. Antitumor activity and autoantibody production of mVEGFR2 could be neutralized by the depletion of CD4+T lymphocytes. These studies strongly suggest that T4-mVEGFR2 recombinant vaccine might be a promising antitumor approach. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Isolation and characterization of bacteriophages of Salmonella enterica serovar Pullorum.

    PubMed

    Bao, H; Zhang, H; Wang, R

    2011-10-01

    In this study, 2 bacteriophages of Salmonella Pullorum were isolated using an enrichment protocol and the double agar layer method. They were named PSPu-95 and PSPu-4-116, respectively, against clinical isolates of Salmonella Pullorum SPu-95 and SPu-116. The host ranges of the 2 bacteriophages were determined by performing spot tests with 20 bacteria strains. Both bacteriophages had wide host ranges. Bacteriophage PSPu-95 had a lytic effect on 17 of the 20 isolates (85%), and PSPu-4-116 produced a lytic effect on 14 isolates (70%) and was the only bacteriophage that produced a clear plaque on enterotoxigenic Escherichia coli K88. Transmission electron microscopy revealed the bacteriophages belonged to the order Caudovirales. Bacteriophage PSPu-95 was a member of the family Siphoviridae, but bacteriophage PSPu-4-116 belonged to the family Myoviridae. Both had a double-stranded DNA, which was digested with HindIII or EcoRI, that was estimated to be 58.3 kbp (PSPu-95) and 45.2 kbp (PSPu-4-116) by 1% agar electrophoresis. One-step growth kinetics showed that the latent periods were all less than 20 min, and the burst size was 77.5 pfu/cell for PSPu-95 and 86 pfu/cell for PSPu-4-116. The bacteriophages were able to survive in a pH range between 4 and 10, and they were able to survive in a treatment of 70°C for 60 min. The characterizations of these 2 bacteriophages were helpful in establishing a basis for adopting the most effective bacteriophage to control bacteria in the poultry industry.

  11. Improved delivery of the OVA-CD4 peptide to T helper cells by polymeric surface display on Salmonella

    PubMed Central

    2014-01-01

    Background Autotransporter proteins represent a treasure trove for molecular engineers who modify Gram-negative bacteria for the export or secretion of foreign proteins across two membrane barriers. A particularly promising direction is the development of autotransporters as antigen display or secretion systems. Immunologists have been using ovalbumin as a reporter antigen for years and have developed sophisticated tools to detect specific T cells that respond to ovalbumin. Although ovalbumin-expressing bacteria are being used to trace T cell responses to colonizing or invading pathogens, current constructs for ovalbumin presentation have not been optimized. Results The activation of T helper cells in response to ovalbumin was improved by displaying the OVA-CD4 reporter epitope as a multimer on the surface of Salmonella and fused to the autotransporter MisL. Expression was optimized by including tandem in vivo promoters and two post-segregational killing systems for plasmid stabilization. Conclusions The use of an autotransporter protein to present relevant epitope repeats on the surface of bacteria, combined with additional techniques favoring stable and efficient in vivo transcription, optimizes antigen presentation to T cells. The technique of multimeric epitope surface display should also benefit the development of new Salmonella or other enterobacterial vaccines. PMID:24898796

  12. Non-Watson–Crick interactions between PNA and DNA inhibit the ATPase activity of bacteriophage T4 Dda helicase

    PubMed Central

    Tackett, Alan J.; Corey, David R.; Raney, Kevin D.

    2002-01-01

    Peptide nucleic acid (PNA) is a DNA mimic in which the nucleobases are linked by an N-(2-aminoethyl) glycine backbone. Here we report that PNA can interact with single-stranded DNA (ssDNA) in a non-sequence-specific fashion. We observed that a 15mer PNA inhibited the ssDNA-stimulated ATPase activity of a bacteriophage T4 helicase, Dda. Surprisingly, when a fluorescein-labeled 15mer PNA was used in binding studies no interaction was observed between PNA and Dda. However, fluorescence polarization did reveal non-sequence-specific interactions between PNA and ssDNA. Thus, the inhibition of ATPase activity of Dda appears to result from depletion of the available ssDNA due to non-Watson–Crick binding of PNA to ssDNA. Inhibition of the ssDNA-stimulated ATPase activity was observed for several PNAs of varying length and sequence. To study the basis for this phenomenon, we examined self-aggregation by PNAs. The 15mer PNA readily self-aggregates to the point of precipitation. Since PNAs are hydrophobic, they aggregate more than DNA or RNA, making the study of this phenomenon essential for understanding the properties of PNA. Non-sequence-specific interactions between PNA and ssDNA were observed at moderate concentrations of PNA, suggesting that such interactions should be considered for antisense and antigene applications. PMID:11842106

  13. Designing a Soluble Near Full-Length HIV-1 GP41 Trimer

    DTIC Science & Technology

    2012-11-26

    envelope; gp41 trimer; bacteriophage T4 display; prehairpin fusion intermediate. Background: The envelope glycoprotein gp41 is a key component of...protein into trimers and defined oligomers. These gp41 trimers were displayed on bacteriophage T4 capsid nanoparticles by attaching to the small...Construction of the Expression Vectors —All the gp41 constructs were generated by splicing-by- overlap extension PCR using wild-type HXB2 gp41 DNA

  14. Convection-enhanced delivery of M13 bacteriophage to the brain

    PubMed Central

    Ksendzovsky, Alexander; Walbridge, Stuart; Saunders, Richard C.; Asthagiri, Ashok R.; Heiss, John D.; Lonser, Russell R.

    2013-01-01

    Object Recent studies indicate that M13 bacteriophage, a very large nanoparticle, binds to β-amyloid and α-synuclein proteins, leading to plaque disaggregation in models of Alzheimer and Parkinson disease. To determine the feasibility, safety, and characteristics of convection-enhanced delivery (CED) of M13 bacteriophage to the brain, the authors perfused primate brains with bacteriophage. Methods Four nonhuman primates underwent CED of M13 bacteriophage (900 nm) to thalamic gray matter (4 infusions) and frontal white matter (3 infusions). Bacteriophage was coinfused with Gd-DTPA (1 mM), and serial MRI studies were performed during infusion. Animals were monitored for neurological deficits and were killed 3 days after infusion. Tissues were analyzed for bacteriophage distribution. Results Real-time T1-weighted MRI studies of coinfused Gd-DTPA during infusion demonstrated a discrete region of perfusion in both thalamic gray and frontal white matter. An MRI-volumetric analysis revealed that the mean volume of distribution (Vd) to volume of infusion (Vi) ratio of M13 bacteriophage was 2.3 ± 0.2 in gray matter and 1.9 ± 0.3 in white matter. The mean values are expressed ± SD. Immunohistochemical analysis demonstrated mean Vd:Vi ratios of 2.9 ± 0.2 in gray matter and 2.1 ± 0.3 in white matter. The Gd-DTPA accurately tracked M13 bacteriophage distribution (the mean difference between imaging and actual bacteriophage Vd was insignificant [p > 0.05], and was −2.2% ± 9.9% in thalamic gray matter and 9.1% ± 9.5% in frontal white matter). Immunohistochemical analysis revealed evidence of additional spread from the initial delivery site in white matter (mean Vd:Vi, 16.1 ± 9.1). All animals remained neurologically intact after infusion during the observation period, and histological studies revealed no evidence of toxicity. Conclusions The CED method can be used successfully and safely to distribute M13 bacteriophage in the brain. Furthermore, additional white

  15. Convection-enhanced delivery of M13 bacteriophage to the brain.

    PubMed

    Ksendzovsky, Alexander; Walbridge, Stuart; Saunders, Richard C; Asthagiri, Ashok R; Heiss, John D; Lonser, Russell R

    2012-08-01

    Recent studies indicate that M13 bacteriophage, a very large nanoparticle, binds to β-amyloid and α-synuclein proteins, leading to plaque disaggregation in models of Alzheimer and Parkinson disease. To determine the feasibility, safety, and characteristics of convection-enhanced delivery (CED) of M13 bacteriophage to the brain, the authors perfused primate brains with bacteriophage. Four nonhuman primates underwent CED of M13 bacteriophage (900 nm) to thalamic gray matter (4 infusions) and frontal white matter (3 infusions). Bacteriophage was coinfused with Gd-DTPA (1 mM), and serial MRI studies were performed during infusion. Animals were monitored for neurological deficits and were killed 3 days after infusion. Tissues were analyzed for bacteriophage distribution. Real-time T1-weighted MRI studies of coinfused Gd-DTPA during infusion demonstrated a discrete region of perfusion in both thalamic gray and frontal white matter. An MRI-volumetric analysis revealed that the mean volume of distribution (Vd) to volume of infusion (Vi) ratio of M13 bacteriophage was 2.3 ± 0.2 in gray matter and 1.9 ± 0.3 in white matter. The mean values are expressed ± SD. Immunohistochemical analysis demonstrated mean Vd:Vi ratios of 2.9 ± 0.2 in gray matter and 2.1 ± 0.3 in white matter. The Gd-DTPA accurately tracked M13 bacteriophage distribution (the mean difference between imaging and actual bacteriophage Vd was insignificant [p > 0.05], and was -2.2% ± 9.9% in thalamic gray matter and 9.1% ± 9.5% in frontal white matter). Immunohistochemical analysis revealed evidence of additional spread from the initial delivery site in white matter (mean Vd:Vi, 16.1 ± 9.1). All animals remained neurologically intact after infusion during the observation period, and histological studies revealed no evidence of toxicity. The CED method can be used successfully and safely to distribute M13 bacteriophage in the brain. Furthermore, additional white matter spread after infusion cessation

  16. Affinity selection of Nipah and Hendra virus-related vaccine candidates from a complex random peptide library displayed on bacteriophage virus-like particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peabody, David S.; Chackerian, Bryce; Ashley, Carlee

    The invention relates to virus-like particles of bacteriophage MS2 (MS2 VLPs) displaying peptide epitopes or peptide mimics of epitopes of Nipah Virus envelope glycoprotein that elicit an immune response against Nipah Virus upon vaccination of humans or animals. Affinity selection on Nipah Virus-neutralizing monoclonal antibodies using random sequence peptide libraries on MS2 VLPs selected peptides with sequence similarity to peptide sequences found within the envelope glycoprotein of Nipah itself, thus identifying the epitopes the antibodies recognize. The selected peptide sequences themselves are not necessarily identical in all respects to a sequence within Nipah Virus glycoprotein, and therefore may be referredmore » to as epitope mimics VLPs displaying these epitope mimics can serve as vaccine. On the other hand, display of the corresponding wild-type sequence derived from Nipah Virus and corresponding to the epitope mapped by affinity selection, may also be used as a vaccine.« less

  17. Effects of solar ultraviolet radiations on Bacillus subtilis spores and T-7 bacteriophage

    NASA Technical Reports Server (NTRS)

    Spizizen, J.; Isherwood, J. E.; Taylor, G. R.

    1975-01-01

    Spores of Bacillus subtilis HA 101 and the DNA polymerase I-defective mutant HA 101 (59)F were exposed to selected wavelengths of solar ultraviolet light and space vacuum during the return of Apollo 16. In addition, coliphage T-7 suspensions were exposed to solar ultraviolet radiation as part of the Microbial Response to Space Environment Experiment. Optical filters were employed to provide different energy levels at wavelengths 254 nm and 280 nm. Dose-response curves for lethal and mutagenic effects were compared with ground-based data. A close parallel was observed between the results of solar radiation and ground tests with spores of the two strains. However, significantly greater inactivation of T-7 bacteriophage was observed after exposure to solar ultraviolet radiation.

  18. Targeted binding of the M13 bacteriophage to thiamethoxam organic crystals.

    PubMed

    Cho, Whirang; Fowler, Jeffrey D; Furst, Eric M

    2012-04-10

    Phage display screening with a combinatorial library was used to identify M13-type bacteriophages that express peptides with selective binding to organic crystals of thiamethoxam. The six most strongly binding phages exhibit at least 1000 times the binding affinity of wild-type M13 and express heptapeptide sequences that are rich in hydrophobic, hydrogen-bonding amino acids and proline. Among the peptide sequences identified, M13 displaying the pIII domain heptapeptide ASTLPKA exhibits the strongest binding to thiamethoxam in competitive binding assays. Electron and confocal microscopy confirm the specific binding affinity of ASTLPKA to thiamethoxam. Using atomic force microscope (AFM) probes functionalized with ASTLPKA expressing phage, we found that the average adhesion force between the bacteriophage and a thiamethoxam surface is 1.47 ± 0.80 nN whereas the adhesion force of wild-type M13KE phage is 0.18 ± 0.07 nN. Such a strongly binding bacteriophage could be used to modify the surface chemistry of thiamethoxam crystals and other organic solids with a high degree of specificity. © 2012 American Chemical Society

  19. Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus arlettae).

    PubMed

    Bhardwaj, Neha; Bhardwaj, Sanjeev K; Mehta, Jyotsana; Mohanta, Girish C; Deep, Akash

    2016-07-15

    Bacteriophages are a class of viruses that specifically infect and replicate within a bacterium. They possess inherent affinity and specificity to the particular bacterial cells. This property of bacteriophages makes them an attractive biorecognition element in the field of biosensor development. In this work, we report the use of an immobilized bacteriophage for the development of a highly sensitive electrochemical sensor for Staphylococcus arlettae, bacteria from the pathogenic family of coagulase-negative staphylococci (CNS). The specific bacteriophages were covalently immobilized on the screen-printed graphene electrodes. Thus, the fabricated bacteriophage biosensor displayed quantitative response for the target bacteria (S. arlettae) for a broad detection range (2.0-2.0 × 10(6) cfu). A fast response time (2 min), low limit of detection (2 cfu), specificity, and stability over a prolonged period (3 months) are some of the important highlights of the proposed sensor. The practical utility of the developed sensor has been demonstrated by the analysis of S. arlettae in spiked water and apple juice samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Methods for Bacteriophage Preservation.

    PubMed

    Łobocka, Małgorzata B; Głowacka, Aleksandra; Golec, Piotr

    2018-01-01

    In a view of growing interest in bacteriophages as the most abundant members of microbial communities and as antibacterial agents, reliable methods for bacteriophage long-term preservation, that warrant the access to original or mutant stocks of unchanged properties, have become of crucial importance. A storage method that retains the infectivity of any kind of bacteriophage virions, either in a cell lysate or in a purified suspension, does not exist, due to the enormous diversity of bacteriophages and hence the differentiation of their sensitivity to various storage conditions. Here, we describe a method of long-term bacteriophage preservation, which is based on freezing of freshly infected susceptible bacteria at early stages of bacteriophage development. The infected bacteria release mature bacteriophages upon melting enabling the recovery of bacteriophage virions with high efficiency. The only limitation of this method is the sensitivity of bacteriophage host to deep-freezing, and thus it can be used for the long-term preservation of the vast majority of bacteriophages.

  1. Bypass of a nick by the replisome of bacteriophage T7.

    PubMed

    Zhu, Bin; Lee, Seung-Joo; Richardson, Charles C

    2011-08-12

    DNA polymerase and DNA helicase are essential components of DNA replication. The helicase unwinds duplex DNA to provide single-stranded templates for DNA synthesis by the DNA polymerase. In bacteriophage T7, movement of either the DNA helicase or the DNA polymerase alone terminates upon encountering a nick in duplex DNA. Using a minicircular DNA, we show that the helicase · polymerase complex can bypass a nick, albeit at reduced efficiency of 7%, on the non-template strand to continue rolling circle DNA synthesis. A gap in the non-template strand cannot be bypassed. The efficiency of bypass synthesis depends on the DNA sequence downstream of the nick. A nick on the template strand cannot be bypassed. Addition of T7 single-stranded DNA-binding protein to the complex stimulates nick bypass 2-fold. We propose that the association of helicase with the polymerase prevents dissociation of the helicase upon encountering a nick, allowing the helicase to continue unwinding of the duplex downstream of the nick.

  2. Novel bacteriophages containing a genome of another bacteriophage within their genomes.

    PubMed

    Swanson, Maud M; Reavy, Brian; Makarova, Kira S; Cock, Peter J; Hopkins, David W; Torrance, Lesley; Koonin, Eugene V; Taliansky, Michael

    2012-01-01

    A novel bacteriophage infecting Staphylococus pasteuri was isolated during a screen for phages in Antarctic soils. The phage named SpaA1 is morphologically similar to phages of the family Siphoviridae. The 42,784 bp genome of SpaA1 is a linear, double-stranded DNA molecule with 3' protruding cohesive ends. The SpaA1 genome encompasses 63 predicted protein-coding genes which cluster within three regions of the genome, each of apparently different origin, in a mosaic pattern. In two of these regions, the gene sets resemble those in prophages of Bacillus thuringiensis kurstaki str. T03a001 (genes involved in DNA replication/transcription, cell entry and exit) and B. cereus AH676 (additional regulatory and recombination genes), respectively. The third region represents an almost complete genome (except for the short terminal segments) of a distinct bacteriophage, MZTP02. Nearly the same gene module was identified in prophages of B. thuringiensis serovar monterrey BGSC 4AJ1 and B. cereus Rock4-2. These findings suggest that MZTP02 can be shuttled between genomes of other bacteriophages and prophages, leading to the formation of chimeric genomes. The presence of a complete phage genome in the genome of other phages apparently has not been described previously and might represent a 'fast track' route of virus evolution and horizontal gene transfer. Another phage (BceA1) nearly identical in sequence to SpaA1, and also including the almost complete MZTP02 genome within its own genome, was isolated from a bacterium of the B. cereus/B. thuringiensis group. Remarkably, both SpaA1 and BceA1 phages can infect B. cereus and B. thuringiensis, but only one of them, SpaA1, can infect S. pasteuri. This finding is best compatible with a scenario in which MZTP02 was originally contained in BceA1 infecting Bacillus spp, the common hosts for these two phages, followed by emergence of SpaA1 infecting S. pasteuri.

  3. Marker-Dependent Recombination in T4 Bacteriophage. IV. Recombinational Effects of Antimutator T4 DNA Polymerase

    PubMed Central

    Shcherbakov, V. P.; Plugina, L. A.; Kudryashova, E. A.

    1995-01-01

    Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates. PMID:7635281

  4. Plating Bacteriophage M13.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2017-10-03

    A plaque of bacteriophage M13 derives from infection of a single bacterium by a single virus particle. The progeny particles infect neighboring bacteria, which, in turn, release another generation of daughter virus particles. If the bacteria are growing in semisolid medium (e.g., containing agar or agarose), then the diffusion of the progeny particles is limited. Cells infected with bacteriophage M13 are not killed, but have a longer generation time than uninfected Escherichia coli In consequence, plaques appear as areas of slower-growing cells on a faster-growing lawn of bacterial cells. This protocol describes plating of bacteriophage M13 stocks. Plaques are readily detectable on top agar after 4-8 h of incubation at 37°C. © 2017 Cold Spring Harbor Laboratory Press.

  5. Gene 1.7 of bacteriophage T7 confers sensitivity of phage growth to dideoxythymidine.

    PubMed

    Tran, Ngoc Q; Rezende, Lisa F; Qimron, Udi; Richardson, Charles C; Tabor, Stanley

    2008-07-08

    Bacteriophage T7 DNA polymerase efficiently incorporates dideoxynucleotides into DNA, resulting in chain termination. Dideoxythymidine (ddT) present in the medium at levels not toxic to Escherichia coli inhibits phage T7. We isolated 95 T7 phage mutants that were resistant to ddT. All contained a mutation in T7 gene 1.7, a nonessential gene of unknown function. When gene 1.7 was expressed from a plasmid, T7 phage resistant to ddT still arose; analysis of 36 of these mutants revealed that all had a single mutation in gene 5, which encodes T7 DNA polymerase. This mutation changes tyrosine-526 to phenylalanine, which is known to increase dramatically the ability of T7 DNA polymerase to discriminate against dideoxynucleotides. DNA synthesis in cells infected with wild-type T7 phage was inhibited by ddT, suggesting that it resulted in chain termination of DNA synthesis in the presence of gene 1.7 protein. Overexpression of gene 1.7 from a plasmid rendered E. coli cells sensitive to ddT, indicating that no other T7 proteins are required to confer sensitivity to ddT.

  6. T4 AsiA blocks DNA recognition by remodeling σ70 region 4

    PubMed Central

    Lambert, Lester J; Wei, Yufeng; Schirf, Virgil; Demeler, Borries; Werner, Milton H

    2004-01-01

    Bacteriophage T4 AsiA is a versatile transcription factor capable of inhibiting host gene expression as an ‘anti-σ′ factor while simultaneously promoting gene-specific expression of T4 middle genes in conjunction with T4 MotA. To accomplish this task, AsiA engages conserved region 4 of Eschericia coli σ70, blocking recognition of most host promoters by sequestering the DNA-binding surface at the AsiA/σ70 interface. The three-dimensional structure of an AsiA/region 4 complex reveals that the C-terminal α helix of region 4 is unstructured, while four other helices adopt a completely different conformation relative to the canonical structure of unbound region 4. That AsiA induces, rather than merely stabilizes, this rearrangement can be realized by comparison to the homologous structures of region 4 solved in a variety of contexts, including the structure of Thermotoga maritima σA region 4 described herein. AsiA simultaneously occupies the surface of region 4 that ordinarily contacts core RNA polymerase (RNAP), suggesting that an AsiA-bound σ70 may also undergo conformational changes in the context of the RNAP holoenzyme. PMID:15257291

  7. Cell-Adhesive Matrices Composed of RGD Peptide-Displaying M13 Bacteriophage/Poly(lactic-co-glycolic acid) Nanofibers Beneficial to Myoblast Differentiation.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Linhua; Kim, Min Jeong; Kim, Chuntae; Hong, Suck Won; Oh, Jin Woo; Han, Dong-Wook

    2015-10-01

    Recently, there has been considerable effort to develop suitable scaffolds for tissue engineering applications. Cell adhesion is a prerequisite for cells to survive. In nature, the extracellular matrix (ECM) plays this role. Therefore, an ideal scaffold should be structurally similar to the natural ECM and have biocompatibility and biodegradability. In addition, the scaffold should have biofunctionality, which provides the potent ability to enhance the cellular behaviors, such as adhesion, proliferation and differentiation. This study concentrates on fabricating cell-adhesive matrices composed of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and poly(lactic-co-glycolic acid, PLGA) nanofibers. Long rod-shaped M13 bacteriophages are non-toxic and can express many desired proteins on their surface. A genetically engineered M13 phage was constructed to display RGD peptides on its surface. PLGA is a biodegradable polymer with excellent biocompatibility and suitable physicochemical property for adhesive matrices. In this study, RGD-M13 phage/PLGA hybrid nanofiber matrices were fabricated by electrospinning. The physicochemical properties of these matrices were characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and contact angle measurement. In addition, the cellular behaviors, such as the initial attachment, proliferation and differentiation, were analyzed by a CCK-8 assay and immunofluorescence staining to evaluate the potential application of these matrices to tissue engineering scaffolds. The RGD-M13 phage/PLGA nanofiber matrices could enhance the cellular behaviors and promote the differentiation of C2C12 myoblasts. These results suggest that the RGD-M13 phage/PLGA nanofiber matrices are beneficial to myoblast differentiation and can serve as effective tissue engineering scaffolds.

  8. A pan-HPV vaccine based on bacteriophage PP7 VLPs displaying broadly cross-neutralizing epitopes from the HPV minor capsid protein, L2.

    PubMed

    Tumban, Ebenezer; Peabody, Julianne; Peabody, David S; Chackerian, Bryce

    2011-01-01

    Current human papillomavirus (HPV) vaccines that are based on virus-like particles (VLPs) of the major capsid protein L1 largely elicit HPV type-specific antibody responses. In contrast, immunization with the HPV minor capsid protein L2 elicits antibodies that are broadly cross-neutralizing, suggesting that a vaccine targeting L2 could provide more comprehensive protection against infection by diverse HPV types. However, L2-based immunogens typically elicit much lower neutralizing antibody titers than L1 VLPs. We previously showed that a conserved broadly neutralizing epitope near the N-terminus of L2 is highly immunogenic when displayed on the surface of VLPs derived from the bacteriophage PP7. Here, we report the development of a panel of PP7 VLP-based vaccines targeting L2 that protect mice from infection with carcinogenic and non-carcinogenic HPV types that infect the genital tract and skin. L2 peptides from eight different HPV types were displayed on the surface of PP7 bacteriophage VLPs. These recombinant L2 VLPs, both individually and in combination, elicited high-titer anti-L2 IgG serum antibodies. Immunized mice were protected from high dose infection with HPV pseudovirus (PsV) encapsidating a luciferase reporter. Mice immunized with 16L2 PP7 VLPs or 18L2 PP7 VLPs were nearly completely protected from both PsV16 and PsV18 challenge. Mice immunized with the mixture of eight L2 VLPs were strongly protected from genital challenge with PsVs representing eight diverse HPV types and cutaneous challenge with HPV5 PsV. VLP-display of a cross-neutralizing HPV L2 epitope is an effective approach for inducing high-titer protective neutralizing antibodies and is capable of offering protection from a spectrum of HPVs associated with cervical cancer as well as genital and cutaneous warts.

  9. Understanding DNA replication by the bacteriophage T4 replisome.

    PubMed

    Benkovic, Stephen J; Spiering, Michelle M

    2017-11-10

    The T4 replisome has provided a unique opportunity to investigate the intricacies of DNA replication. We present a comprehensive review of this system focusing on the following: its 8-protein composition, their individual and synergistic activities, and assembly in vitro and in vivo into a replisome capable of coordinated leading/lagging strand DNA synthesis. We conclude with a brief comparison with other replisomes with emphasis on how coordinated DNA replication is achieved. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Dual genetically encoded phage-displayed ligands.

    PubMed

    Mohan, Kritika; Weiss, Gregory A

    2014-05-15

    M13 bacteriophage display presents polypeptides as fusions to phage coat proteins. Such phage-displayed ligands offer useful reagents for biosensors. Here, we report a modified phage propagation protocol for the consistent and robust display of two different genetically encoded ligands on the major coat protein, P8. The results demonstrate that the phage surface reaches a saturation point for maximum peptide display. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Bacteriophages and their applications in the diagnosis and treatment of hepatitis B virus infection.

    PubMed

    Bakhshinejad, Babak; Sadeghizadeh, Majid

    2014-09-07

    Hepatitis B virus (HBV) infection is a major global health challenge leading to serious disorders such as cirrhosis and hepatocellular carcinoma. Currently, there exist various diagnostic and therapeutic approaches for HBV infection. However, prevalence and hazardous effects of chronic viral infection heighten the need to develop novel methodologies for the detection and treatment of this infection. Bacteriophages, viruses that specifically infect bacterial cells, with a long-established tradition in molecular biology and biotechnology have recently been introduced as novel tools for the prevention, diagnosis and treatment of HBV infection. Bacteriophages, due to tremendous genetic flexibility, represent potential to undergo a huge variety of surface modifications. This property has been the rationale behind introduction of phage display concept. This powerful approach, together with combinatorial chemistry, has shaped the concept of phage display libraries with diverse applications for the detection and therapy of HBV infection. This review aims to offer an insightful overview of the potential of bacteriophages in the development of helpful prophylactic (vaccine design), diagnostic and therapeutic strategies for HBV infection thereby providing new perspectives to the growing field of bacteriophage researches directing towards HBV infection.

  12. Bacteriophages and their applications in the diagnosis and treatment of hepatitis B virus infection

    PubMed Central

    Bakhshinejad, Babak; Sadeghizadeh, Majid

    2014-01-01

    Hepatitis B virus (HBV) infection is a major global health challenge leading to serious disorders such as cirrhosis and hepatocellular carcinoma. Currently, there exist various diagnostic and therapeutic approaches for HBV infection. However, prevalence and hazardous effects of chronic viral infection heighten the need to develop novel methodologies for the detection and treatment of this infection. Bacteriophages, viruses that specifically infect bacterial cells, with a long-established tradition in molecular biology and biotechnology have recently been introduced as novel tools for the prevention, diagnosis and treatment of HBV infection. Bacteriophages, due to tremendous genetic flexibility, represent potential to undergo a huge variety of surface modifications. This property has been the rationale behind introduction of phage display concept. This powerful approach, together with combinatorial chemistry, has shaped the concept of phage display libraries with diverse applications for the detection and therapy of HBV infection. This review aims to offer an insightful overview of the potential of bacteriophages in the development of helpful prophylactic (vaccine design), diagnostic and therapeutic strategies for HBV infection thereby providing new perspectives to the growing field of bacteriophage researches directing towards HBV infection. PMID:25206272

  13. The HsiB1C1 (TssB-TssC) Complex of the Pseudomonas aeruginosa Type VI Secretion System Forms a Bacteriophage Tail Sheathlike Structure

    PubMed Central

    Lossi, Nadine S.; Manoli, Eleni; Förster, Andreas; Dajani, Rana; Pape, Tillmann; Freemont, Paul; Filloux, Alain

    2013-01-01

    Protein secretion systems in Gram-negative bacteria evolved into a variety of molecular nanomachines. They are related to cell envelope complexes, which are involved in assembly of surface appendages or transport of solutes. They are classified as types, the most recent addition being the type VI secretion system (T6SS). The T6SS displays similarities to bacteriophage tail, which drives DNA injection into bacteria. The Hcp protein is related to the T4 bacteriophage tail tube protein gp19, whereas VgrG proteins structurally resemble the gp27/gp5 puncturing device of the phage. The tube and spike of the phage are pushed through the bacterial envelope upon contraction of a tail sheath composed of gp18. In Vibrio cholerae it was proposed that VipA and VipB assemble into a tail sheathlike structure. Here we confirm these previous data by showing that HsiB1 and HsiC1 of the Pseudomonas aeruginosa H1-T6SS assemble into tubules resulting from stacking of cogwheel-like structures showing predominantly 12-fold symmetry. The internal diameter of the cogwheels is ∼100 Å, which is large enough to accommodate an Hcp tube whose external diameter has been reported to be 85 Å. The N-terminal 212 residues of HsiC1 are sufficient to form a stable complex with HsiB1, but the C terminus of HsiC1 is essential for the formation of the tubelike structure. Bioinformatics analysis suggests that HsiC1 displays similarities to gp18-like proteins in its C-terminal region. In conclusion, we provide further structural and mechanistic insights into the T6SS and show that a phage sheathlike structure is likely to be a conserved element across all T6SSs. PMID:23341461

  14. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes.

    PubMed Central

    Tabor, S; Richardson, C C

    1985-01-01

    The RNA polymerase gene of bacteriophage T7 has been cloned into the plasmid pBR322 under the inducible control of the lambda PL promoter. After induction, T7 RNA polymerase constitutes 20% of the soluble protein of Escherichia coli, a 200-fold increase over levels found in T7-infected cells. The overproduced enzyme has been purified to homogeneity. During extraction the enzyme is sensitive to a specific proteolysis, a reaction that can be prevented by a modification of lysis conditions. The specificity of T7 RNA polymerase for its own promoters, combined with the ability to inhibit selectively the host RNA polymerase with rifampicin, permits the exclusive expression of genes under the control of a T7 RNA polymerase promoter. We describe such a coupled system and its use to express high levels of phage T7 gene 5 protein, a subunit of T7 DNA polymerase. Images PMID:3156376

  15. Characterization and genome sequence of Dev2, a new T7-like bacteriophage infecting Cronobacter turicensis.

    PubMed

    Kajsík, Michal; Oslanecová, Lucia; Szemes, Tomáš; Hýblová, Michalea; Bilková, Andrea; Drahovská, Hana; Turňa, Ján

    2014-11-01

    Cronobacter spp. are opportunistic pathogenic bacteria that are responsible for severe infections in neonates. Powdered infant formula was confirmed to be the source in some cases. Bacteriophages offer a safe means for eliminating this pathogen. In the present study, we investigated the growth parameters and genome organization of a new bacteriophage, Dev2, isolated from sewage. The Dev2 phage contains DNA with a length of 39 kb and belongs to the T7 branch of the subfamily Autographivirinae, with the highest degree of identity to the phage K1F. The host specificity of Dev2 is limited to C. turicensis strains of the CT O:1 serotype. With a lower efficiency, this phage also infects some Salmonella and E. coli strains. The Dev2 phage can inactivate sensitive Cronobacter strains in reconstituted milk formula. The results obtained in this study are an important prerequisite for application of Dev2 in food control.

  16. A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis.

    PubMed

    Burchard, R P; Dworkin, M

    1966-03-01

    Burchard, Robert P. (University of Minnesota, Minneapolis), and M. Dworkin. A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis. J. Bacteriol. 91:1305-1313. 1966.-A bacteriophage (MX-1) infecting Myxococcus xanthus FB(t) has been isolated from cow dung. The bacteriophage particle is approximately 175 mmu long. A tail about 100 mmu in length is encased in a contractile sheath and terminates in a tail plate. The head is polyhedral with a width of about 75 mmu. The nucleic acid of the bacteriophage is deoxyribonucleic acid and has a guanine plus cytosine content of 55.5%. The bacteriophage requires 10(-3)m Ca(++) and 10(-2)m monovalent cation for optimal adsorption. Grown on vegetative cells of M. xanthus FB(t) at 30 C in 2% Casitone medium, the bacteriophage has a latent period of 120 min and a burst size of approximately 100. Host range studies indicate that three strains of M. xanthus including a morphogenetic mutant are sensitive to the bacteriophage, whereas M. fulvus, Cytophaga, Sporocytophaga myxococcoides, and a fourth strain of M. xanthus are not. Of the two cellular forms characteristic of the Myxococcus life cycle, the bacteriophage infect only the vegetative cells; they do not adsorb to microcysts. Ability to adsorb bacteriophage is lost between 65 and 75 min after initiation of the relatively synchronous conversion of vegetative cells to microcysts. The bacteriophage does not adsorb to spheroplasts. After the appearance of visible morphogenesis and before the loss of bacteriophage receptor sites, addition of bacteriophage results in the formation of microcysts which give rise to infective centers only upon germination. The possibility that the infected microcysts are harboring intact bacteriophages has been eliminated.

  17. A first step toward liposome-mediated intracellular bacteriophage therapy.

    PubMed

    Nieth, Anita; Verseux, Cyprien; Barnert, Sabine; Süss, Regine; Römer, Winfried

    2015-01-01

    The emergence of antibiotic-resistant bacteria presents a severe challenge to medicine and public health. While bacteriophage therapy is a promising alternative to traditional antibiotics, the general inability of bacteriophages to penetrate eukaryotic cells limits their use against resistant bacteria, causing intracellular diseases like tuberculosis. Bacterial vectors show some promise in carrying therapeutic bacteriophages into cells, but also bring a number of risks like an overload of bacterial antigens or the acquisition of virulence genes from the pathogen. As a first step in the development of a non-bacterial vector for bacteriophage delivery into pathogen-infected cells, we attempted to encapsulate bacteriophages into liposomes. Here we report effective encapsulation of the model bacteriophage λeyfp and the mycobacteriophage TM4 into giant liposomes. Furthermore, we show that liposome-associated bacteriophages are taken up into eukaryotic cells more efficiently than free bacteriophages. These are important milestones in the development of an intracellular bacteriophage therapy that might be useful in the fight against multi-drug-resistant intracellular pathogens like Mycobacterium tuberculosis.

  18. Hyperexpansion of RNA Bacteriophage Diversity

    PubMed Central

    Krishnamurthy, Siddharth R.; Janowski, Andrew B.; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-01-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. PMID:27010970

  19. Bypass of a Nick by the Replisome of Bacteriophage T7*

    PubMed Central

    Zhu, Bin; Lee, Seung-Joo; Richardson, Charles C.

    2011-01-01

    DNA polymerase and DNA helicase are essential components of DNA replication. The helicase unwinds duplex DNA to provide single-stranded templates for DNA synthesis by the DNA polymerase. In bacteriophage T7, movement of either the DNA helicase or the DNA polymerase alone terminates upon encountering a nick in duplex DNA. Using a minicircular DNA, we show that the helicase·polymerase complex can bypass a nick, albeit at reduced efficiency of 7%, on the non-template strand to continue rolling circle DNA synthesis. A gap in the non-template strand cannot be bypassed. The efficiency of bypass synthesis depends on the DNA sequence downstream of the nick. A nick on the template strand cannot be bypassed. Addition of T7 single-stranded DNA-binding protein to the complex stimulates nick bypass 2-fold. We propose that the association of helicase with the polymerase prevents dissociation of the helicase upon encountering a nick, allowing the helicase to continue unwinding of the duplex downstream of the nick. PMID:21701044

  20. Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials.

    PubMed

    Jin, Hyo-Eon; Lee, Seung-Wuk

    2018-01-01

    M13 bacteriophages have several qualities that make them attractive candidates as building blocks for tissue regenerating scaffold materials. Through genetic engineering, a high density of functional peptides and proteins can be simultaneously displayed on the M13 bacteriophage's outer coat proteins. The resulting phage can self-assemble into nanofibrous network structures and can guide the tissue morphogenesis through proliferation, differentiation and apoptosis. In this manuscript, we will describe methods to develop major coat-engineered M13 phages as a basic building block and aligned tissue-like matrices to develop regenerative nanomaterials.

  1. Evaluation of display technologies for Internet of Things (IoT)

    NASA Astrophysics Data System (ADS)

    Sabo, Julia; Fegert, Tobias; Cisowski, Matthäus Stephanus; Marsal, Anatolij; Eichberger, Domenik; Blankenbach, Karlheinz

    2017-02-01

    Internet of Things (IoT) is a booming industry. We investigated several (semi-) professional IoT devices in combination with displays (focus on reflective technologies) and LEDs. First, these displays were compared for reflectance and ambient light performance. Two measurement set-ups with diffuse conditions were used for simulating typical indoor lighting conditions of IoT displays. E-paper displays were evaluated best as they combine a relative high reflectance with large contrast ratio. Reflective monochrome LCDs show a lower reflectance but are widely available. Second we studied IoT microprocessors interfaces to displays. A µP can drive single LEDs and one or two Seg 8 LED digits directly by GPIOs. Other display technologies require display controllers with a parallel or serial interface to the microprocessor as they need dedicated waveforms for driving the pixels. Most suitable are display modules with built-in display RAM as only pixel data have to be transferred which changes. A HDMI output (e.g. Raspberry Pi) results in high cost for the displays, therefore AMLCDs are not suitable for low to medium cost IoT systems. We compared and evaluated furthermore status indicators, icons, text and graphics IoT display systems regarding human machine interface (HMI) characteristics and effectiveness as well as power consumption. We found out that low resolution graphics bistable e-paper displays are the most appropriate display technology for IoT systems as they show as well information after a power failure or power switch off during maintenance or e.g. QR codes for installation. LED indicators are the most cost effective approach which has however very limited HMI capabilities.

  2. Adsorption of bacteriophages on clay minerals

    USGS Publications Warehouse

    Chattopadhyay, Sandip; Puls, Robert W.

    1999-01-01

    The ability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and φX-174) on clays (hectorite, saponite, kaolinite, and clay fraction of samples collected from a landfill site). The thermodynamic study not only determines the feasibility of the process but also provides information on the relative magnitudes of the different forces under a particular set of conditions. The total free energy of interaction during sorption of bacteriophages on clays (ΔG) has been assumed to be the summation of ΔGH (ΔG due to hydrophobic interactions) and ΔGEL (ΔG due to electrostatic interactions). The magnitude of ΔGH was determined from the different interfacial tensions (γ) present in the system, while ΔGEL was calculated from ζ-potentials of the colloidal particles. Calculated results show that surface hydrophobicities of the selected sorbents and sorbates dictate sorption. Among the selected bacteriophages, maximum sorption was observed with T-2, while hectorite has the maximum sorption capacity. Experimental results obtained from the batch adsorption studies also corroborated those obtained from the theoretical study.

  3. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage.

    PubMed

    Brok-Volchanskaya, Vera S; Kadyrov, Farid A; Sivogrivov, Dmitry E; Kolosov, Peter M; Sokolov, Andrey S; Shlyapnikov, Michael G; Kryukov, Valentine M; Granovsky, Igor E

    2008-04-01

    Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3' 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TpsiC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages.

  4. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage

    PubMed Central

    Brok-Volchanskaya, Vera S.; Kadyrov, Farid A.; Sivogrivov, Dmitry E.; Kolosov, Peter M.; Sokolov, Andrey S.; Shlyapnikov, Michael G.; Kryukov, Valentine M.; Granovsky, Igor E.

    2008-01-01

    Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3′ 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TψC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages. PMID:18281701

  5. Computational Determination of the Effects of Bacteriophage Bacteriophage Interactions in Human body.

    PubMed

    Mostafa, Marwa Mostafa; Nassef, Mohammad; Badr, Amr

    2017-10-19

    Chronic diseases are becoming more serious and widely spreading and this carries a heavy burden on doctors to deal with such patients. Although many of these diseases can be treated by bacteriophages, the situation is significantly dangerous in patients having concomitant more than one chronic disease, where conflicts between phages used in treating these diseases are very closer to happen. This research paper presents a method to detecting the Bacteriophage-Bacteriophage Interaction. This method is implemented based on Domain-Domain Interactions model and it was used to infer Domain-Domain Interactions between the bacteriophages injected in the human body at the same time. By testing the method over bacteriophages that are used to treat tuberculosis, salmonella and virulent E.coli, many interactions have been inferred and detected between these bacteriophages. Several effects were detected for the resulted interactions such as: playing a role in DNA repair such as non-homologous end joining, playing a role in DNA replication, playing a role in the interaction between the immune system and the tumor cells and playing a role in the stiff man syndrome. We revised all patents relating to bacteriophage bacteriophage interactions and phage therapy. The proposed method is developed to help doctors to realize the effect of simultaneously injecting different bacteriophages into the human body to treat different diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Two New Lytic Bacteriophages of the Myoviridae Family Against Carbapenem-Resistant Acinetobacter baumannii

    PubMed Central

    Zhou, Weilong; Feng, Yu; Zong, Zhiyong

    2018-01-01

    Two lytic bacteriophages, WCHABP1 and WCHABP12, were recovered from hospital sewage and were able to infect 9 and 12 out of 18 carbapenem-resistant Acinetobacter baumannii clinical strains, which belonged to different clones. Electron microscopy scan showed that both bacteriophages had the similar morphology as those of the Myoviridae family. Whole genomic sequencing revealed 45.4- or 45.8-kb genome with a 37.6% GC content for WCHABP1 and WCHABP12, both of which showed significant DNA sequence similarity with bacteriophages of the Ap22virus genus within the Myoviridae family. Taxonomic analysis was therefore performed following the proposal approved by the International Committee on Taxonomy of Viruses, which confirmed that WCHABP1 and WCHABP12 represented two new species of the Ap22virus genus. No tRNAs but 88 and 89 open reading frames (ORFs) were predicted for the two bacteriophages, among which 22 and 21 had known function and encoded proteins for morphogenesis, packaging, lysis, and nucleiotide metabolism. The C-terminal amino acids of the large unit of fiber tail proteins varied between the bacteriophages, which may explain their different host ranges. For most lytic bacteriophages, a set of holin and endolysin are required for lysis. However, no known holin-encoding genes were identified in WCHABP1 and WCHABP12, suggesting that they may use alternative, yet-to-be-identified, novel holins for host cell membrane lysis. To test the efficacy of the bacteriophages in protecting against A. baumannii infection, a Galleria mellonella larva model was used. Only <20% G. mellonella larvae survived at 96 h after being infected by carbapenem-resistant A. baumannii strains, from which the two bacteriophages were recovered. With the administration of WCHABP1 and WCHABP12, the survival of larvae increased to 75%, while the treatment of polymyxin B only slightly increased the survival rate to 25%. The isolation of two new lytic bacteriophages in this study could expand our

  7. In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli.

    PubMed

    Weiss, Marietta; Denou, Emmanuel; Bruttin, Anne; Serra-Moreno, Ruth; Dillmann, Marie-Lise; Brüssow, Harald

    2009-10-10

    The gut transit of T4 phages was studied in axenic mice mono-colonized with the non-pathogenic Escherichia coli strain K-12. Thirty minutes, 1 and 2 h after phage feeding, T4 phage had reached the jejunum, ileum and cecum, respectively. Phage was found in the lumen and was also associated with the mucosa. One day later no phage was detected in the feces. Compared to germ-free control animals, oral T4 phage led to a 300-fold higher fecal phage titer in mice mono-colonized with E. coli strain WG-5. The in vivo T4 phage replication was transient and reached peak fecal titers about 8 h after oral phage application followed by a rapid titer decrease over two days. Similar data were obtained in mice colonized with E. coli strain Nissle. In contrast, orally applied T7 phage experienced a massive and sustained in vivo replication in mice mono-colonized with E. coli strain WG-5 irrespective whether phage or E. coli host was applied first. T7 phage replication occurred mainly in the large intestine. High titers of T7 phage and high E. coli cell counts coexisted in the feces. The observation of only 20% T7 phage-resistant fecal E. coli colonies suggests a refuge model where phage-sensitive E. coli cells are physically or physiologically protected from phage infection in the gut. The difference between T7 and T4 with respect to gut replication might partly reflect their distinct in vitro capacity to replicate on slowly growing cells.

  8. Characterization of tail sheath protein of giant bacteriophage phiKZ Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurochkina, Lidia P., E-mail: lpk@ibch.r; Aksyuk, Anastasia A.; Sachkova, Maria Yu.

    2009-12-20

    The tail sheath protein of giant bacteriophage phiKZ Pseudomonas aeruginosa encoded by gene 29 was identified and its expression system was developed. Localization of the protein on the virion was confirmed by immunoelectron microscopy. Properties of gene product (gp) 29 were studied by electron microscopy, immunoblotting and limited trypsinolysis. Recombinant gp29 assembles into the regular tubular structures (polysheaths) of variable length. Trypsin digestion of gp29 within polysheaths or extended sheath of virion results in specific cleavage of the peptide bond between Arg135 and Asp136. However, this cleavage does not affect polymeric structure of polysheaths, sheaths and viral infectivity. Digestion bymore » trypsin of the C-truncated gp29 mutant, lacking the ability to self-assemble, results in formation of a stable protease-resistant fragment. Although there is no sequence homology of phiKZ proteins to proteins of other bacteriophages, some characteristic biochemical properties of gp29 revealed similarities to the tail sheath protein of bacteriophage T4.« less

  9. ADSORPTION OF BACTERIOPHAGES ON CLAY MINERALS

    EPA Science Inventory

    Theability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and

  10. Genetic Exclusion in Bacteriophage T4.

    DTIC Science & Technology

    1987-01-01

    1942) as "interference" between various coliphages , was shown by Delbruck and Bailey (1946) to be the inability of superinfecting phage to contribute... water : 5.8 g Na IPO , 3.0 2 4 g KH PO , 0.5 g NaCl, 1.0 g NH Cl, and the pH adjusted to 2 4 4 o 6.8 to 7.0. All media were autoclaved, cooled to 55 C...0.5M Tris), once with a 1:1 mixture of phenol and chloroform (1/24 isoamyl alcohol) then thrice iith an equal volume of water saturated ether. After

  11. Bacteriophages and Biofilms

    PubMed Central

    Harper, David R.; Parracho, Helena M. R. T.; Walker, James; Sharp, Richard; Hughes, Gavin; Werthén, Maria; Lehman, Susan; Morales, Sandra

    2014-01-01

    Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce) enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  12. Single-molecule FRET studies of the cooperative and non-cooperative binding kinetics of the bacteriophage T4 single-stranded DNA binding protein (gp32) to ssDNA lattices at replication fork junctions

    PubMed Central

    Lee, Wonbae; Gillies, John P.; Jose, Davis; Israels, Brett A.; von Hippel, Peter H.; Marcus, Andrew H.

    2016-01-01

    Gene 32 protein (gp32) is the single-stranded (ss) DNA binding protein of the bacteriophage T4. It binds transiently and cooperatively to ssDNA sequences exposed during the DNA replication process and regulates the interactions of the other sub-assemblies of the replication complex during the replication cycle. We here use single-molecule FRET techniques to build on previous thermodynamic studies of gp32 binding to initiate studies of the dynamics of the isolated and cooperative binding of gp32 molecules within the replication complex. DNA primer/template (p/t) constructs are used as models to determine the effects of ssDNA lattice length, gp32 concentration, salt concentration, binding cooperativity and binding polarity at p/t junctions. Hidden Markov models (HMMs) and transition density plots (TDPs) are used to characterize the dynamics of the multi-step assembly pathway of gp32 at p/t junctions of differing polarity, and show that isolated gp32 molecules bind to their ssDNA targets weakly and dissociate quickly, while cooperatively bound dimeric or trimeric clusters of gp32 bind much more tightly, can ‘slide’ on ssDNA sequences, and exhibit binding dynamics that depend on p/t junction polarities. The potential relationships of these binding dynamics to interactions with other components of the T4 DNA replication complex are discussed. PMID:27694621

  13. Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part I: Isolation and lytic activity estimation of bacteriophages.

    PubMed

    Bicalho, R C; Santos, T M A; Gilbert, R O; Caixeta, L S; Teixeira, L M; Bicalho, M L S; Machado, V S

    2010-01-01

    The objective of this study was to isolate bacteriophages from environmental samples of 2 large commercial dairy farms using Escherichia coli isolated from the uteri of postpartum Holstein dairy cows as hosts. A total of 11 bacteriophage preparations were isolated from manure systems of commercial dairy farms and characterized for in vitro antimicrobial activity. In addition, a total of 57 E. coli uterine isolates from 5 dairy cows were phylogenetically grouped by triplex PCR. Each E. coli bacterial host from the uterus was inoculated with their respective bacteriophage preparation at several different multiplicities of infections (MOI) to determine minimum inhibitory MOI. The effect of a single dose (MOI=10(2)) of bacteriophage on the growth curve of all 57 E. coli isolates was assessed using a microplate technique. Furthermore, genetic diversity within and between the different bacteriophage preparations was assessed by bacteriophage purification followed by DNA extraction, restriction, and agarose gel electrophoresis. Phylogenetic grouping based on triplex PCR showed that all isolates of E. coli belonged to phylogroup B1. Bacterial growth was completely inhibited at considerably low MOI, and the effect of a single dose (MOI=10(2)) of bacteriophage preparations on the growth curve of all 57 E. coli isolates showed that all bacteriophage preparations significantly decreased the growth rate of the isolates. Bacteriophage preparation 1230-10 had the greatest antimicrobial activity and completely inhibited the growth of 71.7% (n=57) of the isolates. The combined action of bacteriophage preparations 1230-10, 6375-10, 2540-4, and 6547-2, each at MOI=10(2), had the broadest spectrum of action and completely inhibited the growth (final optical density at 600 nm 4 phage

  14. Extending the Host Range of Bacteriophage Particles for DNA Transduction.

    PubMed

    Yosef, Ido; Goren, Moran G; Globus, Rea; Molshanski-Mor, Shahar; Qimron, Udi

    2017-06-01

    A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts. To extend the host range of T7 phage for DNA transduction, we have designed hybrid particles displaying various phage tail/tail fiber proteins. These modular particles were programmed to package and transduce DNA into hosts that restrict T7 phage propagation. We have also developed an innovative generalizable platform that considerably enhances DNA transfer into new hosts by artificially selecting tails that efficiently transduce DNA. In addition, we have demonstrated that the hybrid particles transduce desired DNA into desired hosts. This study thus critically extends and improves the ability of the particles to transduce DNA into novel phage-restrictive hosts, providing a platform for myriad applications that require this ability. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Interaction of Bacteriophages with the Immune System: Induction of Bacteriophage-Specific Antibodies.

    PubMed

    Dąbrowska, Krystyna

    2018-01-01

    In all cases when a bacteriophage makes direct contact with a mammalian organism, it may challenge the mammalian immunological system. Its major consequence is production of antibodies specific to the bacteriophage. Here we present protocols applicable in studies of bacteriophage ability to induce specific antibodies. The protocols have been divided into three parts: purification, immunization, and detection (ELISA).

  16. A filamentous bacteriophage targeted to carcinoembryonic antigen induces tumor regression in mouse models of colorectal cancer.

    PubMed

    Murgas, Paola; Bustamante, Nicolás; Araya, Nicole; Cruz-Gómez, Sebastián; Durán, Eduardo; Gaete, Diana; Oyarce, César; López, Ernesto; Herrada, Andrés Alonso; Ferreira, Nicolás; Pieringer, Hans; Lladser, Alvaro

    2018-02-01

    Colorectal cancer is a deadly disease, which is frequently diagnosed at advanced stages, where conventional treatments are no longer effective. Cancer immunotherapy has emerged as a new form to treat different malignancies by turning-on the immune system against tumors. However, tumors are able to evade antitumor immune responses by promoting an immunosuppressive microenvironment. Single-stranded DNA containing M13 bacteriophages are highly immunogenic and can be specifically targeted to the surface of tumor cells to trigger inflammation and infiltration of activated innate immune cells, overcoming tumor-associated immunosuppression and promoting antitumor immunity. Carcinoembryonic antigen (CEA) is highly expressed in colorectal cancers and has been shown to promote several malignant features of colorectal cancer cells. In this work, we targeted M13 bacteriophage to CEA, a tumor-associated antigen over-expressed in a high proportion of colorectal cancers but largely absent in normal cells. The CEA-targeted M13 bacteriophage was shown to specifically bind to purified CEA and CEA-expressing tumor cells in vitro. Both intratumoral and systemic administration of CEA-specific bacteriophages significantly reduced tumor growth of mouse models of colorectal cancer, as compared to PBS and control bacteriophage administration. CEA-specific bacteriophages promoted tumor infiltration of neutrophils and macrophages, as well as maturation dendritic cells in tumor-draining lymph nodes, suggesting that antitumor T-cell responses were elicited. Finally, we demonstrated that tumor protection provided by CEA-specific bacteriophage particles is mediated by CD8 + T cells, as depletion of circulating CD8 + T cells completely abrogated antitumor protection. In summary, we demonstrated that CEA-specific M13 bacteriophages represent a potential immunotherapy against colorectal cancer.

  17. Problem-Solving Test: RNA and Protein Synthesis in Bacteriophage-Infected "E. coli" Cells

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    The classic experiment presented in this problem-solving test was designed to identify the template molecules of translation by analyzing the synthesis of phage proteins in "Escherichia coli" cells infected with bacteriophage T4. The work described in this test led to one of the most seminal discoveries of early molecular biology: it dealt a…

  18. Construction of a filamentous phage display peptide library.

    PubMed

    Fagerlund, Annette; Myrset, Astrid Hilde; Kulseth, Mari Ann

    2014-01-01

    The concept of phage display is based on insertion of random oligonucleotides at an appropriate location within a structural gene of a bacteriophage. The resulting phage will constitute a library of random peptides displayed on the surface of the bacteriophages, with the encoding genotype packaged within each phage particle. Using a phagemid/helper phage system, the random peptides are interspersed between wild-type coat proteins. Libraries of phage-expressed peptides may be used to search for novel peptide ligands to target proteins. The success of finding a peptide with a desired property in a given library is highly dependent on the diversity and quality of the library. The protocols in this chapter describe the construction of a high-diversity library of phagemid vector encoding fusions of the phage coat protein pVIII with random peptides, from which a phage library displaying random peptides can be prepared.

  19. DNA damage under simulated extraterrestrial conditions in bacteriophage T7

    NASA Astrophysics Data System (ADS)

    Fekete, A.; Kovács, G.; Hegedüs, M.; Módos, K.; Rontó, Gy.; Lammer, H.; Panitz, C.

    The experiment ``Phage and uracil response'' (PUR) will be accommodated in the EXPOSE facility of the ISS aiming to examine and quantify the effect of specific space conditions on bacteriophage T7 and isolated T7 DNA thin films. To achieve this new method was elaborated for the preparation of DNA and nucleoprotein thin films (1). During the EXPOSE Experiment Verification Tests (EVT) the samples were exposed to vacuum (10 -6 Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated, and we also studied the effect of temperature in vacuum as well as the influence of temperature fluctuations. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, DNA-DNA cross-links) accumulate throughout exposure. DNA damage was determined by quantitative PCR using 555 bp and 3826 bp fragments of T7 DNA (2) and by neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of the PCR products have been detected indicating the damage of isolated and intraphage DNA. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target. Fekete et al. J. Luminescence 102-103, 469-475, 2003 Hegedüs et al. Photochem. Photobiol. 78, 213-219, 2003

  20. Lytic bacteriophages

    PubMed Central

    Sharma, Manan

    2013-01-01

    Foodborne illnesses resulting from the consumption of produce commodities contaminated with enteric pathogens continue to be a significant public health issue. Lytic bacteriophages may provide an effective and natural intervention to reduce bacterial pathogens on fresh and fresh-cut produce commodities. The use of multi-phage cocktails specific for a single pathogen has been most frequently assessed on produce commodities to minimize the development of bacteriophage insensitive mutants (BIM) in target pathogen populations. Regulatory approval for the use of several lytic phage products specific for bacterial pathogens such as Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes in foods and on food processing surfaces has been granted by various agencies in the US and other countries, possibly allowing for the more widespread use of bacteriophages in the decontamination of fresh and minimally processed produce. Research studies have shown lytic bacteriophages specific for E. coli O157:H7, Salmonella spp. and Listeria monocytogenes have been effective in reducing pathogen populations on leafy greens, sprouts and tomatoes. PMID:24228223

  1. [RATIONAL ASPECTS OF BACTERIOPHAGES USE].

    PubMed

    Vakarina, A A; Kataeva, L V; Karpukhina, N F

    2015-01-01

    Analysis of existing aspects of bacteriophage use and study features of their lytic activity by using various techniques. Effect of monophages and associated bacteriophages (staphylococci, piopolyvalent and piocombined, intestiphage, pneumonia klebsiella and polyvalent klebsiella produced by "Microgen") was studied with 380 strains of Staphylococcus aureus and 279 cultures of Klebsiella pneumoniae in liquid and solid nutrient media. From patients with intestinal disorder, sensitivity was analyzed to 184 strains of Salmonella genus bacteria 18 serological variants to salmonella bacteriophages, 137 strains of Escherichia coli (lactose-negative, hemolytic), as well as some members of OKA groups (21 serovars) to coli-proteic and piopolyvalent bacteriophages. Lytic ability of the piobacteriophage against Klebsiella and Proteus genus bacteria was determined. Staphylococcus aureus was sensitive to staphylococcus bacteriophage in 71.6% of cases and to piobacteriophage--in 86.15% of cases. A 100% lytic ability of salmonella bacteriophage against Salmonella spp. was established. Sensitivity of E. coli of various serogroups to coli-proteic and piobacteriophage was 66 - 100%. Klebsiella, Proteus genus bacteria were sensitive to piobacteriophage in only 35% and 43.15% of cases, respectively. A more rational use of bacteriophages is necessary: development of a technique, evaluation of sensitivity of bacteria to bacteriophage, introduction of corrections into their production (expansion of bacteriophage spectra, determination and indication of their concentration in accompanying documents).

  2. DNA packaging and the pathway of bacteriophage T4 head assembly.

    PubMed Central

    Hsiao, C L; Black, L W

    1977-01-01

    A cold-sensitive mutation in the structural gene for a minor phage T4 capsid protein (p20) leads to formation of heads containing p20 and cleaved head proteins and empty of DNA. Such heads can be filled with DNA and converted to active phages in vivo uponshift to high temperature. It appears that p20 has two distinct roles in head assembly: first, in construction of the prehead shell (blocked by ts and am mutation) and, second,in DNA packaging (blocked by cs mutation). The latter function is closely associated with gene 17 product, previously known to be required for DNA packagaing. Temperature shift studies of cs-ts double mutants and other observations allow determination of phage function required for DNA packaging. Contrary to previous proposals, we find that T4 DNA packaging is not directly coupled to and can follow DNA synthesis, protein cleavage, prehead core removal, and gene 21-mediated cleavage-induced increase in head volume. Our evidence suggests that an altered head assembly pathway exists and that DNA packaging is probably initiated by DNA-capsid (p20) interaction. Images PMID:269421

  3. Identification of Bacteriophage N4 Virion RNA Polymerase-Nucleic Acid Interactions in Transcription Complexes*

    PubMed Central

    Davydova, Elena K.; Kaganman, Irene; Kazmierczak, Krystyna M.; Rothman-Denes, Lucia B.

    2009-01-01

    Bacteriophage N4 mini-virion RNA polymerase (mini-vRNAP), the 1106-amino acid transcriptionally active domain of vRNAP, recognizes single-stranded DNA template-containing promoters composed of conserved sequences and a 3-base loop–5-base pair stem hairpin structure. The major promoter recognition determinants are a purine located at the center of the hairpin loop (–11G) and a base at the hairpin stem (–8G). Mini-vRNAP is an evolutionarily highly diverged member of the T7 family of RNAPs. A two-plasmid system was developed to measure the in vivo activity of mutant mini-vRNAP enzymes. Five mini-vRNAP derivatives, each containing a pair of cysteine residues separated by ∼100 amino acids and single cysteine-containing enzymes, were generated. These reagents were used to determine the smallest catalytically active polypeptide and to map promoter, substrate, and RNA-DNA hybrid contact sites to single amino acid residues in the enzyme by using end-labeled 5-iododeoxyuridine- and azidophenacyl-substituted oligonucleotides, cross-linkable derivatives of the initiating nucleotide, and RNA products with 5-iodouridine incorporated at specific positions. Localization of functionally important amino acid residues in the recently determined crystal structures of apomini-vRNAP and the mini-vRNAP-promoter complex and comparison with the crystal structures of the T7 RNAP initiation and elongation complexes allowed us to predict major rearrangements in mini-vRNAP in the transition from transcription initiation to elongation similar to those observed in T7 RNAP, a task otherwise precluded by the lack of sequence homology between N4 mini-vRNAP and T7 RNAP. PMID:19015264

  4. Qualitative and quantitative detection of T7 bacteriophages using paper based sandwich ELISA.

    PubMed

    Khan, Mohidus Samad; Pande, Tripti; van de Ven, Theo G M

    2015-08-01

    Viruses cause many infectious diseases and consequently epidemic health threats. Paper based diagnostics and filters can offer attractive options for detecting and deactivating pathogens. However, due to their infectious characteristics, virus detection using paper diagnostics is more challenging compared to the detection of bacteria, enzymes, DNA or antigens. The major objective of this study was to prepare reliable, degradable and low cost paper diagnostics to detect viruses, without using sophisticated optical or microfluidic analytical instruments. T7 bacteriophage was used as a model virus. A paper based sandwich ELISA technique was developed to detect and quantify the T7 phages in solution. The paper based sandwich ELISA detected T7 phage concentrations as low as 100 pfu/mL to as high as 10(9) pfu/mL. The compatibility of paper based sandwich ELISA with the conventional titre count was tested using T7 phage solutions of unknown concentrations. The paper based sandwich ELISA technique is faster and economical compared to the traditional detection techniques. Therefore, with proper calibration and right reagents, and by following the biosafety regulations, the paper based technique can be said to be compatible and economical to the sophisticated laboratory diagnostic techniques applied to detect pathogenic viruses and other microorganisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Bacteriophages Infecting Propionibacterium acnes

    PubMed Central

    2013-01-01

    Viruses specifically infecting bacteria, or bacteriophages, are the most common biological entity in the biosphere. As such, they greatly influence bacteria, both in terms of enhancing their virulence and in terms of killing them. Since the first identification of bacteriophages in the beginning of the 20th century, researchers have been fascinated by these microorganisms and their ability to eradicate bacteria. In this review, we will cover the history of the Propionibacterium acnes bacteriophage research and point out how bacteriophage research has been an important part of the research on P. acnes itself. We will further discuss recent findings from phage genome sequencing and the identification of phage sequence signatures in clustered regularly interspaced short palindromic repeats (CRISPRs). Finally, the potential to use P. acnes bacteriophages as a therapeutic strategy to combat P. acnes-associated diseases will be discussed. PMID:23691509

  6. Structural Studies of MS2 Bacteriophage Virus Particle Disassembly by Nuclear Magnetic Resonance Relaxation Measurements

    PubMed Central

    Anobom, C. D.; Albuquerque, S. C.; Albernaz, F. P.; Oliveira, A. C.; Silva, J. L.; Peabody, D. S.; Valente, A. P.; Almeida, F. C. L.

    2003-01-01

    In this article we studied, by nuclear magnetic resonance relaxation measurements, the disassembly of a virus particle—the MS2 bacteriophage. MS2 is one of the single-stranded RNA bacteriophages that infect Escherichia coli. At pH 4.5, the phage turns to a metastable state, as is indicated by an increase in the observed nuclear magnetic resonance signal intensity upon decreasing the pH from 7.0 to 4.5. Steady-state fluorescence and circular dichroism spectra at pH 4.5 show that the difference in conformation and secondary structure is not pronounced if compared with the phage at pH 7.0. At pH 4.5, two-dimensional 15N-1H heteronuclear multiple quantum coherence (HMQC) spectrum shows ∼40 crosspeaks, corresponding to the most mobile residues of MS2 coat protein at pH 4.5. The 15N linewidth is ∼30 Hz, which is consistent with an intermediate with a rotational relaxation time of 100 ns. The average spin lattice relaxation time (T1) of the mobile residues was measured at different temperatures, clearly distinguishing between the dimer and the equilibrium intermediate. The results show, for the first time, the presence of intermediates in the process of dissociation of the MS2 bacteriophage. PMID:12770895

  7. Formation of highly stable chimeric trimers by fusion of an adenovirus fiber shaft fragment with the foldon domain of bacteriophage t4 fibritin.

    PubMed

    Papanikolopoulou, Katerina; Forge, Vincent; Goeltz, Pierrette; Mitraki, Anna

    2004-03-05

    The folding of beta-structured, fibrous proteins is a largely unexplored area. A class of such proteins is used by viruses as adhesins, and recent studies revealed novel beta-structured motifs for them. We have been studying the folding and assembly of adenovirus fibers that consist of a globular C-terminal domain, a central fibrous shaft, and an N-terminal part that attaches to the viral capsid. The globular C-terminal, or "head" domain, has been postulated to be necessary for the trimerization of the fiber and might act as a registration signal that directs its correct folding and assembly. In this work, we replaced the head of the fiber by the trimerization domain of the bacteriophage T4 fibritin, termed "foldon." Two chimeric proteins, comprising the foldon domain connected at the C-terminal end of four fiber shaft repeats with or without the use of a natural linker sequence, fold into highly stable, SDS-resistant trimers. The structural signatures of the chimeric proteins as seen by CD and infrared spectroscopy are reported. The results suggest that the foldon domain can successfully replace the fiber head domain in ensuring correct trimerization of the shaft sequences. Biological implications and implications for engineering highly stable, beta-structured nanorods are discussed.

  8. Partial complementation of the UV sensitivity of E. coli and yeast excision repair mutants by the cloned denV gene of bacteriophage T4.

    PubMed

    Chenevert, J M; Naumovski, L; Schultz, R A; Friedberg, E C

    1986-04-01

    The denV gene of bacteriophage T4 was reconstituted from two overlapping DNA fragments cloned in M13 vectors. The coding region of the intact gene was tailored into a series of plasmid vectors containing different promoters suitable for expression of the gene in E. coli and in yeast. Induction of the TAC promoter with IPTG resulted in overexpression of the gene, which was lethal to E. coli. Expression of the TACdenV gene in the absence of IPTG, or the use of the yeast GAL1 or ADH promoters resulted in partial complementation of the UV sensitivity of uvrA, uvrB, uvrC and recA mutants of E. coli and rad1, rad2, rad3, rad4 and rad10 mutants of S. cerevisiae. The extent of denV-mediated reactivation of excision-defective mutants was approximately equal to that of photoreactivation of such strains. Excision proficient E. coli cells transformed with a plasmid containing the denV gene were slightly more resistant to ultraviolet (UV) radiation than control cells without the denV gene. On the other hand, excision proficient yeast cells were slightly more sensitive to killing by UV radiation following transformation with a plasmid containing the denV gene. This effect was more pronounced in yeast mutants of the RAD52 epistasis group.

  9. Discovery of GPX4 inhibitory peptides from random peptide T7 phage display and subsequent structural analysis.

    PubMed

    Sakamoto, Kotaro; Sogabe, Satoshi; Kamada, Yusuke; Matsumoto, Shin-Ichi; Kadotani, Akito; Sakamoto, Jun-Ichi; Tani, Akiyoshi

    2017-01-08

    The phospholipid hydroperoxidase glutathione peroxidase (GPX4) is an enzyme that reduces lipid hydroperoxides in lipid membranes. Recently, GPX4 has been investigated as a target molecule that induces iron-dependent cell death (ferroptosis) selectively in cancer cells that express mutant Ras. GPX4 inhibitors have the potential to become novel anti-cancer drugs. However, there are no druggable pockets for conventional small molecules on the molecular surface of GPX4. To generate GPX4 inhibitors, we examined the use of peptides as an alternative to small molecules. By screening peptide libraries displayed on T7 phages, and analyzing the X-ray crystal structures of the peptides, we successfully identified one peptide that binds to near Sec73 of catalytic site and two peptides that bind to another site on GPX4. To our knowledge, this is the first study reporting GPX4 inhibitory peptides and their structural information. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex.

    PubMed

    Golshahi, Laleh; Seed, Kimberley D; Dennis, Jonathan J; Finlay, Warren H

    2008-12-01

    Antibiotic-resistant bacterial infections have renewed interest in finding substitute methods of treatment. The purpose of the present in vitro study was to investigate the possibility of respiratory delivery of a Burkholderia cepacia complex (BCC) bacteriophage by nebulized aerosol administration. Bacteriophages in isotonic saline were aerosolized with Pari LC star and eFlow nebulizers, at titers with mean value (standard deviation) of 2.15 x 10(8) (1.63 x 10(8)) plaque-forming unit (PFU)/mL in 2.5-mL nebulizer fills. The breathing pattern of an adult was simulated using a pulmonary waveform generator. During breath simulation, the size distributions of the nebulized aerosol were measured using phase doppler anemometry (PDA). Efficiency of nebulizer delivery was subsequently determined by collection of aerosol on low resistance filters and measurement of bacteriophage titers. These filter titers were used as input data to a mathematical lung deposition model to predict regional deposition of bacteriophages in the lung and initial bacteriophage titers in the liquid surface layer of each conducting airway generation. The results suggest that BCC bacteriophages can be nebulized successfully within a reasonable delivery time and predicted titers in the lung indicate that this method may hold potential for treatment of bacterial lung infections common among cystic fibrosis patients.

  11. Characterization of a T7-like lytic bacteriophage (phiSG-JL2) of Salmonella enterica serovar gallinarum biovar gallinarum.

    PubMed

    Kwon, Hyuk-Joon; Cho, Sun-Hee; Kim, Tae-Eun; Won, Yong-Jin; Jeong, Jihye; Park, Se Chang; Kim, Jae-Hong; Yoo, Han-Sang; Park, Yong-Ho; Kim, Sun-Joong

    2008-11-01

    PhiSG-JL2 is a newly discovered lytic bacteriophage infecting Salmonella enterica serovar Gallinarum biovar Gallinarum but is nonlytic to a rough vaccine strain of serovar Gallinarum biovar Gallinarum (SG-9R), S. enterica serovar Enteritidis, S. enterica serovar Typhimurium, and S. enterica serovar Gallinarum biovar Pullorum. The phiSG-JL2 genome is 38,815 bp in length (GC content, 50.9%; 230-bp-long direct terminal repeats), and 55 putative genes may be transcribed from the same strand. Functions were assigned to 30 genes based on high amino acid similarity to known proteins. Most of the expected proteins except tail fiber (31.9%) and the overall organization of the genomes were similar to those of yersiniophage phiYeO3-12. phiSG-JL2 could be classified as a new T7-like virus and represents the first serovar Gallinarum biovar Gallinarum phage genome to be sequenced. On the basis of intraspecific ratios of nonsynonymous to synonymous nucleotide changes (Pi[a]/Pi[s]), gene 2 encoding the host RNA polymerase inhibitor displayed Darwinian positive selection. Pretreatment of chickens with phiSG-JL2 before intratracheal challenge with wild-type serovar Gallinarum biovar Gallinarum protected most birds from fowl typhoid. Therefore, phiSG-JL2 may be useful for the differentiation of serovar Gallinarum biovar Gallinarum from other Salmonella serotypes, prophylactic application in fowl typhoid control, and understanding of the vertical evolution of T7-like viruses.

  12. Bacteriophages as vehicles for gene delivery into mammalian cells: prospects and problems.

    PubMed

    Bakhshinejad, Babak; Sadeghizadeh, Majid

    2014-10-01

    The identification of more efficient gene delivery vehicles (GDVs) is essential to fulfill the expectations of clinical gene therapy. Bacteriophages, due to their excellent safety profile, extreme stability under a variety of harsh environmental conditions and the capability for being genetically manipulated, have drawn a flurry of interest to be applied as a newly arisen category of gene delivery platforms. The incessant evolutionary interaction of bacteriophages with human cells has turned them into a part of our body's natural ecosystem. However, these carriers represent several barriers to gene transduction of mammalian cells. The lack of evolvement of specialized machinery for targeted cellular internalization, endosomal, lysosomal and proteasomal escape, cytoplasmic entry, nuclear localization and intranuclear transcription poses major challenges to the expression of the phage-carried gene. In this review, we describe pros and cons of bacteriophages as GDVs, provide an insight into numerous barriers that bacteriophages face for entry into and subsequent trafficking inside mammalian cells and elaborate on the strategies used to bypass these barriers. Tremendous genetic flexibility of bacteriophages to undergo numerous surface modifications through phage display technology has proven to be a turning point in the uncompromising efforts to surmount the limitations of phage-mediated gene expression. The revelatory outcomes of the studies undertaken within the recent years have been promising for phage-mediated gene delivery to move from concept to reality.

  13. Application of an M13 bacteriophage displaying tyrosine on the surface for detection of Fe(3+) and Fe(2+) ions.

    PubMed

    Guo, Xiaohua; Niu, Chuncheng; Wu, Yunhua; Liang, Xiaosheng

    2015-12-01

    Ferric and ferrous ion plays critical roles in bioprocesses, their influences in many fields have not been fully explored due to the lack of methods for quantification of ferric and ferrous ions in biological system or complex matrix. In this study, an M13 bacteriophage (phage) was engineered for use as a sensor for ferric and ferrous ions via the display of a tyrosine residue on the P8 coat protein. The interaction between the specific phenol group of tyrosine and Fe(3+) / Fe(2+) was used as the sensor. Transmission electron microscopy showed aggregation of the tyrosine-displaying phages after incubation with Fe(3+) and Fe(2+). The aggregated phages infected the host bacterium inefficiently. This phenomenon could be utilized for detection of ferric and ferrous ions. For ferric ions, a calibration curve ranging from 200 nmol/L to 8 μmol/L with a detection limit of 58 nmol/L was acquired. For ferrous ions, a calibration curve ranging from 800 nmol/L to 8 μmol/L with a detection limit of 641.7 nmol/L was acquired. The assay was specific for Fe(3+) and Fe(2+) when tested against Ni(2+), Pb(2+), Zn(2+), Mn(2+), Co(2+), Ca(2+), Cu(2+), Cr(3+), Ba(2+), and K(+). The tyrosine displaying phage to Fe(3+) and Fe(2+) interaction would have plenty of room in application to biomaterials and bionanotechnology.

  14. Construction of genetically engineered M13K07 helper phage for simultaneous phage display of gold binding peptide 1 and nuclear matrix protein 22 ScFv antibody.

    PubMed

    Fatemi, Farnaz; Amini, Seyed Mohammad; Kharrazi, Sharmin; Rasaee, Mohammad Javad; Mazlomi, Mohammad Ali; Asadi-Ghalehni, Majid; Rajabibazl, Masoumeh; Sadroddiny, Esmaeil

    2017-11-01

    The most common techniques of antibody phage display are based on the use of M13 filamentous bacteriophages. This study introduces a new genetically engineered M13K07 helper phage displaying multiple copies of a known gold binding peptide on p8 coat proteins. The recombinant helper phages were used to rescue a phagemid vector encoding the p3 coat protein fused to the nuclear matrix protein 22 (NMP22) ScFv antibody. Transmission electron microscopy (TEM), UV-vis absorbance spectroscopy, and field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDX) analysis revealed that the expression of gold binding peptide 1 (GBP1) on major coat protein p8 significantly enhances the gold-binding affinity of M13 phages. The recombinant bacteriophages at concentrations above 5×10 4 pfu/ml red-shifted the UV-vis absorbance spectra of gold nanoparticles (AuNPs); however, the surface plasmon resonance of gold nanoparticles was not changed by the wild type bacteriophages at concentrations up to 10 12 pfu/ml. The phage ELISA assay demonstrated the high affinity binding of bifunctional bacteriophages to NMP22 antigen at concentrations of 10 5 and 10 6 pfu/ml. Thus, the p3 end of the bifunctional bacteriophages would be able to bind to specific target antigen, while the AuNPs were assembled along the coat of virus for signal generation. Our results indicated that the complex of antigen-bacteriophages lead to UV-vis spectral changes of AuNPs and NMP22 antigen in concentration range of 10-80μg/ml can be detected by bifunctional bacteriophages at concentration of 10 4 pfu/ml. The ability of bifunctional bacteriophages to bind to antigen and generate signal at the same time, makes this approach applicable for identifying different antigens in immunoassay techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The role of the C-domain of bacteriophage T4 gene 32 protein in ssDNA binding and dsDNA helix-destabilization: Kinetic, single-molecule, and cross-linking studies

    PubMed Central

    Pant, Kiran; Anderson, Brian; Perdana, Hendrik; Malinowski, Matthew A.; Win, Aye T.; Williams, Mark C.

    2018-01-01

    The model single-stranded DNA binding protein of bacteriophage T4, gene 32 protein (gp32) has well-established roles in DNA replication, recombination, and repair. gp32 is a single-chain polypeptide consisting of three domains. Based on thermodynamics and kinetics measurements, we have proposed that gp32 can undergo a conformational change where the acidic C-terminal domain binds internally to or near the single-stranded (ss) DNA binding surface in the core (central) domain, blocking ssDNA interaction. To test this model, we have employed a variety of experimental approaches and gp32 variants to characterize this conformational change. Utilizing stopped-flow methods, the association kinetics of wild type and truncated forms of gp32 with ssDNA were measured. When the C-domain is present, the log-log plot of k vs. [NaCl] shows a positive slope, whereas when it is absent (*I protein), there is little rate change with salt concentration, as expected for this model.A gp32 variant lacking residues 292–296 within the C-domain, ΔPR201, displays kinetic properties intermediate between gp32 and *I. The single molecule force-induced DNA helix-destabilizing activitiesas well as the single- and double-stranded DNA affinities of ΔPR201 and gp32 truncated at residue 295 also fall between full-length protein and *I. Finally, chemical cross-linking of recombinant C-domain and gp32 lacking both N- and C-terminal domains is inhibited by increasing concentrations of a short single-stranded oligonucleotide, and the salt dependence of cross-linking mirrors that expected for the model. Taken together, these results provide the first evidence in support of this model that have been obtained through structural probes. PMID:29634784

  16. Bacteriophage in polar inland waters

    USGS Publications Warehouse

    Säwström, Christin; Lisle, John; Anesio, A.M.; Priscu, John C.; Laybourn-Parry, J.

    2008-01-01

    Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in polar inland waters are scant but the indications are that they play an active and dynamic role in these microbially dominated polar ecosystems. This review summarises what is presently known about polar inland bacteriophages, ranging from subglacial Antarctic lakes to glacial ecosystems in the Arctic. The review examines interactions between bacteriophages and their hosts and the abiotic and biotic variables that influence these interactions in polar inland waters. In addition, we consider the proportion of the bacteria in Arctic and Antarctic lake and glacial waters that are lysogenic and visibly infected with viruses. We assess the relevance of bacteriophages in the microbial loop in the extreme environments of Antarctic and Arctic inland waters with an emphasis on carbon cycling.

  17. Trinucleotide cassettes increase diversity of T7 phage-displayed peptide library.

    PubMed

    Krumpe, Lauren R H; Schumacher, Kathryn M; McMahon, James B; Makowski, Lee; Mori, Toshiyuki

    2007-10-05

    Amino acid sequence diversity is introduced into a phage-displayed peptide library by randomizing library oligonucleotide DNA. We recently evaluated the diversity of peptide libraries displayed on T7 lytic phage and M13 filamentous phage and showed that T7 phage can display a more diverse amino acid sequence repertoire due to differing processes of viral morphogenesis. In this study, we evaluated and compared the diversity of a 12-mer T7 phage-displayed peptide library randomized using codon-corrected trinucleotide cassettes with a T7 and an M13 12-mer phage-displayed peptide library constructed using the degenerate codon randomization method. We herein demonstrate that the combination of trinucleotide cassette amino acid codon randomization and T7 phage display construction methods resulted in a significant enhancement to the functional diversity of a 12-mer peptide library. This novel library exhibited superior amino acid uniformity and order-of-magnitude increases in amino acid sequence diversity as compared to degenerate codon randomized peptide libraries. Comparative analyses of the biophysical characteristics of the 12-mer peptide libraries revealed the trinucleotide cassette-randomized library to be a unique resource. The combination of T7 phage display and trinucleotide cassette randomization resulted in a novel resource for the potential isolation of binding peptides for new and previously studied molecular targets.

  18. Reduction of Salmonella in ground chicken using a bacteriophage.

    PubMed

    Grant, Ar'Quette; Parveen, Salina; Schwarz, Jurgen; Hashem, Fawzy; Vimini, Bob

    2017-08-01

    This study's goal was to ascertain the effectiveness of a commercially available Salmonella bacteriophage during ground chicken production focusing on: water source, different Salmonella serovars, and time. Salmonella-free boneless, skinless chicken meat was inoculated with 4.0 Log CFU/cm2 of either a cocktail of 3 Salmonella isolates derived from ground chicken (GC) or a cocktail of 3 Salmonella strains not isolated from ground chicken (non-GC). Bacteriophages were spread onto the chicken using sterile tap or filtered water for 30 min or 8 h. Salmonella was recovered using standard plating method. Greater Salmonella reduction was observed when the bacteriophage was diluted in sterile tap water than in sterile filtered water: 0.39 Log CFU/cm2 and 0.23 Log CFU/cm2 reduction after 30 min, respectively (P < 0.05). The non-GC isolates showed reductions of 0.71 Log CFU/cm2 and 0.90 Log CFU/cm2 after 30 min and 8 h, respectively (P < 0.05). The GC isolates were less sensitive to the bacteriophage: 0.39 Log CFU/cm2 and 0.67 Log CFU/cm2 reductions after 30 min and 8 h, respectively (P < 0.05). In conclusion, bacteriophage reduction was dependent on water used to dilute the bacteriophage, Salmonella's susceptibility to the bacteriophage, and treatment time. © 2017 Poultry Science Association Inc.

  19. Novel N4 Bacteriophages Prevail in the Cold Biosphere.

    PubMed

    Zhan, Yuanchao; Buchan, Alison; Chen, Feng

    2015-08-01

    Coliphage N4 is a lytic bacteriophage discovered nearly half a century ago, and it was considered to be a "genetic orphan" until very recently, when several additional N4-like phages were discovered to infect nonenteric bacterial hosts. Interest in this genus of phages is stimulated by their unique genetic features and propagation strategies. To better understand the ecology of N4-like phages, we investigated the diversity and geographic patterns of N4-like phages by examining 56 Chesapeake Bay viral communities, using a PCR-clone library approach targeting a diagnostic N4-like DNA polymerase gene. Many new lineages of N4-like phages were found in the bay, and their genotypes shift from the lower to the upper bay. Interestingly, signature sequences of N4-like phages were recovered only from winter month samples, when water temperatures were below 4°C. An analysis of existing metagenomic libraries from various aquatic environments supports the hypothesis that N4-like phages are most prolific in colder waters. In particular, a high number of N4-like phages were detected in Organic Lake, Antarctica, a cold and hypersaline system. The prevalence of N4-like phages in the cold biosphere suggests these viruses possess yet-to-be-determined mechanisms that facilitate lytic infections under cold conditions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria.

    PubMed

    El-Shibiny, Ayman; El-Sahhar, Salma

    2017-11-01

    Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.

  1. Evolution and the complexity of bacteriophages.

    PubMed

    Serwer, Philip

    2007-03-13

    The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the presence of cellular gene homologs, (3) determine

  2. M13 Bacteriophage-Polymer Nanoassemblies as Drug Delivery Vehicles

    DTIC Science & Technology

    2011-01-01

    the M13 bacteriophage is well-defined and can be genetically engineered to produce conductive fibers [35] or display peptides or proteins in...36], and fluorescent dyes [42, 43], can be chemically anchored on the surface of M13 bacterio- phage . Our group has systematically investigated the...bioconjugation chemistry of M13 , and used such modified M13 phages to produce conductive nanofibers [35], direct cell growth [36], and target

  3. [Strategies to prevent bacteriophage infection in industrial fermentation].

    PubMed

    Shen, Juntao; Xiu, Zhilong

    2017-12-25

    During the development of bacteria-based biotechnology, bacteriophage infection is one of the constant threats and troublesome problems in industrial fermentation. The core of puzzled bacteriophage infection is a complex arm race of coevolution between bacteriophages and their hosts where bacteriophage has evolved lots of escaped ways against bacterial resistance mechanisms. The strategies of rationally designing factories and rotation of starter strains could reduce the risk of bacteriophage infection, but often fail to avoid. Genetic engineering to increase bacterial resistance is one of the strategies to prevent bacteriophage infection and more knowledge about bacteriophage and its host is needed. Recently, there are some new findings on bacterial resistance mechanisms which provide new solutions for bacteriophage infection. For example, it is possible for a rational design of resistant strains to use CRISPR-Cas based technologies just based on the sequences of bacteriophages. Moreover, it is also possible to avoid the escape of bacteriophage by iteratively building up resistance levels to generate robust industrial starter cultures. Quorum-sensing signal molecules have recently been proved to be involved in the interactions between bacteria and bacteriophages, which provides a possible way to solve bacteriophage infection from a population level. Finally, the rapid development of bacteriophage genome editing and synthetic biology will bring some new cues for preventing bacteriophage infection in industrial fermentation.

  4. Insights into Bacteriophage T5 Structure from Analysis of Its Morphogenesis Genes and Protein Components

    PubMed Central

    Zivanovic, Yvan; Confalonieri, Fabrice; Ponchon, Luc; Lurz, Rudi; Chami, Mohamed; Flayhan, Ali; Renouard, Madalena; Huet, Alexis; Decottignies, Paulette; Davidson, Alan R.; Breyton, Cécile

    2014-01-01

    Bacteriophage T5 represents a large family of lytic Siphoviridae infecting Gram-negative bacteria. The low-resolution structure of T5 showed the T=13 geometry of the capsid and the unusual trimeric organization of the tail tube, and the assembly pathway of the capsid was established. Although major structural proteins of T5 have been identified in these studies, most of the genes encoding the morphogenesis proteins remained to be identified. Here, we combine a proteomic analysis of T5 particles with a bioinformatic study and electron microscopic immunolocalization to assign function to the genes encoding the structural proteins, the packaging proteins, and other nonstructural components required for T5 assembly. A head maturation protease that likely accounts for the cleavage of the different capsid proteins is identified. Two other proteins involved in capsid maturation add originality to the T5 capsid assembly mechanism: the single head-to-tail joining protein, which closes the T5 capsid after DNA packaging, and the nicking endonuclease responsible for the single-strand interruptions in the T5 genome. We localize most of the tail proteins that were hitherto uncharacterized and provide a detailed description of the tail tip composition. Our findings highlight novel variations of viral assembly strategies and of virion particle architecture. They further recommend T5 for exploring phage structure and assembly and for deciphering conformational rearrangements that accompany DNA transfer from the capsid to the host cytoplasm. PMID:24198424

  5. Evaluation of aerosol spray and intramuscular injection of bacteriophage to treat an Escherichia coli respiratory infection.

    PubMed

    Huff, W E; Huff, G R; Rath, N C; Balog, J M; Donoghue, A M

    2003-07-01

    Two studies were conducted to determine the efficacy of either aerosol or i.m. injection of bacteriophage to treat an Escherichia coli respiratory infection in broiler chickens. An additional two studies were conducted to enumerate the bacteriophage in the blood of birds at 1, 2, 3, 4, 5, 6, 24, and 48 h after being sprayed or injected i.m. with bacteriophage. Five birds were bled at each period. In study 1, there were 10 treatments with three replicate pens of 10 birds. The treatments consisted of an untreated control, heat-killed bacteriophage spray, active bacteriophage spray, E. coli challenge at 7 d of age, and E. coli challenge followed by spraying the birds with heat-killed bacteriophage or active bacteriophage at 2, 24, or 48 h after challenge. In study 2 there were 11 treatments with three replicate pens of 10 birds per pen. The treatments were untreated controls, birds injected i.m. in the thigh with heat-killed or active bacteriophage, E. coli challenge at 7 d of age, PBS challenge, E. coli challenge followed by injection of heat-killed or active bacteriophage immediately after challenge or at 24 or 48 h after challenge. In both studies the E. coli challenge consisted of injecting 10(4) cfu into the thoracic air sac. Treatment of this severe E. coli infection with the bacteriophage aerosol spray significantly reduced mortality from 50 to 20% when given immediately after the challenge but had little treatment efficacy when administered 24 or 48 h after challenge. The i.m. injection of bacteriophage significantly reduced mortality from 53 to 17%, 46 to 10%, and 44 to 20% when given immediately, 24, or 48 h after challenge, respectively. Only a few birds sprayed with bacteriophage had detectable bacteriophage in their blood with an average of 96 pfu/mL 1 h after bacteriophage administration, and no bacteriophage was detected 24 and 48 h after bacteriophage administration. All birds injected i.m. with bacteriophage had detectable levels of bacteriophage in

  6. Predicting bacteriophage proteins located in host cell with feature selection technique.

    PubMed

    Ding, Hui; Liang, Zhi-Yong; Guo, Feng-Biao; Huang, Jian; Chen, Wei; Lin, Hao

    2016-04-01

    A bacteriophage is a virus that can infect a bacterium. The fate of an infected bacterium is determined by the bacteriophage proteins located in the host cell. Thus, reliably identifying bacteriophage proteins located in the host cell is extremely important to understand their functions and discover potential anti-bacterial drugs. Thus, in this paper, a computational method was developed to recognize bacteriophage proteins located in host cells based only on their amino acid sequences. The analysis of variance (ANOVA) combined with incremental feature selection (IFS) was proposed to optimize the feature set. Using a jackknife cross-validation, our method can discriminate between bacteriophage proteins located in a host cell and the bacteriophage proteins not located in a host cell with a maximum overall accuracy of 84.2%, and can further classify bacteriophage proteins located in host cell cytoplasm and in host cell membranes with a maximum overall accuracy of 92.4%. To enhance the value of the practical applications of the method, we built a web server called PHPred (〈http://lin.uestc.edu.cn/server/PHPred〉). We believe that the PHPred will become a powerful tool to study bacteriophage proteins located in host cells and to guide related drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes

    NASA Astrophysics Data System (ADS)

    Endy, Drew; You, Lingchong; Yin, John; Molineux, Ian J.

    2000-05-01

    We created a simulation based on experimental data from bacteriophage T7 that computes the developmental cycle of the wild-type phage and also of mutants that have an altered genome order. We used the simulation to compute the fitness of more than 105 mutants. We tested these computations by constructing and experimentally characterizing T7 mutants in which we repositioned gene 1, coding for T7 RNA polymerase. Computed protein synthesis rates for ectopic gene 1 strains were in moderate agreement with observed rates. Computed phage-doubling rates were close to observations for two of four strains, but significantly overestimated those of the other two. Computations indicate that the genome organization of wild-type T7 is nearly optimal for growth: only 2.8% of random genome permutations were computed to grow faster, the highest 31% faster, than wild type. Specific discrepancies between computations and observations suggest that a better understanding of the translation efficiency of individual mRNAs and the functions of qualitatively "nonessential" genes will be needed to improve the T7 simulation. In silico representations of biological systems can serve to assess and advance our understanding of the underlying biology. Iteration between computation, prediction, and observation should increase the rate at which biological hypotheses are formulated and tested.

  8. Structural analysis of bacteriophage-encoded peptidoglycan hydrolase domain KMV36C: crystallization and preliminary X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hecke, Kristof, E-mail: kristof.vanhecke@chem.kuleuven.be; Briers, Yves; Derua, Rita

    2008-04-01

    Crystallization and X-ray data collection of the C-terminus of gp36 from bacteriophage ϕKMV (KMV36C) are reported. The C-terminus of gp36 of bacteriophage ϕKMV (KMV36C) functions as a particle-associated muramidase, presumably as part of the injection needle of the ϕKMV genome during infection. Crystals of KMV36C were obtained by hanging-drop vapour diffusion and diffracted to a resolution of 1.6 Å. The crystals belong to the cubic space group P432, with unit-cell parameters a = b = c = 102.52 Å. KMV36C shows 30% sequence identity to T4 lysozyme (PDB code)

  9. Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain.

    PubMed

    Tao, Y; Strelkov, S V; Mesyanzhinov, V V; Rossmann, M G

    1997-06-15

    Oligomeric coiled-coil motifs are found in numerous protein structures; among them is fibritin, a structural protein of bacteriophage T4, which belongs to a class of chaperones that catalyze a specific phage-assembly process. Fibritin promotes the assembly of the long tail fibers and their subsequent attachment to the tail baseplate; it is also a sensing device that controls the retraction of the long tail fibers in adverse environments and, thus, prevents infection. The structure of fibritin had been predicted from sequence and biochemical analyses to be mainly a triple-helical coiled coil. The determination of its structure at atomic resolution was expected to give insights into the assembly process and biological function of fibritin, and the properties of modified coiled-coil structures in general. The three-dimensional structure of fibritin E, a deletion mutant of wild-type fibritin, was determined to 2.2 A resolution by X-ray crystallography. Three identical subunits of 119 amino acid residues form a trimeric parallel coiled-coil domain and a small globular C-terminal domain about a crystallographic threefold axis. The coiled-coil domain is divided into three segments that are separated by insertion loops. The C-terminal domain, which consists of 30 residues from each subunit, contains a beta-propeller-like structure with a hydrophobic interior. The residues within the C-terminal domain make extensive hydrophobic and some polar intersubunit interactions. This is consistent with the C-terminal domain being important for the correct assembly of fibritin, as shown earlier by mutational studies. Tight interactions between the C-terminal residues of adjacent subunits counteract the latent instability that is suggested by the structural properties of the coiled-coil segments. Trimerization is likely to begin with the formation of the C-terminal domain which subsequently initiates the assembly of the coiled coil. The interplay between the stabilizing effect of the C

  10. Sequence and structural characterization of great salt lake bacteriophage CW02, a member of the T7-like supergroup.

    PubMed

    Shen, Peter S; Domek, Matthew J; Sanz-García, Eduardo; Makaju, Aman; Taylor, Ryan M; Hoggan, Ryan; Culumber, Michele D; Oberg, Craig J; Breakwell, Donald P; Prince, John T; Belnap, David M

    2012-08-01

    Halophage CW02 infects a Salinivibrio costicola-like bacterium, SA50, isolated from the Great Salt Lake. Following isolation, cultivation, and purification, CW02 was characterized by DNA sequencing, mass spectrometry, and electron microscopy. A conserved module of structural genes places CW02 in the T7 supergroup, members of which are found in diverse aquatic environments, including marine and freshwater ecosystems. CW02 has morphological similarities to viruses of the Podoviridae family. The structure of CW02, solved by cryogenic electron microscopy and three-dimensional reconstruction, enabled the fitting of a portion of the bacteriophage HK97 capsid protein into CW02 capsid density, thereby providing additional evidence that capsid proteins of tailed double-stranded DNA phages have a conserved fold. The CW02 capsid consists of bacteriophage lambda gpD-like densities that likely contribute to particle stability. Turret-like densities were found on icosahedral vertices and may represent a unique adaptation similar to what has been seen in other extremophilic viruses that infect archaea, such as Sulfolobus turreted icosahedral virus and halophage SH1.

  11. Bacteriophage Protein–Protein Interactions

    PubMed Central

    Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian

    2012-01-01

    Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage–host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812

  12. Modified Filamentous Bacteriophage as a Scaffold for Carbon Nanofiber.

    PubMed

    Szot-Karpińska, Katarzyna; Golec, Piotr; Leśniewski, Adam; Pałys, Barbara; Marken, Frank; Niedziółka-Jönsson, Joanna; Węgrzyn, Grzegorz; Łoś, Marcin

    2016-12-21

    With the advent of nanotechnology, carbon nanomaterials such as carbon nanofibers (CNF) have aroused substantial interest in various research fields, including energy storage and sensing. Further improvement of their properties might be achieved via the application of viral particles such as bacteriophages. In this report, we present a filamentous M13 bacteriophage with a point mutation in gene VII (pVII-mutant-M13) that selectively binds to the carbon nanofibers to form 3D structures. The phage-display technique was utilized for the selection of the pVII-mutant-M13 phage from the phage display peptide library. The properties of this phage make it a prospective candidate for a scaffold material for CNFs. The results for binding of CNF by mutant phage were compared with those for maternal bacteriophage (pVII-M13). The efficiency of binding between pVII-mutant-M13 and CNF is about 2 orders of magnitude higher compared to that of the pVII-M13. Binding affinity between pVII-mutant-M13 and CNF was also characterized using atomic force microscopy, scanning electron microscopy, and transmission electron microscopy, which confirmed the specificity of the interaction of the phage pVII-mutant-M13 and the CNF; the binding occurs via the phage's ending, where the mutated pVII protein is located. No similar behavior has been observed for other carbon nanomaterials such as graphite, reduced graphene oxide, single-walled carbon nanotubes, and multiwalled carbon nanotubes. Infrared spectra confirmed differences in the interaction with CNF between the pVII-mutant-M13 and the pVII-M13. Basing on conducted research, we hypothesize that the interactions are noncovalent in nature, with π-π interactions playing the dominant role. Herein, the new bioconjugate material is introduced.

  13. Regulation of early mRNA synthesis after bacteriophage T4 infection of Escherichia coli.

    PubMed Central

    Linder, C H; Fast, R

    1975-01-01

    Regulation of T4-specific mRNA synthesis was studied during leucine starvation of a leucine-requiring stringent Escherichia coli B strain. This was done by imposing starvation prior to T4 infection and then letting RNA synthesis proceed for different time periods. Rifampin or streptolydigin was added to stop further RNA synthesis, and protein synthesis was restored by addition of leucine. Samples were withdrawn at different times, and the enzyme-forming capacities found that, during conditions which elicit the stringent response in uninfected bacteria, immediate early mRNA is not stringently regulated. This conclusion contradicts the earlier conclusion of others, obtained by measuring incorporation of radioactive uracil; this is explained by the observation of Edlin and Neuhard (1967), confirmed and extended by us to the T4-infected cell, that the incorporation of uracil into RNA of a stringent strain is virtually blocked by amino acid starvation, whereas that of adenine continues at 30 to 50% of the rate seen in the presence of the required amino acid. PMID:1099229

  14. Bacteriophages as Potential Treatment for Urinary Tract Infections

    PubMed Central

    Sybesma, Wilbert; Zbinden, Reinhard; Chanishvili, Nino; Kutateladze, Mzia; Chkhotua, Archil; Ujmajuridze, Aleksandre; Mehnert, Ulrich; Kessler, Thomas M.

    2016-01-01

    Background: Urinary tract infections (UTIs) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming so that well-tolerated, highly effective therapeutic alternatives are urgently needed. Objective: To investigate the effect of bacteriophages on Escherichia coli and Klebsiella pneumoniae strains isolated from the urine of patients suffering from UTIs. Material and methods: Forty-one E. coli and 9 K. pneumoniae strains, isolated from the urine of patients suffering from UTIs, were tested in vitro for their susceptibility toward bacteriophages. The bacteriophages originated from either commercially available bacteriophage cocktails registered in Georgia or from the bacteriophage collection of the George Eliava Institute of Bacteriophage, Microbiology and Virology. In vitro screening of bacterial strains was performed by use of the spot-test method. The experiments were implemented three times by different groups of scientists. Results: The lytic activity of the commercial bacteriophage cocktails on the 41 E. coli strains varied between 66% (Pyo bacteriophage) and 93% (Enko bacteriophage). After bacteriophage adaptation of the Pyo bacteriophage cocktail, its lytic activity was increased from 66 to 93% and only one E. coli strain remained resistant. One bacteriophage of the Eliava collection could lyse all 9 K. pneumoniae strains. Conclusions: Based on the high lytic activity and the potential of resistance optimization by direct adaption of bacteriophages as reported in this study, and in view of the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a promising treatment option for UTIs highly warranting randomized controlled trials. PMID:27148173

  15. Bacteriophages as Potential Treatment for Urinary Tract Infections.

    PubMed

    Sybesma, Wilbert; Zbinden, Reinhard; Chanishvili, Nino; Kutateladze, Mzia; Chkhotua, Archil; Ujmajuridze, Aleksandre; Mehnert, Ulrich; Kessler, Thomas M

    2016-01-01

    Urinary tract infections (UTIs) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming so that well-tolerated, highly effective therapeutic alternatives are urgently needed. To investigate the effect of bacteriophages on Escherichia coli and Klebsiella pneumoniae strains isolated from the urine of patients suffering from UTIs. Forty-one E. coli and 9 K. pneumoniae strains, isolated from the urine of patients suffering from UTIs, were tested in vitro for their susceptibility toward bacteriophages. The bacteriophages originated from either commercially available bacteriophage cocktails registered in Georgia or from the bacteriophage collection of the George Eliava Institute of Bacteriophage, Microbiology and Virology. In vitro screening of bacterial strains was performed by use of the spot-test method. The experiments were implemented three times by different groups of scientists. The lytic activity of the commercial bacteriophage cocktails on the 41 E. coli strains varied between 66% (Pyo bacteriophage) and 93% (Enko bacteriophage). After bacteriophage adaptation of the Pyo bacteriophage cocktail, its lytic activity was increased from 66 to 93% and only one E. coli strain remained resistant. One bacteriophage of the Eliava collection could lyse all 9 K. pneumoniae strains. Based on the high lytic activity and the potential of resistance optimization by direct adaption of bacteriophages as reported in this study, and in view of the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a promising treatment option for UTIs highly warranting randomized controlled trials.

  16. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome

    DOE PAGES

    Wallen, Jamie R.; Zhang, Hao; Weis, Caroline; ...

    2017-01-03

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less

  17. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallen, Jamie R.; Zhang, Hao; Weis, Caroline

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less

  18. Refactored M13 Bacteriophage as a Platform for Tumor Cell Imaging and Drug Delivery

    PubMed Central

    MOSER, FELIX; ENDY, DREW; BELCHER, ANGELA M.

    2014-01-01

    M13 bacteriophage is a well-characterized platform for peptide display. The utility of the M13 display platform is derived from the ability to encode phage protein fusions with display peptides at the genomic level. However, the genome of the phage is complicated by overlaps of key genetic elements. These overlaps directly couple the coding sequence of one gene to the coding or regulatory sequence of another, making it difficult to alter one gene without disrupting the other. Specifically, overlap of the end of gene VII and the beginning of gene IX has prevented the functional genomic modification of the N-terminus of p9. By redesigning the M13 genome to physically separate these overlapping genetic elements, a process known as “refactoring,” we enabled independent manipulation of gene VII and gene IX and the construction of the first N-terminal genomic modification of p9 for peptide display. We demonstrate the utility of this refactored genome by developing an M13 bacteriophage-based platform for targeted imaging of and drug delivery to prostate cancer cells in vitro. This successful use of refactoring principles to reengineer a natural biological system strengthens the suggestion that natural genomes can be rationally designed for a number of applications. PMID:23656279

  19. Refactored M13 bacteriophage as a platform for tumor cell imaging and drug delivery.

    PubMed

    Ghosh, Debadyuti; Kohli, Aditya G; Moser, Felix; Endy, Drew; Belcher, Angela M

    2012-12-21

    M13 bacteriophage is a well-characterized platform for peptide display. The utility of the M13 display platform is derived from the ability to encode phage protein fusions with display peptides at the genomic level. However, the genome of the phage is complicated by overlaps of key genetic elements. These overlaps directly couple the coding sequence of one gene to the coding or regulatory sequence of another, making it difficult to alter one gene without disrupting the other. Specifically, overlap of the end of gene VII and the beginning of gene IX has prevented the functional genomic modification of the N-terminus of p9. By redesigning the M13 genome to physically separate these overlapping genetic elements, a process known as "refactoring," we enabled independent manipulation of gene VII and gene IX and the construction of the first N-terminal genomic modification of p9 for peptide display. We demonstrate the utility of this refactored genome by developing an M13 bacteriophage-based platform for targeted imaging of and drug delivery to prostate cancer cells in vitro. This successful use of refactoring principles to re-engineer a natural biological system strengthens the suggestion that natural genomes can be rationally designed for a number of applications.

  20. Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria.

    PubMed

    Nakonieczna, A; Cooper, C J; Gryko, R

    2015-09-01

    Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage-derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram-positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors. © 2015 The Society for Applied Microbiology.

  1. T7 lytic phage-displayed peptide libraries exhibit less sequence bias than M13 filamentous phage-displayed peptide libraries.

    PubMed

    Krumpe, Lauren R H; Atkinson, Andrew J; Smythers, Gary W; Kandel, Andrea; Schumacher, Kathryn M; McMahon, James B; Makowski, Lee; Mori, Toshiyuki

    2006-08-01

    We investigated whether the T7 system of phage display could produce peptide libraries of greater diversity than the M13 system of phage display due to the differing processes of lytic and filamentous phage morphogenesis. Using a bioinformatics-assisted computational approach, collections of random peptide sequences obtained from a T7 12-mer library (X(12)) and a T7 7-mer disulfide-constrained library (CX(7)C) were analyzed and compared with peptide populations obtained from New England BioLabs' M13 Ph.D.-12 and Ph.D.-C7C libraries. Based on this analysis, peptide libraries constructed with the T7 system have fewer amino acid biases, increased peptide diversity, and more normal distributions of peptide net charge and hydropathy than the M13 libraries. The greater diversity of T7-displayed libraries provides a potential resource of novel binding peptides for new as well as previously studied molecular targets. To demonstrate their utility, several of the T7-displayed peptide libraries were screened for streptavidin- and neutravidin-binding phage. Novel binding motifs were identified for each protein.

  2. Experimental electromagnetic effects on the model organism Escherichia coli and the bacteriophage T4

    NASA Astrophysics Data System (ADS)

    Lisiewski, Darlene Mildred

    This experimentally-based work was designed to answer the research question as to whether the phenomenon of nuclear magnetic resonance (NMR) can produce observable effects upon the bacterial virus activity of T4, with such activity demonstrated through the infection of its host bacterium Escherichia coli. The biological samples were placed for three hours within a coil antenna assembly propagating oscillating fields of radio frequency electromagnetic energy generated at the frequency of 5.6 MHz, and set at right angles within a magnetic field of 1450 gauss (recognizing such conditions are not set for the maximum effective resonance for hydrogen nuclei). The laboratory technique of plaque formation was the basis upon which the statistically tested data were compiled. Exposure of the bacterium alone exhibited an increase in viral activity over the control group (40--68% higher numbers of plaque formation), while exposure of T4 alone saw a decrease (approximately 23%) in infection rates. Depending on the protocol, placement of both T4 and E. coli into the coil assembly saw a decrease of either approximately 50% or 42% in infection rates. Future research must address identification of the effects being observed.

  3. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    NASA Astrophysics Data System (ADS)

    Xu, Ziming; Sun, Hongjing; Gao, Faming; Hou, Li; Li, Na

    2012-12-01

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe@Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe@Au process.

  4. Role of the C-terminal residue of the DNA polymerase of bacteriophage T7.

    PubMed

    Kumar, J K; Tabor, S; Richardson, C C

    2001-09-14

    The crystal structure of the DNA polymerase encoded by gene 5 of bacteriophage T7, in a complex with its processivity factor, Escherichia coli thioredoxin, a primer-template, and an incoming deoxynucleoside triphosphate reveals a putative hydrogen bond between the C-terminal residue, histidine 704 of gene 5 protein, and an oxygen atom on the penultimate phosphate diester of the primer strand. Elimination of this electrostatic interaction by replacing His(704) with alanine renders the phage nonviable, and no DNA synthesis is observed in vivo. Polymerase activity of the genetically altered enzyme on primed M13 DNA is only 12% of the wild-type enzyme, and its processivity is drastically reduced. Kinetic parameters for binding a primer-template (K(D)(app)), nucleotide binding (K(m)), and k(off) for dissociation of the altered polymerase from a primer-template are not significantly different from that of wild-type T7 DNA polymerase. However, the decrease in polymerase activity is concomitant with increased hydrolytic activity, judging from the turnover of nucleoside triphosphate into the corresponding nucleoside monophosphate (percentage of turnover, 65%) during DNA synthesis. Biochemical data along with structural observations imply that the terminal amino acid residue of T7 DNA polymerase plays a critical role in partitioning DNA between the polymerase and exonuclease sites.

  5. A comparison of Shiga-toxin 2 bacteriophage from classical enterohemorrhagic Escherichia coli serotypes and the German E. coli O104:H4 outbreak strain.

    PubMed

    Laing, Chad R; Zhang, Yongxiang; Gilmour, Matthew W; Allen, Vanessa; Johnson, Roger; Thomas, James E; Gannon, Victor P J

    2012-01-01

    Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors.

  6. A Comparison of Shiga-Toxin 2 Bacteriophage from Classical Enterohemorrhagic Escherichia coli Serotypes and the German E. coli O104:H4 Outbreak Strain

    PubMed Central

    Laing, Chad R.; Zhang, Yongxiang; Gilmour, Matthew W.; Allen, Vanessa; Johnson, Roger; Thomas, James E.; Gannon, Victor P. J.

    2012-01-01

    Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors. PMID:22649523

  7. Novel N4-Like Bacteriophages of Pectobacterium atrosepticum.

    PubMed

    Buttimer, Colin; Hendrix, Hanne; Lucid, Alan; Neve, Horst; Noben, Jean-Paul; Franz, Charles; O'Mahony, Jim; Lavigne, Rob; Coffey, Aidan

    2018-05-14

    Pectobacterium atrosepticum is an economically important phytopathogen that is responsible for potato blackleg and soft rot, and for which current control strategies are limited. In this study, stem samples of potato crops exhibiting blackleg were taken from three farms in Co. Cork, Ireland, and they were found to be infected with P. atrosepticum . Three closely related bacteriophages (phages) that are specific to this phytopathogen were isolated and characterized, namely vB_PatP_CB1, vB_PatP_CB3, and vB_PatP_CB4 (abbreviated as CB1, CB3, and CB4). Both CB1 and CB3 were determined to infect 12 strains and CB4 10 strains of the 19 strains of P. atrosepticum tested. Morphology, latent periods, burst sizes, and their stability at various temperatures and pHs were also examined. Genome sequencing of the three phages revealed that they shared a minimum nucleotide identity of 93% with each other. Their genomes exhibited an Enquartavirinae genome organization, possessing several conserved proteins that were associated with phages of this group, like the type species Escherichia virus N4. Tandem electrospray ionization-mass spectrometry (ESI-MS/MS) allowed for the identification of ten structural proteins that form the virion of CB1, six that are conserved in phage N4. Biocontrol experiments demonstrated that the phages suppress soft rot formation upon co-inoculation with P. atrosepticum on whole tubers. The results of this study indicate that CB1 related phages could be good candidates for phage-based control.

  8. [TL, the new bacteriophage of Pseudomonas aeruginosa and its application for the search of halo-producing bacteriophages].

    PubMed

    Pleteneva, E A; Burkal'tseva, M V; Shaburova, O V; Krylov, S V; Pechnikova, E V; Sokolova, O S; Krylov, V N

    2011-01-01

    The properties of new virulent bacteriophage TL of Pseudomonas aeruginosa belonging to the family Podoviridae (genome size of 46 kb) were investigated. This bacteriophage is capable of lysogenizing the bacterial lawn in halo zones around negative colonies (NC) of other bacteriophages. TL forms large NC, that are hardly distinguishable on the lawn of P. aeruginisa PAO1. At the same time, on the lawns of some phage-resistant PAO1 mutants, as well as on those produced by a number of clinical isolates, TL forms more transparent NC. It is suggested that more effective growth of the bacteriophage TL NC is associated with the differences in outer lipopolysaccharide (LPS) layer of the cell walls of different bacterial strains, as well as of the bacteria inside and outside of the halos. This TL property was used to optimize selection of bacteriophages producing halos around NC on the lawn of P. aeruginosa PAO1. As a result, a group of bacteriophages differing in the patterns of interaction between their halos and TL bacteriophage, as well as in some characters was identified. Taking into consideration the importance of cell-surfaced structures of P. aeruginosa in manifestation of virulence and pathogenicity, possible utilization of specific phage enzymes, polysacchadide depolymerases, for more effective treatment of P. aeruginosa infections is discussed.

  9. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice.

    PubMed

    Maura, Damien; Morello, Eric; du Merle, Laurence; Bomme, Perrine; Le Bouguénec, Chantal; Debarbieux, Laurent

    2012-08-01

    Bacteriophages have been known to be present in the gut for many years, but studies of relationships between these viruses and their hosts in the intestine are still in their infancy. We isolated three bacteriophages specific for an enteroaggregative O104:H4 Escherichia coli (EAEC) strain responsible for diarrhoeal diseases in humans. We studied the replication of these bacteriophages in vitro and in vivo in a mouse model of gut colonization. Each bacteriophage was able to replicate in vitro in both aerobic and anaerobic conditions. Each bacteriophage individually reduced biofilms formed on plastic pegs and a cocktail of the three bacteriophages was found to be more efficient. The cocktail was also able to infect bacterial aggregates formed on the surface of epithelial cells. In the mouse intestine, bacteriophages replicated for at least 3 weeks, provided the host was present, with no change in host levels in the faeces. This model of stable and continuous viral replication provides opportunities for studying the long-term coevolution of virulent bacteriophages with their hosts within a mammalian polymicrobial ecosystem. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Structural Aberrations in T-Even Bacteriophage V. Effects of Canavanine on the Maturation and Utilization of Specific Gene Products

    PubMed Central

    Bolin, Rex W.; Cummings, Donald J.

    1974-01-01

    Previous results have shown that when a T-even bacteriophage-infected cell was exposed to l-canavanine followed by an exposure to l-arginine, a monster phage particle, termed a lollipop, was formed. l-Canavanine was necessary for the induction event but l-arginine was required for the maturation of the particle. We now describe the effects of canavanine on the maturation of certain T4 proteins and their role in the induction of lollipops. The cleavage reactions of the head proteins P22, P23, P24, and IPIII are prevented by l-canavanine as shown by the accumulation of the precursor proteins and the failure of the cleaved products to appear. l-Canavanine also prevents the appearance of P12 (tailplate protein) and P20 (head protein) indicating that these proteins may undergo a proteolytic cleavage during normal assembly. The formation of P10 (tailplate protein) and P18 (tail sheath protein) is also affected by l-canavanine. The data suggest that P23 in conjunction with P20 plays a major role in the determination of the length of the phage head. Images PMID:4833614

  11. Genomics of Three New Bacteriophages Useful in the Biocontrol of Salmonella

    PubMed Central

    Bardina, Carlota; Colom, Joan; Spricigo, Denis A.; Otero, Jennifer; Sánchez-Osuna, Miquel; Cortés, Pilar; Llagostera, Montserrat

    2016-01-01

    Non-typhoid Salmonella is the principal pathogen related to food-borne diseases throughout the world. Widespread antibiotic resistance has adversely affected human health and has encouraged the search for alternative antimicrobial agents. The advances in bacteriophage therapy highlight their use in controlling a broad spectrum of food-borne pathogens. One requirement for the use of bacteriophages as antibacterials is the characterization of their genomes. In this work, complete genome sequencing and molecular analyses were carried out for three new virulent Salmonella-specific bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) able to infect a broad range of Salmonella strains. Sequence analysis of the genomes of UAB_Phi20, UAB_Phi78, and UAB_Phi87 bacteriophages did not evidence the presence of known virulence-associated and antibiotic resistance genes, and potential immunoreactive food allergens. The UAB_Phi20 genome comprised 41,809 base pairs with 80 open reading frames (ORFs); 24 of them with assigned function. Genome sequence showed a high homology of UAB_Phi20 with Salmonella bacteriophage P22 and other P22likeviruses genus of the Podoviridae family, including ST64T and ST104. The DNA of UAB_Phi78 contained 44,110 bp including direct terminal repeats (DTR) of 179 bp and 58 putative ORFs were predicted and 20 were assigned function. This bacteriophage was assigned to the SP6likeviruses genus of the Podoviridae family based on its high similarity not only with SP6 but also with the K1-5, K1E, and K1F bacteriophages, all of which infect Escherichia coli. The UAB_Phi87 genome sequence consisted of 87,669 bp with terminal direct repeats of 608 bp; although 148 ORFs were identified, putative functions could be assigned to only 29 of them. Sequence comparisons revealed the mosaic structure of UAB_Phi87 and its high similarity with bacteriophages Felix O1 and wV8 of E. coli with respect to genetic content and functional organization. Phylogenetic analysis of large

  12. Effects of bacteriophage on the quality and shelf life of Paralichthys olivaceus during chilled storage.

    PubMed

    Li, Meng; Lin, Hong; Khan, Muhammad Naseem; Wang, Jingxue; Kong, Linghong

    2014-06-01

    The microbiological spoilage of fishery foods is mainly due to specific spoilage organisms (SSOs), with Shewanella putrefaciens being the SSO of most chilled marine fish. Bacteriophages have shown excellent capability to control micro-organisms. The aim of this study was to determine a specific bacteriophage to prevent spoilage by reducing SSO (S. putrefaciens) levels in the marine fish Paralichthys olivaceus (olive flounder) under chilled storage. Chilled flounder fillets were inoculated with S. putrefaciens and treated with different concentrations of bacteriophage Spp001 ranging from 10(4) to 10(8) plaque-forming units (pfu) mL(-1) . Bacterial growth (including total viable count and SSO) of the bacteriophage-treated groups was significantly inhibited compared with that of the negative control group (P < 0.05). Sensory evaluation and biochemical parameters revealed that the bacteriophage could extend the shelf life of chilled flounder fillets (from <4 to 14 days) with good esthetic quality, even at low temperature (4 °C). Furthermore, bacteriophage concentrations of 10(6) and 10(8) pfu mL(-1) were more effective than the chemical preservative potassium sorbate (5 g L(-1) ). The bacteriophage Spp001 offered effective biocontrol of S. putrefaciens under chilled conditions, retaining the quality characteristics of spiked fish fillets, and thus could be a potential candidate for use in chilled fish fillet biopreservation. © 2013 Society of Chemical Industry.

  13. Bacteriophage removal efficiency as a validation and operational monitoring tool for virus reduction in wastewater reclamation: Review.

    PubMed

    Amarasiri, Mohan; Kitajima, Masaaki; Nguyen, Thanh H; Okabe, Satoshi; Sano, Daisuke

    2017-09-15

    The multiple-barrier concept is widely employed in international and domestic guidelines for wastewater reclamation and reuse for microbiological risk management, in which a wastewater reclamation system is designed to achieve guideline values of the performance target of microbe reduction. Enteric viruses are one of the pathogens for which the target reduction values are stipulated in guidelines, but frequent monitoring to validate human virus removal efficacy is challenging in a daily operation due to the cumbersome procedures for virus quantification in wastewater. Bacteriophages have been the first choice surrogate for this task, because of the well-characterized nature of strains and the presence of established protocols for quantification. Here, we performed a meta-analysis to calculate the average log 10 reduction values (LRVs) of somatic coliphages, F-specific phages, MS2 coliphage and T4 phage by membrane bioreactor, activated sludge, constructed wetlands, pond systems, microfiltration and ultrafiltration. The calculated LRVs of bacteriophages were then compared with reported human enteric virus LRVs. MS2 coliphage LRVs in MBR processes were shown to be lower than those of norovirus GII and enterovirus, suggesting it as a possible validation and operational monitoring tool. The other bacteriophages provided higher LRVs compared to human viruses. The data sets on LRVs of human viruses and bacteriophages are scarce except for MBR and conventional activated sludge processes, which highlights the necessity of investigating LRVs of human viruses and bacteriophages in multiple treatment unit processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The action of Escherichia coli CRISPR–Cas system on lytic bacteriophages with different lifestyles and development strategies

    PubMed Central

    Strotskaya, Alexandra; Savitskaya, Ekaterina; Metlitskaya, Anastasia; Morozova, Natalia; Datsenko, Kirill A.; Semenova, Ekaterina

    2017-01-01

    Abstract CRISPR–Cas systems provide prokaryotes with adaptive defense against bacteriophage infections. Given an enormous variety of strategies used by phages to overcome their hosts, one can expect that the efficiency of protective action of CRISPR–Cas systems against different viruses should vary. Here, we created a collection of Escherichia coli strains with type I-E CRISPR–Cas system targeting various positions in the genomes of bacteriophages λ, T5, T7, T4 and R1-37 and investigated the ability of these strains to resist the infection and acquire additional CRISPR spacers from the infecting phage. We find that the efficiency of CRISPR–Cas targeting by the host is determined by phage life style, the positions of the targeted protospacer within the genome, and the state of phage DNA. The results also suggest that during infection by lytic phages that are susceptible to CRISPR interference, CRISPR–Cas does not act as a true immunity system that saves the infected cell but rather enforces an abortive infection pathway leading to infected cell death with no phage progeny release. PMID:28130424

  15. Natural mummification of the human gut preserves bacteriophage DNA.

    PubMed

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Dowd, Scot E; Toranzos, Gary A; Marota, Isolina; Cano, Raul J

    2016-01-01

    The natural mummification process of the human gut represents a unique opportunity to study the resulting microbial community structure and composition. While results are providing insights into the preservation of bacteria, fungi, pathogenic eukaryotes and eukaryotic viruses, no studies have demonstrated that the process of natural mummification also results in the preservation of bacteriophage DNA. We characterized the gut microbiome of three pre-Columbian Andean mummies, namely FI3, FI9 and FI12, and found sequences homologous to viruses. From the sequences attributable to viruses, 50.4% (mummy FI3), 1.0% (mummy FI9) and 84.4% (mummy FI12) were homologous to bacteriophages. Sequences corresponding to the Siphoviridae, Myoviridae, Podoviridae and Microviridae families were identified. Predicted putative bacterial hosts corresponded mainly to the Firmicutes and Proteobacteria, and included Bacillus, Staphylococcus, Clostridium, Escherichia, Vibrio, Klebsiella, Pseudomonas and Yersinia. Predicted functional categories associated with bacteriophages showed a representation of structural, replication, integration and entry and lysis genes. The present study suggests that the natural mummification of the human gut results in the preservation of bacteriophage DNA, representing an opportunity to elucidate the ancient phageome and to hypothesize possible mechanisms of preservation. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. High Cell Surface Expression of CD4 Allows Distinction of CD4+CD25+ Antigen-specific Effector T Cells from CD4+CD25+ Regulatory T Cells in Murine Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Li, Jinzhu; Ridgway, William; Fathman, C. Garrison; Tse, Harley Y.; Shaw, Michael K.

    2008-01-01

    Analysis of T regulatory cells (Treg) and T effector cells (Teff) in experimental autoimmune encephalomyelitis is complicated by the fact that both cell types express CD4 and CD25. We demonstrate that encephalitogenic T cells, following antigen recognition, up regulate cell surface expression of CD4. The CD4high sub-population contains all of the antigen response as shown by proliferation and cytokine secretion, and only these cells are capable of transferring EAE to naive animals. On the other hand, a FACS separable CD25+ sub-population of cells displayed consistent levels of CD4 prior to and after antigen stimulation. These cells displayed characteristics of Treg, such as expressing high levels of the Foxp3 gene and the ability to suppress mitogenic T cell responses. PMID:17920698

  17. STUDIES ON THE PURIFICATION OF BACTERIOPHAGE

    PubMed Central

    Kalmanson, G.; Bronfenbrenner, J.

    1939-01-01

    this method of purification to a staphylococcus bacteriophage. Since this organism does not readily grow in synthetic medium, a diffusate of yeast extract medium was employed. The better of two preparations contained about 10–12 mg. of nitrogen per unit of lytic activity. Although this is about one hundred times the amount of nitrogen found in an active unit of B. coli bacteriophage, nevertheless, the diffusion rate experiments gave results which paralleled those obtained with the coliphage. The diffusible particles of the crude staphylococcus bacteriophage had a radius of about 7 millimicra, and a calculated molecular weight of about 1,000,000, while the particles of the same phage which appeared in the ultrafiltrate through a thin collodion membrane had a radius of about 2.4 millimicra and a calculated molecular weight of about 45,000. It appears, therefore, that the active principle is distributed as particles of widely different sizes. However, since the smaller particles have all the properties of bacteriophage, the larger particles probably do not represent free molecules, but either are aggregates, or more likely, inactive colloids to which the active agent is adsorbed. The protein isolated, which bears the phage activity, is capable of stimulating the production of antilytic antibodies on parenteral injection into rabbits or guinea pigs. It retains its specific antigenicity when inactivated by formalin, but not when inactivated by drying. PMID:19873149

  18. Double-strand break repair and genetic recombination in topoisomerase and primase mutants of bacteriophage T4.

    PubMed

    Shcherbakov, Victor P; Kudryashova, Elena

    2014-09-01

    The effects of primase and topoisomerase II deficiency on the double-strand break (DSB) repair and genetic recombination in bacteriophage T4 were studied in vivo using focused recombination. Site-specific DSBs were induced by SegC endonuclease in the rIIB gene of one of the parents. The frequency/distance relationship was determined in crosses of the wild-type phage, topoisomerase II mutant amN116 (gene 39), and primase mutant E219 (gene 61). Ordinary two-factor (i×j) and three-factor (i k×j) crosses between point rII mutations were also performed. These data provide information about the frequency and distance distribution of the single-exchange (splice) and double-exchange (patch) events. In two-factor crosses ets1×i, the topoisomerase and primase mutants had similar recombinant frequencies in crosses at ets1-i distances longer than 1000 bp, comprising about 80% of the corresponding wild-type values. They, however, differ remarkably in crosses at shorter distances. In the primase mutant, the recombinant frequencies are similar to those in the wild-type crosses at distances less than 100 bp, being a bit diminished at longer distances. In two-factor crosses ets1×i of the topoisomerase mutant, the recombinant frequencies were reduced ten-fold at the shortest distances. In three-factor crosses a6 ets1×i, where we measure patch-related recombination, the primase mutant was quite proficient across the entire range of distances. The topoisomerase mutant crosses demonstrated virtually complete absence of rII(+) recombinants at distances up to 33 bp, with the frequencies increasing steadily at longer distances. The data were interpreted as follows. The primase mutant is fully recombination-proficient. An obvious difference from the wild-type state is some shortage of EndoVII function leading to prolonged existence of HJs and thus stretched out ds-branch migration. This is also true for the topoisomerase mutant. However, the latter is deficient in the ss

  19. Plasmid integration in a wide range of bacteria mediated by the integrase of Lactobacillus delbrueckii bacteriophage mv4.

    PubMed Central

    Auvray, F; Coddeville, M; Ritzenthaler, P; Dupont, L

    1997-01-01

    Bacteriophage mv4 is a temperate phage infecting Lactobacillus delbrueckii subsp. bulgaricus. During lysogenization, the phage integrates its genome into the host chromosome at the 3' end of a tRNA(Ser) gene through a site-specific recombination process (L. Dupont et al., J. Bacteriol., 177:586-595, 1995). A nonreplicative vector (pMC1) based on the mv4 integrative elements (attP site and integrase-coding int gene) is able to integrate into the chromosome of a wide range of bacterial hosts, including Lactobacillus plantarum, Lactobacillus casei (two strains), Lactococcus lactis subsp. cremoris, Enterococcus faecalis, and Streptococcus pneumoniae. Integrative recombination of pMC1 into the chromosomes of all of these species is dependent on the int gene product and occurs specifically at the pMC1 attP site. The isolation and sequencing of pMC1 integration sites from these bacteria showed that in lactobacilli, pMC1 integrated into the conserved tRNA(Ser) gene. In the other bacterial species where this tRNA gene is less or not conserved; secondary integration sites either in potential protein-coding regions or in intergenic DNA were used. A consensus sequence was deduced from the analysis of the different integration sites. The comparison of these sequences demonstrated the flexibility of the integrase for the bacterial integration site and suggested the importance of the trinucleotide CCT at the 5' end of the core in the strand exchange reaction. PMID:9068626

  20. Dehydration of bacteriophages in electrospun nanofibers: effect of excipients in polymeric solutions

    NASA Astrophysics Data System (ADS)

    Koo, Charmaine K. W.; Senecal, Kris; Senecal, Andre; Nugen, Sam R.

    2016-12-01

    Bacteriophages are viruses capable of infecting and lysing target bacterial cells; as such they have potential applications in agriculture for decontamination of foods, food contact surfaces and food rinse water. Although bacteriophages can retain infectivity long-term using lyophilized storage, the process of freeze-drying can be time consuming and expensive. In this study, electrospinning was used for dehydrating bacteriophages in polyvinylpyrrolidone polymer solutions with addition of excipients (sodium chloride, magnesium sulfate, Tris-HCl, sucrose) in deionized water. The high voltage dehydration reduced the infectivity of bacteriophages following electrospinning, with the damaging effect abated with addition of storage media (SM) buffer and sucrose. SM buffer and sucrose also provided the most protection over extended storage (8 weeks; 20 °C 1% relative humidity) by mitigating environmental effects on the dried bacteriophages. Magnesium sulfate however provided the least protection due to coagulation effects of the ion, which can disrupt the native conformation of the bacteriophage protein coat. Storage temperatures (20 °C, 4 °C and -20 °C 1% relative humidity) had a minimal effect while relative humidity had substantial effect on the infectivity of bacteriophages. Nanofibers stored in higher relative humidity (33% and 75%) underwent considerable damage due to extensive water absorption and disruption of the fibers. Overall, following storage of nanofiber mats for eight weeks at ambient temperatures, high infective phage concentrations (106-107 PFU ml-1) were retained. Therefore, this study provided valuable insights on preservation and dehydration of bacteriophages by electrospinning in comparison to freeze drying and liquid storage, and the influence of excipients on the viability of bacteriophages.

  1. Predicting In Vivo Efficacy of Therapeutic Bacteriophages Used To Treat Pulmonary Infections

    PubMed Central

    Henry, Marine; Lavigne, Rob

    2013-01-01

    The potential of bacteriophage therapy to treat infections caused by antibiotic-resistant bacteria has now been well established using various animal models. While numerous newly isolated bacteriophages have been claimed to be potential therapeutic candidates on the basis of in vitro observations, the parameters used to guide their choice among billions of available bacteriophages are still not clearly defined. We made use of a mouse lung infection model and a bioluminescent strain of Pseudomonas aeruginosa to compare the activities in vitro and in vivo of a set of nine different bacteriophages (PAK_P1, PAK_P2, PAK_P3, PAK_P4, PAK_P5, CHA_P1, LBL3, LUZ19, and PhiKZ). For seven bacteriophages, a good correlation was found between in vitro and in vivo activity. While the remaining two bacteriophages were active in vitro, they were not sufficiently active in vivo under similar conditions to rescue infected animals. Based on the bioluminescence recorded at 2 and 8 h postinfection, we also define for the first time a reliable index to predict treatment efficacy. Our results showed that the bacteriophages isolated directly on the targeted host were the most efficient in vivo, supporting a personalized approach favoring an optimal treatment. PMID:24041900

  2. Ternary Aligned Nanofibers of RGD Peptide-Displaying M13 Bacteriophage/PLGA/Graphene Oxide for Facilitated Myogenesis

    PubMed Central

    Shin, Yong Cheol; Kim, Chuntae; Song, Su-Jin; Jun, Seungwon; Kim, Chang-Seok; Hong, Suck Won; Hyon, Suong-Hyu; Han, Dong-Wook; Oh, Jin-Woo

    2018-01-01

    Recently, there have been tremendous efforts to develop the biofunctional scaffolds by incorporating various biochemical factors. In the present study, we fabricated poly(lactic-co-glycolic acid) (PLGA) nanofiber sheets decorated with graphene oxide (GO) and RGD peptide. The decoration of GO and RGD peptide was readily achieved by using RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and electrospinning. Furthermore, the aligned GO-decorated PLGA/RGD peptide (GO-PLGA/RGD) ternary nanofiber sheets were prepared by magnetic field-assisted electrospinning, and their potentials as bifunctional scaffolds for facilitating myogenesis were explored. We characterized the physicochemical and mechanical properties of the sheets by scanning electron microscopy, Raman spectroscopy, contact angle measurement, and tensile test. In addition, the C2C12 skeletal myoblasts were cultured on the aligned GO-PLGA/RGD nanofiber sheets, and their cellular behaviors, including initial attachment, proliferation and myogenic differentiation, were evaluated. Our results revealed that the GO-PLGA/RGD nanofiber sheets had suitable physicochemical and mechanical properties for supporting cell growth, and could significantly promote the spontaneous myogenic differentiation of C2C12 skeletal myoblasts. Moreover, it was revealed that the myogenic differentiation was further accelerated on the aligned GO-PLGA/RGD nanofiber sheets due to the synergistic effects of RGD peptide, GO and aligned nanofiber structure. Therefore, , it is suggested that the aligned GO-PLGA/RGD ternary nanofiber sheets are one of the most promising approaches for facilitating myogenesis and promoting skeletal tissue regeneration. PMID:29577018

  3. Ternary Aligned Nanofibers of RGD Peptide-Displaying M13 Bacteriophage/PLGA/Graphene Oxide for Facilitated Myogenesis.

    PubMed

    Shin, Yong Cheol; Kim, Chuntae; Song, Su-Jin; Jun, Seungwon; Kim, Chang-Seok; Hong, Suck Won; Hyon, Suong-Hyu; Han, Dong-Wook; Oh, Jin-Woo

    2018-01-01

    Recently, there have been tremendous efforts to develop the biofunctional scaffolds by incorporating various biochemical factors. In the present study, we fabricated poly(lactic- co -glycolic acid) (PLGA) nanofiber sheets decorated with graphene oxide (GO) and RGD peptide. The decoration of GO and RGD peptide was readily achieved by using RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and electrospinning. Furthermore, the aligned GO-decorated PLGA/RGD peptide (GO-PLGA/RGD) ternary nanofiber sheets were prepared by magnetic field-assisted electrospinning, and their potentials as bifunctional scaffolds for facilitating myogenesis were explored. We characterized the physicochemical and mechanical properties of the sheets by scanning electron microscopy, Raman spectroscopy, contact angle measurement, and tensile test. In addition, the C2C12 skeletal myoblasts were cultured on the aligned GO-PLGA/RGD nanofiber sheets, and their cellular behaviors, including initial attachment, proliferation and myogenic differentiation, were evaluated. Our results revealed that the GO-PLGA/RGD nanofiber sheets had suitable physicochemical and mechanical properties for supporting cell growth, and could significantly promote the spontaneous myogenic differentiation of C2C12 skeletal myoblasts. Moreover, it was revealed that the myogenic differentiation was further accelerated on the aligned GO-PLGA/RGD nanofiber sheets due to the synergistic effects of RGD peptide, GO and aligned nanofiber structure. Therefore, , it is suggested that the aligned GO-PLGA/RGD ternary nanofiber sheets are one of the most promising approaches for facilitating myogenesis and promoting skeletal tissue regeneration.

  4. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles.

    PubMed

    Ju, Zhigang; Sun, Wei

    2017-11-01

    With the development of nanomedicine, a mass of nanocarriers have been exploited and utilized for targeted drug delivery, including liposomes, polymers, nanoparticles, viruses, and stem cells. Due to huge surface bearing capacity and flexible genetic engineering property, filamentous bacteriophage and phage-mimetic nanoparticles are attracting more and more attentions. As a rod-like bio-nanofiber without tropism to mammalian cells, filamentous phage can be easily loaded with drugs and directly delivered to the lesion location. In particular, chemical drugs can be conjugated on phage surface by chemical modification, and gene drugs can also be inserted into the genome of phage by recombinant DNA technology. Meanwhile, specific peptides/proteins displayed on the phage surface are able to conjugate with nanoparticles which will endow them specific-targeting and huge drug-loading capacity. Additionally, phage peptides/proteins can directly self-assemble into phage-mimetic nanoparticles which may be applied for self-navigating drug delivery nanovehicles. In this review, we summarize the production of phage particles, the identification of targeting peptides, and the recent applications of filamentous bacteriophages as well as their protein/peptide for targeting drug delivery in vitro and in vivo. The improvement of our understanding of filamentous bacteriophage and phage-mimetic nanoparticles will supply new tools for biotechnological approaches.

  5. Selective and sensitive Escherichia coli detection based on a T4 bacteriophage-immobilized multimode microfiber.

    PubMed

    Li, Yanpeng; Ma, Hui; Gan, Lin; Gong, Andong; Zhang, Haibin; Liu, Deming; Sun, Qizhen

    2018-04-17

    Escherichia coli bacteria have been found to be responsible for various health outbreaks caused by contaminated food and water. Accurate and rapid test of E. coli is thus crucial for protecting the public health. A fast-response, label-free bacteriophage-based detection of E. coli using multimode microfiber probe is proposed and demonstrated in this article. Due to the abrupt taper and subwavelength diameter, different modes are excited and guided in the microfiber as evanescent field that can interact with surrounding E. coli directly. The change of E. coli concentration and corresponding binding of E. coli bacteria on microfiber surface will lead to the shift of optical spectrum, which can be exploited for the application of biosensing. The proposed method is capable of reliable detection of E. coli concentration as low as 10 3 cfu/mL within the range of 10 3 to 10 7  cfu/mL. Owing to the advantages of high sensitivity and fast response, the microfiber probe has great potential application in the fields of environment monitoring and food safety. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Purification of bacteriophage M13 by anion exchange chromatography.

    PubMed

    Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2010-07-01

    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.

  7. The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku

    PubMed Central

    di Fagagna, Fabrizio d'Adda; Weller, Geoffrey R.; Doherty, Aidan J.; Jackson, Stephen P.

    2003-01-01

    Mu bacteriophage inserts its DNA into the genome of host bacteria and is used as a model for DNA transposition events in other systems. The eukaryotic Ku protein has key roles in DNA repair and in certain transposition events. Here we show that the Gam protein of phage Mu is conserved in bacteria, has sequence homology with both subunits of Ku, and has the potential to adopt a similar architecture to the core DNA-binding region of Ku. Through biochemical studies, we demonstrate that Gam and the related protein of Haemophilus influenzae display DNA binding characteristics remarkably similar to those of human Ku. In addition, we show that Gam can interfere with Ty1 retrotransposition in Saccharomyces cerevisiae. These data reveal structural and functional parallels between bacteriophage Gam and eukaryotic Ku and suggest that their functions have been evolutionarily conserved. PMID:12524520

  8. Taking Bacteriophage Therapy Seriously: A Moral Argument

    PubMed Central

    Verbeken, Gilbert; Huys, Isabelle; Jennes, Serge; Chanishvili, Nina; Górski, Andrzej; De Vos, Daniel

    2014-01-01

    The excessive and improper use of antibiotics has led to an increasing incidence of bacterial resistance. In Europe the yearly number of infections caused by multidrug resistant bacteria is more than 400.000, each year resulting in 25.000 attributable deaths. Few new antibiotics are in the pipeline of the pharmaceutical industry. Early in the 20th century, bacteriophages were described as entities that can control bacterial populations. Although bacteriophage therapy was developed and practiced in Europe and the former Soviet republics, the use of bacteriophages in clinical setting was neglected in Western Europe since the introduction of traditional antibiotics. Given the worldwide antibiotic crisis there is now a growing interest in making bacteriophage therapy available for use in modern western medicine. Despite the growing interest, access to bacteriophage therapy remains highly problematic. In this paper, we argue that the current state of affairs is morally unacceptable and that all stakeholders (pharmaceutical industry, competent authorities, lawmakers, regulators, and politicians) have the moral duty and the shared responsibility towards making bacteriophage therapy urgently available for all patients in need. PMID:24868534

  9. Engineering M13 for phage display.

    PubMed

    Sidhu, S S

    2001-09-01

    Phage display is achieved by fusing polypeptide libraries to phage coat proteins. The resulting phage particles display the polypeptides on their surfaces and they also contain the encoding DNA. Library members with particular functions can be isolated with simple selections and polypeptide sequences can be decoded from the encapsulated DNA. The technology's success depends on the efficiency with which polypeptides can be displayed on the phage surface, and significant progress has been made in engineering M13 bacteriophage coat proteins as improved phage display platforms. Functional display has been achieved with all five M13 coat proteins, with both N- and C-terminal fusions. Also, coat protein mutants have been designed and selected to improve the efficiency of heterologous protein display, and in the extreme case, completely artificial coat proteins have been evolved specifically as display platforms. These studies demonstrate that the M13 phage coat is extremely malleable, and this property can be used to engineer the phage particle specifically for phage display. These improvements expand the utility of phage display as a powerful tool in modern biotechnology.

  10. Evolution of phage display technology: from discovery to application.

    PubMed

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Veisi, Kamal; Ahmadzadeh, Vahideh; Akbari, Bahman

    2017-03-01

    Phage display technology as a selection-based system is an attractive method for evolution of new biological drugs. Unique ability of phage libraries for displaying proteins on bacteriophage surfaces enable them to make a major contribution in diverse fields of researches related to the diagnosis and therapy of diseases. One of the great challenges facing researchers is the modification of phage display technology and the development of new applications. This article reviews the molecular basis of phage display library, and summarizes the novel and specific applications of this technique in the field of biological drugs development including therapeutic antibodies, peptides, vaccines, and catalytic antibodies.

  11. Bacteriophages in dairy products: pros and cons.

    PubMed

    Mc Grath, Stephen; Fitzgerald, Gerald F; van Sinderen, Douwe

    2007-04-01

    Since the time bacteriophages were first identified as a major cause of fermentation failure in the dairy industry, researchers have been struggling to develop strategies to exclude them from the dairy environment. Over 70 years of research has led to huge improvements in the consistency and quality of fermented dairy products, while also facilitating an appreciation of the beneficial properties of bacteriophages with respect to dairy product development. With specific reference to Lactococcus lactis and cheese production, this review outlines some recently reported novel methods aimed at limiting the bacteriophage infection as well as highlighting some beneficial aspects of bacteriophage activity.

  12. T-38 Primary Flight Display Prototyping and HIVE Support Abstract & Summary

    NASA Technical Reports Server (NTRS)

    Boniface, Andrew

    2015-01-01

    This fall I worked in EV3 within NASA's Johnson Space Center in The HIVE (Human Integrated Vehicles & Environments). The HIVE is responsible for human in the loop testing, getting new technologies in front of astronauts, operators, and users early in the development cycle to make the interfaces more human friendly. Some projects the HIVE is working on includes user interfaces for future spacecraft, wearables to alert astronauts about important information, and test beds to simulate mock missions. During my internship I created a prototype for T-38 aircraft displays using LabVIEW, learned how to use microcontrollers, and helped out with other small tasks in the HIVE. The purpose of developing a prototype for T-38 Displays in LabVIEW is to analyze functions of the display such as navigation in a cost and time effective manner. The LabVIEW prototypes allow Ellington Field AOD to easily make adjustments to the display before hardcoding the final product. LabVIEW was used to create a user interface for simulation almost identical to the real aircraft display. Goals to begin the T-38 PFD (Primary Flight Display) prototype included creating a T-38 PFD hardware display in a software environment, designing navigation for the menu's, incorporating vertical and horizontal navigation bars, and to add a heading bug for compass controls connected to the HSI (Horizontal Situation Indicator). To get started with the project, measurements of the entire display were taken. This enabled an accurate model of the hardware display to be created. Navigation of menu's required some exploration of different buttons on the display. The T-38 simulator and aircraft were used for examining the display. After one piece of the prototype was finished, another trip of to the simulator took place. This was done until all goals for the prototype were complete. Some possible integration ideas for displays in the near future are autopilot selection, touch screen displays, and crew member preferences

  13. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.

    PubMed

    Wang, Chanchan; Sauvageau, Dominic; Elias, Anastasia

    2016-01-20

    A rapid, efficient technique for the attachment of bacteriophages (phages) onto polyhydroxyalkanoate (PHA) surfaces has been developed and compared to three reported methods for phage immobilization. Polymer surfaces were modified to facilitate phage attachment using (1) plasma treatment alone, (2) plasma treatment followed by activation by 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), (3) plasma-initiated acrylic acid grafting, or (4) plasma-initiated acrylic acid grafting with activation by EDC and sulfo-NHS. The impact of each method on the surface chemistry of PHA was investigated using contact angle analysis and X-ray photoelectron spectroscopy. Each of the four treatments was shown to result in both increased hydrophilicity and in the modification of the surface functional groups. Modified surfaces were immersed in suspensions of phage T4 for immobilization. The highest level of phage binding was observed for the surfaces modified by plasma treatment alone. The change in chemical bond states observed for surfaces that underwent plasma treatment is suspected to be the cause of the increased binding of active phages. Plasma-treated surfaces were further analyzed through phage-staining and fluorescence microscopy to assess the surface density of immobilized phages and their capacity to capture hosts. The infective capability of attached phages was confirmed by exposing the phage-immobilized surfaces to the host bacteria Escherichia coli in both plaque and infection dynamic assays. Plasma-treated surfaces with immobilized phages displayed higher infectivity than surfaces treated with other methods; in fact, the equivalent initial multiplicity of infection was 2 orders of magnitude greater than with other methods. Control samples - prepared by immersing polymer surfaces in phage suspensions (without prior plasma treatment) - did not show any bacterial growth inhibition, suggesting they did not bind

  14. Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ϕR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF.

    PubMed

    Leon-Velarde, Carlos G; Happonen, Lotta; Pajunen, Maria; Leskinen, Katarzyna; Kropinski, Andrew M; Mattinen, Laura; Rajtor, Monika; Zur, Joanna; Smith, Darren; Chen, Shu; Nawaz, Ayesha; Johnson, Roger P; Odumeru, Joseph A; Griffiths, Mansel W; Skurnik, Mikael

    2016-09-01

    Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in detail, with the aim of

  15. Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ϕR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF

    PubMed Central

    Happonen, Lotta; Pajunen, Maria; Leskinen, Katarzyna; Kropinski, Andrew M.; Mattinen, Laura; Rajtor, Monika; Zur, Joanna; Smith, Darren; Chen, Shu; Nawaz, Ayesha; Johnson, Roger P.; Odumeru, Joseph A.; Griffiths, Mansel W.

    2016-01-01

    ABSTRACT Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica. To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. IMPORTANCE Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in

  16. Incorporation of Deoxyribonucleic Acid Precursors by T4 Deoxyribonucleic Acid-Protein Complexes Retained on Glass Fiber Filters

    PubMed Central

    Miller, Robert C.; Kozinski, Andrzej W.

    1970-01-01

    Bacteriophage T4 deoxyribonucleic acid (DNA)-protein complexes were retained preferentially on glass fiber filters. DNA polymerase activity in the complex was detected through the incorporation of 3H-labeled DNA precursors. The primer-product DNA hybridized with both phage and Escherichia coli DNA. Density labeling experiments showed that about 30% of incorporated 3H-deoxyadenosine triphosphate was found in DNA which hybridized with phage DNA; this DNA was found to be covalently attached to the primer DNA. PMID:5497903

  17. New Small Polypeptides Associated with DNA-Dependent RNA Polymerase of Escherichia coli after Infection with Bacteriophage T4

    PubMed Central

    Stevens, Audrey

    1972-01-01

    Four new small polypeptides are associated with DNA-dependent RNA polymerase from E. coli after infection with T4 phage. The new polypeptides are easily detected in RNA polymerase from E. coli cells labeled with amino acids after phage infection. Their molecular weights range from 10,000 to 22,000, as detected by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. All four polypeptides are found after infection with either wild-type T4 phage or T4 early amber mutants in genes 44, 42, 47, and 46. None of the polypeptides is labeled significantly before 5 min after infection at 30°. When two maturation-defective amber mutants in gene 55 of T4 phage are used for infection, a polypeptide with a molecular weight of 22,000 is absent. When a maturation-defective amber mutant in gene 33 of T4 phage is used, another small protein is absent. PMID:4551978

  18. The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies.

    PubMed

    Strotskaya, Alexandra; Savitskaya, Ekaterina; Metlitskaya, Anastasia; Morozova, Natalia; Datsenko, Kirill A; Semenova, Ekaterina; Severinov, Konstantin

    2017-02-28

    CRISPR-Cas systems provide prokaryotes with adaptive defense against bacteriophage infections. Given an enormous variety of strategies used by phages to overcome their hosts, one can expect that the efficiency of protective action of CRISPR-Cas systems against different viruses should vary. Here, we created a collection of Escherichia coli strains with type I-E CRISPR-Cas system targeting various positions in the genomes of bacteriophages λ, T5, T7, T4 and R1-37 and investigated the ability of these strains to resist the infection and acquire additional CRISPR spacers from the infecting phage. We find that the efficiency of CRISPR-Cas targeting by the host is determined by phage life style, the positions of the targeted protospacer within the genome, and the state of phage DNA. The results also suggest that during infection by lytic phages that are susceptible to CRISPR interference, CRISPR-Cas does not act as a true immunity system that saves the infected cell but rather enforces an abortive infection pathway leading to infected cell death with no phage progeny release. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Functional display of family 11 endoxylanases on the surface of phage M13.

    PubMed

    Beliën, T; Hertveldt, K; Van den Brande, K; Robben, J; Van Campenhout, S; Volckaert, G

    2005-02-09

    Two family 11 endoxylanases (EC 3.2.1.8) were functionally displayed on the surface of bacteriophage M13. The genes encoding endo-1,4-xylanase I from Aspergillus niger (ExlA) and endo-1,4-xylanase A from Bacillus subtilis (XynA) were fused to the gene encoding the minor coat protein g3p in phagemid vector pHOS31. Phage rescue resulted in functional monovalent display of the enzymes as was demonstrated by three independent tests. Firstly, purified recombinant phage particles showed a clear hydrolytic activity in an activity assay based on insoluble, chromagenic arabinoxylan substrate. Secondly, specific binding of endoxylanase displaying phages to immobilized endoxylanase inhibitors was demonstrated by interaction ELISA. Finally, two rounds of selection and amplification in a biopanning procedure against immobilized endoxylanase inhibitor were performed. Phages displaying endoxylanases were strongly enriched from background phages displaying unrelated proteins. These results open perspectives to use phage display for analysing protein-protein interactions at the interface between endoxylanases and their inhibitors. In addition, this technology should enable engineering of endoxylanases into novel variants with altered binding properties towards endoxylanase inhibitors.

  20. Complete genome sequences of three Erwinia amylovora phages isolated in north america and a bacteriophage induced from an Erwinia tasmaniensis strain.

    PubMed

    Müller, I; Kube, M; Reinhardt, R; Jelkmann, W; Geider, K

    2011-02-01

    Fire blight, a plant disease of economic importance caused by Erwinia amylovora, may be controlled by the application of bacteriophages. Here, we provide the complete genome sequences and the annotation of three E. amylovora-specific phages isolated in North America and genomic information about a bacteriophage induced by mitomycin C treatment of an Erwinia tasmaniensis strain that is antagonistic for E. amylovora. The American phages resemble two already-described viral genomes, whereas the E. tasmaniensis phage displays a singular genomic sequence in BLAST searches.

  1. Adenovirus fibre shaft sequences fold into the native triple beta-spiral fold when N-terminally fused to the bacteriophage T4 fibritin foldon trimerisation motif.

    PubMed

    Papanikolopoulou, Katerina; Teixeira, Susana; Belrhali, Hassan; Forsyth, V Trevor; Mitraki, Anna; van Raaij, Mark J

    2004-09-03

    Adenovirus fibres are trimeric proteins that consist of a globular C-terminal domain, a central fibrous shaft and an N-terminal part that attaches to the viral capsid. In the presence of the globular C-terminal domain, which is necessary for correct trimerisation, the shaft segment adopts a triple beta-spiral conformation. We have replaced the head of the fibre by the trimerisation domain of the bacteriophage T4 fibritin, the foldon. Two different fusion constructs were made and crystallised, one with an eight amino acid residue linker and one with a linker of only two residues. X-ray crystallographic studies of both fusion proteins shows that residues 319-391 of the adenovirus type 2 fibre shaft fold into a triple beta-spiral fold indistinguishable from the native structure, although this is now resolved at a higher resolution of 1.9 A. The foldon residues 458-483 also adopt their natural structure. The intervening linkers are not well ordered in the crystal structures. This work shows that the shaft sequences retain their capacity to fold into their native beta-spiral fibrous fold when fused to a foreign C-terminal trimerisation motif. It provides a structural basis to artificially trimerise longer adenovirus shaft segments and segments from other trimeric beta-structured fibre proteins. Such artificial fibrous constructs, amenable to crystallisation and solution studies, can offer tractable model systems for the study of beta-fibrous structure. They can also prove useful for gene therapy and fibre engineering applications.

  2. Exploiting Radiation Damage to Map Proteins in Nucleoprotein Complexes: The Internal Structure of Bacteriophage T7

    PubMed Central

    Cheng, Naiqian; Wu, Weimin; Watts, Norman R.; Steven, Alasdair C.

    2014-01-01

    In the final stage of radiation damage in cryo-electron microscopy of proteins, bubbles of hydrogen gas are generated. Proteins embedded in DNA bubble sooner than free-standing proteins and DNA does not bubble under the same conditions. These properties make it possible to distinguish protein from DNA. Here we explored the scope of this technique (“bubblegram imaging”) by applying it to bacteriophage T7, viewed as a partially defined model system. T7 has a thin-walled icosahedral capsid, 60 nm in diameter, with a barrel-shaped protein core under one of its twelve vertices (the portal vertex). The core is densely wrapped with DNA but details of their interaction and how their injection into a host bacterium is coordinated are lacking. With short (10 sec) intervals between exposures of 17 electrons/Å2 each, bubbling starts in the third exposure, with 1 – 4 bubbles nucleating in the core: in subsequent exposures, these bubbles grow and merge. A 3D reconstruction from fifth-exposure images depicts a bipartite cylindrical gas cloud in the core. In its portal-proximal half, the axial region is gaseous whereas in the portal-distal half, it is occupied by a 3 nm-wide dense rod. We propose that they respectively represent core protein and an end of the packaged genome, poised for injection into a host cell. Single bubbles at other sites may represent residual scaffolding protein. Thus, bubbling depends on dose rate, protein amount, and tightness of the DNA seal. PMID:24345345

  3. The ATPase domain of the large terminase protein, gp17, from bacteriophage T4 binds DNA: implications to the DNA packaging mechanism.

    PubMed

    Alam, Tanfis I; Rao, Venigalla B

    2008-03-07

    Translocation of double-stranded DNA into a preformed capsid by tailed bacteriophages is driven by powerful motors assembled at the special portal vertex. The motor is thought to drive processive cycles of DNA binding, movement, and release to package the viral genome. In phage T4, there is evidence that the large terminase protein, gene product 17 (gp17), assembles into a multisubunit motor and translocates DNA by an inchworm mechanism. gp17 consists of two domains; an N-terminal ATPase domain (amino acids 1-360) that powers translocation of DNA, and a C-terminal nuclease domain (amino acids 361-610) that cuts concatemeric DNA to generate a headful-size viral genome. While the functional motifs of ATPase and nuclease have been well defined and the ATPase atomic structure has been solved, the DNA binding motif(s) responsible for viral DNA recognition, cutting, and translocation are unknown. Here we report the first evidence for the presence of a double-stranded DNA binding activity in the gp17 ATPase domain. Binding to DNA is sensitive to Mg(2+) and salt, but not the type of DNA used. DNA fragments as short as 20 bp can bind to the ATPase but preferential binding was observed to DNA greater than 1 kb. A high molecular weight ATPase-DNA complex was isolated by gel filtration, suggesting oligomerization of ATPase following DNA interaction. DNA binding was not observed with the full-length gp17, or the C-terminal nuclease domain. The small terminase protein, gp16, inhibited DNA binding, which was further accentuated by ATP. The presence of a DNA binding site in the ATPase domain and its binding properties implicate a role in the DNA packaging mechanism.

  4. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity

    PubMed Central

    Komor, Alexis C.; Zhao, Kevin T.; Packer, Michael S.; Gaudelli, Nicole M.; Waterbury, Amanda L.; Koblan, Luke W.; Kim, Y. Bill; Badran, Ahmed H.; Liu, David R.

    2017-01-01

    We recently developed base editing, the programmable conversion of target C:G base pairs to T:A without inducing double-stranded DNA breaks (DSBs) or requiring homology-directed repair using engineered fusions of Cas9 variants and cytidine deaminases. Over the past year, the third-generation base editor (BE3) and related technologies have been successfully used by many researchers in a wide range of organisms. The product distribution of base editing—the frequency with which the target C:G is converted to mixtures of undesired by-products, along with the desired T:A product—varies in a target site–dependent manner. We characterize determinants of base editing outcomes in human cells and establish that the formation of undesired products is dependent on uracil N-glycosylase (UNG) and is more likely to occur at target sites containing only a single C within the base editing activity window. We engineered CDA1-BE3 and AID-BE3, which use cytidine deaminase homologs that increase base editing efficiency for some sequences. On the basis of these observations, we engineered fourth-generation base editors (BE4 and SaBE4) that increase the efficiency of C:G to T:A base editing by approximately 50%, while halving the frequency of undesired by-products compared to BE3. Fusing BE3, BE4, SaBE3, or SaBE4 to Gam, a bacteriophage Mu protein that binds DSBs greatly reduces indel formation during base editing, in most cases to below 1.5%, and further improves product purity. BE4, SaBE4, BE4-Gam, and SaBE4-Gam represent the state of the art in C:G-to-T:A base editing, and we recommend their use in future efforts. PMID:28875174

  5. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.

    PubMed

    Kiro, Ruth; Shitrit, Dror; Qimron, Udi

    2014-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system has recently been used to engineer genomes of various organisms, but surprisingly, not those of bacteriophages (phages). Here we present a method to genetically engineer the Escherichia coli phage T7 using the type I-E CRISPR-Cas system. T7 phage genome is edited by homologous recombination with a DNA sequence flanked by sequences homologous to the desired location. Non-edited genomes are targeted by the CRISPR-Cas system, thus enabling isolation of the desired recombinant phages. This method broadens CRISPR Cas-based editing to phages and uses a CRISPR-Cas type other than type II. The method may be adjusted to genetically engineer any bacteriophage genome.

  6. Growing Bacteriophage M13 in Liquid Culture.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2017-11-01

    Stocks of bacteriophage M13 are usually grown in liquid culture. The infected bacteria do not lyse but, instead, grow at a slower than normal rate to form a dilute suspension. The inoculum of bacteriophage is almost always a freshly picked plaque or a suspension of bacteriophage particles obtained from a single plaque, as described here. Infected cells contain up to 200 copies of double-stranded, replicative-form DNA and extrude several hundred bacteriophage particles per generation. Thus, a 1-mL culture of infected cells can produce enough double-stranded viral DNA (1-2 mg) for restriction mapping and recovery of cloned DNA inserts and sufficient single-stranded DNA (∼5-10 mg) for site-directed mutagenesis, DNA sequencing, or synthesis of radiolabeled probes. The titer of bacteriophages in the supernatant from infected cells is so high (∼10 12 pfu/mL) that a small aliquot serves as a permanent stock of the starting plaque. © 2017 Cold Spring Harbor Laboratory Press.

  7. Effect of bacterial growth rate on bacteriophage population growth rate.

    PubMed

    Nabergoj, Dominik; Modic, Petra; Podgornik, Aleš

    2018-04-01

    It is important to understand how physiological state of the host influence propagation of bacteriophages (phages), due to the potential higher phage production needs in the future. In our study, we tried to elucidate the effect of bacterial growth rate on adsorption constant (δ), latent period (L), burst size (b), and bacteriophage population growth rate (λ). As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host was used. Bacteria were grown in a continuous culture operating at dilution rates in the range between 0.06 and 0.98 hr -1 . It was found that the burst size increases linearly from 8 PFU·cell -1 to 89 PFU·cell -1 with increase in bacteria growth rate. On the other hand, adsorption constant and latent period were both decreasing from 2.6∙10 -9  ml·min -1 and 80 min to reach limiting values of 0.5 × 10 -9  ml·min -1 and 27 min at higher growth rates, respectively. Both trends were mathematically described with Michaelis-Menten based type of equation and reasons for such form are discussed. By applying selected equations, a mathematical equation for prediction of bacteriophage population growth rate as a function of dilution rate was derived, reaching values around 8 hr -1 at highest dilution rate. Interestingly, almost identical description can be obtained using much simpler Monod type equation and possible reasons for this finding are discussed. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. Biogeography of bacteriophages at four hydrothermal vent sites in the Antarctic based on g23 sequence diversity.

    PubMed

    Millard, Andrew D; Pearce, David; Zwirglmaier, Katrin

    2016-04-01

    In this study, which was carried out within the ChEsSO consortium project (Chemosynthetically driven ecosystems south of the Polar Front), we sampled two hydrothermal vent sites on the East Scotia Ridge, Scotia Sea, one in the Kemp Caldera, South Sandwich Arc and one in the Bransfield Strait, north-west of the Antarctic Peninsula, which exhibit strong differences in their chemical characteristics. We compared a subset of their bacteriophage population by Sanger- and 454-sequencing of g23, which codes for the major capsid protein of T4likeviruses. We found that the sites differ vastly in their bacteriophage diversity, which reflects the differences in the chemical conditions and therefore putatively the differences in microbial hosts living at these sites. Comparing phage diversity in the vent samples to other aquatic samples, the vent samples formed a distinct separate cluster, which also included the non-vent control samples that were taken several hundred meters above the vent chimneys. This indicates that the influence of the vents on the microbial population and therefore also the bacteriophage population extends much further than anticipated. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Evidence for a lineage of virulent bacteriophages that target Campylobacter.

    PubMed

    Timms, Andrew R; Cambray-Young, Joanna; Scott, Andrew E; Petty, Nicola K; Connerton, Phillippa L; Clarke, Louise; Seeger, Kathy; Quail, Mike; Cummings, Nicola; Maskell, Duncan J; Thomson, Nicholas R; Connerton, Ian F

    2010-03-30

    Our understanding of the dynamics of genome stability versus gene flux within bacteriophage lineages is limited. Recently, there has been a renewed interest in the use of bacteriophages as 'therapeutic' agents; a prerequisite for their use in such therapies is a thorough understanding of their genetic complement, genome stability and their ecology to avoid the dissemination or mobilisation of phage or bacterial virulence and toxin genes. Campylobacter, a food-borne pathogen, is one of the organisms for which the use of bacteriophage is being considered to reduce human exposure to this organism. Sequencing and genome analysis was performed for two Campylobacter bacteriophages. The genomes were extremely similar at the nucleotide level (> or = 96%) with most differences accounted for by novel insertion sequences, DNA methylases and an approximately 10 kb contiguous region of metabolic genes that were dissimilar at the sequence level but similar in gene function between the two phages. Both bacteriophages contained a large number of radical S-adenosylmethionine (SAM) genes, presumably involved in boosting host metabolism during infection, as well as evidence that many genes had been acquired from a wide range of bacterial species. Further bacteriophages, from the UK Campylobacter typing set, were screened for the presence of bacteriophage structural genes, DNA methylases, mobile genetic elements and regulatory genes identified from the genome sequences. The results indicate that many of these bacteriophages are related, with 10 out of 15 showing some relationship to the sequenced genomes. Two large virulent Campylobacter bacteriophages were found to show very high levels of sequence conservation despite separation in time and place of isolation. The bacteriophages show adaptations to their host and possess genes that may enhance Campylobacter metabolism, potentially advantaging both the bacteriophage and its host. Genetic conservation has been shown to extend to other

  10. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae.

    PubMed

    Frampton, Rebekah A; Acedo, Elena Lopez; Young, Vivienne L; Chen, Danni; Tong, Brian; Taylor, Corinda; Easingwood, Richard A; Pitman, Andrew R; Kleffmann, Torsten; Bostina, Mihnea; Fineran, Peter C

    2015-06-24

    Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae.

  11. Bacteriophages as indicators of faecal pollution and enteric ...

    EPA Pesticide Factsheets

    Bacteriophages are an attractive alternative to fecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport due to their closer morphological and biological properties compared to FIB. Based on a meta-analysis of published data, we summarize concentrations of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in human waste, non-human waste, fresh and marine waters as well as removal through wastewater treatment processes. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the environment and provide an overview of the methods available for detection and enumeration of bacteriophages. In summary, concentrations of FIB bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Our investigation supports use of bacteriophages as viral surrogates especially for wastewater treatment processes, while additional research is needed to clarify their utility as indicators of viral fate and transport in the ambient water. Describes concentrations and removal through environmental and engineered systems of bacteriophages, fecal indicator bacteria and viral pathogens.

  12. Complete Nucleotide Sequence Analysis of a Novel Bacillus subtilis-Infecting Bacteriophage BSP10 and Its Effect on Poly-Gamma-Glutamic Acid Degradation

    PubMed Central

    Ghosh, Kuntal; Senevirathne, Amal; Kang, Hai Seong; Hyun, Woo Bin; Kim, Ji Eun; Kim, Kwang-Pyo

    2018-01-01

    While the harmful effects of lactic acid bacterial bacteriophages in the dairy industry are well-established, the importance of Bacillus subtilis-infecting bacteriophages on soybean fermentation is poorly-studied. In this study, we isolated a B. subtilis-infecting bacteriophage BSP10 from Meju (a brick of dried fermented soybean) and further characterized it. This Myoviridae family bacteriophage exhibited a narrow host range against B. subtilis strains (17/52, 32.7%). The genome of bacteriophage BSP10 is 153,767 bp long with 236 open reading frames and 5 tRNAs. Comparative genomics (using dot plot, progressiveMauve alignment, heat-plot, and BLASTN) and phylogenetic analysis strongly suggest its incorporation as a new species in the Nit1virus genus. Furthermore, bacteriophage BSP10 was efficient in the growth inhibition of B. subtilis ATCC 15245 in liquid culture and in Cheonggukjang (a soybean fermented food) fermentation. Artificial contamination of as low as 102 PFU/g of bacteriophage BSP10 during Cheonggukjang fermentation significantly reduced bacterial numbers by up to 112 fold in comparison to the control (no bacteriophage). Moreover, for the first time, we experimentally proved that B. subtilis-infecting bacteriophage greatly enhanced poly-γ-glutamic acid degradation during soybean fermentation, which is likely to negatively affect the functionalities of Cheonggukjang. PMID:29734701

  13. Isolation, characterization, and application of bacteriophages for Salmonella spp. biocontrol in pigs.

    PubMed

    Albino, Luiz A A; Rostagno, Marcos H; Húngaro, Humberto M; Mendonça, Regina C S

    2014-08-01

    Foodborne illness due to Salmonella-contaminated pork products is an important public health problem, causing significant economic losses worldwide. The use of bacteriophages is a potential intervention tool that has attracted interest for the control of foodborne pathogens. The objective of this study was to detect the presence of Salmonella in commercial pig farms and to isolate specific autochthonous bacteriophages against Salmonella Typhimurium, to characterize them and to evaluate their lytic capacity against Salmonella Typhimurium in vivo and in vitro. Salmonella was isolated on 50% (4/8) of the farms, with serotype Typhimurium being the most prevalent, detected in 48.2% of samples (13/27). The isolated Salmonella Typhimurium bacteriophages belong to the Podoviridae family, were active against serotypes Abony, Enteritidis, Typhi, and Typhimurium, but not against serotypes Arizonae, Cholerasuis, Gallinarum, and Pullorum. In in vitro tests, bacteriophage at 10(7) PFU/mL and 10(9) PFU/mL significantly reduced (p<0.05) Salmonella Typhimurium counts in 1.6 and 2.5 log10 colony-forming units (CFU)/mL, respectively, after 24 h. Before the in vivo treatment with bacteriophages, Salmonella was identified in 93.3% (28/30) of the fecal samples from the pigs inoculated with 10(6) CFU/mL, and only in 56.6% (17/30) after the treatment consisting of oral administration of the pool of the bacteriophages after the fasting period, simulating a common preslaughter practice. These results indicate that the pool of bacteriophages administered was capable of reducing the colonization of Salmonella in pigs.

  14. Use of a bacteriophage cocktail to control Salmonella in food and the food industry.

    PubMed

    Spricigo, Denis Augusto; Bardina, Carlota; Cortés, Pilar; Llagostera, Montserrat

    2013-07-15

    The use of lytic bacteriophages for the biocontrol of food-borne pathogens in food and in the food industry is gaining increasing acceptance. In this study, the effectiveness of a bacteriophage cocktail composed of three different lytic bacteriophages (UAB_Phi 20, UAB_Phi78, and UAB_Phi87) was determined in four different food matrices (pig skin, chicken breasts, fresh eggs, and packaged lettuce) experimentally contaminated with Salmonella enterica serovar Typhimurium and S. enterica serovar Enteritidis. A significant bacterial reduction (>4 and 2 log/cm(2) for S. Typhimurium and S. Enteritidis, respectively; p≤0.005) was obtained in pig skin sprayed with the bacteriophage cocktail and then incubated at 33 °C for 6h. Significant decreases in the concentration of S. Typhimurium and S. Enteritidis were also measured in chicken breasts dipped for 5 min in a solution containing the bacteriophage cocktail and then refrigerated at 4 °C for 7 days (2.2 and 0.9 log10 cfu/g, respectively; p≤0.0001) as well as in lettuce similarly treated for 60 min at room temperature (3.9 and 2.2 log10 cfu/g, respectively; p≤0.005). However, only a minor reduction of the bacterial concentration (0.9 log10 cfu/cm(2) of S. Enteritidis and S. Typhimurium; p≤0.005) was achieved in fresh eggs sprayed with the bacteriophage cocktail and then incubated at 25 °C for 2 h. These results show the potential effectiveness of this bacteriophage cocktail as a biocontrol agent of Salmonella in several food matrices under conditions similar to those used in their production. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Norovirus and FRNA bacteriophage determined by RT-qPCR and infectious FRNA bacteriophage in wastewater and oysters.

    PubMed

    Flannery, John; Keaveney, Sinéad; Rajko-Nenow, Paulina; O'Flaherty, Vincent; Doré, William

    2013-09-15

    Norovirus (NoV), the leading cause of adult non-bacterial gastroenteritis can be commonly detected in wastewater but the extent of NoV removal provided by wastewater treatment plants (WWTPs) is unclear. We monitored a newly commissioned WWTP with UV disinfection on a weekly basis over a six month period for NoV using RT-qPCR and for FRNA bacteriophage GA using both RT-qPCR (total concentration) and a plaque assay (infectious concentration). Mean concentrations of NoV GI and GII in influent wastewater were reduced by 0.25 and 0.41 log10 genome copies 100 ml(-1), respectively by the WWTP. The mean concentration of total FRNA bacteriophage GA was reduced by 0.35 log genome copies 100 ml(-1) compared to a reduction of infectious FRNA bacteriophage GA of 2.13 log PFU 100 ml(-1). A significant difference between concentrations of infectious and total FRNA bacteriophage GA was observed in treated, but not in untreated wastewaters. We conclude that RT-qPCR in isolation underestimates the reduction of infectious virus during wastewater treatment. We further compared the concentrations of infectious virus in combined sewer overflow (CSO) and UV treated effluents using FRNA bacteriophage GA. A greater percentage (98%) of infectious virus is released in CSO discharges than UV treated effluent (44%). Following a CSO discharge, concentrations of NoV GII and infectious FRNA bacteriophage GA in oysters from less than the limit of detection to 3150 genome copies 100 g(-1) and 1050 PFU 100 g(-1) respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Call for a dedicated European legal framework for bacteriophage therapy.

    PubMed

    Verbeken, Gilbert; Pirnay, Jean-Paul; Lavigne, Rob; Jennes, Serge; De Vos, Daniel; Casteels, Minne; Huys, Isabelle

    2014-04-01

    The worldwide emergence of antibiotic resistances and the drying up of the antibiotic pipeline have spurred a search for alternative or complementary antibacterial therapies. Bacteriophages are bacterial viruses that have been used for almost a century to combat bacterial infections, particularly in Poland and the former Soviet Union. The antibiotic crisis has triggered a renewed clinical and agricultural interest in bacteriophages. This, combined with new scientific insights, has pushed bacteriophages to the forefront of the search for new approaches to fighting bacterial infections. But before bacteriophage therapy can be introduced into clinical practice in the European Union, several challenges must be overcome. One of these is the conceptualization and classification of bacteriophage therapy itself and the extent to which it constitutes a human medicinal product regulated under the European Human Code for Medicines (Directive 2001/83/EC). Can therapeutic products containing natural bacteriophages be categorized under the current European regulatory framework, or should this framework be adapted? Various actors in the field have discussed the need for an adapted (or entirely new) regulatory framework for the reintroduction of bacteriophage therapy in Europe. This led to the identification of several characteristics specific to natural bacteriophages that should be taken into consideration by regulators when evaluating bacteriophage therapy. One important consideration is whether bacteriophage therapy development occurs on an industrial scale or a hospital-based, patient-specific scale. More suitable regulatory standards may create opportunities to improve insights into this promising therapeutic approach. In light of this, we argue for the creation of a new, dedicated European regulatory framework for bacteriophage therapy.

  17. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR

    DOE PAGES

    Zinke, Maximilian; Fricke, Pascal; Samson, Camille; ...

    2017-07-07

    Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH,more » (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.« less

  18. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinke, Maximilian; Fricke, Pascal; Samson, Camille

    Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH,more » (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.« less

  19. γδ T cells affect IL-4 production and B-cell tolerance

    PubMed Central

    Huang, Yafei; Heiser, Ryan A.; Detanico, Thiago O.; Getahun, Andrew; Kirchenbaum, Greg A.; Casper, Tamara L.; Aydintug, M. Kemal; Carding, Simon R.; Ikuta, Koichi; Huang, Hua; Cambier, John C.; Wysocki, Lawrence J.; O’Brien, Rebecca L.; Born, Willi K.

    2015-01-01

    γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4–producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4–regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4–inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance. PMID:25535377

  20. γδ T cells affect IL-4 production and B-cell tolerance.

    PubMed

    Huang, Yafei; Heiser, Ryan A; Detanico, Thiago O; Getahun, Andrew; Kirchenbaum, Greg A; Casper, Tamara L; Aydintug, M Kemal; Carding, Simon R; Ikuta, Koichi; Huang, Hua; Cambier, John C; Wysocki, Lawrence J; O'Brien, Rebecca L; Born, Willi K

    2015-01-06

    γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4-producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4-regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4-inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance.

  1. Langevin Dynamics Simulations of Genome Packing in Bacteriophage

    PubMed Central

    Forrey, Christopher; Muthukumar, M.

    2006-01-01

    We use Langevin dynamics simulations to study the process by which a coarse-grained DNA chain is packaged within an icosahedral container. We focus our inquiry on three areas of interest in viral packing: the evolving structure of the packaged DNA condensate; the packing velocity; and the internal buildup of energy and resultant forces. Each of these areas has been studied experimentally, and we find that we can qualitatively reproduce experimental results. However, our findings also suggest that the phage genome packing process is fundamentally different than that suggested by the inverse spool model. We suggest that packing in general does not proceed in the deterministic fashion of the inverse-spool model, but rather is stochastic in character. As the chain configuration becomes compressed within the capsid, the structure, energy, and packing velocity all become dependent upon polymer dynamics. That many observed features of the packing process are rooted in condensed-phase polymer dynamics suggests that statistical mechanics, rather than mechanics, should serve as the proper theoretical basis for genome packing. Finally we suggest that, as a result of an internal protein unique to bacteriophage T7, the T7 genome may be significantly more ordered than is true for bacteriophage in general. PMID:16617089

  2. Langevin dynamics simulations of genome packing in bacteriophage.

    PubMed

    Forrey, Christopher; Muthukumar, M

    2006-07-01

    We use Langevin dynamics simulations to study the process by which a coarse-grained DNA chain is packaged within an icosahedral container. We focus our inquiry on three areas of interest in viral packing: the evolving structure of the packaged DNA condensate; the packing velocity; and the internal buildup of energy and resultant forces. Each of these areas has been studied experimentally, and we find that we can qualitatively reproduce experimental results. However, our findings also suggest that the phage genome packing process is fundamentally different than that suggested by the inverse spool model. We suggest that packing in general does not proceed in the deterministic fashion of the inverse-spool model, but rather is stochastic in character. As the chain configuration becomes compressed within the capsid, the structure, energy, and packing velocity all become dependent upon polymer dynamics. That many observed features of the packing process are rooted in condensed-phase polymer dynamics suggests that statistical mechanics, rather than mechanics, should serve as the proper theoretical basis for genome packing. Finally we suggest that, as a result of an internal protein unique to bacteriophage T7, the T7 genome may be significantly more ordered than is true for bacteriophage in general.

  3. Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages.

    PubMed

    Soleimani-Delfan, Abbas; Etemadifar, Zahra; Emtiazi, Giti; Bouzari, Majid

    2015-01-01

    One of the most economically important bacterial pathogens of plants and plant products is Dickeya dadantii. This bacterium causes soft rot disease in tubers and other parts of the potato and other plants of the Solanaceae family. The application of restricted host range bacteriophages as biocontrol agents has recently gained widespread interest. This study purposed to isolate the infectious agent of the potato and evaluate its biocontrol by bacteriophages. Two phytopathogenic strains were isolated from infected potatoes, identified based on biochemical and 16S rRNA gene sequencing, and submitted to GenBank as D. dadantii strain pis3 (accession no. HQ423668) and D. dadantii strain sip4 (accession no. HQ423669). Their bacteriophages were isolated from Caspian Sea water by enriching the water filtrate with D. dadantii strains as hosts using spot or overlay methods. On the basis of morphotypes, the isolated bacteriophages were identified as members of the Myoviridae and Siphoviridae families and could inhibit the growth of antibiotic resistant D. dadantii strains in culture medium. Moreover, in Dickeya infected plants treated with bacteriophage, no disease progression was detected. No significant difference was seen between phage-treated and control plants. Thus, isolated bacteriophages can be suggested for the biocontrol of plant disease caused by Dickeya strains.

  4. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale.

    PubMed

    Boudaud, Nicolas; Machinal, Claire; David, Fabienne; Fréval-Le Bourdonnec, Armelle; Jossent, Jérôme; Bakanga, Fanny; Arnal, Charlotte; Jaffrezic, Marie Pierre; Oberti, Sandrine; Gantzer, Christophe

    2012-05-15

    The removal of MS2, Qβ and GA, F-specific RNA bacteriophages, potential surrogates for pathogenic waterborne viruses, was investigated during a conventional drinking water treatment at pilot scale by using river water, artificially and independently spiked with these bacteriophages. The objective of this work is to develop a standard system for assessing the effectiveness of drinking water plants with respect to the removal of MS2, Qβ and GA bacteriophages by a conventional pre-treatment process (coagulation-flocculation-settling-sand filtration) followed or not by an ultrafiltration (UF) membrane (complete treatment process). The specific performances of three UF membranes alone were assessed by using (i) pre-treated water and (ii) 0.1 mM sterile phosphate buffer solution (PBS), spiked with bacteriophages. These UF membranes tested in this work were designed for drinking water treatment market and were also selected for research purpose. The hypothesis serving as base for this study was that the interfacial properties for these three bacteriophages, in terms of electrostatic charge and the degree of hydrophobicity, could induce variations in the removal performances achieved by drinking water treatments. The comparison of the results showed a similar behaviour for both MS2 and Qβ surrogates whereas it was particularly atypical for the GA surrogate. The infectious character of MS2 and Qβ bacteriophages was mostly removed after clarification followed by sand filtration processes (more than a 4.8-log reduction) while genomic copies were removed at more than a 4.0-log after the complete treatment process. On the contrary, GA bacteriophage was only slightly removed by clarification followed by sand filtration, with less than 1.7-log and 1.2-log reduction, respectively. After the complete treatment process achieved, GA bacteriophage was removed with less than 2.2-log and 1.6-log reduction, respectively. The effectiveness of the three UF membranes tested in terms of

  5. Bacteriophages and Their Immunological Applications against Infectious Threats.

    PubMed

    Criscuolo, Elena; Spadini, Sara; Lamanna, Jacopo; Ferro, Mattia; Burioni, Roberto

    2017-01-01

    Bacteriophage therapy dates back almost a century, but the discovery of antibiotics led to a rapid decline in the interests and investments within this field of research. Recently, the novel threat of multidrug-resistant bacteria highlighted the alarming drop in research and development of new antibiotics: 16 molecules were discovered during 1983-87, 10 new therapeutics during the nineties, and only 5 between 2003 and 2007. Phages are therefore being reconsidered as alternative therapeutics. Phage display technique has proved to be extremely promising for the identification of effective antibodies directed against pathogens, as well as for vaccine development. At the same time, conventional phage therapy uses lytic bacteriophages for treatment of infections and recent clinical trials have shown great potential. Moreover, several other approaches have been developed in vitro and in vivo using phage-derived proteins as antibacterial agents. Finally, their use has also been widely considered for public health surveillance, as biosensor phages can be used to detect food and water contaminations and prevent bacterial epidemics. These novel approaches strongly promote the idea that phages and their proteins can be exploited as an effective weapon in the near future, especially in a world which is on the brink of a "postantibiotic era."

  6. Bacteriophages and Their Immunological Applications against Infectious Threats

    PubMed Central

    Lamanna, Jacopo; Ferro, Mattia; Burioni, Roberto

    2017-01-01

    Bacteriophage therapy dates back almost a century, but the discovery of antibiotics led to a rapid decline in the interests and investments within this field of research. Recently, the novel threat of multidrug-resistant bacteria highlighted the alarming drop in research and development of new antibiotics: 16 molecules were discovered during 1983–87, 10 new therapeutics during the nineties, and only 5 between 2003 and 2007. Phages are therefore being reconsidered as alternative therapeutics. Phage display technique has proved to be extremely promising for the identification of effective antibodies directed against pathogens, as well as for vaccine development. At the same time, conventional phage therapy uses lytic bacteriophages for treatment of infections and recent clinical trials have shown great potential. Moreover, several other approaches have been developed in vitro and in vivo using phage-derived proteins as antibacterial agents. Finally, their use has also been widely considered for public health surveillance, as biosensor phages can be used to detect food and water contaminations and prevent bacterial epidemics. These novel approaches strongly promote the idea that phages and their proteins can be exploited as an effective weapon in the near future, especially in a world which is on the brink of a “postantibiotic era.” PMID:28484722

  7. Bacteriophage P2 ogr and P4 delta genes act independently and are essential for P4 multiplication.

    PubMed Central

    Halling, C; Calendar, R

    1990-01-01

    Satellite bacteriophage P4 requires the products of the late genes of a helper phage such as P2 for lytic growth. Expression of the P2 late genes is positively regulated by the P2 ogr gene in a process requiring P2 DNA replication. Transactivation of P2 late gene expression by P4 requires the P4 delta gene product and works even in the absence of P2 DNA replication. We have made null mutants of the P2 ogr and P4 delta genes. In the absence of the P4 delta gene product, P4 multiplication required both the P2 ogr protein and P2 DNA replication. In the absence of the P2 ogr gene product, P4 multiplication required the P4 delta protein. In complementation experiments, we found that the P2 ogr protein was made in the absence of P2 DNA replication but could not function unless P2 DNA replicated. We produced P4 delta protein from a plasmid and found that it complemented the null P4 delta and P2 ogr mutants. Images PMID:2193911

  8. [Isolation and characterization of a lytic bacteriophage from Mingyong glacier melt water].

    PubMed

    Li, Mingyuan; Ji, Xiuling; Wang, Baoqiang; Zhang, Qi; Lin, Lianbing; Zhang, Bing; Wei, Yunlin

    2012-02-04

    Glacier is a unique ecological system. This study focused on the isolation and characterization of a cold-active bateriophage from Mingyong glacier area in northwest Yunnan. Bacterial strains isolated from glacial melt water were used as host cells to isolate and purify bacteriophages by double-layer plate method. The morphology of the isolated phages and their host strains were observed by electron microscope. Restriction fragment length polymorphism (RFLP) analysis of genomic DNA, constituent proteins and physiological analysis of the bacteriophages were further carried out to characterize the phages. A lytic cold-active bacteriophage, designated as MYSP03, was isolated from Mingyong glacier. Its host strain MYB03 was identified as a member of genus Flavobacterium, based on the 16S rRNA sequence analysis. The bacteriophage MYSP03 has a isometric head (about 72 nm in diameter) and a long tail (about 240 nm in length and 10 nm in width), but no envelope was detected. Physiological analysis results showed that MYSP03 had infection activity at 4 degrees C, and clear and transparent plaques were formed on double-layer plates between 4 and 20 degrees C. Its optimum infection temperature was 10 degrees C and optimal pH 9.4, respectively. It is insensitive to chloroform. Furthermore, the genome of MYSP03 consists of double-stranded DNA and is approximately 66 kb.

  9. MOF-Bacteriophage Biosensor for Highly Sensitive and Specific Detection of Staphylococcus aureus.

    PubMed

    Bhardwaj, Neha; Bhardwaj, Sanjeev K; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash

    2017-10-04

    To produce a sensitive and specific biosensor for Staphylococcus aureus, bacteriophages have been interfaced with a water-dispersible and environmentally stable metal-organic framework (MOF), NH 2 -MIL-53(Fe). The conjugation of the MOF with bacteriophages has been achieved through the use of glutaraldehyde as cross-linker. Highly sensitive detection of S. aureus in both synthetic and real samples was realized by the proposed MOF-bacteriophage biosensor based on the photoluminescence quenching phenomena: limit of detection (31 CFU/mL) and range of detection (40 to 4 × 10 8 CFU/mL). This is the first report exploiting the use of an MOF-bacteriophage complex for the biosensing of S. aureus. The results of our study highlight that the proposed biosensor is more sensitive than most of the previous methods while exhibiting some advanced features like specificity, regenerability, extended range of linear detection, and stability for long-term storage (even at room temperature).

  10. Two T7-like Bacteriophages, K5-2 and K5-4, Each Encodes Two Capsule Depolymerases: Isolation and Functional Characterization.

    PubMed

    Hsieh, Pei-Fang; Lin, Hsiao-Hsuan; Lin, Tzu-Lung; Chen, Yi-Yin; Wang, Jin-Town

    2017-07-04

    Two Klebsiella bacteriophages K5-2 and K5-4, which are able to infect and grow on either capsular types K30/K69 and K5 or K8 and K5 of Klebsiella strains, were isolated and characterized. Each phage contained two open reading frames (ORFs), which encoded two putative capsule depolymerases, respectively. The first ORF encoded tail fiber proteins, which have K30/K69 depolymerase and K8 depolymerase activities. The second ORF encoded hypothetical proteins, which are almost identical in amino acid sequences, and have K5 depolymerase activity. Alcian blue staining of enzyme-treated capsular polysaccharides (CPS) showed that purified depolymerases can cleave purified Klebsiella CPS in vitro and liberate monosaccharaides. Capsule K5 deletion mutants were not lysed by either phage, suggesting that the capsule was essential for phage infection. Bacterial killing was observed when incubated Klebsiella strains with phages but not with purified depolymerases. Treatment with the K5-4 phage significantly increased the survival of mice infected with a K. pneumoniae K5 strain. In conclusion, two dual host-specific Klebsiella phages and their tailspikes exhibit capsule depolymerase activity were characterized. Each phage and phage-encoded depolymerase has specificity for capsular type K30/K69, K8 or K5, and could be used for the typing and treatment of K. pneumoniae infection.

  11. Polymer-based delivery systems for support and delivery of bacteriophages

    NASA Astrophysics Data System (ADS)

    Brown, Alyssa Marie

    One of the most urgent problems in the fields of medicine and agriculture is the decreasing effectiveness of antibiotics. Once a miracle drug, antibiotics have recently become associated with the creation of antibiotic-resistant bacteria. The main limitations of these treatments include lack of both adaptability and specificity. To overcome these shortcomings of current antibiotic treatments, there has been a renewed interest in bacteriophage research. Bacteriophages are naturally-occurring viruses that lyse bacteria. They are highly specific, with each bacteriophage type lysing a narrow range of bacteria strains. Bacteriophages are also ubiquitous biological entities, populating environments where bacterial growth is supported. Just as humans are exposed to bacteria in their daily lives, we are exposed to bacteriophages as well. To use bacteriophages in practical applications, they must be delivered to the site of an infection in a controlled-release system. Two systems were studied to observe their support of bacteriophage lytic activity, as well as investigate the possibility of controlling bacteriophage release rates. First, hydrogels were studied, using crosslinking and blending techniques to achieve a range of release profiles. Second, polyanhydride microparticles were studied, evaluating release rates as a function of monomer chemistries.

  12. Branched Lateral Tail Fiber Organization in T5-Like Bacteriophages DT57C and DT571/2 is Revealed by Genetic and Functional Analysis.

    PubMed

    Golomidova, Alla K; Kulikov, Eugene E; Prokhorov, Nikolai S; Guerrero-Ferreira, Ricardo С; Knirel, Yuriy A; Kostryukova, Elena S; Tarasyan, Karina K; Letarov, Andrey V

    2016-01-21

    The T5-like siphoviruses DT57C and DT571/2, isolated from horse feces, are very closely related to each other, and most of their structural proteins are also nearly identical to T5 phage. Their LTFs (L-shaped tail fibers), however, are composed of two proteins, LtfA and LtfB, instead of the single Ltf of bacteriophage T5. In silico and mutant analysis suggests a possible branched structure of DT57C and DT571/2 LTFs, where the LtfB protein is connected to the phage tail via the LtfA protein and with both proteins carrying receptor recognition domains. Such adhesin arrangement has not been previously recognized in siphoviruses. The LtfA proteins of our phages are found to recognize different host O-antigen types: E. coli O22-like for DT57C phage and E. coli O87 for DT571/2. LtfB proteins are identical in both phages and recognize another host receptor, most probably lipopolysaccharide (LPS) of E. coli O81 type. In these two bacteriophages, LTF function is essential to penetrate the shield of the host's O-antigens. We also demonstrate that LTF-mediated adsorption becomes superfluous when the non-specific cell protection by O-antigen is missing, allowing the phages to bind directly to their common secondary receptor, the outer membrane protein BtuB. The LTF independent adsorption was also demonstrated on an O22-like host mutant missing O-antigen O-acetylation, thus showing the biological value of this O-antigen modification for cell protection against phages.

  13. Bacteriophage Applications for Food Production and Processing

    PubMed Central

    Moye, Zachary D.; Woolston, Joelle; Sulakvelidze, Alexander

    2018-01-01

    Foodborne illnesses remain a major cause of hospitalization and death worldwide despite many advances in food sanitation techniques and pathogen surveillance. Traditional antimicrobial methods, such as pasteurization, high pressure processing, irradiation, and chemical disinfectants are capable of reducing microbial populations in foods to varying degrees, but they also have considerable drawbacks, such as a large initial investment, potential damage to processing equipment due to their corrosive nature, and a deleterious impact on organoleptic qualities (and possibly the nutritional value) of foods. Perhaps most importantly, these decontamination strategies kill indiscriminately, including many—often beneficial—bacteria that are naturally present in foods. One promising technique that addresses several of these shortcomings is bacteriophage biocontrol, a green and natural method that uses lytic bacteriophages isolated from the environment to specifically target pathogenic bacteria and eliminate them from (or significantly reduce their levels in) foods. Since the initial conception of using bacteriophages on foods, a substantial number of research reports have described the use of bacteriophage biocontrol to target a variety of bacterial pathogens in various foods, ranging from ready-to-eat deli meats to fresh fruits and vegetables, and the number of commercially available products containing bacteriophages approved for use in food safety applications has also been steadily increasing. Though some challenges remain, bacteriophage biocontrol is increasingly recognized as an attractive modality in our arsenal of tools for safely and naturally eliminating pathogenic bacteria from foods. PMID:29671810

  14. DECAY OF INCORPORATED RADIOACTIVE PHOSPHORUS DURING REPRODUCTION OF BACTERIOPHAGE T2

    PubMed Central

    Stent, Gunther S.

    1955-01-01

    The multiplication of vegetative T2 bacteriophage in B/r bacteria has been followed by studying the lethal effects of decay of incorporated radiophosphorus P32 at various stages of the eclipse period. Experiment I. Non-radioactive B/r bacteria were infected with highly radioactive (i.e. P32-unstable) T2 and infection allowed to proceed at 37°C. for various numbers of minutes before freezing the infected cells and storing them in liquid nitrogen. The longer development had been allowed to proceed at 37°C. before freezing, the slower the inactivation of the frozen infective centers by P32 decay. Samples which were frozen after incubation for 9 minutes were completely stable. Experiment II. Radioactive B/r bacteria in radioactive growth medium were infected with non-radioactive (i.e. stable) T2 and incubated for various lengths of time before being frozen and stored in liquid nitrogen, like those of Experiment I. In this case, the infective centers were stable to P32 decay as long as they were frozen before the end of the eclipse period. The T2 progeny phages issuing from the infected bacteria were P32-unstable. Experiment III. Radioactive B/r bacteria in radioactive medium were infected with radioactive (i.e. P32-unstable) T2 and otherwise incubated and frozen like those of the first two experiments. In this case, the same progressive stabilization, of the infective centers towards inactivation by P32 decay was observed as that found in Experiment I. The ability to yield infective progeny of infected bacteria incubated for 10 minutes at 37°C. before freezing could no longer be destroyed by P32 decay. The progeny issuing from the infected cells were as unstable as the parental phage. These results could be explained by one of three general hypotheses. As vegetative phage begins to multiply, it is possible that: (a) there is a high probability that any part of the vegetative phage already duplicated can be saved after its destruction by P32 decay through a process

  15. Bacteriophage Infecting the Myxobacterium Chondrococcus columnaris

    PubMed Central

    Kingsbury, David T.; Ordal, Erling J.

    1966-01-01

    Kingsbury, David T. (University of Washington, Seattle), and Erling J. Ordal. Bacteriophage infecting the myxobacterium Chondrococcus columnaris. J. Bacteriol. 91:1327–1332. 1966.—During a series of screening experiments, seven bacteriophages which infect the pathogenic myxobacterium Chondrococcus columnaris were isolated. Of these, one was chosen for detailed study. This phage has a wide host range among strains of C. columnaris, but does not infect other myxobacterial species tested. Morphologically, this phage resembles coliphage T2, though it is smaller. It has a head diameter of 600 A, a tail length of 1,000 A, and a tail width of 200 A. The head is attached to the tail by a well-defined neck. The turbid plaques produced by this phage are similar in appearance to those produced by coliphage λ, and average 1 mm in diameter. The phage has a latent period of 100 min, a rise period of an additional 90 min, and a burst size of 23. Calcium ions at a concentration of 0.004 m are required for adsorption. This requirement cannot be met by substitution of magnesium ions. A purified preparation of 2 × 1012 phage particles was extracted with phenol, and the nucleic acid was identified as deoxyribonucleic acid (DNA). Base ratios of the phage DNA and the DNA of two propagating strains were similar. Streptomycin at a concentration of 70 μg/ml inhibits phage infection at an early stage, probably by inhibiting injection of the phage DNA. Images PMID:5929758

  16. Comparative Genomics of Bacteriophage of the Genus Seuratvirus

    PubMed Central

    Sazinas, Pavelas; Redgwell, Tamsin; Rihtman, Branko; Grigonyte, Aurelija; Michniewski, Slawomir; Scanlan, David J; Hobman, Jon

    2018-01-01

    Abstract Despite being more abundant and having smaller genomes than their bacterial host, relatively few bacteriophages have had their genomes sequenced. Here, we isolated 14 bacteriophages from cattle slurry and performed de novo genome sequencing, assembly, and annotation. The commonly used marker genes polB and terL showed these bacteriophages to be closely related to members of the genus Seuratvirus. We performed a core-gene analysis using the 14 new and four closely related genomes. A total of 58 core genes were identified, the majority of which has no known function. These genes were used to construct a core-gene phylogeny, the results of which confirmed the new isolates to be part of the genus Seuratvirus and expanded the number of species within this genus to four. All bacteriophages within the genus contained the genes queCDE encoding enzymes involved in queuosine biosynthesis. We suggest these genes are carried as a mechanism to modify DNA in order to protect these bacteriophages against host endonucleases. PMID:29272407

  17. Application of bacteriophages to reduce Salmonella contamination on workers' boots in rendering-processing environment.

    PubMed

    Gong, C; Jiang, X; Wang, J

    2017-10-01

    Workers' boots are considered one of the re-contamination routes of Salmonella for rendered meals in the rendering-processing environment. This study was conducted to evaluate the efficacy of a bacteriophage cocktail for reducing Salmonella on workers' boots and ultimately for preventing Salmonella re-contamination of rendered meals. Under laboratory conditions, biofilms of Salmonella Typhimurium avirulent strain 8243 formed on rubber templates or boots were treated with a bacteriophage cocktail of 6 strains (ca. 9 log PFU/mL) for 6 h at room temperature. Bacteriophage treatments combined with sodium hypochlorite (400 ppm) or 30-second brush scrubbing also were investigated for a synergistic effect on reducing Salmonella biofilms. Sodium magnesium (SM) buffer and sodium hypochlorite (400 ppm) were used as controls. To reduce indigenous Salmonella on workers' boots, a field study was conducted to apply a bacteriophage cocktail and other combined treatments 3 times within one wk in a rendering-processing environment. Prior to and after bacteriophage treatments, Salmonella populations on the soles of rubber boots were swabbed and enumerated on XLT-4, Miller-Mallinson or CHROMagar™ plates. Under laboratory conditions, Salmonella biofilms formed on rubber templates and boots were reduced by 95.1 to 99.999% and 91.5 to 99.2%, respectively. In a rendering-processing environment (ave. temperature: 19.3°C; ave. relative humidity: 48%), indigenous Salmonella populations on workers' boots were reduced by 84.2, 92.9, and 93.2% after being treated with bacteriophages alone, bacteriophages + sodium hypochlorite, and bacteriophages + scrubbing for one wk, respectively. Our results demonstrated the effectiveness of bacteriophage treatments in reducing Salmonella contamination on the boots in both laboratory and the rendering-processing environment. © 2017 Poultry Science Association Inc.

  18. Morphological manifestations of freezing and thawing injury in bacteriophage T4Bo.

    PubMed Central

    Steele, P. R.

    1976-01-01

    Electron microscopic observation of negatively stained preparations of frozen and thawed suspensions of T4Bo phage clearly separated the morphological changes produced produced by low-temperature salt denaturation from those produced by eutectic phase changes. Salt denaturation caused contraction of tail sheaths. Eutectic phase changes appeared to cause two separate lesions. Firstly the tail sheath was disjointed 18-22 nm. below the collar and the tail core was disjointed at 40-60 nm. below the collar, giving rise to separated heads with a small tail remnant, and separated tails in which the sheath remarkably remained in its extended form. Secondly, tears were seen in the head membranes of particles with collapsed empty heads. In all the experiments the percentage of normal phage particles counted electron-microscopically was close to the percentage of viable phage as determined by plaque assay. Images Plate 1 PMID:1068189

  19. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection.

    PubMed

    Khawaldeh, A; Morales, S; Dillon, B; Alavidze, Z; Ginn, A N; Thomas, L; Chapman, S J; Dublanchet, A; Smithyman, A; Iredell, J R

    2011-11-01

    We describe the success of adjunctive bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection in the context of bilateral ureteric stents and bladder ulceration, after repeated failure of antibiotics alone. No bacteriophage-resistant bacteria arose, and the kinetics of bacteriophage and bacteria in urine suggest self-sustaining and self-limiting infection.

  20. Bacteriophages of methanotrophic bacteria.

    PubMed Central

    Tyutikov, F M; Bespalova, I A; Rebentish, B A; Aleksandrushkina, N N; Krivisky, A S

    1980-01-01

    Bacteriophages of methanotrophic bacteria have been found in 16 out of 88 studied samples (underground waters, pond water, soil, gas and oil installation waters, fermentor cultural fluids, bacterial paste, and rumen of cattle) taken in different geographic zones of the Soviet Union. Altogether, 23 phage strains were isolated: 10 strains that specifically lysed only Methylosinus sporium strains, 2 strains that each lysed 1 of 5 Methylosinus trichosporium strains studied, and 11 strains that lysed Flavobacterium gasotypicum and, at the same time, 1 M. sporium strain. By fine structure, the phages were divided into two types (with very short or long noncontractile tails); by host range and serological properties, they fell into three types. One-step growth characteristics of the phages differed only slightly; the latent period varied from 6 to 8 h, the rise period varied from 4 to 6 h, and the average burst size was 100. All phages had guanine- and cytosine-rich double-stranded deoxyribonucleic acid consisting of common nitrogen bases. The molecular mass of the deoxyribonucleic acid as determined by restriction endonuclease analysis was 29.4 X 10(6) for M. sporium phages and 44 X 10(6) for F. gasotypicum phages. By all of the above-mentioned properties, all phages within each of the groups were completely identical to one another, but differed from phages of other groups. Bacteriophages lysing M. sporium and M. trichosporium GB2 were identical to phages M1 and M4, respectively, which were isolated earlier in the German Democratic Republic on the same methanotrophic species. Images PMID:6774962

  1. Characterization and formulation into solid dosage forms of a novel bacteriophage lytic against Klebsiella oxytoca.

    PubMed

    Brown, Teagan L; Petrovski, Steve; Hoyle, Dannielle; Chan, Hiu Tat; Lock, Peter; Tucci, Joseph

    2017-01-01

    To isolate and characterize bacteriophage lytic for the opportunistic pathogen Klebsiella oxytoca and their formulation into a range of solid dosage forms for in-vitro testing. We report the isolation, genomic and functional characterization of a novel bacteriophage lytic for Klebsiella oxytoca, which does not infect the closely related Klebsiella pneumoniae. This bacteriophage was formulated into suppositories and troches and shown to be released and lyse underlying Klebsiella oxytoca bacteria in an in-vitro model. These bacteriophage formulations were stable for at least 49 days at 4°C. The successful in-vitro assay of these formulations here suggests that they could potentially be tested in-vivo to determine whether such a therapeutic approach could modulate the gut microbiome, and control Klebsiella oxytoca overgrowth, during antibiotic therapy regimes. This study reports a novel bacteriophage specific for Klebsiella oxytoca which can be formulated into solid dosage forms appropriate for potential delivery in testing as a therapy to modulate gut microbiome during antibiotic therapies.

  2. Genomic diversity of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum.

    PubMed

    Castillo, Daniel; Middelboe, Mathias

    2016-12-01

    Bacteriophages infecting the fish pathogen Flavobacterium psychrophilum can potentially be used to prevent and control outbreaks of this bacterium in salmonid aquaculture. However, the application of bacteriophages in disease control requires detailed knowledge on their genetic composition. To explore the diversity of F. pyschrophilum bacteriophages, we have analyzed the complete genome sequences of 17 phages isolated from two distant geographic areas (Denmark and Chile), including the previously characterized temperate bacteriophage 6H. Phage genome size ranged from 39 302 to 89 010 bp with a G+C content of 27%-32%. None of the bacteriophages isolated in Denmark contained genes associated with lysogeny, whereas the Chilean isolates were all putative temperate phages and similar to bacteriophage 6H. Comparative genome analysis showed that phages grouped in three different genetic clusters based on genetic composition and gene content, indicating a limited genetic diversity of F. psychrophilum-specific bacteriophages. However, amino acid sequence dissimilarity (25%) was found in putative structural proteins, which could be related to the host specificity determinants. This study represents the first analysis of genomic diversity and composition among bacteriophages infecting the fish pathogen F. psychrophilum and discusses the implications for the application of phages in disease control. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections.

    PubMed

    Mendes, João J; Leandro, Clara; Mottola, Carla; Barbosa, Raquel; Silva, Filipa A; Oliveira, Manuela; Vilela, Cristina L; Melo-Cristino, José; Górski, Andrzej; Pimentel, Madalena; São-José, Carlos; Cavaco-Silva, Patrícia; Garcia, Miguel

    2014-08-01

    In patients with diabetes mellitus, foot infections pose a significant risk. These are complex infections commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii, all of which are potentially susceptible to bacteriophages. Here, we characterized five bacteriophages that we had determined previously to have antimicrobial and wound-healing potential in chronic S. aureus, P. aeruginosa and A. baumannii infections. Morphological and genetic features indicated that the bacteriophages were lytic members of the family Myoviridae or Podoviridae and did not harbour any known bacterial virulence genes. Combinations of the bacteriophages had broad host ranges for the different target bacterial species. The activity of the bacteriophages against planktonic cells revealed effective, early killing at 4 h, followed by bacterial regrowth to pre-treatment levels by 24 h. Using metabolic activity as a measure of cell viability within established biofilms, we found significant cell impairment following bacteriophage exposure. Repeated treatment every 4 h caused a further decrease in cell activity. The greatest effects on both planktonic and biofilm cells occurred at a bacteriophage : bacterium input multiplicity of 10. These studies on both planktonic cells and established biofilms allowed us to better evaluate the effects of a high input multiplicity and a multiple-dose treatment protocol, and the findings support further clinical development of bacteriophage therapy. © 2014 The Authors.

  4. Inhibiting the Growth of Escherichia coli O157:H7 in Beef, Pork, and Chicken Meat using a Bacteriophage

    PubMed Central

    Seo, Jina; Seo, Dong Joo; Oh, Hyejin; Jeon, Su Been; Oh, Mi-Hwa; Choi, Changsun

    2016-01-01

    This study aimed to inhibit Escherichia coli (E. coli) O157:H7 artificially contaminated in fresh meat using bacteriophage. Among 14 bacteriophages, the highly lytic bacteriophage BPECO19 strain was selected to inhibit E. coli O157:H7 in artificially contaminated meat samples. Bacteriophage BPECO19 significantly reduced E. coli O157:H7 bacterial load in vitro in a multiplicity of infection (MOI)-dependent manner. E. coli O157:H7 was completely inhibited only in 10 min in vitro by the treatment of 10,000 MOI BPECO19. The treatment of BPECO19 at 100,000 MOI completely reduced 5 Log CFU/cm2 E. coli O157:H7 bacterial load in beef and pork at 4 and 8h, respectively. In chicken meat, a 4.65 log reduction of E. coli O157:H7 was observed at 4 h by 100,000 MOI. The treatment of single bacteriophage BPECO19 was an effective method to control E. coli O157:H7 in meat samples. PMID:27194926

  5. Characterization of a novel lytic bacteriophage from an industrial Escherichia coli fermentation process and elimination of virulence using a heterologous CRISPR-Cas9 system.

    PubMed

    Halter, Mathew C; Zahn, James A

    2018-03-01

    Bacterial-bacteriophage interactions are a well-studied and ecologically-important aspect of microbiology. Many commercial fermentation processes are susceptible to bacteriophage infections due to the use of high-density, clonal cell populations. Lytic infections of bacterial cells in these fermentations are especially problematic due to their negative impacts on product quality, asset utilization, and fouling of downstream equipment. Here, we report the isolation and characterization of a novel lytic bacteriophage, referred to as bacteriophage DTL that is capable of rapid lytic infections of an Escherichia coli K12 strain used for commercial production of 1,3-propanediol (PDO). The bacteriophage genome was sequenced and annotated, which identified 67 potential open-reading frames (ORF). The tail fiber ORF, the largest in the genome, was most closely related to bacteriophage RTP, a T1-like bacteriophage reported from a commercial E. coli fermentation process in Germany. To eliminate virulence, both a fully functional Streptococcus thermophilus CRISPR3 plasmid and a customized S. thermophilus CRISPR3 plasmid with disabled spacer acquisition elements and seven spacers targeting the bacteriophage DTL genome were constructed. Both plasmids were separately integrated into a PDO production strain, which was subsequently infected with bacteriophage DTL. The native S. thermophilus CRISPR3 operon was shown to decrease phage susceptibility by approximately 96%, while the customized CRISPR3 operon provided complete resistance to bacteriophage DTL. The results indicate that the heterologous bacteriophage-resistance system described herein is useful in eliminating lytic infections of bacteriophage DTL, which was prevalent in environment surrounding the manufacturing facility.

  6. Autoimmune Lymphoproliferative Syndrome-FAS Patients Have an Abnormal Regulatory T Cell (Treg) Phenotype but Display Normal Natural Treg-Suppressive Function on T Cell Proliferation.

    PubMed

    Mazerolles, Fabienne; Stolzenberg, Marie-Claude; Pelle, Olivier; Picard, Capucine; Neven, Benedicte; Fischer, Alain; Magerus-Chatinet, Aude; Rieux-Laucat, Frederic

    2018-01-01

    Autoimmune lymphoproliferative syndrome (ALPS) with FAS mutation (ALPS-FAS) is a nonmalignant, noninfectious, lymphoproliferative disease with autoimmunity. Given the central role of natural regulatory T cells (nTregs) in the control of lymphoproliferation and autoimmunity, we assessed nTreg-suppressive function in 16 patients with ALPS-FAS. The proportion of CD25 high CD127 low Tregs was lower in ALPS-FAS patients than in healthy controls. This subset was correlated with a reduced CD25 expression in CD3 + CD4 + T cells from ALPS patients and thus an abnormally low proportion of CD25 high FOXP3 + Helios + T cells. The ALPS patients also displayed a high proportion of naïve Treg (FOXP3 low CD45RA + ) and an unusual subpopulation (CD4 + CD127 low CD15s + CD45RA + ). Despite this abnormal phenotype, the CD25 high CD127 low Tregs' suppressive function was unaffected. Furthermore, conventional T cells from FAS -mutated patients showed normal levels of sensitivity to Treg suppression. An abnormal Treg phenotype is observed in circulating lymphocytes of ALPS patients. However, these Tregs displayed a normal suppressive function on T effector proliferation in vitro . This is suggesting that lymphoproliferation observed in ALPS patients does not result from Tregs functional defect or T effector cells insensitivity to Tregs suppression.

  7. Occurrence of Propionibacterium freudenreichii bacteriophages in swiss cheese.

    PubMed Central

    Gautier, M; Rouault, A; Sommer, P; Briandet, R

    1995-01-01

    We isolated bacteriophages active against Propionibacterium freudenreichii from 16 of 32 swiss cheese samples. Bacteriophage concentrations ranged from 14 to 7 x 10(5) PFU/g, depending on the sample and the sensitive strain used for detection. Only a few strains, 8 of the 44 strains of P. freudenreichii in our collection, were sensitive. We observed that multiplication of bacteriophages occurred in the cheese loaf during multiplication of propionibacteria in a warm curing room, but it seems that these bacteriophages have no adverse effect on the development of the propionic flora. We also found that sensitive cells, originating from either the starter or the cheese-making milk, were present at a high level (10(9) CFU/g) in the cheese. PMID:7618869

  8. Identifying the cellular targets of natural products using T7 phage display.

    PubMed

    Piggott, Andrew M; Karuso, Peter

    2016-05-04

    Covering: up to the end of 2015While Nature continues to deliver a myriad of potent and structurally diverse biologically active small molecules, the cellular targets and modes of action of these natural products are rarely identified, significantly hindering their development as new chemotherapeutic agents. This article provides an introductory tutorial on the use of T7 phage display as a tool to rapidly identify the cellular targets of natural products and is aimed specifically at natural products chemists who may have only limited experience in molecular biology. A brief overview of T7 phage display is provided, including its strengths, weaknesses, and the type of problems that can and cannot be tackled with this technology. Affinity probe construction is reviewed, including linker design and natural product derivatisation strategies. A detailed description of the T7 phage biopanning procedure is provided, with valuable tips for optimising each step in the process, as well as advice for identifying and avoiding the most commonly encountered challenges and pitfalls along the way. Finally, a brief discussion is provided on techniques for validating the cellular targets identified using T7 phage display.

  9. Evidence of translation efficiency adaptation of the coding regions of the bacteriophage lambda.

    PubMed

    Goz, Eli; Mioduser, Oriah; Diament, Alon; Tuller, Tamir

    2017-08-01

    Deciphering the way gene expression regulatory aspects are encoded in viral genomes is a challenging mission with ramifications related to all biomedical disciplines. Here, we aimed to understand how the evolution shapes the bacteriophage lambda genes by performing a high resolution analysis of ribosomal profiling data and gene expression related synonymous/silent information encoded in bacteriophage coding regions.We demonstrated evidence of selection for distinct compositions of synonymous codons in early and late viral genes related to the adaptation of translation efficiency to different bacteriophage developmental stages. Specifically, we showed that evolution of viral coding regions is driven, among others, by selection for codons with higher decoding rates; during the initial/progressive stages of infection the decoding rates in early/late genes were found to be superior to those in late/early genes, respectively. Moreover, we argued that selection for translation efficiency could be partially explained by adaptation to Escherichia coli tRNA pool and the fact that it can change during the bacteriophage life cycle.An analysis of additional aspects related to the expression of viral genes, such as mRNA folding and more complex/longer regulatory signals in the coding regions, is also reported. The reported conclusions are likely to be relevant also to additional viruses. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  10. Characterization of a new ViI-like Erwinia amylovora bacteriophage phiEa2809.

    PubMed

    Lagonenko, Alexander L; Sadovskaya, Olga; Valentovich, Leonid N; Evtushenkov, Anatoly N

    2015-04-01

    Erwinia amylovora is a Gram-negative plant pathogenic bacteria causing fire blight disease in many Rosaceae species. A novel E. amylovora bacteriophage, phiEa2809, was isolated from symptomless apple leaf sample collected in Belarus. This phage was also able to infect Pantoea agglomerans strains. The genome of phiEa2809 is a double-stranded linear DNA 162,160 bp in length, including 145 ORFs and one tRNA gene. The phiEa2809 genomic sequence is similar to the genomes of the Serratia plymutica phage MAM1, Shigella phage AG-3, Dickeya phage vB DsoM LIMEstone1 and Salmonella phage ViI and lacks similarity to described E. amylovora phage genomes. Based on virion morphology (an icosahedral head, long contractile tail) and genome structure, phiEa2809 was classified as a member of Myoviridae, ViI-like bacteriophages group. PhiEa2809 is the firstly characterized ViI-like bacteriophage able to lyse E. amylovora. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Branched Lateral Tail Fiber Organization in T5-Like Bacteriophages DT57C and DT571/2 is Revealed by Genetic and Functional Analysis

    PubMed Central

    Golomidova, Alla K.; Kulikov, Eugene E.; Prokhorov, Nikolai S.; Guerrero-Ferreira, Ricardo С.; Knirel, Yuriy A.; Kostryukova, Elena S.; Tarasyan, Karina K.; Letarov, Andrey V.

    2016-01-01

    The T5-like siphoviruses DT57C and DT571/2, isolated from horse feces, are very closely related to each other, and most of their structural proteins are also nearly identical to T5 phage. Their LTFs (L-shaped tail fibers), however, are composed of two proteins, LtfA and LtfB, instead of the single Ltf of bacteriophage T5. In silico and mutant analysis suggests a possible branched structure of DT57C and DT571/2 LTFs, where the LtfB protein is connected to the phage tail via the LtfA protein and with both proteins carrying receptor recognition domains. Such adhesin arrangement has not been previously recognized in siphoviruses. The LtfA proteins of our phages are found to recognize different host O-antigen types: E. coli O22-like for DT57C phage and E. coli O87 for DT571/2. LtfB proteins are identical in both phages and recognize another host receptor, most probably lipopolysaccharide (LPS) of E. coli O81 type. In these two bacteriophages, LTF function is essential to penetrate the shield of the host’s O-antigens. We also demonstrate that LTF-mediated adsorption becomes superfluous when the non-specific cell protection by O-antigen is missing, allowing the phages to bind directly to their common secondary receptor, the outer membrane protein BtuB. The LTF independent adsorption was also demonstrated on an O22-like host mutant missing O-antigen O-acetylation, thus showing the biological value of this O-antigen modification for cell protection against phages. PMID:26805872

  12. On the mutagenicity of homologous recombination and double-strand break repair in bacteriophage.

    PubMed

    Shcherbakov, Victor P; Plugina, Lidiya; Shcherbakova, Tamara; Sizova, Svetlana; Kudryashova, Elena

    2011-01-02

    The double-strand break (DSB) repair via homologous recombination is generally construed as a high-fidelity process. However, some molecular genetic observations show that the recombination and the recombinational DSB repair may be mutagenic and even highly mutagenic. Here we developed an effective and precise method for studying the fidelity of DSB repair in vivo by combining DSBs produced site-specifically by the SegC endonuclease with the famous advantages of the recombination analysis of bacteriophage T4 rII mutants. The method is based on the comparison of the rate of reversion of rII mutation in the presence and in the absence of a DSB repair event initiated in the proximity of the mutation. We observed that DSB repair may moderately (up to 6-fold) increase the apparent reversion frequency, the effect of being dependent on the mutation structure. We also studied the effect of the T4 recombinase deficiency (amber mutation in the uvsX gene) on the fidelity of DSB repair. We observed that DSBs are still repaired via homologous recombination in the uvsX mutants, and the apparent fidelity of this repair is higher than that seen in the wild-type background. The mutator effect of the DSB repair may look unexpected given that most of the normal DNA synthesis in bacteriophage T4 is performed via a recombination-dependent replication (RDR) pathway, which is thought to be indistinguishable from DSB repair. There are three possible explanations for the observed mutagenicity of DSB repair: (1) the origin-dependent (early) DNA replication may be more accurate than the RDR; (2) the step of replication initiation may be more mutagenic than the process of elongation; and (3) the apparent mutagenicity may just reflect some non-randomness in the pool of replicating DNA, i.e., preferential replication of the sequences already involved in replication. We discuss the DSB repair pathway in the absence of UvsX recombinase. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Genomic Diversity of Type B3 Bacteriophages of Caulobacter crescentus.

    PubMed

    Ash, Kurt T; Drake, Kristina M; Gibbs, Whitney S; Ely, Bert

    2017-07-01

    The genomes of the type B3 bacteriophages that infect Caulobacter crescentus are among the largest phage genomes thus far deposited into GenBank with sizes over 200 kb. In this study, we introduce six new bacteriophage genomes which were obtained from phage collected from various water systems in the southeastern United States and from tropical locations across the globe. A comparative analysis of the 12 available genomes revealed a "core genome" which accounts for roughly 1/3 of these bacteriophage genomes and is predominately localized to the head, tail, and lysis gene regions. Despite being isolated from geographically distinct locations, the genomes of these bacteriophages are highly conserved in both genome sequence and gene order. We also identified the insertions, deletions, translocations, and horizontal gene transfer events which are responsible for the genomic diversity of this group of bacteriophages and demonstrated that these changes are not consistent with the idea that modular reassortment of genomes occurs in this group of bacteriophages.

  14. Characterization and formulation into solid dosage forms of a novel bacteriophage lytic against Klebsiella oxytoca

    PubMed Central

    Petrovski, Steve; Hoyle, Dannielle; Chan, Hiu Tat; Lock, Peter; Tucci, Joseph

    2017-01-01

    Aim To isolate and characterize bacteriophage lytic for the opportunistic pathogen Klebsiella oxytoca and their formulation into a range of solid dosage forms for in-vitro testing. Methods and results We report the isolation, genomic and functional characterization of a novel bacteriophage lytic for Klebsiella oxytoca, which does not infect the closely related Klebsiella pneumoniae. This bacteriophage was formulated into suppositories and troches and shown to be released and lyse underlying Klebsiella oxytoca bacteria in an in-vitro model. These bacteriophage formulations were stable for at least 49 days at 4°C. Conclusions The successful in-vitro assay of these formulations here suggests that they could potentially be tested in-vivo to determine whether such a therapeutic approach could modulate the gut microbiome, and control Klebsiella oxytoca overgrowth, during antibiotic therapy regimes. Significance and impact of the study This study reports a novel bacteriophage specific for Klebsiella oxytoca which can be formulated into solid dosage forms appropriate for potential delivery in testing as a therapy to modulate gut microbiome during antibiotic therapies. PMID:28817689

  15. Bacteriophages as indicators of faecal pollution and enteric virus removal.

    PubMed

    McMinn, B R; Ashbolt, N J; Korajkic, A

    2017-07-01

    Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. Bacteriophage are alternative fecal indicators that may be better surrogates for viral pathogens than fecal indicator bacteria (FIB). This report offers a summary of the existing literature concerning the utility of bacteriophage as indicators of viral presence (fecal sources and surface waters) and persistence (in built infrastructure and aquatic environments). Our findings indicate that bacteriophage levels in all matrices examined are consistently lower than FIB, but similar to viral pathogens. Furthermore, in built infrastructure (e.g. wastewater treatment systems) bacteriophage closely mimic viral pathogen persistence suggesting they may be adequate sentinels of enteric virus removal. © 2017 The Society for Applied Microbiology.

  16. The effects of bacteriophage and nanoparticles on microbial processes

    NASA Astrophysics Data System (ADS)

    Moody, Austin L.

    There are approximately 1031 tailed phages in the biosphere, making them the most abundant organism. Bacteriophages are viruses that infect bacteria. Due to the large diversity and abundance, no two bacteriophages that have been isolated are genetically the same. Phage products have potential in disease therapy to solve bacteria-related problems, such as infections resulting from resistant strains of Staphylococcus aureus. A bacteriophage capable of infecting methicillin-resistant S. aureus (MRSA) was isolated from bovine hair. The bacteriophage, named JB phage, was characterized using purification, amplification, cesium chloride banding, scanning electron microscopy, and transmission electron microscopy. JB phage and nanoparticles were used in various in vitro and in vivo models to test their effects on microbial processes. Scanning and transmission electron microscopy studies revealed strong interactions between JB phage and nanoparticles, which resulted in increased bacteriophage infectivity. JB phage and nanoparticle cocktails were used as a therapeutic to treat skin and systemic infections in mice caused by MRSA.

  17. DNA unwinding by ring-shaped T4 helicase gp41 is hindered by tension on the occluded strand.

    PubMed

    Ribeck, Noah; Saleh, Omar A

    2013-01-01

    The replicative helicase for bacteriophage T4 is gp41, which is a ring-shaped hexameric motor protein that achieves unwinding of dsDNA by translocating along one strand of ssDNA while forcing the opposite strand to the outside of the ring. While much study has been dedicated to the mechanism of binding and translocation along the ssDNA strand encircled by ring-shaped helicases, relatively little is known about the nature of the interaction with the opposite, 'occluded' strand. Here, we investigate the interplay between the bacteriophage T4 helicase gp41 and the ss/dsDNA fork by measuring, at the single-molecule level, DNA unwinding events on stretched DNA tethers in multiple geometries. We find that gp41 activity is significantly dependent on the geometry and tension of the occluded strand, suggesting an interaction between gp41 and the occluded strand that stimulates the helicase. However, the geometry dependence of gp41 activity is the opposite of that found previously for the E. coli hexameric helicase DnaB. Namely, tension applied between the occluded strand and dsDNA stem inhibits unwinding activity by gp41, while tension pulling apart the two ssDNA tails does not hinder its activity. This implies a distinct variation in helicase-occluded strand interactions among superfamily IV helicases, and we propose a speculative model for this interaction that is consistent with both the data presented here on gp41 and the data that had been previously reported for DnaB.

  18. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    PubMed Central

    Scarascia, Giantommaso; Yap, Scott A.; Kaksonen, Anna H.; Hong, Pei-Ying

    2018-01-01

    Pseudomonas aeruginosa is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of P. aeruginosa in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P. aeruginosa exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to P. aeruginosa-enriched biofilm and were determined to lower the relative abundance of Pseudomonas-related taxa from 0.17 to 5.58% in controls to 0.01–0.61% in treated microbial communities. The relative abundance of Alphaproteobacteria, Pseudoalteromonas, and Planococcaceae decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable P. aeruginosa-associated problems in seawater applications. PMID:29770130

  19. Lytic bacteriophages reduce Escherichia coli O157

    PubMed Central

    Ferguson, Sean; Roberts, Cheryl; Handy, Eric; Sharma, Manan

    2013-01-01

    The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield™) or a control (phosphate buffered saline, PBS) was applied to lettuce by either; (1) immersion of lettuce in 500 ml of EcoShield™ 8.3 log PFU/ml or 9.8 log PFU/ml for up to 2 min before inoculation with E. coli O157:H7; (2) spray-application of EcoShield™ (9.3 log PFU/ml) to lettuce after inoculation with E. coli O157:H7 (4.10 CFU/cm2) following exposure to 50 μg/ml chlorine for 30 sec. After immersion studies, lettuce was spot-inoculated with E. coli O157:H7 (2.38 CFU/cm2). Phage-treated, inoculated lettuce pieces were stored at 4°C for and analyzed for E. coli O157:H7 populations for up to 7 d. Immersion of lettuce in 9.8 log PFU/ml EcoShield™ for 2 min significantly (p < 0.05) reduced E. coli O157:H7 populations after 24 h when stored at 4°C compared with controls. Immersion of lettuce in suspensions containing high concentrations of EcoShield™ (9.8 log PFU/ml) resulted in the deposition of high concentrations (7.8 log log PFU/cm2) of bacteriophages on the surface of fresh cut lettuce, potentially contributing to the efficacy of the lytic phages on lettuce. Spraying phages on to inoculated fresh cut lettuce after being washed in hypochlorite solution was significantly more effective in reducing E. coli O157:H7 populations (2.22 log CFU/cm2) on day 0 compared with control treatments (4.10 log CFU/cm2). Both immersion and spray treatments provided protection from E. coli O157:H7 contamination on lettuce, but spray application of lytic bacteriophages to lettuce was more effective in immediately reducing E. coli O157:H7 populations fresh cut lettuce. PMID:23819106

  20. Bioorthogonal Modification of the Major Sheath Protein of Bacteriophage M13: Extending the Versatility of Bionanomaterial Scaffolds.

    PubMed

    Urquhart, Taylor; Daub, Elisabeth; Honek, John Frank

    2016-10-19

    With a mass of ∼1.6 × 10 7 Daltons and composed of approximately 2700 proteins, bacteriophage M13 has been employed as a molecular scaffold in bionanomaterials fabrication. In order to extend the versatility of M13 in this area, residue-specific unnatural amino acid incorporation was employed to successfully display azide functionalities on specific solvent-exposed positions of the pVIII major sheath protein of this bacteriophage. Employing a combination of engineered mutants of the gene coding for the pVIII protein, the methionine (Met) analog, l-azidohomoalanine (Aha), and a suitable Escherichia coli Met auxotroph for phage production, conditions were developed to produce M13 bacteriophage labeled with over 350 active azides (estimated by fluorescent dye labeling utilizing a strain-promoted azide-alkyne cycloaddition) and capable of azide-selective attachment to 5 nm gold nanoparticles as visualized by transmission electron microscopy. The capability of this system to undergo dual labeling utilizing both chemical acylation and bioorthogonal cycloaddition reactions was also verified. The above stratagem should prove particularly advantageous in the preparation of assemblies of larger and more complex molecular architectures based on the M13 building block.

  1. Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part II: In vitro antimicrobial activity evaluation of a bacteriophage cocktail and several antibiotics.

    PubMed

    Santos, T M A; Gilbert, R O; Caixeta, L S; Machado, V S; Teixeira, L M; Bicalho, R C

    2010-01-01

    The use of pathogenic-specific antimicrobials, as proposed by bacteriophage therapy, is expected to reduce the incidence of resistance development. Eighty Escherichia coli isolated from uteri of Holstein dairy cows were phenotypically characterized for antimicrobial resistance to ampicillin, ceftiofur, chloramphenicol, florfenicol, spectinomycin, streptomycin, and tetracycline by broth microdilution method. The lytic activity of a bacteriophage cocktail against all isolates was performed by a similar method. Additionally, the effect of different concentrations of antimicrobials and multiplicities of infections (MOI) of the bacteriophage cocktail on E. coli growth curve was measured. Isolates exhibited resistance to ampicillin (33.7%), ceftiofur (1.2%), chloramphenicol (100%), and florfenicol (100%). All strains were resistant to at least 2 of the antimicrobial agents tested; multidrug resistance (>or=3 of 7 antimicrobials tested) was observed in 35% of E. coli isolates. The major multidrug resistance profile was found for ampicillin-chloramphenicol-florfenicol, which was observed in more than 96.4% of the multidrug-resistant isolates. The bacteriophage cocktail preparation showed strong antimicrobial activity against multidrug-resistant E. coli. Multiplicity of infection as low as 10(-4) affected the growth of the E. coli isolates. The ratio of 10 bacteriophage particles per bacterial cell (MOI=10(1)) was efficient in inhibiting at least 50% of all isolates. Higher MOI should be tested in future in vitro studies to establish ratios that completely inhibit bacterial growth during longer periods. All isolates resistant to florfenicol were resistant to chloramphenicol and, because florfenicol was recently introduced into veterinary clinics, this finding suggests that the selection pressure of chloramphenicol, as well as other antimicrobials, may still play a relevant role in the emergence and dissemination of florfenicol resistance in E. coli. The bacteriophage

  2. The Search for Therapeutic Bacteriophages Uncovers One New Subfamily and Two New Genera of Pseudomonas-Infecting Myoviridae

    PubMed Central

    Henry, Marine; Bobay, Louis-Marie; Chevallereau, Anne; Saussereau, Emilie; Ceyssens, Pieter-Jan; Debarbieux, Laurent

    2015-01-01

    In a previous study, six virulent bacteriophages PAK_P1, PAK_P2, PAK_P3, PAK_P4, PAK_P5 and CHA_P1 were evaluated for their in vivo efficacy in treating Pseudomonas aeruginosa infections using a mouse model of lung infection. Here, we show that their genomes are closely related to five other Pseudomonas phages and allow a subdivision into two clades, PAK_P1-like and KPP10-like viruses, based on differences in genome size, %GC and genomic contents, as well as number of tRNAs. These two clades are well delineated, with a mean of 86% and 92% of proteins considered homologous within individual clades, and 25% proteins considered homologous between the two clades. By ESI-MS/MS analysis we determined that their virions are composed of at least 25 different proteins and electron microscopy revealed a morphology identical to the hallmark Salmonella phage Felix O1. A search for additional bacteriophage homologs, using profiles of protein families defined from the analysis of the 11 genomes, identified 10 additional candidates infecting hosts from different species. By carrying out a phylogenetic analysis using these 21 genomes we were able to define a new subfamily of viruses, the Felixounavirinae within the Myoviridae family. The new Felixounavirinae subfamily includes three genera: Felixounalikevirus, PAK_P1likevirus and KPP10likevirus. Sequencing genomes of bacteriophages with therapeutic potential increases the quantity of genomic data on closely related bacteriophages, leading to establishment of new taxonomic clades and the development of strategies for analyzing viral genomes as presented in this article. PMID:25629728

  3. A Bacteriophage-Related Chimeric Marine Virus Infecting Abalone

    PubMed Central

    Zhuang, Jun; Cai, Guiqin; Lin, Qiying; Wu, Zujian; Xie, Lianhui

    2010-01-01

    Marine viruses shape microbial communities with the most genetic diversity in the sea by multiple genetic exchanges and infect multiple marine organisms. Here we provide proof from experimental infection that abalone shriveling syndrome-associated virus (AbSV) can cause abalone shriveling syndrome. This malady produces histological necrosis and abnormally modified macromolecules (hemocyanin and ferritin). The AbSV genome is a 34.952-kilobase circular double-stranded DNA, containing putative genes with similarity to bacteriophages, eukaryotic viruses, bacteria and endosymbionts. Of the 28 predicted open reading frames (ORFs), eight ORF-encoded proteins have identifiable functional homologues. The 4 ORF products correspond to a predicted terminase large subunit and an endonuclease in bacteriophage, and both an integrase and an exonuclease from bacteria. The other four proteins are homologous to an endosymbiont-derived helicase, primase, single-stranded binding (SSB) protein, and thymidylate kinase, individually. Additionally, AbSV exhibits a common gene arrangement similar to the majority of bacteriophages. Unique to AbSV, the viral genome also contains genes associated with bacterial outer membrane proteins and may lack the structural protein-encoding ORFs. Genomic characterization of AbSV indicates that it may represent a transitional form of microbial evolution from viruses to bacteria. PMID:21079776

  4. Evaluation of consumers’ perception and willingness to pay for bacteriophage treated fresh produce

    PubMed Central

    Naanwaab, Cephas; Yeboah, Osei-Agyeman; Ofori Kyei, Foster; Sulakvelidze, Alexander; Goktepe, Ipek

    2014-01-01

    Food-borne illnesses caused by bacteria such as enterohemorrhagic E. coli and Salmonella spp. take a significant toll on American consumers’ health; they also cost the United States an estimated $77.7 billion annually in health care and other losses.1 One novel modality for improving the safety of foods is application of lytic bacteriophages directly onto foods, in order to reduce or eliminate their contamination with specific foodborne bacterial pathogens. The main objective of this study was to assess consumers’ perception about foods treated with bacteriophages and examine their willingness to pay (WTP) an additional amount (10–30 cents/lb) for bacteriophage-treated fresh produce. The study utilized a survey questionnaire administered by telephone to consumers in 4 different states: Alabama, Georgia, North Carolina, and South Carolina. The results show that consumers are in general willing to pay extra for bacteriophage-treated fresh produce if it improves their food safety. However, income, race, and the state where a consumer lives are significant determinants in their WTP. PMID:26713224

  5. Survival studies of a temperate and lytic bacteriophage in bovine faeces and slurry.

    PubMed

    Nyambe, S; Burgess, C; Whyte, P; Bolton, D

    2016-10-01

    Cattle are the main reservoir of verocytotoxigenic Escherichia coli (VTEC), food-borne pathogens that express verocytotoxins (vtx) encoded by temperate bacteriophage. Bovine faeces and unturned manure heaps can support the survival of VTEC and may propagate and transmit VTEC. This study investigated the survival of a vtx2 bacteriophage, φ24B ::Kan, in bovine faeces and slurry. The survival of an anti-Escherichia coli O157:H7 lytic bacteriophage, e11/2, was examined in the same matrices, as a possible bio-control option for VTEC. Samples were inoculated with φ24B ::Kan and/or e11/2 bacteriophage at a concentration of 7-8 log10  PFU g(-1)  (faeces) or ml(-1) (slurry), stored at 4 and 14°C and examined every 2 days for 36 days. The ability of φ24B ::Kan to transduce E. coli cells was examined. Moreover, E. coli concentrations in the faeces and slurry were monitored throughout the experiment as were the pH and aw (faeces only). Both bacteriophages survived well in faeces and slurry. In addition, φ24B ::Kan was able to form lysogens. φ24B ::Kan and e11/2 phage can survive and remain infective in bovine faeces and slurry for at least 30 days under representative Irish temperatures. Bovine faeces and slurry may act as a reservoir for vtx bacteriophages. The survival of the anti-O157 phage suggests it may be a suitable bio-control option in these matrices. © 2016 The Society for Applied Microbiology.

  6. Directed evolution of the forkhead-associated domain to generate anti-phosphospecific reagents by phage-display

    PubMed Central

    Pershad, Kritika; Wypisniak, Karolina; Kay, Brian K.

    2012-01-01

    While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious and time consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities from a library of variants of a phosphopeptide-binding domain. To explore this strategy, we attempted to display on the surface of bacteriophage M13, the N-terminal Forkhead-associated domain (FHA1) of yeast Rad53p, which is a naturally occurring phosphothreonine (pT)-binding domain, and found it to be non-functional due to misfolding in the bacterial periplasm. To overcome this limitation, a library of FHA1 variants was constructed by mutagenic PCR and functional variants were isolated after three rounds of affinity selection with its pT peptide ligand. A hydrophobic residue at position 34 in the β1-strand was discovered to be essential for phage-display of a functional FHA1 domain. Additionally, by heating the phage library to 50°C prior to affinity selection with its cognate pT peptide, we identified a variant (G2) that was ~8°C more thermal stable than the wild-type domain. Using G2 as a scaffold, we constructed phage-displayed libraries of FHA1 variants and affinity selected for variants that bound selectively to five pT peptides. These reagents are renewable and have high protein yields (~20–25 mg/L), when expressed in Escherichia coli. Thus, we have changed the specificity of the FHA1 domain and demonstrated that engineering phosphopeptide-binding domains is an attractive avenue for generating new anti-phosphopeptide binding specificities in vitro by phage-display. PMID:22985966

  7. Directed evolution of the forkhead-associated domain to generate anti-phosphospecific reagents by phage display.

    PubMed

    Pershad, Kritika; Wypisniak, Karolina; Kay, Brian K

    2012-11-23

    While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious, and time-consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities from a library of variants of a phosphopeptide-binding domain. To explore this strategy, we attempted to display on the surface of bacteriophage M13 the N-terminal Forkhead-associated (FHA1) domain of yeast Rad53p, which is a naturally occurring phosphothreonine (pT)-binding domain, and found it to be nonfunctional due to misfolding in the bacterial periplasm. To overcome this limitation, we constructed a library of FHA1 variants by mutagenic PCR and isolated functional variants after three rounds of affinity selection with its pT peptide ligand. A hydrophobic residue at position 34 in the β1 strand was discovered to be essential for phage display of a functional FHA1 domain. Additionally, by heating the phage library to 50°C prior to affinity selection with its cognate pT peptide, we identified a variant (G2) that was ~8°C more thermally stable than the wild-type domain. Using G2 as a scaffold, we constructed phage-displayed libraries of FHA1 variants and affinity selected for variants that bound selectively to five pT peptides. These reagents are renewable and have high protein yields (~20-25mg/L), when expressed in Escherichia coli. Thus, we have changed the specificity of the FHA1 domain and demonstrated that engineering phosphopeptide-binding domains is an attractive avenue for generating new anti-phosphopeptide binding specificities in vitro by phage display. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Lysogeny with Shiga Toxin 2-Encoding Bacteriophages Represses Type III Secretion in Enterohemorrhagic Escherichia coli

    PubMed Central

    Xu, Xuefang; McAteer, Sean P.; Tree, Jai J.; Shaw, Darren J.; Wolfson, Eliza B. K.; Beatson, Scott A.; Roe, Andrew J.; Allison, Lesley J.; Chase-Topping, Margo E.; Mahajan, Arvind; Tozzoli, Rosangela; Woolhouse, Mark E. J.; Morabito, Stefano; Gally, David L.

    2012-01-01

    Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins. PMID:22615557

  9. Two-Stage Dynamics of In Vivo Bacteriophage Genome Ejection

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ju; Wu, David; Gelbart, William; Knobler, Charles M.; Phillips, Rob; Kegel, Willem K.

    2018-04-01

    Biopolymer translocation is a key step in viral infection processes. The transfer of information-encoding genomes allows viruses to reprogram the cell fate of their hosts. Constituting 96% of all known bacterial viruses [A. Fokine and M. G. Rossmann, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage 4, e28281 (2014)], the tailed bacteriophages deliver their DNA into host cells via an "ejection" process, leaving their protein shells outside of the bacteria; a similar scenario occurs for mammalian viruses like herpes, where the DNA genome is ejected into the nucleus of host cells, while the viral capsid remains bound outside to a nuclear-pore complex. In light of previous experimental measurements of in vivo bacteriophage λ ejection, we analyze here the physical processes that give rise to the observed dynamics. We propose that, after an initial phase driven by self-repulsion of DNA in the capsid, the ejection is driven by anomalous diffusion of phage DNA in the crowded bacterial cytoplasm. We expect that this two-step mechanism is general for phages that operate by pressure-driven ejection, and we discuss predictions of our theory to be tested in future experiments.

  10. Bacteriophages of Yersinia pestis.

    PubMed

    Zhao, Xiangna; Skurnik, Mikael

    2016-01-01

    Bacteriophage play many varied roles in microbial ecology and evolution. This chapter collates a vast body of knowledge and expertise on Yersinia pestis phages, including the history of their isolation and classical methods for their isolation and identification. The genomic diversity of Y. pestis phage and bacteriophage islands in the Y. pestis genome are also discussed because all phage research represents a branch of genetics. In addition, our knowledge of the receptors that are recognized by Y. pestis phage, advances in phage therapy for Y. pestis infections, the application of phage in the detection of Y. pestis, and clustered regularly interspaced short palindromic repeats (CRISPRs) sequences of Y. pestis from prophage DNA are all reviewed here.

  11. Removal of adenovirus, calicivirus, and bacteriophages by conventional drinking water treatment.

    PubMed

    Abbaszadegan, Morteza; Monteiro, Patricia; Nwachuku, Nena; Alum, Absar; Ryu, Hodon

    2008-02-01

    This study was conducted to evaluate the removal of adenovirus, feline calicivirus (FCV), and bacteriophages MS-2, fr, PRD-1, and Phi X-174 during conventional drinking water treatment using ferric chloride as a coagulant. Adenovirus and FCV were removed to a greater extent than PRD-1 and Phi X-174, indicating that these bacteriophages may be appropriate surrogates for both adenovirus and FCV. Of the four bacteriophages studied in the pilot plant, MS-2 was removed to the greatest extent (5.1 log), followed by fr (4.9 log), PRD-1 (3.5 log), and Phi X-174 (1.3 log). The virus removal trend in the pilot-scale testing was similar to the bench-scale testing; however, the bench-scale testing seemed to provide a conservative estimate of the pilot plant performance. In the pilot-scale testing, MS-2 and fr were removed with the greatest efficiency during filtration, whereas PRD-1 and Phi X-174 showed the greatest removal during sedimentation.

  12. Bacteriophage-based synthetic biology for the study of infectious diseases

    PubMed Central

    Lu, Timothy K.

    2014-01-01

    Since their discovery, bacteriophages have contributed enormously to our understanding of molecular biology as model systems. Furthermore, bacteriophages have provided many tools that have advanced the fields of genetic engineering and synthetic biology. Here, we discuss bacteriophage-based technologies and their application to the study of infectious diseases. New strategies for engineering genomes have the potential to accelerate the design of novel phages as therapies, diagnostics, and tools. Though almost a century has elapsed since their discovery, bacteriophages continue to have a major impact on modern biological sciences, especially with the growth of multidrug-resistant bacteria and interest in the microbiome. PMID:24997401

  13. Vaccination with an adenoviral vector that encodes and displays a retroviral antigen induces improved neutralizing antibody and CD4+ T-cell responses and confers enhanced protection.

    PubMed

    Bayer, Wibke; Tenbusch, Matthias; Lietz, Ruth; Johrden, Lena; Schimmer, Simone; Uberla, Klaus; Dittmer, Ulf; Wildner, Oliver

    2010-02-01

    We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4(+) T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.

  14. TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia

    PubMed Central

    Catakovic, Kemal; Gassner, Franz Josef; Ratswohl, Christoph; Zaborsky, Nadja; Rebhandl, Stefan; Schubert, Maria; Steiner, Markus; Gutjahr, Julia Christine; Pleyer, Lisa; Egle, Alexander; Hartmann, Tanja Nicole; Greil, Richard; Geisberger, Roland

    2018-01-01

    ABSTRACT While research on T cell exhaustion in context of cancer particularly focuses on CD8+ cytotoxic T cells, the role of inhibitory receptors on CD4+ T-helper cells have remained largely unexplored. TIGIT is a recently identified inhibitory receptor on T cells and natural killer (NK) cells. In this study, we examined TIGIT expression on T cell subsets from CLL patients. While we did not observe any differences in TIGIT expression in CD8+ T cells of healthy controls and CLL cells, we found an enrichment of TIGIT+ T cells in the CD4+ T cell compartment in CLL. Intriguingly, CLL patients with an advanced disease stage displayed elevated numbers of CD4+ TIGIT+ T cells compared to low risk patients. Autologous CLL-T cell co-culture assays revealed that depleting CD4+ TIGIT+ expressing T cells from co-cultures significantly decreased CLL viability. Accordingly, a supportive effect of TIGIT+CD4+ T cells on CLL cells in vitro could be recapitulated by blocking the interaction of TIGIT with its ligands using TIGIT-Fc molecules, which also impeded the T cell specific production of CLL-prosurvival cytokines. Our data reveal that TIGIT+CD4+T cells provide a supportive microenvironment for CLL cells, representing a potential therapeutic target for CLL treatment. PMID:29296521

  15. [Construction and immunogenicity of recombinant bacteriophage T7 vaccine expressing M2e peptides of avian influenza virus].

    PubMed

    Xu, Hai; Wang, Yi-Wei; Tang, Ying-Hua; Zheng, Qi-Sheng; Hou, Ji-Bo

    2013-06-01

    To construct a recombinant T7 phage expressing matrix protein 2 ectodomain (M2e) peptides of avian influenza A virus and test immunological and protective efficacy in the immunized SPF chickens. M2e gene sequence was obtained from Genbank and two copies of M2e gene were artificially synthesised, the M2e gene was then cloned into the T7 select 415-1b phage in the multiple cloning sites to construct the recombinant phage T7-M2e. The positive recombinant phage was identified by PCR and sequencing, and the expression of surface fusion protein was confirmed by SDS-PAGE and Western-blot. SPF chickens were subcutaneously injected with 1 X 10(10) pfu phage T7-M2e, sera samples were collected pre- and post-vaccination, and were tested for anti-M2e antibody by ELISA. The binding capacity of serum to virus was also examined by indirect immunofluorescence assay in virus- infected CEF. The immunized chickens were challenged with 200 EID50 of H9 type avian influenza virus and viral isolation rate was calculated to evaluate the immune protective efficacy. A recombinant T7 phage was obtained displaying M2e peptides of avian influenza A virus, and the fusion protein had favorable immunoreactivity. All chickens developed a certain amount of anti-M2e antibody which could specially bind to the viral particles. In addition, the protection efficacy of phage T7-M2e vaccine against H9 type avian influenza viruses was 4/5 (80%). These results indicate that the recombinant T7 phage displaying M2e peptides of avian influenza A virus has a great potential to be developed into a novel vaccine for the prevention of avian influenza infection.

  16. Models for the Binary Complex of Bacteriophage T4 Gp59 Helicase Loading Protein. GP32 Single-Stranded DNA-Binding Protein and Ternary Complex with Pseudo-Y Junction DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinerman, Jennifer M.; Dignam, J. David; Mueser, Timothy C.

    2012-04-05

    The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable withmore » that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).« less

  17. Genomic characterization of key bacteriophages to formulate the potential biocontrol agent to combat enteric pathogenic bacteria.

    PubMed

    Parmar, Krupa M; Dafale, Nishant A; Tikariha, Hitesh; Purohit, Hemant J

    2018-05-01

    Combating bacterial pathogens has become a global concern especially when the antibiotics and chemical agents are failing to control the spread due to its resistance. Bacteriophages act as a safe biocontrol agent by selectively lysing the bacterial pathogens without affecting the natural beneficial microflora. The present study describes the screening of prominent enteric pathogens NDK1, NDK2, NDK3, and NDK4 (Escherichia, Klebsiella, Enterobacter, and Serratia) mostly observed in domestic wastewater; against which KNP1, KNP2, KNP3, and KNP4 phages were isolated. To analyze their potential role in eradicating enteric pathogens and toxicity issue, these bacteriophages were sequenced using next-generation sequencing and characterized based on its genomic content. The isolated bacteriophages were homologous to Escherichia phage (KNP1), Klebsiella phage (KNP2), Enterobacter phage (KNP3), Serratia phage (KNP4), and belonged to Myoviridae family of Caudovirales except for the unclassified KNP4 phage. Draft genome analysis revealed the presence of lytic enzymes such as holing and lysozyme in KNP1 phage, endolysin in KNP2 phage, and endopeptidase with holin in KNP3 phage. The absence of any lysogenic and virulent genes makes this bacteriophage suitable candidate for preparation of phage cocktail to combat the pathogens present in wastewater. However, KNP4 contained a virulent gene rendering it unsuitable to be used as a biocontrol agent. These findings make the phages (KNP1-KNP3) as a promising alternative for the biocontrol of pathogens in wastewater which is the main culprit to spread these dominated pathogens in different natural water bodies. This study also necessitates for genomic screening of bacteriophages for lysogenic and virulence genes prior to its use as a biocontrol agent.

  18. Modeling removal of bacteriophages MS2 and PRD1 by dune recharge at Castricum, Netherlands

    NASA Astrophysics Data System (ADS)

    Schijven, Jack F.; Hoogenboezem, Wim; Hassanizadeh, S. Majid; Peters, Jos H.

    1999-04-01

    Removal of model viruses by dune recharge was studied at a field site in the dune area of Castricum, Netherlands. Recharge water was dosed with bacteriophages MS2 and PRD1 for 11 days at a constant concentration in a 10- by 15-m compartment that was isolated in a recharge basin. Breakthrough was monitored for 120 days at six wells with their screens along a flow line. Concentrations of both phages were reduced about 3 log10 within the first 2.4 m and another 5 log10 in a linear fashion within the following 27 m. A model accounting for one-site kinetic attachment as well as first-order inactivation was employed to simulate the bacteriophage breakthrough curves. The major removal process was found to be attachment of the bacteriophages. Detachment was very slow. After passage of the pulse of dosed bacteriophages, there was a long tail whose slope corresponds to the inactivation rate coefficient of 0.07-0.09 day-1 for attached bacteriophages. The end of the rising and the start of the declining limbs of the breakthrough curves could not be simulated completely, probably because of an as yet unknown process.

  19. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers.

    PubMed

    Palma, Marzia; Gentilcore, Giusy; Heimersson, Kia; Mozaffari, Fariba; Näsman-Glaser, Barbro; Young, Emma; Rosenquist, Richard; Hansson, Lotta; Österborg, Anders; Mellstedt, Håkan

    2017-03-01

    Chronic lymphocytic leukemia is characterized by impaired immune functions largely due to profound T-cell defects. T-cell functions also depend on co-signaling receptors, inhibitory or stimulatory, known as immune checkpoints, including cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed death-1 (PD-1). Here we analyzed the T-cell phenotype focusing on immune checkpoints and activation markers in chronic lymphocytic leukemia patients (n=80) with different clinical characteristics and compared them to healthy controls. In general, patients had higher absolute numbers of CD3 + cells and the CD8 + subset was particularly expanded in previously treated patients. Progressive patients had higher numbers of CD4 + and CD8 + cells expressing PD-1 compared to healthy controls, which was more pronounced in previously treated patients ( P =0.0003 and P =0.001, respectively). A significant increase in antigen-experienced T cells was observed in patients within both the CD4 + and CD8 + subsets, with a significantly higher PD-1 expression. Higher numbers of CD4 + and CD8 + cells with intracellular CTLA-4 were observed in patients, as well as high numbers of proliferating (Ki67 + ) and activated (CD69 + ) CD4 + and CD8 + cells, more pronounced in patients with active disease. The numbers of Th1, Th2, Th17 and regulatory T cells were substantially increased in patients compared to controls ( P <0.05), albeit decreasing to low levels in pre-treated patients. In conclusion, chronic lymphocytic leukemia T cells display increased expression of immune checkpoints, abnormal subset distribution, and a higher proportion of proliferating cells compared to healthy T cells. Disease activity and previous treatment shape the T-cell profile of chronic lymphocytic leukemia patients in different ways. Copyright© Ferrata Storti Foundation.

  20. Bacteriophage sensitivity patterns among bacteria isolated from marine waters

    NASA Astrophysics Data System (ADS)

    Moebus, K.; Nattkemper, H.

    1981-09-01

    Phage-host cross-reaction tests were performed with 774 bacterial strains and 298 bacteriophages. The bacteria (bacteriophages) were isolated at different times from water samples collected in the Atlantic Ocean between the European continental shelf and the Sargasso Sea: 733 (258) strains; in the North Sea near Helgoland: 31 (31) strains; and in the Bay of Biscay: 10 (9) strains. Of the Atlantic Ocean bacteria 326 were found to be susceptible to one or more Atlantic Ocean bacteriophage(s). The bacteriophage sensitivity patterns of these bacteria vary considerably, placing 225 of them in two large clusters of bacteriophage-host systems. Taking all into account, 250 of the 326 Atlantic Ocean bacteria are different from each other. This high degree of variation among the bacteria distinguishes microbial populations derived from widely separated eastern and western regions of the Atlantic Ocean. It also sets apart from each other the populations derived from samples collected at successive stations some 200 miles apart, although to a lesser degree. With bacterial populations found from samples collected on the way back and forth between Europe and the Sargasso Sea a gradual change was observed from "western" phage sensitivity patterns to "eastern" ones. Sixty-nine Atlantic Ocean bacteria are sensitive to bacteriophages isolated from the North Sea and the Bay of Biscay; of these only 26 strains are also susceptible to Atlantic Ocean phages. The interpretation of the results is based on the hydrographical conditions prevailing in the northern Atlantic Ocean including the North Sea, and on the assumption that the microbial populations investigated have undergone genetic changes while being transported within water masses from west to east.

  1. Simulated hatchery system to assess bacteriophage efficacy against Vibrio harveyi.

    PubMed

    Raghu Patil, J; Desai, Srividya Narayanamurthy; Roy, Panchali; Durgaiah, Murali; Saravanan, R Sanjeev; Vipra, Aradhana

    2014-12-02

    Vibriosis caused by luminous Vibrio harveyi commonly contributes to poor survival in shrimp hatcheries and aquaculture ponds. Lytic bacteriophages pathogenic for V. harveyi are currently being investigated as an alternative to antibiotics to prevent vibriosis. Here, 8 bacteriophages were isolated from oysters and clams using V. harveyi strains as baiting hosts. Among these bacteriophages, 1 strain (VHP6b) identified as broadly pathogenic for 27 V. harveyi strains examined was further characterized by electron microscopy and genome sequence analysis. Phage VHP6b possessed a tail and morphology consistent with it being a member of the family Siphoviridae, and its genome and proteome were most closely related to the Vibrio phages SSP02 and MAR10. An integrase gene essential for lysogeny was not evident. The ability of bacteriophage VHP6b to protect shrimp postlarvae against vibriosis caused by V. harveyi strain VH6 was demonstrated in a model system designed to simulate typical hatchery conditions. Bacteriophage treatment improved survival of postlarvae by 40 to 60% under these conditions, so therapies based on this or other bacteriophages may be useful in shrimp hatcheries.

  2. Lysogenic bacteriophage isolated from acidophilium

    DOEpatents

    Ward, Thomas W.; Bruhn, Debby F.; Bulmer, Deborah K.

    1992-01-01

    A bacteriophage identified as .phi.Ac1 capable of infecting acidophilic heterotropic bacteria (such as Acidiphilium sp.) and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phase having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element form ore or coal.

  3. Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions.

    PubMed

    Esteban, Patricia Perez; Alves, Diana R; Enright, Mark C; Bean, Jessica E; Gaudion, Alison; Jenkins, A T A; Young, Amber E R; Arnot, Tom C

    2014-01-01

    Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic-resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil-in-water nano-emulsion. Nano-emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano-emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage-loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18-20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage-emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano-emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti-microbial wound management strategies. © 2014 American Institute of Chemical Engineers.

  4. Protein trans-splicing on an M13 bacteriophage: towards directed evolution of a semisynthetic split intein by phage display.

    PubMed

    Garbe, Daniel; Thiel, Ilka V; Mootz, Henning D

    2010-10-01

    Split inteins link their fused peptide or protein sequences with a peptide bond in an autocatalytic reaction called protein trans-splicing. This reaction is becoming increasingly important for a variety of applications in protein semisynthesis, polypeptide circularisation, construction of biosensors, or segmental isotopic labelling of proteins. However, split inteins exhibit greatly varying solubility, efficiency and tolerance towards the nature of the fused sequences as well as reaction conditions. We envisioned that phage display as an in vitro selection technique would provide a powerful tool for the directed evolution of split inteins with improved properties. As a first step towards this goal, we show that presentation of active split inteins on an M13 bacteriophage is feasible. Two different C-terminal intein fragments of the Ssp DnaB intein, artificially split at amino acid positions 104 and 11, were encoded in a phagemid vector in fusion to a truncated gpIII protein. For efficient production of hybrid phages, the presence of a soluble domain tag at their N-termini was necessary. Immunoblot analysis revealed that the hybrid phages supported protein trans-splicing with a protein or a synthetic peptide, respectively, containing the complementary intein fragment. Incorporation of biotin or desthiobiotin by this reaction provides a straightforward strategy for future enrichment of desired mutants from randomised libraries of the C-terminal intein fragments on streptavidin beads. Protein semisynthesis on a phage could also be exploited for the selection of chemically modified proteins with unique properties. © 2010 European Peptide Society and John Wiley & Sons, Ltd.

  5. Bacteriophage application on red meats and poultry: Effects on Salmonella population in final ground products.

    PubMed

    Yeh, Y; Purushothaman, P; Gupta, N; Ragnone, M; Verma, S C; de Mello, A S

    2017-05-01

    This research was conducted to study the effects of bacteriophage application during tumbling on Salmonella populations in ground meat and poultry. Red meat trim and poultry were inoculated with a Salmonella cocktail to result in a contamination level of 7logCFU/g in ground products. A commercial preparation containing bacteriophages S16 and Felix-O1a (FO1a) was applied during tumbling at 10 7 and 10 8 PFU/ml. Samples were held at 4°C for 6h and 18h (red meat) and 30min and 6h (poultry). Overall, bacteriophage application on trim reduced 1 and 0.8logCFU/g of Salmonella in ground beef and ground pork, respectively. For ground chicken and ground turkey, Salmonella was reduced by 1.1 and 0.9logCFU/g, respectively. This study shows that bacteriophage application during tumbling of red meat trim and poultry can provide additional Salmonella control in ground products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions

    PubMed Central

    Guo, Fei; Liu, Zheng; Fang, Ping-An; Zhang, Qinfen; Wright, Elena T.; Wu, Weimin; Zhang, Ci; Vago, Frank; Ren, Yue; Jakana, Joanita; Chiu, Wah; Serwer, Philip; Jiang, Wen

    2014-01-01

    Many dsDNA viruses first assemble a DNA-free procapsid, using a scaffolding protein-dependent process. The procapsid, then, undergoes dramatic conformational maturation while packaging DNA. For bacteriophage T7 we report the following four single-particle cryo-EM 3D reconstructions and the derived atomic models: procapsid (4.6-Å resolution), an early-stage DNA packaging intermediate (3.5 Å), a later-stage packaging intermediate (6.6 Å), and the final infectious phage (3.6 Å). In the procapsid, the N terminus of the major capsid protein, gp10, has a six-turn helix at the inner surface of the shell, where each skewed hexamer of gp10 interacts with two scaffolding proteins. With the exit of scaffolding proteins during maturation the gp10 N-terminal helix unfolds and swings through the capsid shell to the outer surface. The refolded N-terminal region has a hairpin that forms a novel noncovalent, joint-like, intercapsomeric interaction with a pocket formed during shell expansion. These large conformational changes also result in a new noncovalent, intracapsomeric topological linking. Both interactions further stabilize the capsids by interlocking all pentameric and hexameric capsomeres in both DNA packaging intermediate and phage. Although the final phage shell has nearly identical structure to the shell of the DNA-free intermediate, surprisingly we found that the icosahedral faces of the phage are slightly (∼4 Å) contracted relative to the faces of the intermediate, despite the internal pressure from the densely packaged DNA genome. These structures provide a basis for understanding the capsid maturation process during DNA packaging that is essential for large numbers of dsDNA viruses. PMID:25313071

  7. Escherichia Coli Mutations That Prevent the Action of the T4 Unf/Alc Protein Map in an RNA Polymerase Gene

    PubMed Central

    Snyder, L.; Jorissen, L.

    1988-01-01

    Bacteriophage T4 has the substituted base hydroxymethylcytosine in its DNA and presumably shuts off host transcription by specifically blocking transcription of cytosine-containing DNA. When T4 incorporates cytosine into its own DNA, the shutoff mechanism is directed back at T4, blocking its late gene expression and phage production. Mutations which permit T4 multiplication with cytosine DNA should be in genes required for host shutoff. The only such mutations characterized thus far have been in the phage unf/alc gene. The product of this gene is also required for the unfolding of the host nucleoid after infection, hence its dual name unf/alc. As part of our investigation of the mechanism of action of unf/alc, we have isolated Escherichia coli mutants which propagate cytosine T4 even if the phage are genotypically alc(+). These same E. coli mutants are delayed in the T4-induced unfolding of their nucleoid, lending strong support to the conclusion that blocking transcription and unfolding the host nucleoid are but different manifestations of the same activity. We have mapped two of the mutations, called paf mutations for prevent alc function. They both map at about 90 min, probably in the rpoB gene encoding a subunit of RNA polymerase. From the behavior of Paf mutants, we hypothesize that the unf/alc gene product of T4 interacts somehow with the host RNA polymerase to block transcription of cytosine DNA and unfold the host nucleoid. PMID:3282983

  8. [Biological properties of bacteriophages, active to Yersinia enterocolitica].

    PubMed

    Darsavelidze, M A; Kapanadze, Zh S; Chanishvili, T G

    2004-01-01

    The biological properties of 16 clones of Y. enterolitica bacteriophages were tested to select the most active for subsequent use. For the first time Y. enterocolitica virulent phages belonging to the family of Podoviridae were described and 7 serological groups of phages with no cross reactions were registered. The technology for the production of new therapeutic and prophylactic Y. enterocolitica polyvalent bacteriophage under laboratory conditions was developed. The effective multiplicity of contamination ensuring the maximum release of phages from bacterial cells, the optimum incubation temperature and the time of exposure were established. The experimental batches of therapeutic and prophylactic Y. enterocolitica polyvalent bacteriophage thus obtained met the requirements for antibacterial preparations.

  9. Design and screening of M13 phage display cDNA libraries.

    PubMed

    Georgieva, Yuliya; Konthur, Zoltán

    2011-02-17

    The last decade has seen a steady increase in screening of cDNA expression product libraries displayed on the surface of filamentous bacteriophage. At the same time, the range of applications extended from the identification of novel allergens over disease markers to protein-protein interaction studies. However, the generation and selection of cDNA phage display libraries is subjected to intrinsic biological limitations due to their complex nature and heterogeneity, as well as technical difficulties regarding protein presentation on the phage surface. Here, we review the latest developments in this field, discuss a number of strategies and improvements anticipated to overcome these challenges making cDNA and open reading frame (ORF) libraries more readily accessible for phage display. Furthermore, future trends combining phage display with next generation sequencing (NGS) will be presented.

  10. M13 bacteriophage purification using poly(ionic liquids) as alternative separation matrices.

    PubMed

    Jacinto, Maria João; Patinha, David J S; Marrucho, Isabel M; Gonçalves, João; Willson, Richard C; Azevedo, Ana M; Aires-Barros, M Raquel

    2018-01-12

    M13 is a filamentous, non-lytic bacteriophage that infects Escherichia coli via the F pilus. Currently, phage M13 is widely used in phage display technology and bio-nanotechnology, and is considered a possible antibacterial therapeutic agent, among other applications. Conventional phage purification involves 5-7 operational steps, with high operational costs and significant product loss (approximately 60%). In this work, we propose a scalable purification process for M13 bacteriophage using a novel stationary phase based on a polymeric ionic liquid (PIL) with a positively charged backbone structure. Poly (1-vinyl-3-ethyl imidazolium bis(trifluoromethylsulfonyl) imide) - poly(VEIM-TFSI) predominantly acted as an anion exchanger under binding-elution mode. This revealed to be a rapid and simple method for the recovery of phage M13 with an overall separation yield of over 70% after a single downstream step. To the best of our knowledge, PILs have never been used as separation matrices for biological products and the results obtained, together with the large number of cations and anions available to prepare PILs, illustrate well the large potential of the proposed methodology. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Mutated and Bacteriophage T4 Nanoparticle Arrayed F1-V Immunogens from Yersinia pestis as Next Generation Plague Vaccines

    PubMed Central

    Tao, Pan; Mahalingam, Marthandan; Kirtley, Michelle L.; van Lier, Christina J.; Sha, Jian; Yeager, Linsey A.; Chopra, Ashok K.; Rao, Venigalla B.

    2013-01-01

    Pneumonic plague is a highly virulent infectious disease with 100% mortality rate, and its causative organism Yersinia pestis poses a serious threat for deliberate use as a bioterror agent. Currently, there is no FDA approved vaccine against plague. The polymeric bacterial capsular protein F1, a key component of the currently tested bivalent subunit vaccine consisting, in addition, of low calcium response V antigen, has high propensity to aggregate, thus affecting its purification and vaccine efficacy. We used two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, to construct new plague vaccines that provided complete protection against pneumonic plague. The NH2-terminal β-strand of F1 was transplanted to the COOH-terminus and the sequence flanking the β-strand was duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 was fused to the V antigen, a key virulence factor that forms the tip of the type three secretion system (T3SS). The F1mut-V protein showed a dramatic switch in solubility, producing a completely soluble monomer. The F1mut-V was then arrayed on phage T4 nanoparticle via the small outer capsid protein, Soc. The F1mut-V monomer was robustly immunogenic and the T4-decorated F1mut-V without any adjuvant induced balanced TH1 and TH2 responses in mice. Inclusion of an oligomerization-deficient YscF, another component of the T3SS, showed a slight enhancement in the potency of F1-V vaccine, while deletion of the putative immunomodulatory sequence of the V antigen did not improve the vaccine efficacy. Both the soluble (purified F1mut-V mixed with alhydrogel) and T4 decorated F1mut-V (no adjuvant) provided 100% protection to mice and rats against pneumonic plague evoked by high doses of Y. pestis CO92. These novel platforms might lead to efficacious and easily manufacturable next generation plague vaccines. PMID:23853602

  12. A T3 and T7 Recombinant Phage Acquires Efficient Adsorption and a Broader Host Range

    PubMed Central

    Lin, Tiao-Yin; Lo, Yi-Haw; Tseng, Pin-Wei; Chang, Shun-Fu; Lin, Yann-Tsyr; Chen, Ton-Seng

    2012-01-01

    It is usually thought that bacteriophage T7 is female specific, while phage T3 can propagate on male and female Escherichia coli. We found that the growth patterns of phages T7M and T3 do not match the above characteristics, instead showing strain dependent male exclusion. Furthermore, a T3/7 hybrid phage exhibits a broader host range relative to that of T3, T7, as well as T7M, and is able to overcome the male exclusion. The T7M sequence closely resembles that of T3. T3/7 is essentially T3 based, but a DNA fragment containing part of the tail fiber gene 17 is replaced by the T7 sequence. T3 displays inferior adsorption to strains tested herein compared to T7. The T3 and T7 recombinant phage carries altered tail fibers and acquires better adsorption efficiency than T3. How phages T3 and T7 recombine was previously unclear. This study is the first to show that recombination can occur accurately within only 8 base-pair homology, where four-way junction structures are identified. Genomic recombination models based on endonuclease I cleavages at equivalent and nonequivalent sites followed by strand annealing are proposed. Retention of pseudo-palindromes can increase recombination frequency for reviving under stress. PMID:22347414

  13. A T3 and T7 recombinant phage acquires efficient adsorption and a broader host range.

    PubMed

    Lin, Tiao-Yin; Lo, Yi-Haw; Tseng, Pin-Wei; Chang, Shun-Fu; Lin, Yann-Tsyr; Chen, Ton-Seng

    2012-01-01

    It is usually thought that bacteriophage T7 is female specific, while phage T3 can propagate on male and female Escherichia coli. We found that the growth patterns of phages T7M and T3 do not match the above characteristics, instead showing strain dependent male exclusion. Furthermore, a T3/7 hybrid phage exhibits a broader host range relative to that of T3, T7, as well as T7M, and is able to overcome the male exclusion. The T7M sequence closely resembles that of T3. T3/7 is essentially T3 based, but a DNA fragment containing part of the tail fiber gene 17 is replaced by the T7 sequence. T3 displays inferior adsorption to strains tested herein compared to T7. The T3 and T7 recombinant phage carries altered tail fibers and acquires better adsorption efficiency than T3. How phages T3 and T7 recombine was previously unclear. This study is the first to show that recombination can occur accurately within only 8 base-pair homology, where four-way junction structures are identified. Genomic recombination models based on endonuclease I cleavages at equivalent and nonequivalent sites followed by strand annealing are proposed. Retention of pseudo-palindromes can increase recombination frequency for reviving under stress.

  14. Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages

    PubMed Central

    Esplin, Ian N. D.; Berg, Jordan A.; Sharma, Ruchira; Allen, Robert C.; Arens, Daniel K.; Ashcroft, Cody R.; Bairett, Shannon R.; Beatty, Nolan J.; Bickmore, Madeline; Bloomfield, Travis J.; Brady, T. Scott; Bybee, Rachel N.; Carter, John L.; Choi, Minsey C.; Duncan, Steven; Fajardo, Christopher P.; Foy, Brayden B.; Fuhriman, David A.; Gibby, Paul D.; Grossarth, Savannah E.; Harbaugh, Kala; Harris, Natalie; Hilton, Jared A.; Hurst, Emily; Hyde, Jonathan R.; Ingersoll, Kayleigh; Jacobson, Caitlin M.; James, Brady D.; Jarvis, Todd M.; Jaen-Anieves, Daniella; Jensen, Garrett L.; Knabe, Bradley K.; Kruger, Jared L.; Merrill, Bryan D.; Pape, Jenny A.; Payne Anderson, Ashley M.; Payne, David E.; Peck, Malia D.; Pollock, Samuel V.; Putnam, Micah J.; Ransom, Ethan K.; Ririe, Devin B.; Robinson, David M.; Rogers, Spencer L.; Russell, Kerri A.; Schoenhals, Jonathan E.; Shurtleff, Christopher A.; Simister, Austin R.; Smith, Hunter G.; Stephenson, Michael B.; Staley, Lyndsay A.; Stettler, Jason M.; Stratton, Mallorie L.; Tateoka, Olivia B.; Tatlow, P. J.; Taylor, Alexander S.; Thompson, Suzanne E.; Townsend, Michelle H.; Thurgood, Trever L.; Usher, Brittian K.; Whitley, Kiara V.; Ward, Andrew T.; Ward, Megan E. H.; Webb, Charles J.; Wienclaw, Trevor M.; Williamson, Taryn L.; Wells, Michael J.; Wright, Cole K.; Breakwell, Donald P.; Hope, Sandra

    2017-01-01

    ABSTRACT Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages. PMID:29146842

  15. Seven Bacteriophages Isolated from the Female Urinary Microbiota

    PubMed Central

    Malki, Kema; Sible, Emily; Cooper, Alexandria; Garretto, Andrea; Bruder, Katherine; Watkins, Siobhan C.

    2016-01-01

    Recent research has debunked the myth that urine is sterile, having uncovered bacteria within the bladders of healthy individuals. However, the identity, diversity, and putative roles of bacteriophages in the bladder are unknown. We report the draft genome sequences of seven bacteriophages isolated from microbial communities from adult female bladders. PMID:27881533

  16. The episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of T4-like phages

    PubMed Central

    Letarov, A V; Krisch, H M

    2013-01-01

    The evolutionary adaptation of bacteriophages to their environment is achieved by alterations of their genomes involving a combination of both point mutations and lateral gene transfer. A phylogenetic analysis of a large set of collar fiber protein (fibritin) loci from diverse T4-like phages indicates that nearly all the modular swapping involving the C-terminal domain of this gene occurred in the distant past and has since ceased. In phage T4, this fibritin domain encodes the sequence that mediates both the attachment of the long tail fibers to the virion and also controls, in an environmentally sensitive way, the phage's ability to infect its host bacteria. Subsequent to its distant period of modular exchange, the evolution of fibritin has proceeded primarily by the slow vertical divergence mechanism. We suggest that ancient and sudden changes in the environment forced the T4-like phages to alter fibritin's mode of action or function. The genome's response to such episodes of rapid environmental change could presumably only be achieved quickly enough by employing the modular evolution mechanism. A phylogenetic analysis of the fibritin locus reveals the possible traces of such events within the T4 superfamily's genomes. PMID:24223296

  17. 33 CFR 165.T05-0495 - Safety Zone, Sugar House Casino Fireworks Display, Delaware River; Philadelphia, PA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zone, Sugar House Casino Fireworks Display, Delaware River; Philadelphia, PA. 165.T05-0495 Section 165.T05-0495 Navigation and... Areas Fifth Coast Guard District § 165.T05-0495 Safety Zone, Sugar House Casino Fireworks Display...

  18. Methods of expanding bacteriophage host-range and bacteriophage produced by the methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crown, Kevin K.; Santarpia, Joshua

    A method of producing novel bacteriophages with expanded host-range and bacteriophages with expanded host ranges are disclosed. The method produces mutant phage strains which are infectious to a second host and can be more infectious to their natural host than in their natural state. The method includes repeatedly passaging a selected phage strain into bacterial cultures that contain varied ratios of its natural host bacterial strain with a bacterial strain that the phage of interest is unable to infect; the target-host. After each passage the resulting phage are purified and screened for activity against the target-host via double-overlay assays. Whenmore » mutant phages that are shown to infect the target-host are discovered, they are further propagated in culture that contains only the target-host to produce a stock of the resulting mutant phage.« less

  19. Bacteriophage cocktail for biocontrol of Salmonella in dried pet food.

    PubMed

    Heyse, Serena; Hanna, Leigh Farris; Woolston, Joelle; Sulakvelidze, Alexander; Charbonneau, Duane

    2015-01-01

    Human salmonellosis has been associated with contaminated pet foods and treats. Therefore, there is interest in identifying novel approaches for reducing the risk of Salmonella contamination within pet food manufacturing environments. The use of lytic bacteriophages shows promise as a safe and effective way to mitigate Salmonella contamination in various food products. Bacteriophages are safe, natural, highly targeted antibacterial agents that specifically kill bacteria and can be targeted to kill food pathogens without affecting other microbiota. In this study, we show that a cocktail containing six bacteriophages had a broadspectrum activity in vitro against a library of 930 Salmonella enterica strains representing 44 known serovars. The cocktail was effective against 95% of the strains in this tested library. In liquid culture dose-ranging experiments, bacteriophage cocktail concentrations of ≥10(8) PFU/ml inactivated more than 90% of the Salmonella population (10(1) to 10(3) CFU/ml). Dried pet food inoculated with a mixture containing equal proportions of Salmonella serovars Enteritidis (ATCC 4931), Montevideo (ATCC 8387), Senftenberg (ATCC 8400), and Typhimurium (ATCC 13311) and then surface treated with the six-bacteriophage cocktail (≥2.5 ± 1.5 × 10(6) PFU/g) achieved a greater than 1-log (P < 0.001) reduction compared with the phosphate-buffered saline-treated control in measured viable Salmonella within 60 min. Moreover, this bacteriophage cocktail reduced natural contamination in samples taken from an undistributed lot of commercial dried dog food that tested positive for Salmonella. Our results indicate that bacteriophage biocontrol of S. enterica in dried pet food is technically feasible.

  20. Optimizing the European regulatory framework for sustainable bacteriophage therapy in human medicine.

    PubMed

    Verbeken, Gilbert; Pirnay, Jean-Paul; De Vos, Daniel; Jennes, Serge; Zizi, Martin; Lavigne, Rob; Casteels, Minne; Huys, Isabelle

    2012-06-01

    For practitioners at hospitals seeking to use natural (not genetically modified, as appearing in nature) bacteriophages for treatment of antibiotic-resistant bacterial infections (bacteriophage therapy), Europe's current regulatory framework for medicinal products hinders more than it facilitates. Although many experts consider bacteriophage therapy to be a promising complementary (or alternative) treatment to antibiotic therapy, no bacteriophage-specific framework for documentation exists to date. Decades worth of historical clinical data on bacteriophage therapy (from Eastern Europe, particularly Poland, and the former Soviet republics, particularly Georgia and Russia, as well as from today's 27 EU member states and the US) have not been taken into account by European regulators because these data have not been validated under current Western regulatory standards. Consequently, applicants carrying out standard clinical trials on bacteriophages in Europe are obliged to initiate clinical work from scratch. This paper argues for a reduced documentation threshold for Phase 1 clinical trials of bacteriophages and maintains that bacteriophages should not be categorized as classical medicinal products for at least two reasons: (1) such a categorization is scientifically inappropriate for this specific therapy and (2) such a categorization limits the marketing authorization process to industry, the only stakeholder with sufficient financial resources to prepare a complete dossier for the competent authorities. This paper reflects on the current regulatory framework for medicines in Europe and assesses possible regulatory pathways for the (re-)introduction of bacteriophage therapy in a way that maintains its effectiveness and safety as well as its inherent characteristics of sustainability and in situ self-amplification and limitation.

  1. Potential of a lytic bacteriophage to disrupt Acinetobacter baumannii biofilms in vitro.

    PubMed

    Liu, Yannan; Mi, Zhiqiang; Niu, Wenkai; An, Xiaoping; Yuan, Xin; Liu, Huiying; Wang, Yong; Feng, Yuzhong; Huang, Yong; Zhang, Xianglilan; Zhang, Zhiyi; Fan, Hang; Peng, Fan; Li, Puyuan; Tong, Yigang; Bai, Changqing

    2016-10-01

    The ability of Acinetobacter baumannii to form biofilms and develop antibiotic resistance makes it difficult to control infections caused by this bacterium. In this study, we explored the potential of a lytic bacteriophage to disrupt A. baumannii biofilms. The potential of the lytic bacteriophage to disrupt A. baumannii biofilms was assessed by performing electron microscopy, live/dead bacterial staining, crystal violet staining and by determining adenosine triphosphate release. The bacteriophage inhibited the formation of and disrupted preformed A. baumannii biofilms. Results of disinfection assay showed that the lytic bacteriophage lysed A. baumannii cells suspended in blood or grown on metal surfaces. These results suggest the potential of the lytic bacteriophage to disrupt A. baumannii biofilms.

  2. 14 CFR 255.4 - Display of information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Display of information. 255.4 Section 255.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC... in selecting service options from the database or give single-plane flights a preference over...

  3. 14 CFR 255.4 - Display of information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Display of information. 255.4 Section 255.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC... in selecting service options from the database or give single-plane flights a preference over...

  4. 14 CFR 255.4 - Display of information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Display of information. 255.4 Section 255.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC... in selecting service options from the database or give single-plane flights a preference over...

  5. Inactivation of F-specific bacteriophages during flocculation with polyaluminum chloride - a mechanistic study.

    PubMed

    Kreißel, Katja; Bösl, Monika; Hügler, Michael; Lipp, Pia; Franzreb, Matthias; Hambsch, Beate

    2014-03-15

    Bacteriophages are often used as surrogates for enteric viruses in spiking experiments to determine the efficiencies of virus removal of certain water treatment measures, like e.g. flocculation or filtration steps. Such spiking experiments with bacteriophages are indispensable if the natural virus concentrations in the raw water of water treatment plants are too low to allow the determination of elimination levels over several orders of magnitude. In order to obtain reliable results from such spiking tests, it is essential that bacteriophages behave comparable to viruses and remain stable during the experiments. To test this, the influence of flocculation parameters on the bacteriophages MS2, Qβ and phiX174 was examined. Notably, the F-specific phages MS2 and Qβ were found to be inactivated in flocculation processes with polyaluminum chloride (PACl). In contrast, other aluminum coagulants like AlCl3 or Al2(SO4)3 did not show a comparable effect on MS2 in this study. In experiments testing the influence of different PACl species on MS2 and Qβ inactivation during flocculation, it could be shown that cationic dissolved PACl species (Al13) interacted with the MS2 surface and hereby reduced the surviving phage fraction to c/c0 values below 1*10(-4) even at very low PACl concentrations of 7 μmol Al/L. Other inactivation mechanisms like the irreversible adsorption of phages to the floc structure or the damage of phage surfaces due to entrapment into the floc during coagulation and floc formation do not seem to contribute to the low surviving fraction found for both F-specific bacteriophages. Furthermore, no influence of phage agglomeration or pH drops during the flocculation process on phage inactivation could be observed. The somatic coliphage phiX174 in contrast did not show sensitivity to chemical stress and in accordance only slight interaction between Al13 and the phage surface was observed. Consequently, F-specific phages like MS2 should not be used as

  6. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  7. Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages.

    PubMed

    Esplin, Ian N D; Berg, Jordan A; Sharma, Ruchira; Allen, Robert C; Arens, Daniel K; Ashcroft, Cody R; Bairett, Shannon R; Beatty, Nolan J; Bickmore, Madeline; Bloomfield, Travis J; Brady, T Scott; Bybee, Rachel N; Carter, John L; Choi, Minsey C; Duncan, Steven; Fajardo, Christopher P; Foy, Brayden B; Fuhriman, David A; Gibby, Paul D; Grossarth, Savannah E; Harbaugh, Kala; Harris, Natalie; Hilton, Jared A; Hurst, Emily; Hyde, Jonathan R; Ingersoll, Kayleigh; Jacobson, Caitlin M; James, Brady D; Jarvis, Todd M; Jaen-Anieves, Daniella; Jensen, Garrett L; Knabe, Bradley K; Kruger, Jared L; Merrill, Bryan D; Pape, Jenny A; Payne Anderson, Ashley M; Payne, David E; Peck, Malia D; Pollock, Samuel V; Putnam, Micah J; Ransom, Ethan K; Ririe, Devin B; Robinson, David M; Rogers, Spencer L; Russell, Kerri A; Schoenhals, Jonathan E; Shurtleff, Christopher A; Simister, Austin R; Smith, Hunter G; Stephenson, Michael B; Staley, Lyndsay A; Stettler, Jason M; Stratton, Mallorie L; Tateoka, Olivia B; Tatlow, P J; Taylor, Alexander S; Thompson, Suzanne E; Townsend, Michelle H; Thurgood, Trever L; Usher, Brittian K; Whitley, Kiara V; Ward, Andrew T; Ward, Megan E H; Webb, Charles J; Wienclaw, Trevor M; Williamson, Taryn L; Wells, Michael J; Wright, Cole K; Breakwell, Donald P; Hope, Sandra; Grose, Julianne H

    2017-11-16

    Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages. Copyright © 2017 Esplin et al.

  8. Spray-dried respirable powders containing bacteriophages for the treatment of pulmonary infections.

    PubMed

    Matinkhoo, Sadaf; Lynch, Karlene H; Dennis, Jonathan J; Finlay, Warren H; Vehring, Reinhard

    2011-12-01

    Myoviridae bacteriophages were processed into a dry powder inhalable dosage form using a low-temperature spray-drying process. The phages were incorporated into microparticles consisting of trehalose, leucine, and optionally a third excipient (either a surfactant or casein sodium salt). The particles were designed to have high dispersibility and a respirable particle size, and to preserve the phages during processing. Bacteriophages KS4- M, KS14, and cocktails of phages ΦKZ/D3 and ΦKZ/D3/KS4-M were spray-dried with a processing loss ranging from 0.4 to 0.8 log pfu. The aerosol performance of the resulting dry powders as delivered from an Aerolizer® dry powder inhaler (DPI) exceeded the performance of commercially available DPIs; the emitted mass and the in vitro total lung mass of the lead formulation were 82.7% and 69.7% of filled capsule mass, respectively. The total lung mass had a mass median aerodynamic diameter of 2.5-2.8 µm. The total in vitro lung doses of the phages, delivered from a single actuation of the inhaler, ranged from 10(7) to 10(8) pfu, levels that are expected to be efficacious in vivo. Spray drying of bacteriophages into a respirable dry powder was found to be feasible. Copyright © 2011 Wiley-Liss, Inc.

  9. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni

    PubMed Central

    Siringan, Patcharin; Connerton, Phillippa L.; Cummings, Nicola J.; Connerton, Ian F.

    2014-01-01

    Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage. PMID:24671947

  10. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni.

    PubMed

    Siringan, Patcharin; Connerton, Phillippa L; Cummings, Nicola J; Connerton, Ian F

    2014-03-26

    Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage.

  11. Induction of protective anti-CTL epitope responses against HER-2-positive breast cancer based on multivalent T7 phage nanoparticles.

    PubMed

    Pouyanfard, Somayeh; Bamdad, Taravat; Hashemi, Hamidreza; Bandehpour, Mojgan; Kazemi, Bahram

    2012-01-01

    We report here the development of multivalent T7 bacteriophage nanoparticles displaying an immunodominant H-2k(d)-restricted CTL epitope derived from the rat HER2/neu oncoprotein. The immunotherapeutic potential of the chimeric T7 nanoparticles as anti-cancer vaccine was investigated in BALB/c mice in an implantable breast tumor model. The results showed that T7 phage nanoparticles confer a high immunogenicity to the HER-2-derived minimal CTL epitope, as shown by inducing robust CTL responses. Furthermore, the chimeric nanoparticles protected mice against HER-2-positive tumor challenge in both prophylactic and therapeutic setting. In conclusion, these results suggest that CTL epitope-carrying T7 phage nanoparticles might be a promising approach for development of T cell epitope-based cancer vaccines.

  12. Induction of Protective Anti-CTL Epitope Responses against HER-2-Positive Breast Cancer Based on Multivalent T7 Phage Nanoparticles

    PubMed Central

    Pouyanfard, Somayeh; Bamdad, Taravat; Hashemi, Hamidreza; Bandehpour, Mojgan; Kazemi, Bahram

    2012-01-01

    We report here the development of multivalent T7 bacteriophage nanoparticles displaying an immunodominant H-2kd-restricted CTL epitope derived from the rat HER2/neu oncoprotein. The immunotherapeutic potential of the chimeric T7 nanoparticles as anti-cancer vaccine was investigated in BALB/c mice in an implantable breast tumor model. The results showed that T7 phage nanoparticles confer a high immunogenicity to the HER-2-derived minimal CTL epitope, as shown by inducing robust CTL responses. Furthermore, the chimeric nanoparticles protected mice against HER-2-positive tumor challenge in both prophylactic and therapeutic setting. In conclusion, these results suggest that CTL epitope-carrying T7 phage nanoparticles might be a promising approach for development of T cell epitope-based cancer vaccines. PMID:23166703

  13. Zinc-binding Domain of the Bacteriophage T7 DNA Primase Modulates Binding to the DNA Template*

    PubMed Central

    Lee, Seung-Joo; Zhu, Bin; Akabayov, Barak; Richardson, Charles C.

    2012-01-01

    The zinc-binding domain (ZBD) of prokaryotic DNA primases has been postulated to be crucial for recognition of specific sequences in the single-stranded DNA template. To determine the molecular basis for this role in recognition, we carried out homolog-scanning mutagenesis of the zinc-binding domain of DNA primase of bacteriophage T7 using a bacterial homolog from Geobacillus stearothermophilus. The ability of T7 DNA primase to catalyze template-directed oligoribonucleotide synthesis is eliminated by substitution of any five-amino acid residue-long segment within the ZBD. The most significant defect occurs upon substitution of a region (Pro-16 to Cys-20) spanning two cysteines that coordinate the zinc ion. The role of this region in primase function was further investigated by generating a protein library composed of multiple amino acid substitutions for Pro-16, Asp-18, and Asn-19 followed by genetic screening for functional proteins. Examination of proteins selected from the screening reveals no change in sequence-specific recognition. However, the more positively charged residues in the region facilitate DNA binding, leading to more efficient oligoribonucleotide synthesis on short templates. The results suggest that the zinc-binding mode alone is not responsible for sequence recognition, but rather its interaction with the RNA polymerase domain is critical for DNA binding and for sequence recognition. Consequently, any alteration in the ZBD that disturbs its conformation leads to loss of DNA-dependent oligoribonucleotide synthesis. PMID:23024359

  14. Modification and restriction of T-even bacteriophages. In vitro degradation of deoxyribonucleic acid containing 5-hydroxymethylctosine.

    PubMed

    Fleischman, R A; Cambell, J L; Richardson, C C

    1976-03-25

    Using the single-stranded circular DNA of bacteriophage fd as template, double-stranded circular DNA has been prepared in vitro with either 5-hydroxymethylcytosine ([hmdC]DNA) or cytosine ([dC]DNA) in the product strand. Extracts prepared from Escherichia coli cells restrictive to T-even phage containing nonglucosylated DNA degrade [hmdC]DNA to acid-soluble material in vitro, but do not degrade [dC]dna. In contrast, extracts prepared from E. coli K12 rglA- rglB-, a strain permissive to T-even phage containing nonglucosylated DNA, do not degrade [hmdC]DNA or [dC]DNA. In addition, glucosylation of the [hmdC]DNA renders it resistant to degradation by extracts from restrictive strains. The conversion of [hmdC]DNA to acid-soluble material in vitro consists of an HmCyt-specific endonucleolytic cleavage requiring the presence of the RglB gene product to form a linear molecule, followed by a non-HmCyt-specific hydrolysis of the linear DNA to acid-soluble fragments, catalyzed in part by exonuclease V. The RglB protein present in extracts of E. coli K12 rglA- rglB+ has been purified 200-fold by complementation with extracts from E. coli K12 rglA- rglB-. The purified RglB protein does not contain detectable HmCyt-specific endonuclease or exonuclease activity. In vitro endonucleolytic cleavage of [hmdC]DNA thus requires additional factors present in cell extracts.

  15. Dissecting binding of a β-barrel membrane protein by phage display.

    PubMed

    Meneghini, Luz M; Tripathi, Sarvind; Woodworth, Marcus A; Majumdar, Sudipta; Poulos, Thomas L; Weiss, Gregory A

    2017-07-25

    Membrane proteins (MPs) constitute a third of all proteomes, and contribute to a myriad of cellular functions including intercellular communication, nutrient transport and energy generation. For example, TonB-dependent transporters (TBDTs) in the outer membrane of Gram-negative bacteria play an essential role transporting iron and other nutrients into the bacterial cell. The inherently hydrophobic surfaces of MPs complicates protein expression, purification, and characterization. Thus, dissecting the functional contributions of individual amino acids or structural features through mutagenesis can be a challenging ordeal. Here, we apply a new approach for the expedited protein characterization of the TBDT ShuA from Shigella dysenteriae, and elucidate the protein's initial steps during heme-uptake. ShuA variants were displayed on the surface of an M13 bacteriophage as fusions to the P8 coat protein. Each ShuA variant was analyzed for its ability to display on the bacteriophage surface, and functionally bind to hemoglobin. This technique streamlines isolation of stable MP variants for rapid characterization of binding to various ligands. Site-directed mutagenesis studies targeting each extracellular loop region of ShuA demonstrate no specific extracellular loop is required for hemoglobin binding. Instead two residues, His420 and His86 mediate this interaction. The results identify a loop susceptible to antibody binding, and also a small molecule motif capable of disrupting ShuA from S. dysenteriae. The approach is generalizable to the dissection of other phage-displayed TBDTs and MPs.

  16. Characterization and complete genome sequence of a novel N4-like bacteriophage, pSb-1 infecting Shigella boydii.

    PubMed

    Jun, Jin Woo; Yun, Sae Kil; Kim, Hyoun Joong; Chai, Ji Young; Park, Se Chang

    2014-10-01

    Shigellosis is one of major foodborne pathogens in both developed and developing countries. Although antibiotic therapy is considered an effective treatment for shigellosis, the imprudent use of antibiotics has led to the increase of multiple-antibiotic-resistant Shigella species globally. In this study, we isolated a virulent Podoviridae bacteriophage (phage), pSb-1, that infects Shigella boydii. One-step growth analysis revealed that this phage has a short latent period (15 min) and a large burst size (152.63 PFU/cell), indicating that pSb-1 has good host infectivity and effective lytic activity. The double-stranded DNA genome of pSb-1 is composed of 71,629 bp with a G + C content of 42.74%. The genome encodes 103 putative ORFs, 9 putative promoters, 21 transcriptional terminators, and one tRNA region. Genome sequence analysis of pSb-1 and comparative analysis with the homologous phage EC1-UPM, N4-like phage revealed that there is a high degree of similarity (94%, nucleotide sequence identity) between pSb-1 and EC1-UPM in 73 of the 103 ORFs of pSb-1. The results of this investigation indicate that pSb-1 is a novel virulent N4-like phage infecting S. boydii and that this phage might have potential uses against shigellosis. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    PubMed Central

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to display a targeting moiety on their surface and are used to deliver a large payload of a cytotoxic drug to the target bacteria. The drug is linked to the phages by means of chemical conjugation through a labile linker subject to controlled release. In the conjugated state, the drug is in fact a prodrug devoid of cytotoxic activity and is activated following its dissociation from the phage at the target site in a temporally and spatially controlled manner. Our model target was Staphylococcus aureus, and the model drug was the antibiotic chloramphenicol. We demonstrated the potential of using filamentous phages as universal drug carriers for targetable cells involved in disease. Our approach replaces the selectivity of the drug itself with target selectivity borne by the targeting moiety, which may allow the reintroduction of nonspecific drugs that have thus far been excluded from antibacterial use (because of toxicity or low selectivity). Reintroduction of such drugs into the arsenal of useful tools may help to combat emerging bacterial antibiotic resistance. PMID:16723570

  18. Isoguanine quartets formed by d(T4isoG4T4): tetraplex identification and stability.

    PubMed Central

    Seela, F; Wei, C; Melenewski, A

    1996-01-01

    The self-aggregation of the oligonucleotide d(T4isoG4T4) (1) is investigated. Based on ion exchange HPLC experiments and CD spectroscopy, a tetrameric structure is identified. This structure was formed in the presence of sodium ions and shows almost the same chromatographic mobility on ion exchange HPLC as d(T4G4T4) (2). The ratio of aggregate versus monomer is temperature dependent and the tetraplex of [d(T4isoG4T4)]4 is more stable than that of [d(T4G4T4)]4. A mixture of d(T4isoG4T4) and d(T4G4T4) forms mixed tetraplexes containing strands of d(T4isoG4T4) and d(T4G4T4). PMID:9016664

  19. Promoter binding, initiation, and elongation by bacteriophage T7 RNA polymerase. A single-molecule view of the transcription cycle.

    PubMed

    Skinner, Gary M; Baumann, Christoph G; Quinn, Diana M; Molloy, Justin E; Hoggett, James G

    2004-01-30

    A single-molecule transcription assay has been developed that allows, for the first time, the direct observation of promoter binding, initiation, and elongation by a single RNA polymerase (RNAP) molecule in real-time. To promote DNA binding and transcription initiation, a DNA molecule tethered between two optically trapped beads was held near a third immobile surface bead sparsely coated with RNAP. By driving the optical trap holding the upstream bead with a triangular oscillation while measuring the position of both trapped beads, we observed the onset of promoter binding, promoter escape (productive initiation), and processive elongation by individual RNAP molecules. After DNA template release, transcription re-initiation on the same DNA template is possible; thus, multiple enzymatic turnovers by an individual RNAP molecule can be observed. Using bacteriophage T7 RNAP, a commonly used RNAP paradigm, we observed the association and dissociation (k(off)= 2.9 s(-1)) of T7 RNAP and promoter DNA, the transition to the elongation mode (k(for) = 0.36 s(-1)), and the processive synthesis (k(pol) = 43 nt s(-1)) and release of a gene-length RNA transcript ( approximately 1200 nt). The transition from initiation to elongation is much longer than the mean lifetime of the binary T7 RNAP-promoter DNA complex (k(off) > k(for)), identifying a rate-limiting step between promoter DNA binding and promoter escape.

  20. DNA Recognition by the DNA Primase of Bacteriophage T7: A Structure Function Study of the Zinc-Binding Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akabayov, B.; Lee, S; Akabayov, S

    2009-01-01

    Synthesis of oligoribonucleotide primers for lagging-strand DNA synthesis in the DNA replication system of bacteriophage T7 is catalyzed by the primase domain of the gene 4 helicase-primase. The primase consists of a zinc-binding domain (ZBD) and an RNA polymerase (RPD) domain. The ZBD is responsible for recognition of a specific sequence in the ssDNA template whereas catalytic activity resides in the RPD. The ZBD contains a zinc ion coordinated with four cysteine residues. We have examined the ligation state of the zinc ion by X-ray absorption spectroscopy and biochemical analysis of genetically altered primases. The ZBD of primase engaged inmore » catalysis exhibits considerable asymmetry in coordination to zinc, as evidenced by a gradual increase in electron density of the zinc together with elongation of the zinc-sulfur bonds. Both wild-type primase and primase reconstituted from purified ZBD and RPD have a similar electronic change in the level of the zinc ion as well as the configuration of the ZBD. Single amino acid replacements in the ZBD (H33A and C36S) result in the loss of both zinc binding and its structural integrity. Thus the zinc in the ZBD may act as a charge modulation indicator for the surrounding sulfur atoms necessary for recognition of specific DNA sequences.« less

  1. Multidimensional analysis of intracellular bacteriophage T7 DNA: effects of amber mutations in genes 3 and 19.

    PubMed Central

    Serwer, P; Watson, R H; Hayes, S J

    1987-01-01

    By use of rate-zonal centrifugation, followed by either one- or two-dimensional agarose gel electrophoresis, the forms of intracellular bacteriophage T7 DNA produced by replication, recombination, and packaging have been analyzed. Previous studies had shown that at least some intracellular DNA with sedimentation coefficients between 32S (the S value of mature T7 DNA) and 100S is concatemeric, i.e., linear and longer than mature T7 DNA. The analysis presented here confirmed that most of this DNA is linear, but also revealed a significant amount of circular DNA. The data suggest that these circles are produced during DNA packaging. It is proposed that circles are produced after a capsid has bound two sequential genomes in a concatemer. The size distribution of the linear, concatemeric DNA had peaks at the positions of dimeric and trimeric concatemers. Restriction endonuclease analysis revealed that most of the mature T7 DNA subunits of concatemers were joined left end to right end. However, these data also suggest that a comparatively small amount of left-end to left-end joining occurs, possibly by blunt-end ligation. A replicating form of T7 DNA that had an S value greater than 100 (100S+ DNA) was also found to contain concatemers. However, some of the 100S+ DNA, probably the most branched component, remained associated with the origin after agarose gel electrophoresis. It has been found that T7 protein 19, known to be required for DNA packaging, was also required to prevent loss, probably by nucleolytic degradation, of the right end of all forms of intracellular T7 DNA. T7 gene 3 endonuclease, whose activity is required for both recombination of T7 DNA and degradation of host DNA, was required for the formation of the 32S to 100S molecules that behaved as concatemers during gel electrophoresis. In the absence of gene 3 endonuclease, the primary accumulation product was origin-associated 100S+ DNA with properties that suggest the accumulation of branches, primarily

  2. Genetic Map of Bacteriophage φX174

    PubMed Central

    Benbow, R. M.; Hutchison, C. A.; Fabricant, J. D.; Sinsheimer, R. L.

    1971-01-01

    Bacteriophage φX174 temperature-sensitive and nonsense mutations in eight cistrons were mapped by using two-, three-, and four-factor genetic crosses. The genetic map is circular with a total length of 24 × 10−4wt recombinants per progeny phage. The cistron order is D-E-F-G-H-A-B-C. High negative interference is seen, consistent with a small closed circular deoxyribonucleic acid molecule as a genome. PMID:16789129

  3. Development of a novel and highly efficient method of isolating bacteriophages from water.

    PubMed

    Liu, Weili; Li, Chao; Qiu, Zhi-Gang; Jin, Min; Wang, Jing-Feng; Yang, Dong; Xiao, Zhong-Hai; Yuan, Zhao-Kang; Li, Jun-Wen; Xu, Qun-Ying; Shen, Zhi-Qiang

    2017-08-01

    Bacteriophages are widely used to the treatment of drug-resistant bacteria and the improvement of food safety through bacterial lysis. However, the limited investigations on bacteriophage restrict their further application. In this study, a novel and highly efficient method was developed for isolating bacteriophage from water based on the electropositive silica gel particles (ESPs) method. To optimize the ESPs method, we evaluated the eluent type, flow rate, pH, temperature, and inoculation concentration of bacteriophage using bacteriophage f2. The quantitative detection reported that the recovery of the ESPs method reached over 90%. The qualitative detection demonstrated that the ESPs method effectively isolated 70% of extremely low-concentration bacteriophage (10 0 PFU/100L). Based on the host bacteria composed of 33 standard strains and 10 isolated strains, the bacteriophages in 18 water samples collected from the three sites in the Tianjin Haihe River Basin were isolated by the ESPs and traditional methods. Results showed that the ESPs method was significantly superior to the traditional method. The ESPs method isolated 32 strains of bacteriophage, whereas the traditional method isolated 15 strains. The sample isolation efficiency and bacteriophage isolation efficiency of the ESPs method were 3.28 and 2.13 times higher than those of the traditional method. The developed ESPs method was characterized by high isolation efficiency, efficient handling of large water sample size and low requirement on water quality. Copyright © 2017. Published by Elsevier B.V.

  4. Role of DNA-DNA Interactions on the Structure and Thermodynamics of Bacteriophages Lambda and P4

    PubMed Central

    Petrov, Anton S.; Harvey, Stephen C.

    2010-01-01

    Electrostatic interactions play an important role in both packaging of DNA inside bacteriophages and its release into bacterial cells. While at physiological conditions DNA strands repel each other, the presence of polyvalent cations such as spermine and spermidine in solutions leads to the formation of DNA condensates. In this study, we discuss packaging of DNA into bacteriophages P4 and Lambda under repulsive and attractive conditions using a coarse-grained model of DNA and capsids. Packaging under repulsive conditions leads to the appearance of the coaxial spooling conformations; DNA occupies all available space inside the capsid. Under the attractive potential both packed systems reveal toroidal conformations, leaving the central part of the capsids empty. We also present a detailed thermodynamic analysis of packaging and show that the forces required to pack the genomes in the presence of polyamines are significantly lower than those observed under repulsive conditions. The analysis reveals that in both the repulsive and attractive regimes the entropic penalty of DNA confinement has a significant non-negligible contribution into the total energy of packaging. Additionally we report the results of simulations of DNA condensation inside partially packed Lambda. We found that at low densities DNA behaves as free unconfined polymer and condenses into the toroidal structures; at higher densities rearrangement of the genome into toroids becomes hindered, and condensation results in the formation of non-equilibrium structures. In all cases packaging in a specific conformation occurs as a result of interplay between bending stresses experienced by the confined polymer and interactions between the strands. PMID:21074621

  5. Arthrobacter globiformis and its bacteriophage in soil

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.; Liu, K.-C.

    1974-01-01

    An attempt was made to correlate bacteriophages for Arthrobacter globiformis with soils containing that bacterium. The phages were not detected unless the soil was nutritionally amended (with glucose or sucrose) and incubated for several days. Phage was continuously produced after amendment without the addition of host Arthrobacter. These results indicate that the bacteriophage is present in a masked state and that the bacteria are present in an insensitive form which becomes sensitive after addition of nutrient.

  6. Evidence of a Dominant Lineage of Vibrio cholerae-Specific Lytic Bacteriophages Shed by Cholera Patients over a 10-Year Period in Dhaka, Bangladesh

    PubMed Central

    Seed, Kimberley D.; Bodi, Kip L.; Kropinski, Andrew M.; Ackermann, Hans-Wolfgang; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew

    2011-01-01

    Lytic bacteriophages are hypothesized to contribute to the seasonality and duration of cholera epidemics in Bangladesh. However, the bacteriophages contributing to this phenomenon have yet to be characterized at a molecular genetic level. In this study, we isolated and sequenced the genomes of 15 bacteriophages from stool samples from cholera patients spanning a 10-year surveillance period in Dhaka, Bangladesh. Our results indicate that a single novel bacteriophage type, designated ICP1 (for the International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) is present in all stool samples from cholera patients, while two other bacteriophage types, one novel (ICP2) and one T7-like (ICP3), are transient. ICP1 is a member of the Myoviridae family and has a 126-kilobase genome comprising 230 open reading frames. Comparative sequence analysis of ICP1 and related isolates from this time period indicates a high level of genetic conservation. The ubiquitous presence of ICP1 in cholera patients and the finding that the O1 antigen of lipopolysaccharide (LPS) serves as the ICP1 receptor suggest that ICP1 is extremely well adapted to predation of human-pathogenic V. cholerae O1. PMID:21304168

  7. West wall, display area (room 101), view 4 of 4: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West wall, display area (room 101), view 4 of 4: northwest corner, with D.M. logistics office below (room 137), and D.O./D.D.O. offices above. Lower stairs lead to entry shown in view 13 - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  8. C-terminal Phenylalanine of Bacteriophage T7 Single-stranded DNA-binding Protein Is Essential for Strand Displacement Synthesis by T7 DNA Polymerase at a Nick in DNA*

    PubMed Central

    Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C.

    2009-01-01

    Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5′-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations. PMID:19726688

  9. C-terminal phenylalanine of bacteriophage T7 single-stranded DNA-binding protein is essential for strand displacement synthesis by T7 DNA polymerase at a nick in DNA.

    PubMed

    Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C

    2009-10-30

    Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5'-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations.

  10. Quick bacteriophage-mediated bioluminescence assay for detecting Staphylococcus spp. in sonicate fluid of orthopaedic artificial joints.

    PubMed

    Šuster, Katja; Podgornik, Aleš; Cör, Andrej

    2017-07-01

    Staphylococcus spp. accounts for up to two thirds of all microorganisms causing prosthetic joint infections, with Staphylococcus aureus and Staphylococcus epidermidis being the major cause. The present study describes a diagnostic model to detect staphylococci using a specific bacteriophage and bioluminescence detection, exploring the possibility of its use on sonicate fluid of orthopaedic artificial joints. Intracellular adenosine-5'-triphosphate release by bacteriophage mediated lysis of staphylococci was assessed to determine optimal parameters for detection. With the optimized method, a limit of detection of around 103 CFU/mL was obtained after incubation with bacteriophage for 2 h. Importantly, sonicate fluid did not prevent the ability of bacteriophage to infect bacteria and all simulated infected sonicate fluid as well as 6 clinical samples with microbiologically proven staphylococcal infection were detected as positive. The total assay took approximately 4 h. Collectively, the results indicate that the developed method promises a rapid, inexpensive and specific diagnostic detection of staphylococci in sonicate fluid of infected prosthetic joints. In addition, the unlimited pool of different existing bacteriophages, with different specificity for all kind of bacteria gives the opportunity for further investigations, improvements of the current model and implementation in other medical fields for the purpose of the establishment of a rapid diagnosis.

  11. The role of bacteriophages in periodontal health and disease.

    PubMed

    Pinto, Graça; Silva, Maria Daniela; Peddey, Mark; Sillankorva, Sanna; Azeredo, Joana

    2016-10-01

    The human periodontium health is commonly compromised by chronic inflammatory conditions and has become a major public health concern. Dental plaque, the precursor of periodontal disease, is a complex biofilm consisting mainly of bacteria, but also archaea, protozoa, fungi and viruses. Viruses that specifically infect bacteria - bacteriophages - are most common in the oral cavity. Despite this, their role in the progression of periodontal disease remains poorly explored. This review aims to summarize how bacteriophages interact with the oral microbiota, their ability to increase bacterial virulence and mediate the transfer of resistance genes and suggests how bacteriophages can be used as an alternative to the current periodontal disease therapies.

  12. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry.

    PubMed

    Colomer-Lluch, Marta; Imamovic, Lejla; Jofre, Juan; Muniesa, Maite

    2011-10-01

    This study evaluates the occurrence of bacteriophages carrying antibiotic resistance genes in animal environments. bla(TEM), bla(CTX-M) (clusters 1 and 9), and mecA were quantified by quantitative PCR in 71 phage DNA samples from pigs, poultry, and cattle fecal wastes. Densities of 3 to 4 log(10) gene copies (GC) of bla(TEM), 2 to 3 log(10) GC of bla(CTX-M), and 1 to 3 log(10) GC of mecA per milliliter or gram of sample were detected, suggesting that bacteriophages can be environmental vectors for the horizontal transfer of antibiotic resistance genes.

  13. Potential impact of environmental bacteriophages in spreading antibiotic resistance genes.

    PubMed

    Muniesa, Maite; Colomer-Lluch, Marta; Jofre, Juan

    2013-06-01

    The idea that bacteriophage transduction plays a role in the horizontal transfer of antibiotic resistance genes is gaining momentum. Such transduction might be vital in horizontal transfer from environmental to human body-associated biomes and here we review many lines of evidence supporting this notion. It is well accepted that bacteriophages are the most abundant entities in most environments, where they have been shown to be quite persistent. This fact, together with the ability of many phages to infect bacteria belonging to different taxa, makes them suitable vehicles for gene transfer. Metagenomic studies confirm that substantial percentages of the bacteriophage particles present in most environments contain bacterial genes, including mobile genetic elements and antibiotic resistance genes. When specific genes of resistance to antibiotics are detected by real-time PCR in the bacteriophage populations of different environments, only tenfold lower numbers of these genes are observed, compared with those found in the corresponding bacterial populations. In addition, the antibiotic resistance genes from these bacteriophages are functional and generate resistance to the bacteria when these genes are transfected. Finally, reports about the transduction of antibiotic resistance genes are on the increase.

  14. Bacteriophage-based Probiotic Preparation for Managing Shigella Infections

    DTIC Science & Technology

    2015-04-16

    for a probiotic preparation – based on naturally occurring bacteriophages – as a way to condition the GI tract’s microflora gently and favorably...10-Apr-2013 Approved for Public Release; Distribution Unlimited Final Report: Bacteriophage-based Probiotic Preparation for Managing Shigella...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Phage, Shigella, probiotics REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S

  15. The Protein Interaction Network of Bacteriophage Lambda with Its Host, Escherichia coli

    PubMed Central

    Blasche, Sonja; Wuchty, Stefan; Rajagopala, Seesandra V.

    2013-01-01

    Although most of the 73 open reading frames (ORFs) in bacteriophage λ have been investigated intensively, the function of many genes in host-phage interactions remains poorly understood. Using yeast two-hybrid screens of all lambda ORFs for interactions with its host Escherichia coli, we determined a raw data set of 631 host-phage interactions resulting in a set of 62 high-confidence interactions after multiple rounds of retesting. These links suggest novel regulatory interactions between the E. coli transcriptional network and lambda proteins. Targeted host proteins and genes required for lambda infection are enriched among highly connected proteins, suggesting that bacteriophages resemble interaction patterns of human viruses. Lambda tail proteins interact with both bacterial fimbrial proteins and E. coli proteins homologous to other phage proteins. Lambda appears to dramatically differ from other phages, such as T7, because of its unusually large number of modified and processed proteins, which reduces the number of host-virus interactions detectable by yeast two-hybrid screens. PMID:24049175

  16. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage of...

  17. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage of...

  18. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage of...

  19. Validated near-atomic resolution structure of bacteriophage epsilon15 derived from cryo-EM and modeling

    PubMed Central

    Baker, Matthew L.; Hryc, Corey F.; Zhang, Qinfen; Wu, Weimin; Jakana, Joanita; Haase-Pettingell, Cameron; Afonine, Pavel V.; Adams, Paul D.; King, Jonathan A.; Jiang, Wen; Chiu, Wah

    2013-01-01

    High-resolution structures of viruses have made important contributions to modern structural biology. Bacteriophages, the most diverse and abundant organisms on earth, replicate and infect all bacteria and archaea, making them excellent potential alternatives to antibiotics and therapies for multidrug-resistant bacteria. Here, we improved upon our previous electron cryomicroscopy structure of Salmonella bacteriophage epsilon15, achieving a resolution sufficient to determine the tertiary structures of both gp7 and gp10 protein subunits that form the T = 7 icosahedral lattice. This study utilizes recently established best practice for near-atomic to high-resolution (3–5 Å) electron cryomicroscopy data evaluation. The resolution and reliability of the density map were cross-validated by multiple reconstructions from truly independent data sets, whereas the models of the individual protein subunits were validated adopting the best practices from X-ray crystallography. Some sidechain densities are clearly resolved and show the subunit–subunit interactions within and across the capsomeres that are required to stabilize the virus. The presence of the canonical phage and jellyroll viral protein folds, gp7 and gp10, respectively, in the same virus suggests that epsilon15 may have emerged more recently relative to other bacteriophages. PMID:23840063

  20. Double-stranded DNA organization in bacteriophage heads: an alternative toroid-based model.

    PubMed Central

    Hud, N V

    1995-01-01

    Studies of the organization of double-stranded DNA within bacteriophage heads during the past four decades have produced a wealth of data. However, despite the presentation of numerous models, the true organization of DNA within phage heads remains unresolved. The observations of toroidal DNA structures in electron micrographs of phage lysates have long been cited as support for the organization of DNA in a spool-like fashion. This particular model, like all other models, has not been found to be consistent will all available data. Recently we proposed that DNA within toroidal condensates produced in vitro is organized in a manner significantly different from that suggested by the spool model. This new toroid model has allowed the development of an alternative model for DNA organization within bacteriophage heads that is consistent with a wide range of biophysical data. Here we propose that bacteriophage DNA is packaged in a toroid that is folded into a highly compact structure. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:8534805

  1. Newly Isolated Bacteriophages from the Podoviridae, Siphoviridae, and Myoviridae Families Have Variable Effects on Putative Novel Dickeya spp.

    PubMed

    Alič, Špela; Naglič, Tina; Tušek-Žnidarič, Magda; Ravnikar, Maja; Rački, Nejc; Peterka, Matjaž; Dreo, Tanja

    2017-01-01

    Soft rot pathogenic bacteria from the genus Dickeya cause severe economic losses in orchid nurseries worldwide, and there is no effective control currently available. In the last decade, the genus Dickeya has undergone multiple changes as multiple new taxa have been described, and just recently a new putative Dickeya species was reported. This study reports the isolation of three bacteriophages active against putative novel Dickeya spp. isolates from commercially produced infected orchids that show variable host-range profiles. Bacteriophages were isolated through enrichment from Dickeya -infected orchid tissue. Convective interaction media monolith chromatography was used to isolate bacteriophages from wastewaters, demonstrating its suitability for the isolation of infective bacteriophages from natural sources. Based on bacteriophage morphology, all isolated bacteriophages were classified as being in the order Caudovirales , belonging to three different families, Podoviridae , Myoviridae , and Siphoviridae . The presence of three different groups of bacteriophages was confirmed by analyzing the bacteriophage specificity of bacterial hosts, restriction fragment length polymorphism and plaque morphology. Bacteriophage BF25/12, the first reported Podoviridae bacteriophage effective against Dickeya spp., was selected for further characterization. Its genome sequence determined by next-generation sequencing showed limited similarity to other characterized Podoviridae bacteriophages. Interactions among the bacteriophages and Dickeya spp. were examined using transmission electron microscopy, which revealed degradation of electron-dense granules in response to bacteriophage infection in some Dickeya strains. The temperature stability of the chosen Podoviridae bacteriophage monitored over 1 year showed a substantial decrease in the survival of bacteriophages stored at -20°C over longer periods. It showed susceptibility to low pH and UV radiation but was stable in neutral

  2. Newly Isolated Bacteriophages from the Podoviridae, Siphoviridae, and Myoviridae Families Have Variable Effects on Putative Novel Dickeya spp.

    PubMed Central

    Alič, Špela; Naglič, Tina; Tušek-Žnidarič, Magda; Ravnikar, Maja; Rački, Nejc; Peterka, Matjaž; Dreo, Tanja

    2017-01-01

    Soft rot pathogenic bacteria from the genus Dickeya cause severe economic losses in orchid nurseries worldwide, and there is no effective control currently available. In the last decade, the genus Dickeya has undergone multiple changes as multiple new taxa have been described, and just recently a new putative Dickeya species was reported. This study reports the isolation of three bacteriophages active against putative novel Dickeya spp. isolates from commercially produced infected orchids that show variable host-range profiles. Bacteriophages were isolated through enrichment from Dickeya-infected orchid tissue. Convective interaction media monolith chromatography was used to isolate bacteriophages from wastewaters, demonstrating its suitability for the isolation of infective bacteriophages from natural sources. Based on bacteriophage morphology, all isolated bacteriophages were classified as being in the order Caudovirales, belonging to three different families, Podoviridae, Myoviridae, and Siphoviridae. The presence of three different groups of bacteriophages was confirmed by analyzing the bacteriophage specificity of bacterial hosts, restriction fragment length polymorphism and plaque morphology. Bacteriophage BF25/12, the first reported Podoviridae bacteriophage effective against Dickeya spp., was selected for further characterization. Its genome sequence determined by next-generation sequencing showed limited similarity to other characterized Podoviridae bacteriophages. Interactions among the bacteriophages and Dickeya spp. were examined using transmission electron microscopy, which revealed degradation of electron-dense granules in response to bacteriophage infection in some Dickeya strains. The temperature stability of the chosen Podoviridae bacteriophage monitored over 1 year showed a substantial decrease in the survival of bacteriophages stored at -20°C over longer periods. It showed susceptibility to low pH and UV radiation but was stable in neutral and

  3. CD4+ T Cell Help Guides Formation of CD103+ Lung-Resident Memory CD8+ T Cells during Influenza Viral Infection

    PubMed Central

    Laidlaw, Brian J.; Zhang, Nianzhi; Marshall, Heather D.; Staron, Mathew M.; Guan, Tianxia; Hu, Yinghong; Cauley, Linda S.; Craft, Joe; Kaech, Susan M.

    2014-01-01

    SUMMARY Tissue-resident memory T (Trm) cells provide enhanced protection against infection at mucosal sites. Here we found that CD4+ T cells are important for the formation of functional lung-resident CD8+ T cells after influenza virus infection. In the absence of CD4+ T cells, CD8+ T cells displayed reduced expression of CD103 (Itgae), were mislocalized away from airway epithelia, and demonstrated an impaired ability to recruit CD8+ T cells to the lung air-ways upon heterosubtypic challenge. CD4+ T cell-derived interferon-γ was necessary for generating lung-resident CD103+ CD8+ Trm CD8 T cells. Furthermore, expression of the transcription factor T-bet was increased in “unhelped” lung Trm cells, and a reduction in T-bet rescued CD103 expression in the absence of CD4+ T cell help. Thus, CD4+ T cell-dependent signals are important to limit expression of T-bet and allow for the development of CD103+ CD8+ Trm cells in the lung airways following respiratory infection. PMID:25308332

  4. Bacteriophage significantly reduces Listeria monocytogenes on raw salmon fillet tissue

    USDA-ARS?s Scientific Manuscript database

    We have demonstrated the antilisterial activity of generally recognized as safe (GRAS) bacteriophage LISTEX P100 (phage P100) on the surface of raw salmon fillet tissue against Listeria monocytogenes serotypes 1/2a and 4b. In a broth model system, phage P100 completely inhibited L. monocytogenes gro...

  5. Simulation experiments of the effect of space environment on bacteriophage and DNA thin films

    NASA Astrophysics Data System (ADS)

    Fekete, A.; Rontó, Gy.; Hegedüs, M.; Módos, K.; Bérces, A.; Kovács, G.; Lammer, H.; Panitz, C.

    2004-01-01

    The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of the genetic material is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation ( λ=254 nm) and high vacuum (10 -4 Pa). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA.

  6. Expression of a bioactive bacteriophage endolysin in Nicotiana benthamiana plants

    USDA-ARS?s Scientific Manuscript database

    The emergence and spread of antibiotic-resistant pathogens has led to an increased interest in alternative antimicrobial treatments, such as bacteriophage, bacteriophage-encoded peptidoglycan hydrolases (endolysins) and antimicrobial peptides. In our study, the antimicrobial activity of the CP933 en...

  7. Metavirome Sequencing of the Termite Gut Reveals the Presence of an Unexplored Bacteriophage Community

    PubMed Central

    Tikhe, Chinmay V.; Husseneder, Claudia

    2018-01-01

    The Formosan subterranean termite; Coptotermes formosanus is nutritionally dependent on the complex and diverse community of bacteria and protozoa in their gut. Although, there have been many studies to decipher the taxonomic and functional diversity of bacterial communities in the guts of termites, their bacteriophages remain unstudied. We sequenced the metavirome of the guts of Formosan subterranean termite workers to study the diversity of bacteriophages and other associated viruses. Results showed that the termites harbor a virome in their gut comprised of varied and previously unknown bacteriophages. Between 87–90% of the predicted dsDNA virus genes by Metavir showed similarity to the tailed bacteriophages (Caudovirales). Many predicted genes from the virome matched to bacterial prophage regions. These data are suggestive of a virome dominated by temperate bacteriophages. We predicted the genomes of seven novel Caudovirales bacteriophages from the termite gut. Three of these predicted bacteriophage genomes were found in high proportions in all the three termite colonies tested. Two bacteriophages are predicted to infect endosymbiotic bacteria of the gut protozoa. The presence of these putative bacteriophages infecting endosymbionts of the gut protozoa, suggests a quadripartite relationship between the termites their symbiotic protozoa, endosymbiotic bacteria of the protozoa and their bacteriophages. Other than Caudovirales, ss-DNA virus related genes were also present in the termite gut. We predicted the genomes of 12 novel Microviridae phages from the termite gut and seven of those possibly represent a new proposed subfamily. Circovirus like genomes were also assembled from the termite gut at lower relative abundance. We predicted 10 novel circovirus genomes in this study. Whether these circoviruses infect the termites remains elusive at the moment. The functional and taxonomical annotations suggest that the termites may harbor a core virome comprised of

  8. Efficient identification of tubby-binding proteins by an improved system of T7 phage display.

    PubMed

    Caberoy, Nora B; Zhou, Yixiong; Jiang, Xiaoyu; Alvarado, Gabriela; Li, Wei

    2010-01-01

    Mutation in the tubby gene causes adult-onset obesity, progressive retinal, and cochlear degeneration with unknown mechanism. In contrast, mutations in tubby-like protein 1 (Tulp1), whose C-terminus is highly homologous to tubby, only lead to retinal degeneration. We speculate that their diverse N-terminus may define their distinct disease profile. To elucidate the binding partners of tubby, we used tubby N-terminus (tubby-N) as bait to identify unknown binding proteins with open-reading-frame (ORF) phage display. T7 phage display was engineered with three improvements: high-quality ORF phage display cDNA library, specific phage elution by protease cleavage, and dual phage display for sensitive high throughput screening. The new system is capable of identifying unknown bait-binding proteins in as fast as approximately 4-7 days. While phage display with conventional cDNA libraries identifies high percentage of out-of-frame unnatural short peptides, all 28 tubby-N-binding clones identified by ORF phage display were ORFs. They encode 16 proteins, including 8 nuclear proteins. Fourteen proteins were analyzed by yeast two-hybrid assay and protein pull-down assay with ten of them independently verified. Comparative binding analyses revealed several proteins binding to both tubby and Tulp1 as well as one tubby-specific binding protein. These data suggest that tubby-N is capable of interacting with multiple nuclear and cytoplasmic protein binding partners. These results demonstrated that the newly-engineered ORF phage display is a powerful technology to identify unknown protein-protein interactions. (c) 2009 John Wiley & Sons, Ltd.

  9. Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods.

    PubMed

    Lone, Ayesha; Anany, Hany; Hakeem, Mohammed; Aguis, Louise; Avdjian, Anne-Claire; Bouget, Marina; Atashi, Arash; Brovko, Luba; Rochefort, Dominic; Griffiths, Mansel W

    2016-01-18

    Due to lack of adequate control methods to prevent contamination in fresh produce and growing consumer demand for natural products, the use of bacteriophages has emerged as a promising approach to enhance safety of these foods. This study sought to control Listeria monocytogenes in cantaloupes and RTE meat and Escherichia coli O104:H4 in alfalfa seeds and sprouts under different storage conditions by using specific lytic bacteriophage cocktails applied either free or immobilized. Bacteriophage cocktails were introduced into prototypes of packaging materials using different techniques: i) immobilizing on positively charged modified cellulose membranes, ii) impregnating paper with bacteriophage suspension, and iii) encapsulating in alginate beads followed by application of beads onto the paper. Phage-treated and non-treated samples were stored for various times and at temperatures of 4°C, 12°C or 25°C. In cantaloupe, when free phage cocktail was added, L. monocytogenes counts dropped below the detection limit of the plating technique (<1 log CFU/g) after 5 days of storage at both 4°C and 12°C. However, at 25°C, counts below the detection limit were observed after 3 and 6h and a 2-log CFU/g reduction in cell numbers was seen after 24h. For the immobilized Listeria phage cocktail, around 1-log CFU/g reduction in the Listeria count was observed by the end of the storage period for all tested storage temperatures. For the alfalfa seeds and sprouts, regardless of the type of phage application technique (spraying of free phage suspension, bringing in contact with bacteriophage-based materials (paper coated with encapsulated bacteriophage or impregnated with bacteriophage suspension)), the count of E. coli O104:H4 was below the detection limit (<1 log CFU/g) after 1h in seeds and about a 1-log cycle reduction in E. coli count was observed on the germinated sprouts by day 5. In ready-to-eat (RTE) meat, LISTEX™ P100, a commercial phage product, was able to

  10. [Advance on genome research of Yersinia pestis bacteriophage].

    PubMed

    Tan, H L; Wang, P; Li, W

    2017-04-10

    Completion of the genome sequences on Yersinia pestis bacteriophage offered unprecedented opportunity for researchers to carry out related genomic studies. This review was based on the genomic sequences and provided a genomic perspective in describing the essential features of genome on Yersinia pestis bacteriophage. Based on the comparative genomics, genetic evolutionary relationship was discussed. Description of functions from the gene prediction and protein annotation provided evidence for further related studies.

  11. Interaction of packaging motor with the polymerase complex of dsRNA bacteriophage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisal, Jiri; Kainov, Denis E.; Lam, TuKiet T.

    2006-07-20

    Many viruses employ molecular motors to package their genomes into preformed empty capsids (procapsids). In dsRNA bacteriophages the packaging motor is a hexameric ATPase P4, which is an integral part of the multisubunit procapsid. Structural and biochemical studies revealed a plausible RNA-translocation mechanism for the isolated hexamer. However, little is known about the structure and regulation of the hexamer within the procapsid. Here we use hydrogen-deuterium exchange and mass spectrometry to delineate the interactions of the P4 hexamer with the bacteriophage phi12 procapsid. P4 associates with the procapsid via its C-terminal face. The interactions also stabilize subunit interfaces within themore » hexamer. The conformation of the virus-bound hexamer is more stable than the hexamer in solution, which is prone to spontaneous ring openings. We propose that the stabilization within the viral capsid increases the packaging processivity and confers selectivity during RNA loading.« less

  12. Mapping a disordered portion of the Brz2001-binding site on a plant monooxygenase, DWARF4, using a quartz-crystal microbalance biosensor-based T7 phage display.

    PubMed

    Takakusagi, Yoichi; Manita, Daisuke; Kusayanagi, Tomoe; Izaguirre-Carbonell, Jesus; Takakusagi, Kaori; Kuramochi, Kouji; Iwabata, Kazuki; Kanai, Yoshihiro; Sakaguchi, Kengo; Sugawara, Fumio

    2013-04-01

    In small-molecule/protein interaction studies, technical difficulties such as low solubility of small molecules or low abundance of protein samples often restrict the progress of research. Here, we describe a quartz-crystal microbalance (QCM) biosensor-based T7 phage display in combination use with a receptor-ligand contacts (RELIC) bioinformatics server for application in a plant Brz2001/DWARF4 system. Brz2001 is a brassinosteroid biosynthesis inhibitor in the less-soluble triazole series of compounds that targets DWARF4, a cytochrome P450 (Cyp450) monooxygenase containing heme and iron. Using a Brz2001 derivative that has higher solubility in 70% EtOH and forms a self-assembled monolayer on gold electrode, we selected 34 Brz2001-recognizing peptides from a 15-mer T7 phage-displayed random peptide library using a total of four sets of one-cycle biopanning. The RELIC/MOTIF program revealed continuous and discontinuous short motifs conserved within the 34 Brz2001-selected 15-mer peptide sequences, indicating the increase of information content for Brz2001 recognition. Furthermore, an analysis of similarity between the 34 peptides and the amino-acid sequence of DWARF4 using the RELIC/MATCH program generated a similarity plot and a cluster diagram of the amino-acid sequence. Both of these data highlighted an internally located disordered portion of a catalytic site on DWARF4, indicating that this portion is essential for Brz2001 recognition. A similar trend was also noted by an analysis using another 26 Brz2001-selected peptides, and not observed using the 27 gold electrode-recognizing control peptides, demonstrating the reproducibility and specificity of this method. Thus, this affinity-based strategy enables high-throughput detection of the small-molecule-recognizing portion on the target protein, which overcomes technical difficulties such as sample solubility or preparation that occur when conventional methods are used.

  13. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage

    PubMed Central

    Jurczak-Kurek, Agata; Gąsior, Tomasz; Nejman-Faleńczyk, Bożena; Bloch, Sylwia; Dydecka, Aleksandra; Topka, Gracja; Necel, Agnieszka; Jakubowska-Deredas, Magdalena; Narajczyk, Magdalena; Richert, Malwina; Mieszkowska, Agata; Wróbel, Borys; Węgrzyn, Grzegorz; Węgrzyn, Alicja

    2016-01-01

    A large scale analysis presented in this article focuses on biological and physiological variety of bacteriophages. A collection of 83 bacteriophages, isolated from urban sewage and able to propagate in cells of different bacterial hosts, has been obtained (60 infecting Escherichia coli, 10 infecting Pseudomonas aeruginosa, 4 infecting Salmonella enterica, 3 infecting Staphylococcus sciuri, and 6 infecting Enterococcus faecalis). High biological diversity of the collection is indicated by its characteristics, both morphological (electron microscopic analyses) and biological (host range, plaque size and morphology, growth at various temperatures, thermal inactivation, sensitivity to low and high pH, sensitivity to osmotic stress, survivability upon treatment with organic solvents and detergents), and further supported by hierarchical cluster analysis. By the end of the research no larger collection of phages from a single environmental source investigated by these means had been found. The finding was confirmed by whole genome analysis of 7 selected bacteriophages. Moreover, particular bacteriophages revealed unusual biological features, like the ability to form plaques at low temperature (4 °C), resist high temperature (62 °C or 95 °C) or survive in the presence of an organic solvents (ethanol, acetone, DMSO, chloroform) or detergent (SDS, CTAB, sarkosyl) making them potentially interesting in the context of biotechnological applications. PMID:27698408

  14. Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus

    PubMed Central

    Neamah, Maan M.; Mir-Sanchis, Ignacio; López-Sanz, María; Acosta, Sonia; Baquedano, Ignacio; Haag, Andreas F.

    2017-01-01

    Abstract DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages. PMID:28475766

  15. Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus.

    PubMed

    Neamah, Maan M; Mir-Sanchis, Ignacio; López-Sanz, María; Acosta, Sonia; Baquedano, Ignacio; Haag, Andreas F; Marina, Alberto; Ayora, Silvia; Penadés, José R

    2017-06-20

    DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Bacteriophage-nanocomposites: an easy and reproducible method for the construction, handling, storage and transport of conjugates for deployment of bacteriophages active against Pseudomonas aeruginosa.

    PubMed

    Cooper, Ian R; Illsley, Matthew; Korobeinyk, Alina V; Whitby, Raymond L D

    2015-04-01

    The purpose of this work was proof of concept to develop a novel, cost effective protocol for the binding of bacteriophages to a surface without loss of function, after storage in various media. The technology platform involved covalently bonding bacteriophage 13 (a Pseudomonas aeruginosa bacteriophage) to two magnetised multiwalled carbon nanotube scaffolds using a series of buffers; bacteriophage-nanotube (B-N) conjugates were efficacious after storage at 20 °C for six weeks. B-N conjugates were added to human cell culture in vitro for 9 days without causing necrosis and apoptosis. B-N conjugates were frozen (-20 °C) in cell culture media for several weeks, after which recovery from the human cell culture medium was possible using a simple magnetic separation technique. The retention of viral infective potential was demonstrated by subsequent spread plating onto lawns of susceptible P. aeruginosa. Analysis of the human cell culture medium revealed the production of interleukins by the human fibroblasts upon exposure to the bacteriophage. One day after exposure, IL-8 levels transitorily increased between 60 and 100 pg/mL, but this level was not found on any subsequent days, suggesting an initial but not long lasting response. This paper outlines the development of a method to deliver antimicrobial activity to a surface that is small enough to be combined with other materials. To our knowledge at time of publication, this is the first report of magnetically coupled bacteriophages specific to human pathogens which can be recovered from test systems, and could represent a novel means to conditionally deploy antibacterial agents into living eukaryotic systems without the risks of some antibiotic therapies. Copyright © 2015. Published by Elsevier B.V.

  17. CD4 T cells play important roles in maintaining IL-17-producing γδ T-cell subsets in naive animals.

    PubMed

    Do, Jeong-Su; Visperas, Anabelle; O'Brien, Rebecca L; Min, Booki

    2012-04-01

    A proportional balance between αβ and γδ T-cell subsets in the periphery is exceedingly well maintained by a homeostatic mechanism. However, a cellular mechanism underlying the regulation remains undefined. We recently reported that a subset of developing γδ T cells spontaneously acquires interleukin (IL)-17-producing capacity even within naive animals through a transforming growth factor (TGF)β1-dependent mechanism, thus considered 'innate' IL-17-producing cells. Here, we report that γδ T cells generated within αβ T cell (or CD4 T cell)-deficient environments displayed altered cytokine profiles; particularly, 'innate' IL-17 expression was significantly impaired compared with those in wild-type mice. Impaired IL-17 production in γδ T cells was directly related to CD4 T-cell deficiency, because depletion of CD4 T cells in wild-type mice diminished and adoptive CD4 T-cell transfer into T-cell receptor β-/- mice restored IL-17 expression in γδ T cells. CD4 T cell-mediated IL-17 expression required TGFβ1. Moreover, Th17 but not Th1 or Th2 effector CD4 T cells were highly efficient in enhancing γδ T-cell IL-17 expression. Taken together, our results highlight a novel CD4 T cell-dependent mechanism that shapes the generation of IL-17+ γδ T cells in naive settings.

  18. Isolation and characterization of two bacteriophages with strong in vitro antimicrobial activity against Pseudomonas aeruginosa isolated from dogs with ocular infections.

    PubMed

    Santos, Thiago M A; Ledbetter, Eric C; Caixeta, Luciano S; Bicalho, Marcela L S; Bicalho, Rodrigo C

    2011-08-01

    To isolate and characterize bacteriophages with strong in vitro lytic activity against various pathogenic Pseudomonas aeruginosa strains isolated from dogs with ocular infections. 26 genetically distinct P aeruginosa isolates. P aeruginosa strains were derived from dogs with naturally acquired ulcerative keratitis. From a large-scale screening for bacteriophages with potential therapeutic benefit against canine ocular infections, 2 bacteriophages (P2S2 and P5U5) were selected; host ranges were determined, and phage nucleic acid type and genetic profile were identified via enzymatic digestion. Electron microscopy was used to characterize bacteriophage ultrastructure. Bacteriophage temperature and pH stabilities were assessed by use of double-layer agar overlay titration. A cocultivation assay was used to evaluate the effect of the bacteriophages on bacterial host growth. P5U5 was active against all P aeruginosa isolates, whereas P2S2 formed lytic plaques on plates of 21 (80.8%) isolates. For each bacteriophage, the genomic nucleic acid was DNA; each was genetically distinct. Ultrastructurally, P2S2 and P5U5 appeared likely to belong to the Podoviridae and Siphoviridae families, respectively. The bacteriophages were stable within a pH range of 4 to 12; however, titers of both bacteriophages decreased following heating for 10 to 50 minutes at 45° or 60°C. Growth of each P aeruginosa isolate was significantly inhibited in coculture with P2S2 or P5U5; the dose response was related to the plaque-forming unit-to-CFU ratios. Bacteriophages P2S2 and P5U5 appear to be good candidates for phage treatment of infection caused by pathogenic P aeruginosa in dogs.

  19. Application of a bacteriophage lysin to disrupt biofilms formed by the animal pathogen Streptococcus suis.

    PubMed

    Meng, Xiangpeng; Shi, Yibo; Ji, Wenhui; Meng, Xueling; Zhang, Jing; Wang, Hengan; Lu, Chengping; Sun, Jianhe; Yan, Yaxian

    2011-12-01

    Bacterial biofilms are crucial to the pathogenesis of many important infections and are difficult to eradicate. Streptococcus suis is an important pathogen of pigs, and here the biofilm-forming ability of 32 strains of this species was determined. Significant biofilms were completely formed by 10 of the strains after 60 h of incubation, with exopolysaccharide production in the biofilm significantly higher than that in the corresponding planktonic cultures. S. suis strain SS2-4 formed a dense biofilm, as revealed by scanning electron microscopy, and in this state exhibited increased resistance to a number of antibiotics (ampicillin, amoxicillin, ciprofloxacin, kanamycin, and rifampin) compared to that of planktonic cultures. A bacteriophage lysin, designated LySMP, was used to attack biofilms alone and in combination with antibiotics and bacteriophage. The results demonstrated that the biofilms formed by S. suis, especially strains SS2-4 and SS2-H, could be dispersed by LySMP and with >80% removal compared to a biofilm reduction by treatment with either antibiotics or bacteriophage alone of less than 20%; in addition to disruption of the biofilm structure, the S. suis cells themselves were inactivated by LySMP. The efficacy of LySMP was not dose dependent, and in combination with antibiotics, it acted synergistically to maximize dispersal of the S. suis biofilm and inactivate the released cells. These data suggest that bacteriophage lysin could form part of an effective strategy to treat S. suis infections and represents a new class of antibiofilm agents.

  20. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition.

    PubMed

    Barber, Daniel L; Mayer-Barber, Katrin D; Feng, Carl G; Sharpe, Arlene H; Sher, Alan

    2011-02-01

    Although CD4 T cells are required for host resistance to Mycobacterium tuberculosis, they may also contribute to pathology. In this study, we examine the role of the inhibitory receptor PD-1 and its ligand PD-L1 during M. tuberculosis infection. After aerosol exposure, PD-1 knockout (KO) mice develop high numbers of M. tuberculosis-specific CD4 T cells but display markedly increased susceptibility to infection. Importantly, we show that CD4 T cells themselves drive the increased bacterial loads and pathology seen in infected PD-1 KO mice, and PD-1 deficiency in CD4 T cells is sufficient to trigger early mortality. PD-L1 KO mice also display enhanced albeit less severe susceptibility, indicating that T cells are regulated by multiple PD ligands during M. tuberculosis infection. M. tuberculosis-specific CD8 T cell responses were normal in PD-1 KO mice, and CD8 T cells only had a minor contribution to the exacerbated disease in the M. tuberculosis-infected PD-1 KO and PD-L1 KO mice. Thus, in the absence of the PD-1 pathway, M. tuberculosis benefits from CD4 T cell responses, and host resistance requires inhibition by PD-1 to prevent T cell-driven exacerbation of the infection.

  1. Structure and mechanism of the phage T4 recombination mediator protein UvsY

    DOE PAGES

    Gajewski, Stefan; Waddell, Michael Brett; Vaithiyalingam, Sivaraja; ...

    2016-03-07

    The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY–ssDNA interaction occurs within the assembly via twomore » distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA–gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rim of the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA–UvsX filament.« less

  2. Construction of helper plasmid-mediated dual-display phage for autoantibody screening in serum.

    PubMed

    Rajaram, Kaushik; Vermeeren, Veronique; Somers, Klaartje; Somers, Veerle; Michiels, Luc

    2014-01-01

    M13 filamentous bacteriophage has been used in displaying disease-specific antibodies, biomarkers, and peptides. One of the major drawbacks of using phage in diagnostic assays is the aspecific adsorption of proteins leading to a high background signal and decreasing sensitivity. To deal with this, we developed a genetically pure, exchangeable dual-display phage system in which biomarkers and streptavidin-binding protein (SBP) are displayed at opposite ends of the phage. This approach allows for sample purification, using streptavidin-coated magnetic beads resulting in a higher sensitivity of signal detection assays. Our dual-display cassette system approach also allows for easy exchange of both the anchor protein (SBP) and the displayed biomarker. The presented principle is applied for the detection of antibody reactivity against UH-RA.21 which is a good candidate biomarker for rheumatoid arthritis (RA). The applicability of dual-display phage preparation using a helper plasmid system is demonstrated, and its increased sensitivity in phage ELISA assays using patient serum samples is shown.

  3. Complete genome sequence of new bacteriophage phiE142, which causes simultaneously lysis of multidrug-resistant Escherichia coli O157:H7 and Salmonella enterica.

    PubMed

    Amarillas, Luis; Chaidez, Cristobal; González-Robles, Arturo; León-Félix, Josefina

    2016-01-01

    The emergence of antibiotic-resistant foodborne bacteria is a global health problem that requires immediate attention. Bacteriophages are a promising biotechnological alternative approach against bacterial pathogens. However, a detailed analysis of phage genomes is essential to assess the safety of the phages prior to their use as biocontrol agents. Therefore, here we report the complete genome sequence of bacteriophage phiE142, which is able to lyse Salmonella and multidrug-resistant Escherichia coli O157:H7 strains. Bacteriophage phiE142 belongs to the Myoviridae family due to the presence of long non-flexible tail and icosahedral head. The genome is composed of 121,442 bp and contains 194 ORFs, and 2 tRNAs. Furthermore, the phiE142 genome does not contain any genes coding for food-borne allergens, antibiotics resistance, virulence factors, or associated with lysogenic conversion. The bacteriophage phiE142 is characterized by broad host range and compelling genetic attributes making them potential candidates as a biocontrol agent.

  4. Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology.

    PubMed

    Bibby, Kyle

    2014-02-01

    The recent rise in "omics"-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases-currently, only 0.001% of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.

  5. T Cell Receptor Engineering and Analysis Using the Yeast Display Platform

    PubMed Central

    Smith, Sheena N.; Harris, Daniel T.; Kranz, David M.

    2017-01-01

    The αβ heterodimeric T cell receptor (TCR) recognizes peptide antigens that are transported to the cell surface as a complex with a protein encoded by the major histocompatibility complex (MHC). T cells thus evolved a strategy to sense these intracellular antigens, and to respond either by eliminating the antigen-presenting cell (e.g. a virus-infected cell) or by secreting factors that recruit the immune system to the site of the antigen. The central role of the TCR in the binding of antigens as peptide-MHC (pepMHC) ligands has now been studied thoroughly. Interestingly, despite their exquisite sensitivity (e.g. T cell activation by as few as 1 to 3 pepMHC complexes on a single target cell), TCRs are known to have relatively low affinities for pepMHC, with KD values in the micromolar range. There has been interest in engineering the affinity of TCRs in order to use this class of molecules in ways similar to now done with antibodies. By doing so, it would be possible to harness the potential of TCRs as therapeutics against a much wider array of antigens that include essentially all intracellular targets. To engineer TCRs, and to analyze their binding features more rapidly, we have used a yeast display system as a platform. Expression and engineering of a single-chain form of the TCR, analogous to scFv fragments from antibodies, allow the TCR to be affinity matured with a variety of possible pepMHC ligands. In addition, the yeast display platform allows one to rapidly generate TCR variants with diverse binding affinities and to analyze specificity and affinity without the need for purification of soluble forms of the TCRs. The present chapter describes the methods for engineering and analyzing single-chain TCRs using yeast display. PMID:26060072

  6. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection.

    PubMed

    Schooley, Robert T; Biswas, Biswajit; Gill, Jason J; Hernandez-Morales, Adriana; Lancaster, Jacob; Lessor, Lauren; Barr, Jeremy J; Reed, Sharon L; Rohwer, Forest; Benler, Sean; Segall, Anca M; Taplitz, Randy; Smith, Davey M; Kerr, Kim; Kumaraswamy, Monika; Nizet, Victor; Lin, Leo; McCauley, Melanie D; Strathdee, Steffanie A; Benson, Constance A; Pope, Robert K; Leroux, Brian M; Picel, Andrew C; Mateczun, Alfred J; Cilwa, Katherine E; Regeimbal, James M; Estrella, Luis A; Wolfe, David M; Henry, Matthew S; Quinones, Javier; Salka, Scott; Bishop-Lilly, Kimberly A; Young, Ry; Hamilton, Theron

    2017-10-01

    Widespread antibiotic use in clinical medicine and the livestock industry has contributed to the global spread of multidrug-resistant (MDR) bacterial pathogens, including Acinetobacter baumannii We report on a method used to produce a personalized bacteriophage-based therapeutic treatment for a 68-year-old diabetic patient with necrotizing pancreatitis complicated by an MDR A. baumannii infection. Despite multiple antibiotic courses and efforts at percutaneous drainage of a pancreatic pseudocyst, the patient deteriorated over a 4-month period. In the absence of effective antibiotics, two laboratories identified nine different bacteriophages with lytic activity for an A. baumannii isolate from the patient. Administration of these bacteriophages intravenously and percutaneously into the abscess cavities was associated with reversal of the patient's downward clinical trajectory, clearance of the A. baumannii infection, and a return to health. The outcome of this case suggests that the methods described here for the production of bacteriophage therapeutics could be applied to similar cases and that more concerted efforts to investigate the use of therapeutic bacteriophages for MDR bacterial infections are warranted.

  7. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection

    PubMed Central

    Biswas, Biswajit; Gill, Jason J.; Hernandez-Morales, Adriana; Lancaster, Jacob; Lessor, Lauren; Barr, Jeremy J.; Reed, Sharon L.; Rohwer, Forest; Benler, Sean; Segall, Anca M.; Taplitz, Randy; Smith, Davey M.; Kerr, Kim; Kumaraswamy, Monika; Nizet, Victor; Lin, Leo; McCauley, Melanie D.; Strathdee, Steffanie A.; Benson, Constance A.; Pope, Robert K.; Leroux, Brian M.; Picel, Andrew C.; Mateczun, Alfred J.; Cilwa, Katherine E.; Regeimbal, James M.; Estrella, Luis A.; Wolfe, David M.; Henry, Matthew S.; Quinones, Javier; Salka, Scott; Bishop-Lilly, Kimberly A.; Young, Ry; Hamilton, Theron

    2017-01-01

    ABSTRACT Widespread antibiotic use in clinical medicine and the livestock industry has contributed to the global spread of multidrug-resistant (MDR) bacterial pathogens, including Acinetobacter baumannii. We report on a method used to produce a personalized bacteriophage-based therapeutic treatment for a 68-year-old diabetic patient with necrotizing pancreatitis complicated by an MDR A. baumannii infection. Despite multiple antibiotic courses and efforts at percutaneous drainage of a pancreatic pseudocyst, the patient deteriorated over a 4-month period. In the absence of effective antibiotics, two laboratories identified nine different bacteriophages with lytic activity for an A. baumannii isolate from the patient. Administration of these bacteriophages intravenously and percutaneously into the abscess cavities was associated with reversal of the patient's downward clinical trajectory, clearance of the A. baumannii infection, and a return to health. The outcome of this case suggests that the methods described here for the production of bacteriophage therapeutics could be applied to similar cases and that more concerted efforts to investigate the use of therapeutic bacteriophages for MDR bacterial infections are warranted. PMID:28807909

  8. Filamentous bacteriophage as a novel therapeutic tool for Alzheimer's disease treatment.

    PubMed

    Solomon, Beka

    2008-10-01

    Antibodies towards the N-terminal region of the amyloid-beta peptide (AbetaP) bind to Abeta fibrils, leading to their disaggregation. We developed an immunization procedure using filamentous phages displaying the only four amino acids EFRH encompassing amino acids 3-6 of the 42 residues of AbetaP, found to be the main regulatory site for Abeta formation. Phages displaying EFRH epitope are effective in eliciting humoral response against AbetaP which, in turn, relieves amyloid burden in brains of amyloid-beta protein precursor transgenic mice, improving their ability to perform cognitive tasks. In order to overcome the low permeability of the blood brain barrier for targeting 'anti-aggregating' monoclonal antibodies (mAbs) to Abeta plaques in the brain, we applied antibody engineering methods to minimize the size of mAbs while maintaining their biological activity. Single-chain antibodies displayed on the surface of filamentous phage showed the ability to enter the central nervous system (CNS). The genetically engineered filamentous bacteriophage proved to be an efficient, nontoxic viral delivery vector to the brain, offering an obvious advantage over other mammalian vectors. The feasibility of these novel strategies for production and targeting of anti-aggregating antibodies against Abeta plaques to disease affected regions in the CNS may have clinical potential for treatment of Alzheimer's disease.

  9. Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria.

    PubMed

    Pérez Pulido, Rubén; Grande Burgos, Maria José; Gálvez, Antonio; Lucas López, Rosario

    2016-10-01

    Bacteriophages have attracted great attention for application in food biopreservation. Lytic bacteriophages specific for human pathogenic bacteria can be isolated from natural sources such as animal feces or industrial wastes where the target bacteria inhabit. Lytic bacteriophages have been tested in different food systems for inactivation of main food-borne pathogens including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Salmonella enterica, Shigella spp., Campylobacter jejuni and Cronobacter sakazkii, and also for control of spoilage bacteria. Application of lytic bacteriophages could selectively control host populations of concern without interfering with the remaining food microbiota. Bacteriophages could also be applied for inactivation of bacteria attached to food contact surfaces or grown as biofilms. Bacteriophages may receive a generally recognized as safe status based on their lack of toxicity and other detrimental effects to human health. Phage preparations specific for L. monocytogenes, E. coli O157:H7 and S. enterica serotypes have been commercialized and approved for application in foods or as part of surface decontamination protocols. Phage endolysins have a broader host specificity compared to lytic bacteriophages. Cloned endolysins could be used as natural preservatives, singly or in combination with other antimicrobials such as bacteriocins.

  10. Simulation experiments of the effect of space environment on bacteriophage and DNA thin films

    NASA Technical Reports Server (NTRS)

    Fekete, A.; Ronto, Gy; Hegedus, M.; Modos, K.; Berces, A.; Kovacs, G.; Lammer, H.; Panitz, C.

    2004-01-01

    The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of the genetic material is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation (lambda=254 nm) and high vacuum (10(-4) Pa). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  11. Application of bacteriophages in sensor development.

    PubMed

    Peltomaa, Riikka; López-Perolio, Irene; Benito-Peña, Elena; Barderas, Rodrigo; Moreno-Bondi, María Cruz

    2016-03-01

    Bacteriophage-based bioassays are a promising alternative to traditional antibody-based immunoassays. Bacteriophages, shortened to phages, can be easily conjugated or genetically engineered. Phages are robust, ubiquitous in nature, and harmless to humans. Notably, phages do not usually require inoculation and killing of animals; and thus, the production of phages is simple and economical. In recent years, phage-based biosensors have been developed featuring excellent robustness, sensitivity, and selectivity in combination with the ease of integration into transduction devices. This review provides a critical overview of phage-based bioassays and biosensors developed in the last few years using different interrogation methods such as colorimetric, enzymatic, fluorescence, surface plasmon resonance, quartz crystal microbalance, magnetoelastic, Raman, or electrochemical techniques.

  12. Significance of the Bacteriophage Treatment Schedule in Reducing Salmonella Colonization of Poultry

    PubMed Central

    Bardina, Carlota; Spricigo, Denis A.; Cortés, Pilar

    2012-01-01

    Salmonella remains the major cause of food-borne diseases worldwide, with chickens known to be the main reservoir for this zoonotic pathogen. Among the many approaches to reducing Salmonella colonization of broilers, bacteriophage offers several advantages. In this study, three bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) obtained from our collection that exhibited a broad host range against Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium were characterized with respect to morphology, genome size, and restriction patterns. A cocktail composed of the three bacteriophages was more effective in promoting the lysis of S. Enteritidis and S. Typhimurium cultures than any of the three bacteriophages alone. In addition, the cocktail was able to lyse the Salmonella enterica serovars Virchow, Hadar, and Infantis. The effectiveness of the bacteriophage cocktail in reducing the concentration of S. Typhimurium was tested in two animal models using different treatment schedules. In the mouse model, 50% survival was obtained when the cocktail was administered simultaneously with bacterial infection and again at 6, 24, and 30 h postinfection. Likewise, in the White Leghorn chicken specific-pathogen-free (SPF) model, the best results, defined as a reduction of Salmonella concentration in the chicken cecum, were obtained when the bacteriophage cocktail was administered 1 day before or just after bacterial infection and then again on different days postinfection. Our results show that frequent treatment of the chickens with bacteriophage, and especially prior to colonization of the intestinal tract by Salmonella, is required to achieve effective bacterial reduction over time. PMID:22773654

  13. Characterization of the endolysin from the Enterococcus faecalis bacteriophage VD13

    USDA-ARS?s Scientific Manuscript database

    Bacteriophage infecting bacteria produce endolysins (peptidoglycan hydrolases) to lyse the host cell from within and release nascent bacteriophage particles. Recombinant endolysins can also lyse Gram-positive bacteria when added exogenously. As a potential alternative to antibiotics, we cloned and...

  14. Draft Genome Sequence of Geobacillus kaustophilus GBlys, a Lysogenic Strain with Bacteriophage ϕOH2

    PubMed Central

    Mori, Kazuki; Martono, Hindra; Nagayoshi, Yuko; Fujino, Yasuhiro; Tashiro, Kosuke; Kuhara, Satoru; Ohshima, Toshihisa

    2013-01-01

    Geobacillus kaustophilus strain GBlys was isolated along with the bacteriophage ϕOH2, which infects G. kaustophilus NBRC 102445T. Here we present a draft sequence of this strain’s genome, which consists of 216 contigs for a total of 3,541,481 bp, 3,679 predicted coding sequences, and a G+C content of 52.1%. PMID:23950135

  15. [Genetic study of bacteriophage phi81. I. Isolation, study of complementation and preliminary mapping of amber-mutants of bacteriophage phi81].

    PubMed

    Sineokiĭ, S P; Pogosov, V Z; Iankovskiĭ, N K; Krylov, V N

    1976-01-01

    123 Amber mutants of lambdoid bacteriophage phi81 are isolated and distributed into 19 complementation groups. Deletion mapping made possible to locate 5 gene groups on the genetic map of bacteriophage phi81 and to determine a region of possible location of mm' sticky ends on the prophage genetic map. A gene of phage phi81 is localized, which controls the adsorption specificity, and which functional similarity to a respective gene of phage phi80 is demonstrated.

  16. Mapping protein-protein interactions with phage-displayed combinatorial peptide libraries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, B. K.; Castagnoli, L.; Biosciences Division

    This unit describes the process and analysis of affinity selecting bacteriophage M13 from libraries displaying combinatorial peptides fused to either a minor or major capsid protein. Direct affinity selection uses target protein bound to a microtiter plate followed by purification of selected phage by ELISA. Alternatively, there is a bead-based affinity selection method. These methods allow one to readily isolate peptide ligands that bind to a protein target of interest and use the consensus sequence to search proteomic databases for putative interacting proteins.

  17. Reduced Plasmodium Parasite Burden Associates with CD38+ CD4+ T Cells Displaying Cytolytic Potential and Impaired IFN-γ Production

    PubMed Central

    Burel, Julie G.; Apte, Simon H.; Groves, Penny L.; Klein, Kerenaftali; McCarthy, James S.; Doolan, Denise L.

    2016-01-01

    Using a unique resource of samples from a controlled human malaria infection (CHMI) study, we identified a novel population of CD4+ T cells whose frequency in the peripheral blood was inversely correlated with parasite burden following P. falciparum infection. These CD4+ T cells expressed the multifunctional ectoenzyme CD38 and had unique features that distinguished them from other CD4+ T cells. Specifically, their phenotype was associated with proliferation, activation and cytotoxic potential as well as significantly impaired production of IFN-γ and other cytokines and reduced basal levels of activated STAT1. A CD38+ CD4+ T cell population with similar features was identified in healthy uninfected individuals, at lower frequency. CD38+ CD4+ T cells could be generated in vitro from CD38- CD4+ T cells after antigenic or mitogenic stimulation. This is the first report of a population of CD38+ CD4+ T cells with a cytotoxic phenotype and markedly impaired IFN-γ capacity in humans. The expansion of this CD38+ CD4+ T population following infection and its significant association with reduced blood-stage parasite burden is consistent with an important functional role for these cells in protective immunity to malaria in humans. Their ubiquitous presence in humans suggests that they may have a broad role in host-pathogen defense. Trial Registration ClinicalTrials.gov clinical trial numbers ACTRN12612000814875, ACTRN12613000565741 and ACTRN12613001040752 PMID:27662621

  18. phiGENOME: an integrative navigation throughout bacteriophage genomes.

    PubMed

    Stano, Matej; Klucar, Lubos

    2011-11-01

    phiGENOME is a web-based genome browser generating dynamic and interactive graphical representation of phage genomes stored in the phiSITE, database of gene regulation in bacteriophages. phiGENOME is an integral part of the phiSITE web portal (http://www.phisite.org/phigenome) and it was optimised for visualisation of phage genomes with the emphasis on the gene regulatory elements. phiGENOME consists of three components: (i) genome map viewer built using Adobe Flash technology, providing dynamic and interactive graphical display of phage genomes; (ii) sequence browser based on precisely formatted HTML tags, providing detailed exploration of genome features on the sequence level and (iii) regulation illustrator, based on Scalable Vector Graphics (SVG) and designed for graphical representation of gene regulations. Bringing 542 complete genome sequences accompanied with their rich annotations and references, makes phiGENOME a unique information resource in the field of phage genomics. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Isolation and Characterization of Lytic Properties of Bacteriophages Specific for M. haemolytica Strains.

    PubMed

    Urban-Chmiel, Renata; Wernicki, Andrzej; Stęgierska, Diana; Dec, Marta; Dudzic, Anna; Puchalski, Andrzej

    2015-01-01

    The objective of this study was isolation and morphological characterization of temperate bacteriophages obtained from M. haemolytica strains and evaluation of their lytic properties in vitro against M. haemolytica isolated from the respiratory tract of calves. The material for the study consisted of the reference strain M. haemolytica serotype 1 (ATCC®) BAA-410™, reference serotypes A1, A2, A5, A6, A7, A9 and A11, and wild-type isolates of M. haemolytica. Bacteriophages were induced from an overnight bacterial starter culture of all examined M. haemolytica strains treated with mitomycin C. The lytic properties and host ranges were determined by plaque assays. The morphology of the bacteriophages was examined in negative-stained smears with 5% uranyl acetate solution using a transmission electron microscope. The genetic analysis of the bacteriophages was followed by restriction analysis of bacteriophage DNA. This was followed by analysis of genetic material by polymerase chain reaction (PCR). Eight bacteriophages were obtained, like typical of the families Myoviridae, Siphoviridae and Podoviridae. Most of the bacteriophages exhibited lytic properties against the M. haemolytica strains. Restriction analysis revealed similarities to the P2-like phage obtained from the strain M. haemolytica BAA-410. The most similar profiles were observed in the case of bacteriophages φA1 and φA5. All of the bacteriophages obtained were characterized by the presence of additional fragments in the restriction profiles with respect to the P2-like reference phage. In the analysis of PCR products for the P2-like reference phage phi-MhaA1-PHL101 (DQ426904) and the phages of the M. haemolytica serotypes, a 734-bp phage PCR product was obtained. The primers were programmed in Primer-Blast software using the structure of the sequence DQ426904 of reference phage PHL101. The results obtained indicate the need for further research aimed at isolating and characterizing bacteriophages

  20. Visualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase

    PubMed Central

    James, Tamara D.; Cardozo, Timothy; Abell, Lauren E.; Hsieh, Meng-Lun; Jenkins, Lisa M. Miller; Jha, Saheli S.; Hinton, Deborah M.

    2016-01-01

    The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called σ appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the σ70 subunit of RNAP. We have developed a holistic, structure-based model for σ appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /σ70 Region 4, the N-terminal domain of MotA [MotANTD], and the C-terminal domain of MotA [MotACTD]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects σ, and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the β subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs σ appropriation. PMID:27458207

  1. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents

    PubMed Central

    Souza, Glauco R.; Christianson, Dawn R.; Staquicini, Fernanda I.; Ozawa, Michael G.; Snyder, Evan Y.; Sidman, Richard L.; Miller, J. Houston; Arap, Wadih; Pasqualini, Renata

    2006-01-01

    Biological molecular assemblies are excellent models for the development of nanoengineered systems with desirable biomedical properties. Here we report an approach for fabrication of spontaneous, biologically active molecular networks consisting of bacteriophage (phage) directly assembled with gold (Au) nanoparticles (termed Au–phage). We show that when the phage are engineered so that each phage particle displays a peptide, such networks preserve the cell surface receptor binding and internalization attributes of the displayed peptide. The spontaneous organization of these targeted networks can be manipulated further by incorporation of imidazole (Au–phage–imid), which induces changes in fractal structure and near-infrared optical properties. The networks can be used as labels for enhanced fluorescence and dark-field microscopy, surface-enhanced Raman scattering detection, and near-infrared photon-to-heat conversion. Together, the physical and biological features within these targeted networks offer convenient multifunctional integration within a single entity with potential for nanotechnology-based biomedical applications. PMID:16434473

  2. TLR4 signaling in effector CD4+ T cells regulates TCR activation and experimental colitis in mice

    PubMed Central

    González-Navajas, José M.; Fine, Sean; Law, Jason; Datta, Sandip K.; Nguyen, Kim P.; Yu, Mandy; Corr, Maripat; Katakura, Kyoko; Eckman, Lars; Lee, Jongdae; Raz, Eyal

    2010-01-01

    TLRs sense various microbial products. Their function has been best characterized in DCs and macrophages, where they act as important mediators of innate immunity. TLR4 is also expressed on CD4+ T cells, but its physiological function on these cells remains unknown. Here, we have shown that TLR4 triggering on CD4+ T cells affects their phenotype and their ability to provoke intestinal inflammation. In a model of spontaneous colitis, Il10–/–Tlr4–/– mice displayed accelerated development of disease, with signs of overt colitis as early as 8 weeks of age, when compared with Il10–/– and Il10–/–Tlr9–/– mice, which did not develop colitis by 8 months. Similar results were obtained in a second model of colitis in which transfer of naive Il10–/–Tlr4–/– CD4+ T cells into Rag1–/– recipients sufficient for both IL-10 and TLR4 induced more aggressive colitis than the transfer of naive Il10–/– CD4+ T cells. Mechanistically, LPS stimulation of TLR4-bearing CD4+ T cells inhibited ERK1/2 activation upon subsequent TCR stimulation via the induction of MAPK phosphatase 3 (MKP-3). Our data therefore reveal a tonic inhibitory role for TLR4 signaling on subsequent TCR-dependent CD4+ T cell responses. PMID:20051628

  3. The Genome Sequence of Bacteriophage CPV1 Virulent for Clostridium perfringens

    USDA-ARS?s Scientific Manuscript database

    Application of bacteriophages and their lytic enzymes to control Clostridium perfringens is one potential approach to reduce the pathogen on poultry farms and in poultry-processing facilities. Bacteriophages lytic for C. perfringens were isolated from sewage, feces and broiler intestinal contents. P...

  4. 33 CFR 100.T05-0443 - Safety Zone; Fireworks Display, Delaware River, New Hope, PA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Delaware River, New Hope, PA. 100.T05-0443 Section 100.T05-0443 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.T05-0443 Safety Zone; Fireworks Display, Delaware River, New Hope, PA. (a) Location. The safety zone will restrict...

  5. M13 Bacteriophage-Based Self-Assembly Structures and Their Functional Capabilities.

    PubMed

    Moon, Jong-Sik; Kim, Won-Geun; Kim, Chuntae; Park, Geun-Tae; Heo, Jeong; Yoo, So Y; Oh, Jin-Woo

    2015-06-01

    Controlling the assembly of basic structural building blocks in a systematic and orderly fashion is an emerging issue in various areas of science and engineering such as physics, chemistry, material science, biological engineering, and electrical engineering. The self-assembly technique, among many other kinds of ordering techniques, has several unique advantages and the M13 bacteriophage can be utilized as part of this technique. The M13 bacteriophage (Phage) can easily be modified genetically and chemically to demonstrate specific functions. This allows for its use as a template to determine the homogeneous distribution and percolated network structures of inorganic nanostructures under ambient conditions. Inexpensive and environmentally friendly synthesis can be achieved by using the M13 bacteriophage as a novel functional building block. Here, we discuss recent advances in the application of M13 bacteriophage self-assembly structures and the future of this technology.

  6. M13 Bacteriophage-Based Self-Assembly Structures and Their Functional Capabilities

    PubMed Central

    Moon, Jong-Sik; Kim, Won-Geun; Kim, Chuntae; Park, Geun-Tae; Heo, Jeong; Yoo, So Y; Oh, Jin-Woo

    2015-01-01

    Controlling the assembly of basic structural building blocks in a systematic and orderly fashion is an emerging issue in various areas of science and engineering such as physics, chemistry, material science, biological engineering, and electrical engineering. The self-assembly technique, among many other kinds of ordering techniques, has several unique advantages and the M13 bacteriophage can be utilized as part of this technique. The M13 bacteriophage (Phage) can easily be modified genetically and chemically to demonstrate specific functions. This allows for its use as a template to determine the homogeneous distribution and percolated network structures of inorganic nanostructures under ambient conditions. Inexpensive and environmentally friendly synthesis can be achieved by using the M13 bacteriophage as a novel functional building block. Here, we discuss recent advances in the application of M13 bacteriophage self-assembly structures and the future of this technology. PMID:26146494

  7. A 12-residue epitope displayed on phage T7 reacts strongly with antibodies against foot-and-mouth disease virus.

    PubMed

    Wong, Chuan Loo; Yong, Chean Yeah; Muhamad, Azira; Syahir, Amir; Omar, Abdul Rahman; Sieo, Chin Chin; Tan, Wen Siang

    2018-05-01

    Foot-and-mouth disease (FMD) is a major threat to the livestock industry worldwide. Despite constant surveillance and effective vaccination, the perpetual mutations of the foot-and-mouth disease virus (FMDV) pose a huge challenge to FMD diagnosis. The immunodominant region of the FMDV VP1 protein (residues 131-170) displayed on phage T7 has been used to detect anti-FMDV in bovine sera. In the present study, the functional epitope was further delineated using amino acid sequence alignment, homology modelling and phage display. Two highly conserved regions (VP1 145-152 and VP1 159-170 ) were identified among different FMDV serotypes. The coding regions of these two epitopes were fused separately to the T7 genome and displayed on the phage particles. Interestingly, chimeric phage displaying the VP1 159-170 epitope demonstrated a higher antigenicity than that displaying the VP1 131-170 epitope. By contrast, phage T7 displaying the VP1 145-152 epitope did not react significantly with the anti-FMDV antibodies in vaccinated bovine sera. This study has successfully identified a smaller functional epitope, VP1 159-170 , located at the C-terminal end of the structural VP1 protein. The phage T7 displaying this shorter epitope is a promising diagnostic reagent to detect anti-FMDV antibodies in vaccinated animals.

  8. Applicability of Virtual Environments as C4ISR Displays

    DTIC Science & Technology

    2006-06-01

    simulator sickness questionnaire (ssq): A method for quantifying simulator sickness. International Journal of Aviation Psychology, 3(3):203ff. Ergonomie ...Displays Thomas Alexander FGAN - Research Institute for Communication, Information Processing, and Ergonomics Wachtberg, Germany Ergonomie und...Führungssysteme FORSCHUNGSINSTITUT FÜR KOMMUNIKATION, INFORMATIONSVERARBEITUNG UND ERGONOMIE 1 FGAN Applicability of Virtual Environments as C4ISR Displays

  9. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis.

    PubMed

    Porter, J; Anderson, J; Carter, L; Donjacour, E; Paros, M

    2016-03-01

    The objective of this study was to investigate the potential use of bacteriophage in preventing Escherichia coli mastitis on dairies. A cocktail consisting of 4 distinct bacteriophages was generated by screening against 36 E. coli isolates from dairy cows in Washington State with clinical mastitis. The bacteriophage significantly inhibited growth of 58% of the Washington State isolates and 54% of E. coli mastitis isolates from New York State, suggesting that the cocktail of phages had a relatively broad spectrum of action against relevant strains from 2 distinct geographies. The ability to suppress bacterial growth of these isolates in a liquid growth medium was not affected by the ratio of bacteriophage particles to bacterial cells (multiplicity of infection, MOI). For those E. coli that were completely inhibited by the phage cocktail, an MOI as low as 10 had the same effect as 10 µg/mL of ceftiofur on the growth rate of E. coli over a 12-h period using optical density measurements. A 3.3- to 5.6-log reduction of growth was achieved when E. coli was co-incubated with our phage cocktail in raw milk over a 12-h period at physiologic temperature. A modified gentamicin protection assay using bovine mammary epithelial cells provided a model to test whether bacteriophage could prevent cell attachment and invasion by chronic coliform mastitis strains. Pretreatment of cell cultures with the phage cocktail significantly reduced adhesion and intracellular survival of E. coli compared with controls. When combined with a bismuth-based teat sealant, the phage cocktail was able to inhibit bacterial growth when challenged with 1.6 × 10(3) cfu/mL of a clinical mastitis E. coli strain. In vitro results show bactericidal activity by our phage in raw milk and mammary tissue culture systems. Before a bacteriophage-based dry-cow treatment becomes a potential option for dairies, in vivo studies must be able to demonstrate that a specific dose of bacteriophage can protect cows from

  10. Bacteriophage ecology in environmental biotechnology processes.

    PubMed

    Shapiro, Orr H; Kushmaro, Ariel

    2011-06-01

    Heterotrophic bacteria are an integral part of any environmental biotechnology process (EBP). Therefore, factors controlling bacterial abundance, activity, and community composition are central to the understanding of such processes. Among these factors, top-down control by bacteriophage predation has so far received very limited attention. With over 10(8) particles per ml, phage appear to be the most numerous biological entities in EBP. Phage populations in EBP appear to be highly dynamic and to correlate with the population dynamics of their hosts and genomic evidence suggests bacteria evolve to avoid phage predation. Clearly, there is much to learn regarding bacteriophage in EBP before we can truly understand the microbial ecology of these globally important systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Control of Salmonella on sprouting mung bean and alfalfa seeds by using a biocontrol preparation based on antagonistic bacteria and lytic bacteriophages.

    PubMed

    Ye, Jianxiong; Kostrzynska, Magdalaena; Dunfield, Kari; Warriner, Keith

    2010-01-01

    The following reports on the application of a combination of antagonistic bacteria and lytic bacteriophages to control the growth of Salmonella on sprouting mung beans and alfalfa seeds. Antagonistic bacteria were isolated from mung bean sprouts and tomatoes by using the deferred plate assay to assess anti-Salmonella activity. From the isolates screened, an Enterobacter asburiae strain (labeled "JX1") exhibited stable antagonistic activity against a broad range of Salmonella serovars (Agona, Berta, Enteritidis, Hadar, Heidelberg, Javiana, Montevideo, Muenchen, Newport, Saint Paul, and Typhimurium). Lytic bacteriophages against Salmonella were isolated from pig or cattle manure effluent. A bacteriophage cocktail prepared from six isolates was coinoculated with E. asburiae JX1 along with Salmonella in broth culture. The combination of E. asburiae JX1 and bacteriophage cocktail reduced the levels of Salmonella by 5.7 to 6.4 log CFU/ml. Mung beans inoculated with Salmonella and sprouted over a 4-day period attained levels of 6.72 + or - 0.78 log CFU/g. In contrast, levels of Salmonella were reduced to 3.31 + or - 2.48 or 1.16 + or - 2.14 log CFU/g when the pathogen was coinoculated with bacteriophages or E. asburiae JX1, respectively. However, by using a combination of E. asburiae JX1 and bacteriophages, the levels of Salmonella associated with mung bean sprouts were only detected by enrichment. The biocontrol preparation was effective at controlling the growth of Salmonella under a range of sprouting temperatures (20 to 30 degrees Celsius) and was equally effective at suppressing the growth of Salmonella on sprouting alfalfa seeds. The combination of E. asburiae JX1 and bacteriophages represents a promising, chemical-free approach for controlling the growth of Salmonella on sprouting seeds.

  12. Comparison of Polymerase Subunits from Double-Stranded RNA Bacteriophages

    PubMed Central

    Yang, Hongyan; Makeyev, Eugene V.; Bamford, Dennis H.

    2001-01-01

    The family Cystoviridae comprises several bacteriophages with double-stranded RNA (dsRNA) genomes. We have previously purified the catalytic polymerase subunit (Pol) of one of the Cystoviridae members, bacteriophage φ6, and shown that the protein can catalyze RNA synthesis in vitro. In this reaction, both bacteriophage-specific and heterologous RNAs can serve as templates, but those containing 3′ termini from the φ6 minus strands are favored. This provides a molecular basis for the observation that only plus strands, not minus strands, are transcribed from φ6 dsRNA segments in vivo. To test whether such a regulatory mechanism is also found in other dsRNA viruses, we purified recombinant Pol subunits from the φ6-related bacteriophages φ8 and φ13 and assayed their polymerase activities in vitro. The enzymes catalyze template-dependent RNA synthesis using both single-stranded-RNA (ssRNA) and dsRNA templates. However, they differ from each other as well as from φ6 Pol in certain biochemical properties. Notably, each polymerase demonstrates a distinct preference for ssRNAs bearing short 3′-terminal sequences from the virus-specific minus strands. This suggests that, in addition to other factors, RNA transcription in Cystoviridae is controlled by the template specificity of the polymerase subunit. PMID:11602748

  13. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  14. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  15. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  16. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  17. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  18. Transient immune deficiency in patients with acute Epstein-Barr virus infection.

    PubMed

    Junker, A K; Ochs, H D; Clark, E A; Puterman, M L; Wedgwood, R J

    1986-09-01

    To study the effect of primary Epstein-Barr virus (EBV) infection on antigen-specific antibody production, we immunized 17 college students who had developed acute infectious mononucleosis with the T-cell dependent neoantigen bacteriophage phi X174. During the early phase of infectious mononucleosis, the proportion of peripheral blood lymphocytes displaying Ia and T8 (CD8) phenotypes was increased and the T helper/suppressor (T4/T8) ratio was decreased (less than 1). These abnormalities disappeared during the convalescent phase. Correlating with EBV-induced changes in T lymphocytes, we demonstrated depressed humoral immune responses to bacteriophage phi X174 both in vivo and in vitro. In vitro coculture experiments indicated that the Ia+ suppressor T cells could inhibit antibody production and isotype switch. Removal of T8+ lymphocytes from patient T cells normalized in vitro antibody synthesis. In addition, impaired B-cell function was shown to be in part responsible for deficient antibody production. These studies demonstrate that infection with EBV affects both B and T lymphocytes and causes a broad-based transient immune deficiency in patients with uncomplicated infectious mononucleosis.

  19. Multiple roles of genome-attached bacteriophage terminal proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redrejo-Rodríguez, Modesto; Salas, Margarita, E-mail: msalas@cbm.csic.es

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid.more » Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.« less

  20. Campylobacters and their bacteriophages from chicken liver: The prospect for phage biocontrol.

    PubMed

    Firlieyanti, Antung S; Connerton, Phillippa L; Connerton, Ian F

    2016-11-21

    Consumption of foods containing chicken liver has been associated with Campylobacter enteritis. Campylobacters can contaminate the surface of livers post-mortem but can also arise through systemic infection of colonising bacteria in live birds. The use of bacteriophage to reduce levels of Campylobacter entering the food chain is a promising intervention approach but most phages have been isolated from chicken excreta. This study examined the incidence and contamination levels of Campylobacter and their bacteriophage in UK retail chicken liver. Using enrichment procedures, 87% of 109 chicken livers were surface contaminated with Campylobacter and 83% contaminated within internal tissues. Direct plating on selective agar allowed enumeration of viable bacteria from 43% of liver samples with counts ranging from 1.8->3.8log 10 CFU/cm 2 for surface samples, and 3.0->3.8log 10 CFU/g for internal tissue samples. Three C. jejuni isolates recovered from internal liver tissues were assessed for their ability to colonise the intestines and extra-intestinal organs of broiler chickens following oral infection. All isolates efficiently colonised the chicken intestines but were variable in their abilities to colonise extra-intestinal organs. One isolate, CLB104, could be recovered by enrichment from the livers and kidneys of three of seven chickens. Campylobacter isolates remained viable within fresh livers stored at 4°C over 72h and frozen livers stored at -20°C over 7days in atmospheric oxygen, and therefore constitute a risk to human health. Only three Campylobacter-specific bacteriophages were isolated, and these exhibited a limited host range against the Camplylobacter chicken liver isolates. All were identified as group III virulent bacteriophage based on their genome size of 140kb. The application of broad host range group II virulent phages (8log 10 PFU/g) to liver homogenates containing C. jejuni strains of diverse origin at 4°C resulted in modest but significant

  1. 75 FR 34636 - Safety Zone; Jameson Beach 4th of July Fireworks Display

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ...-AA00 Safety Zone; Jameson Beach 4th of July Fireworks Display AGENCY: Coast Guard, DHS. ACTION... waters of Lake Tahoe, for the Jameson Beach 4th of July Fireworks Display. This safety zone is... Safety Zone; Jameson Beach 4th of July Fireworks Display. (a) Location. This temporary safety zone is...

  2. X-Windows Widget for Image Display

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.

    2011-01-01

    XvicImage is a high-performance XWindows (Motif-compliant) user interface widget for displaying images. It handles all aspects of low-level image display. The fully Motif-compliant image display widget handles the following tasks: (1) Image display, including dithering as needed (2) Zoom (3) Pan (4) Stretch (contrast enhancement, via lookup table) (5) Display of single-band or color data (6) Display of non-byte data (ints, floats) (7) Pseudocolor display (8) Full overlay support (drawing graphics on image) (9) Mouse-based panning (10) Cursor handling, shaping, and planting (disconnecting cursor from mouse) (11) Support for all user interaction events (passed to application) (12) Background loading and display of images (doesn't freeze the GUI) (13) Tiling of images.

  3. Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates.

    PubMed

    Peng, Fan; Mi, Zhiqiang; Huang, Yong; Yuan, Xin; Niu, Wenkai; Wang, Yahui; Hua, Yuhui; Fan, Huahao; Bai, Changqing; Tong, Yigang

    2014-07-05

    With the use of broad-spectrum antibiotics, immunosuppressive drugs, and glucocorticoids, multidrug-resistant Acinetobacter baumannii (MDR-AB) has become a major nosocomial pathogen species. The recent renaissance of bacteriophage therapy may provide new treatment strategies for combatting drug-resistant bacterial infections. In this study, we isolated a lytic bacteriophage vB_AbaM-IME-AB2 has a short latent period and a small burst size, which clear its host's suspension quickly, was selected for characterization and a complete genomic comparative study. The isolated bacteriophage vB_AbaM-IME-AB2 has an icosahedral head and displays morphology resembling Myoviridae family. Gel separation assays showed that the phage particle contains at least nine protein bands with molecular weights ranging 15-100 kDa. vB_AbaM-IME-AB2 could adsorb its host cells in 9 min with an adsorption rate more than 99% and showed a short latent period (20 min) and a small burst size (62 pfu/cell). It could form clear plaques in the double-layer assay and clear its host's suspension in just 4 hours. Whole genome of vB_AbaM-IME-AB2 was sequenced and annotated and the results showed that its genome is a double-stranded DNA molecule consisting of 43,665 nucleotides. The genome has a G + C content of 37.5% and 82 putative coding sequences (CDSs). We compared the characteristics and complete genome sequence of all known Acinetobacter baumannii bacteriophages. There are only three that have been sequenced Acinetobacter baumannii phages AB1, AP22, and phiAC-1, which have a relatively high similarity and own a coverage of 65%, 50%, 8% respectively when compared with our phage vB_AbaM-IME-AB2. A nucleotide alignment of the four Acinetobacter baumannii phages showed that some CDSs are similar, with no significant rearrangements observed. Yet some sections of these strains of phage are nonhomologous. vB_AbaM-IME-AB2 was a novel and unique A. baumannii bacteriophage. These findings suggest a common

  4. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  5. Pyrovanadolysis: a Pyrophosphorolysis-like Reaction Mediated by Pyrovanadate MN2plus and DNA Polymerase of Bacteriophage T7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B Akabayov; A Kulczyk; S Akabayov

    2011-12-31

    DNA polymerases catalyze the 3'-5'-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PP{sub i}). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5'-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PP{sub i}, a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-Vmore » distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PP{sub i} complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn{sup 2+}, larger than Mg{sup 2+}, fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our results may be the first documentation that vanadium can substitute for phosphorus in biological processes.« less

  6. Boosting immunity to small tumor-associated carbohydrates with bacteriophage qβ capsids.

    PubMed

    Yin, Zhaojun; Comellas-Aragones, Marta; Chowdhury, Sudipa; Bentley, Philip; Kaczanowska, Katarzyna; Benmohamed, Lbachir; Gildersleeve, Jeffrey C; Finn, M G; Huang, Xuefei

    2013-01-01

    The development of an effective immunotherapy is an attractive strategy toward cancer treatment. Tumor associated carbohydrate antigens (TACAs) are overexpressed on a variety of cancer cell surfaces, which present tempting targets for anticancer vaccine development. However, such carbohydrates are often poorly immunogenic. To overcome this challenge, we show here that the display of a very weak TACA, the monomeric Tn antigen, on bacteriophage Qβ virus-like particles elicits powerful humoral responses to the carbohydrate. The effects of adjuvants, antigen display pattern, and vaccine dose on the strength and subclasses of antibody responses were established. The local density of antigen rather than the total amount of antigen administered was found to be crucial for induction of high Tn-specific IgG titers. The ability to display antigens in an organized and high density manner is a key advantage of virus-like particles such as Qβ as vaccine carriers. Glycan microarray analysis showed that the antibodies generated were highly selective toward Tn antigens. Furthermore, Qβ elicited much higher levels of IgG antibodies than other types of virus-like particles, and the IgG antibodies produced reacted strongly with the native Tn antigens on human leukemia cells. Thus, Qβ presents a highly attractive platform for the development of carbohydrate-based anticancer vaccines.

  7. RNA packaging device of double-stranded RNA bacteriophages, possibly as simple as hexamer of P4 protein.

    PubMed

    Kainov, Denis E; Pirttimaa, Markus; Tuma, Roman; Butcher, Sarah J; Thomas, George J; Bamford, Dennis H; Makeyev, Eugene V

    2003-11-28

    Genomes of complex viruses have been demonstrated, in many cases, to be packaged into preformed empty capsids (procapsids). This reaction is performed by molecular motors translocating nucleic acid against the concentration gradient at the expense of NTP hydrolysis. At present, the molecular mechanisms of packaging remain elusive due to the complex nature of packaging motors. In the case of the double-stranded RNA bacteriophage phi 6 from the Cystoviridae family, packaging of single-stranded genomic precursors requires a hexameric NTPase, P4. In the present study, the purified P4 proteins from two other cystoviruses, phi 8 and phi 13, were characterized and compared with phi 6 P4. All three proteins are hexameric, single-stranded RNA-stimulated NTPases with alpha/beta folds. Using a direct motor assay, we found that phi 8 and phi 13 P4 hexamers translocate 5' to 3' along ssRNA, whereas the analogous activity of phi 6 P4 requires association with the procapsid. This difference is explained by the intrinsically high affinity of phi 8 and phi 13 P4s for nucleic acids. The unidirectional translocation results in RNA helicase activity. Thus, P4 proteins of Cystoviridae exhibit extensive similarity to hexameric helicases and are simple models for studying viral packaging motor mechanisms.

  8. Intra-domain phage display (ID-PhD) of peptides and protein mini-domains censored from canonical pIII phage display.

    PubMed

    Tjhung, Katrina F; Deiss, Frédérique; Tran, Jessica; Chou, Ying; Derda, Ratmir

    2015-01-01

    In this paper, we describe multivalent display of peptide and protein sequences typically censored from traditional N-terminal display on protein pIII of filamentous bacteriophage M13. Using site-directed mutagenesis of commercially available M13KE phage cloning vector, we introduced sites that permit efficient cloning using restriction enzymes between domains N1 and N2 of the pIII protein. As infectivity of phage is directly linked to the integrity of the connection between N1 and N2 domains, intra-domain phage display (ID-PhD) allows for simple quality control of the display and the natural variations in the displayed sequences. Additionally, direct linkage to phage propagation allows efficient monitoring of sequence cleavage, providing a convenient system for selection and evolution of protease-susceptible or protease-resistant sequences. As an example of the benefits of such an ID-PhD system, we displayed a negatively charged FLAG sequence, which is known to be post-translationally excised from pIII when displayed on the N-terminus, as well as positively charged sequences which suppress production of phage when displayed on the N-terminus. ID-PhD of FLAG exhibited sub-nanomolar apparent Kd suggesting multivalent nature of the display. A TEV-protease recognition sequence (TEVrs) co-expressed in tandem with FLAG, allowed us to demonstrate that 99.9997% of the phage displayed the FLAG-TEVrs tandem and can be recognized and cleaved by TEV-protease. The residual 0.0003% consisted of phage clones that have excised the insert from their genome. ID-PhD is also amenable to display of protein mini-domains, such as the 33-residue minimized Z-domain of protein A. We show that it is thus possible to use ID-PhD for multivalent display and selection of mini-domain proteins (Affibodies, scFv, etc.).

  9. Membrane filtration immobilization technique-a simple and novel method for primary isolation and enrichment of bacteriophages.

    PubMed

    Ghugare, G S; Nair, A; Nimkande, V; Sarode, P; Rangari, P; Khairnar, K

    2017-02-01

    To develop a method for the isolation and enrichment of bacteriophages selectively against specific bacteria coupled with a membrane filtration technique. Rapid isolation and concentration of host-specific bacteriophages was achieved by exposure of the sample suspected to contain bacteriophages to a specific host immobilized on a 0·45 μm membrane in a membrane filtration unit. The principle behind this method is the exploitation of host-specific interaction of bacteriophages with their host and maximizing this interaction using a classic membrane filtration method. This provides a chance for each bacteriophage in the sample to interact with the specific host on the membrane filter fitted with a vacuum pump. Specific bacteriophages of the host are retained on the membrane along with its host cells due to the effect of adsorption and these adsorbed bacteriophages (along with their hosts) on the filter disc are then amplified and enriched in regular nutritive broth tryptose soya broth by incubation. With the help of the plaque assay method, host-specific phages of various bacterial species were isolated, segregated and enriched. The phage concentration method coupled with membrane filtration immobilization of host bacteria was able to isolate and enrich the host-specific bacteriophages by several fold using a lower quantity of an environmental water sample, or other phage suspensions. Enrichment of phages from single plaques was also achieved. The isolation and detection of host-specific bacteriophages from a low density bacteriophage water sample in a single step by the use of a simple and basic microbiological technique can be achieved. Enrichment of phages from low phage titre suspensions is also achieved very effectively. © 2016 The Society for Applied Microbiology.

  10. Isolation and characterization of T7-like lytic bacteriophages infecting multidrug resistant Pseudomonas aeruginosa isolated from Egypt.

    PubMed

    El Didamony, Gamal; Askora, Ahmed; Shehata, Aya A

    2015-06-01

    In this study, two lytic phages designated as ϕPSZ1 and ϕPSZ2 infecting multidrug resistant Pseudomonas aeruginosa were isolated from sewage samples collected in Zagazig, Egypt. Morphological analysis by transmission electron microscopy revealed that both phages belong to the podoviridae family and resembles typical T7-like phages. ϕPSZ1 has a head of about 60 ± 5 nm in diameter with a short tail of 19 ± 2 nm in length, while ϕPSZ2 has a head of about 57 ± 5 nm in diameter with a short tail of 14 ± 2 nm in length. Both phages were shown to be able to infect 13 different P. aeruginosa strains and has no effect on other tested bacteria. In spite of morphological similarity, these phages showed diverged genomic sequences revealed by restriction enzyme digestion analysis. One-step growth curves of bacteriophages revealed eclipse and latent periods of 12 min for ϕPSZ1 and 15 min for ϕPSZ2, respectively, with burst sizes of about 100 per infected cell. Phage treatment prevented the growth of P. aeruginosa for up to 18 h with multiplicity of infection ratios of 1. These results suggest that both phages have a high potential for phage application to control P. aeruginosa.

  11. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture

    PubMed Central

    Álvarez, Belén; Biosca, Elena G.

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum, R. pseudosolanacearum, and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis, not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta. Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field. PMID:28769942

  12. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture.

    PubMed

    Álvarez, Belén; Biosca, Elena G

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum , R. pseudosolanacearum , and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis , not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta . Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field.

  13. Ultrastructure and Viral Metagenome of Bacteriophages from an Anaerobic Methane Oxidizing Methylomirabilis Bioreactor Enrichment Culture

    PubMed Central

    Gambelli, Lavinia; Cremers, Geert; Mesman, Rob; Guerrero, Simon; Dutilh, Bas E.; Jetten, Mike S. M.; Op den Camp, Huub J. M.; van Niftrik, Laura

    2016-01-01

    With its capacity for anaerobic methane oxidation and denitrification, the bacterium Methylomirabilis oxyfera plays an important role in natural ecosystems. Its unique physiology can be exploited for more sustainable wastewater treatment technologies. However, operational stability of full-scale bioreactors can experience setbacks due to, for example, bacteriophage blooms. By shaping microbial communities through mortality, horizontal gene transfer, and metabolic reprogramming, bacteriophages are important players in most ecosystems. Here, we analyzed an infected Methylomirabilis sp. bioreactor enrichment culture using (advanced) electron microscopy, viral metagenomics and bioinformatics. Electron micrographs revealed four different viral morphotypes, one of which was observed to infect Methylomirabilis cells. The infected cells contained densely packed ~55 nm icosahedral bacteriophage particles with a putative internal membrane. Various stages of virion assembly were observed. Moreover, during the bacteriophage replication, the host cytoplasmic membrane appeared extremely patchy, which suggests that the bacteriophages may use host bacterial lipids to build their own putative internal membrane. The viral metagenome contained 1.87 million base pairs of assembled viral sequences, from which five putative complete viral genomes were assembled and manually annotated. Using bioinformatics analyses, we could not identify which viral genome belonged to the Methylomirabilis- infecting bacteriophage, in part because the obtained viral genome sequences were novel and unique to this reactor system. Taken together these results show that new bacteriophages can be detected in anaerobic cultivation systems and that the effect of bacteriophages on the microbial community in these systems is a topic for further study. PMID:27877158

  14. Isolation of bacteriophages from air using vacuum filtration technique: an improved and novel method.

    PubMed

    Magare, B; Nair, A; Khairnar, K

    2017-10-01

    Development of a simple and economical air sampler for isolation and enrichment of bacteriophages from air samples. A vacuum filtration unit with simple modifications was used for isolation of bacteriophages from air sampled in the lavatory. Air was sampled at the rate of 62 l min -1 by bubbling into Mcllvaine buffer for 30 min, which was used as bacteriophage solution for enrichment and plaque assessment against individual hosts. Alternatively, the aforementioned phage solution was enriched using a host consortium before plaque assessment. Phages were isolated in the range of 1-12 PFU per ml by the first method, whereas enrichment with host consortium gave phages around 10- to 1000-folds higher in number. Combining with established enrichment method, an improvement of about 10 times in phage isolation efficiency was attained. The method is very useful for studying the natural bacteriophages of air, requiring only a basic microbiological laboratory setup making it simple and economical. This study brings out a simple, economical air sampler for assessing air bacteriophages that can be employed by any microbial laboratory. Although various methods are available for studying bacteriophages in water and soil, very limited are available for air. To the best of our knowledge, the method developed in this study is unique in its design and concept for studying bacteriophages in air. The sampler is sterilizable by autoclaving and maintains a healthy rate of airflow provided by conventional vacuum pumps. The use of a nonspecific 'trapping solution' allows for the qualitative and quantitative study of air bacteriophages. © 2017 The Society for Applied Microbiology.

  15. Quantification of M13 and T7 bacteriophages by TaqMan and SYBR green qPCR.

    PubMed

    Peng, Xiujuan; Nguyen, Alex; Ghosh, Debadyuti

    2018-02-01

    TaqMan and SYBR Green quantitative PCR (qPCR) methods were developed as DNA-based approaches to reproducibly enumerate M13 and T7 phages from phage display selection experiments individually and simultaneously. The genome copies of M13 and T7 phages were quantified by TaqMan or SYBR Green qPCR referenced against M13 and T7 DNA standard curves of known concentrations. TaqMan qPCR was capable of quantifying M13 and T7 phage DNA simultaneously with a detection range of 2.75*10 1 -2.75*10 8 genome copies(gc)/μL and 2.66*10 1 -2.66*10 8 genome copies(gc)/μL respectively. TaqMan qPCR demonstrated an efficient amplification efficiency (E s ) of 0.97 and 0.90 for M13 and T7 phage DNA, respectively. SYBR Green qPCR was ten-fold more sensitive than TaqMan qPCR, able to quantify 2.75-2.75*10 7 gc/μL and 2.66*10 1 -2.66*10 7 gc/μL of M13 and T7 phage DNA, with an amplification efficiency E s of 1.06 and 0.78, respectively. Due to its superior sensitivity, SYBR Green qPCR was used to enumerate M13 and T7 phage display clones selected against a cell line, and quantified titers demonstrated accuracy comparable to titers from traditional double-layer plaque assay. Compared to enzyme linked immunosorbent assay, both qPCR methods exhibited increased detection sensitivity and reproducibility. These qPCR methods are reproducible, sensitive, and time-saving to determine their titers and to quantify a large number of phage samples individually or simultaneously, thus avoiding the need for time-intensive double-layer plaque assay. These findings highlight the attractiveness of qPCR for phage enumeration for applications ranging from selection to next-generation sequencing (NGS). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Isolation and characterization of bacteriophages specific to hydrogen-sulfide-producing bacteria.

    PubMed

    Gong, Chao; Heringa, Spencer; Singh, Randhir; Kim, Jinkyung; Jiang, Xiuping

    2013-01-01

    The objectives of this study were to isolate and characterize bacteriophages specific to hydrogen-sulfide-producing bacteria (SPB) from raw animal materials, and to develop a SPB-specific bacteriophage cocktail for rendering application. Meat, chicken offal, and feather samples collected from local supermarkets and rendering processing plants were used to isolate SPB (n = 142). Bacteriophages (n = 52) specific to SPB were isolated and purified from the above samples using 18 of those isolated SPB strains as hosts. The host ranges of bacteriophages against 5 selected SPB strains (Escherichia coli, Citrobacter freundii, and Hafnia alvei) were determined. Electron microscopy observation of 9 phages selected for the phage cocktail revealed that 6 phages belonged to the family of Siphoviridae and 3 belonged to the Myoviridae family. Restriction enzyme digestion analysis with endonuclease DraI detected 6 distinguished patterns among the 9 phages. Phage treatment prevented the growth of SPB for up to 10 h with multiplicity of infection ratios of 1, 10, 100, and 1000 in tryptic soy broth at 30 °C, and extended the lag phase of SPB growth for 2 h at 22 °C with multiplicities of infection of 10, 100, and 1000. These results suggest that the selected bacteriophage cocktail has a high potential for phage application to control SPB in raw animal materials destined for the rendering process.

  17. Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status

    PubMed Central

    Hraiech, Sami; Brégeon, Fabienne; Rolain, Jean-Marc

    2015-01-01

    Pulmonary infections involving Pseudomonas aeruginosa are among the leading causes of the deterioration of the respiratory status of cystic fibrosis (CF) patients. The emergence of multidrug-resistant strains in such populations, favored by iterative antibiotic cures, has led to the urgent need for new therapies. Among them, bacteriophage-based therapies deserve a focus. One century of empiric use in the ex-USSR countries suggests that bacteriophages may have beneficial effects against a large range of bacterial infections. Interest in bacteriophages has recently renewed in Western countries, and the in vitro data available suggest that bacteriophage-based therapy may be of significant interest for the treatment of pulmonary infections in CF patients. Although the clinical data concerning this specific population are relatively scarce, the beginning of the first large randomized study evaluating bacteriophage-based therapy in burn infections suggests that the time has come to assess the effectiveness of this new therapy in CF P. aeruginosa pneumonia. Consequently, the aim of this review is, after a brief history, to summarize the evidence concerning bacteriophage efficacy against P. aeruginosa and, more specifically, the in vitro studies, animal models, and clinical trials targeting CF. PMID:26213462

  18. Characterization of CD4+ T cell-mediated cytotoxicity in patients with multiple myeloma.

    PubMed

    Zhang, Xiaole; Gao, Lei; Meng, Kai; Han, Chunting; Li, Qiang; Feng, Zhenjun; Chen, Lei

    2018-05-01

    Multiple myeloma (MM) is an incurable cancer characterized by the development of malignant plasma cells. The CD8 T cell-mediated cytotoxicity is considered a major player in antitumor immunity, but in MM patients, the CD8 T cells displayed senescence markers and were functionally impaired. To investigate whether cytotoxic CD4 T cells could act as a treatment alternative in MM, we examined the frequency and function of naturally occurring cytotoxic CD4 T cells in MM patients. The cytotoxic CD4 T cells were identified as granzyme-A, granzyme B-, and perforin-expressing CD4 T cells, and their frequencies were significantly upregulated in MM patients when compared with healthy controls. The frequencies of cytotoxic CD4 T cells in MM patients were not associated with the frequencies of cytotoxic CD8 T cells, but were negatively associated with disease severity. Interestingly, the expression levels of inhibitory molecules, including PD-1 and CTLA-4, were significantly lower in cytotoxic CD4 T cells than in cytotoxic CD8 T cells. When co-incubated with autologous CD38 + CD138 + plasma cells, CD4 T cells were capable of eliminating plasma cells with varying degrees of efficacy. In MM patients, the frequency of circulating plasma cells was negatively correlated with the frequency of cytotoxic CD4 T cells. Therefore, CD4 T cell-mediated cytotoxicity existed naturally in MM patients and could potentially act as an option in antitumor therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Bacteriophage Procurement for Therapeutic Purposes

    PubMed Central

    Weber-Dąbrowska, Beata; Jończyk-Matysiak, Ewa; Żaczek, Maciej; Łobocka, Małgorzata; Łusiak-Szelachowska, Marzanna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages), discovered 100 years ago, are able to infect and destroy only bacterial cells. In the current crisis of antibiotic efficacy, phage therapy is considered as a supplementary or even alternative therapeutic approach. Evolution of multidrug-resistant and pandrug-resistant bacterial strains poses a real threat, so it is extremely important to have the possibility to isolate new phages for therapeutic purposes. Our phage laboratory and therapy center has extensive experience with phage isolation, characterization, and therapeutic application. In this article we present current progress in bacteriophages isolation and use for therapeutic purposes, our experience in this field and its practical implications for phage therapy. We attempt to summarize the state of the art: properties of phages, the methods for their isolation, criteria of phage selection for therapeutic purposes and limitations of their use. Perspectives for the use of genetically engineered phages to specifically target bacterial virulence-associated genes are also briefly presented. PMID:27570518

  20. Assessment of drinking water quality using indicator bacteria and bacteriophages.

    PubMed

    Méndez, Javier; Audicana, Ana; Cancer, Mercedes; Isern, Anna; Llaneza, Julian; Moreno, Belén; Navarro, Mercedes; Tarancón, M Lluisa; Valero, Fernando; Ribas, Ferran; Jofre, Juan; Lucena, Francisco

    2004-09-01

    Bacterial indicators and bacteriophages suggested as potential indicators of water quality were determined by public laboratories in water from springs, household water wells, and rural and metropolitan water supplies in north-eastern Spain. Indicator bacteria were detected more frequently than bacteriophages in springs, household water wells and rural water supplies. In contrast, positive bacteriophage detections were more numerous than those of bacteria in metropolitan water supplies. Most of the metropolitan water supply samples containing indicators had concentrations of chlorine below 0.1 mg l(-1), their indicator loads resembling more closely those of rural water supplies than any other samples taken from metropolitan water supplies. The number of samples from metropolitan water supplies containing more than 0.1 mg l(-1) of chlorine that contained phages clearly outnumbered those containing indicator bacteria. Some association was observed between rainfall and the presence of indicators. Sediments from service reservoirs and water from dead ends in the distribution network of one of the metropolitan water supplies were also tested. Bacterial indicators and phages were detected in a higher percentage than in samples of tap water from the same network. Additionally, indicator bacteria were detected more frequently than bacteriophages in sediments of service reservoirs and water from dead end samples. We conclude that naturally occurring indicator bacteria and bacteriophages respond differently to chlorination and behave differently in drinking water distribution networks. Moreover, this study has shown that testing for the three groups of phages in routine laboratories is easy to implement and feasible without the requirement for additional material resources for the laboratories.