Sample records for bacterium arthrobacter sp

  1. Draft Genome Sequence of the 2-Chloro-4-Nitrophenol-Degrading Bacterium Arthrobacter sp. Strain SJCon

    PubMed Central

    Vikram, Surendra; Kumar, Shailesh; Vaidya, Bhumika; Pinnaka, Anil Kumar

    2013-01-01

    We report the 4.39-Mb draft genome sequence of the 2-chloro-4-nitrophenol-degrading bacterium Arthrobacter sp. strain SJCon, isolated from a pesticide-contaminated site. The draft genome sequence of strain SJCon will be helpful in studying the genetic pathways involved in the degradation of several aromatic compounds. PMID:23516196

  2. Draft Genome Sequence of Arthrobacter sp. Strain SPG23, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium.

    PubMed

    Gkorezis, Panagiotis; Bottos, Eric M; Van Hamme, Jonathan D; Thijs, Sofie; Rineau, Francois; Franzetti, Andrea; Balseiro-Romero, Maria; Weyens, Nele; Vangronsveld, Jaco

    2015-12-23

    We report here the 4.7-Mb draft genome of Arthrobacter sp. SPG23, a hydrocarbonoclastic Gram-positive bacterium belonging to the Actinobacteria, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain SPG23 is a potent plant growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. Copyright © 2015 Gkorezis et al.

  3. Biosorption of Lead(II) by Arthrobacter sp. 25: Process Optimization and Mechanism.

    PubMed

    Jin, Yu; Wang, Xin; Zang, Tingting; Hu, Yang; Hu, Xiaojing; Ren, Guangming; Xu, Xiuhong; Qu, Juanjuan

    2016-08-28

    In the present work, Arthrobacter sp. 25, a lead-tolerant bacterium, was assayed to remove lead(II) from aqueous solution. The biosorption process was optimized by response surface methodology (RSM) based on the Box-Behnken design. The relationships between dependent and independent variables were quantitatively determined by second-order polynomial equation and 3D response surface plots. The biosorption mechanism was explored by characterization of the biosorbent before and after biosorption using atomic force microscopy (AFM), scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The results showed that the maximum adsorption capacity of 9.6 mg/g was obtained at the initial lead ion concentration of 108.79 mg/l, pH value of 5.75, and biosorbent dosage of 9.9 g/l (fresh weight), which was close to the theoretically expected value of 9.88 mg/g. Arthrobacter sp. 25 is an ellipsoidalshaped bacterium covered with extracellular polymeric substances. The biosorption mechanism involved physical adsorption and microprecipitation as well as ion exchange, and functional groups such as phosphoryl, hydroxyl, amino, amide, carbonyl, and phosphate groups played vital roles in adsorption. The results indicate that Arthrobacter sp. 25 may be potentially used as a biosorbent for low-concentration lead(II) removal from wastewater.

  4. Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a

    PubMed Central

    2012-01-01

    Background Bacteria of the genus Arthrobacter are ubiquitous in soil environments and can be considered as true survivalists. Arthrobacter sp. strain Rue61a is an isolate from sewage sludge able to utilize quinaldine (2-methylquinoline) as sole carbon and energy source. The genome provides insight into the molecular basis of the versatility and robustness of this environmental Arthrobacter strain. Results The genome of Arthrobacter sp. Rue61a consists of a single circular chromosome of 4,736,495 bp with an average G + C content of 62.32%, the circular 231,551-bp plasmid pARUE232, and the linear 112,992-bp plasmid pARUE113 that was already published. Plasmid pARUE232 is proposed to contribute to the resistance of Arthrobacter sp. Rue61a to arsenate and Pb2+, whereas the linear plasmid confers the ability to convert quinaldine to anthranilate. Remarkably, degradation of anthranilate exclusively proceeds via a CoA-thioester pathway. Apart from quinaldine utilization, strain Rue61a has a limited set of aromatic degradation pathways, enabling the utilization of 4-hydroxy-substituted aromatic carboxylic acids, which are characteristic products of lignin depolymerization, via ortho cleavage of protocatechuate. However, 4-hydroxyphenylacetate degradation likely proceeds via meta cleavage of homoprotocatechuate. The genome of strain Rue61a contains numerous genes associated with osmoprotection, and a high number of genes coding for transporters. It encodes a broad spectrum of enzymes for the uptake and utilization of various sugars and organic nitrogen compounds. A. aurescens TC-1 is the closest sequenced relative of strain Rue61a. Conclusions The genome of Arthrobacter sp. Rue61a reflects the saprophytic lifestyle and nutritional versatility of the organism and a strong adaptive potential to environmental stress. The circular plasmid pARUE232 and the linear plasmid pARUE113 contribute to heavy metal resistance and to the ability to degrade quinaldine, respectively. PMID

  5. Degradation of a Sodium Acrylate Oligomer by an Arthrobacter sp

    PubMed Central

    Hayashi, Takaya; Mukouyama, Masaharu; Sakano, Kouichi; Tani, Yoshiki

    1993-01-01

    Arthrobacter sp. strain NO-18 was first isolated from soil as a bacterium which could degrade the sodium acrylate oligomer and utilize it as the sole source of carbon. When 0.2% (wt/wt) oligomer was added to the culture medium, the acrylate oligomer was found to be degraded by 70 to 80% in 2 weeks, using gel permeation chromatography. To determine the maximum molecular weight for biodegradation, the degradation test was done with the hexamer, heptamer, and octamer, which were separated from the oligomer mixture by fractional gel permeation chromatography. The hexamer and heptamer were consumed to the extents of 58 and 36%, respectively, in 2 weeks, but the octamer was not degraded. Oligomers with three different terminal groups were synthesized to examine the effect of the different terminal groups on biodegradation, but few differences were found. Arthrobacter sp. NO-18 assimilated acrylic acid, propionic acid, glutaric acid, 2-methylglutaric acid, and 1,3,5-pentanetricarboxylic acid. Degradation of the acrylic unit structure by this strain is discussed. PMID:8517751

  6. Enhanced degradation of 1-naphthol in landfill leachate using Arthrobacter sp.

    PubMed

    Hu, Wenyong; Min, Xiaobo; Li, Xinyu; Liu, Jingyi; Yu, Haibin; Yang, Yuan; Zhang, Jiachao; Luo, Lin; Chai, Liyuan; Zhou, Yaoyu

    2017-12-06

    Arthrobacter sp. named as JY5-1 isolated from contaminated soil of a coking plant can degrade 1-naphthol as the sole carbon source. Through identification of species, analysis of the optimal degradation condition and kinetic equation, the degradation characteristic of Arthrobacter sp. JY5-1 was obtained. Later, the acclimated strain was added into the bio-reactor to observe treatment performance of landfill leachate. The results showed that the optimal conditions for strain JY5-1 biodegradation in the study were pH 7.0 and 30 o C. The bio-reactor operation experiment declared that Arthrobacter sp. JY5-1 had a strengthened effect on COD removal of landfill leachate. Moreover, the efficiency of COD removal could be high and stable when JY5-1 was accumulated as a biofilm together with active sludge. These results demonstrate that adding 1-naphthol-degrading strain JY5-1 is a feasible technique for the enhanced treatment of sanitary landfill leachate, providing theoretical support for engineering utilization.

  7. Arthrobacter ruber sp. nov., isolated from glacier ice.

    PubMed

    Liu, Qing; Xin, Yu-Hua; Chen, Xiu-Ling; Liu, Hong-Can; Zhou, Yu-Guang; Chen, Wen-Xin

    2018-05-01

    A Gram-stain-positive strain designated MDB1-42 T was isolated from ice collected from Midui glacier in Tibet, PR China. Strain MDB1-42 T was catalase-positive, oxidase-negative and grew optimally at 25-28 °C and pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that MDB1-42 T represented a member of the genus Arthrobacter. The highest level of 16S rRNA gene sequence similarity (99.86 %) was found with Arthrobacter agilis NBRC 15319 T . Multilocus sequence analysis revealed low similarity of 91.93 % between MDB1-42 T and Arthrobacter agilis NBRC 15319 T . Average nucleotide identity and digital DNA-DNA hybridization values between MDB1-42 T and the most closely related strain, Arthrobacter agilis DSM 20550 T , were 81.36 and 24.5 %, respectively. The genomic DNA G+C content was 69.0 mol%. The major cellular fatty acids of MDB1-42 T were anteiso-C15 : 0 and anteiso-C17:0. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, one unidentified glycolipid and one unidentified lipid. The predominant menaquinone was MK-9(H2). On the basis of results obtained using a polyphasic approach, a novel species Arthrobacter ruber sp. nov. is proposed, with MDB1-42 T (=CGMCC 1.9772 T =NBRC 113088 T ) as the type strain.

  8. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c.

    PubMed

    Wanarska, Marta; Kur, Józef

    2012-08-23

    D-Tagatose is a natural monosaccharide which can be used as a low-calorie sugar substitute in food, beverages and pharmaceutical products. It is also currently being tested as an anti-diabetic and obesity control drug. D-Tagatose is a rare sugar, but it can be manufactured by the chemical or enzymatic isomerization of D-galactose obtained by a β-D-galactosidase-catalyzed hydrolysis of milk sugar lactose and the separation of D-glucose and D-galactose. L-Arabinose isomerases catalyze in vitro the conversion of D-galactose to D-tagatose and are the most promising enzymes for the large-scale production of D-tagatose. In this study, the araA gene from psychrotolerant Antarctic bacterium Arthrobacter sp. 22c was isolated, cloned and expressed in Escherichia coli. The active form of recombinant Arthrobacter sp. 22c L-arabinose isomerase consists of six subunits with a combined molecular weight of approximately 335 kDa. The maximum activity of this enzyme towards D-galactose was determined as occurring at 52°C; however, it exhibited over 60% of maximum activity at 30°C. The recombinant Arthrobacter sp. 22c L-arabinose isomerase was optimally active at a broad pH range of 5 to 9. This enzyme is not dependent on divalent metal ions, since it was only marginally activated by Mg2+, Mn2+ or Ca2+ and slightly inhibited by Co2+ or Ni2+. The bioconversion yield of D-galactose to D-tagatose by the purified L-arabinose isomerase reached 30% after 36 h at 50°C. In this study, a recombinant Pichia pastoris yeast strain secreting β-D-galactosidase Arthrobacter chlorophenolicus was also constructed. During cultivation of this strain in a whey permeate, lactose was hydrolyzed and D-glucose was metabolized, whereas D-galactose was accumulated in the medium. Moreover, cultivation of the P. pastoris strain secreting β-D-galactosidase in a whey permeate supplemented with Arthrobacter sp. 22c L-arabinose isomerase resulted in a 90% yield of lactose hydrolysis, the complete utilization

  9. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c

    PubMed Central

    2012-01-01

    Background D-Tagatose is a natural monosaccharide which can be used as a low-calorie sugar substitute in food, beverages and pharmaceutical products. It is also currently being tested as an anti-diabetic and obesity control drug. D-Tagatose is a rare sugar, but it can be manufactured by the chemical or enzymatic isomerization of D-galactose obtained by a β-D-galactosidase-catalyzed hydrolysis of milk sugar lactose and the separation of D-glucose and D-galactose. L-Arabinose isomerases catalyze in vitro the conversion of D-galactose to D-tagatose and are the most promising enzymes for the large-scale production of D-tagatose. Results In this study, the araA gene from psychrotolerant Antarctic bacterium Arthrobacter sp. 22c was isolated, cloned and expressed in Escherichia coli. The active form of recombinant Arthrobacter sp. 22c L-arabinose isomerase consists of six subunits with a combined molecular weight of approximately 335 kDa. The maximum activity of this enzyme towards D-galactose was determined as occurring at 52°C; however, it exhibited over 60% of maximum activity at 30°C. The recombinant Arthrobacter sp. 22c L-arabinose isomerase was optimally active at a broad pH range of 5 to 9. This enzyme is not dependent on divalent metal ions, since it was only marginally activated by Mg2+, Mn2+ or Ca2+ and slightly inhibited by Co2+ or Ni2+. The bioconversion yield of D-galactose to D-tagatose by the purified L-arabinose isomerase reached 30% after 36 h at 50°C. In this study, a recombinant Pichia pastoris yeast strain secreting β-D-galactosidase Arthrobacter chlorophenolicus was also constructed. During cultivation of this strain in a whey permeate, lactose was hydrolyzed and D-glucose was metabolized, whereas D-galactose was accumulated in the medium. Moreover, cultivation of the P. pastoris strain secreting β-D-galactosidase in a whey permeate supplemented with Arthrobacter sp. 22c L-arabinose isomerase resulted in a 90% yield of lactose hydrolysis, the

  10. New metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG

    PubMed Central

    Arora, Pankaj K.; Sharma, Ashutosh

    2015-01-01

    Arthrobacter sp. SPG utilized 2-nitrobenzoate as its sole source of carbon and energy and degraded it with accumulation of stoichiometric amounts of nitrite ions. Salicylate and catechol were detected as metabolites of the 2-nitrobenzoate degradation using high performance liquid chromatography and gas chromatography–mass spectrometry. Enzyme activities for 2-nitrobenzoate-2-monooxygenase, salicylate hydroxylase, and catechol-1,2-dioxygenase were detected in the crude extracts of the 2-nitrobenzoate-induced cells of strain SPG. The 2-nitrobenzoate-monooxygenase activity resulted in formation of salicylate and nitrite from 2-nitrobenzoate, whereas salicylate hydroxylase catalyzed the conversion of salicylate to catechol. The ring-cleaving enzyme, catechol-1,2-dioxygenase cleaved catechol to cis,cis-muconic acid. Cells of strain SPG were able to degrade 2-nitrobenzoate in sterile as well as non-sterile soil microcosms. The results of microcosm studies showed that strain SPG degraded more than 90% of 2-nitrobenzoate within 10–12 days. This study clearly shows that Arthrobacter sp. SPG degraded 2-nitrobenzoate via a new pathway with formation of salicylate and catechol as metabolites. Arthrobacter sp. SPG may be used for bioremediation of 2-nitrobenzoate-contaminated sites due to its ability to degrade 2-nitrobenzoate in soil. PMID:26082768

  11. Production and Characterization of a Polymer from Arthrobacter sp.

    PubMed

    Bodie, E A; Schwartz, R D; Catena, A

    1985-09-01

    An Arthrobacter sp. isolated from a glucose-sucrose agar plate was found to produce a neutral, extremely viscous, opalescent extracellular polymer. Growth, polymer production, and rheological properties and chemical composition of the isolated polymer were examined. The polymer was found to be substantially different from other arthrobacter polymers. Some unusual properties included irreversible loss of viscosity with high temperature and degradation of the polymer during fermentation and upon storage at 4 degrees C. Other characteristics included dependence on sucrose for polymer production, relative pH stability, increased viscosity with increased salt concentration, and pseudoplasticity. The polymer was found to be composed primarily (if not entirely) of d-fructose. The fructose content and other characteristics suggested that the polymer was a levan.

  12. Production and Characterization of a Polymer from Arthrobacter sp

    PubMed Central

    Bodie, Elizabeth A.; Schwartz, Robert D.; Catena, Anthony

    1985-01-01

    An Arthrobacter sp. isolated from a glucose-sucrose agar plate was found to produce a neutral, extremely viscous, opalescent extracellular polymer. Growth, polymer production, and rheological properties and chemical composition of the isolated polymer were examined. The polymer was found to be substantially different from other arthrobacter polymers. Some unusual properties included irreversible loss of viscosity with high temperature and degradation of the polymer during fermentation and upon storage at 4°C. Other characteristics included dependence on sucrose for polymer production, relative pH stability, increased viscosity with increased salt concentration, and pseudoplasticity. The polymer was found to be composed primarily (if not entirely) of d-fructose. The fructose content and other characteristics suggested that the polymer was a levan. PMID:16346883

  13. Characterisation of an efficient atrazine-degrading bacterium, Arthrobacter sp. ZXY-2: an attempt to lay the foundation for potential bioaugmentation applications.

    PubMed

    Zhao, Xinyue; Wang, Li; Ma, Fang; Yang, Jixian

    2018-01-01

    The isolation of atrazine-degrading microorganisms with specific characteristics is fundamental for bioaugmenting the treatment of wastewater containing atrazine. However, studies describing the specific features of such microorganisms are limited, and further investigation is needed to improve our understanding of bioaugmentation. In this study, strain Arthrobacter sp. ZXY-2, which displayed a strong capacity to degrade atrazine, was isolated and shown to be a potential candidate for bioaugmentation. The factors associated with the biodegrading capacity of strain ZXY-2 were investigated, and how these factors likely govern the metabolic characteristics that control bioaugmentation functionality was determined. The growth pattern of Arthrobacter sp. ZXY-2 followed the Haldane-Andrews model with an inhibition constant ( K i ) of 52.76 mg L -1 , indicating the possible augmentation of wastewater treatment with relatively high atrazine concentrations (> 50 ppm). Real-time quantitative PCR (RT-qPCR) results showed a positive correlation between the atrazine degradation rate and the expression levels of three functional genes ( trzN , atzB , and atzC ), which helped elucidate the role of strain ZXY-2 in bioaugmentation. In addition, multiple copies of the atzB gene were putatively identified, explaining the higher expression levels of this gene than those of the other functional genes. Multiple copies of the atzB gene may represent a compensatory mechanism that ensures the biodegradation of atrazine, a feature that should be exploited in future bioaugmentation applications.

  14. Biochemical pathways and enhanced degradation of di-n-octyl phthalate (DOP) in sequencing batch reactor (SBR) by Arthrobacter sp. SLG-4 and Rhodococcus sp. SLG-6 isolated from activated sludge.

    PubMed

    Zhang, Ke; Liu, Yihao; Chen, Qiang; Luo, Hongbing; Zhu, Zhanyuan; Chen, Wei; Chen, Jia; Mo, You

    2018-04-01

    Two bacterial strains designated as Arthrobacter sp. SLG-4 and Rhodococcus sp. SLG-6, capable of utilizing di-n-octyl phthalate (DOP) as sole source of carbon and energy, were isolated from activated sludge. The analysis of DOP degradation intermediates indicated Arthrobacter sp. SLG-4 could completely degrade DOP. Whereas DOP could not be mineralized by Rhodococcus sp. SLG-6 and the final metabolic product was phthalic acid (PA). The proposed DOP degradation pathway by Arthrobacter sp. SLG-4 was that strain SLG-4 initially transformed DOP to PA via de-esterification pathway, and then PA was metabolized to protocatechuate acid and eventually converted to tricarboxylic acid (TCA) cycle through meta-cleavage pathway. Accordingly, Phthalate 3,4-dioxygenase genes (phtA) responsible for PA degradation were successfully detected in Arthrobacter sp. SLG-4 by real-time quantitative PCR (q-PCR). q-PCR analysis demonstrated that the quantity of phthalate 3,4-dioxygenase was positively correlated to DOP degradation in SBRs. Bioaugmentation by inoculating DOP-degrading bacteria effectively shortened the start-up of SBRs and significantly enhanced DOP degradation in bioreactors. More than 91% of DOP (500 mg L -1 ) was removed in SBR bioaugmented with bacterial consortium, which was double of the control SBR. This study suggests bioaugmentation is an effective and feasible technique for DOP bioremediation in practical engineering.

  15. Arthrobacter globiformis and its bacteriophage in soil

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.; Liu, K.-C.

    1974-01-01

    An attempt was made to correlate bacteriophages for Arthrobacter globiformis with soils containing that bacterium. The phages were not detected unless the soil was nutritionally amended (with glucose or sucrose) and incubated for several days. Phage was continuously produced after amendment without the addition of host Arthrobacter. These results indicate that the bacteriophage is present in a masked state and that the bacteria are present in an insensitive form which becomes sensitive after addition of nutrient.

  16. Genome Sequences of 12 Cluster AN Arthrobacter Phages

    PubMed Central

    Lee-Soety, Julia Y.; Bhatt, Shantanu; Adair, Tamarah L.; Bonilla, J. Alfred; Klyczek, Karen K.; Harrison, Melinda; Garlena, Rebecca A.; Bowman, Charles A.; Russell, Daniel A.; Jacobs-Sera, Deborah

    2017-01-01

    ABSTRACT Twelve siphoviral phages isolated using Arthrobacter sp. strain ATCC 21022 were sequenced. The phages all have relatively small genomes, ranging from 15,319 to 15,556 bp. All 12 phages are closely related to previously described cluster AN Arthrobacter phages. PMID:29122859

  17. Involvement of Two Plasmids in the Degradation of Carbaryl by Arthrobacter sp. Strain RC100

    PubMed Central

    Hayatsu, Masahito; Hirano, Motoko; Nagata, Tadahiro

    1999-01-01

    A bacterium capable of utilizing carbaryl (1-naphthyl N-methylcarbamate) as the sole carbon source was isolated from carbaryl-treated soil. This bacterium was characterized taxonomically as Arthrobacter and was designated strain RC100. RC100 hydrolyzes the N-methylcarbamate linkage to 1-naphthol, which was further metabolized via salicylate and gentisate. Strain RC100 harbored three plasmids (designated pRC1, pRC2, and pRC3). Mutants unable to degrade carbaryl arose at a high frequency after treating the culture with mitomycin C. All carbaryl-hydrolysis-deficient mutants (Cah−) lacked pRC1, and all 1-naphthol-utilization-deficient mutants (Nat−) lacked pRC2. The plasmid-free strain RC107 grew on gentisate as a carbon source. These two plasmids could be transferred to Cah− mutants or Nat− mutants by conjugation, resulting in the restoration of the Cah and Nah phenotypes. PMID:10049857

  18. Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1.

    PubMed

    Mongodin, Emmanuel F; Shapir, Nir; Daugherty, Sean C; DeBoy, Robert T; Emerson, Joanne B; Shvartzbeyn, Alla; Radune, Diana; Vamathevan, Jessica; Riggs, Florenta; Grinberg, Viktoria; Khouri, Hoda; Wackett, Lawrence P; Nelson, Karen E; Sadowsky, Michael J

    2006-12-01

    Arthrobacter sp. strains are among the most frequently isolated, indigenous, aerobic bacterial genera found in soils. Member of the genus are metabolically and ecologically diverse and have the ability to survive in environmentally harsh conditions for extended periods of time. The genome of Arthrobacter aurescens strain TC1, which was originally isolated from soil at an atrazine spill site, is composed of a single 4,597,686 basepair (bp) circular chromosome and two circular plasmids, pTC1 and pTC2, which are 408,237 bp and 300,725 bp, respectively. Over 66% of the 4,702 open reading frames (ORFs) present in the TC1 genome could be assigned a putative function, and 13.2% (623 genes) appear to be unique to this bacterium, suggesting niche specialization. The genome of TC1 is most similar to that of Tropheryma, Leifsonia, Streptomyces, and Corynebacterium glutamicum, and analyses suggest that A. aurescens TC1 has expanded its metabolic abilities by relying on the duplication of catabolic genes and by funneling metabolic intermediates generated by plasmid-borne genes to chromosomally encoded pathways. The data presented here suggest that Arthrobacter's environmental prevalence may be due to its ability to survive under stressful conditions induced by starvation, ionizing radiation, oxygen radicals, and toxic chemicals.

  19. Biodegradation of naphthalene-2-sulfonic acid present in tannery wastewater by bacterial isolates Arthrobacter sp. 2AC and Comamonas sp. 4BC.

    PubMed

    Song, Zhi; Edwards, Suzanne R; Burns, Richard G

    2005-06-01

    Two bacterial strains, 2AC and 4BC, both capable of utilizing naphthalene-2-sulfonic acid (2-NSA) as a sole source of carbon, were isolated from activated sludges previously exposed to tannery wastewater. Enrichments were carried out in mineral salt medium (MSM) with 2-NSA as the sole carbon source. 16S rDNA sequencing analysis indicated that 2AC is an Arthrobacter sp. and 4BC is a Comamonas sp. Within 33 h, both isolates degraded 100% of 2-NSA in MSM and also 2-NSA in non-sterile tannery wastewater. The yield coefficient was 0.33 g biomass dry weight per gram of 2-NSA. A conceptual model, which describes the aerobic transformation of organic matter, was used for interpreting the biodegradation kinetics of 2-NSA. The half-lives for 2-NSA, at initial concentrations of 100 and 500 mg/l in MSM, ranged from 20 h (2AC) to 26 h (4BC) with lag-phases of 8 h (2AC) and 12 h (4BC). The carbon balance indicates that 75-90% of the initial TOC (total organic carbon) was mineralized, 5-20% remained as DOC (dissolved organic carbon) and 3-10% was biomass carbon. The principal metabolite of 2-NSA biodegradation (in both MSM and tannery wastewater) produced by Comamonas sp. 4BC had a MW of 174 and accounted for the residual DOC (7.0-19.0% of the initial TOC and 66% of the remaining TOC). Three to ten percent of the initial TOC (33% of the remaining TOC) was associated with biomass. The metabolite was not detected when Arthrobacter sp. 2AC was used, and a lower residual DOC and biomass carbon were recorded. This suggests that the two strains may use different catabolic pathways for 2-NSA degradation. The rapid biodegradation of 2-NSA (100 mg/l) added to non-sterile tannery wastewater (total 2-NSA, 105 mg/l) when inoculated with either Arthrobacter 2AC or Comamonas 4BC showed that both strains were able to compete with the indigenous microorganisms and degrade 2-NSA even in the presence of alternate carbon sources (DOC in tannery wastewater = 91 mg/l). The results provide information

  20. A novel S-enantioselective amidase acting on 3,3,3-trifluoro-2-hydroxy-2-methylpropanamide from Arthrobacter sp. S-2.

    PubMed

    Fuhshuku, Ken-ichi; Watanabe, Shunsuke; Nishii, Tetsuro; Ishii, Akihiro; Asano, Yasuhisa

    2015-01-01

    A novel S-enantioselective amidase acting on 3,3,3-trifluoro-2-hydroxy-2-methylpropanamide was purified from Arthrobacter sp. S-2. The enzyme acted S-enantioselectively on 3,3,3-trifluoro-2-hydroxy-2-methylpropanamide to yield (S)-3,3,3-trifluoro-2-hydroxy-2-methylpropanoic acid. Based on the N-terminal amino acid sequence of this amidase, the gene coding S-amidase was cloned from the genomic DNA of Arthrobacter sp. S-2 and expressed in an Escherichia coli host. The recombinant S-amidase was purified and characterized. Furthermore, the purified recombinant S-amidase with the C-His6-tag, which was expressed in E. coli as the C-His6-tag fusion protein, was used in the kinetic resolution of (±)-3,3,3-trifluoro-2-hydroxy-2-methylpropanamide to obtain (S)-3,3,3-trifluoro-2-hydroxy-2-methylpropanoic acid and (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropanamide.

  1. New Genome Sequence of an Echinaceapurpurea Endophyte, Arthrobacter sp. Strain EpSL27, Able To Inhibit Human-Opportunistic Pathogens.

    PubMed

    Miceli, Elisangela; Presta, Luana; Maggini, Valentina; Fondi, Marco; Bosi, Emanuele; Chiellini, Carolina; Fagorzi, Camilla; Bogani, Patrizia; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Firenzuoli, Fabio; Perrin, Elena; Fani, Renato

    2017-06-22

    We announce here the draft genome sequence of Arthrobacter sp. strain EpSL27, isolated from the stem and leaves of the medicinal plant Echinacea purpurea and able to inhibit human-pathogenic bacterial strains. The genome sequencing of this strain may lead to the identification of genes involved in the production of antimicrobial molecules. Copyright © 2017 Miceli et al.

  2. New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101.

    PubMed

    Casellas, M; Grifoll, M; Bayona, J M; Solanas, A M

    1997-03-01

    Identification of new metabolites and demonstration of key enzyme activities support and extend the pathways previously reported for fluorene metabolism by Arthrobacter sp. strain F101. Washed-cell suspensions of strain F101 with fluorene accumulated 9-fluorenone, 4-hydroxy-9-fluorenone, 3-hydroxy-1-indanone, 1-indanone, 2-indanone, 3-(2-hydroxyphenyl) propionate, and a compound tentatively identified as a formyl indanone. Incubations with 2-indanone produced 3-isochromanone. The growth yield with fluorene as a sole source of carbon and energy corresponded to an assimilation of about 34% of fluorene carbon. About 7.4% was transformed into 9-fluorenol, 9-fluorenone, and 4-hydroxy-9-fluorenone. Crude extracts from fluorene-induced cells showed 3,4-dihydrocoumarin hydrolase and catechol 2,3-dioxygenase activities. These results and biodegradation experiments with the identified metabolites indicate that metabolism of fluorene by Arthrobacter sp. strain F101 proceeds through three independent pathways. Two productive routes are initiated by dioxygenation at positions 1,2 and 3,4, respectively. meta cleavage followed by an aldolase reaction and loss of C-1 yield the detected indanones. Subsequent biological Baeyer-Villiger reactions produce the aromatic lactones 3,4-dihydrocoumarin and 3-isochromanone. Enzymatic hydrolysis of the former gives 3-(2-hydroxyphenyl) propionate, which could be a substrate for a beta oxidation cycle, to give salicylate. Further oxidation of the latter via catechol and 2-hydroxymuconic semialdehyde connects with the central metabolism, allowing the utilization of all fluorene carbons. Identification of 4-hydroxy-9-fluorenone is consistent with an alternative pathway initiated by monooxygenation at C-9 to give 9-fluorenol and then 9-fluorenone. Although dioxygenation at 3,4 positions of the ketone apparently occurs, this reaction fails to furnish a subsequent productive oxidation of this compound.

  3. New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101.

    PubMed Central

    Casellas, M; Grifoll, M; Bayona, J M; Solanas, A M

    1997-01-01

    Identification of new metabolites and demonstration of key enzyme activities support and extend the pathways previously reported for fluorene metabolism by Arthrobacter sp. strain F101. Washed-cell suspensions of strain F101 with fluorene accumulated 9-fluorenone, 4-hydroxy-9-fluorenone, 3-hydroxy-1-indanone, 1-indanone, 2-indanone, 3-(2-hydroxyphenyl) propionate, and a compound tentatively identified as a formyl indanone. Incubations with 2-indanone produced 3-isochromanone. The growth yield with fluorene as a sole source of carbon and energy corresponded to an assimilation of about 34% of fluorene carbon. About 7.4% was transformed into 9-fluorenol, 9-fluorenone, and 4-hydroxy-9-fluorenone. Crude extracts from fluorene-induced cells showed 3,4-dihydrocoumarin hydrolase and catechol 2,3-dioxygenase activities. These results and biodegradation experiments with the identified metabolites indicate that metabolism of fluorene by Arthrobacter sp. strain F101 proceeds through three independent pathways. Two productive routes are initiated by dioxygenation at positions 1,2 and 3,4, respectively. meta cleavage followed by an aldolase reaction and loss of C-1 yield the detected indanones. Subsequent biological Baeyer-Villiger reactions produce the aromatic lactones 3,4-dihydrocoumarin and 3-isochromanone. Enzymatic hydrolysis of the former gives 3-(2-hydroxyphenyl) propionate, which could be a substrate for a beta oxidation cycle, to give salicylate. Further oxidation of the latter via catechol and 2-hydroxymuconic semialdehyde connects with the central metabolism, allowing the utilization of all fluorene carbons. Identification of 4-hydroxy-9-fluorenone is consistent with an alternative pathway initiated by monooxygenation at C-9 to give 9-fluorenol and then 9-fluorenone. Although dioxygenation at 3,4 positions of the ketone apparently occurs, this reaction fails to furnish a subsequent productive oxidation of this compound. PMID:9055403

  4. New Genome Sequence of an Echinacea purpurea Endophyte, Arthrobacter sp. Strain EpSL27, Able To Inhibit Human-Opportunistic Pathogens

    PubMed Central

    Miceli, Elisangela; Presta, Luana; Maggini, Valentina; Fondi, Marco; Bosi, Emanuele; Chiellini, Carolina; Fagorzi, Camilla; Bogani, Patrizia; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Firenzuoli, Fabio; Perrin, Elena

    2017-01-01

    ABSTRACT We announce here the draft genome sequence of Arthrobacter sp. strain EpSL27, isolated from the stem and leaves of the medicinal plant Echinacea purpurea and able to inhibit human-pathogenic bacterial strains. The genome sequencing of this strain may lead to the identification of genes involved in the production of antimicrobial molecules. PMID:28642378

  5. Isolation of an isocarbophos-degrading strain of Arthrobacter sp. scl-2 and identification of the degradation pathway.

    PubMed

    Rong, Li; Guo, Xinqiang; Chen, Kai; Zhu, Jianchun; Li, Shunpeng; Jiang, Jiandong

    2009-11-01

    Isocarbophos is a widely used organophosphorus insecticide that has caused environmental pollution in many areas. However, degradation of isocarbophos by pure cultures has not been extensively studied, and the degradation pathway has not been determined. In this paper, a highly effective isocarbophos-degrading strain, scl-2, was isolated from isocarbophos-polluted soil. Strain scl-2 was preliminarily identified as Arthrobacter sp. based on its morphological, physiological, and biochemical properties, as well as 16S rDNA analysis. Strain scl-2 could utilize isocarbophos as its sole source of carbon and phosphorus for growth. One hundred mg/l isocarbophos could be degraded to a nondetectable level in 18 h by scl-2 in cell culture, and isofenphos-methyl, profenofos, and phosmet could also be degraded. During the degradation of isocarbophos, the metabolites isopropyl salicylate, salicylate, and gentisate were detected and identified based on MS/MS analysis and their retention times in HPLC. Transformation of gentisate to pyruvate and fumarate via maleylpyruvate and fumarylpyruvate was detected by assaying for the activities of gentisate 1,2- dioxygenase (GDO) and maleylpyruvate isomerase. Therefore, we have identified the degradation pathway of isocarbophos in Arthrobacter sp. scl-2 for the first time. This study highlights an important potential use of the strain scl-2 for the cleanup of environmental contamination by isocarbophos and presents a mechanism of isocarbophos metabolism.

  6. A novel red pigment from marine Arthrobacter sp. G20 with specific anticancer activity.

    PubMed

    Afra, S; Makhdoumi, A; Matin, M M; Feizy, J

    2017-11-01

    Bacterial pigments are promising compounds in the prevention and treatment of various cancers. In the current study, the antioxidant, cytotoxic and antimicrobial effects of a red pigment obtained from a marine bacterial strain were investigated. Optimization of the pigment production by the marine strain was conducted using the one-factor-at-a-time approach. Chemical identification of the pigment was achieved by UV-visible, FTIR and HPLC analyses. The biological activities of the pigment were evaluated by DPPH, MTT and microbroth dilution assays. The strain was identified as Arthrobacter, and its pigment was related to carotenoids. The EC 50 antioxidant activity of the pigment was evaluated as 4·5 mg ml -1 . It showed moderate anticancer effects on an oesophageal cancer cell line, KYSE30, while no inhibition was observed on normal HDF (human dermal fibroblasts) cells. The pigment had no antibacterial effects on the four tested strains. The antitumour activity of a carotenoid-related pigment from Arthrobacter sp. was reported for the first time. Marine environments are interesting sources for the identification of novel bioproducts. The identification of carotenoid pigments from marine bacteria with remarkable antioxidant and anticancer activities would result in better insights into the potential pharmaceutical applications of carotenoids and marine environments. © 2017 The Society for Applied Microbiology.

  7. Evaluation of Arthrobacter aurescens Strain TC1 as Bioaugmentation Bacterium in Soils Contaminated with the Herbicidal Substance Terbuthylazine

    PubMed Central

    Silva, Vera P.; Moreira-Santos, Matilde; Mateus, Carla; Teixeira, Tânia; Ribeiro, Rui; Viegas, Cristina A.

    2015-01-01

    In the last years the chloro-s-triazine active substance terbuthylazine has been increasingly used as an herbicide and may leave residues in the environment which can be of concern. The present study aimed at developing a bioaugmentation tool based on the soil bacterium Arthrobacter aurescens strain TC1 for the remediation of terbuthylazine contaminated soils and at examining its efficacy for both soil and aquatic compartments. First, the feasibility of growing the bioaugmentation bacterium inocula on simple sole nitrogen sources (ammonium and nitrate) instead of atrazine, while still maintaining its efficiency to biodegrade terbuthylazine was shown. In sequence, the successful and quick (3 days) bioremediation efficacy of ammonium-grown A. aurescens TC1 cells was proven in a natural soil freshly spiked or four-months aged with commercial terbuthylazine at a dose 10× higher than the recommended in corn cultivation, to mimic spill situations. Ecotoxicity assessment of the soil eluates towards a freshwater microalga supported the effectiveness of the bioaugmentation tool. Obtained results highlight the potential to decontaminate soil while minimizing terbuthylazine from reaching aquatic compartments via the soil-water pathway. The usefulness of this bioaugmentation tool to provide rapid environment decontamination is particularly relevant in the event of accidental high herbicide contamination. Its limitations and advantages are discussed. PMID:26662024

  8. Isolation and characterization of vB_ArS-ArV2 - first Arthrobacter sp. infecting bacteriophage with completely sequenced genome.

    PubMed

    Šimoliūnas, Eugenijus; Kaliniene, Laura; Stasilo, Miroslav; Truncaitė, Lidija; Zajančkauskaitė, Aurelija; Staniulis, Juozas; Nainys, Juozas; Kaupinis, Algirdas; Valius, Mindaugas; Meškys, Rolandas

    2014-01-01

    This is the first report on a complete genome sequence and biological characterization of the phage that infects Arthrobacter. A novel virus vB_ArS-ArV2 (ArV2) was isolated from soil using Arthrobacter sp. 68b strain for phage propagation. Based on transmission electron microscopy, ArV2 belongs to the family Siphoviridae and has an isometric head (∼63 nm in diameter) with a non-contractile flexible tail (∼194×10 nm) and six short tail fibers. ArV2 possesses a linear, double-stranded DNA genome (37,372 bp) with a G+C content of 62.73%. The genome contains 68 ORFs yet encodes no tRNA genes. A total of 28 ArV2 ORFs have no known functions and lack any reliable database matches. Proteomic analysis led to the experimental identification of 14 virion proteins, including 9 that were predicted by bioinformatics approaches. Comparative phylogenetic analysis, based on the amino acid sequence alignment of conserved proteins, set ArV2 apart from other siphoviruses. The data presented here will help to advance our understanding of Arthrobacter phage population and will extend our knowledge about the interaction between this particular host and its phages.

  9. Degradation of 2,4,6-Trinitrophenol (TNP) by Arthrobacter sp. HPC1223 Isolated from Effluent Treatment Plant.

    PubMed

    Qureshi, Asifa; Kapley, Atya; Purohit, Hemant J

    2012-12-01

    Arthrobacter sp. HPC1223 (Genebank Accession No. AY948280) isolated from activated biomass of effluent treatment plant was capable of utilizing 2,4,6 trinitrophenol (TNP) under aerobic condition at 30 °C and pH 7 as nitrogen source. It was observed that the isolated bacteria utilized TNP up to 70 % (1 mM) in R2A media with nitrite release. The culture growth media changed into orange-red color hydride-meisenheimer complex at 24 h as detected by HPLC. Oxygen uptake of Arthrobacter HPC1223 towards various nitro/amino substituted phenols such as dinitrophenol (1.2 nmol/min/mg cells), paranitrophenol (0.9 nmol/min/mg cells), 2-aminophenol (0.75 nmol/min/mg cells), p-aminophenol (0.4 nmol/min/mg cells), phenol (0.56 nmol/min/mg cells) and TNP (2.42 nmol/min/mg cell) was analysed, which showed its additional characteristic of broad substrate catabolic capacity. The present study thus report a novel indigenous bacteria isolated from activated sludge utilized TNP and has broad catabolic potential towards substituted phenols.

  10. Complete Genome Sequences of 44 Arthrobacter Phages

    PubMed Central

    Klyczek, Karen K.; Adair, Tamarah L.; Adams, Sandra D.; Ball, Sarah L.; Benjamin, Robert C.; Bonilla, J. Alfred; Breitenberger, Caroline A.; Daniels, Charles J.; Gaffney, Bobby L.; Harrison, Melinda; Hughes, Lee E.; King, Rodney A.; Krukonis, Gregory P.; Lopez, A. Javier; Monsen-Collar, Kirsten; Pizzorno, Marie C.; Staples, Amanda K.; Stowe, Emily L.; Garlena, Rebecca A.; Russell, Daniel A.

    2018-01-01

    ABSTRACT We report here the complete genome sequences of 44 phages infecting Arthrobacter sp. strain ATCC 21022. These phages have double-stranded DNA genomes with sizes ranging from 15,680 to 70,707 bp and G+C contents from 45.1% to 68.5%. All three tail types (belonging to the families Siphoviridae, Myoviridae, and Podoviridae) are represented. PMID:29437090

  11. Acaricomes phytoseiuli gen. nov., sp. nov., isolated from the predatory mite Phytoseiulus persimilis.

    PubMed

    Pukall, Rüdiger; Schumann, Peter; Schütte, Conny; Gols, Rieta; Dicke, Marcel

    2006-02-01

    A Gram-positive, rod-shaped, non-spore-forming bacterium, strain CSCT, was isolated from diseased, surface-sterilized specimens of the predatory mite Phytoseiulus persimilis Athias-Henriot and subjected to polyphasic taxonomic analysis. Comparative analysis of the 16S rRNA gene sequence revealed that the strain was a new member of the family Micrococcaceae. Nearest phylogenetic neighbours were determined as Renibacterium salmoninarum (94.0%), Arthrobacter globiformis (94.8%) and Arthrobacter russicus (94.6%). Although the predominant fatty acids (anteiso C15:0), cell-wall sugars (galactose, glucose) and polar lipids (diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol) are in accordance with those of members of the genus Arthrobacter, strain CSCT can be distinguished from members of the genus Arthrobacter by biochemical tests, the absence of a rod-coccus life cycle and the occurrence of the partially saturated menaquinone MK-10(H2) as the predominant menaquinone. The DNA G+C content is 57.7 mol%. On the basis of morphological, chemotaxonomic and phylogenetic differences from other species of the Micrococcaceae, a novel genus and species are proposed, Acaricomes phytoseiuli gen. nov., sp. nov. The type strain is CSCT (=DSM 14247T=CCUG 49701T).

  12. Crystallization and X-ray diffraction analysis of 6-­aminohexanoate-dimer hydrolase from Arthrobacter sp. KI72

    PubMed Central

    Ohki, Taku; Mizuno, Nobuhiro; Shibata, Naoki; Takeo, Masahiro; Negoro, Seiji; Higuchi, Yoshiki

    2005-01-01

    To investigate the structure–function relationship between 6-aminohexanoate-dimer hydrolase (EII) from Arthrobacter sp. and a cryptic protein (EII′) which shows 88% sequence identity to EII, a hybrid protein (named Hyb-24) of EII and EII′ was overexpressed, purified and crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant in MES buffer pH 6.5. The crystal belongs to space group P3121 or P3221, with unit-cell parameters a = b = 96.37, c = 113.09 Å. Diffraction data were collected from native and methylmercuric chloride derivative crystals to resolutions of 1.75 and 1.80 Å, respectively. PMID:16511198

  13. Effects of carbon nanotubes on atrazine biodegradation by Arthrobacter sp.

    PubMed

    Zhang, Chengdong; Li, Mingzhu; Xu, Xu; Liu, Na

    2015-04-28

    The environmental risks of engineered nanoparticles have attracted attention. However, little is known regarding the effects of carbon nanotubes (CNTs) on the biodegradation and persistence of organic contaminants in water. We investigated the impacts of pristine and oxidized multiwalled CNTs on the atrazine biodegradation rate and efficiency using Arthrobacter sp. At a concentration of 25mg/L, the CNTs enhanced the biodegradation rate by up to 20%; however, at a concentration of 100mg/L, the CNTs decreased the biodegradation rate by up to 50%. The stimulation effects resulted from enhanced bacterial growth and the overexpression of degradation genes. The inhibitory effects resulted from the toxicity of the CNTs at high concentrations. The differences between the two CNTs at tested concentrations were not significant. The biodegradation efficiency was not impacted by adsorption, and the pre-adsorbed atrazine on the CNTs was fully biodegraded when the CNT concentration was ≤25mg/L. This finding was consistent with the lack of observable desorption hysteresis for atrazine on the tested CNTs. Our results indicate that CNTs can enhance or inhibit biodegradation through a balance of two effects: the toxic effects on microbial activity and the effects of the changing bioavailability that result from adsorption and desorption. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Complete Genome Sequences of 44 Arthrobacter Phages.

    PubMed

    Klyczek, Karen K; Jacobs-Sera, Deborah; Adair, Tamarah L; Adams, Sandra D; Ball, Sarah L; Benjamin, Robert C; Bonilla, J Alfred; Breitenberger, Caroline A; Daniels, Charles J; Gaffney, Bobby L; Harrison, Melinda; Hughes, Lee E; King, Rodney A; Krukonis, Gregory P; Lopez, A Javier; Monsen-Collar, Kirsten; Pizzorno, Marie C; Rinehart, Claire A; Staples, Amanda K; Stowe, Emily L; Garlena, Rebecca A; Russell, Daniel A; Cresawn, Steven G; Pope, Welkin H; Hatfull, Graham F

    2018-02-01

    We report here the complete genome sequences of 44 phages infecting Arthrobacter sp. strain ATCC 21022. These phages have double-stranded DNA genomes with sizes ranging from 15,680 to 70,707 bp and G+C contents from 45.1% to 68.5%. All three tail types (belonging to the families Siphoviridae , Myoviridae , and Podoviridae ) are represented. Copyright © 2018 Klyczek et al.

  15. Characterization of a Novel Phenol Hydroxylase in Indoles Biotranformation from a Strain Arthrobacter sp. W1

    PubMed Central

    Li, Xinliang; Zhang, Xuwang; Zhou, Jiti

    2012-01-01

    Background Indigoids, as popular dyes, can be produced by microbial strains or enzymes catalysis. However, the new valuable products with their transformation mechanisms, especially inter-conversion among the intermediates and products have not been clearly identified yet. Therefore, it is necessary to investigate novel microbial catalytic processes for indigoids production systematically. Findings A phenol hydroxylase gene cluster (4,606 bp) from Arthrobacter sp. W1 (PHw1) was obtained. This cluster contains six components in the order of KLMNOP, which exhibit relatively low sequence identities (37–72%) with known genes. It was suggested that indole and all the tested indole derivatives except for 3-methylindole were transformed to various substituted indigoid pigments, and the predominant color products derived from indoles were identified by spectrum analysis. One new purple product from indole, 2-(7-oxo-1H-indol-6(7H)-ylidene) indolin-3-one, should be proposed as the dimerization of isatin and 7-hydroxylindole at the C-2 and C-6 positions. Tunnel entrance and docking studies were used to predict the important amino acids for indoles biotransformation, which were further proved by site-directed mutagenesis. Conclusions/Significance We showed that the phenol hydroxylase from genus Arthrobacter could transform indoles to indigoids with new chemical compounds being produced. Our work should show high insights into understanding the mechanism of indigoids bio-production. PMID:23028517

  16. Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, R.K.; Spain, J.C.; Dreisbach, J.H.

    1994-08-01

    The degradation of p-nitrophenol (PNP) by Moraxella and Pseudomonas spp. involves an initial monooxygenase-catalyzed removal of the nitro group. The resultant hydroquinone is subject to ring fission catalyzed by a dioxygenase enzyme. A strain of an Arthrobacter sp. JS443, capable of degrading PNP with stoichiometric release of nitrite has been isolated. During induction of the enzymes required for growth on PNP, 1,2,4-benzenetriol was identified as an intermediate by gas chromatography-mass spectroscopy and radiotracer studies. 1,2,4-Benzenetriol was converted to maleylacetic acid, which was further degraded by the beta-ketoadipate pathway. Conversion of PNP to 1,2,4-benzenetriol is catalyzed by a monooxygenase system inmore » strain JS443 through the formation of 4-nitrocatechol, 4-nitroresorcinol, or both. Results clearly indicate the existence of an alternative pathway for the biodegradation of PNP. 15 refs, 2 figs., 2 tabs.« less

  17. Enzymatic dehalogenation of pentachlorophenol by extracts from Arthrobacter sp. strain ATCC 33790.

    PubMed Central

    Schenk, T; Müller, R; Mörsberger, F; Otto, M K; Lingens, F

    1989-01-01

    Arthrobacter sp. strain ATCC 33790 was grown with pentachlorophenol (PCP) as the sole source of carbon and energy. Crude extracts, which were prepared by disruption of the bacteria with a French pressure cell, showed no dehalogenating activity with PCP as the substrate. After sucrose density ultracentrifugation of the crude extract at 145,000 x g, various layers were found in the gradient. One yellow layer showed enzymatic conversion of PCP. One chloride ion was released per molecule of PCP. The product of the enzymatic conversion was tetrachlorohydroquinone. NADPH and oxygen were essential for this reaction. EDTA stimulated the enzymatic activity by 67%. The optimum pH for the enzyme activity was 7.5, and the temperature optimum was 25 degrees C. Enzymatic activity was also detected with 2,4,5-trichlorophenol, 2,3,4-trichlorophenol, 2,4,6-trichlorophenol, and 2,3,4,5-tetrachlorophenol as substrates, whereas 3,4,5-trichlorophenol, 2,4-dichlorophenol, 3,4-dichlorophenol, and 4-chlorophenol did not serve as substrates. PMID:2793827

  18. Identities of Arthrobacter spp. and Arthrobacter-Like Bacteria Encountered in Human Clinical Specimens▿

    PubMed Central

    Mages, Irene S.; Frodl, Reinhard; Bernard, Kathryn A.; Funke, Guido

    2008-01-01

    After the initial description of Arthrobacter spp. isolated from clinical specimens in the mid-1990s, very few further reports on Arthrobacter spp. have appeared in the clinical microbiology literature. The aim of the present study was to elucidate the distribution of Arthrobacter spp. and Arthrobacter-like bacteria encountered in clinical specimens by studying 50 consecutively isolated or received strains of large-colony-forming, whiteish-grayish, non-cheese-like-smelling, nonfermentative gram-positive rods by applying phenotypic methods as well as 16S rRNA gene sequencing. We observed a very heterogenous distribution, with the 50 strains belonging to 20 different taxa and each of 13 strains as a single representative of its particular taxon. Thirty-eight strains represented true Arthrobacter strains, 7 strains belonged to the genus Brevibacterium, 2 were Microbacterium species, and each of 3 single strains was a member of the rarely encountered genera Pseudoclavibacter, Leucobacter, and Brachybacterium, respectively. A. cumminsii (n = 14) and A. oxydans (n = 11) were the most frequently found species. The present report describes the first three A. aurescens strains isolated from human clinical specimens. Comprehensive antimicrobial susceptibility data are given for the 38 Arthrobacter isolates. PMID:18650355

  19. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711

    PubMed Central

    Shoemaker, William R.; Muscarella, Mario E.

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments. PMID:26089434

  20. Carbon-dependent chromate toxicity mechanism in an environmental Arthrobacter isolate.

    PubMed

    Field, Erin K; Blaskovich, John P; Peyton, Brent M; Gerlach, Robin

    2018-05-12

    Arthrobacter spp. are widespread in soil systems and well-known for their Cr(VI) reduction capabilities making them attractive candidates for in situ bioremediation efforts. Cellulose drives carbon flow in soil systems; yet, most laboratory studies evaluate Arthrobacter-Cr(VI) interactions solely with nutrient-rich media or glucose. This study aims to determine how various cellulose degradation products and biostimulation substrates influence Cr(VI) toxicity, reduction, and microbial growth of an environmental Arthrobacter sp. isolate. Laboratory culture-based studies suggest there is a carbon-dependent Cr(VI) toxicity mechanism that affects subsequent Cr(VI) reduction by strain LLW01. Strain LLW01 could only grow in the presence of, and reduce, 50 μM Cr(VI) when glucose or lactate were provided. Compared to lactate, Cr(VI) was at least 30-fold and 10-fold more toxic when ethanol or butyrate was the sole carbon source, respectively. The addition of sulfate mitigated toxicity somewhat, but had no effect on the extent of Cr(VI) reduction. Cell viability studies indicated that a small fraction of cells were viable after 8 days suggesting cell growth and subsequent Cr(VI) reduction may resume. These results suggest when designing bioremediation strategies with Arthrobacter spp. such as strain LLW01, carbon sources such as glucose and lactate should be considered over ethanol and butyrate. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. [The plant growth-promoting rhizobacterium Arthrobacter agilis UMCV2 endophytically colonizes Medicago truncatula].

    PubMed

    Aviles-Garcia, Maria Elizabeth; Flores-Cortez, Idolina; Hernández-Soberano, Christian; Santoyo, Gustavo; Valencia-Cantero, Eduardo

    Arthrobacter agilis UMCV2 is a rhizosphere bacterium that promotes legume growth by solubilization of iron, which is supplied to the plant. A second growth promotion mechanism produces volatile compounds that stimulate iron uptake activities. Additionally, A. agilis UMCV2 is capable of inhibiting the growth of phytopathogens. A combination of quantitative polymerase chain reaction and fluorescence in situ hybridization techniques were used here to detect and quantify the presence of the bacterium in the internal tissues of the legume Medicago truncatula. Our results demonstrate that A. agilis UMCV2 behaves as an endophytic bacterium of M. truncatula, particularly in environments where iron is available. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Genome Sequences of Three Cluster AU Arthrobacter Phages, Caterpillar, Nightmare, and Teacup

    PubMed Central

    Adair, Tamarah L.; Stowe, Emily; Pizzorno, Marie C.; Krukonis, Gregory; Harrison, Melinda; Garlena, Rebecca A.; Russell, Daniel A.; Jacobs-Sera, Deborah

    2017-01-01

    ABSTRACT Caterpillar, Nightmare, and Teacup are cluster AU siphoviral phages isolated from enriched soil on Arthrobacter sp. strain ATCC 21022. These genomes are 58 kbp long with an average G+C content of 50%. Sequence analysis predicts 86 to 92 protein-coding genes, including a large number of small proteins with predicted transmembrane domains. PMID:29122860

  3. Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

    PubMed Central

    2012-01-01

    Background Chloronitrophenols (CNPs) are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP) is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography–mass spectrometry identified 4-chloro-2-aminophenol (4C2AP) and 2-aminophenol (2AP) as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Conclusions Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i) the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii) the bioremediation of 4C2NP by any bacterium. PMID:23171039

  4. Metabolism of 4-chloro-2-nitrophenol in a gram-positive bacterium, Exiguobacterium sp. PMA.

    PubMed

    Arora, Pankaj Kumar; Sharma, Ashutosh; Mehta, Richa; Shenoy, Belle Damodara; Srivastava, Alok; Singh, Vijay Pal

    2012-11-21

    Chloronitrophenols (CNPs) are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP) is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography-mass spectrometry identified 4-chloro-2-aminophenol (4C2AP) and 2-aminophenol (2AP) as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i) the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii) the bioremediation of 4C2NP by any bacterium.

  5. Genome Sequence of Pedobacter arcticus sp. nov., a Sea Ice Bacterium Isolated from Tundra Soil

    PubMed Central

    Yin, Ye; Yue, Guidong; Gao, Qiang; Wang, Zhiyong; Peng, Fang; Fang, Chengxiang; Yang, Xu

    2012-01-01

    Pedobacter arcticus sp. nov. was originally isolated from tundra soil collected from Ny-Ålesund, in the Arctic region of Norway. It is a Gram-negative bacterium which shows bleb-shaped appendages on the cell surface. Here, we report the draft annotated genome sequence of Pedobacter arcticus sp. nov., which belongs to the genus Pedobacter. PMID:23144423

  6. [Genomics basis of Arthrobacter spp. environmental adaptability– A review].

    PubMed

    Zhang, Xinjian; Zhang, Guangzhi; Yang, Hetong

    2016-04-04

    Arthrobacter species are found ecologically diverse and can survive in various environments. Many strains of these species have metabolic versatility and can degrade many environmental pollutants. Arthrobacter species are thought to play important roles in catabolism of environmental pollutants in nature. In recent years, the genomes of many Arthrobacter strains have been sequenced, which provides comprehensive information to clarify the molecular mechanisms related to environmental adaptability of Arthrobacter species. These genomics findings revealed several features that are commonly observed in Arthrobacter strains allowing for survival under stressful conditions. These include an array of genes associated with sigma factors and responses to oxidative, osmotic, starvation and temperature stresses. The genomics basis of their environmental adaptability are reviewed, which is expected to provide useful information for applying Arthrobacter strains in pollution remediation and shed some light on other bacterial environmental adaptability researches.

  7. Stress of algicidal substances from a bacterium Exiguobacterium sp. h10 on Microcystis aeruginosa.

    PubMed

    Li, Y; Liu, L; Xu, Y; Li, P; Zhang, K; Jiang, X; Zheng, T; Wang, H

    2017-01-01

    Microcystis aeruginosa is a cyanobacterial bloom-causing species and is considered a serious threat to human health and biological safety. In this study, the algicidal bacterium h10 showed high algicidal effects on M. aeruginosa 7820, and strain h10 was confirmed to belong to the genus Exiguobacterium, for which the name Exiguobacterium sp. h10 is proposed. Algicidal activity and mode analysis revealed that the supernatant, rather than the bacterial cells, was responsible for the algicidal activity, indicating that the algicidal mode of strain h10 is by indirect attack through the production of algicidal substances. Analysis of the algicidal substance characteristics showed a molecular weight of <1000 Da and that algicidal substances exhibit high thermal stability and pH instability, and the characteristic functional groups of the algicidal substance mainly included carbonyl, amino and hydroxyl groups. Under the effects of the algicidal substance, the cellular pigment content was significantly decreased, and the algal cell structure and morphology were seriously damaged. The results indicate that the algicidal bacterium Exiguobacterium sp. h10 could be a potential bio-agent for controlling cyanobacterial blooms of M. aeruginosa. In this study, the effects of algicidal substances from an algicidal bacterium Exiguobacterium sp. h10 on the toxic cyanobacterium, Microcystis aeruginosa 7820, were first investigated. The algicidal mode of action was confirmed as an indirect attack through the production of algicidal substances. The characteristics of the algicidal substance were determined, especially the functional groups analysis that confirmed the algicidal substances were glycolipid mixtures. With the stress of algicidal substances, the algal chlorophyll a synthesis, cell structure and morphology were seriously damaged. This study proved that algicidal bacteria are promising sources of potential cyanobacterial bloom-control, and provided good procedures for the

  8. Complete genome of Martelella sp. AD-3, a moderately halophilic polycyclic aromatic hydrocarbons-degrading bacterium.

    PubMed

    Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi

    2016-05-10

    Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria

    PubMed Central

    da Silva, Fábio Daniel Florêncio; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Dall’Agnol, Leonardo Teixeira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Oliveira, Karol Guimarães; de Lima, Clayton Pereira Silva; Nunes, Márcio Roberto Teixeira; Vianez-Júnior, João Lídio Silva Gonçalves

    2016-01-01

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here. PMID:27198027

  10. Complete Genome Sequence of the Endophytic Bacterium Burkholderia sp. Strain KJ006

    PubMed Central

    Kwak, Min-Jung; Song, Ju Yeon; Kim, Seon-Young; Jeong, Haeyoung; Kang, Sung Gyun; Kim, Byung Kwon; Kwon, Soon-Kyeong; Lee, Choong Hoon; Yu, Dong Su

    2012-01-01

    Endophytes live inside plant tissues without causing any harm and may even benefit plants. Here, we provide the high-quality genome sequence of Burkholderia sp. strain KJ006, an endophytic bacterium of rice with antifungal activity. The 6.6-Mb genome, consisting of three chromosomes and a single plasmid, contains genes related to plant growth promotion or degradation of aromatic compounds. PMID:22843575

  11. Genome Sequence of Pseudomonas sp. Strain S9, an Extracellular Arylsulfatase-Producing Bacterium Isolated from Mangrove Soil ▿

    PubMed Central

    Long, Mengxian; Ruan, Lingwei; Yu, Ziniu; Xu, Xun

    2011-01-01

    Pseudomonas sp. strain S9 was originally isolated from mangrove soil in Xiamen, China. It is an aerobic bacterium which shows extracellular arylsulfatase activity. Here, we describe the 4.8-Mb draft genome sequence of Pseudomonas sp. S9, which exhibits novel cysteine-type sulfatases. PMID:21622746

  12. Massilia sp. BS-1, a novel violacein-producing bacterium isolated from soil.

    PubMed

    Agematu, Hitosi; Suzuki, Kazuya; Tsuya, Hiroaki

    2011-01-01

    A novel bacterium, Massilia sp. BS-1, producing violacein and deoxyviolacein was isolated from a soil sample collected from Akita Prefecture, Japan. The 16S ribosomal DNA of strain BS-1 displayed 93% homology with its nearest violacein-producing neighbor, Janthinobacterium lividum. Strain BS-1 grew well in a synthetic medium, but required both L-tryptophan and a small amount of L-histidine to produce violacein.

  13. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria.

    PubMed

    da Silva, Fábio Daniel Florêncio; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Dall'Agnol, Leonardo Teixeira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Oliveira, Karol Guimarães; de Lima, Clayton Pereira Silva; Nunes, Márcio Roberto Teixeira; Vianez-Júnior, João Lídio Silva Gonçalves; Gonçalves, Evonnildo Costa

    2016-05-19

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here. Copyright © 2016 da Silva et al.

  14. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taghavi, S.; van der Lelie, D.; Hoffman, A.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plantmore » roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further

  15. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus.

    PubMed

    Busse, Hans-Jürgen

    2016-01-01

    In this paper, the taxonomy of the genus Arthrobacter is discussed, from its first description in 1947 to the present state. Emphasis is given to intrageneric phylogeny and chemotaxonomic characteristics, concentrating on quinone systems, peptidoglycan compositions and polar lipid profiles. Internal groups within the genus Arthrobacter indicated from homogeneous chemotaxonomic traits and corresponding to phylogenetic grouping and/or high 16S rRNA gene sequence similarities are highlighted. Furthermore, polar lipid profiles and quinone systems of selected species are shown, filling some gaps concerning these chemotaxonomic traits. Based on phylogenetic groupings, 16S rRNA gene sequence similarities and homogeneity in peptidoglycan types, quinone systems and polar lipid profiles, a description of the genus Arthrobacter sensu lato and an emended description of Arthrobacter roseus are provided. Furthermore, reclassifications of selected species of the genus Arthrobacter into novel genera are proposed, namely Glutamicibacter gen. nov. (nine species), Paeniglutamicibacter gen. nov. (six species), Pseudoglutamicibacter gen. nov. (two species), Paenarthrobacter gen. nov. (six species) and Pseudarthrobacter gen. nov. (ten species).

  16. Deinococcus mumbaiensis sp. nov., a radiation-resistant pleomorphic bacterium isolated from Mumbai, India.

    PubMed

    Shashidhar, Ravindranath; Bandekar, Jayant R

    2006-01-01

    A radiation-resistant, Gram-negative and pleomorphic bacterium (CON-1) was isolated from a contaminated tryptone glucose yeast extract agar plate in the laboratory. It was red pigmented, nonmotile, nonsporulating, and aerobic, and contained MK-8 as respiratory quinone. The cell wall of this bacterium contained ornithine. The major fatty acids were C16:0, C16:1, C17:0, C18:1 and iso C18:0. The DNA of CON-1 had a G+C content of 70 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that CON-1 exhibited a maximum similarity (94.72%) with Deinococcus grandis. Based on the genotypic, phenotypic and chemotaxonomic characteristics, the bacterium CON-1 was identified as a new species of the genus Deinococcus, for which the name Deinococcus mumbaiensis sp. nov. is proposed. The type strain of D. mumbaiensis is CON-1 (MTCC 7297(T)=DSM 17424(T)).

  17. Draft Genome Sequence of the Efficient Bioflocculant-Producing Bacterium Paenibacillus sp. Strain A9

    PubMed Central

    Liu, Jin-liang; Hu, Xiao-min

    2013-01-01

    Paenibacillus sp. strain A9 is an important bioflocculant-producing bacterium, isolated from a soil sample, and is pale pink-pigmented, aerobic, and Gram-positive. Here, we report the draft genome sequence and the initial findings from a preliminary analysis of strain A9, which is a novel species of Paenibacillus. PMID:23618713

  18. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    PubMed

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Inhibitory activity of an extract from a marine bacterium Halomonas sp. HSB07 against the red-tide microalga Gymnodinium sp. (Pyrrophyta)

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Li, Fuchao; Liu, Ling; Jiang, Peng; Liu, Zhaopu

    2013-11-01

    In recent years, red tides occurred frequently in coastal areas worldwide. Various methods based on the use of clay, copper sulfate, and bacteria have been successful in controlling red tides to some extent. As a new defensive agent, marine microorganisms are important sources of compounds with potent inhibitory bioactivities against red-tide microalgae, such as Gymnodinium sp. (Pyrrophyta). In this study, we isolated a marine bacterium, HSB07, from seawater collected from Hongsha Bay, Sanya, South China Sea. Based on its 16S rRNA gene sequence and biochemical characteristics, the isolated strain HSB07 was identified as a member of the genus Halomonas. A crude ethyl acetate extract of strain HSB07 showed moderate inhibition activity against Gymnodinium sp. in a bioactive prescreening experiment. The extract was further separated into fractions A, B, and C by silica gel column chromatography. Fractions B and C showed strong inhibition activities against Gymnodinium. This is the first report of inhibitory activity of secondary metabolites of a Halomonas bacterium against a red-tide-causing microalga.

  20. Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus

    PubMed Central

    Xiu, Pengyuan; Liu, Rui

    2017-01-01

    ABSTRACT Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium (Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes (flgA and flgP) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and

  1. Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus.

    PubMed

    Xiu, Pengyuan; Liu, Rui; Zhang, Dechao; Sun, Chaomin

    2017-06-15

    Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium ( Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes ( flgA and flgP ) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote

  2. Whole-Genome Sequence of Cupriavidus sp. Strain BIS7, a Heavy-Metal-Resistant Bacterium

    PubMed Central

    Hong, Kar Wai; Thinagaran, Dinaiz a/l; Gan, Han Ming; Yin, Wai-Fong

    2012-01-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome. PMID:23115161

  3. Whole-genome sequence of Cupriavidus sp. strain BIS7, a heavy-metal-resistant bacterium.

    PubMed

    Hong, Kar Wai; Thinagaran, Dinaiz al; Gan, Han Ming; Yin, Wai-Fong; Chan, Kok-Gan

    2012-11-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.

  4. Draft Genome Sequence of Pontibacter sp. nov. BAB1700, a Halotolerant, Industrially Important Bacterium

    PubMed Central

    Joshi, M. N.; Sharma, A. C.; Pandya, R. V.; Patel, R. P.; Saiyed, Z. M.; Saxena, A. K.

    2012-01-01

    Pontibacter sp. nov. BAB1700 is a halotolerant, Gram-negative, rod-shaped, pink-pigmented, menaquinone-7-producing bacterium isolated from sediments of a drilling well. The draft genome sequence of the strain, consisting of one chromosome of 4.5 Mb, revealed vital gene clusters involved in vitamin biosynthesis and resistance against various metals and antibiotics. PMID:23105068

  5. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  6. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa×deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT–PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  7. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10.

    PubMed

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-11-25

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10.

  8. Metabolism of Kaempferia parviflora polymethoxyflavones by human intestinal bacterium Bautia sp. MRG-PMF1.

    PubMed

    Kim, Mihyang; Kim, Nayoung; Han, Jaehong

    2014-12-24

    Poylmethoxyflavones (PMFs) are major bioactive flavonoids, which exhibit various biological activities, such as anticancer effects. The biotransformation of PMFs and characterization of a PMF-metabolizing human intestinal bacterium were studied herein for the first time. Hydrolysis of aryl methyl ether functional groups by human fecal samples was observed from the bioconversion of various PMFs. Activity-guided screening for PMF-metabolizing intestinal bacteria under anaerobic conditions resulted in the isolation of a strict anaerobic bacterium, which was identified as Blautia sp. MRG-PMF1. The isolated MRG-PMF1 was able to metabolize various PMFs to the corresponding demethylated flavones. The microbial conversion of bioactive 5,7-dimethoxyflavone (5,7-DMF) and 5,7,4'-trimethoxyflavone (5,7,4'-TMF) was studied in detail. 5,7-DMF and 5,7,4'-TMF were completely metabolized to 5,7-dihydroxyflavone (chrysin) and 5,7,4'-trihydroxyflavone (apigenin), respectively. From a kinetics study, the methoxy group on the flavone C-7 position was found to be preferentially hydrolyzed. 5-Methoxychrysin, the intermediate of 5,7-DMF metabolism by Blautia sp. MRG-PMF1, was isolated and characterized by nuclear magnetic resonance spectroscopy. Apigenin was produced from the sequential demethylation of 5,7,4'-TMF, via 5,4'-dimethoxy-7-hydroxyflavone and 7,4'-dihydroxy-5-methoxyflavone (thevetiaflavone). Not only demethylation activity but also deglycosylation activity was exhibited by Blautia sp. MRG-PMF1, and various flavonoids, including isoflavones, flavones, and flavanones, were found to be metabolized to the corresponding aglycones. The unprecedented PMF demethylation activity of Blautia sp. MRG-PMF1 will expand our understanding of flavonoid metabolism in the human intestine and lead to novel bioactive compounds.

  9. Interactions of protamine with the marine bacterium, Pseudoalteromonas sp. NCIMB 2021.

    PubMed

    Pustam, A; Smith, C; Deering, C; Grosicki, K M T; Leng, T Y; Lin, S; Yang, J; Pink, D; Gill, T; Graham, L; Derksen, D; Bishop, C; Demont, M E; Wyeth, R C; Smith-Palmer, T

    2014-03-01

    Pseudoalteromonas sp. NCIMB 2021 (NCIMB 2021) was grown in synthetic seawater (SSW) containing pyruvate, in the presence (SSW(++) ) and absence (SSW(-) ) of divalent cations. Cultures contained single cells. Addition of the cationic antibacterial peptide (CAP), protamine, did not inhibit, but rather increased, the growth of NCIMB 2021 in SSW(++) and caused the bacteria to grow in chains. Bacterial growth was assessed using turbidity, cell counts and the sodium salt of resazurin. In SSW(-) , NCIMB 2021 was no longer resistant to protamine. The minimum inhibitory concentration (MIC) was 5 mg ml(-1) . Protamine is a cationic antimicrobial peptide (CAP), which is active against a variety of bacteria. This is the first in-depth study of the interaction of protamine with a marine bacterium, Pseudoalteromonas sp. NCIMB 2021. Our results show that protamine is only active in seawater in the absence of divalent cations. In the presence of the divalent cations, Mg(2+) and Ca(2+) , protamine enhances the growth of Pseudoalteromonas sp. NCIMB 2021 and produces chains rather than individual cells. These are important considerations when deciding on applications for protamine and in terms of understanding its mechanism of action. © 2013 The Society for Applied Microbiology.

  10. Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages

    PubMed Central

    Adair, Tamarah L.; Afram, Patricia; Allen, Katherine G.; Archambault, Megan L.; Aziz, Rahat M.; Bagnasco, Filippa G.; Ball, Sarah L.; Barrett, Natalie A.; Benjamin, Robert C.; Blasi, Christopher J.; Borst, Katherine; Braun, Mary A.; Broomell, Haley; Brown, Conner B.; Brynell, Zachary S.; Bue, Ashley B.; Burke, Sydney O.; Casazza, William; Cautela, Julia A.; Chen, Kevin; Chimalakonda, Nitish S.; Chudoff, Dylan; Connor, Jade A.; Cross, Trevor S.; Curtis, Kyra N.; Dahlke, Jessica A.; Deaton, Bethany M.; Degroote, Sarah J.; DeNigris, Danielle M.; DeRuff, Katherine C.; Dolan, Milan; Dunbar, David; Egan, Marisa S.; Evans, Daniel R.; Fahnestock, Abby K.; Farooq, Amal; Finn, Garrett; Fratus, Christopher R.; Gaffney, Bobby L.; Garlena, Rebecca A.; Garrigan, Kelly E.; Gibbon, Bryan C.; Goedde, Michael A.; Guerrero Bustamante, Carlos A.; Harrison, Melinda; Hartwell, Megan C.; Heckman, Emily L.; Huang, Jennifer; Hughes, Lee E.; Hyduchak, Kathryn M.; Jacob, Aswathi E.; Kaku, Machika; Karstens, Allen W.; Kenna, Margaret A.; Khetarpal, Susheel; King, Rodney A.; Kobokovich, Amanda L.; Kolev, Hannah; Konde, Sai A.; Kriese, Elizabeth; Lamey, Morgan E.; Lantz, Carter N.; Lapin, Jonathan S.; Lawson, Temiloluwa O.; Lee, In Young; Lee, Scott M.; Lee-Soety, Julia Y.; Lehmann, Emily M.; London, Shawn C.; Lopez, A. Javier; Lynch, Kelly C.; Mageeney, Catherine M.; Martynyuk, Tetyana; Mathew, Kevin J.; Mavrich, Travis N.; McDaniel, Christopher M.; McDonald, Hannah; McManus, C. Joel; Medrano, Jessica E.; Mele, Francis E.; Menninger, Jennifer E.; Miller, Sierra N.; Minick, Josephine E.; Nabua, Courtney T.; Napoli, Caroline K.; Nkangabwa, Martha; Oates, Elizabeth A.; Ott, Cassandra T.; Pellerino, Sarah K.; Pinamont, William J.; Pirnie, Ross T.; Pizzorno, Marie C.; Plautz, Emilee J.; Pope, Welkin H.; Pruett, Katelyn M.; Rickstrew, Gabbi; Rimple, Patrick A.; Rinehart, Claire A.; Robinson, Kayla M.; Rose, Victoria A.; Russell, Daniel A.; Schick, Amelia M.; Schlossman, Julia; Schneider, Victoria M.; Sells, Chloe A.; Sieker, Jeremy W.; Silva, Morgan P.; Silvi, Marissa M.; Simon, Stephanie E.; Staples, Amanda K.; Steed, Isabelle L.; Stowe, Emily L.; Stueven, Noah A.; Swartz, Porter T.; Sweet, Emma A.; Sweetman, Abigail T.; Tender, Corrina; Terry, Katrina; Thomas, Chrystal; Thomas, Daniel S.; Thompson, Allison R.; Vanderveen, Lorianna; Varma, Rohan; Vaught, Hannah L.; Vo, Quynh D.; Vonberg, Zachary T.; Ware, Vassie C.; Warrad, Yasmene M.; Wathen, Kaitlyn E.; Weinstein, Jonathan L.; Wyper, Jacqueline F.; Yankauskas, Jakob R.; Zhang, Christine

    2017-01-01

    The vast bacteriophage population harbors an immense reservoir of genetic information. Almost 2000 phage genomes have been sequenced from phages infecting hosts in the phylum Actinobacteria, and analysis of these genomes reveals substantial diversity, pervasive mosaicism, and novel mechanisms for phage replication and lysogeny. Here, we describe the isolation and genomic characterization of 46 phages from environmental samples at various geographic locations in the U.S. infecting a single Arthrobacter sp. strain. These phages include representatives of all three virion morphologies, and Jasmine is the first sequenced podovirus of an actinobacterial host. The phages also span considerable sequence diversity, and can be grouped into 10 clusters according to their nucleotide diversity, and two singletons each with no close relatives. However, the clusters/singletons appear to be genomically well separated from each other, and relatively few genes are shared between clusters. Genome size varies from among the smallest of siphoviral phages (15,319 bp) to over 70 kbp, and G+C contents range from 45–68%, compared to 63.4% for the host genome. Although temperate phages are common among other actinobacterial hosts, these Arthrobacter phages are primarily lytic, and only the singleton Galaxy is likely temperate. PMID:28715480

  11. Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsenovich, Yelena P.; Carvajal, Denny A.; Wellman, Dawn M.

    2012-05-01

    The bacterial effect on U(VI) release from the autunite mineral (Ca[(UO2)(PO4)]2•3H2O) was investigated to provide a more comprehensive understanding of the important microbiological processes affecting autunite stability within subsurface bicarbonate-bearing environments. Experiments were performed in a culture of the Arthrobacter oxydans G975 strain, herein referred to as G975, a soil bacterium previously isolated from Hanford Site soil. 91 mg of autunite powder and 50 mL of phosphorous-limiting sterile media were amended with bicarbonate (ranging between 1 and 10 mM) in glass reactor bottles and inoculated with the G975 strain after the dissolution of autunite was at steady state. SEM observationsmore » indicated that G975 formed a biofilm on the autunite surface and penetrated the mineral cleavages. The mineral surface colonization by bacteria tended to increase concomitantly with bicarbonate concentrations. Additionally, a sterile culture-ware with inserts was used in non-contact dissolution experiments where autunite and bacteria cells were kept separately. The data suggest that G975 bacteria is able to enhance the release of U(VI) from autunite without direct contact with the mineral. In the presence of bicarbonate, the damage to bacterial cells caused by U(VI) toxicity was reduced, yielding similar values for total organic carbon (TOC) degradation and cell density compared to U(VI)-free controls. The presence of active bacterial cells greatly enhanced the release of U(VI) from autunite in bicarbonate-amended media.« less

  12. Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsenovich, Yelena; Carvajal, Denny A.; Wellman, Dawn M.

    2012-04-20

    The bacterial effect on U(VI) leaching from the autunite mineral (Ca[(UO{sub 2})(PO{sub 4})]{sub 2} {center_dot} 3H{sub 2}O) was investigated to provide a more comprehensive understanding into important microbiological processes affecting autunite stability within subsurface bicarbonate-bearing environments. Experiments were performed in a culture of G975 Arthrobacter oxydans strain, herein referred to as G975, a soil bacterium previously isolated from Hanford Site soil. 91 mg of autunite powder and 50 mL of phosphorus-limiting sterile media were amended with bicarbonate ranging between 1-10 mM in glass reactor bottles and inoculated with G975 strain after the dissolution of autunite was at steady state. SEMmore » observations indicated G975 formed a biofilm on the autunite surface and penetrated the mineral cleavages. The mineral surface colonization by bacteria tended to increase concomitantly with bicarbonate concentrations. Additionally, a sterile cultureware with inserts was used in non-contact bioleaching experiments where autunite and bacteria cells were kept separately. The data suggest the G975 bacteria is able to enhance U(VI) leaching from autunite without the direct contact with the mineral. In the presence of bicarbonate, the damage to bacterial cells caused by U(VI) toxicity was reduced, yielding similar values for total organic carbon (TOC) degradation and cell density compared to U(VI)-free controls. The presence of active bacterial cells greatly enhanced the U(VI) bioleaching from autunite in bicarbonate-amended media.« less

  13. The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium.

    PubMed

    Wang, L Q; Meselhy, M R; Li, Y; Nakamura, N; Min, B S; Qin, G W; Hattori, M

    2001-12-01

    A human intestinal bacterium, Eubacterium (E.) sp. strain SDG-2, was tested for its ability to metabolize various (3R)- and (3S)-flavan-3-ols and their 3-O-gallates. This bacterium cleaved the C-ring of (3R)- and (3S)-flavan-3-ols to give 1,3-diphenylpropan-2-ol derivatives, but not their 3-O-gallates. Furthermore, E. sp. strain SDG-2 had the ability of p-dehydroxylation in the B-ring of (3R)-flavan-3-ols, such as (-)-catechin, (-)-epicatechin, (-)-gallocatechin and (-)-epigallocatechin, but not of (3S)-flavan-3-ols, such as (+)-catechin and (+)-epicatechin.

  14. 'Cand. Actinochlamydia clariae' gen. nov., sp. nov., a unique intracellular bacterium causing epitheliocystis in catfish (Clarias gariepinus) in Uganda.

    PubMed

    Steigen, Andreas; Nylund, Are; Karlsbakk, Egil; Akoll, Peter; Fiksdal, Ingrid U; Nylund, Stian; Odong, Robinson; Plarre, Heidrun; Semyalo, Ronald; Skår, Cecilie; Watanabe, Kuninori

    2013-01-01

    Epitheliocystis, caused by bacteria infecting gill epithelial cells in fish, is common among a large range of fish species in both fresh- and seawater. The aquaculture industry considers epitheliocystis an important problem. It affects the welfare of the fish and the resulting gill disease may lead to mortalities. In a culture facility in Kampala, Uganda, juveniles of the African sharptooth catfish (Clarias gariepinus) was observed swimming in the surface, sometimes belly up, showing signs of respiratory problems. Histological examination of gill tissues from this fish revealed large amounts of epitheliocysts, and also presence of a few Ichthyobodo sp. and Trichodina sp. Sequencing of the epitheliocystis bacterium 16S rRNA gene shows 86.3% similarity with Candidatus Piscichlamydia salmonis causing epitheliocystis in Atlantic salmon (Salmo salar). Transmission electron microscopy showed that the morphology of the developmental stages of the bacterium is similar to that of members of the family Chlamydiaceae. The similarity of the bacterium rRNA gene sequences compared with other chlamydia-like bacteria ranged between 80.5% and 86.3%. Inclusions containing this new bacterium have tubules/channels (termed actinae) that are radiating from the inclusion membrane and opening on the cell surface or in neighbouring cells. Radiation of tubules/channels (actinae) from the inclusion membrane has never been described in any of the other members of Chlamydiales. It seems to be a completely new character and an apomorphy. We propose the name Candidatus Actinochlamydia clariae gen. nov., sp. nov. (Actinochlamydiaceae fam. nov., order Chlamydiales, phylum Chlamydiae) for this new agent causing epitheliocystis in African sharptooth catfish.

  15. Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06.

    PubMed

    Liu, Yang; Wang, Runping; Zeng, Runying

    2014-12-01

    Rhizobium sp. MGL06, the first Rhizobium isolate from a marine environment, is a malachite-green-tolerant bacterium with a broader salinity tolerance (range: 0.5% to 9%) than other rhizobia. This study sequences and annotates the draft genome sequence of this strain. Genome sequence information provides a basis for analyzing the malachite green tolerance, broad salinity adaptation, nitrogen fixation properties, and taxonomic classification of the isolate. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10

    PubMed Central

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-01-01

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10. PMID:26601700

  17. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    PubMed

    Lee, Sang-Yeop; Kim, Gun-Hwa; Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  18. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    PubMed Central

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  19. Isolation and characterization of a novel simazine-degrading bacterium from agricultural soil of central Chile, Pseudomonas sp. MHP41.

    PubMed

    Hernández, Marcela; Villalobos, Patricio; Morgante, Verónica; González, Myriam; Reiff, Caroline; Moore, Edward; Seeger, Michael

    2008-09-01

    s-Triazine herbicides are used extensively in South America in agriculture and forestry. In this study, a bacterium designated as strain MHP41, capable of degrading simazine and atrazine, was isolated from agricultural soil in the Quillota valley, central Chile. Strain MHP41 is able to grow in minimal medium, using simazine as the sole nitrogen source. In this medium, the bacterium exhibited a growth rate of mu=0.10 h(-1), yielding a high biomass of 4.2 x 10(8) CFU mL(-1). Resting cells of strain MHP41 degrade more than 80% of simazine within 60 min. The atzA, atzB, atzC, atzD, atzE and atzF genes encoding the enzymes of the simazine upper and lower pathways were detected in strain MHP41. The motile Gram-negative bacterium was identified as a Pseudomonas sp., based on the Biolog microplate system and comparative sequence analyses of the 16S rRNA gene. Amplified ribosomal DNA restriction analysis allowed the differentiation of strain MHP41 from Pseudomonas sp. ADP. The comparative 16S rRNA gene sequence analyses suggested that strain MHP41 is closely related to Pseudomonas nitroreducens and Pseudomonas multiresinovorans. This is the first s-triazine-degrading bacterium isolated in South America. Strain MHP41 is a potential biocatalyst for the remediation of s-triazine-contaminated environments.

  20. ‘Cand. Actinochlamydia clariae’ gen. nov., sp. nov., a Unique Intracellular Bacterium Causing Epitheliocystis in Catfish (Clarias gariepinus) in Uganda

    PubMed Central

    Steigen, Andreas; Nylund, Are; Karlsbakk, Egil; Akoll, Peter; Fiksdal, Ingrid U.; Nylund, Stian; Odong, Robinson; Plarre, Heidrun; Semyalo, Ronald; Skår, Cecilie; Watanabe, Kuninori

    2013-01-01

    Background and Objectives Epitheliocystis, caused by bacteria infecting gill epithelial cells in fish, is common among a large range of fish species in both fresh- and seawater. The aquaculture industry considers epitheliocystis an important problem. It affects the welfare of the fish and the resulting gill disease may lead to mortalities. In a culture facility in Kampala, Uganda, juveniles of the African sharptooth catfish (Clarias gariepinus) was observed swimming in the surface, sometimes belly up, showing signs of respiratory problems. Histological examination of gill tissues from this fish revealed large amounts of epitheliocysts, and also presence of a few Ichthyobodo sp. and Trichodina sp. Methods and Results Sequencing of the epitheliocystis bacterium 16S rRNA gene shows 86.3% similarity with Candidatus Piscichlamydia salmonis causing epitheliocystis in Atlantic salmon (Salmo salar). Transmission electron microscopy showed that the morphology of the developmental stages of the bacterium is similar to that of members of the family Chlamydiaceae. The similarity of the bacterium rRNA gene sequences compared with other chlamydia-like bacteria ranged between 80.5% and 86.3%. Inclusions containing this new bacterium have tubules/channels (termed actinae) that are radiating from the inclusion membrane and opening on the cell surface or in neighbouring cells. Conclusions Radiation of tubules/channels (actinae) from the inclusion membrane has never been described in any of the other members of Chlamydiales. It seems to be a completely new character and an apomorphy. We propose the name Candidatus Actinochlamydia clariae gen. nov., sp. nov. (Actinochlamydiaceae fam. nov., order Chlamydiales, phylum Chlamydiae) for this new agent causing epitheliocystis in African sharptooth catfish. PMID:23826156

  1. Identification of an entomopathogenic bacterium, Serratia sp. ANU101, and its hemolytic activity.

    PubMed

    Kim, Yonggyun; Kim, Keunseob; Seo, Jiae; Shrestha, Sony; Kim, Hosanna H; Nalini, Madanagopal; Yi, Youngkeun

    2009-03-01

    Four different bacterial colonies were isolated from an old stock of an entomopathogenic nematode, Steinernema monticolum. They all showed entomopathogenicity to final instar larvae of beet armyworm, Spodoptera exigua, by hemocoelic injection. However, they varied in colony form, susceptibility to antibiotics, and postmortem change of the infected host insects. Biolog microbial identification and 16S rDNA sequence analyses indicate that these are four different species classified into different bacterial genera. owing to high entomopathogenicity and a cadaver color of infected insect host, Serratia sp. was selected as a main symbiotic bacterial species and analyzed for its pathogenicity. Although no virulence of Serratia sp. was detected at oral administration, the bacteria gave significant synergistic pathogenicity to fifth instar S. exigua when it was treated along with a spore-forming entomopathogenic bacterium, Bacillus thuringiensis. The synergistic effect was explained by an immunosuppressive effect of Serratia sp. by its high cytotoxic effect on hemocytes of S. exigua, because Serratia sp. caused septicemia of S. exigua when the bacterial cells were injected into S. exigua hemocoel. The cytotoxic factor(s) was present in the culture medium because the sterilized culture broth possessed high potency in the cytotoxicity, which was specific to granular cells and plasmatocytes, two main immune-associated hemocytes in insects.

  2. Physiological and Comparative Genomic Analysis of Arthrobacter sp. SRS-W-1-2016 Provides Insights on Niche Adaptation for Survival in Uraniferous Soils

    PubMed Central

    Chauhan, Ashvini; Pathak, Ashish; Jaswal, Rajneesh; Edwards, Bobby; Chappell, Demario; Ball, Christopher; Garcia-Sillas, Reyna; Stothard, Paul; Seaman, John

    2018-01-01

    Arthrobacter sp. strain SRS-W-1-2016 was isolated on high concentrations of uranium (U) from the Savannah River Site (SRS) that remains co-contaminated by radionuclides, heavy metals, and organics. SRS is located on the northeast bank of the Savannah River (South Carolina, USA), which is a U.S. Department of Energy (DOE) managed ecosystem left historically contaminated from decades of nuclear weapons production activities. Predominant contaminants within the impacted SRS environment include U and Nickel (Ni), both of which can be transformed microbially into less toxic forms via metal complexation mechanisms. Strain SRS-W-1-2016 was isolated from the uraniferous SRS soils on high concentrations of U (4200 μM) and Ni (8500 μM), but rapid growth was observed at much lower concentrations of 500 μM U and 1000 μM Ni, respectively. Microcosm studies established with strain SRS-W-1-2016 revealed a rapid decline in the concentration of spiked U such that it was almost undetectable in the supernatant by 72 h of incubation. Conversely, Ni concentrations remained unchanged, suggesting that the strain removed U but not Ni under the tested conditions. To obtain a deeper understanding of the metabolic potential, a draft genome sequence of strain SRS-W-1-2016 was obtained at a coverage of 90×, assembling into 93 contigs with an N50 contig length of 92,788 bases. The genomic size of strain SRS-W-1-2016 was found to be 4,564,701 bases with a total number of 4327 putative genes. An in-depth, genome-wide comparison between strain SRS-W-1-2016 and its four closest taxonomic relatives revealed 1159 distinct genes, representing 26.7% of its total genome; many associating with metal resistance proteins (e.g., for cadmium, cobalt, and zinc), transporter proteins, stress proteins, cytochromes, and drug resistance functions. Additionally, several gene homologues coding for resistance to metals were identified in the strain, such as outer membrane efflux pump proteins, peptide

  3. Physiological and Comparative Genomic Analysis of Arthrobacter sp. SRS-W-1-2016 Provides Insights on Niche Adaptation for Survival in Uraniferous Soils.

    PubMed

    Chauhan, Ashvini; Pathak, Ashish; Jaswal, Rajneesh; Edwards, Bobby; Chappell, Demario; Ball, Christopher; Garcia-Sillas, Reyna; Stothard, Paul; Seaman, John

    2018-01-11

    Arthrobacter sp. strain SRS-W-1-2016 was isolated on high concentrations of uranium (U) from the Savannah River Site (SRS) that remains co-contaminated by radionuclides, heavy metals, and organics. SRS is located on the northeast bank of the Savannah River (South Carolina, USA), which is a U.S. Department of Energy (DOE) managed ecosystem left historically contaminated from decades of nuclear weapons production activities. Predominant contaminants within the impacted SRS environment include U and Nickel (Ni), both of which can be transformed microbially into less toxic forms via metal complexation mechanisms. Strain SRS-W-1-2016 was isolated from the uraniferous SRS soils on high concentrations of U (4200 μM) and Ni (8500 μM), but rapid growth was observed at much lower concentrations of 500 μM U and 1000 μM Ni, respectively. Microcosm studies established with strain SRS-W-1-2016 revealed a rapid decline in the concentration of spiked U such that it was almost undetectable in the supernatant by 72 h of incubation. Conversely, Ni concentrations remained unchanged, suggesting that the strain removed U but not Ni under the tested conditions. To obtain a deeper understanding of the metabolic potential, a draft genome sequence of strain SRS-W-1-2016 was obtained at a coverage of 90×, assembling into 93 contigs with an N50 contig length of 92,788 bases. The genomic size of strain SRS-W-1-2016 was found to be 4,564,701 bases with a total number of 4327 putative genes. An in-depth, genome-wide comparison between strain SRS-W-1-2016 and its four closest taxonomic relatives revealed 1159 distinct genes, representing 26.7% of its total genome; many associating with metal resistance proteins (e.g., for cadmium, cobalt, and zinc), transporter proteins, stress proteins, cytochromes, and drug resistance functions. Additionally, several gene homologues coding for resistance to metals were identified in the strain, such as outer membrane efflux pump proteins, peptide

  4. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    PubMed

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Draft Genome Sequence of Chryseobacterium sp. Strain GSE06, a Biocontrol Endophytic Bacterium Isolated from Cucumber (Cucumis sativus)

    PubMed Central

    Jeong, Jin-Ju; Park, Byeong Hyeok; Park, Hongjae

    2016-01-01

    Chryseobacterium sp. strain GSE06 is a biocontrol endophytic bacterium against the destructive soilborne oomycete Phytophthora capsici, which causes Phytophthora blight of pepper. Here, we present its draft genome sequence, which contains genes related to biocontrol traits, such as colonization, antimicrobial activity, plant growth promotion, and abiotic or biotic stress adaptation. PMID:27313310

  6. Draft Genome Sequence and Description of Janthinobacterium sp. Strain CG3, a Psychrotolerant Antarctic Supraglacial Stream Bacterium

    PubMed Central

    Smith, Heidi; Akiyama, Tatsuya; Franklin, Michael; Woyke, Tanja; Teshima, Hazuki; Davenport, Karen; Daligault, Hajnalka; Erkkila, Tracy; Goodwin, Lynne; Gu, Wei; Xu, Yan; Chain, Patrick

    2013-01-01

    Here we present the draft genome sequence of Janthinobacterium sp. strain CG3, a psychrotolerant non-violacein-producing bacterium that was isolated from the Cotton Glacier supraglacial stream. The genome sequence of this organism will provide insight as to the mechanisms necessary for bacteria to survive in UV-stressed icy environments. PMID:24265494

  7. The FPase properties and morphology changes of a cellulolytic bacterium, Sporocytophaga sp. JL-01, on decomposing filter paper cellulose.

    PubMed

    Wang, Xiuran; Peng, Zhongqi; Sun, Xiaoling; Liu, Dongbo; Chen, Shan; Li, Fan; Xia, Hongmei; Lu, Tiancheng

    2012-01-01

    Sporocytophaga sp. JL-01 is a sliding cellulose degrading bacterium that can decompose filter paper (FP), carboxymethyl cellulose (CMC) and cellulose CF11. In this paper, the morphological characteristics of S. sp. JL-01 growing in FP liquid medium was studied by Scanning Electron Microscope (SEM), and one of the FPase components of this bacterium was analyzed. The results showed that the cell shapes were variable during the process of filter paper cellulose decomposition and the rod shape might be connected with filter paper decomposing. After incubating for 120 h, the filter paper was decomposed significantly, and it was degraded absolutely within 144 h. An FPase1 was purified from the supernatant and its characteristics were analyzed. The molecular weight of the FPase1 was 55 kDa. The optimum pH was pH 7.2 and optimum temperature was 50°C under experiment conditions. Zn(2+) and Co(2+) enhanced the enzyme activity, but Fe(3+) inhibited it.

  8. Methylobacterium variabile sp. nov., a methylotrophic bacterium isolated from an aquatic environment.

    PubMed

    Gallego, Virginia; García, Maria Teresa; Ventosa, Antonio

    2005-07-01

    Strain GR3(T) was isolated from drinking water during a screening programme to monitor the bacterial population present in the distribution system of Seville (Spain), and it was studied phenotypically, genotypically and phylogenetically. This pink-pigmented bacterium was identified as a Methylobacterium sp. Members of this genus are distributed in a wide variety of natural habitats, including soil, dust, air, freshwater and aquatic sediments. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain GR3(T) was closely related to Methylobacterium aquaticum (97.4% sequence similarity), whereas sequence similarity values with respect to the rest of the species belonging to this genus were lower than 96%. Furthermore, the DNA-DNA hybridization data and its phenotypic characteristics clearly indicate that the isolate represents a novel Methylobacterium species, for which the name Methylobacterium variabile sp. nov. is proposed. GR3(T) (=DSM 16961(T)=CCM 7281(T)=CECT 7045(T)) is the type strain; the DNA G+C content of this strain is 69.2 mol%.

  9. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment.

    PubMed

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant'Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fábio Oliveira; Souza, Emanuel Maltempi; Brandelli, Adriano; Passaglia, Luciane M P

    2015-04-02

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments. Copyright © 2015 Pereira et al.

  10. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation

    PubMed Central

    Yin, Liang; Xue, Yanfen; Ma, Yanhe

    2015-01-01

    The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl) and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine), were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress. PMID:26030352

  11. Three dehalogenases and physiological restraints in the biodegradation of haloalkanes by Arthrobacter sp. strain HA1.

    PubMed Central

    Scholtz, R; Messi, F; Leisinger, T; Cook, A M

    1988-01-01

    Arthrobacter sp. strain HA1 utilizes 18 C2-to-C8 1-haloalkanes for growth and synthesizes an inducible 1-bromoalkane debrominase of unknown physiological function (R. Scholtz, T. Leisinger, F. Suter, and A.M. Cook, J. Bacteriol. 169:5016-5021, 1987) in addition to an inducible 1-chlorohexane halidohydrolase which dehalogenates some 50 substrates, including alpha, omega-dihaloalkanes. alpha, omega-Dihaloalkanes were utilized by cultures of strain HA1 under certain conditions only. C9 and C8 homologs prevented growth. At suitable concentrations, C7-to-C5 homologs could serve as sole sources of carbon and energy for growth. C4 and C3 homologs could be utilized only in the presence of a second substrate (e.g., butanol), and the C2 homolog was not degraded. Kinetics of growth and substrate utilization indicated that cells of strain HA1 growing in butanol-salts medium could be used to test whether compounds induced the 1-chlorohexane halidohydrolase. No gratuitous induction of synthesis of the enzyme was observed. Many enzyme substrates (e.g., bromobenzene) did not induce synthesis of the enzyme, though the enzyme sequence to degrade the product (phenol) was present. Some inducers (e.g., bromomethane) were enzyme substrates but not growth substrates. In an attempt to find a physiological role for the 1-bromoalkane debrominase, we observed that several long-chain haloaliphatic compounds (greater than C9; e.g., 1-bromohexadecane and 1-chlorohexadecane) were utilized for growth and that induced cells could dehalogenate several 1-haloalkanes (at least C4 to C16). The dehalogenation of the long-chain compounds could not be assayed in the cell extract, so we presume that a third haloalkane dehalogenase was present.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3223767

  12. Isolation and identification of berberine and berberrubine metabolites by berberine-utilizing bacterium Rhodococcus sp. strain BD7100.

    PubMed

    Ishikawa, Kazuki; Takeda, Hisashi; Wakana, Daigo; Sato, Fumihiko; Hosoe, Tomoo

    2016-05-01

    Based on the finding of a novel berberine (BBR)-utilizing bacterium, Rhodococcus sp. strain BD7100, we investigated the degradation of BBR and its analog berberrubine (BRU). Resting cells of BD7100 demethylenated BBR and BRU, yielding benzeneacetic acid analogs. Isolation of benzeneacetic acid analogs suggested that BD7100 degraded the isoquinoline ring of the protoberberine skeleton. This work represents the first report of cleavage of protoberberine skeleton by a microorganism.

  13. [Bacterium Arthrobacter agilis UMCV2 and diverse amines inhibit in vitro growth of wood-decay fungi].

    PubMed

    Orozco-Mosqueda, M Del Carmen; Valencia-Cantero, Eduardo; López-Albarrán, Pablo; Martínez-Pacheco, Mauro; Velázquez-Becerra, Crisanto

    2015-01-01

    The kingdom Fungi is represented by a large number of organisms, including pathogens that deteriorate the main structural components of wood, such as cellulose, hemicellulose and lignin. The aim of our work was to characterize the antifungal activity in Arthrobacter agilis UMCV2 and diverse amines against wood-decaying fungi. Four fungal organisms (designated as UMTM) were isolated from decaying wood samples obtained from a forest in Cuanajo-Michoacán, México. Two of them showed a clear enzymatic activity of cellulases, xylanases and oxido-reducing enzymes and were identified as Hypocrea (UMTM3 isolate) and Fusarium (UMTM13 isolate). In vitro, the amines showed inhibitory effect against UMTM growth and one of the amines, dimethylhexadecylamine (DMA16), exhibited strong potential as wood preventive treatment, against the attack of decaying fungi. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Characterization of a new oligoalginate lyase from marine bacterium Vibrio sp.

    PubMed

    Yu, Zuochen; Zhu, Benwei; Wang, Wenxia; Tan, Haidong; Yin, Heng

    2018-06-01

    A new oligoalginate lyase encoding gene, designed oal17A, was cloned from marine bacterium Vibrio sp. W13, and then expressed in Escherichia coli. The recombinant Oal17A was purified by NTA-Ni resin with maximal activity at 30°C and pH7.0. Oal17A exhibited broad substrate specificity, and preferred to degrade alginate than polyM or polyG into monosaccharide acid. The specific activity of Oal17A toward alginate, polyM and polyG was 21.14U/mg, 12.31U/mg and 7.43U/mg, respectively. With features of high-level expression and broad substrate specificity, Oal17A would be a potential tool for alginate monomer production process of alginate utilizing for biofuels and bioethanol production. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Key Enzymes Enabling the Growth of Arthrobacter sp. Strain JBH1 with Nitroglycerin as the Sole Source of Carbon and Nitrogen

    PubMed Central

    Husserl, Johana; Hughes, Joseph B.

    2012-01-01

    Flavoprotein reductases that catalyze the transformation of nitroglycerin (NG) to dinitro- or mononitroglycerols enable bacteria containing such enzymes to use NG as the nitrogen source. The inability to use the resulting mononitroglycerols limits most strains to incomplete denitration of NG. Recently, Arthrobacter strain JBH1 was isolated for the ability to grow on NG as the sole source of carbon and nitrogen, but the enzymes and mechanisms involved were not established. Here, the enzymes that enable the Arthrobacter strain to incorporate NG into a productive pathway were identified. Enzyme assays indicated that the transformation of nitroglycerin to mononitroglycerol is NADPH dependent and that the subsequent transformation of mononitroglycerol is ATP dependent. Cloning and heterologous expression revealed that a flavoprotein catalyzes selective denitration of NG to 1-mononitroglycerol (1-MNG) and that 1-MNG is transformed to 1-nitro-3-phosphoglycerol by a glycerol kinase homolog. Phosphorylation of the nitroester intermediate enables the subsequent denitration of 1-MNG in a productive pathway that supports the growth of the isolate and mineralization of NG. PMID:22427495

  16. Key enzymes enabling the growth of Arthrobacter sp. strain JBH1 with nitroglycerin as the sole source of carbon and nitrogen.

    PubMed

    Husserl, Johana; Hughes, Joseph B; Spain, Jim C

    2012-05-01

    Flavoprotein reductases that catalyze the transformation of nitroglycerin (NG) to dinitro- or mononitroglycerols enable bacteria containing such enzymes to use NG as the nitrogen source. The inability to use the resulting mononitroglycerols limits most strains to incomplete denitration of NG. Recently, Arthrobacter strain JBH1 was isolated for the ability to grow on NG as the sole source of carbon and nitrogen, but the enzymes and mechanisms involved were not established. Here, the enzymes that enable the Arthrobacter strain to incorporate NG into a productive pathway were identified. Enzyme assays indicated that the transformation of nitroglycerin to mononitroglycerol is NADPH dependent and that the subsequent transformation of mononitroglycerol is ATP dependent. Cloning and heterologous expression revealed that a flavoprotein catalyzes selective denitration of NG to 1-mononitroglycerol (1-MNG) and that 1-MNG is transformed to 1-nitro-3-phosphoglycerol by a glycerol kinase homolog. Phosphorylation of the nitroester intermediate enables the subsequent denitration of 1-MNG in a productive pathway that supports the growth of the isolate and mineralization of NG.

  17. Draft Genome Sequence of Roseovarius sp. A-2, an Iodide-Oxidizing Bacterium Isolated from Natural Gas Brine Water, Chiba, Japan.

    PubMed

    Yuliana, Tri; Nakajima, Nobuyoshi; Yamamura, Shigeki; Tomita, Masaru; Suzuki, Haruo; Amachi, Seigo

    2017-01-01

    Roseovarius sp. A-2 is a heterotrophic iodide (I - )-oxidizing bacterium isolated from iodide-rich natural gas brine water in Chiba, Japan. This strain oxidizes iodide to molecular iodine (I 2 ) by means of an extracellular multicopper oxidase. Here we report the draft genome sequence of strain A-2. The draft genome contained 46 tRNA genes, 1 copy of a 16S-23S-5S rRNA operon, and 4,514 protein coding DNA sequences, of which 1,207 (27%) were hypothetical proteins. The genome contained a gene encoding IoxA, a multicopper oxidase previously found to catalyze the oxidation of iodide in Iodidimonas sp. Q-1. This draft genome provides detailed insights into the metabolism and potential application of Roseovarius sp. A-2.

  18. Complete genome sequencing of the luminescent bacterium, Vibrio qinghaiensis sp. Q67 using PacBio technology

    NASA Astrophysics Data System (ADS)

    Gong, Liang; Wu, Yu; Jian, Qijie; Yin, Chunxiao; Li, Taotao; Gupta, Vijai Kumar; Duan, Xuewu; Jiang, Yueming

    2018-01-01

    Vibrio qinghaiensis sp.-Q67 (Vqin-Q67) is a freshwater luminescent bacterium that continuously emits blue-green light (485 nm). The bacterium has been widely used for detecting toxic contaminants. Here, we report the complete genome sequence of Vqin-Q67, obtained using third-generation PacBio sequencing technology. Continuous long reads were attained from three PacBio sequencing runs and reads >500 bp with a quality value of >0.75 were merged together into a single dataset. This resultant highly-contiguous de novo assembly has no genome gaps, and comprises two chromosomes with substantial genetic information, including protein-coding genes, non-coding RNA, transposon and gene islands. Our dataset can be useful as a comparative genome for evolution and speciation studies, as well as for the analysis of protein-coding gene families, the pathogenicity of different Vibrio species in fish, the evolution of non-coding RNA and transposon, and the regulation of gene expression in relation to the bioluminescence of Vqin-Q67.

  19. Characterization of carbon dioxide concentrating chemolithotrophic bacterium Serratia sp. ISTD04 for production of biodiesel.

    PubMed

    Kumar, Manish; Morya, Raj; Gnansounou, Edgard; Larroche, Christian; Thakur, Indu Shekhar

    2017-11-01

    Proteomics and metabolomics analysis has become a powerful tool for characterization of microbial ability for fixation of Carbon dioxide. Bacterial community of palaeoproterozoic metasediments was enriched in the shake flask culture in the presence of NaHCO 3 . One of the isolate showed resistance to NaHCO 3 (100mM) and was identified as Serratia sp. ISTD04 by 16S rRNA sequence analysis. Carbon dioxide fixing ability of the bacterium was established by carbonic anhydrase enzyme assay along with proteomic analysis by LC-MS/MS. In proteomic analysis 96 proteins were identified out of these 6 protein involved in carbon dioxide fixation, 11 in fatty acid metabolism, indicating the carbon dioxide fixing potency of bacterium along with production of biofuel. GC-MS analysis revealed that hydrocarbons and FAMEs produced by bacteria within the range of C 13 -C 24 and C 11 -C 19 respectively. Presence of 59% saturated and 41% unsaturated organic compounds, make it a better fuel composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Albibacter methylovorans gen. nov., sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane.

    PubMed

    Doronina, N V; Trotsenko, Y A; Tourova, T P; Kuznetsov, B B; Leisinger, T

    2001-05-01

    A novel genus, Albibacter, with one species, Albibacter methylovorans sp. nov., is proposed for a facultatively chemolithotrophic and methylotrophic bacterium (strain DM10T) with the ribulose bisphosphate (RuBP) pathway of C1 assimilation. The bacterium is a Gram-negative, aerobic, asporogenous, nonmotile, colourless rod that multiplies by binary fission. The organism utilizes dichloromethane, methanol, methylamine, formate and CO2/H2, as well as a variety of polycarbon compounds, as carbon and energy sources. It is neutrophilic and mesophilic. The major cellular fatty acids are straight-chain unsaturated C18:1, saturated C16:0 and cyclopropane C19:0 acids. The main ubiquinone is Q-10. The dominant phospholipids are phosphatidyl ethanolamine, phosphatidyl glycerol, phosphatidyl choline and cardiolipin. The DNA G+C content is 66.7 mol%. Strain DM10T has a very low degree of DNA-DNA hybridization (4-7%) with the type species of the genera Paracoccus, Xanthobacter, Blastobacter, Angulomicrobium, Ancylobacter and Ralstonia of RuBP pathway methylobacteria. Another approach, involving comparative 16S rDNA analysis, has shown that the novel isolate represents a separate branch within the alpha-2 subgroup of the Proteobacteria. The type species of the new genus is Albibacter methylovorans sp. nov.; the type strain is DM10T (= VKM B-2236T = DSM 13819T).

  1. Thalassospira povalilytica sp. nov., a polyvinyl-alcohol-degrading marine bacterium.

    PubMed

    Nogi, Yuichi; Yoshizumi, Masaki; Miyazaki, Masayuki

    2014-04-01

    A polyvinyl-alcohol-degrading marine bacterium was isolated from plastic rope litter found in Tokyo Bay, Japan. The isolated strain, Zumi 95(T), was a Gram-reaction-negative, non-spore-forming and facultatively anaerobic chemo-organotroph. The major respiratory quinone was Q-10. The predominant fatty acids were C18 : 1ω7c and C16 : 0. On the basis of 16S rRNA gene sequence analysis, the isolated strain was closely affiliated with members of the genus Thalassospira in the class Alphaproteobacteria. The DNA G+C content of the novel strain was 55.1 mol%. The hybridization values for DNA-DNA relatedness between this strain and four reference strains representing species of the genus Thalassospira were significantly lower than that accepted as the phylogenetic definition of a species. On the basis of differences in taxonomic characteristics, the isolated strain represents a novel species of the genus Thalassospira for which the name Thalassospira povalilytica sp. nov. (type strain Zumi 95(T) = JCM 18746(T) = DSM 26719(T)) is proposed.

  2. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  3. Wide Distribution of Closely Related, Antibiotic-Producing Arthrobacter Strains throughout the Arctic Ocean

    PubMed Central

    Wietz, Matthias; Månsson, Maria; Bowman, Jeff S.; Blom, Nikolaj; Ng, Yin

    2012-01-01

    We isolated 16 antibiotic-producing bacterial strains throughout the central Arctic Ocean, including seven Arthrobacter spp. with almost identical 16S rRNA gene sequences. These strains were numerically rare, as revealed using 454 pyrosequencing libraries. Arthrobacter spp. produced arthrobacilins A to C under different culture conditions, but other, unidentified compounds likely contributed to their antibiotic activity. PMID:22247128

  4. Isolation and Characterization of a Human Intestinal Bacterium Eggerthella sp. AUH-JLD49s for the Conversion of (-)-3'-Desmethylarctigenin.

    PubMed

    Wang, Ye; Yu, Fei; Liu, Ming-Yue; Zhao, Yi-Kai; Wang, Dong-Ming; Hao, Qing-Hong; Wang, Xiu-Ling

    2017-05-24

    Arctiin is the most abundant bioactive compound contained in the Arctium lappa plant. In our previous study, we isolated one single bacterium capable of bioconverting arctigenin, an aglycone of arctiin, to 3'-desmethylarctigenin (3'-DMAG) solely. However, to date, a specific bacterium capable of producing other arctiin metabolites has not been reported. In this study, we isolated one single bacterium, which we named Eggerthella sp. AUH-JLD49s, capable of bioconverting 3'-DMAG under anaerobic conditions. The metabolite of 3'-DMAG by strain AUH-JLD49s was identified as 3'-desmethyl-4'-dehydroxyarctigenin (DMDH-AG) based on electrospray ionization mass spectrometry (ESI-MS) and 1 H and 13 C nuclear magnetic resonance spectroscopy. The bioconversion kinetics and bioconversion capacity of strain AUH-JLD49s were investigated. In addition, the metabolite DMDH-AG showed an inhibitory effect on cell growth of human colon cancer cell line HCT116 and human breast cancer cell line MDA-MB-231.

  5. Genome sequence of the photoarsenotrophic bacterium Ectothiorhodospira sp. strain BSL-9, isolated from a hypersaline alkaline arsenic-rich extreme environment

    USGS Publications Warehouse

    Hernandez-Maldonado, Jaime; Stoneburner, Brendon; Boren, Alison; Miller, Laurence; Rosen, Michael R.; Oremland, Ronald S.; Saltikov, Chad W

    2016-01-01

    The full genome sequence of Ectothiorhodospira sp. strain BSL-9 is reported here. This purple sulfur bacterium encodes an arxA-type arsenite oxidase within the arxB2AB1CD gene island and is capable of carrying out “photoarsenotrophy” anoxygenic photosynthetic arsenite oxidation. Its genome is composed of 3.5 Mb and has approximately 63% G+C content.

  6. Role of Rhodobacter sp. Strain PS9, a Purple Non-Sulfur Photosynthetic Bacterium Isolated from an Anaerobic Swine Waste Lagoon, in Odor Remediation

    PubMed Central

    Do, Young S.; Schmidt, Thomas M.; Zahn, James A.; Boyd, Eric S.; de la Mora, Arlene; DiSpirito, Alan A.

    2003-01-01

    Temporal pigmentation changes resulting from the development of a purple color in anaerobic swine waste lagoons were investigated during a 4-year period. The major purple photosynthetic bacterium responsible for these color changes and the corresponding reductions in odor was isolated from nine photosynthetic lagoons. By using morphological, physiological, and phylogenetic characterization methods we identified the predominant photosynthetic bacterium as a new strain of Rhodobacter, designated Rhodobacter sp. strain PS9. Rhodobacter sp. strain PS9 is capable of photoorganotrophic growth on a variety of organic compounds, including all of the characteristic volatile organic compounds (VOC) responsible for the odor associated with swine production facilities (J. A. Zahn, A. A. DiSpirito, Y. S. Do, B. E. Brooks, E. E. Copper, and J. L. Hatfield, J. Environ. Qual. 30:624-634, 2001). The seasonal variations in airborne VOC emitted from waste lagoons showed that there was a 80 to 93% decrease in the concentration of VOC during a photosynthetic bloom. During the height of a bloom, the Rhodobacter sp. strain PS9 population accounted for 10% of the total community and up to 27% of the eubacterial community based on 16S ribosomal DNA signals. Additional observations based on seasonal variations in meteorological, biological, and chemical parameters suggested that the photosynthetic blooms of Rhodobacter sp. strain PS9 were correlated with lagoon water temperature and with the concentrations of sulfate and phosphate. In addition, the photosynthetic blooms of Rhodobacter sp. strain PS9 were inversely correlated with the concentrations of protein and fluoride. PMID:12620863

  7. Metabolism of 4-Chloro-2-Methylphenoxyacetic Acid by Soil Bacteria

    PubMed Central

    Bollag, J.-M.; Helling, C. S.; Alexander, M.

    1967-01-01

    A microorganism capable of degrading 4-chloro-2-methylphenoxyacetic acid (MCPA) was isolated from soil and identified as Flavobacterium peregrinum. All of the chlorine of MCPA was released as chloride, and the carboxyl-carbon was converted to volatile products by growing cultures of the bacterium, but a phenol accumulated in the medium. The phenol was identified as 4-chloro-2-methylphenol on the basis of its gas chromatographic and infrared characteristics. Extracts of cells of F. peregrinum and of a phenoxyacetate-metabolizing Arthrobacter sp. dehalogenated MCPA and several catechols but not 4-chloro-2-methylanisole. The Arthrobacter sp. cell extract was fractionated, and an enzyme preparation was obtained which catalyzed the conversion of MCPA to 4-chloro-2-methylphenol. The latter compound was not metabolized unless reduced nicotinamide adenine dinucleotide phosphate was added to the fractionated extract. The phenol in turn was apparently oxidized to a catechol by components of the enzyme preparation. PMID:16349751

  8. Molecular Analysis of Arthrobacter Myovirus vB_ArtM-ArV1: We Blame It on the Tail

    PubMed Central

    Šimoliūnas, Eugenijus; Truncaitė, Lidija; Zajančkauskaitė, Aurelija; Nainys, Juozas; Kaupinis, Algirdas; Valius, Mindaugas; Meškys, Rolandas

    2017-01-01

    ABSTRACT This is the first report on a myophage that infects Arthrobacter. A novel virus, vB_ArtM-ArV1 (ArV1), was isolated from soil using Arthrobacter sp. strain 68b for phage propagation. Transmission electron microscopy showed its resemblance to members of the family Myoviridae: ArV1 has an isometric head (∼74 nm in diameter) and a contractile, nonflexible tail (∼192 nm). Phylogenetic and comparative sequence analyses, however, revealed that ArV1 has more genes in common with phages from the family Siphoviridae than it does with any myovirus characterized to date. The genome of ArV1 is a linear, circularly permuted, double-stranded DNA molecule (71,200 bp) with a GC content of 61.6%. The genome includes 101 open reading frames (ORFs) yet contains no tRNA genes. More than 50% of ArV1 genes encode unique proteins that either have no reliable identity to database entries or have homologues only in Arthrobacter phages, both sipho- and myoviruses. Using bioinformatics approaches, 13 ArV1 structural genes were identified, including those coding for head, tail, tail fiber, and baseplate proteins. A further 6 ArV1 ORFs were annotated as encoding putative structural proteins based on the results of proteomic analysis. Phylogenetic analysis based on the alignment of four conserved virion proteins revealed that Arthrobacter myophages form a discrete clade that seems to occupy a position somewhat intermediate between myo- and siphoviruses. Thus, the data presented here will help to advance our understanding of genetic diversity and evolution of phages that constitute the order Caudovirales. IMPORTANCE Bacteriophages, which likely originated in the early Precambrian Era, represent the most numerous population on the planet. Approximately 95% of known phages are tailed viruses that comprise three families: Podoviridae (with short tails), Siphoviridae (with long noncontractile tails), and Myoviridae (with contractile tails). Based on the current hypothesis, myophages

  9. SPECIFICITY OF IMPROVED METHODS FOR MYCOBACTIN BIOASSAY BY ARTHROBACTER TERREGENS

    PubMed Central

    Antoine, Alan D.; Morrison, Norman E.; Hanks, John H.

    1964-01-01

    Antoine, Alan D. (Johns Hopkins University-Leonard Wood Memorial Leprosy Research Laboratory, Baltimore, Md.), Norman E. Morrison, and John H. Hanks. Specificity of improved methods for mycobactin bioassay by Arthrobacter terregens. J. Bacteriol. 88:1672–1677. 1964.—Arthrobacter terregens was used to assay mycobactin, a growth factor for Mycobacterium paratuberculosis. Improved techniques permit the assay of mycobactin within 3 to 4 days by agarplate or liquid-medium methods. For the agarplate method, Arthrobacter terregens gave linear increases in zonal growth at mycobactin concentrations of 0.07 to 0.30 μg per spot; for the liquid-medium method, linear increases in turbidimetric growth occurred at 0.05 to 0.27 μg/ml. Specificity studies show that the mycobactin hydrolytic products, cobactin and mycobactic acid, function as growth stimulators, but the high concentrations required would produce only minimal interference in mycobactin assays. Furthermore, the response to mycobactic acid is characterized by a delayed response of 3 days. Various synthetic hydroxylamine-containing compounds and metalchelating agents cannot replace the biological activity of mycobactin. Diacetylmycobactin is 7.4 times more effective than mycobactin as a growth stimulator. PMID:14240956

  10. Effects of Bacterial Community Members on the Proteome of the Ammonia-Oxidizing Bacterium Nitrosomonas sp. Strain Is79.

    PubMed

    Sedlacek, Christopher J; Nielsen, Susanne; Greis, Kenneth D; Haffey, Wendy D; Revsbech, Niels Peter; Ticak, Tomislav; Laanbroek, Hendrikus J; Bollmann, Annette

    2016-08-01

    Microorganisms in the environment do not exist as the often-studied pure cultures but as members of complex microbial communities. Characterizing the interactions within microbial communities is essential to understand their function in both natural and engineered environments. In this study, we investigated how the presence of a nitrite-oxidizing bacterium (NOB) and heterotrophic bacteria affect the growth and proteome of the chemolithoautotrophic ammonia-oxidizing bacterium (AOB) Nitrosomonas sp. strain Is79. We investigated Nitrosomonas sp. Is79 in co-culture with Nitrobacter winogradskyi, in co-cultures with selected heterotrophic bacteria, and as a member of the nitrifying enrichment culture G5-7. In batch culture, N. winogradskyi and heterotrophic bacteria had positive effects on the growth of Nitrosomonas sp. Is79. An isobaric tag for relative and absolute quantification (iTRAQ) liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was used to investigate the effect of N. winogradskyi and the co-cultured heterotrophic bacteria from G5-7 on the proteome of Nitrosomonas sp. Is79. In co-culture with N. winogradskyi, several Nitrosomonas sp. Is79 oxidative stress response proteins changed in abundance, with periplasmic proteins increasing and cytoplasmic proteins decreasing in abundance. In the presence of heterotrophic bacteria, the abundance of proteins directly related to the ammonia oxidation pathway increased, while the abundance of proteins related to amino acid synthesis and metabolism decreased. In summary, the proteome of Nitrosomonas sp. Is79 was differentially influenced by the presence of either N. winogradskyi or heterotrophic bacteria. Together, N. winogradskyi and heterotrophic bacteria reduced the oxidative stress for Nitrosomonas sp. Is79, which resulted in more efficient metabolism. Aerobic ammonia-oxidizing microorganisms play an important role in the global nitrogen cycle, converting ammonia to nitrite. In their

  11. Effects of Bacterial Community Members on the Proteome of the Ammonia-Oxidizing Bacterium Nitrosomonas sp. Strain Is79

    PubMed Central

    Sedlacek, Christopher J.; Nielsen, Susanne; Greis, Kenneth D.; Haffey, Wendy D.; Revsbech, Niels Peter; Ticak, Tomislav; Laanbroek, Hendrikus J.

    2016-01-01

    ABSTRACT Microorganisms in the environment do not exist as the often-studied pure cultures but as members of complex microbial communities. Characterizing the interactions within microbial communities is essential to understand their function in both natural and engineered environments. In this study, we investigated how the presence of a nitrite-oxidizing bacterium (NOB) and heterotrophic bacteria affect the growth and proteome of the chemolithoautotrophic ammonia-oxidizing bacterium (AOB) Nitrosomonas sp. strain Is79. We investigated Nitrosomonas sp. Is79 in co-culture with Nitrobacter winogradskyi, in co-cultures with selected heterotrophic bacteria, and as a member of the nitrifying enrichment culture G5-7. In batch culture, N. winogradskyi and heterotrophic bacteria had positive effects on the growth of Nitrosomonas sp. Is79. An isobaric tag for relative and absolute quantification (iTRAQ) liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was used to investigate the effect of N. winogradskyi and the co-cultured heterotrophic bacteria from G5-7 on the proteome of Nitrosomonas sp. Is79. In co-culture with N. winogradskyi, several Nitrosomonas sp. Is79 oxidative stress response proteins changed in abundance, with periplasmic proteins increasing and cytoplasmic proteins decreasing in abundance. In the presence of heterotrophic bacteria, the abundance of proteins directly related to the ammonia oxidation pathway increased, while the abundance of proteins related to amino acid synthesis and metabolism decreased. In summary, the proteome of Nitrosomonas sp. Is79 was differentially influenced by the presence of either N. winogradskyi or heterotrophic bacteria. Together, N. winogradskyi and heterotrophic bacteria reduced the oxidative stress for Nitrosomonas sp. Is79, which resulted in more efficient metabolism. IMPORTANCE Aerobic ammonia-oxidizing microorganisms play an important role in the global nitrogen cycle, converting ammonia to

  12. Global Microarray Analysis of Carbohydrate Use in Alkaliphilic Hemicellulolytic Bacterium Bacillus sp. N16-5

    PubMed Central

    Song, Yajian; Xue, Yanfen; Ma, Yanhe

    2013-01-01

    The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources. PMID:23326578

  13. Low nitrogen stress stimulating the indole-3-acetic acid biosynthesis of Serratia sp. ZM is vital for the survival of the bacterium and its plant growth-promoting characteristic.

    PubMed

    Ouyang, Liming; Pei, Haiyan; Xu, Zhaohui

    2017-04-01

    Serratia sp. ZM is a plant growth-promoting (PGP) bacterial strain isolated from the rhizospheric soil of Populus euphratica in northwestern China. In this study, low nitrogen supply significantly stimulated the production of indole-3-acetic acid (IAA) in Serratia sp.ZM. The inoculation of the bacterium to wheat seedlings improved plant growth compared with the uninoculated group, and the stimulating effect was more prominent under low nitrogen stress. Inactivation of the predicted key gene in the IAA biosynthesis pathway impaired IAA production and significantly hampered mutant growth in poor medium. Furthermore, the IAA-deficient mutant lost the PGP effect under either normal or low nitrogen conditions in plant experiments. This study revealed the significant impact of environmental nitrogen levels on IAA production in the PGP strain and the vital effect of IAA on resistance physiology of both the bacterium and host plant. The characteristics of Serratia sp. ZM also indicated its application potential as a biofertilizer for plants, especially those suffering from poor nitrogen soil.

  14. Biotransformation of ginsenoside Rb1 to ginsenoside Rg3 by endophytic bacterium Burkholderia sp. GE 17-7 isolated from Panax ginseng.

    PubMed

    Fu, Y; Yin, Z-H; Yin, C-Y

    2017-06-01

    To isolate a novel endophytic bacterium from Panax ginseng that could have excellent properties in converting ginsenoside Rb1 to ginsenoside Rg3. Based on a 16S rDNA gene sequence, the strain named GE 17-7 was identified as Burkholderia sp. This strain has shown the highest activity in converting ginsenoside Rb1 to 20(S)-ginsenoside Rg3. During the biotransformation of ginsenoside Rb1, the final metabolite was identified by nuclear magnetic resonance analysis and the transformation pathway of ginsenoside Rb1 was also identified by thin-layer chromatography and high performance liquid chromatography analysis in this study. We have successfully isolated a β-glucosidase-producing endophytic bacterium GE 17-7 from P. ginseng. Ginsenoside Rg3 was produced by strain GE 17-7 from ginsenoside Rb1 via ginsenoside Rd. This is the first report of the conversion of major ginsenoside Rb1 into minor ginsenoside Rg3 by fermentation with Burkholderia sp. endophytic bacteria in P. ginseng. These results suggest a new preparation method for ginsenoside Rg3 using strain GE 17-7 in the pharmaceutical industry. © 2017 The Society for Applied Microbiology.

  15. A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122

    NASA Astrophysics Data System (ADS)

    Liang, Pengjuan; Li, Shangyong; Wang, Kun; Wang, Fang; Xing, Mengxin; Hao, Jianhua; Sun, Mi

    2017-06-01

    Serralysin inhibitors have been proposed as potent drugs against many diseases and may help to prevent further development of antibiotic-resistant pathogenic bacteria. In this study, a novel serralysin inhibitor gene, lupI, was cloned from the marine bacterium Flavobacterium sp. YS-80-122 and expressed in Escherichia coli. The deduced serralysin inhibitor, LupI, shows <40% amino acid identity to other reported serralysin inhibitors. Multiple sequence alignment and phylogenetic analysis of LupI with other serralysin inhibitors indicated that LupI was a novel type of serralysin inhibitor. The inhibitory constant for LupI towards its target metalloprotease was 0.64 μmol/L. LupI was thermostable at high temperature, in which 35.6%-90.7% of its inhibitory activity was recovered after treatment at 100°C for 1-60 min followed by incubation at 0°C. This novel inhibitor may represent a candidate drug for the treatment of serralysin-related infections.

  16. A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122

    NASA Astrophysics Data System (ADS)

    Liang, Pengjuan; Li, Shangyong; Wang, Kun; Wang, Fang; Xing, Mengxin; Hao, Jianhua; Sun, Mi

    2018-03-01

    Serralysin inhibitors have been proposed as potent drugs against many diseases and may help to prevent further development of antibiotic-resistant pathogenic bacteria. In this study, a novel serralysin inhibitor gene, lupI, was cloned from the marine bacterium Flavobacterium sp. YS-80-122 and expressed in Escherichia coli. The deduced serralysin inhibitor, LupI, shows <40% amino acid identity to other reported serralysin inhibitors. Multiple sequence alignment and phylogenetic analysis of LupI with other serralysin inhibitors indicated that LupI was a novel type of serralysin inhibitor. The inhibitory constant for LupI towards its target metalloprotease was 0.64 μmol/L. LupI was thermostable at high temperature, in which 35.6%-90.7% of its inhibitory activity was recovered after treatment at 100°C for 1-60 min followed by incubation at 0°C. This novel inhibitor may represent a candidate drug for the treatment of serralysin-related infections.

  17. Cesiribacter roseus sp. nov., a pink-pigmented bacterium isolated from desert sand.

    PubMed

    Liu, Ming; Qi, Huan; Luo, Xuesong; Dai, Jun; Peng, Fang; Fang, Chengxiang

    2012-01-01

    A pink-pigmented, Gram-negative, rod-shaped, motile, strictly aerobic bacterium, designated strain 311(T), was isolated from desert sand in Xinjiang, China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain 311(T) was related closely to Cesiribacter andamanensis AMV16(T) (94.6% similarity). The DNA G+C content of strain 311(T) was 47.1 mol% and the major respiratory quinone was menaquinone 7 (MK-7). The main cellular fatty acids were C(16:1)ω5c (29.9%), iso-C(15:0) (21.9%), iso-C(17:0) 3-OH (13.3%) and summed feature 4 (iso-C(17:1) I and/or anteiso-C(17:1) B; 13.0%). Based on phenotypic and chemotaxonomic data and phylogenetic analysis, strain 311(T) is considered to represent a novel species of the genus Cesiribacter, for which the name Cesiribacter roseus sp. nov. is proposed. The type strain is 311(T) (=CCTCC AB 207142(T) =KACC 15456(T)).

  18. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    PubMed

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  19. NH4+ transport system of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1.

    PubMed

    Chou, M; Matsunaga, T; Takada, Y; Fukunaga, N

    1999-05-01

    NH4(+) transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3+) into the intact cells. 14CH3NH3+ uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3+ as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3+ completely inhibited 14CH3NH3+ uptake. These results indicate that 14CH3NH3+ uptake in this bacterium is mediated via an NH4+ transport system and not by a specific carrier for CH3NH3+. The respiratory substrate succinate was required to drive 14CH3NH3+ uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3+ uptake. The 14CH3NH3+ uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0 degrees and 15 degrees C, and the apparent Km value for CH3NH3+ of the uptake did not change significantly over the temperature range from 0 degrees to 25 degrees C. Thus, the NH4+ transport system of this bacterium was highly active at low temperatures.

  20. Isolation, purification and spectrometric analysis of PSP toxins from moraxella sp., a bacterium associated with a toxic dinoflagellate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, S.D.; Doucette, G.J.

    1994-12-31

    Paralytic shellfish poisoning (PSP) is a seafood intoxication syndrome caused by the injestion of shellfish contaminated with toxins produced by algae known as dinoflagellates. The PSP toxins, saxitoxin and its derivatives, act to block voltage-dependent sodium channels and can cause paralysis and even death at higher doses. It is well documented that bacteria coexist with many harmful or toxic algal species, though the exact nature of the association in relation to toxin production is unknown. Recently, the bacterium Moraxella sp. was isolated from the PSP toxin producing dinoflagellate Alexandrium tamarense. Through HPLC analysis and saxitoxin receptor binding assays performed onmore » crude bacterial extracts, it appears that Moraxella sp. is capable of producing saxitoxin and several of its derivatives. However, physical confirmation (e.g. mass spectrometry) of these results is still needed.« less

  1. Study on human intestinal bacterium Blautia sp. AUH-JLD56 for the conversion of arctigenin to (-)-3'-desmethylarctigenin.

    PubMed

    Liu, Ming-Yue; Li, Meng; Wang, Xiu-Ling; Liu, Peng; Hao, Qing-Hong; Yu, Xiu-Mei

    2013-12-11

    Arctium lappa L. (A. lappa) is a popularly used vegetable as well as herbal medicine. Human intestinal microflora was reported to convert arctiin, the lignan compound with highest content in the dried fruits of Arctium lappa, to a series of metabolites. However, the specific bacterium responsible for the formation of 3'-desmethylarctigenin (3'-DMAG), the most predominant metabolite of arctiin by rat or human intestinal microflora, has not been isolated yet. In the present study, we isolated one single bacterium, which we named Blautia sp. AUH-JLD56, capable of solely biotransforming arctiin or arctigenin to (-)-3'-DMAG. The structure of the metabolite 3'-DMAG was elucidated by electrospray ionization mass spectrometry (ESI-MS) and (1)H and (13)C nuclear magnetic resonance spectroscopy. The biotransforming kinetics and maximum biotransforming capacity of strain AUH-JLD56 was investigated. In addition, the metabolite 3'-DMAG showed significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity than that of the substrate arctigenin at the concentrations tested.

  2. Amino acids in cell wall of Gram-positive bacterium Micrococcus sp. hsn08 with flocculation activity on Chlorella vulgaris biomass.

    PubMed

    Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei

    2018-02-01

    The aim of this work was to investigate the flocculation mechanism by Gram-positive bacterium, Micrococcus sp. hsn08 as a means for harvesting Chlorella vulgaris biomass. Bacterial cells of Micrococcus sp. hsn08 were added into algal culture to harvest algal cells through direct contacting with algae to form flocs. Viability dependence test confirmed that flocculation activity does not depend on live bacteria, but on part of the peptidoglycan. The further investigation has determined that amino acids in cell wall play an important role to flocculate algal cells. Positively charged calcium can combine bacterial and algal cells together, and form a bridge between them, thereby forming the flocs, suggesting that ions bridging is the main flocculation mechanism. These results suggest that bacterial cells of Micrococcus sp. hsn08 can be applied to harvest microalgae biomass with the help of amino acids in cell wall. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Paenibacillus profundus sp. nov., a deep sediment bacterium that produces isocoumarin and peptide antibiotics.

    PubMed

    Romanenko, Lyudmila A; Tanaka, Naoto; Svetashev, Vassilii I; Kalinovskaya, Natalia I

    2013-04-01

    A novel bacterial strain Sl 79(T) was isolated from a deep surface sediment sample obtained from the Sea of Japan and investigated by phenotypic and molecular methods. The bacterium Sl 79(T) was Gram-positive, facultatively anaerobic, spore-forming, motile and able to form two different types of colonies. It contained the major menaquinone MK-7 and anteiso-C(15:0) followed by iso-C(15:0) as predominant fatty acids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Sl 79(T) belonged to the genus Paenibacillus where it clustered to Paenibacillus apiarius NRRL NRS-1438(T) with a sequence similarity of 97.7 % and sharing sequence similarities below than 96.7 % to other validly named Paenibacillus species. Strain Sl 79(T) was found to possess a remarkable inhibitory activity against indicatory microorganisms. On the basis of combined spectral analyses, strain Paenibacillus sp. Sl 79(T) was established to produce isocoumarin and novel peptide antibiotics. On the basis of DNA-DNA relatedness, phenotypic and phylogenetic data obtained, it was concluded that strain Sl 79(T) represents a novel species, Paenibacillus profundus sp. nov. with the type strain Sl 79(T) = KMM 9420(T) = NRIC 0885(T).

  4. Draft Genome Sequence of Arthrobacter chlorophenolicus Strain Mor30.16, Isolated from the Bean Rhizosphere.

    PubMed

    Miranda-Ríos, José Antonio; Ramírez-Trujillo, José Augusto; Nova-Franco, Bárbara; Lozano-Aguirre Beltrán, Luis Fernando; Iturriaga, Gabriel; Suárez-Rodríguez, Ramón

    2015-05-07

    Bacteria of the genus Arthrobacter are commonly found in the soil and plant rhizosphere. In this study we report the draft genome of Arthrobacter chlorophenolicus strain Mor30.16 that was isolated from rhizosphere of beans grown in Cuernavaca Morelos, Mexico. This strain promotes growth and ameliorates drought stress in bean plants. Copyright © 2015 Miranda-Ríos et al.

  5. Ultrastructure of red-sore lesions on largemouth bass (micropterus salmoides): association of the ciliate epistylis sp. and the bacterium aeromonas hydrophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, T.C.; Raker, M.L.; Esch, G.W.

    1978-01-01

    Epizootic outbreaks of red-sore disease in several reservoirs in the southeastern United States have been reported to cause heavy mortality among several species of fish having sport and commercial value. The etiologic agent is said to be the peritrich ciliate Epistylis sp.; secondary infection by the gram-negative bacterium Aeromonas hydrophila produces hemorrhagic septicemia which results in death. However, in recent studies on the largemouth bass Micropterus salmoides, Epistylis sp. could be isolated from only 35% of 114 lesions from 114 fish, while A. hydrophila was found in 96% of the same lesions. Transmission and scanning electron microscopy of lesions associatedmore » with red-sore disease indicate that neither the stalk nor the attachment structure of Epistylis sp. have organelles capable of producing lytic enzymes. Since other investigators have shown that A. hydrophila produces strong lytic toxins, and in absence of evidence to the contrary, it is concluded that Epistylis sp. is a benign ectocommensal and that A. hydrophila is the primary etiologic agent of red-sore disease.« less

  6. Sphingomonas psychrolutea sp. nov., a psychrotolerant bacterium isolated from glacier ice.

    PubMed

    Liu, Qing; Liu, Hong-Can; Zhang, Jian-Li; Zhou, Yu-Guang; Xin, Yu-Hua

    2015-09-01

    A Gram-stain-negative, rod-shaped, orange bacterium (strain MDB1-A(T)) was isolated from ice samples collected from Midui glacier in Tibet, south-west China. Cells were aerobic and psychrotolerant (growth occurred at 0-25 °C). Phylogenetic analysis based on 16S rRNA gene sequences showed that it was a member of the genus Sphingomonas, with its closest relative being Sphingomonas glacialis C16y(T) (98.9% similarity). Q-10 was the predominant ubiquinone. C17 : 1ω6c and summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) were the major cellular fatty acids. The predominant polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and sphingoglycolipid. The polyamines detected were sym-homospermidine, spermidine and spermine. The G+C content of the genomic DNA was 63.6%. Based on data from this polyphasic analysis, strain MDB1-A(T) represents a novel species of the genus Sphingomonas, for which the name Sphingomonas psychrolutea sp. nov. is proposed. The type strain is MDB1-A(T) ( = CGMCC 1.10106(T) = NBRC 109639(T)).

  7. Draft Genome Sequence of Algoriphagus sp. Strain NH1, a Multidrug-Resistant Bacterium Isolated from Coastal Sediments of the Northern Yellow Sea in China

    PubMed Central

    Mu, Dashuai; Zhao, Jinxin; Wang, Zongjie; Chen, Guanjun

    2016-01-01

    Algoriphagus sp. NH1 is a multidrug-resistant bacterium isolated from coastal sediments of the northern Yellow Sea in China. Here, we report the draft genome sequence of NH1, with a size of 6,131,579 bp, average G+C content of 42.68%, and 5,746 predicted protein-coding sequences. PMID:26769940

  8. The novel oleaginous bacterium Sphingomonas sp. EGY1 DSM 29616: a value added platform for renewable biodiesel.

    PubMed

    Amer, Nehad N; Elbahloul, Yasser; Embaby, Amira M; Hussein, Ahmed

    2017-07-01

    Oleaginous microorganisms are regarded as efficient, renewable cell factories for lipid biosynthesis, a biodiesel precursor, to overwhelm the cosmopolitan energy crisis with affordable investment capital costs. Present research highlights production and characterization of lipids by a newly isolated oleaginous bacterium, Sphingomonas sp. EGY1 DSM 29616 through an eco-friendly approach. Only sweet whey [42.1% (v/v)] in tap water was efficiently used as a growth medium and lipid production medium to encourage cell growth and trigger lipid accumulation simultaneously. Cultivation of Sphingomonas sp. EGY1 DSM 29616 in shake flasks resulted in the accumulation of 8.5 g L -1 lipids inside the cells after 36 h at 30 °C. Triglycerides of C16:C18 saturated and unsaturated fatty acids showed a similar pattern to tripalmitin or triolein; deduced from gas chromatography (GC), thin layer chromatography (TLC), and Matrix-assisted laser desorption/ionization time-of-flight-mass spectra analysis (MALDI-TOF-MS) analyses. Batch cultivation 2.5 L in a laboratory scale fermenter led to 13.8 g L -1 accumulated lipids after 34 h at 30 °C. Present data would underpin the potential of Sphingomonas sp. EGY1 DSM 29616 as a novel renewable cell factory for biosynthesis of biodiesel.

  9. Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5.

    PubMed

    Rahman, M F A; Shukor, M Y; Suhaili, Z; Mustafa, S; Shamaan, N A; Syed, M A

    2009-01-01

    The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.

  10. Description of Tersicoccus phoenicis gen. nov., sp. nov. isolated from spacecraft assembly clean room environments.

    PubMed

    Vaishampayan, Parag; Moissl-Eichinger, Christine; Pukall, Rüdiger; Schumann, Peter; Spröer, Cathrin; Augustus, Angela; Roberts, Anne Hayden; Namba, Greg; Cisneros, Jessica; Salmassi, Tina; Venkateswaran, Kasthuri

    2013-07-01

    Two strains of aerobic, non-motile, Gram-reaction-positive cocci were independently isolated from geographically distinct spacecraft assembly clean room facilities (Kennedy Space Center, Florida, USA and Centre Spatial Guyanais, Kourou, French Guiana). A polyphasic study was carried out to delineate the taxonomic identity of these two isolates (1P05MA(T) and KO_PS43). The 16S rRNA gene sequences exhibited a high similarity when compared to each other (100 %) and lower than 96.7 % relatedness with Arthrobacter crystallopoietes ATCC 15481(T), Arthrobacter luteolus ATCC BAA-272(T), Arthrobacter tumbae DSM 16406(T) and Arthrobacter subterraneus DSM 17585(T). In contrast with previously described Arthrobacter species, the novel isolates maintained their coccidal morphology throughout their growth and did not exhibit the rod-coccus life cycle typically observed in nearly all Arthrobacter species, except A. agilis. The distinct taxonomic identity of the novel isolates was confirmed based on their unique cell-wall peptidoglycan type (A.11.20; Lys-Ser-Ala2) and polar lipid profile (presence of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, an unknown phospholipid and two unknown glycolipids). The G+C content of the genomic DNA was 70.6 mol%. The novel strains revealed MK-9(H2) and MK-8(H2) as dominant menaquinones and exhibited fatty acid profiles consisting of major amounts of anteiso-C15 : 0 and anteiso-C17 : 0 and moderate amounts of iso-C15 : 0 discriminating them again from closely related Arthrobacter species. Based on these observations, the authors propose that strains 1P05MA(T) and KO_PS43 be assigned into a separate genus Tersicoccus gen. nov. For this new taxon, comprising strains 1P05MA(T) and KO_PS43, we propose the name Tersicoccus phoenicis gen. nov., sp. nov. (the type species of Tersicoccus), represented by the type strain Tersicoccus phoenicis 1P05MA(T) ( = NRRL B-59547(T) = DSM 30849(T)).

  11. Aerobic-heterotrophic nitrogen removal through nitrate reduction and ammonium assimilation by marine bacterium Vibrio sp. Y1-5.

    PubMed

    Li, Yating; Wang, Yanru; Fu, Lin; Gao, Yizhan; Zhao, Haixia; Zhou, Weizhi

    2017-04-01

    An aerobic marine bacterium Vibrio sp. Y1-5 was screened to achieve efficient nitrate and ammonium removal simultaneously and fix nitrogen in cells without N loss. Approximately 98.0% of nitrate (100mg/L) was removed in 48h through assimilatory nitrate reduction and nitrate reductase was detected in the cytoplasm. Instead of nitrification, the strain assimilated ammonium directly, and it could tolerate as high as 1600mg/L ammonium concentration while removing 844.6mg/L. In addition, ammonium assimilation occurred preferentially in the medium containing nitrate and ammonium with a total nitrogen (TN) removal efficiency of 80.4%. The results of nitrogen balance and Fourier infrared spectra illustrated that the removed nitrogen was all transformed to protein or stored as organic nitrogen substances in cells and no N was lost in the process. Toxicological studies with the brine shrimp species Artemia naupliia indicated that Vibrio sp. Y1-5 can be applied in aquatic ecosystems safely. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Novel Acetone Metabolism in a Propane-Utilizing Bacterium, Gordonia sp. Strain TY-5▿

    PubMed Central

    Kotani, Tetsuya; Yurimoto, Hiroya; Kato, Nobuo; Sakai, Yasuyoshi

    2007-01-01

    In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane → 2-propanol → acetone → methyl acetate → acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism. PMID:17071761

  13. Expression and enzymatic characterization of a cold-adapted β-agarase from Antarctic bacterium Pseudoalteromonas sp. NJ21

    NASA Astrophysics Data System (ADS)

    Li, Jiang; Sha, Yujie

    2015-03-01

    An agar-degrading bacterium, designated as Pseudoalteromonas sp. NJ21, was isolated from an Antarctic sediment sample. The agarase gene aga1161 from Pseudoalteromonas sp. NJ21 consisting of a 2 382-bp coding region was cloned. The gene encodes a 793-amino acids protein and was found to possess characteristic features of the Glyco_hydro_42 family. The recombinant agarase (rAga1161) was overexpressed in Escherichia coli and purified as a fusion protein. Enzyme activity analysis revealed that the optimum temperature and pH for the purified recombinant agarase were 30-40°C and 8.0, respectively. rAga1161 was found to maintain as much as 80% of its maximum activity at 10°C, which is typical of a coldadapted enzyme. The pattern of agar hydrolysis demonstrated that the enzyme is an β-agarase, producing neoagarobiose (NA2) as the final main product. Furthermore, this work is the first proof of an agarolytic activity in Antarctic bacteria and these results indicate the potential for the Antarctic agarase as a catalyst in medicine, food and cosmetic industries.

  14. Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil.

    PubMed

    Bahar, Md Mezbaul; Megharaj, Mallavarapu; Naidu, Ravi

    2012-11-01

    A new arsenite-oxidizing bacterium was isolated from a low arsenic-containing (8.8 mg kg(-1)) soil. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain was closely related to Stenotrophomonas panacihumi. Batch experiment results showed that the strain completely oxidized 500 μM of arsenite to arsenate within 12 h of incubation in a minimal salts medium. The optimum initial pH range for arsenite oxidation was 5-7. The strain was found to tolerate as high as 60 mM arsenite in culture media. The arsenite oxidase gene was amplified by PCR with degenerate primers. The deduced amino acid sequence showed the highest identity (69.1 %) with the molybdenum containing large subunit of arsenite oxidase derived from Bosea sp. Furthermore the amino acids involved in binding the substrate arsenite, were conserved with the arsenite oxidases of other arsenite oxidizing bacteria such as Alcaligenes feacalis and Herminnimonas arsenicoxydans. To our knowledge, this study constitutes the first report on arsenite oxidation using Stenotrophomonas sp. and the strain has great potential for application in arsenic remediation of contaminated water.

  15. Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium.

    PubMed

    Baena, S; Fardeau, M L; Ollivier, B; Labat, M; Thomas, P; Garcia, J L; Patel, B K

    1999-07-01

    A novel, asaccharolytic, amino-acid-degrading bacterium, designated strain GLU-3T, was isolated from an anaerobic lagoon of a dairy wastewater treatment plant. Strain GLU-3T stained Gram-negative and was an obligately anaerobic, non-spore-forming, slightly curved, rod-shaped bacterium (0.3 x 4.0-6.0 microns) which existed singly or in pairs. The DNA G+C content was 43 mol%. Optimum growth occurred at 35 degrees C and pH 7.5 on arginine with a generation time of 16 h. Good growth was obtained on arginine, histidine, threonine and glycine. Acetate was the end-product formed from all these substrates, but in addition, a trace of formate was detected from arginine and histidine, and ornithine was produced from arginine. Strain GLU-3T grew slowly on glutamate and produced acetate, carbon dioxide, formate, hydrogen and traces of propionate as the end-products. In syntrophic association with Methanobacterium formicicum, strain GLU-3T oxidized arginine, histidine and glutamate to give propionate as the major product; acetate, carbon dioxide and methane were also produced. Strain GLU-3T did not degrade alanine and the branched-chain amino acids valine, leucine and isoleucine either in pure culture or in association with M. formicicum. The nearest phylogenetic relative of strain GLU-3T was the thermophile Selenomonas acidaminovorans (similarity value of 89.5%). As strain GLU-3T is phylogenetically, physiologically and genotypically different from other amino-acid-degrading genera, it is proposed that it should be designated a new species of a new genus Aminomonas paucivorans gen. nov., sp. nov. (DSM 12260T).

  16. Draft genome sequence of Paenisporosarcina sp. strain TG-14, a psychrophilic bacterium isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica.

    PubMed

    Koh, Hye Yeon; Lee, Sung Gu; Lee, Jun Hyuck; Doyle, Shawn; Christner, Brent C; Kim, Hak Jun

    2012-12-01

    The psychrophilic bacterium Paenisporosarcina sp. TG-14 was isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica. Here we report the draft genome sequence of this strain, which may provide useful information on the cold adaptation mechanism in extremely variable environments.

  17. Involvement of an Extracellular Protease in Algicidal Activity of the Marine Bacterium Pseudoalteromonas sp. Strain A28

    PubMed Central

    Lee, Sun-og; Kato, Junichi; Takiguchi, Noboru; Kuroda, Akio; Ikeda, Tsukasa; Mitsutani, Atsushi; Ohtake, Hisao

    2000-01-01

    The marine bacterium Pseudoalteromonas sp. strain A28 was able to kill the diatom Skeletonema costatum strain NIES-324. The culture supernatant of strain A28 showed potent algicidal activity when it was applied to a paper disk placed on a lawn of S. costatum NIES-324. The condensed supernatant, which was prepared by subjecting the A28 culture supernatant to ultrafiltration with a 10,000-Mw-cutoff membrane, showed algicidal activity, suggesting that strain A28 produced extracellular substances capable of killing S. costatum cells. The condensed supernatant was then found to have protease and DNase activities. Two Pseudoalteromonas mutants lacking algicidal activity, designated NH1 and NH2, were selected after N-methyl-N′-nitrosoguanidine mutagenesis. The culture supernatants of NH1 and NH2 showed less than 15% of the protease activity detected with the parental strain, A28. The protease was purified to homogeneity from A28 culture supernatants by using ion-exchange chromatography followed by preparative gel electrophoresis. Paper-disk assays revealed that the purified protease had potent algicidal activity. The purified protease had a molecular mass for 50 kDa, and the N-terminal amino acid sequence was determined to be Ala-Thr-Pro-Asn-Asp-Pro. The optimum pH and temperature of the protease were found to be 8.8 and 30°C, respectively, by using succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as a substrate. The protease activity was strongly inhibited by phenylmethylsulfonyl fluoride, diisopropyl fluorophosphate, antipain, chymostatin, and leupeptin. No significant inhibition was detected with EDTA, EGTA, phenanthroline or tetraethylenepentamine. These results suggest that Pseudoalteromonas sp. strain A28 produced an extracellular serine protease which was responsible for the algicidal activity of this marine bacterium. PMID:11010878

  18. Genome Sequence of Sphingomonas sp. Strain PAMC 26605, Isolated from Arctic Lichen (Ochrolechia sp.)

    PubMed Central

    Shin, Seung Chul; Ahn, Do Hwan; Lee, Jong Kyu; Kim, Su Jin; Hong, Soon Gyu; Kim, Eun Hye

    2012-01-01

    The endosymbiotic bacterium Sphingomonas sp. strain PAMC 26605 was isolated from Arctic lichens (Ochrolechia sp.) on the Svalbard Islands. Here we report the draft genome sequence of this strain, which could provide further insights into the symbiotic mechanism of lichens in extreme environments. PMID:22374946

  19. Suppression of Damping-Off Disease in Host Plants by the Rhizoplane Bacterium Lysobacter sp. Strain SB-K88 Is Linked to Plant Colonization and Antibiosis against Soilborne Peronosporomycetes

    PubMed Central

    Islam, Md. Tofazzal; Hashidoko, Yasuyuki; Deora, Abhinandan; Ito, Toshiaki; Tahara, Satoshi

    2005-01-01

    We previously demonstrated that xanthobaccin A from the rhizoplane bacterium Lysobacter sp. strain SB-K88 suppresses damping-off disease caused by Pythium sp. in sugar beet. In this study we focused on modes of Lysobacter sp. strain SB-K88 root colonization and antibiosis of the bacterium against Aphanomyces cochlioides, a pathogen of damping-off disease. Scanning electron microscopic analysis of 2-week-old sugar beet seedlings from seeds previously inoculated with SB-K88 revealed dense colonization on the root surfaces and a characteristic perpendicular pattern of Lysobacter colonization possibly generated via development of polar, brush-like fimbriae. In colonized regions a semitransparent film apparently enveloping the root and microcolonies were observed on the root surface. This Lysobacter strain also efficiently colonized the roots of several plants, including spinach, tomato, Arabidopsis thaliana, and Amaranthus gangeticus. Plants grown from both sugar beet and spinach seeds that were previously treated with Lysobacter sp. strain SB-K88 displayed significant resistance to the damping-off disease triggered by A. cochlioides. Interestingly, zoospores of A. cochlioides became immotile within 1 min after exposure to a SB-K88 cell suspension, a cell-free supernatant of SB-K88, or pure xanthobaccin A (MIC, 0.01 μg/ml). In all cases, lysis followed within 30 min in the presence of the inhibiting factor(s). Our data indicate that Lysobacter sp. strain SB-K88 has a direct inhibitory effect on A. cochlioides, suppressing damping-off disease. Furthermore, this inhibitory effect of Lysobacter sp. strain SB-K88 is likely due to a combination of antibiosis and characteristic biofilm formation at the rhizoplane of the host plant. PMID:16000790

  20. Tepidimonas arfidensis Sp. Nov., a Novel Gram-negative and thermophilic bacterium isolated from the bone marrow of a patient with leukemia in Korea.

    PubMed

    Ko, Kwan Soo; Lee, Nam Yong; Oh, Won Sup; Lee, Jang Ho; Ki, Hyun Kyun; Peck, Kyong Ran; Song, Jae-Hoon

    2005-01-01

    A Gram-negative bacillus, SMC-6271(T), which was isolated from the bone marrow of a patient with leukemia but could not be identified by a conventional microbiologic method, was characterized by a genotypic analysis of 16S rRNA gene. Sequences of the 16S rRNA gene revealed that this bacterium was closely related to Tepidimonas ignava and other slightly thermophilic isolates but diverged distinctly from them. Analyses of cellular fatty acid composition and performance of biochemical tests confirmed that this bacterium is a distinct species from the other Tepidimonas species. Based on the evaluated phenotypic and genotypic characteristics, it is proposed that SMC-6271T (=ABB 0301T =KCTC 12412T =JCM 13232T) should be classified as a new species, namely Tepidimonas arfidensis sp. nov.

  1. Isolation, Identification, and Optimization of Culture Conditions of a Bioflocculant-Producing Bacterium Bacillus megaterium SP1 and Its Application in Aquaculture Wastewater Treatment

    PubMed Central

    Luo, Liang; Huang, Xiaoli; Du, Xue; Wang, Chang'an; Li, Jinnan; Wang, Liansheng

    2016-01-01

    A bioflocculant-producing bacterium, Bacillus megaterium SP1, was isolated from biofloc in pond water and identified by using both 16S rDNA sequencing analysis and a Biolog GEN III MicroStation System. The optimal carbon and nitrogen sources for Bacillus megaterium SP1 were 20 g L−1 of glucose and 0.5 g L−1 of beef extract at 30°C and pH 7. The bioflocculant produced by strain SP1 under optimal culture conditions was applied into aquaculture wastewater treatment. The removal rates of chemical oxygen demand (COD), total ammonia nitrogen (TAN), and suspended solids (SS) in aquaculture wastewater reached 64, 63.61, and 83.8%, respectively. The volume of biofloc (FV) increased from 4.93 to 25.97 mL L−1. The addition of Bacillus megaterium SP1 in aquaculture wastewater could effectively improve aquaculture water quality, promote the formation of biofloc, and then form an efficient and healthy aquaculture model based on biofloc technology. PMID:27840823

  2. Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability.

    PubMed

    Xiong, X Q; Liao, H D; Ma, J S; Liu, X M; Zhang, L Y; Shi, X W; Yang, X L; Lu, X N; Zhu, Y H

    2014-02-01

    This study focused on an endophytic bacterial strain, Pantoea sp. Sd-1, which can be used to degrade lignin and rice straw. This strain was isolated from rice seeds by an optimized surface sterilization method. Pantoea sp. Sd-1 showed exceptional ability to degrade rice straw and lignin. In rice straw or kraft lignin-containing medium supplemented with 1% glucose and 0.5% peptone, Pantoea sp. Sd-1 effectively reduced the rice straw mass weight by 54.5% after 6 days of treatment. The strain was also capable of reducing the lignin colour (52.4%) and content (69.1%) after 4 days of incubation. The findings suggested that the rice endophytic bacterium Pantoea sp. Sd-1 could be applied for the degradation of lignocellulose biomass, such as rice straw. Rice straw, an abundant agricultural by-product in China, is very difficult to degrade because of its high lignin content. Due to the immense environmental adaptability and biochemical versatility of bacteria, endophytic bacteria are useful resources for biodegradation. In this study, we screened for endophytic bacteria capable of biodegrading rice straw and lignin and obtained one strain, Pantoea sp. Sd-1, with suitable characteristics. Sd-1 could be used for degradation of rice straw and lignin, and may play an important role in biodegradation of this agricultural by-product. © 2013 The Society for Applied Microbiology.

  3. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    PubMed Central

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Glick, Bernard R.

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  4. Cloning of a Gene Cluster Involved in the Catabolism of p-Nitrophenol by Arthrobacter sp. Strain JS443 and Characterization of the p-Nitrophenol Monooxygenase▿

    PubMed Central

    Perry, Lynda L.; Zylstra, Gerben J.

    2007-01-01

    The npd gene cluster, which encodes the enzymes of a p-nitrophenol catabolic pathway from Arthrobacter sp. strain JS443, was cloned and sequenced. Three genes, npdB, npdA1, and npdA2, were independently expressed in Escherichia coli in order to confirm the identities of their gene products. NpdA2 is a p-nitrophenol monooxygenase belonging to the two-component flavin-diffusible monooxygenase family of reduced flavin-dependent monooxygenases. NpdA1 is an NADH-dependent flavin reductase, and NpdB is a hydroxyquinol 1,2-dioxygenase. The npd gene cluster also includes a putative maleylacetate reductase gene, npdC. In an in vitro assay containing NpdA2, an E. coli lysate transforms p-nitrophenol stoichiometrically to hydroquinone and hydroxyquinol. It was concluded that the p-nitrophenol catabolic pathway in JS443 most likely begins with a two-step transformation of p-nitrophenol to hydroxy-1,4-benzoquinone, catalyzed by NpdA2. Hydroxy-1,4-benzoquinone is reduced to hydroxyquinol, which is degraded through the hydroxyquinol ortho cleavage pathway. The hydroquinone detected in vitro is a dead-end product most likely resulting from chemical or enzymatic reduction of the hypothetical intermediate 1,4-benzoquinone. NpdA2 hydroxylates a broad range of chloro- and nitro-substituted phenols, resorcinols, and catechols. Only p-nitro- or p-chloro-substituted phenols are hydroxylated twice. Other substrates are hydroxylated once, always at a position para to a hydroxyl group. PMID:17720792

  5. Characterization of a fluoride-resistant bacterium Acinetobacter sp. RH5 towards assessment of its water defluoridation capability

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shraboni; Yadav, Vaibhav; Mondal, Madhumanti; Banerjee, Soumya; Halder, Gopinath

    2017-07-01

    The present study investigates the defluoridation capability of fluoride-resistant bacteria from contaminated groundwater collected from Asanjola and Madhabpur, West Bengal, India. Seven strains of fluoride-resistant bacteria were isolated employing culture media containing 10-250 mg/L of fluoride to evaluate their ability in reducing fluoride concentration in water. Five isolates exhibited significant amount of reduction in fluoride. Isolate RH5 achieved a maximum fluoride removal of 25.7 % from the media at 30 °C and pH 7 after 8 days of incubation. Based on morphological, physiological characteristics and analysis of 16S rDNA gene sequence, isolate RH5 was identified as Acinetobacter sp. RH5. Growth of RH5 was analysed at a diverse pH range, and it could thrive at pH 5-10. The present investigation revealed that the selective pressure of fluoride results in growth of fluoride-resistant bacteria capable of secreting high-affinity anion-binding compounds. This bacterium played a dominant bioremediative role by concentrating the anions so that they become less available. Hence, the fluoride-resistant bacteria, Acinetobacter sp. RH5, could be used as a promising strain for application in water defluoridation from contaminated sites.

  6. Heavy metals detection using biosensor cells of a novel marine luminescent bacterium Vibrio sp. MM1 isolated from the Caspian Sea.

    PubMed

    Mohseni, Mojtaba; Abbaszadeh, Jaber; Maghool, Shima-Sadat; Chaichi, Mohammad-Javad

    2018-02-01

    Monitoring and assessing toxic materials which are being released into the environment along with wastewater is a growing concern in many industries. The current research describes a highly sensitive and rapid method for the detection of toxic concentrations of heavy metals in aquatic environments. Water samples were collected from southern coasts of the Caspian Sea followed by screening of luminescent bacteria. Phylogenetic analysis, including gene sequence of 16S rRNA, and biochemical tests were performed for identification of the isolate. Luminescence activity was tested and measured after treatment of the isolate with different concentrations of heavy metals and reported as EC 50 value for each metal. A luminous, gram negative bacterium with the shape of a curved rod was isolated from the Caspian Sea. Biochemical tests and 16S rRNA gene sequence analysis indicated that the isolate MM1 had more than 99% similarity to Vibrio campbellii. The novel isolate is able to emit high levels of light. Bioluminescence inhibitory assay showed that the Vibrio sp. MM1 had the highest sensitivity to zinc and the lowest sensitivity to cadmium; EC 50 values were 0.97mgl -1 and 14.54mgl -1 , respectively. The current research shows that even low concentrations of heavy metals can cause a detectable decline in luminescence activity of the novel bacterium Vibrio sp. MM1; hence, it makes a good choice for commercial kits for the purpose of monitoring toxic materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Antifouling Activity towards Mussel by Small-Molecule Compounds from a Strain of Vibrio alginolyticus Bacterium Associated with Sea Anemone Haliplanella sp.

    PubMed

    Wang, Xiang; Huang, Yanqiu; Sheng, Yanqing; Su, Pei; Qiu, Yan; Ke, Caihuan; Feng, Danqing

    2017-03-28

    Mussels are major fouling organisms causing serious technical and economic problems. In this study, antifouling activity towards mussel was found in three compounds isolated from a marine bacterium associated with the sea anemone Haliplanella sp. This bacterial strain, called PE2, was identified as Vibrio alginolyticus using morphology, biochemical tests, and phylogenetic analysis based on sequences of 16S rRNA and four housekeeping genes ( rpoD, gyrB, rctB, and toxR ). Three small-molecule compounds (indole, 3-formylindole, and cyclo (Pro-Leu)) were purified from the ethyl acetate extract of V. alginolyticus PE2 using column chromatography techniques. They all significantly inhibited byssal thread production of the green mussel Perna viridis , with EC 50 values of 24.45 μg/ml for indole, 50.07 μg/ml for 3-formylindole, and 49.24 μg/ml for cyclo (Pro-Leu). Previous research on the antifouling activity of metabolites from marine bacteria towards mussels is scarce. Indole, 3-formylindole and cyclo (Pro-Leu) also exhibited antifouling activity against settlement of the barnacle Balanus albicostatus (EC 50 values of 8.84, 0.43, and 11.35 μg/ml, respectively) and the marine bacterium Pseudomonas sp. (EC 50 values of 42.68, 69.68, and 39.05 μg/ml, respectively). These results suggested that the three compounds are potentially useful for environmentally friendly mussel control and/or the development of new antifouling additives that are effective against several biofoulers.

  8. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site.

    PubMed

    Zhang, Kundi; Li, Fuli

    2011-05-01

    A novel bacterium, Cr-10, was isolated from a chromium-contaminated site and capable of removing toxic chromium species from solution by reducing hexavalent chromium to an insoluble precipitate. Sequence analysis of 16S rRNA gene of strain Cr-10 showed that it was most closely related to Serratia rubidaea JCM 1240(T) (97.68%). Physiological and chemotaxonomic data also supported that strain Cr-10 was identified as Serratia sp., a genus which was never specially reported chromate-resistant before. Serratia sp., Cr-10 was tolerant to a concentration of 1,500 mg Cr(VI) L(-1), which was the highest level reported until now. The optimum pH and temperature for reduction of Cr(VI) by Serratia sp. Cr-10 were found to be 7.0 and 37 °C, respectively. The Cr(VI) reduction was significantly influenced by additional carbon sources, and among them fructose and lactose offered maximum reduction, with a rate of 0.28 and 0.25 mg Cr(VI) L(-1) h(-1), respectively. The cell-free extracts and filtrate of the culture were able to reduce Cr(VI) while concentration of total chromium remained stable in the process, indicating that the enzyme-catalyzed mechanism was applied in Cr(VI) reduction by the isolate. Additionally, it was found that there was hardly any chromium on the cell surface of the strain, further supporting that reduction, rather than bioadsorption, plays a major role in the Cr(VI) removal.

  9. An extremely thermophilic anaerobic bacterium Caldicellulosiruptor sp. F32 exhibits distinctive properties in growth and xylanases during xylan hydrolysis.

    PubMed

    Ying, Yu; Meng, Dongdong; Chen, Xiaohua; Li, Fuli

    2013-08-15

    An anaerobic, extremely thermophilic, and cellulose- and xylan-degrading bacterium F32 was isolated from biocompost. Sequence analysis of the 16S rRNA gene of this strain showed that it was closely related to Caldicellulosiruptor saccharolyticus DSM 8903 (99.0% identity). Physiological and biochemical data also supported that identification of strain F32 as a Caldicellulosiruptor species. The proteins secreted by Caldicellulosiruptor sp. F32 grown on xylan showed a xylanase activity of 7.74U/mg, which was 2.5 times higher than that of C. saccharolyticus DSM 8903. Based on the genomic sequencing data, 2 xylanase genes, JX030400 and JX030401, were identified in Caldicellulosiruptor sp. F32. The xylanase encoded by JX030401 shared 97% identity with Csac_0696 of C. saccharolyticus DSM 8903, while that encoded by JX030400 shared 94% identity with Athe_0089 of C. bescii DSM 6725, which was not found in the genome of strain DSM 8903. Xylanse encoded by JX030400 had 9-fold higher specific activity than JX030401. Our results indicated that although the 2 strains shared high identity, the xylanase system in Caldicellulosiruptor sp. F32 was more efficient than that in C. saccharolyticus DSM 8903. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium.

    PubMed

    Zhao, Baisuo; Wang, Hui; Li, Ruirui; Mao, Xinwei

    2010-05-01

    A polycyclic aromatic hydrocarbon-degrading marine bacterium, designated strain P-4(T), was isolated from oil-polluted saline soil in Xianhe, Shangdong Province, China. Strain P-4(T) was Gram-negative-staining with curved to spiral rod-shaped cells and grew optimally with 3-6 % (w/v) NaCl and at 30 degrees C. The predominant fatty acids were C(18 : 1)omega7c (35.0 %), C(16 : 0) (25.0 %), C(16 : 1)omega7c (17.9 %), C(14 : 0) (6.2 %) and C(17 : 0) cyclo (5.2 %). The major respiratory quinone was Q-9 and the genomic DNA G+C content was 61.2+/-1.0 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain P-4(T) belonged to the genus Thalassospira of the class Alphaproteobacteria. DNA-DNA hybridization with Thalassospira xiamenensis DSM 17429(T) showed relatedness of 36.0 %, and lower values were obtained with respect to other Thalassospira species. Based on physiological and biochemical tests and 16S rRNA gene sequence analysis as well as DNA-DNA relatedness, strain P-4(T) should be placed in the genus Thalassospira within a novel species. The name Thalassospira xianhensis sp. nov. is proposed, with P-4(T) (=CGMCC 1.6849(T) =JCM 14850(T)) as the type strain.

  11. Description of Paralactobacillus selangorensis gen. nov., sp. nov., a new lactic acid bacterium isolated from chili bo, a Malaysian food ingredient.

    PubMed

    Leisner, J J; Vancanneyt, M; Goris, J; Christensen, H; Rusul, G

    2000-01-01

    Paralactobacillus selangorensis gen. nov., sp. nov. is described. This organism, isolated from a Malaysian food ingredient called chili bo, is an obligatory homofermentative, rod-shaped lactic acid bacterium. The G+C content is 46.1-46.2+/-0.3 mol%. Earlier 16S rRNA studies showed that this organism constitutes a new taxon distantly related to the Lactobacillus casei-Pediococcus group. A phenotypic description that distinguishes Paralactobacillus selangorensis from other genera of lactic acid bacteria is presented. The type strain of Paralactobacillus selangorensis is LMG 17710T.

  12. Production of d-Tagatose from Dulcitol by Arthrobacter globiformis

    PubMed Central

    Izumori, Ken; Miyoshi, Tatsuji; Tokuda, Sachiko; Yamabe, Keizo

    1984-01-01

    A process for the bacterial oxidation of dulcitol to d-tagatose has been developed. The strain Arthrobacter globiformis ST48 used in this fermentation was isolated from soil. The yield of d-tagatose accumulated in the medium from dulcitol was as high as 85%. About 14 g of d-tagatose crystals was isolated from 1 liter of 2% dulcitol medium. PMID:16346663

  13. [Chlorobaculum macestae sp. nov., a new green sulfur bacterium].

    PubMed

    Koppen, O I; Berg, I A; Lebedeva, N V; Taisova, A S; Kolganova, T V; Slobodova, N V; Bulygina, E S; Turova, T P; Ivanovskiĭ, R N

    2008-01-01

    The investigated green sulfur bacterium, strain M, was isolated from a sulfidic spring on the Black Sea Coast of the Caucasus. The cells of strain M are straight or curved rods 0.6-0.9 x 1.8-4.2 microm in size. According to the cell wall structure, the bacteria are gram-negative. Chlorosomes are located along the cell periphery. Strain M is an obligate anaerobe capable of photoautotrophic growth on sulfide, thiosulfate, and H2. It utilizes ammonium, urea, casein hydrolysate, and N2 as nitrogen sources and sulfide, thiosulfate, and elemental sulfur as sulfur sources. Bacteriochlorophyll c and the carotenoid chlorobactene are the main pigments. The optimal growth temperature is 25-28 degrees C; the optimal pH is 6.8. The strain does not require NaCl. Vitamin B12 stimulates growth. The content of the G+C base pairs in the DNA of strain M is 58.3 mol %. In the phylogenetic tree constructed on the basis of analysis of nucleotide sequences of 16S rRNA genes, strain M forms a separate branch, which occupies an intermediate position between the phylogenetic cluster containing representatives of the genus Chlorobaculum (94.9-96.8%) and the cluster containing species of the genus Chlorobium (94.1-96.5%). According to the results of analysis of the amino acid sequence corresponding to the fmo gene, strain M represents a branch which, unlike that in the "ribosomal" tree, falls into the cluster of the genus Chlorobaculum (95.8-97.2%). Phylogenetic analysis of the amino acid sequence corresponding to the nifH gene placed species of the genera Chlorobaculum and Chlorobium into a single cluster, whereas strain M formed a separate branch. The results obtained allow us to describe strain M as a new species of the genus Chlorobaculum. Chlorobaculum macestae sp. nov.

  14. Fourier transform Raman spectroscopic characterisation of cells of the plant-associated soil bacterium Azospirillum brasilense Sp7

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Tarantilis, P. A.; Antonyuk, L. P.; Bespalova, L. A.; Polissiou, M. G.; Colina, M.; Gardiner, P. H. E.; Ignatov, V. V.

    2001-05-01

    Structural and compositional features of bacterial cell samples and of lipopolysaccharide-protein complex isolated from the cell surface of the plant-growth-promoting rhizobacterium Azospirillum brasilense (wild-type strain Sp7) were characterised using Fourier transform (FT) Raman spectroscopy. The structural spectroscopic information obtained is analysed and considered together with analytical data on the content of metal cations (Co 2+, Cu 2+ and Zn 2+) in the bacterial cells grown in a standard medium as well as in the presence of each of the cations (0.2 mM). The latter, being taken up by bacterial cells from the culture medium in significant amounts, were shown to induce certain metabolic changes in the bacterium revealed in FT-Raman spectra, which is discussed from the viewpoint of bacterial response to environmental stresses.

  15. Cloacibacterium normanense gen. nov., sp. nov., a novel bacterium in the family Flavobacteriaceae isolated from municipal wastewater.

    PubMed

    Allen, Toby D; Lawson, Paul A; Collins, Matthew D; Falsen, Enevold; Tanner, Ralph S

    2006-06-01

    Phenotypic and phylogenetic studies were performed on three isolates of an unknown Gram-negative, facultatively anaerobic, non-motile, yellow-pigmented, rod-shaped organism isolated from raw sewage. 16S rRNA gene sequence analysis indicated that these strains were members of the Bergeyella-Chryseobacterium-Riemerella branch of the family Flavobacteriaceae. The unknown bacterium was readily distinguished from reference strains by 16S rRNA gene sequencing and biochemical tests. The organism contained menaquinone MK-6 as the predominant respiratory quinone and had a DNA G+C content of 31 mol%. A most probable number-PCR approach was developed to detect, and estimate the numbers of, this organism. Untreated wastewater from one plant yielded an estimated count of 1.4 x 10(5) cells ml(-1), and untreated wastewater from a second plant yielded an estimated count of 1.4 x 10(4) cells ml(-1). Signal was not detected from treated effluent or from human stool specimens. On the basis of the results of the study presented, it is proposed that the unknown bacterium be classified in a novel genus Cloacibacterium, as Cloacibacterium normanense gen. nov., sp. nov., which is also the type species. The type strain of Cloacibacterium normanense is strain NRS1(T) (=CCUG 46293(T) = CIP 108613(T) = ATCC BAA-825(T) = DSM 15886(T)).

  16. Carboxydothermus islandicus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic bacterium isolated from a hot spring.

    PubMed

    Novikov, Andrey A; Sokolova, Tatyana G; Lebedinsky, Alexander V; Kolganova, Tatyana V; Bonch-Osmolovskaya, Elizaveta A

    2011-10-01

    An anaerobic, thermophilic bacterium, strain SET IS-9(T), was isolated from an Icelandic hot spring. Cells of strain SET IS-9(T) are short, slightly curved, motile rods. The strain grows chemolithotrophically on CO, producing equimolar quantities of H(2) and CO(2). It also grows fermentatively on lactate or pyruvate in the presence of yeast extract (0.2 g l(-1)). Products of pyruvate fermentation are acetate, CO(2) and H(2). Growth occurs at 50-70 °C, with an optimum at 65 °C, and at pH 5.0-8.0, with an optimum at pH 5.5-6.0. The generation time during chemolithotrophic growth on CO under optimal conditions is 2.0 h. 16S rRNA gene sequence analysis suggested that the organism belongs to the genus Carboxydothermus. On the basis of phenotypic features and phylogenetic analysis, Carboxydothermus islandicus sp. nov. is proposed, with the type strain SET IS-9(T) ( = DSM 21830(T)  = VKM B-2561(T)). An emended description of the genus Carboxydothermus is also given.

  17. Roseimarinus sediminis gen. nov., sp. nov., a facultatively anaerobic bacterium isolated from coastal sediment.

    PubMed

    Wu, Wen-Jie; Liu, Qian-Qian; Chen, Guan-Jun; Du, Zong-Jun

    2015-07-01

    A Gram-stain-negative, facultatively anaerobic, non-motile and pink-pigmented bacterium, designated strain HF08(T), was isolated from marine sediment of the coast of Weihai, China. Cells were rod-shaped, and oxidase- and catalase-positive. The isolate grew optimally at 33 °C, at pH 7.5-8.0 and with 2-3% (w/v) NaCl. The dominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C14 : 0. Menaquinone 7 (MK-7) was the major respiratory quinone and the DNA G+C content was 44.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was a member of the class Bacteroidia, and shared 88-90% sequence similarity with the closest genera Sunxiuqinia, Prolixibacter, Draconibacterium, Mariniphaga and Meniscus. Based on the phylogenetic and phenotypic evidence presented, a novel species in a new genus of the family Prolixibacteraceae is proposed, with the name Roseimarinus sediminis gen. nov., sp. nov. The type strain of Roseimarinus sediminis is HF08(T) ( = KCTC 42261(T) = CICC 10901(T)).

  18. A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms

    PubMed Central

    Seghal Kiran, George; Nishanth Lipton, Anuj; Kennedy, Jonathan; Dobson, Alan DW; Selvin, Joseph

    2014-01-01

    A halotolerant thermostable lipase was purified and characterized from the marine bacterium Oceanobacillus sp. PUMB02. This lipase displayed a high degree of stability over a wide range of conditions including pH, salinity, and temperature. It was optimally active at 30 °C and pH 8.0 respectively and was stable at higher temperatures (50–70 °C) and alkaline pH. The molecular mass of the lipase was approximately 31 kDa based on SDS-PAGE and MALDI-ToF fingerprint analysis. Conditions for enhanced production of lipase by Oceanobacillus sp. PUMB02 were attained in response surface method-guided optimization with factors such as olive oil, sucrose, potassium chromate, and NaCl being evaluated, resulting in levels of 58.84 U/ml being achieved. The biofilm disruption potential of the PUMB02 lipase was evaluated and compared with a marine sponge metagenome derived halotolerant lipase Lpc53E1. Good biofilm disruption activity was observed with both lipases against potential food pathogens such as Bacillus cereus MTCC1272, Listeria sp. MTCC1143, Serratia sp. MTCC4822, Escherichia coli MTCC443, Pseudomonas fluorescens MTCC1748, and Vibrio parahemolyticus MTCC459. Phase contrast microscopy, scanning electron microscopy, and confocal laser scanning microscopy showed very effective disruption of pathogenic biofilms. This study reveals that marine derived hydrolytic enzymes such as lipases may have potential utility in inhibiting biofilm formation in a food processing environment and is the first report of the potential application of lipases from the genus Oceanobacillus in biofilm disruption strategies. PMID:25482232

  19. Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment.

    PubMed

    Agunbiade, Mayowa Oladele; Van Heerden, Esta; Pohl, Carolina H; Ashafa, Anofi Tom

    2017-06-12

    The discharge of poorly treated effluents into the environment has far reaching, consequential impacts on human and aquatic life forms. Thus, we evaluated the flocculating efficiency of our test bioflocculant and we report for the first time the ability of the biopolymeric flocculant produced by Arthrobacter humicola in the treatment of sewage wastewater. This strain was isolated from sediment soil sample at Sterkfontein dam in the Eastern Free State province of South Africa. Basic Local Alignment Search Tool (BLAST) analysis of the nucleotide sequence of the 16S rDNA revealed the bacteria to have 99% similarity to Arthrobacter humicola strain R1 and the sequence was deposited in the Gene bank as Arthrobacter humicola with accession number KC816574.1. Flocculating activity was enhanced with the aid of divalent cations, pH 12, at a dosage concentration of 0.8 mg/mL. The purified bioflocculant was heat stable and could retain more than 78% of its flocculating activity after heating at 100 °C for 25 min. Fourier Transform Infrared Spectroscopy analysis demonstrated the presence of hydroxyl and carboxyl moieties as the functional groups. The thermogravimetric analysis was used to monitor the pyrolysis profile of the purified bioflocculant and elemental composition revealed C: O: Na: P: K with 13.90: 41.96: 26.79: 16.61: 0.74 weight percentage respectively. The purified bioflocculant was able to remove chemical oxygen demand, biological oxygen demand, suspended solids, nitrate and turbidity from sewage waste water at efficiencies of 65.7%, 63.5%, 55.7%, 71.4% and 81.3% respectively. The results of this study indicate the possibility of using the bioflocculant produced by Arthrobacter humicola as a potential alternative to synthesized chemical flocculants in sewage waste water treatment and other industrial waste water.

  20. Lysing activity of an indigenous algicidal bacterium Aeromonas sp. against Microcystis spp. isolated from Lake Taihu.

    PubMed

    Yang, Fei; Li, Xiaoqin; Li, Yunhui; Wei, Haiyan; Yu, Guang; Yin, Lihong; Liang, Geyu; Pu, Yuepu

    2013-01-01

    This study aimed to isolate and characterize an indigenous algicidal bacterium named LTH-1 and its algae-lysing compounds active against three Microcystis aeruginosa strains (toxic TH1, nontoxic TH2 and standard FACHB 905). The LTH-1 isolated from Lake Taihu, near Wuxi City in China, was identified as Aeromonas sp. based on its morphological characteristic features and phylogenetic analysis by sequencing of 16S rDNA. Extracellular compounds produced by LTH-1 showed strong algaelysing activity, and they were water-soluble and heat-tolerant, with a molecular mass lower than 2 kDa. Two algae-lysing compounds were isolated and purified from extracellular filtrate using silica gel column chromatography. One of these was identified as phenylalanine (C9H11NO2, m/z 166.0862) and the other (C8H16N2O3, m/z 189.1232) was unidentified by hybrid ion trap/time-of-flight mass spectrometry coupled with a high-performance liquid chromatography (LC/MS-IT-TOF) system. The half maximal effective concentration (EC50) of phenylalanine produced by LTH-1 against FACHB 905 was 68.2 +/- 8.2 microg mL(-1) in 48h. These results suggest that the algicidal Aeromonas sp. LTH-1 could play a role in controlling Microcystis blooms, and its extracellular compounds are also potentially useful for regulating blooms of the harmful M. aeruginosa.

  1. Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593

    PubMed Central

    Arai, Shigeki; Yonezawa, Yasushi; Ishibashi, Matsujiro; Matsumoto, Fumiko; Adachi, Motoyasu; Tamada, Taro; Tokunaga, Hiroko; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2014-01-01

    Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). In order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (Cα r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior comprising 329 C atoms from completely buried residues, whereas that of VAP comprised 264 C atoms, which may maintain the stability of HaAP under low-salt conditions. These characteristics of HaAP may be responsible for its unique functional adaptation permitting activity over a wide range of salt concentrations. PMID:24598750

  2. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress

    PubMed Central

    Chen, Yanmei; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong

    2016-01-01

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd2+ MIC, >250 mg liter−1) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion. PMID:26729719

  3. Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur-reducing bacterium.

    PubMed

    Finster, K; Liesack, W; Tindall, B J

    1997-10-01

    The isolation of a new motile, gram-negative, heterotrophic, sulfur-reducing, microaerophilic, vibrioid bacterium, strain F1F6, from oxidized marine surface sediment (Arcachon Bay, French Atlantic coast) is described. Hydrogen (with acetate as the carbon source), formate (with acetate as the carbon source), pyruvate, lactate, alpha-ketoglutarate, glutarate, glutamate, and yeast extract supported growth with elemental sulfur under anaerobic conditions. Apart from H2 and formate, the oxidation of the substrates was incomplete. Microaerophilic growth was supported with hydrogen (acetate as the carbon source), formate (acetate as the carbon source), acetate, propionate, pyruvate, lactate, alpha-ketoglutarate, glutamate, yeast extract, fumarate, succinate, malate, citrate, and alanine. The isolate grew fermentatively with fumarate, succinate being the only organic product. Elemental sulfur and oxygen were the only electron acceptors used. Vitamins or amino acids were not required. The isolate was oxidase, catalase, and urease positive. Comparative 16S rDNA sequence analysis revealed a tight cluster consisting of the validly described species Sulfurospirillum deleyianum and the strains SES-3 and CCUG 13942 as the closest relatives of strain F1F6 (level of sequence similarity, 91.7 to 92.4%). Together with strain F1F6, these organisms form a novel lineage within the epsilon subclass of proteobacteria clearly separated from the described species of the genera Arcobacter, Campylobacter, Wolinella, and Helicobacter. Due to the phenotypic characteristics shared by strain F1F6 and S. deleyianum and considering their phylogenetic relationship, we propose the inclusion of strain F1F6 in the genus Sulfurospirillum, namely, as S. arcachonense sp. nov. Based on the results of this study, an emended description of the genus Sulfurospirillum is given.

  4. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    PubMed Central

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  5. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35.

    PubMed

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control.

  6. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir.

    PubMed

    Greene, A C; Patel, B K; Sheehy, A J

    1997-04-01

    A thermophilic anaerobic bacterium, designated strain BMAT (T = type strain), was isolated from the production water of Beatrice oil field in the North Sea (United Kingdom). The cells were straight to bent rods (1 to 5 by 0.3 to 0.5 microns) which stained gram negative. Strain BMAT obtained energy from the reduction of manganese (IV), iron(III), and nitrate in the presence of yeast extract, peptone, Casamino Acids, tryptone, hydrogen, malate, acetate, citrate, pyruvate, lactate, succinate, and valerate. The isolate grew optimally at 60 degrees C (temperature range for growth, 50 to 65 degrees C) and in the presence of 2% (wt/vol) NaCl (NaCl range for growth, 0 to 5% [wt/vol]). The DNA base composition was 34 mol% G + C. Phylogenetic analyses of the 16S rRNA gene indicated that strain BMAT is a member of the domain Bacteria. The closest known bacterium is the moderate thermophile Flexistipes sinusarabici (similarity value, 88%). Strain BMAT possesses phenotypic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, we propose that this isolate should be described as a member of a novel species of a new genus, Deferribacter thermophilus gen. nov., sp. nov.

  7. The rhizosphere microbiome of burned holm-oak: potential role of the genus Arthrobacter in the recovery of burned soils.

    PubMed

    Fernández-González, Antonio J; Martínez-Hidalgo, Pilar; Cobo-Díaz, José F; Villadas, Pablo J; Martínez-Molina, Eustoquio; Toro, Nicolás; Tringe, Susannah G; Fernández-López, Manuel

    2017-07-20

    After a forest wildfire, the microbial communities have a transient alteration in their composition. The role of the soil microbial community in the recovery of an ecosystem following such an event remains poorly understood. Thus, it is necessary to understand the plant-microbe interactions that occur in burned soils. By high-throughput sequencing, we identified the main bacterial taxa of burnt holm-oak rhizosphere, then we obtained an isolate collection of the most abundant genus and its growth promoting activities were characterised. 16S rRNA amplicon sequencing showed that the genus Arthrobacter comprised more than 21% of the total community. 55 Arthrobacter strains were isolated and characterized using RAPDs and sequencing of the almost complete 16S rRNA gene. Our results indicate that isolated Arthrobacter strains present a very high genetic diversity, and they could play an important ecological role in interaction with the host plant by enhancing aerial growth. Most of the selected strains exhibited a great ability to degrade organic polymers in vitro as well as possibly presenting a direct mechanism for plant growth promotion. All the above data suggests that Arthrobacter can be considered as an excellent PGP rhizobacterium that may play an important role in the recovery of burned holm-oak forests.

  8. Cloning, expression, purification, and characterization of glutaredoxin from Antarctic sea-ice bacterium Pseudoalteromonas sp. AN178.

    PubMed

    Wang, Quanfu; Hou, Yanhua; Shi, Yonglei; Han, Xiao; Chen, Qian; Hu, Zhiguo; Liu, Yuanping; Li, YuJin

    2014-01-01

    Glutaredoxins (Grxs) are small ubiquitous redox enzymes that catalyze glutathione-dependent reactions to reduce protein disulfide. In this study, a full-length Grx gene (PsGrx) with 270 nucleotides was isolated from Antarctic sea-ice bacterium Pseudoalteromonas sp. AN178. It encoded deduced 89 amino acid residues with the molecular weight 9.8 kDa. Sequence analysis of the amino acid sequence revealed the catalytic motif CPYC. Recombinant PsGrx (rPsGrx) stably expressed in E. coli BL21 was purified to apparent homogeneity by Ni-affinity chromatography. rPsGrx exhibited optimal activity at 30°C and pH 8.0 and showed 25.5% of the activity at 0°C. It retained 65.0% of activity after incubation at 40°C for 20 min and still exhibited 37.0% activity in 1.0 M NaCl. These results indicated that rPsGrx was a typical cold active protein with low thermostability.

  9. Inhibition of Steptococcus mutans biofilm formation by extracts of Tenacibaculum sp. 20J, a bacterium with wide-spectrum quorum quenching activity.

    PubMed

    Muras, Andrea; Mayer, Celia; Romero, Manuel; Camino, Tamara; Ferrer, Maria D; Mira, Alex; Otero, Ana

    2018-01-01

    Background : Previous studies have suggested the quorum sensing signal AI-2 as a potential target to prevent the biofilm formation by Streptococcus mutans , a pathogen involved in tooth decay. Objective : To obtain inhibition of biofilm formation by S. mutans by extracts obtained from the marine bacterium Tenacibaculum sp. 20J interfering with the AI-2 quorum sensing system. Design : The AI-2 inhibitory activity was tested with the biosensors Vibrio harveyi BB170 and JMH597. S. mutans ATCC25175 biofilm formation was monitored using impedance real-time measurements with the xCELLigence system®, confocal laser microscopy, and the crystal violet quantification method. Results : The addition of the cell extract from Tenacibaculum sp. 20J reduced biofilm formation in S. mutans ATCC25175 by 40-50% compared to the control without significantly affecting growth. A decrease of almost 40% was also observed in S. oralis DSM20627 and S. dentisani 7747 biofilms. Conclusions : The ability of Tenacibaculum sp. 20J to interfere with AI-2 and inhibit biofilm formation in S. mutans was demonstrated. The results indicate that the inhibition of quorum sensing processes may constitute a suitable strategy for inhibiting dental plaque formation, although additional experiments using mixed biofilm models would be required.

  10. Inhibition of Steptococcus mutans biofilm formation by extracts of Tenacibaculum sp. 20J, a bacterium with wide-spectrum quorum quenching activity

    PubMed Central

    Muras, Andrea; Mayer, Celia; Romero, Manuel; Camino, Tamara; Ferrer, Maria D.; Mira, Alex; Otero, Ana

    2018-01-01

    ABSTRACT Background: Previous studies have suggested the quorum sensing signal AI-2 as a potential target to prevent the biofilm formation by Streptococcus mutans, a pathogen involved in tooth decay. Objective: To obtain inhibition of biofilm formation by S. mutans by extracts obtained from the marine bacterium Tenacibaculum sp. 20J interfering with the AI-2 quorum sensing system. Design: The AI-2 inhibitory activity was tested with the biosensors Vibrio harveyi BB170 and JMH597. S. mutans ATCC25175 biofilm formation was monitored using impedance real-time measurements with the xCELLigence system®, confocal laser microscopy, and the crystal violet quantification method. Results: The addition of the cell extract from Tenacibaculum sp. 20J reduced biofilm formation in S. mutans ATCC25175 by 40–50% compared to the control without significantly affecting growth. A decrease of almost 40% was also observed in S. oralis DSM20627 and S. dentisani 7747 biofilms. Conclusions: The ability of Tenacibaculum sp. 20J to interfere with AI-2 and inhibit biofilm formation in S. mutans was demonstrated. The results indicate that the inhibition of quorum sensing processes may constitute a suitable strategy for inhibiting dental plaque formation, although additional experiments using mixed biofilm models would be required. PMID:29410771

  11. Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community.

    PubMed

    Robert, Céline; Chassard, Christophe; Lawson, Paul A; Bernalier-Donadille, Annick

    2007-07-01

    A strictly anaerobic cellulolytic bacterium, strain CRE21(T), was isolated from a human faecal sample. Cells were Gram-negative non-motile rods that were about 1.7 microm in length and 0.9 microm in width. Strain CRE21(T) degraded different types of cellulose and was able to grow on a variety of carbohydrates. Cellulose and sugars were mainly converted to acetate, propionate and succinate. The G+C content of the DNA was 41.1 mol%. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Bacteroides with highest sequence similarity to the type strain of Bacteroides intestinalis (98 %). DNA-DNA hybridization results revealed that strain CRE21(T) was distinct from B. intestinalis (40 % DNA-DNA relatedness). Strain CRE21(T) also showed several characteristics distinct from B. intestinalis. In particular, it exhibited different capacity to degrade polysaccharides such as cellulose. On the basis of phylogenetic analysis and the morphological, physiological and biochemical data presented in this study, strain CRE21(T) can be readily differentiated from recognized species of the genus Bacteroides. The name Bacteroides cellulosilyticus sp. nov. is proposed to accommodate this organism. The type strain is CRE21(T) (=DSM 14838(T)=CCUG 44979(T)).

  12. Pseudomonas aestus sp. nov., a plant growth-promoting bacterium isolated from mangrove sediments.

    PubMed

    Vasconcellos, Rafael L F; Santos, Suikinai Nobre; Zucchi, Tiago Domingues; Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Melo, Itamar Soares

    2017-10-01

    Strain CMAA 1215 T , a Gram-reaction-negative, aerobic, catalase positive, polarly flagellated, motile, rod-shaped (0.5-0.8 × 1.3-1.9 µm) bacterium, was isolated from mangrove sediments, Cananéia Island, Brazil. Analysis of the 16S rRNA gene sequences showed that strain CMAA 1215 T forms a distinct phyletic line within the Pseudomonas putida subclade, being closely related to P. plecoglossicida ATCC 700383 T , P. monteilii NBRC 103158 T , and P. taiwanensis BCRC 17751 T of sequence similarity of 98.86, 98.73, and 98.71%, respectively. Genomic comparisons of the strain CMAA 1215 T with its closest phylogenetic type strains using average nucleotide index (ANI) and DNA:DNA relatedness approaches revealed 84.3-85.3% and 56.0-63.0%, respectively. A multilocus sequence analysis (MLSA) performed concatenating 16S rRNA, gyrB and rpoB gene sequences from the novel species was related with Pseudomonas putida subcluster and formed a new phylogenetic lineage. The phenotypic, physiological, biochemical, and genetic characteristics support the assignment of CMAA 1215 T to the genus Pseudomonas, representing a novel species. The name Pseudomonas aestus sp.nov. is proposed, with CMAA 1215 T (=NRRL B-653100 T  = CBMAI 1962 T ) as the type strain.

  13. Accumulation of rare earth elements by siderophore-forming Arthrobacter luteolus isolated from rare earth environment of Chavara, India.

    PubMed

    Emmanuel, E S Challaraj; Ananthi, T; Anandkumar, B; Maruthamuthu, S

    2012-03-01

    In this study, Arthrobacter luteolus, isolated from rare earth environment of Chavara (Quilon district, Kerala, India), were found to produce catechol-type siderophores. The bacterial strain accumulated rare earth elements such as samarium and scandium. The siderophores may play a role in the accumulation of rare earth elements. Catecholate siderophore and low-molecular-weight organic acids were found to be present in experiments with Arthrobacter luteolus. The influence of siderophore on the accumulation of rare earth elements by bacteria has been extensively discussed.

  14. Identification of the antibacterial compound produced by the marine epiphytic bacterium Pseudovibrio sp. D323 and related sponge-associated bacteria.

    PubMed

    Penesyan, Anahit; Tebben, Jan; Lee, Matthew; Thomas, Torsten; Kjelleberg, Staffan; Harder, Tilmann; Egan, Suhelen

    2011-01-01

    Surface-associated marine bacteria often produce secondary metabolites with antagonistic activities. In this study, tropodithietic acid (TDA) was identified to be responsible for the antibacterial activity of the marine epiphytic bacterium Pseudovibrio sp. D323 and related strains. Phenol was also produced by these bacteria but was not directly related to the antibacterial activity. TDA was shown to effectively inhibit a range of marine bacteria from various phylogenetic groups. However TDA-producers themselves were resistant and are likely to possess resistance mechanism preventing autoinhibition. We propose that TDA in isolate D323 and related eukaryote-associated bacteria plays a role in defending the host organism against unwanted microbial colonisation and, possibly, bacterial pathogens.

  15. Mitigation of Membrane Biofouling in MBR Using a Cellulolytic Bacterium, Undibacterium sp. DM-1, Isolated from Activated Sludge.

    PubMed

    Nahm, Chang Hyun; Lee, Seonki; Lee, Sang Hyun; Lee, Kibaek; Lee, Jaewoo; Kwon, Hyeokpil; Choo, Kwang-Ho; Lee, Jung-Kee; Jang, Jae Young; Lee, Chung-Hak; Park, Pyung-Kyu

    2017-03-28

    Biofilm formation on the membrane surface results in the loss of permeability in membrane bioreactors (MBRs) for wastewater treatment. Studies have revealed that cellulose is not only produced by a number of bacterial species but also plays a key role during formation of their biofilm. Hence, in this study, cellulase was introduced to a MBR as a cellulose-induced biofilm control strategy. For practical application of cellulase to MBR, a cellulolytic ( i.e ., cellulase-producing) bacterium, Undibacterium sp. DM-1, was isolated from a lab-scale MBR for wastewater treatment. Prior to its application to MBR, it was confirmed that the cell-free supernatant of DM-1 was capable of inhibiting biofilm formation and of detaching the mature biofilm of activated sludge and cellulose-producing bacteria. This suggested that cellulase could be an effective anti-biofouling agent for MBRs used in wastewater treatment. Undibacterium sp. DM-1-entrapping beads ( i.e ., cellulolytic-beads) were applied to a continuous MBR to mitigate membrane biofouling 2.2-fold, compared with an MBR with vacant-beads as a control. Subsequent analysis of the cellulose content in the biofilm formed on the membrane surface revealed that this mitigation was associated with an approximately 30% reduction in cellulose by cellulolytic-beads in MBR.

  16. Bacillus thermotolerans sp. nov., a thermophilic bacterium capable of reducing humus.

    PubMed

    Yang, Guiqin; Zhou, Xuemei; Zhou, Shungui; Yang, Dehui; Wang, Yueqiang; Wang, Dingmei

    2013-10-01

    A novel thermotolerant bacterium, designated SgZ-8(T), was isolated from a compost sample. Cells were non-motile, endospore-forming, Gram-staining positive, oxidase-negative and catalase-positive. The isolate was able to grow at 20-65 °C (optimum 50 °C) and pH 6.0-9.0 (optimum 6.5-7.0), and tolerate up to 9.0 % NaCl (w/v) under aerobic conditions. Anaerobic growth occurred with anthraquinone-2,6-disulphonate (AQDS), fumarate and NO3(-) as electron acceptors. Phylogenetic analysis based on the16S rRNA and gyrB genes grouped strain SgZ-8(T) into the genus Bacillus, with the highest similarity to Bacillus badius JCM 12228(T) (96.2 % for 16S rRNA gene sequence and 83.5 % for gyrB gene sequence) among all recognized species in the genus Bacillus. The G+C content of the genomic DNA was 49.3 mol%. The major isoprenoid quinone was menaquinone 7 (MK-7) and the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major cellular fatty acid was iso-C16 : 0. On the basis of its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-8(T) ( = CCTCC AB 2012108(T) = KACC 16706(T)) was designated the type strain of a novel species of the genus Bacillus, for which the name Bacillus thermotolerans sp. nov. is proposed.

  17. Interactions between Pteris vittata L. genotypes and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) in arsenic uptake and PAH-dissipation.

    PubMed

    Sun, Lu; Zhu, Ganghui; Liao, Xiaoyong; Yan, Xiulan

    2017-11-01

    The effects of two Pteris vittata L. accessions and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) on arsenic (As) uptake and phenanthrene dissipation were studied. The Alcaligenes sp. survived in the rhizosphere and improved soil As bioavailability with co-exposure. However, bacterial inoculation altered Pteris vittata L. stress tolerance, and substantially affected the As distribution in the rhizosphere of the two P. vittata accessions. Bacterial inoculation was beneficial to protect the Guangxi accession against the toxic effects, and significantly increased plant As and phenanthrene removal ratios by 27.8% and 2.89%, respectively. In contrast, As removal was reduced by 29.8% in the Hunan accession, when compared with corresponding non-inoculated treatments. We conclude that plant genotype selection is critically important for successful microorganism-assisted phytoremediation of soil co-contaminated with As and PAHs, and appropriate genotype selection may enhance remediation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Shigeki; Yonezawa, Yasushi; Ishibashi, Matsujiro

    2014-03-01

    In order to clarify the structural basis of the halophilic characteristics of an alkaline phosphatase derived from the moderate halophile Halomonas sp. 593 (HaAP), the tertiary structure of HaAP was determined to 2.1 Å resolution by X-ray crystallography. The structural properties of surface negative charge and core hydrophobicity were shown to be intermediate between those characteristic of halophiles and non-halophiles, and may explain the unique functional adaptation to a wide range of salt concentrations. Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). Inmore » order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (C{sup α} r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior

  19. Pseudomonas sp. strain CA5 (a selenite-reducing bacterium) 16S rRNA gene complete sequence. National Institute of Health, National Center for Biotechnology Information, GenBank sequence. Accession FJ422810.1.

    USDA-ARS?s Scientific Manuscript database

    This study used 1321 base pair 16S rRNA gene sequence methods to confirm the phylogenetic position of a soil isolate as a bacterium belonging to the genus Pesudomonas sp. Morphological, biochemical characteristics, and fatty acid profiles are consistent with the 16S rRNA gene sequence identification...

  20. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress.

    PubMed

    Chen, Yanmei; Chao, Yuanqing; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong; Qiu, Rongliang

    2016-01-04

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd(2+) MIC, >250 mg liter(-1)) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. New Findings on Aromatic Compounds' Degradation and Their Metabolic Pathways, the Biosurfactant Production and Motility of the Halophilic Bacterium Halomonas sp. KHS3.

    PubMed

    Corti Monzón, Georgina; Nisenbaum, Melina; Herrera Seitz, M Karina; Murialdo, Silvia E

    2018-04-24

    The study of the aromatic compounds' degrading ability by halophilic bacteria became an interesting research topic, because of the increasing use of halophiles in bioremediation of saline habitats and effluents. In this work, we focused on the study of aromatic compounds' degradation potential of Halomonas sp. KHS3, a moderately halophilic bacterium isolated from hydrocarbon-contaminated seawater of the Mar del Plata harbour. We demonstrated that H. sp. KHS3 is able to grow using different monoaromatic (salicylic acid, benzoic acid, 4-hydroxybenzoic acid, phthalate) and polyaromatic (naphthalene, fluorene, and phenanthrene) substrates. The ability to degrade benzoic acid and 4-hydroxybenzoic acid was analytically corroborated, and Monod kinetic parameters and yield coefficients for degradation were estimated. Strategies that may enhance substrate bioavailability such as surfactant production and chemotactic responses toward aromatic compounds were confirmed. Genomic sequence analysis of this strain allowed us to identify several genes putatively related to the metabolism of aromatic compounds, being the catechol and protocatechuate branches of β-ketoadipate pathway completely represented. These features suggest that the broad-spectrum xenobiotic degrader H. sp. KHS3 could be employed as a useful biotechnological tool for the cleanup of aromatic compounds-polluted saline habitats or effluents.

  2. Enhanced cadmium phytoremediation of Glycine max L. through bioaugmentation of cadmium-resistant bacteria assisted by biostimulation.

    PubMed

    Rojjanateeranaj, Pongsarun; Sangthong, Chirawee; Prapagdee, Benjaphorn

    2017-10-01

    This study examined the potential of three strains of cadmium-resistant bacteria, including Micrococcus sp., Pseudomonas sp. and Arthrobacter sp., to promote root elongation of Glycine max L. seedlings, soil cadmium solubility and cadmium phytoremediation in G. max L. planted in soil highly polluted with cadmium with and without nutrient biostimulation. Micrococcus sp. promoted root length in G. max L. seedlings under toxic cadmium conditions. Soil inoculation with Arthrobacter sp. increased the bioavailable fraction of soil cadmium, particularly in soil amended with a C:N ratio of 20:1. Pot culture experiments observed that the highest plant growth was in Micrococcus sp.-inoculated plants with nutrient biostimulation. Cadmium accumulation in the roots, stems and leaves of G. max L. was significantly enhanced by Arthrobacter sp. with nutrient biostimulation. A combined use of G. max L. and Arthrobacter sp. with nutrient biostimulation accelerated cadmium phytoremediation. In addition, cadmium was retained in roots more than in stems and leaves and G. max L. had the lowest translocation factor at all growth stages, suggesting that G. max L. is a phytostabilizing plant. We concluded that biostimulation-assisted bioaugmentation is an important strategy for improving cadmium phytoremediation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Xenophilus arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from soil.

    PubMed

    Li, Qin-Fen; Sun, Li-Na; Kwon, Soon-Wo; Chen, Qing; He, Jian; Li, Shun-Peng; Zhang, Jun

    2014-06-01

    A Gram-reaction-negative, aerobic, motile, rod-shaped, arsenite [As(III)]-resistant bacterium, designated strain YW8(T), was isolated from agricultural soil. 16S rRNA gene sequence analysis showed over 97% sequence similarity to strains of the environmental species Xenophilus azovorans, Xenophilus aerolatus, Simplicispira metamorpha, Variovorax soli, and Xylophilus ampelinus. However, the phylogenetic tree indicated that strain YW8(T) formed a separate clade from Xenophilus azovorans. DNA-DNA hybridization experiments showed that the DNA-DNA relatedness values between strain YW8(T) and its closest phylogenetic neighbours were below 24.2-35.5%, which clearly separated the strain from these closely related species. The major cellular fatty acids of strain YW8(T) were C(16 : 0), C(17 : 0) cyclo, C(18 : 1)ω7c, and summed feature 3(C(16 : 1)ω6c and/or C(16 : 1)ω7c). The genomic DNA G+C content was 69.3 mol%, and the major respiratory quinone was ubiquinone-8. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids, an unknown polar lipid and phosphatidylserine. The major polyamines were 2-hydroxyputrescine and putrescine. On the basis of morphological, physiological and biochemical characteristics, phylogenetic position, DNA-DNA hybridization and chemotaxonomic data, strain YW8(T) is considered to represent a novel species of the genus Xenophilus, for which the name Xenophilus arseniciresistens sp. nov. is proposed; the type strain is YW8(T) ( = CCTCC AB2012103(T) = KACC 16853(T)). © 2014 IUMS.

  4. Echinicola rosea sp. nov., a marine bacterium isolated from surface seawater.

    PubMed

    Liang, Pan; Sun, Jia; Li, Hao; Liu, Minyuan; Xue, Zhaocheng; Zhang, Yao

    2016-09-01

    A novel Gram-stain-negative, rod-shaped, gliding, halotolerant, aerobic, light-pink-pigmented bacterium, strain JL3085T, was isolated from surface water of the South China Sea (16° 49' 4″ N 112° 20' 24″ E; temperature: 28.3 °C, salinity: 34.5%). The major respiratory quinone was menaquinone 7 (MK-7). The polar lipids of strain JL3085T comprised phosphatidylethanolamine, four unidentified phospholipids and three unidentified lipids. The major fatty acids were iso-C15 : 0, summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C17 : 0 3-OH, iso-C17 : 1ω9c, C17 : 1ω6c, anteiso-C15 : 0 and C16 : 1ω5c. The DNA G+C content of strain JL3085T was 43.8 mol%. 16S rRNA gene sequence analysis indicated that strain JL3085T was affiliated with the genus Echinicola, a member of the phylum Bacteroidetes, and was related most closely to Echinicola vietnamensis KMM 6221T (96.8 % similarity). DNA-DNA relatedness between strain JL3085T and E. vietnamensis KMM 6221T was 27.5 %. Based on the evidence presented here, strain JL3085T is regarded as representing a novel species of the genus Echinicola, for which the name Echinicola rosea sp. nov. is proposed. The type strain is JL3085T (=NBRC 111782T=CGMCC 1.15407T).

  5. Contribution of the Microbial Communities Detected on an Oil Painting on Canvas to Its Biodeterioration

    PubMed Central

    López-Miras, María del Mar; Martín-Sánchez, Inés; Yebra-Rodríguez, África; Romero-Noguera, Julio; Bolívar-Galiano, Fernando; Ettenauer, Jörg; Sterflinger, Katja; Piñar, Guadalupe

    2013-01-01

    In this study, we investigated the microbial community (bacteria and fungi) colonising an oil painting on canvas, which showed visible signs of biodeterioration. A combined strategy, comprising culture-dependent and -independent techniques, was selected. The results derived from the two techniques were disparate. Most of the isolated bacterial strains belonged to related species of the phylum Firmicutes, as Bacillus sp. and Paenisporosarcina sp., whereas the majority of the non-cultivable members of the bacterial community were shown to be related to species of the phylum Proteobacteria, as Stenotrophomonas sp. Fungal communities also showed discrepancies: the isolated fungal strains belonged to different genera of the order Eurotiales, as Penicillium and Eurotium, and the non-cultivable belonged to species of the order Pleosporales and Saccharomycetales. The cultivable microorganisms, which exhibited enzymatic activities related to the deterioration processes, were selected to evaluate their biodeteriorative potential on canvas paintings; namely Arthrobacter sp. as the representative bacterium and Penicillium sp. as the representative fungus. With this aim, a sample taken from the painting studied in this work was examined to determine the stratigraphic sequence of its cross-section. From this information, “mock paintings,” simulating the structure of the original painting, were prepared, inoculated with the selected bacterial and fungal strains, and subsequently examined by micro-Fourier Transform Infrared spectroscopy, in order to determine their potential susceptibility to microbial degradation. The FTIR-spectra revealed that neither Arthrobacter sp. nor Penicillium sp. alone, were able to induce chemical changes on the various materials used to prepare “mock paintings.” Only when inoculated together, could a synergistic effect on the FTIR-spectra be observed, in the form of a variation in band position on the spectrum. PMID:24312203

  6. A Novel Algicide: Evidence of the Effect of a Fatty Acid Compound from the Marine Bacterium, Vibrio sp. BS02 on the Harmful Dinoflagellate, Alexandrium tamarense

    PubMed Central

    Fu, Lijun; An, Xinli; Zhang, Bangzhou; Li, Yi; Chen, Zhangran; Zheng, Wei; Yi, Lin; Zheng, Tianling

    2014-01-01

    Alexandrium tamarense is a notorious bloom-forming dinoflagellate, which adversely impacts water quality and human health. In this study we present a new algicide against A. tamarense, which was isolated from the marine bacterium Vibrio sp. BS02. MALDI-TOF-MS, NMR and algicidal activity analysis reveal that this compound corresponds to palmitoleic acid, which shows algicidal activity against A. tamarense with an EC50 of 40 μg/mL. The effects of palmitoleic acid on the growth of other algal species were also studied. The results indicate that palmitoleic acid has potential for selective control of the Harmful algal blooms (HABs). Over extended periods of contact, transmission electron microscopy shows severe ultrastructural damage to the algae at 40 μg/mL concentrations of palmitoleic acid. All of these results indicate potential for controlling HABs by using the special algicidal bacterium and its active agent. PMID:24626054

  7. Production and characterization of medium-chain-length polyhydroxyalkanoate copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620.

    PubMed

    Sathiyanarayanan, Ganesan; Bhatia, Shashi Kant; Song, Hun-Suk; Jeon, Jong-Min; Kim, Junyoung; Lee, Yoo Kyung; Kim, Yun-Gon; Yang, Yung-Hun

    2017-04-01

    Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620 was found to produce a distinctive medium-chain-length polyhydroxyalkanoate (MCL-PHA) copolymer when grown on structurally unrelated carbon sources including glycerol. The maximum MCL-PHA copolymer yield was obtained about 52.18±4.12% from 7.95±0.66g/L of biomass at 144h of fermentation when 3% glycerol was used as sole carbon and energy source during the laboratory-scale bioreactor process. Characterization of the copolymer was carried out using fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS), proton ( 1 H) and carbon ( 13 C) nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), differential scanning calorimeter (DSC) and thermo-gravimetric analysis (TGA). The copolymer produced by Pseudomonas sp. PAMC 28620 consisting of four PHA monomers and identified as 3-hydroxyoctanoate (3HO), 3-hydroxydecanoate (3HD), 3-hydroxydodecanoate (3HDD) and 3-hydroxytetradecanoate (3HTD). An average molecular weight of the copolymer was found approximately 30.244kDa with polydispersity index (PDI) value of 2.05. Thermal analysis showed the produced MCL-PHA copolymer to be low-crystalline (43.73%) polymer with great thermal stability, having the thermal decomposition temperature of 230°C-280°C, endothermic melting temperature (T m ) of 172.84°C, glass transition (T g ) temperature of 3.99°C, and apparent melting enthalpy fusion (ΔH m ) about 63.85Jg -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Klebsiella sp. FIRD 2, a TBT-resistant bacterium isolated from contaminated surface sediment along Strait of Johor Malaysia.

    PubMed

    Abubakar, Abdussamad; Mustafa, Muskhazli B; Johari, Wan Lutfi Wan; Zulkifli, Syaizwan Zahmir; Ismail, Ahmad; Mohamat-Yusuff, Ferdaus Binti

    2015-12-15

    A possible tributyltin (TBT)-degrading bacterium isolated from contaminated surface sediment was successfully identified as Klebsiella sp. FIRD 2. It was found to be the best isolate capable of resisting TBT at a concentration of 1000 μg L(-1). This was a concentration above the reported contaminated level at the sampling station, 790 μg L(-1). Further studies revealed that the isolate was Gram negative and resisted TBT concentrations of up to 1500 μg L(-1) in a Minimal Salt Broth without the addition of any carbon source within the first 48 h of incubation. It is expected that additional work could be conducted to check the degradation activity of this new isolate and possibly improve the degradation capacity in order to contribute to finding a safe and sustainable remediation solution of TBT contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Enterobacter siamensis sp. nov., a transglutaminase-producing bacterium isolated from seafood processing wastewater in Thailand.

    PubMed

    Khunthongpan, Suwannee; Bourneow, Chaiwut; H-Kittikun, Aran; Tanasupawat, Somboon; Benjakul, Soottawat; Sumpavapol, Punnanee

    2013-01-01

    A novel strain of Enterobacter, C2361(T), a Gram-negative, non-spore-forming, rod-shaped and facultative anaerobic bacterium with the capability to produce transglutaminase, was isolated from seafood processing wastewater collected from a treatment pond of a seafood factory in Songkhla Province, Thailand. Phylogenetic analyses and phenotypic characteristics, including chemotaxonomic characteristics, showed that the strain was a member of the genus Enterobacter. The 16S rRNA gene sequence similarities between strain C2361(T) and Enterobacter cloacae subsp. cloacae ATCC 13047(T) and Enterobacter cloacae subsp. dissolvens LMG 2683(T) were 97.5 and 97.5%, respectively. Strain C2361(T) showed a low DNA-DNA relatedness with the above-mentioned species. The major fatty acids were C16:0, C17:0cyclo and C14:0. The DNA G+C content was 53.0 mol%. On the basis of the polyphasic evidence gathered in this study, it should be classified as a novel species of the genus Enterobacter for which the name Enterobacter siamensis sp. nov. is proposed. The type strain is C2361(T) (= KCTC 23282(T) = NBRC 107138(T)).

  10. Themoanaerobacterium calidifontis sp. nov., a novel anaerobic, thermophilic, ethanol-producing bacterium from hot springs in China.

    PubMed

    Shang, Shu-mei; Qian, Long; Zhang, Xu; Li, Kun-zhi; Chagan, Irbis

    2013-06-01

    A novel thermophilic Gram staining positive strain Rx1 was isolated from hot springs in Baoshan of Yunnan Province, China. The strain was characterized as a hemicellulose-decomposing obligate anaerobe bacterium that is rod-shaped (diameter: 0.5-0.7 μm; length: 2.0-6.7 μm), spore-forming, and motile. Its growth temperature range is 38-68 °C (optimum 50-55 °C) and pH range is 4.5-8.0 (optimum 7.0). The maximum tolerance concentration of NaCl was 3 %. Rx1 converted thiosulfate to elemental sulfur and reduced sulfite to hydrogen sulfide. The bacterium grew by utilizing xylan and starch, as well as a wide range of monosaccharide and polysaccharides, including glucose and xylose. The main products of fermentation were ethanol, lactate, acetate, CO2, and H2. The maximum xylanase activity in the culture supernatant after 30 h of incubation at 55 °C was 16.2 U/ml. Rx1 DNA G + C content was 36 mol %. 16S rRNA gene sequence analysis indicated that strain Rx1 belonged to the genus Thermoanaerobacterium of the family 'Thermoanaerobacteriaceae' (Firmicutes), with Thermoanaerobacterium aciditolerans 761-119 (99.2 % 16S rRNA gene sequence similarity) being its closest relative. DNA-DNA hybridization between Rx1 and T. aciditolerans 761-119 showed 36 % relatedness. Based on its physiological and biochemical tests and DNA-DNA hybridization analyses, the isolate is considered to represent a novel species in the genus Thermoanaerobacterium, for which the name Thermoanaerobacterium calidifontis sp. nov. is proposed, with the type strain is Rx1 (=JCM 18270 = CCTCC M 2011109).

  11. Bacillus nitroreducens sp. nov., a humus-reducing bacterium isolated from a compost.

    PubMed

    Guo, Junhui; Wang, Yue Qiang; Yang, Guiqin; Chen, Yunqi; Zhou, Shungui; Zhao, Yong; Zhuang, Li

    2016-05-01

    A Gram-staining-positive, facultative anaerobic, motile and rod-shaped bacterium, designated GSS08(T), was isolated from a windrow compost pile and characterized by means of a polyphasic approach. Growth occurred with 0-4 % (w/v) NaCl (optimum 1 %), at pH 6.5-9.5 (optimum pH 7.5) and at 20-45 °C (optimum 37 °C). Anaerobic growth occurred with anthraquinone-2,6-disulphonate, fumarate and NO3 (-) as electron acceptor. The main respiratory quinone was MK-7. The predominant polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. The major fatty acids (>5 %) were iso-C15:0 (43.1 %), anteiso-C15:0 (27.4 %) and iso-C16:0 (8.3 %). The DNA G + C content was 39.6 mol%. The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GSS08(T) formed a phyletic lineage with the type strain of Bacillus humi DSM 16318(T) with a high sequence similarity of 97.5 %, but it displayed low sequence similarity with other valid species in the genus Bacillus (<96.0 %). The DNA-DNA relatedness between strains GSS08(T) and B. humi DSM 16318(T) was 50.8 %. The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain GSS08(T) represents a novel species, for which the name Bacillus nitroreducens sp. nov. is proposed. The type strain is GSS08(T) (=KCTC 33699(T) = MCCC 1K01091(T)).

  12. Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring.

    PubMed

    Slepova, Tatiana V; Sokolova, Tatyana G; Kolganova, Tatyana V; Tourova, Tatyana P; Bonch-Osmolovskaya, Elizaveta A

    2009-02-01

    A novel anaerobic, thermophilic, Fe(III)-reducing, CO-utilizing bacterium, strain 1315(T), was isolated from a hot spring of Geyser Valley on the Kamchatka Peninsula. Cells of the new isolate were Gram-positive, short rods. Growth was observed at 52-70 degrees C, with an optimum at 65 degrees C, and at pH 5.5-8.5, with an optimum at pH 6.5-7.2. In the presence of Fe(III) or 9,10-anthraquinone 2,6-disulfonate (AQDS), the bacterium was capable of growth with CO and yeast extract (0.2 g l(-1)); during growth under these conditions, strain 1315(T) produced H(2) and CO(2) and Fe(II) or AQDSH(2), respectively. Strain 1315(T) also grew by oxidation of yeast extract, glucose, xylose or lactate under a N(2) atmosphere, reducing Fe(III) or AQDS. Yeast extract (0.2 g l(-1)) was required for growth. Isolate 1315(T) grew exclusively with Fe(III) or AQDS as an electron acceptor. The generation time under optimal conditions with CO as growth substrate was 9.3 h. The G+C content of the DNA was 41.5+/-0.5 mol%. 16S rRNA gene sequence analysis placed the organism in the genus Carboxydothermus (97.8 % similarity with the closest relative). On the basis of physiological features and phylogenetic analysis, it is proposed that strain 1315(T) should be assigned to a novel species, Carboxydothermus siderophilus sp. nov., with the type strain 1315(T) (=VKPM 9905B(T) =VKM B-2474(T) =DSM 21278(T)).

  13. Does S-Metolachlor Affect the Performance of Pseudomonas sp. Strain ADP as Bioaugmentation Bacterium for Atrazine-Contaminated Soils?

    PubMed Central

    Viegas, Cristina A.; Costa, Catarina; André, Sandra; Viana, Paula; Ribeiro, Rui; Moreira-Santos, Matilde

    2012-01-01

    Atrazine (ATZ) and S-metolachlor (S-MET) are two herbicides widely used, often as mixtures. The present work examined whether the presence of S-MET affects the ATZ-biodegradation activity of the bioaugmentation bacterium Pseudomonas sp. strain ADP in a crop soil. S-MET concentrations were selected for their relevance in worst-case scenarios of soil contamination by a commercial formulation containing both herbicides. At concentrations representative of application of high doses of the formulation (up to 50 µg g−1 of soil, corresponding to a dose approximately 50× higher than the recommended field dose (RD)), the presence of pure S-MET significantly affected neither bacteria survival (∼107 initial viable cells g−1 of soil) nor its ATZ-mineralization activity. Consistently, biodegradation experiments, in larger soil microcosms spiked with 20× or 50×RD of the double formulation and inoculated with the bacterium, revealed ATZ to be rapidly (in up to 5 days) and extensively (>96%) removed from the soil. During the 5 days, concentration of S-MET decreased moderately to about 60% of the initial, both in inoculated and non-inoculated microcosms. Concomitantly, an accumulation of the two metabolites S-MET ethanesulfonic acid and S-MET oxanilic acid was found. Despite the dissipation of almost all the ATZ from the treated soils, the respective eluates were still highly toxic to an aquatic microalgae species, being as toxic as those from the untreated soil. We suggest that this high toxicity may be due to the S-MET and/or its metabolites remaining in the soil. PMID:22615921

  14. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment.

    PubMed

    Finster, K; Liesack, W; Thamdrup, B

    1998-01-01

    A mesophilic, anaerobic, gram-negative bacterium, strain SB164P1, was enriched and isolated from oxidized marine surface sediment with elemental sulfur as the sole energy substrate in the presence of ferrihydrite. Elemental sulfur was disproportionated to hydrogen sulfide and sulfate. Growth was observed exclusively in the presence of a hydrogen sulfide scavenger, e.g., ferrihydrite. In the absence of a scavenger, sulfide and sulfate production were observed but no growth occurred. Strain SB164P1 grew also by disproportionation of thiosulfate and sulfite. With thiosulfate, the growth efficiency was higher in ferrihydrite-supplemented media than in media without ferrihydrite. Growth coupled to sulfate reduction was not observed. However, a slight sulfide production occurred in cultures incubated with formate and sulfate. Strain SB164P1 is the first bacterium described that grows chemolithoautotrophically exclusively by the disproportionation of inorganic sulfur compounds. Comparative 16S rDNA sequencing analysis placed strain SB164P1 into the delta subclass of the class Proteobacteria. Its closest relative is Desulfocapsa thiozymogenes, and slightly more distantly related are Desulfofustis glycolicus and Desulforhopalus vacuolatus. This phylogenetic cluster of organisms, together with members of the genus Desulfobulbus, forms one of the main lines of descent within the delta subclass of the Proteobacteria. Due to the common phenotypic characteristics and the phylogenetic relatedness to Desulfocapsa thiozymogenes, we propose that strain SB164P1 be designated the type strain of Desulfocapsa sulfoexigens sp. nov.

  15. Elemental Sulfur and Thiosulfate Disproportionation by Desulfocapsa sulfoexigens sp. nov., a New Anaerobic Bacterium Isolated from Marine Surface Sediment

    PubMed Central

    Finster, Kai; Liesack, Werner; Thamdrup, Bo

    1998-01-01

    A mesophilic, anaerobic, gram-negative bacterium, strain SB164P1, was enriched and isolated from oxidized marine surface sediment with elemental sulfur as the sole energy substrate in the presence of ferrihydrite. Elemental sulfur was disproportionated to hydrogen sulfide and sulfate. Growth was observed exclusively in the presence of a hydrogen sulfide scavenger, e.g., ferrihydrite. In the absence of a scavenger, sulfide and sulfate production were observed but no growth occurred. Strain SB164P1 grew also by disproportionation of thiosulfate and sulfite. With thiosulfate, the growth efficiency was higher in ferrihydrite-supplemented media than in media without ferrihydrite. Growth coupled to sulfate reduction was not observed. However, a slight sulfide production occurred in cultures incubated with formate and sulfate. Strain SB164P1 is the first bacterium described that grows chemolithoautotrophically exclusively by the disproportionation of inorganic sulfur compounds. Comparative 16S rDNA sequencing analysis placed strain SB164P1 into the delta subclass of the class Proteobacteria. Its closest relative is Desulfocapsa thiozymogenes, and slightly more distantly related are Desulfofustis glycolicus and Desulforhopalus vacuolatus. This phylogenetic cluster of organisms, together with members of the genus Desulfobulbus, forms one of the main lines of descent within the delta subclass of the Proteobacteria. Due to the common phenotypic characteristics and the phylogenetic relatedness to Desulfocapsa thiozymogenes, we propose that strain SB164P1 be designated the type strain of Desulfocapsa sulfoexigens sp. nov. PMID:9435068

  16. Fusimonas intestini gen. nov., sp. nov., a novel intestinal bacterium of the family Lachnospiraceae associated with diabetes in mice.

    PubMed

    Kusada, Hiroyuki; Kameyama, Keishi; Meng, Xian-Ying; Kamagata, Yoichi; Tamaki, Hideyuki

    2017-12-22

    Our previous study shows that an anaerobic intestinal bacterium strain AJ110941 P contributes to type 2 diabetes development in mice. Here we phylogenetically and physiologically characterized this unique mouse gut bacterium. The 16S rRNA gene analysis revealed that the strain belongs to the family Lachnospiraceae but shows low sequence similarities ( < 92.5%) to valid species, and rather formed a distinct cluster with uncultured mouse gut bacteria clones. In metagenomic database survey, the 16S sequence of AJ110941 P also matched with mouse gut-derived datasets (56% of total datasets) with > 99% similarity, suggesting that AJ110941 P -related bacteria mainly reside in mouse digestive tracts. Strain AJ110941 P shared common physiological traits (e.g., Gram-positive, anaerobic, mesophilic, and fermentative growth with carbohydrates) with relative species of the Lachnospiraceae. Notably, the biofilm-forming capacity was found in both AJ110941 P and relative species. However, AJ110941 P possessed far more strong ability to produce biofilm than relative species and formed unique structure of extracellular polymeric substances. Furthermore, AJ110941 P cells are markedly long fusiform-shaped rods (9.0-62.5 µm) with multiple flagella that have never been observed in any other Lachnospiraceae members. Based on the phenotypic and phylogenetic features, we propose a new genus and species, Fusimonas intestini gen. nov., sp. nov. for strain AJ110941 P (FERM BP-11443).

  17. Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring.

    PubMed

    Slepova, Tatiana V; Sokolova, Tatyana G; Lysenko, Anatoly M; Tourova, Tatyana P; Kolganova, Tatyana V; Kamzolkina, Olga V; Karpov, Genady A; Bonch-Osmolovskaya, Elizaveta A

    2006-04-01

    A novel anaerobic, thermophilic, CO-utilizing bacterium, strain KarT, was isolated from a hot spring of Karymskoe Lake, Kamchatka Peninsula. The cells of the novel isolate were Gram-positive, spore-forming, short rods. The bacterium grew chemolithoautotrophically on CO, producing equimolar quantities of H2 and CO2 (according to the equation CO + H2O --> CO2 + H2), and in the absence of CO, under N2 in the gas phase, chemoorganoheterotrophically with yeast extract, sucrose or pyruvate. Growth was observed in the temperature range 50-70 degrees C, with an optimum at 60 degrees C, and in the pH range 6.2-8.0, with an optimum at pH 6.8. The micro-organism did not grow on solid media; it was able to grow only in semi-solid medium containing 0.5 % agar. The generation time under optimal conditions for chemolithoautotrophic growth was 1 h. The G+C content of the DNA was 46.5+/-1 mol%. Growth was completely inhibited by penicillin, novobiocin, streptomycin, kanamycin and neomycin. Analysis of the 16S rRNA gene sequence showed that the isolate should be assigned to the genus Carboxydocella. On the basis of the results of DNA-DNA hybridization and morphological and physiological analyses, strain KarT represents a novel species of the genus Carboxydocella, for which the name Carboxydocella sporoproducens sp. nov. is proposed. The type strain is KarT (=DSM 16521T = VKM B-2358T).

  18. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan.

    PubMed

    Denner, E B; Paukner, S; Kämpfer, P; Moore, E R; Abraham, W R; Busse, H J; Wanner, G; Lubitz, W

    2001-05-01

    Strain EDIVT, an exopolysaccharide-producing bacterium, was subjected to polyphasic characterization. The bacterium produced copious amounts of an extracellular polysaccharide, forming slimy, viscous, intensely yellow-pigmented colonies on Czapek-Dox (CZD) agar. The culture fluids of the liquid version of CZD medium were highly viscous after cultivation for 5 d. Cells of strain EDIVT were Gram-negative, catalase-positive, oxidase-negative, nonspore-forming, rod-shaped and motile. Comparisons of 16S rDNA gene sequences demonstrated that EDIVT clusters phylogenetically with the species of the genus Sphingomonas sensu stricto. The G+C content of the DNA (64.5 mol%), the presence of ubiquinone Q-10, the presence of 2-hydroxymyristic acid (14:0 2-OH) as the major hydroxylated fatty acid, the absence of 3-hydroxy fatty acids and the detection of sym-homospermidine as the major component in the polyamine pattern, together with the presence of sphingoglycolipid, supported this delineation. 16S rDNA sequence analysis indicated that strain EDIVT is most closely related (99.4% similarity) to Sphingomonas trueperi LMG 2142T. DNA-DNA hybridization showed that the level of relatedness to S. trueperi is only 45.5%. Further differences were apparent in the cellular fatty acid profile, the polar lipid pattern, the Fourier-transform infrared spectrum and whole-cell proteins and in a number of biochemical characteristics. On the basis of the estimated phylogenetic position derived from 16S rDNA sequence data, DNA-DNA reassociation and phenotypic differences, strain EDIVT (= CIP 106154T = DSM 13101T) was recognized as a new species of Sphingomonas, for which the name Sphingomonas pituitosa sp. nov. is proposed. A component analysis of the exopolysaccharide (named PS-EDIV) suggested that it represents a novel type of sphingan composed of glucose, rhamnose and an unidentified sugar. Glucuronic acid, which is commonly found in sphingans, was absent. The mean molecular mass of PS-EDIV was

  19. Rhodoblastus sphagnicola sp. nov., a novel acidophilic purple non-sulfur bacterium from Sphagnum peat bog.

    PubMed

    Kulichevskaya, Irina S; Guzev, Vladimir S; Gorlenko, Vladimir M; Liesack, Werner; Dedysh, Svetlana N

    2006-06-01

    An isolate of purple non-sulfur bacteria was obtained from an acidic Sphagnum peat bog and designated strain RS(T). The colour of cell suspensions of this bacterium growing in the light under anaerobic conditions is purplish red. Cells of strain RS(T) are rod-shaped, 0.8-1.0 microm wide and 2.0-6.0 microm long, motile by means of polar flagella, reproduce by budding and have a tendency to form rosette-like clusters in older cultures. The cells contain lamellar intracytoplasmic membranes underlying, and parallel to, the cytoplasmic membrane. The photosynthetic pigments are bacteriochlorophyll a and carotenoids; the absorption spectrum of living cells shows maxima at 377, 463, 492, 527, 592, 806 and 867 nm. The cells grow photoheterotrophically under anaerobic or microaerobic conditions with various organic carbon sources or grow photolithoautotrophically with H(2) and CO(2). Strain RS(T) is a moderately acidophilic organism exhibiting growth at pH values between 4.8 and 7.0 (with an optimum at pH 5.2-5.5). The major fatty acids are 16 : 1omega7c and 18 : 1omega7c; the major quinones are Q-10 and Q-9. The DNA G + C content of strain RS(T) is 62.6 mol%. Analysis of the 16S rRNA gene sequence revealed that the novel isolate is most closely related (97.3 % sequence similarity) to the type strain ATCC 25092(T) of the moderately acidophilic purple non-sulfur bacterium Rhodoblastus acidophilus, formerly named Rhodopseudomonas acidophila. However, in contrast to Rbl. acidophilus, strain RS(T) is not capable of aerobic growth in the dark, has no spirilloxanthin among the carotenoids and differs in the pattern of substrate utilization. The value for DNA-DNA hybridization between strain RS(T) and Rbl. acidophilus ATCC 25092(T) is only 22 %. Thus, strain RS(T) represents a novel species of the genus Rhodoblastus, for which the name Rhodoblastus sphagnicola sp. nov. is proposed. Strain RS(T) (=DSM 16996(T) = VKM B-2361(T)) is the type strain.

  20. Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Hochstein, L. I.

    1976-01-01

    The previously described extremely halophilic bacterium, strain M6, metabolizes a variety of carbohydrates with the production of acid. In addition, the organism produces nitrite (but no gas) from nitrate, is motile, and grows most rapidly at about 50 C. These characteristics distinguish it from all previously described halophilic bacteria in the genus Halobacterium. It is suggested that it be designated as a new species, Halobacterium saccharovorum.

  1. Detection of misidentifications of species from the Burkholderia cepacia complex and description of a new member, the soil bacterium Burkholderia catarinensis sp. nov.

    PubMed

    Bach, Evelise; Sant'Anna, Fernando Hayashi; Magrich Dos Passos, João Frederico; Balsanelli, Eduardo; de Baura, Valter Antonio; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Passaglia, Luciane Maria Pereira

    2017-08-31

    The correct identification of bacteria from the Burkholderia cepacia complex (Bcc) is crucial for epidemiological studies and treatment of cystic fibrosis infections. However, genome-based identification tools are revealing many controversial Bcc species assignments. The aim of this work is to re-examine the taxonomic position of the soil bacterium B. cepacia 89 through polyphasic and genomic approaches. recA and 16S rRNA gene sequence analysis positioned strain 89 inside the Bcc group. However, based on the divergence score of seven concatenated allele sequences, and values of average nucleotide identity, and digital DNA:DNA hybridization, our results suggest that strain 89 is different from other Bcc species formerly described. Thus, we propose to classify Burkholderia sp. 89 as the novel species Burkholderia catarinensis sp. nov. with strain 89T (=DSM 103188T = BR 10601T) as the type strain. Moreover, our results call the attention to some probable misidentifications of Bcc genomes at the National Center for Biotechnology Information database. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Sulfonamide inhibition studies of the β-carbonic anhydrase from the newly discovered bacterium Enterobacter sp. B13.

    PubMed

    Eminoğlu, Ayşenur; Vullo, Daniela; Aşık, Aycan; Çolak, Dilşat Nigar; Çanakçı, Sabriye; Beldüz, Ali Osman; Supuran, Claudiu T

    2016-04-01

    The genome of the newly identified bacterium Enterobacter sp. B13 encodes for a β-class carbonic anhydrases (CAs, EC 4.2.1.1), EspCA. This enzyme was recently cloned, and characterized kinetically by this group (J. Enzyme Inhib. Med. Chem. 2016, 31). Here we report an inhibition study with sulfonamides and sulfamates of this enzyme. The best EspCA inhibitors were some sulfanylated sulfonamides with elongated molecules, metanilamide, 4-aminoalkyl-benzenesulfonamides, acetazolamide, and deacetylated methazolamide (KIs in the range of 58.7-96.5nM). Clinically used agents such as methazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, zonisamide, sulthiame, sulpiride, topiramate and valdecoxib were slightly less effective inhibitors (KIs in the range of 103-138nM). Saccharin, celecoxib, dichlorophenamide and many simple benzenesulfonamides were even less effective as EspCA inhibitors, with KIs in the range of 384-938nM. Identification of effective inhibitors of this bacterial enzyme may lead to pharmacological tools useful for understanding the physiological role(s) of the β-class CAs in bacterial pathogenicity/virulence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Thalassospira permensis sp. nov., a new terrestrial halotolerant bacterium isolated from a naphthalene-utilizing microbial consortium.

    PubMed

    Plotnikova, E G; Anan'ina, L N; Krausova, V I; Ariskina, E V; Prisyazhnaya, N V; Lebedev, A T; Demakov, V A; Evtushenko, L I

    2011-01-01

    A halotolerant bacterium, strain SMB34T, was isolated from a naphthalene-utilizing bacterial consortium obtained from primitive technogeneous soil (Vrkhnekamsk salt deposit, Perm region, Russia) by enrichment procedure. The strain itself was unable to degrade naphthalene and grew at NaCl concentrations up to 11% (w/v). The 16S rRNA-based phylogenetic analysis showed that the strain belongs to the genus Thalassospira. The DNA-DNA hybridization values between SMB34T and the type strains of phylogenetically closest species (T. xiamenensis, T. profundimaris and T. tepidiphila) did not exceed 50%. The novel strain could be distinguished from the above species by the cell motility, MALDI/TOF mass spectra of whole cells and a range of physiological and biochemical characteristics. SMB34T also considerably differs from the recently described species T. xianhensis, with the most striking differences in the DNA G + C content (53.7 +/- 1.0 vs. 61.2 +/- 1.0 mol.%) and predominant ubiquinones (Q-10 vs. Q-9). The data obtained suggest strain SMB34T (=VKM B-2527T = NBRC 106175T), designated as the type strain, represents a novel species, named Thalassospira permensis sp. nov.

  4. Desulfatiferula berrensis sp. nov., a n-alkene-degrading sulfate-reducing bacterium isolated from estuarine sediments.

    PubMed

    Hakil, Florence; Amin-Ali, Oulfat; Hirschler-Réa, Agnès; Mollex, Damien; Grossi, Vincent; Duran, Robert; Matheron, Robert; Cravo-Laureau, Cristiana

    2014-02-01

    A novel sulfate-reducing bacterium designated strain BE2801(T) was isolated from oil-polluted estuarine sediments (Berre Lagoon, France). Cells were Gram-stain-negative, motile, slightly curved or vibrioid rods. Optimal growth of strain BE2801(T) occurred at 30-32 °C, 0.5-1.5% NaCl (w/v) and pH 7.2-7.4. Strain BE2801(T) grew with C4 to C20 fatty acids or C12 to C20 n-alkenes as electron donors. Acetate and carbon dioxide were the oxidation products. The major cellular fatty acids were C16 : 0, C(16 : 1)ω7c and C(18 : 1)ω7. The DNA G+C content was 50.2 mol%. 16S rRNA and dsrAB gene sequence analysis indicated that strain BE2801(T) was a member of the family Desulfobacteraceae within the class Deltaproteobacteria. DNA-DNA hybridization with the most closely related taxon demonstrated 14.8 % relatedness. Based on phenotypic and phylogenetic evidence, strain BE2801(T) ( = DSM 25524(T) = JCM 18157(T)) is proposed to be a representative of a novel species of the genus Desulfatiferula, for which the name Desulfatiferula berrensis sp. nov. is suggested.

  5. Quality improvement on half-fin anchovy (Setipinna taty) fish sauce by Psychrobacter sp. SP-1 fermentation.

    PubMed

    Zheng, Bin; Liu, Yu; He, Xiaoxia; Hu, Shiwei; Li, Shijie; Chen, Meiling; Jiang, Wei

    2017-10-01

    A method of improving fish sauce quality during fermentation was investigated. Psychrobacter sp. SP-1, a halophilic protease-producing bacterium, was isolated from fish sauce with flavor-enhancing properties and non-biogenic amine-producing activity. The performance of Psychrobacter sp. SP-1 in Setipinna taty fish sauce fermentation was investigated further. The inoculation of Psychrobacter sp. SP-1 did not significantly affect pH or NaCl concentration changes (P > 0.05), although it significantly increased total moderately halophilic microbial count, protease activity, total soluble nitrogen content and amino acid nitrogen content, and also promoted the umami taste and meaty aroma (P < 0.05). Furthermore, the inoculation of Psychrobacter sp. SP-1 significantly decreased total volatile basic nitrogen content and biogenic amines content (P < 0.05), which were regarded as harmful compounds in foods. The results of the present study demonstrate that Psychrobacter sp. SP-1 can be used as a potential starter culture for improving fish sauce quality by fermentation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Plasmid-Encoded Phthalate Catabolic Pathway in Arthrobacter keyseri 12B†

    PubMed Central

    Eaton, Richard W.

    2001-01-01

    Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri (formerly Micrococcus sp.) 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates). Because these products lack a carboxyl group at the 2 position, they were not substrates for the next enzyme of the phthalate catabolic pathway, 3,4-dihydroxyphthalate 2-decarboxylase, and accumulated. When these incubations were carried out in iron-containing minimal medium, the products formed colored chelates. This chromogenic response was subsequently used to identify recombinant Escherichia coli strains carrying genes encoding the responsible enzymes, phthalate 3,4-dioxygenase and 3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase, from the 130-kbp plasmid pRE1 of strain 12B. Beginning with the initially cloned 8.14-kbp PstI fragment of pRE824 as a probe to identify recombinant plasmids carrying overlapping fragments, a DNA segment of 33.5 kbp was cloned from pRE1 on several plasmids and mapped using restriction endonucleases. From these plasmids, the sequence of 26,274 contiguous bp was determined. Sequenced DNA included several genetic units: tnpR, pcm operon, ptr genes, pehA, norA fragment, and pht operon, encoding a transposon resolvase, catabolism of protocatechuate (3,4-dihydroxybenzoate), a putative ATP-binding cassette transporter, a possible phthalate ester hydrolase, a fragment of a norfloxacin resistance-like transporter, and the conversion of phthalate to protocatechuate, respectively. Activities of the eight enzymes involved in the catabolism of phthalate through protocatechuate to pyruvate and oxaloacetate were demonstrated in cells or cell extracts of recombinant E. coli strains. PMID:11371533

  7. Spiribacter curvatus sp. nov., a moderately halophilic bacterium isolated from a saltern.

    PubMed

    León, María José; Rodríguez-Olmos, Angel; Sánchez-Porro, Cristina; López-Pérez, Mario; Rodríguez-Valera, Francisco; Soliveri, Juan; Ventosa, Antonio; Copa-Patiño, José Luis

    2015-12-01

    A novel pink-pigmented bacterial strain, UAH-SP71T, was isolated from a saltern located in Santa Pola, Alicante (Spain) and the complete genome sequence was analysed and compared with that of Spiribacter salinus M19-40T, suggesting that the two strains constituted two separate species, with a 77.3% ANI value. In this paper, strain UAH-SP71T was investigated in a taxonomic study using a polyphasic approach. Strain UAH-SP71T was a Gram-stain-negative, strictly aerobic, non-motile curved rod that grew in media containing 5-20% (w/v) NaCl (optimum 10% NaCl), at 5-40 °C (optimum 37 °C) and at pH 5-10 (optimum pH 8). Phylogenetic analysis based on the comparison of 16S rRNA gene sequences revealed thatstrain UAH-SP71T is a member of the genus Spiribacter, showing a sequence similarity of 96.5% with Spiribacter salinus M19-40T. Other related species are also members of the family Ectothiorhodospiraceae, including Arhodomonas recens RS91T (95.5% 16S rRNA gene sequence similarity), Arhodomonas aquaeolei ATCC 49307T (95.4 %) and Alkalilimnicola ehrlichii MLHE-1T (94.9 %). DNA-DNA hybridization between strain UAH-SP71T and Spiribacter salinus M19-40T was 39 %. The major cellular fatty acids of strain UAH-SP71T were C18 : 1ω6c and/or C18 : 1ω7c, C16 : 0, C16 : 1ω6c and/or C16 : 1ω7c, C10 : 0 3-OH and C12 : 0, a pattern similar to that of Spiribacter salinus M19-40T. Phylogenetic, phenotypic and genotypic differences between strain UAH-SP71T and Spiribacter salinus M19-40T indicate that strainUAH-SP71T represents a novel species of the genus Spiribacter, for which the name Spiribacter curvatus sp. nov. is proposed. The type strain is UAH-SP71T (5CECT8396T5DSM 28542T).

  8. Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides.

    PubMed

    Sass, Andrea; Rütters, Heike; Cypionka, Heribert; Sass, Henrik

    2002-06-01

    A new sulfate-reducing bacterium, strain 86FS1, was isolated from a deep-sea sediment in the western Mediterranean Sea with sodium lactate as electron and carbon source. Cells were ovoid, gram-negative and motile. Strain 86FS1 contained b- and c-type cytochromes. The organism was able to utilize propionate, pyruvate, lactate, succinate, fumarate, malate, alanine, primary alcohols (C(2)-C(5)), and mono- and disaccharides (glucose, fructose, galactose, ribose, sucrose, cellobiose, lactose) as electron donors for the reduction of sulfate, sulfite or thiosulfate. The major products of carbon metabolism were acetate and CO(2), with exception of n-butanol and n-pentanol, which were oxidized only to the corresponding fatty acids. The growth yield with sulfate and glucose or lactate was 8.3 and 15 g dry mass, respectively, per mol sulfate. The temperature limits for growth were 10 degrees C and 30 degrees C with an optimum at 25 degrees C. Growth was observed at salinities ranging from 10 to 70 g NaCl l(-1). Sulfide concentrations above 4 mmol l(-1) inhibited growth. The fatty acid pattern of strain 86FS1 resembled that of Desulfobulbus propionicus with n-14:0, n-16:1omega7, n-16:1 omega5, n-17:1 omega6 and n-18:1 omega7 as dominant fatty acids. On the basis of its phylogenetic position and its phenotypic properties, strain 86FS1 affiliates with the genus Desulfobulbus and is described as a new species, Desulfobulbus mediterraneus sp. nov.

  9. Burkholderia susongensis sp. nov., a mineral-weathering bacterium isolated from weathered rock surface.

    PubMed

    Gu, Jia-Yu; Zang, Sheng-Gang; Sheng, Xia-Fang; He, Lin-Yan; Huang, Zhi; Wang, Qi

    2015-03-01

    A novel type of mineral-weathering bacterium was isolated from the weathered surface of rock (mica schist) collected from Susong (Anhui, China). Cells of strain L226(T) were Gram-stain-negative. The strain grew optimally at 30 °C, with 1 % (w/v) NaCl and at pH 7.0 in trypticase soy broth. On the basis of 16S rRNA gene phylogeny, strain L226(T) was shown to belong to the genus Burkholderia and the closest phylogenetic relatives were Burkholderia sprentiae WSM5005(T) (98.3 %), Burkholderia acidipaludis NBRC 101816(T) (98.2 %), Burkholderia tuberum STM678(T) (97.2 %) and Burkholderia diazotrophica JPY461(T) (97.1 %). The DNA G+C content was 63.5 mol% and the respiratory quinone was Q-8. The major fatty acids were C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c. The polar lipid profile of strain L226(T) consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, unknown lipids and unidentified aminophospholipids. Based on the low level of DNA-DNA relatedness (ranging from 25.8 % to 34.4 %) to the tested type strains of species of the genus Burkholderia and unique phenotypic characteristics, it is suggested that strain L226(T) represents a novel species of the genus Burkholderia, for which the name Burkholderia susongensis sp. nov., is proposed. The type strain is L226(T) ( = CCTCC AB2014142(T) = JCM 30231(T)). © 2015 IUMS.

  10. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    PubMed

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)). © 2015 IUMS.

  11. Lentibacillus amyloliquefaciens sp. nov., a halophilic bacterium isolated from saline sediment sample.

    PubMed

    Wang, Jing-Li; Ma, Ke-Dong; Wang, Yan-Wei; Wang, Hui-Min; Li, Yan-Bin; Zhou, Shan; Chen, Xiao-Rong; Kong, De-Long; Guo, Xiang; He, Ming-Xiong; Ruan, Zhi-Yong

    2016-02-01

    A Gram-stain positive, non-motile, non-sporogenous, aerobic, rod-shaped and halophilic bacterium, designated LAM0015(T), was isolated from a saline sediment sample collected from Yantai City in China. The isolate was found to be able to grow at NaCl concentrations of 5-25 % (w/v) (optimum: 7-12 %), 15-45 °C (optimum: 35 °C) and pH 5.0-9.0 (optimum: 7.0). The major fatty acids were determined to be anteiso-C15:0 and anteiso-C17:0. The predominant respiratory quinone was identified as MK-7. The cell wall peptidoglycan was determined to contain meso-diaminopimelic acid. The polar lipids were found to be diphosphatidyglycerol, phosphatidylglycerol, five phospholipids and one glycolipid. The DNA G+C content was 43.1 mol% as determined by the T m method. Analysis of the 16S rRNA gene sequence indicated that the isolate belongs within the genus Lentibacillus and is closely related to Lentibacillus persicus DSM 22530(T), Lentibacillus salicampi JCM 11462(T) and Lentibacillus jeotgali JCM 15795(T) with 97.3, 96.7 and 96.4 % sequence similarity, respectively. The DNA-DNA hybridization value between LAM0015(T) and L. persicus DSM 22530(T) was 51.2 ± 1.4 %. Based on its phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0015(T) is concluded to represent a novel species of the genus Lentibacillus, for which the name Lentibacillus amyloliquefaciens sp. nov. is proposed. The type strain is LAM0015(T) (=ACCC 06401(T) = JCM 19838(T)).

  12. Thermus anatoliensis sp. nov., a thermophilic bacterium from geothermal waters of Buharkent, Turkey.

    PubMed

    Kacagan, Murat; Inan, Kadriye; Canakci, Sabriye; Guler, Halil Ibrahim; Belduz, Ali Osman

    2015-12-01

    A Gram-stain-negative, lack of motility, catalase- and oxidase- positive bacterium (strain MT1(T)) was isolated from Buharkent hot spring in Aydin, Turkey. Its taxonomy was investigated using a polyphasic approach. The strain was able to grow at 45-80 °C, pH 5.5-10.5 and with a NaCI tolerance up to 2.0% (w/v). Strain MT1(T) was able to utilize d-mannitol and l-arabinose, not able to utilize d-cellobiose as sole carbon source. 16S rRNA gene sequence analysis revealed that the strain belonged to the genus Thermus; strain MT1(T) detected low-level similarities of 16S rRNA gene sequences (below 97%) compared with all other species in this genus. The predominant fatty acids of strain MT1(T) were iso-C(15:0) (43.0%) and iso-C(17:0) (27.4%). Polar lipid analysis revealed a major phospholipid, one major glycolipid, one major aminophospholipid, two minor aminolipids, one minor phospholipid, and several minor glycolipids. The major isoprenoid quinone was MK-8. The DNA G+C content of MT1(T) was 69.6 mol%. On the basis of a taxonomic study using a polyphasic approach, strain MT1(T) is considered to represent a novel species of the genus Thermus, for which the name Thermus anatoliensis sp. nov. is proposed. The type strain is MT1(T) (=NCCB 100425(T) =LMG 26880(T)). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [Partial biological characteristics and algicidal activity of an algicidal bacterium].

    PubMed

    Li, San-Hua; Zhang, Qi-Ya

    2013-02-01

    An algicidal bacterium was isolated from freshwater (Lake Donghu in Wuhan) and coded as A01. The morphology of the algicidal bacterium was observed using optical microscope and electron microscopes, the results showed that A01 was rod-shaped, approximately 1.5 microm in length and 0.45 microm in width and with no flagella structure. A01 was Gram-negative and belongs to the family Acinetobacter sp. though identification by Gram's staining and 16S rDNA gene analysis. A01 exhibited strong algicidal activity on the bloom-forming cyanobacterium Anabaena eucompacta under laboratory conditions. The removal rate of chlorophyll a after 7-day incubation with the culture supernatant of A01 and thalli were 77% and 61%, respectively. Microscopic observation showed that almost all cyanobacterial cells were destroyed within 3 d of co-incubation with the supernatant of algicidal bacterium, but a mass of the cyanobacterial cell lysis was observed only after 5 d of co-incubation with the thalli of algicidal bacterium. These results indicated that the main algicidal component of A01 was in its culture supernatant. In other words, the strain A01 could secrete algicidal component against Anabaena eucompacta.

  14. A Novel p-Nitrophenol Degradation Gene Cluster from a Gram-Positive Bacterium, Rhodococcus opacus SAO101

    PubMed Central

    Kitagawa, Wataru; Kimura, Nobutada; Kamagata, Yoichi

    2004-01-01

    p-Nitrophenol (4-NP) is recognized as an environmental contaminant; it is used primarily for manufacturing medicines and pesticides. To date, several 4-NP-degrading bacteria have been isolated; however, the genetic information remains very limited. In this study, a novel 4-NP degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101, was identified and characterized. The deduced amino acid sequences of npcB, npcA, and npcC showed identity with phenol 2-hydroxylase component B (reductase, PheA2) of Geobacillus thermoglucosidasius A7 (32%), with 2,4,6-trichlorophenol monooxygenase (TcpA) of Ralstonia eutropha JMP134 (44%), and with hydroxyquinol 1,2-dioxygenase (ORF2) of Arthrobacter sp. strain BA-5-17 (76%), respectively. The npcB, npcA, and npcC genes were cloned into pET-17b to construct the respective expression vectors pETnpcB, pETnpcA, and pETnpcC. Conversion of 4-NP was observed when a mixture of crude cell extracts of Escherichia coli containing pETnpcB and pETnpcA was used in the experiment. The mixture converted 4-NP to hydroxyquinol and also converted 4-nitrocatechol (4-NCA) to hydroxyquinol. Furthermore, the crude cell extract of E. coli containing pETnpcC converted hydroxyquinol to maleylacetate. These results suggested that npcB and npcA encode the two-component 4-NP/4-NCA monooxygenase and that npcC encodes hydroxyquinol 1,2-dioxygenase. The npcA and npcC mutant strains, SDA1 and SDC1, completely lost the ability to grow on 4-NP as the sole carbon source. These results clearly indicated that the cloned npc genes play an essential role in 4-NP mineralization in R. opacus SAO101. PMID:15262926

  15. Antibiofilm Activity of an Exopolysaccharide from Marine Bacterium Vibrio sp. QY101

    PubMed Central

    Han, Feng; Duan, Gaofei; Lu, Xinzhi; Gu, Yuchao; Yu, Wengong

    2011-01-01

    Bacterial exopolysaccharides have always been suggested to play crucial roles in the bacterial initial adhesion and the development of complex architecture in the later stages of bacterial biofilm formation. However, Escherichia coli group II capsular polysaccharide was characterized to exert broad-spectrum biofilm inhibition activity. In this study, we firstly reported that a bacterial exopolysaccharide (A101) not only inhibits biofilm formation of many bacteria but also disrupts established biofilm of some strains. A101 with an average molecular weight of up to 546 KDa, was isolated and purified from the culture supernatant of the marine bacterium Vibrio sp. QY101 by ethanol precipitation, iron-exchange chromatography and gel filtration chromatography. High performance liquid chromatography traces of the hydrolyzed polysaccharides showed that A101 is primarily consisted of galacturonic acid, glucuronic acid, rhamnose and glucosamine. A101 was demonstrated to inhibit biofilm formation by a wide range of Gram-negative and Gram-positive bacteria without antibacterial activity. Furthermore, A101 displayed a significant disruption on the established biofilm produced by Pseudomonas aeruginosa, but not by Staphylococcus aureus. Importantly, A101 increased the aminoglycosides antibiotics' capability of killing P. aeruginosa biofilm. Cell primary attachment to surfaces and intercellular aggregates assays suggested that A101 inhibited cell aggregates of both P. aeruginosa and S. aureus, while the cell-surface interactions inhibition only occurred in S. aureus, and the pre-formed cell aggregates dispersion induced by A101 only occurred in P. aeruginosa. Taken together, these data identify the antibiofilm activity of A101, which may make it potential in the design of new therapeutic strategies for bacterial biofilm-associated infections and limiting biofilm formation on medical indwelling devices. The found of A101 antibiofilm activity may also promote a new recognition

  16. Akkermansia glycaniphila sp. nov., an anaerobic mucin-degrading bacterium isolated from reticulated python faeces.

    PubMed

    Ouwerkerk, Janneke P; Aalvink, Steven; Belzer, Clara; de Vos, Willem M

    2016-11-01

    A Gram-stain-negative, non-motile, strictly anaerobic, oval-shaped, non-spore-forming bacterium (strain PytT) was isolated from reticulated python faeces. Strain PytT was capable of using mucin as sole carbon, energy and nitrogen source. Cells could grow singly, in pairs, and were also found to aggregate. Scanning electron microscopy revealed the presence of filamentous structures connecting individual bacterial cells. Strain PytT could grow on a limited number of single sugars, including N-acetylglucosamine, N-acetylgalactosamine, glucose, lactose and galactose, but only when a plentiful protein source was provided. Phylogenetic analysis based on 16S rRNA gene sequencing showed strain PytT to belong to the Verrucomicrobiae class I, family Akkermansiaceae, genus Akkermansia, with Akkermansia muciniphila MucT as the closest relative (94.4 % sequence similarity). DNA-DNA hybridization revealed low relatedness of 28.3 % with A. muciniphila MucT. The G+C content of DNA from strain PytT was 58.2 mol%. The average nucleotide identity (ANI) of the genome of strain PytT compared to the genome of strain MucT was 79.7 %. Chemotaxonomic data supported the affiliation of strain PytT to the genus Akkermansia. Based on phenotypic, phylogenetic and genetic characteristics, strain PytT represents a novel species of the genus Akkermansia, for which the name Akkermansia glycaniphila sp. nov. is proposed. The type strain is PytT (=DSM 100705T=CIP 110913T).

  17. Caldanaerobacter uzonensis sp. nov., an anaerobic, thermophilic, heterotrophic bacterium isolated from a hot spring.

    PubMed

    Kozina, Irina V; Kublanov, Ilya V; Kolganova, Tatyana V; Chernyh, Nikolai A; Bonch-Osmolovskaya, Elizaveta A

    2010-06-01

    An anaerobic thermophilic bacterium, strain K67(T), was isolated from a terrestrial hot spring of Uzon Caldera, Kamchatka Peninsula. Analysis of the 16S rRNA gene sequence revealed that the novel isolate belongs to the genus Caldanaerobacter, with 95 % 16S rRNA gene sequence similarity to Caldanaerobacter subterraneus subsp. subterraneus SEBR 7858(T), suggesting that it represents a novel species of the genus Caldanaerobacter. Strain K67(T) was characterized as an obligate anaerobe, a thermophile (growth at 50-75 degrees capital ES, Cyrillic; optimum 68-70 degrees C), a neutrophile (growth at pH(25 degrees C) 4.8-8.0; optimum pH(25 degrees C) 6.8) and an obligate organotroph (growth by fermentation of various sugars, peptides and polysaccharides). Major fermentation products were acetate, H2 and CO2; ethanol, lactate and l-alanine were formed in smaller amounts. Thiosulfate stimulated growth and was reduced to hydrogen sulfide. Nitrate, sulfate, sulfite and elemental sulfur were not reduced and did not stimulate growth. Thus, according to the strain's phylogenetic position and phenotypic novelties (lower upper limit of temperature range for growth, the ability to grow on arabinose, the inability to reduce elemental sulfur and the formation of alanine as a minor fermentation product), the novel species Caldanaerobacter uzonensis sp. nov. is proposed, with the type strain K67(T) (=DSM 18923(T) =VKM capital VE, Cyrillic-2408(T)).

  18. Paenibacillus guangzhouensis sp. nov., an Fe(III)- and humus-reducing bacterium from a forest soil.

    PubMed

    Li, Jibing; Lu, Qin; Liu, Ting; Zhou, Shungui; Yang, Guiqin; Zhao, Yong

    2014-11-01

    A Gram-reaction-variable, rod-shaped, motile, facultatively aerobic and endospore-forming bacterium, designated strain GSS02(T), was isolated from a forest soil. Strain GSS02(T) was capable of reducing humic substances and Fe(III) oxides. Strain GSS02(T) grew optimally at 35 °C, at pH 78 and in the presence of 1% NaCl. The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C(15:0) and iso-C(16:0) and the polar lipid profile contained mainly phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol, with moderate amounts of two unknown aminophospholipids and a minor amount of one unknown lipid. The DNA G+C content was 53.4 mol%. Comparative 16S rRNA gene sequence analysis showed that strain GSS02(T) was related most closely to Paenibacillus terrigena JCM 21741(T) (98.1% similarity). Mean DNA-DNA relatedness between strain GSS02(T) and P. terrigena JCM 21741(T) was 58.8 ± 0.5%. The phylogenetic, chemotaxonomic and phenotypic results clearly demonstrated that strain GSS02(T) belongs to the genus Paenibacillus and represents a novel species, for which the name Paenibacillus guangzhouensis sp. nov. is proposed. The type strain is GSS02(T) ( =KCTC 33171(T) =CCTCC AB 2013236(T)). © 2014 IUMS.

  19. Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses.

    PubMed

    Peix, Alvaro; Rivas, Raúl; Santa-Regina, Ignacio; Mateos, Pedro F; Martínez-Molina, Eustoquio; Rodríguez-Barrueco, Claudino; Velázquez, Encarna

    2004-05-01

    A phosphate-solubilizing bacterial strain designated OK2(T) was isolated from rhizospheric soil of grasses growing spontaneously in a soil from Spain. Cells of the strain were Gram-negative, strictly aerobic, rod-shaped and motile. Phylogenetic analysis of the 16S rRNA gene indicated that this bacterium belongs to the gamma-subclass of Proteobacteria within the genus Pseudomonas and that the closest related species is Pseudomonas graminis. The strain produced catalase but not oxidase. Cellulose, casein, starch, gelatin and urea were not hydrolysed. Aesculin was hydrolysed. Growth was observed with many carbohydrates as carbon sources. The main non-polar fatty acids detected were hexadecenoic acid (16 : 1), hexadecanoic acid (16 : 0) and octadecenoic acid (18 : 1). The hydroxy fatty acids detected were 3-hydroxydecanoic acid (3-OH 10 : 0), 3-hydroxydodecanoic acid (3-OH 12 : 0) and 2-hydroxydodecanoic acid (2-OH 12 : 0). The G+C DNA content determined was 59.3 mol%. DNA-DNA hybridization showed 48.7 % relatedness between strain OK2(T) and P. graminis DSM 11363(T) and 26.2 % with respect to Pseudomonas rhizosphaerae LMG 21640(T). Therefore, these results indicate that strain OK2(T) (=LMG 21974(T)=CECT 5822(T)) belongs to a novel species of the genus Pseudomonas, and the name Pseudomonas lutea sp. nov. is proposed.

  20. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp

    PubMed Central

    Sun, Kai; Liu, Juan; Gao, Yanzheng; Jin, Li; Gu, Yujun; Wang, Wanqing

    2014-01-01

    This investigation provides a novel method of endophyte-aided removal of polycyclic aromatic hydrocarbons (PAHs) from plant bodies. A phenanthrene-degrading endophytic bacterium Pseudomonas sp. Ph6 was isolated from clover (Trifolium pratense L.) grown in a PAH-contaminated site. After being marked with the GFP gene, the colonization and distribution of strain Ph6-gfp was directly visualized in plant roots, stems, and leaves for the first time. After ryegrass (Lolium multiflorum Lam.) roots inoculation, strain Ph6-gfp actively and internally colonized plant roots and transferred vertically to the shoots. Ph6-gfp had a natural capacity to cope with phenanthrene in vitro and in planta. Ph6-gfp degraded 81.1% of phenanthrene (50 mg·L−1) in a culture solution within 15 days. The inoculation of plants with Ph6-gfp reduced the risks associated with plant phenanthrene contamination based on observations of decreased concentration, accumulation, and translocation factors of phenanthrene in ryegrass. Our results will have important ramifications in the assessment of the environmental risks of PAHs and in finding ways to circumvent plant PAH contamination. PMID:24964867

  1. Draft Genome Sequence of a Sphingomonas sp., an Endosymbiotic Bacterium Isolated from an Arctic Lichen Umbilicaria sp.

    PubMed Central

    Lee, Jungeun; Shin, Seung Chul; Kim, Su Jin; Kim, Bum-Keun; Hong, Soon Gyu; Kim, Eun Hye; Park, Hyun

    2012-01-01

    Sphingomonas sp. strain PAMC 26617 has been isolated from an Arctic lichen Umbilicaria sp. on the Svalbard Islands. Here we present the draft genome sequence of this strain, which represents a valuable resource for understanding the symbiotic mechanisms between endosymbiotic bacteria and lichens surviving in extreme environments. PMID:22582371

  2. CLONING AND CHARACTERIZATION OF THE PHTHALATE CATABOLISM REGION OF PRE1 OF ARTHROBACTER KEYSERI 12B

    EPA Science Inventory

    o-Phthalate (benzene-1,2-dicarboxylate) is a central intermediate in the bacterial degradation of phthalate ester plasticizers as well as of a number of fused-ring polycyclic aromatic hydrocarbons found in fossil fuels. In Arthrobacter keyseri 12B, the genes encoding catabolism o...

  3. Actinomyces haliotis sp. nov., a bacterium isolated from the gut of an abalone, Haliotis discus hannai.

    PubMed

    Hyun, Dong-Wook; Shin, Na-Ri; Kim, Min-Soo; Kim, Pil Soo; Kim, Joon Yong; Whon, Tae Woong; Bae, Jin-Woo

    2014-02-01

    A novel, Gram-staining-positive, facultatively anaerobic, non-motile and coccus-shaped bacterium, strain WL80(T), was isolated from the gut of an abalone, Haliotis discus hannai, collected from the northern coast of Jeju in Korea. Optimal growth occurred at 30 °C, pH 7-8 and with 1% (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain WL80(T) fell within the cluster of the genus Actinomyces, with highest sequence similarity to the type strains of Actinomyces radicidentis (98.8% similarity) and Actinomyces urogenitalis (97.0% similarity). The major cellular fatty acids were C18 : 1ω9c and C16 : 0. Menaquinone-10 (H4) was the major respiratory quinone. The genomic DNA G+C content of the isolate was 70.4 mol%. DNA-DNA hybridization values with closely related strains indicated less than 7.6% genomic relatedness. The results of physiological, biochemical, chemotaxonomic and genotypic analyses indicated that strain WL80(T) represents a novel species of the genus Actinomyces, for which the name Actinomyces haliotis sp. nov. is proposed. The type strain is WL80(T) ( = KACC 17211(T) = JCM 18848(T)).

  4. Chondroitin Lyase from a Marine Arthrobacter sp. MAT3885 for the Production of Chondroitin Sulfate Disaccharides.

    PubMed

    Kale, Varsha; Friðjónsson, Ólafur; Jónsson, Jón Óskar; Kristinsson, Hörður G; Ómarsdóttir, Sesselja; Hreggviðsson, Guðmundur Ó

    2015-08-01

    Chondroitin sulfate (CS) saccharides from cartilage tissues have potential application in medicine or as dietary supplements due to their therapeutic bioactivities. Studies have shown that depolymerized CS saccharides may display enhanced bioactivity. The objective of this study was to isolate a CS-degrading enzyme for an efficient production of CS oligo- or disaccharides. CS-degrading bacteria from marine environments were enriched using in situ artificial support colonization containing CS from shark cartilage as substrate. Subsequently, an Arthrobacter species (strain MAT3885) efficiently degrading CS was isolated from a CS enrichment culture. The genomic DNA from strain MAT3885 was pyro-sequenced by using the 454 FLX sequencing technology. Following assembly and annotation, an orf, annotated as family 8 polysaccharide lyase genes, was identified, encoding an amino acid sequence with a similarity to CS lyases according to NCBI blastX. The gene, designated choA1, was cloned in Escherichia coli and expressed downstream of and in frame with the E. coli malE gene for obtaining a high yield of soluble recombinant protein. Applying a dual-tag system (MalE-Smt3-ChoA1), the MalE domain was separated from ChoA1 with proteolytic cleavage using Ulp1 protease. ChoA1 was defined as an AC-type enzyme as it degraded chondroitin sulfate A, C, and hyaluronic acid. The optimum activity of the enzyme was at pH 5.5-7.5 and 40 °C, running a 10-min reaction. The native enzyme was estimated to be a monomer. As the recombinant chondroitin sulfate lyase (designated as ChoA1R) degraded chondroitin sulfate efficiently compared to a benchmark enzyme, it may be used for the production of chondroitin sulfate disaccharides for the food industry or health-promoting products.

  5. Characterization of a bacterium of the genus Azospirillum from cellulolytic nitrogen-fixing mixed cultures.

    PubMed

    Wong, P P; Stenberg, N E; Edgar, L

    1980-03-01

    A bacterium with the taxonomic characteristics of the genus Azospirillum was isolated from celluloytic N2-fixing mixed cultures. Its characteristics fit the descriptions of both Azopirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. It may be a variant strain of A. lipoferum. In mixed cultures with cellulolytic organisms, the bacterium grew and fixed N2 with cellelose as a sole source of energy and carbon. The mixed cultures used cellulose from leaves of wheat (Triticum aestivum L.), corn (Zea mays L.), and big bluestem grass (Andropogon gerardii Vitm). Microaerophilic N2-fixing bacteria of the genus Azospirillum, such as the bacterium we isolated, may be important contributors of fixed N2 in soil with partial anaerobiosis and cellulose decomposition.

  6. Antimicrobial profile of Arthrobacter kerguelensis VL-RK_09 isolated from Mango orchards.

    PubMed

    Munaganti, Rajesh Kumar; Muvva, Vijayalakshmi; Konda, Saidulu; Naragani, Krishna; Mangamuri, Usha Kiranmayi; Dorigondla, Kumar Reddy; Akkewar, Dattatray M

    An actinobacterial strain VL-RK_09 having potential antimicrobial activities was isolated from a mango orchard in Krishna District, Andhra Pradesh (India) and was identified as Arthrobacter kerguelensis. The strain A. kerguelensis VL-RK_09 exhibited a broad spectrum of in vitro antimicrobial activity against bacteria and fungi. Production of bioactive metabolites by the strain was the highest in modified yeast extract malt extract dextrose broth, as compared to other media tested. Lactose (1%) and peptone (0.5%) were found to be the most suitable carbon and nitrogen sources, respectively, for the optimum production of the bioactive metabolites. The maximum production of the bioactive metabolites was detected in the culture medium with an initial pH of 7, in which the strain was incubated for five days at 30°C under shaking conditions. Screening of secondary metabolites obtained from the culture broth led to the isolation of a compound active against a wide variety of Gram-positive and negative bacteria and fungi. The structure of the first active fraction was elucidated using Fourier transform infrared spectroscopy, electrospray ionization mass spectrometry, 1 H and 13 C nuclear magnetic resonance spectroscopy. The compound was identified as S,S-dipropyl carbonodithioate. This study is the first report of the occurrence of this compound in the genus Arthrobacter. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. [Insertional mutation in the AZOBR_p60120 gene is accompanied by defects in the synthesis of lipopolysaccharide and calcofluor-binding polysaccharides in the bacterium Azospirillum brasilense Sp245].

    PubMed

    Katsy, E I; Prilipov, A G

    2015-03-01

    In the bacterium Azospirillum brasilense Sp245, extracellular calcofluor-binding polysaccharides (Cal+ phenotype) and two types of lipopolysaccharides, LPSI and LPSII, were previously identified. These lipopolysaccharides share the same repeating O-polysaccharide unit but have different antigenic structures and different charges of their O-polysaccharides and/or core oligosaccharides. Several dozens of predicted genes involved in the biosynthesis of polysaccharides have been localized in the AZOBR_p6 plasmid of strain Sp245 (GenBank accession no. HE577333). In the present work, it was demonstrated that an artificial transposon Omegon-Km had inserted into the central region of the AZOBR_p60120 gene in the A. brasilense Sp245 LPSI- Cal- KM252 mutant. In A. brasilense strain Sp245, this plasmid gene encodes a putative glycosyltransferase containing conserved domains characteristic of the enzymes participating in the synthesis of O-polysaccharides and capsular polysaccharides (accession no. YP004987664). In mutant KM252, a respective predicted protein is expected to be completely inactivated. As a result of the analysis of the EcoRI fragment of the AZOBR_p6 plasmid, encompassing the AZOBR_p60120 gene and a number of other loci, novel data on the structure of AZOBR_p6 were obtained: an approximately 5-kb gap (GenBank accession no. KM189439) was closed in the nucleotide sequence of this plasmid.

  8. Biodegradation of dimethylsilanediol in soils.

    PubMed Central

    Sabourin, C L; Carpenter, J C; Leib, T K; Spivack, J L

    1996-01-01

    The biodegradation potential of [14C]dimethylsilanediol, the monomer unit of polydimethylsiloxane, in soils was investigated. Dimethylsilanediol was found to be biodegraded in all of the tested soils, as monitored by the production of 14CO2. When 2-propanol was added to the soil as a carbon source in addition to [14C]dimethylsilanediol, the production of 14CO2 increased. A method for the selection of primary substrates that support cometabolic degradation of a target compound was developed. By this method, the activity observed in the soils was successfully transferred to liquid culture. A fungus, Fusarium oxysporum Schlechtendahl, and a bacterium, an Arthrobacter species, were isolated from two different soils, and both microorganisms were able to cometabolize [14C]dimethylsilanediol to 14CO2 in liquid culture. In addition, the Arthrobacter sp. that was isolated grew on dimethylsulfone, and we believe that this is the first reported instance of a microorganism using dimethylsulfone as its primary carbon source. Previous evidence has shown that polydimethylsiloxane is hydrolyzed in soil to the monomer, dimethylsilanediol. Now, biodegradation of dimethylsilanediol in soil has been demonstrated. PMID:8953708

  9. Dethiosulfovibrio salsuginis sp. nov., an anaerobic, slightly halophilic bacterium isolated from a saline spring.

    PubMed

    Díaz-Cárdenas, C; López, G; Patel, B K C; Baena, S

    2010-04-01

    A mesophilic, strictly anaerobic, slightly halophilic bacterium, designated strain USBA 82(T), was isolated from a terrestrial saline spring in the Colombian Andes. The non-spore-forming curved rods (5-7 x 1.3 microm) with pointed or rounded ends, stained Gram-negative and were motile by means of laterally inserted flagella. The strain grew optimally at 30 degrees C (growth range 20-40 degrees C), pH 7.3 (growth range pH 5.5-8.5) and 2 % (w/v) NaCl (growth range 0.1-7 % NaCl). The strain fermented peptides, amino acids and a few organic acids, but growth was not observed on carbohydrates, alcohols or fatty acids. The strain reduced thiosulfate and sulfur to sulfide. Sulfate, sulfite, nitrate and nitrite were not used as electron acceptors. On peptone alone, acetate, succinate, propionate and traces of ethanol were formed, but in the presence of thiosulfate, acetate and succinate were formed. The G+C content of the chromosomal DNA was 52 mol% (T(m)). 16S rRNA gene sequence analysis indicated that strain USBA 82(T) was affiliated to Dethiosulfovibrio peptidovorans within the phylum Synergistetes with a similarity value of approximately 93 %. Based on the differences between the new strain and the type species of the genus Dethiosulfovibrio, we suggest that strain USBA 82(T) represents a novel species of the genus for which the name Dethiosulfovibrio salsuginis sp. nov. is proposed. The type strain is USBA 82(T) (=DSM 21565(T)=KCTC 5659(T)).

  10. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India.

    PubMed

    Balasubramanian, V; Natarajan, K; Hemambika, B; Ramesh, N; Sumathi, C S; Kottaimuthu, R; Rajesh Kannan, V

    2010-08-01

    Assessment of high-density polyethylene (HDPE)-degrading bacteria isolated from plastic waste dumpsites of Gulf of Mannar. Rationally, 15 bacteria (GMB1-GMB15) were isolated by enrichment technique. GMB5 and GMB7 were selected for further studies based on their efficiency to degrade the HDPE and identified as Arthrobacter sp. and Pseudomonas sp., respectively. Assessed weight loss of HDPE after 30 days of incubation was nearly 12% for Arthrobacter sp. and 15% for Pseudomonas sp. The bacterial adhesion to hydrocarbon (BATH) assay showed that the cell surface hydrophobicity of Pseudomonas sp. was higher than Arthrobacter sp. Both fluorescein diacetate hydrolysis and protein content of the biofilm were used to test the viability and protein density of the biomass. Acute peak elevation was observed between 2 and 5 days of inoculation for both bacteria. Fourier transform infrared (FT-IR) spectrum showed that keto carbonyl bond index (KCBI), Ester carbonyl bond index (ECBI) and Vinyl bond index (VBI) were increased indicating changes in functional group(s) and/or side chain modification confirming the biodegradation. The results pose us to suggest that both Pseudomonas sp. and Arthrobacter sp. were proven efficient to degrade HDPE, albeit the former was more efficacious, yet the ability of latter cannot be neglected. Recent alarm on ecological threats to marine system is dumping plastic waste in the marine ecosystem and coastal arena by anthropogenic activity. In maintenance phase of the plastic-derived polyethylene waste, the microbial degradation plays a major role; the information accomplished in this work will be the initiating point for the degradation of polyethylene by indigenous bacterial population in the marine ecosystem and provides a novel eco-friendly solution in eco-management.

  11. Genome Sequence of Sphingomonas sp. Strain PAMC 26621, an Arctic-Lichen-Associated Bacterium Isolated from a Cetraria sp.

    PubMed Central

    Lee, Hyoungseok; Shin, Seung Chul; Lee, Jungeun; Kim, Su Jin; Kim, Bum-Keun; Hong, Soon Gyu; Kim, Eun Hye

    2012-01-01

    The lichen-associated bacterial strain Sphingomonas sp. PAMC 26621 was isolated from an Arctic lichen Cetraria sp. on Svalbard Islands. Here we report the draft genome sequence of this strain, which could provide novel insights into the molecular principles of lichen-microbe interactions. PMID:22582384

  12. Characterization of Halanaerobaculum tunisiense gen. nov., sp. nov., a new halophilic fermentative, strictly anaerobic bacterium isolated from a hypersaline lake in Tunisia.

    PubMed

    Hedi, Abdeljabbar; Fardeau, Marie-Laure; Sadfi, Najla; Boudabous, Abdellatif; Ollivier, Bernard; Cayol, Jean-Luc

    2009-03-01

    A new halophilic anaerobe was isolated from the hypersaline surface sediments of El-Djerid Chott, Tunisia. The isolate, designated as strain 6SANG, grew at NaCl concentrations ranging from 14 to 30%, with an optimum at 20-22%. Strain 6SANG was a non-spore-forming, non-motile, rod-shaped bacterium, appearing singly, in pairs, or occasionally as long chains (0.7-1 x 4-13 microm) and showed a Gram-negative-like cell wall pattern. It grew optimally at pH values between 7.2 and 7.4, but had a very broad pH range for growth (5.9-8.4). Optimum temperature for growth was 42 degrees C (range 30-50 degrees C). Strain 6SANG required yeast extract for growth on sugars. Glucose, sucrose, galactose, mannose, maltose, cellobiose, pyruvate, and starch were fermented. The end products from glucose fermentation were acetate, butyrate, lactate, H(2), and CO(2). The G + C ratio of the DNA was 34.3 mol%. Strain 6SANG exhibited 16S rRNA gene sequence similarity values of 91-92% with members of the genus Halobacteroides, H. halobius being its closest phylogenetic relative. Based on phenotypic and phylogenetic characteristics, we propose that this bacterium be classified as a novel species of a novel genus, Halanaerobaculum tunisiense gen. nov., sp. nov. The type strain is 6SANG(T) (=DSM 19997(T)=JCM 15060(T)).

  13. Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slobodkin, A.; Wiegel, J.; Reysenbach, A.L.

    1997-04-01

    A strain of a thermophilic, anaerobic, dissimilatory, Fe(III)-reducing bacterium, Thermoterrabacterium ferrireducens gen. nov., sp. nov. (type strain JW/AS-Y7{sup T}; DSM 11255), was isolated from hot springs in Yellowstone National Park and New Zealand. The gram-positive-staining cells occurred singly or in pairs as straight to slightly curved rods, 0.3 to 0.4 by 1.6 to 2.7 {mu}m, with rounded ends and exhibited a tumbling motility. Spores were not observed. The temperature range for growth was 50 to 74{degrees}C with an optimum at 65{degrees}C. The pH range for growth at 65{degrees}C was from 5.5 to 7.6, with an optimum at 6.0 to 6.2.more » The organism coupled the oxidation of glycerol to reduction of amorphous Fe(III) oxide or Fe(III) citrate as an electron acceptor. In the presence as well as in the absence of Fe(III) and in the presence of CO{sub 2}, glycerol was metabolized by incomplete oxidation to acetate as the only organic metabolic product; no H{sub 2} was produced during growth. The organism utilized glycerol, lactate, 1,2-propanediol, glycerate, pyruvate, glucose, fructose, mannose, and yeast extract as substrates. In the presence of Fe(III) the bacterium utilized molecular hydrogen. The organism reduced 9,10-anthraquinone-2,6-disulfonic acid, fumarate (to succinate), and thiosulfate (to elemental sulfur) but did not reduce MnO{sub 2}, nitrate, sulfate, sulfite, or elemental sulfur. The G+C content of the DNA was 41 mol% (as determined by high-performance liquid chromatography). The 16S ribosomal DNA sequence analysis placed the isolated strain as a member of a new genus within the gram-type positive Bacillus-Clostridium subphylum.« less

  14. Nocardioides daejeonensis sp. nov., a denitrifying bacterium isolated from sludge in a sewage-disposal plant.

    PubMed

    Woo, Sung-Geun; Srinivasan, Sathiyaraj; Yang, Jihoon; Jung, Yong-An; Kim, Myung Kyum; Lee, Myungjin

    2012-05-01

    Strain MJ31(T), a gram-reaction-positive, aerobic, rod-shaped, non-motile bacterium, was isolated from a sludge sample collected at the Daejeon sewage-disposal plant, in South Korea, and characterized in order to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MJ31(T) belonged to the genus Nocardioides, appearing most closely related to Nocardioides dubius KSL-104(T) (98.6 % sequence similarity), Nocardioides jensenii DSM 20641(T) (97.6 %), Nocardioides daedukensis MDN22(T) (97.2 %) and Nocardioides mesophilus MSL-22(T) (97.0 %). The chemotaxonomic properties of strain MJ31(T) were consistent with those of the genus Nocardioides: MK-8(H(4)) was the predominant menaquinone, iso-C(16 : 0), iso-C(17 : 0) and C(18 : 1)ω9c were the predominant cellular fatty acids, and the cell-wall peptidoglycan was based on LL-2,6-diaminopimelic acid. The genomic DNA G+C content of strain MJ31(T) was 71.2 mol%. Some differential phenotypic properties and low DNA-DNA relatedness values (<28 %) with the type strains of closely related species indicated that strain MJ31(T) represents a novel species, for which the name Nocardioides daejeonensis sp. nov. is proposed. The type strain is MJ31(T) ( = KCTC 19772(T) = JCM 16922(T)).

  15. Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton-Brehm, Scott D.; Gibson, Robert A.; Green, Stefan J.

    2013-01-24

    A novel sulfate-reducing bacterium designated OPF15T was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70 90 C and an optimum of 83 C. Optimal pH was around 6.5 7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve asmore » electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15T was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15T representing the type strain.« less

  16. Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park.

    PubMed

    Hamilton-Brehm, Scott D; Gibson, Robert A; Green, Stefan J; Hopmans, Ellen C; Schouten, Stefan; van der Meer, Marcel T J; Shields, John P; Damsté, Jaap S S; Elkins, James G

    2013-03-01

    A novel sulfate-reducing bacterium designated OPF15(T) was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70-90 °C and an optimum of 83 °C. Optimal pH was around 6.5-7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve as electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15(T) was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15(T) representing the type strain.

  17. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater.

    PubMed

    Xu, Zhen-Xing; Zhang, Heng-Xi; Han, Ji-Ru; Dunlap, Christopher A; Rooney, Alejandro P; Mu, Da-Shuai; Du, Zong-Jun

    2017-06-01

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate represented a member of the genus Colwellia and exhibited the highest sequence similarity (97.4 %) to Colwellia aestuarii SMK-10T. Average nucleotide identity (ANI) values based on draft genome sequences between strain QM50T and C. aestuarii KCTC 12480T showed a relatedness of 72.0 % (ANIb) and 85.1 % (ANIm). Cells of strain QM50T were approximately 0.3-0.6×0.8-2.5 µm in size and motile by means of a polar flagellum. Growth occurred in the presence of 1.0-6.0 % (w/v) NaCl (optimum, 2.0-3.0 %), at pH 6.5-8.5 (optimum, pH 7.0) and at 4-37 °C (optimum, 28-30 °C). Strain QM50T was found to contain ubiquinone 8 (Q-8) as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and C17 : 1ω8c as the main cellular fatty acids. Phosphatidylethanolamine and phosphatidylglycerol were found to be major polar lipids. The DNA G+C content of strain QM50T was determined to be 35.7 mol%. On the basis of phylogenetic and phenotypic data, strain QM50T represents a novel species of the genus Colwellia, for which the name Colwellia agarivorans sp. nov. is proposed. The type strain is QM50T (=KCTC 52273T=MCCC 1H00143T).

  18. Salinispirillum marinum gen. nov., sp. nov., a haloalkaliphilic bacterium in the family 'Saccharospirillaceae'.

    PubMed

    Shahinpei, Azadeh; Amoozegar, Mohammad Ali; Fazeli, Seyed Abolhassan Shahzadeh; Schumann, Peter; Ventosa, Antonio

    2014-11-01

    A novel Gram-staining-negative, motile, non-pigmented, facultatively anaerobic, spirillum-shaped, halophilic and alkaliphilic bacterium, designated strain GCWy1(T), was isolated from water of the coastal-marine wetland Gomishan in Iran. The strain was able to grow at NaCl concentrations of 1-10% (w/v) and optimal growth was achieved at 3% (w/v). The optimum pH and temperature for growth were pH 8.5 and 30 °C, while the strain was able to grow at pH 7.5-10 and 4-40 °C. Phylogenetic analysis based on the comparison of the 16S rRNA gene sequence placed the isolate within the class Gammaproteobacteria as a separate deep branch, with 92.1% or lower sequence similarity to representatives of the genera Saccharospirillum and Reinekea and less than 91.0% sequence similarity with other remotely related genera. The major cellular fatty acids of the isolate were C(18 : 1)ω7c, C(16:0) and C(17 : 0), and the major components of its polar lipid profile were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The cells of strain GCWy1(T) contained the isoprenoid quinones Q-9 and Q-8 (81% and 2%, respectively). The G+C content of the genomic DNA of this strain was 52.3 mol%. On the basis of 16S rRNA gene sequence analysis in combination with chemotaxonomic and phenotypic data, strain GCWy1(T) represents a novel species in a new genus in the family 'Saccharospirillaceae', order Oceanospirillales, for which the name Salinispirillum marinum gen. nov., sp. nov. is proposed. The type strain of the type species is GCWy1(T) ( = IBRC-M 10765(T) =CECT 8342(T)). © 2014 IUMS.

  19. Cupriavidus pampae sp. nov., a novel herbicide-degrading bacterium isolated from agricultural soil.

    PubMed

    Cuadrado, Virginia; Gomila, Margarita; Merini, Luciano; Giulietti, Ana M; Moore, Edward R B

    2010-11-01

    A bacterial consortium able to degrade the herbicide 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB) was obtained from an agricultural soil of the Argentinean Humid Pampa region which has a history of long-term herbicide use. Four bacterial strains were isolated from the consortium and identified as members of the genera Cupriavidus, Labrys and Pseudomonas. A polyphasic systematic analysis was carried out on strain CPDB6(T), the member of the 2,4-DB-degrading consortium able to degrade 2,4-DB as a sole carbon and energy source. The Gram-negative, rod-shaped, motile, non-sporulating, non-fermenting bacterium was shown to belong to the genus Cupriavidus on the basis of 16S rRNA gene sequence analyses. Strain CPDB6(T) did not reduce nitrate, which differentiated it from the type species of the genus, Cupriavidus necator; it did not grow in 0.5-4.5 % NaCl, although most species of Cupriavidus are able to grow at NaCl concentrations as high as 1.5 %; and it was able to deamidate acetamide, which differentiated it from all other species of Cupriavidus. DNA-DNA hybridization data revealed low levels of genomic DNA similarity (less than 30 %) between strain CPDB6(T) and the type strains of Cupriavidus species with validly published names. The major cellular fatty acids detected were cis-9-hexadecenoic (16 : 1ω7c) and hexadecanoic (16 : 0) acids. On the basis of phenotypic and genotypic characterizations, strain CPDB6(T) was recognized as a representative of a novel species within the genus Cupriavidus. The name Cupriavidus pampae sp. nov. is proposed, with strain CPDB6(T) (=CCUG 55948(T)=CCM-A-29:1289(T)) as the type strain.

  20. Biodegradation and bioremediation of endosulfan contaminated soil.

    PubMed

    Kumar, Mohit; Lakshmi, C Vidya; Khanna, Sunil

    2008-05-01

    Among the three mixed bacterial culture AE, BE, and CE, developed by enrichment technique with endosulfan as sole carbon source, consortium CE was found to be the most efficient with 72% and 87% degradation of alpha-endosulfan and beta-endosulfan, respectively, in 20 days. In soil microcosm, consortium AE, BE and CE degraded alpha-endosulfan by 57%, 88% and 91%, respectively, whereas beta-endosulfan was degraded by 4%, 60% and 67% after 30 days. Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., isolated and identified on the basis of 16s rDNA gene sequence, individually showed in situ biodegradation of alpha-endosulfan in contaminated soil microcosm by 61, 73, and 74, respectively, whereas degradation of beta-endosulfan was 63, 75, and 62, respectively, after 6 weeks of incubation over the control which showed 26% and 23 % degradation of alpha-endosulfan and beta-endosulfan, respectively. Population survival of Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., by plate count on Luria Broth with carbenicillin showed 75-88% survival of these isolates as compared to 36-48% of survival obtained from PCR fingerprinting. Arthrobacter sp. oxidized endosulfan to endosulfan sulfate which was further metabolized but no known metabolite of endosulfan sulfate was detected.

  1. Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhupathiraju, V.K.; Sharma, P.K.; Tanner, R.S.

    A strictly anaerobic, moderately halophilic, gram-negative bacterium was isolated from a highly saline oil field brine. The bacterium was a non-spore-forming, nonmotile rod, appearing singly, in pairs, or occasionally as long chains, and measured 0.3 to 0.4 by 2.6 to 4 {micro}m. The bacterium had a specific requirement for NaCl and grew at NaCl concentrations of between 6 and 24%, with optimal growth at 9% NaCl. The isolate grew at temperatures of between 22 and 51 C and pH values of between 5.6 and 8.0. The doubling time in a complex medium containing 10% NaCl was 9 h. Growth wasmore » inhibited by chloramphenicol, tetracycline, and penicillin but not by cycloheximide or azide. Fermentable substrates were predominantly carbohydrates. The end products of glucose fermentation were acetate, ethanol, CO{sub 2}, and H{sub 2}. The major components of the cellular fatty acids were C{sub 14:0}, C{sub 16:0}, C{sub 16:1}, and C{sub 17:0 cyc} acids. The DNA base composition of the isolate was 34 mol% G+C. Oligonucleotide catalog and sequence analyses of the 16S rRNA showed that strain VS-752{sup T} was most closely related to Haloanaerobium praevalens GSL{sup T} (ATCC 33744), the sole member of the genus Haloanaerobium. The authors propose that strain VS-752 (ATCC 51327) by established as the type strain of a new species, Haloanaerobium salsugo, in the genus Haloanaerobium. 40 refs., 3 figs, 5 tabs.« less

  2. [Rhodobaculum claviforme gen. nov., sp. nov., a New Alkaliphilic Nonsulfur Purple Bacterium].

    PubMed

    Bryantseva, I A; Gaisin, V A; Gorlenko, V M

    2015-01-01

    Two alkaliphilic strains of nonsulfur purple bacteria (NPB), B7-4 and B8-2, were isolated from southeast Siberia moderately saline alkaline steppe lakes with pH values above 9.0. The isolates were motile, polymorphous cells (from short rods to long spindly cells) 2.0-3.2 x 9.6-20.0 μm. Intracellular membranes of vesicular type were mostly located at the cell periphery. The microorganisms contained bacteriochlorophyll a and carotenoids of the spheroidene and spirilloxanthin series. The photosynthetic apparatus was represented by LH2 and LH1 light-harvesting complexes. In the presence of organic compounds, the strains grew aerobically in the dark or anaerobically in the light. Capacity for photo- and chemoautotrophic growth was not detected. The cbbl gene encoding RuBisCO was not revealed. Optimal growth of both strains occurred at 2% NaCl (range from 0.5 to 4%), pH 8.0-8.8 (range from 7.5 to 9.7), and 25-35 degrees C. The DNA G+C content was 67.6-69.8 mol %. Pairwise comparison of the nucleotides of the 16S rRNA genes revealed that strains B7-4 and B8-2 belonged to the same species (99.9% homology) and were most closely related to the aerobic alkaliphilic bacteriochlorophyll a-containing anoxygenic phototrophic bacterium (APB) Roseibacula alcaliphilum De (95.2%) and to NPB strains Rhodobaca barguzinensis VKM B-2406(T) (94.2%) and Rbc. bogoriensis LBB1(T) (93.9%). The isolates were closely related to the NPB Rhodobacter veldkampii DSM 11550(T) (94.8%) and to aerobic bacteriochlorophyll a-containing bacteria Roseinatronobacter monicus ROS 35(T) and Roseicitreum antarcticul ZS2-28(T) (93.5 and 93.9%, respectively). New strains were described as a new NPB genus and species of the family Rhodobacteriaceae, Rhodobaculum claviforme gen. nov., sp. nov., with B7-4(T) (VKM B-2708, LMG 28126) as the type strain.

  3. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    PubMed

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project.

  4. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater

    USDA-ARS?s Scientific Manuscript database

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50**T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rDNA sequences revealed that the novel isolate represented...

  5. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions.

    PubMed

    Mnif, S; Chamkha, M; Sayadi, S

    2009-09-01

    To isolate and characterize an efficient hydrocarbon-degrading bacterium under hypersaline conditions, from a Tunisian off-shore oil field. Production water collected from 'Sercina' petroleum reservoir, located near the Kerkennah island, Tunisia, was used for the screening of halotolerant or halophilic bacteria able to degrade crude oil. Bacterial strain C2SS100 was isolated after enrichment on crude oil, in the presence of 100 g l(-1) NaCl and at 37 degrees C. This strain was aerobic, Gram-negative, rod-shaped, motile, oxidase + and catalase +. Phenotypic characters and phylogenetic analysis based on the 16S rRNA gene of the isolate C2SS100 showed that it was related to members of the Halomonas genus. The degradation of several compounds present in crude oil was confirmed by GC-MS analysis. The use of refined petroleum products such as diesel fuel and lubricating oil as sole carbon source, under the same conditions of temperature and salinity, showed that significant amounts of these heterogenic compounds could be degraded. Strain C2SS100 was able to degrade hexadecane (C16). During growth on hexadecane, cells surface hydrophobicity and emulsifying activity increased indicating the production of biosurfactant by strain C2SS100. A halotolerant bacterial strain Halomonas sp. C2SS100 was isolated from production water of an oil field, after enrichment on crude oil. This strain is able to degrade hydrocarbons efficiently. The mode of hydrocarbon uptake is realized by the production of a biosurfactant which enhances the solubility of hydrocarbons and renders them more accessible for biodegradation. The biodegradation potential of the Halomonas sp. strain C2SS100 gives it an advantage for possibly application on bioremediation of water, hydrocarbon-contaminated sites under high-salinity level.

  6. Characterization of Fe (III)-reducing enrichment culture and isolation of Fe (III)-reducing bacterium Enterobacter sp. L6 from marine sediment.

    PubMed

    Liu, Hongyan; Wang, Hongyu

    2016-07-01

    To enrich the Fe (III)-reducing bacteria, sludge from marine sediment was inoculated into the medium using Fe (OH)3 as the sole electron acceptor. Efficiency of Fe (III) reduction and composition of Fe (III)-reducing enrichment culture were analyzed. The results indicated that the Fe (III)-reducing enrichment culture with the dominant bacteria relating to Clostridium and Enterobacter sp. had high Fe (III) reduction of (2.73 ± 0.13) mmol/L-Fe (II). A new Fe (III)-reducing bacterium was isolated from the Fe (III)-reducing enrichment culture and identified as Enterobacter sp. L6 by 16S rRNA gene sequence analysis. The Fe (III)-reducing ability of strain L6 under different culture conditions was investigated. The results indicated that strain L6 had high Fe (III)-reducing activity using glucose and pyruvate as carbon sources. Strain L6 could reduce Fe (III) at the range of NaCl concentrations tested and had the highest Fe (III) reduction of (4.63 ± 0.27) mmol/L Fe (II) at the NaCl concentration of 4 g/L. This strain L6 could reduce Fe (III) with unique properties in adaptability to salt variation, which indicated that it can be used as a model organism to study Fe (III)-reducing activity isolated from marine environment. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Surface enhanced Raman spectroscopy (SERS) for the discrimination of Arthrobacter strains based on variations in cell surface composition.

    PubMed

    Stephen, Kate E; Homrighausen, Darren; DePalma, Glen; Nakatsu, Cindy H; Irudayaraj, Joseph

    2012-09-21

    Surface enhanced Raman spectroscopy (SERS) is a rapid and highly sensitive spectroscopic technique that has the potential to measure chemical changes in bacterial cell surface in response to environmental changes. The objective of this study was to determine whether SERS had sufficient resolution to differentiate closely related bacteria within a genus grown on solid and liquid medium, and a single Arthrobacter strain grown in multiple chromate concentrations. Fourteen closely related Arthrobacter strains, based on their 16S rRNA gene sequences, were used in this study. After performing principal component analysis in conjunction with Linear Discriminant Analysis, we used a novel, adapted cross-validation method, which more faithfully models the classification of spectra. All fourteen strains could be classified with up to 97% accuracy. The hierarchical trees comparing SERS spectra from the liquid and solid media datasets were different. Additionally, hierarchical trees created from the Raman data were different from those obtained using 16S rRNA gene sequences (a phylogenetic measure). A single bacterial strain grown on solid media culture with three different chromate levels also showed significant spectral distinction at discrete points identified by the new Elastic Net regularized regression method demonstrating the ability of SERS to detect environmentally induced changes in cell surface composition. This study demonstrates that SERS is effective in distinguishing between a large number of very closely related Arthrobacter strains and could be a valuable tool for rapid monitoring and characterization of phenotypic variations in a single population in response to environmental conditions.

  8. Phorcysia thermohydrogeniphila gen. nov., sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium from a deep-sea hydrothermal vent.

    PubMed

    Pérez-Rodríguez, Ileana; Grosche, Ashley; Massenburg, Lynnicia; Starovoytov, Valentin; Lutz, Richard A; Vetriani, Costantino

    2012-10-01

    A novel hyperthermophilic, anaerobic, chemolithoautotrophic bacterium, designated strain HB-8(T), was isolated from the tube of Alvinella pompejana tubeworms collected from the wall of an actively venting sulfide structure on the East Pacific Rise at 13° N. The cells were Gram-negative rods, approximately 1.0-1.5 µm long and 0.5 µm wide. Strain HB-8(T) grew between 65 and 80 °C (optimum 75 °C), 15 and 35 g NaCl l(-1) (optimum 30 g l(-1)) and pH 4.5 and 8.5 (optimum pH 6.0). Generation time under optimal conditions was 26 min. Growth occurred under chemolithoautotrophic conditions with H(2) as the energy source and CO(2) as the carbon source. Nitrate and sulfur were used as electron acceptors, with concomitant formation of ammonium or hydrogen sulfide, respectively. The presence of lactate, formate, acetate or tryptone in the culture medium inhibited growth. The G+C content of the genomic DNA was 47.8 mol%. Phylogenetic analysis of the 16S rRNA gene and of the alpha subunit of the ATP citrate lyase of strain HB-8(T) indicated that this organism formed a novel lineage within the class Aquificae, equally distant from the type strains of the type species of the three genera that represent the family Desulfurobacteriaceae: Thermovibrio ruber ED11/3LLK8(T), Balnearium lithotrophicum 17S(T) and Desulfurobacterium thermolithotrophum BSA(T). The polar lipids of strain HB-8(T) differed substantially from those of other members of the Desulfurobacteriaceae, and this bacterium produced novel quinones. On the basis of phylogenetic, physiological and chemotaxonomic characteristics, it is proposed that the organism represents a novel genus and species within the family Desulfurobacteriaceae, Phorcysia thermohydrogeniphila gen. nov., sp. nov. The type strain of Phorcysia thermohydrogeniphila is HB-8(T) ( = DSM 24425(T)  = JCM 17384(T)).

  9. Alcanivorax mobilis sp. nov., a new hydrocarbon-degrading bacterium isolated from deep-sea sediment.

    PubMed

    Yang, Shuo; Li, Meiqing; Lai, Qiliang; Li, Guizhen; Shao, Zongze

    2018-05-01

    A taxonomic study was carried out on strain MT13131 T , which was isolated from deep-sea sediment of the Indian Ocean during the screening of oil-degrading bacteria. The chain length range of n-alkanes (C8 to C32) oxidized by strain MT13131 T was determined in this study. The bacterium was Gram-negative, oxidase- and catalase-positive, single rod shaped, and motile by peritrichous flagella. Growth was observed at salinities of 1-12 % and at temperatures of 10-42 °C. The isolate was capable of Tween 20, 40 and 80 hydrolysis, but incapable of gelatin, cellulose or starch hydrolysis. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MT13131 T belonged to the genus Alcanivorax, with highest sequence similarity to Alcanivorax marinus R8-12 T (96.92 %), other species of genus Alcanivorax shared 92.96-96.69 % sequence similarity. The principal fatty acids were summed feature 3 (C16 : 1ω6c/ω7c), summed feature 8 (C18 : 1ω7c/ω6c), C16 : 0 and C12 : 0 3OH. The G+C content of the chromosomal DNA was 64.2 mol%. Phosphatidylglycerol, phosphatidylethanolamine, three aminolipids and three phospholipids were present. The combined genotypic and phenotypic data showed that strain MT13131 T represents a novel species within the genus Alcanivorax, for which the name Alcanivorax mobilis sp. nov. is proposed, with the type strain MT13131 T (=MCCC 1A11581 T =KCTC 52985 T ).

  10. Lawsonibacter asaccharolyticus gen. nov., sp. nov., a butyrate-producing bacterium isolated from human faeces.

    PubMed

    Sakamoto, Mitsuo; Iino, Takao; Yuki, Masahiro; Ohkuma, Moriya

    2018-06-01

    An obligately anaerobic, Gram-positive, non-spore-forming, straight rod-shaped bacterium, designated strain 3BBH22 T , was isolated from a faecal sample of a healthy Japanese woman. The 16S rRNA gene sequence analysis showed that strain 3BBH22 T formed a monophyletic cluster with species in the genera Pseudoflavonifractor and Flavonifractor within the family Ruminococcaceae and had highest similarity to Pseudoflavonifractor capillosus ATCC 29799 T (96.7 % sequence similarity), followed by Flavonifractor plautii ATCC 29863 T (96.4 %). Acetate and butyrate were produced by strain 3BBH22 T as metabolic end-products. The major cellular fatty acids were C14 : 0, C16 : 0, C18 : 1ω9c, C16 : 0 dimethyl acetal, C18 : 0 and C18 : 2ω6,9c. No respiratory quinones were detected. In contrast to F. plautii JCM 32125 T , strain 3BBH22 T did not degrade quercetin, one of the flavonoids. P. capillosus JCM 32126 T also did not. Strain 3BBH22 T was differentiated from P. capillosus JCM 32126 T by its inability to hydrolyse aesculin. The G+C content of the genomic DNA was 61.2±1.0 mol%. On the basis of these data and the phylogenetic tree based on 89 proteins, strain 3BBH22 T represents a novel species in a novel genus of the family Ruminococcaceae, for which the name Lawsonibacter asaccharolyticus gen. nov., sp. nov. is proposed. The type strain of L. asaccharolyticus is 3BBH22 T (=JCM 32166 T =DSM 106493 T ).

  11. Complete genome sequence of Paenibacillus sp. strain JDR-2

    Treesearch

    Virginia Chow; Guang Nong; Franz J. St. John; John D. Rice; Ellen Dickstein; Olga Chertkov; David Bruce; Chris Detter; Thomas Brettin; James Han; Tanja Woyke; Sam Pitluck; Matt Nolan; Amrita Pati; Joel Martin; Alex Copeland; Miriam L. Land; Lynne Goodwin; Jeffrey B. Jones; Lonnie O. Ingram; Keelnathan T. Shanmugam; James F. Preston

    2012-01-01

    Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by...

  12. Laboratory studies on biomachining of copper using Staphylococcus sp.

    PubMed

    Shikata, Shinji; Sreekumari, Kurissery R; Nandakumar, Kanavillil; Ozawa, Mazayoshi; Kikuchi, Yasushi

    2009-01-01

    The possibility of using bacteria to drill metallic surfaces has been demonstrated using Staphylococcus sp., a facultative anaerobic bacterium, isolated from corroded copper piping. The experiment involved exposure of copper coupons (25 mm x 15 mm x 3 mm) to a culture of Staphylococcus sp. for a maximum period of 7 days. Coupons exposed to sterile bacterial growth medium were used as controls. Exposed coupons were removed intermittently and observed microscopically for the extent of drilling. The total pit area and volume on these coupons were determined using image analysis. The results showed that both the biomachined area and volume increased with the duration of coupon exposure. In the drilling experiment, a copper thin film 2 microm thick was perforated by this bacterium within a period of 7 days. In conclusion, the results suggested that bacteria can be used as a tool for machining metallic surfaces.

  13. [Isolation and characterization of Thermopirellula anaerolimosa gen. nov., sp. nov., an obligate anaerobic hydrogen-producing bacterium of the phylum Planctomycetes].

    PubMed

    Liu, Dongying; Liu, Yi; Men, Xuehui; Guo, Qunqun; Guo, Rongbo; Qiu, Yanling

    2012-08-04

    To cultivate various yet-to-be cultured heterotrophs from anaerobic granule sludge, we used a selective culture medium with low concentrations of substrates supplemented a variety of antibiotics. An obligate anaerobic, thermophilic, hydrogen-producing bacterium, strain VM20-7(T), was isolated from an upflow anaerobic sludge blanket (UASB) reactor treating high-strength organic wastewater from isomerized sugar production processes. Cells of strain VM20-7(T) are non-motile, spherical, pear or teardrop shaped, occurring singly(o)r as aggregates (0.7 - 2.0 microm x 0.7 - 2.0 microm). Spore formation was not observed. Growth temperature ranges from 35 - 50 degrees C (optimum 45 degrees C), pH ranges from 6.0 - 8.3 (optimum 7.0 - 7.5) , NaCl tolerant concentration ranges from 0% - 0.5% (w/v, optimum 0% ). Nitrate, sulfate, thiosulfate, sulfite, elemental sulfur and Fe (III)-NTA were not used as terminal electron acceptors. Strain VM20-7(T) utilizes a wide range of carbohydrates, including glucose, maltose, ribose, xylose, sucrose, galactose, mannose, raffinose, pectin, yeast extract and xylan. Acetate and H2 are the main end products of glucose fermentation. The G + C content of the genomic DNA was 60.9 mol%. 16S rRNA gene sequence analysis revealed that it is related to the Pirellula-Rhodopirellula-Blastopirellula (PRB) clade within the order Planctomycetales (82.7 - 84.3% similarity with 16S rRNA genes of other known related species). The first obligate anaerobic bacterium within the phylum Planctomycetes was isolated with low concentration of carbohydrates and antibiotics. On the basis of the physiological and phylogenetic data, the name Thermopirellula anaerolimosa gen. nov. , sp. nov. is proposed for strain VM20-7(T) (= CGMCC 1.5169(T) = JCM 17478(T) = DSM 24165(T)).

  14. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  15. Methylobacterium pseudosasae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the bamboo phyllosphere.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj

    2014-02-01

    A pink-pigmented, Gram negative, aerobic, facultatively methylotrophic bacterium, strain BL44(T), was isolated from bamboo leaves and identified as a member of the genus Methylobacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed similarity values of 98.7-97.0 % with closely related type strains and showed highest similarity to Methylobacterium zatmanii DSM 5688(T) (98.7 %) and Methylobacterium thiocyanatum DSM 11490(T) (98.7 %). Methylotrophic metabolism in this strain was confirmed by PCR amplification and sequencing of the mxaF gene coding for the α-subunit of methanol dehydrogenase. Strain BL44(T) produced three known quorum sensing signal molecules with similar retention time to C8, C10 and C12-HSLs when characterized by GC-MS. The fatty acid profiles contained major amounts of C18:1 ω7c, iso-3OH C17:0 and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH), which supported the grouping of the isolate in the genus Methylobacterium. The DNA G+C content was 66.9 mol%. DNA relatedness of the strain BL44(T) to its most closely related strains ranged from 12-43.3 %. On the basis of the phenotypic, phylogenetic and DNA-DNA hybridization data, strain BL44(T) is assigned to a novel species of the genus Methylobacterium for which the name Methylobacterium pseudosasae sp. nov. is proposed (type strain BL44(T) = NBRC 105205(T) = ICMP 17622(T)).

  16. Lytic and Chemotactic Features of the Plaque-Forming Bacterium KD531 on Phaeodactylum tricornutum

    PubMed Central

    Chen, Zhangran; Zheng, Wei; Yang, Luxi; Boughner, Lisa A.; Tian, Yun; Zheng, Tianling; Xu, Hong

    2017-01-01

    Phaeodactylum tricornutum is a dominant bloom forming species and potential biofuel feedstock. To control P. tricornutum bloom or to release lipids from P. tricornutum, we previously screened and identified the lytic bacterium Labrenzia sp. KD531 toward P. tricornutum. In the present study, we evaluated the lytic activity of Labrenzia sp. KD531 on microalgae and investigated its lytic mechanism. The results indicated that the lytic activity of KD531 was temperature- and pH-dependent, but light-independent. In addition to P. tricornutum, KD531 also showed lytic activity against other algal species, especially green algae. A quantitative analysis of algal cellular protein, carbohydrate and lipid content together with measurements of dry weight after exposure to bacteria-infected algal lysate indicated that the bacterium KD531 influenced the algal biomass by disrupting the algal cells. Both chemotactic analysis and microscopic observations of subsamples from different regions of formed plaques showed that KD531 could move toward and then directly contact algal cells. Direct contact between P. tricornutum and KD531 cells was essential for the lytic process. PMID:29312256

  17. Microbial culturomics to isolate halophilic bacteria from table salt: genome sequence and description of the moderately halophilic bacterium Bacillus salis sp. nov.

    PubMed

    Seck, E H; Diop, A; Armstrong, N; Delerce, J; Fournier, P-E; Raoult, D; Khelaifia, S

    2018-05-01

    Bacillus salis strain ES3 T (= CSUR P1478 = DSM 100598) is the type strain of B. salis sp. nov. It is an aerobic, Gram-positive, moderately halophilic, motile and spore-forming bacterium. It was isolated from commercial table salt as part of a broad culturomics study aiming to maximize the culture conditions for the in-depth exploration of halophilic bacteria in salty food. Here we describe the phenotypic characteristics of this isolate, its complete genome sequence and annotation, together with a comparison with closely related bacteria. Phylogenetic analysis based on 16S rRNA gene sequences indicated 97.5% similarity with Bacillus aquimaris, the closest species. The 8 329 771 bp long genome (one chromosome, no plasmids) exhibits a G+C content of 39.19%. It is composed of 18 scaffolds with 29 contigs. Of the 8303 predicted genes, 8109 were protein-coding genes and 194 were RNAs. A total of 5778 genes (71.25%) were assigned a putative function.

  18. Molecular cloning, overexpression, and enzymatic characterization of glycosyl hydrolase family 16 β-Agarase from marine bacterium Saccharophagus sp. AG21 in Escherichia coli.

    PubMed

    Lee, Youngdeuk; Oh, Chulhong; De Zoysa, Mahanama; Kim, Hyowon; Wickramaarachchi, Wickramaarachchige Don Niroshana; Whang, Ilson; Kang, Do-Hyung; Lee, Jehee

    2013-01-01

    An agar-degrading bacterium was isolated from red seaweed (Gelidium amansii) on a natural seawater agar plate, and identified as Saccharophagus sp. AG21. The β-agarase gene from Saccharophagus sp. AG21 (agy1) was screened by long and accurate (LA)-PCR. The predicted sequence has a 1,908 bp open reading frame encoding 636 amino acids (aa), and includes a glycosyl hydrolase family 16 (GH16) β-agarase module and two carbohydrate binding modules of family 6 (CBM6). The deduced aa sequence showed 93.7% and 84.9% similarity to β-agarase of Saccharophagus degradans and Microbulbifer agarilyticus, respectively. The mature agy1 was cloned and overexpressed as a His-tagged recombinant β-agarase (rAgy1) in Escherichia coli, and had a predicted molecular mass of 69 kDa and an isoelectric point of 4.5. rAgy1 showed optimum activity at 55oC and pH 7.6, and had a specific activity of 85 U/mg. The rAgy1 activity was enhanced by FeSO4 (40%), KCl (34%), and NaCl (34%), compared with the control. The newly identified rAgy1 is a β-agarase, which acts to degrade agarose to neoagarotetraose (NA4) and neoagarohexaose (NA6) and may be useful for applications in the cosmetics, food, bioethanol, and reagent industries.

  19. Lysinibacillus cresolivorans sp. nov., an m-cresol-degrading bacterium isolated from coking wastewater treatment aerobic sludge.

    PubMed

    Ren, Yuan; Chen, Shao-Yi; Yao, Hai-Yan; Deng, Liu-Jie

    2015-11-01

    A Gram-stain-positive, rod-shaped, facultatively anaerobic, endospore-forming bacterium (designated strain SC03T) was isolated from the aerobic treatment sludge of a coking plant (Shaoguan City, China). The optimal pH and temperature for growth were pH 7.0 and 35 °C. On the basis of 16S rRNA gene sequence analysis, strain SC03T was related to the genus Lysinibacillus and the similarity between strain SC03T and the most closely related type strain, Lysinibacillus macroides LMG 18474T, was 94.4 %. The genomic G+C content of the DNA of strain SC03T was 41.2 mol%. Chemotaxonomic data supported the affiliation of strain SC03T to the genus Lysinibacillus. These properties include MK-7 as the predominant menaquinone; iso-C15 : 0 and iso-C16 : 0 as major fatty acids; A4α (l-Lys-d-Asp) as the cell-wall peptidoglycan type; and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine plus three unknown phospholipids as polar lipids. The phenotypic, phylogenetic and chemotaxonomic characters enable the differentiation of strain SC03T from recognized Lysinibacillus species. Thus, strain SC03T represents a novel species of the genus Lysinibacillus, for which the name Lysinibacillus cresolivorans sp. nov. is proposed. The type strain is SC03T ( = NRRL B-59352T = CCTCC M 208210T).

  20. Desulfonatronum paiuteum sp. nov.: A New Alkaliphilic, Sulfate-Reducing Bacterium, Isolated from Soda Mono Lake, California

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena; Hoover, Richard B.; Marsic, Damien; Whitman, William; Cleland, David; Krader, Paul; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel alkaliphilic, sulfate reducing bacterium strain MLF1(sup T) was isolated from sediments of soda Mono Lake, California. Gram-negative vibrion cells, motile by singular polar flagellum, with sizes 0.5 - 0.6x 1.2 - 2.0 micron occurred singly, in pairs or short spirilla. Growth was observed over the temperature range of +15 C to +48 C (optimum +37 C), NaCl concentration range is greater than 1 - 7 %, wt/vol (optimum 3 %, wt/vol) and pH range 7.8 - 10.5 (optimum pH 9.0 - 9.4). The novel isolate is strictly alkaliphilic, requires high carbonate concentration in medium, obligately anaerobic and catalase negative. As electron donors strain MLF1(sup T) uses hydrogen, formate, ethanol. Sulfate, sulfite, and thiosulfate (but not sulfur or nitrate) can be used as electron acceptors. The sole end product of growth on formate was H2S. Strain MLF1(sup T) is resistant to kanamycin and gentamycin, but sensitive to chloramphenicol and tetracycline. Na2MoO4 inhibits growth of strain MLF1(sup T). The sum of G+C in DNA is 63.1 mol% (by HPLC method). On the basis of physiological and molecular properties, the isolate was considered as novel species of genus Desulfonatronum; and the name Desulfonatronum paiuteum sp. nov., is proposed (type strain MLF1(sup T) = ATCC BAA-395(sup T) = DSMZ 14708(sup T).

  1. Identification and differentiation of species and strains of Arthrobacter and Microbacterium barkeri isolated from smear cheeses with Amplified Ribosmal DNA Restriction Analysis (ARDRA) and pulsed field gel electrophoresis (PFGE).

    PubMed

    Hoppe-Seyler, T S; Jaeger, B; Bockelmann, W; Noordman, W H; Geis, A; Heller, K J

    2003-09-01

    ARDRA (Amplified Ribosomal-DNA Restriction Analysis) was used to differentiate among species and genera of Arthrobacter and Microbacteria. Species-specific restriction patterns of PCR-products were obtained with NciI for Arthrobacter citreus (DSM 20133T), A. sulfureus (DSM 20167T), A. globiformis (DSM 20124T) and A. nicotianae strains (DSM 20123T, MGE 10D, CA13, CA14, isolate 95293, 95294, and 95299), A. rhombi CCUG 38813T, and CCUG 38812, and Microbacterium barkeri strains (DSM 30123T, MGE 10D, CA12 and CA15, isolate 95292, and isolate 95207). All yellow pigmented coryneforme bacteria isolated from the smear of surface ripened cheeses were identified as either A. nicotianae or M. barkeri strains. Using pulsed field gel electrophoresis (PFGE) strain specific restriction pattern for all Arthrobacter species and Microbacteria tested were obtained with restriction enzymes AscI and SpeI.

  2. Isolation and characterization of two cryptic plasmids in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11.

    PubMed

    Yamagata, A; Kato, J; Hirota, R; Kuroda, A; Ikeda, T; Takiguchi, N; Ohtake, H

    1999-06-01

    Two plasmids were discovered in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11, which was isolated from activated sludge. The plasmids, designated pAYS and pAYL, were relatively small, being approximately 1.9 kb long. They were cryptic plasmids, having no detectable plasmid-linked antibiotic resistance or heavy metal resistance markers. The complete nucleotide sequences of pAYS and pAYL were determined, and their physical maps were constructed. There existed two major open reading frames, ORF1 in pAYS and ORF2 in pAYL, each of which was more than 500 bp long. The predicted product of ORF2 was 28% identical to part of the replication protein of a Bacillus plasmid, pBAA1. However, no significant similarity to any known protein sequences was detected with the predicted product of ORF1. pAYS and pAYL had a highly homologous region, designated HHR, of 262 bp. The overall identity was 98% between the two nucleotide sequences. Interestingly, HHR-homologous sequences were also detected in the genomes of ENI-11 and the plasmidless strain Nitrosomonas europaea IFO14298. Deletion analysis of pAYS and pAYL indicated that HHR, together with either ORF1 or ORF2, was essential for plasmid maintenance in ENI-11. To our knowledge, pAYS and pAYL are the first plasmids found in the ammonia-oxidizing autotrophic bacteria.

  3. Cryobacterium aureum sp. nov., a psychrophilic bacterium isolated from glacier ice collected from the ice tongue surface.

    PubMed

    Liu, Qing; Xin, Yu-Hua; Chen, Xiu-Ling; Liu, Hong-Can; Zhou, Yu-Guang; Chen, Wen-Xin

    2018-04-01

    A psychrophilic, Gram-stain-positive, rod-shaped bacterium, designated strain Hh31 T , was isolated from Xinjiang No. 1 Glacier in China. Strain Hh31 T was catalase-positive, oxidase-negative and able to grow at between 0-18 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Hh31 T belonged to the genus Cryobacterium and was most closely related to the type strains of Cryobacterium levicorallinum, Cryobacterium luteum and Cryobacterium flavum. DNA-DNA hybridization, calculation of average nucleotide identity and digital DNA-DNA hybridization revealed that strain Hh31 T was distinct from its closest phylogenetic neighbours. The major cellular fatty acids of strain Hh31 T were anteiso-C15 : 0, anteiso-C15 : 1, iso-C15:0, iso-C16 : 0 and anteiso-C17 : 0. The predominant menaquinones of strain Hh31 T were MK-9 and MK-10. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid, one unidentified glycolipid and another unidentified lipid. Physiological tests such as carbon source utilization, showed phenotypic differentiation of strain Hh31 T from the closest related phylogenetic neighbours. Based on a polyphasic approach, a novel species, Cryobacterium aureum sp. nov., is proposed, with Hh31 T (=NBRC 107882 T =CGMCC 1.11213 T ) as the type strain.

  4. Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort.

    PubMed

    Schauer, S; Kämpfer, P; Wellner, S; Spröer, C; Kutschera, U

    2011-04-01

    A pink-pigmented, facultatively methylotrophic bacterium, designated strain JT1(T), was isolated from a thallus of the liverwort Marchantia polymorpha L. and was analysed by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis placed the strain in a clade with Methylobacterium adhaesivum AR27(T), Methylobacterium fujisawaense DSM 5686(T), Methylobacterium radiotolerans JCM 2831(T) and Methylobacterium jeotgali S2R03-9(T), with which it showed sequence similarities of 97.8, 97.7, 97.2 and 97.4 %, respectively. However, levels of DNA-DNA relatedness between strain JT1(T) and these and the type strains of other closely related species were lower than 70 %. Cells of JT1(T) stained Gram-negative and were motile, rod-shaped and characterized by numerous fimbriae-like appendages on the outer surface of their wall (density up to 200 µm(-2)). Major fatty acids were C(18 : 1)ω7c and C(16 : 0). Based on the morphological, physiological and biochemical data presented, strain JT1(T) is considered to represent a novel species of the genus Methylobacterium, for which the name Methylobacterium marchantiae sp. nov. is proposed. The type strain is JT1(T) ( = DSM 21328(T)  = CCUG 56108(T)).

  5. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil.

    PubMed

    Liu, Xu-Yun; Li, Chun-Xiu; Luo, Xiao-Jing; Lai, Qi-Liang; Xu, Jian-He

    2014-09-01

    A methyl parathion (MP) degrading bacterial strain, designated MP-1(T), was isolated from a waste land where pesticides were formerly manufactured in Jiangsu province, China. Polyphasic taxonomic studies showed that MP-1(T) is a Gram-stain-negative, non-spore-forming, rod-shaped and motile bacterium. The bacterium could grow at salinities of 0-1 % (w/v) and temperatures of 15-40 °C. Strain MP-1(T) could reduce nitrate to nitrite, utilize d-glucose and l-arabinose, but not produce indole, or hydrolyse gelatin. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that MP-1(T) belongs to the genus Burkholderia, showing highest sequence similarity to Burkholderia grimmiae DSM 25160(T) (98.5 %), and similar strains including Burkholderia zhejiangensis OP-1(T) (98.2 %), Burkholderia choica LMG 22940(T) (97.5 %), Burkholderia glathei DSM 50014(T) (97.4 %), Burkholderia terrestris LMG 22937(T) (97.2 %) and Burkholderia telluris LMG 22936(T) (97.0 %). In addition, the gyrB and recA gene segments of strain MP-1(T) exhibited less than 89.0 % and 95.1 % similarities with the most highly-related type strains indicated above. The G+C content of strain MP-1(T) was 62.6 mol%. The major isoprenoid quinone was ubiquinone Q-8. The predominant polar lipids comprised phosphatidyl ethanolamine, phosphatidyl glycerol, aminolipid and phospholipid. The principal fatty acids in strain MP-1(T) were C18 : 1ω7c/C18 : 1ω6c (23.3 %), C16 : 0 (16.8 %), cyclo-C17 : 0 (15.0 %), C16 : 1ω7c/C16 : 1ω6 (8.5 %), cyclo-C19 : 0ω8c (8.1 %), C16 : 1 iso I/C14 : 0 3-OH (5.7 %), C16 : 0 3-OH (5.6 %) and C16 : 02-OH (5.1 %). The DNA-DNA relatedness values between strain MP-1(T) and the three type strains (B. grimmiae DSM 25160(T), B. zhejiangensis OP-1(T) and B. glathei DSM 50014(T)) ranged from 24.6 % to 37.4 %. In accordance with phenotypic and genotypic characteristics, strain MP-1(T) represents a novel

  6. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere.

    PubMed

    Liu, Jinguang; Wang, Xingxiang; Zhang, Taolin; Li, Xiaogang

    2017-12-01

    Phenolic acids can enhance the mycotoxin production and activities of hydrolytic enzymes related to pathogenicity of soilborne fungus Fusarium oxysporum. However, characteristics of phenolic acid-degrading bacteria have not been investigated. The objectives of this study were to isolate and characterize bacteria capable of growth on benzoic and vanillic acids as the sole carbon source in the peanut rhizosphere. Twenty-four bacteria were isolated, and the identification based on 16S rRNA gene sequencing revealed that pre-exposure to phenolic acids before sowing shifted the dominant culturable bacterial degraders from Arthrobacter to Burkholderia stabilis-like isolates. Both Arthrobacter and B. stabilis-like isolates catalysed the aromatic ring cleavage via the ortho pathway, and Arthrobacter isolates did not exhibit higher C12O enzyme activity than B. stabilis-like isolates. The culture filtrate of Fusarium sp. ACCC36194 caused a strong inhibition of Arthrobacter growth but not B. stabilis-like isolates. Additionally, Arthrobacter isolates responded differently to the culture filtrates of B. stabilis-like isolates. The Arthrobacter isolates produced higher indole acetic acid (IAA) levels than B. stabilis-like isolates, but B. stabilis-like isolates were also able to produce siderophores, solubilize mineral phosphate, and exert an antagonistic activity against peanut root rot pathogen Fusarium sp. ACCC36194. Results indicate that phenolic acids can shift their dominant culturable bacterial degraders from Arthrobacter to Burkholderia species in the peanut rhizosphere, and microbial interactions might lead to the reduction of culturable Arthrobacter. Furthermore, increasing bacterial populations metabolizing phenolic acids in monoculture fields might be a control strategy for soilborne diseases caused by Fusarium spp. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Enzymes involved in the anaerobic degradation of ortho-phthalate by the nitrate-reducing bacterium Azoarcus sp. strain PA01.

    PubMed

    Junghare, Madan; Spiteller, Dieter; Schink, Bernhard

    2016-09-01

    The pathway of anaerobic degradation of o-phthalate was studied in the nitrate-reducing bacterium Azoarcus sp. strain PA01. Differential two-dimensional protein gel profiling allowed the identification of specifically induced proteins in o-phthalate-grown compared to benzoate-grown cells. The genes encoding o-phthalate-induced proteins were found in a 9.9 kb gene cluster in the genome of Azoarcus sp. strain PA01. The o-phthalate-induced gene cluster codes for proteins homologous to a dicarboxylic acid transporter, putative CoA-transferases and a UbiD-like decarboxylase that were assigned to be specifically involved in the initial steps of anaerobic o-phthalate degradation. We propose that o-phthalate is first activated to o-phthalyl-CoA by a putative succinyl-CoA-dependent succinyl-CoA:o-phthalate CoA-transferase, and o-phthalyl-CoA is subsequently decarboxylated to benzoyl-CoA by a putative o-phthalyl-CoA decarboxylase. Results from in vitro enzyme assays with cell-free extracts of o-phthalate-grown cells demonstrated the formation of o-phthalyl-CoA from o-phthalate and succinyl-CoA as CoA donor, and its subsequent decarboxylation to benzoyl-CoA. The putative succinyl-CoA:o-phthalate CoA-transferase showed high substrate specificity for o-phthalate and did not accept isophthalate, terephthalate or 3-fluoro-o-phthalate whereas the putative o-phthalyl-CoA decarboxylase converted fluoro-o-phthalyl-CoA to fluoro-benzoyl-CoA. No decarboxylase activity was observed with isophthalyl-CoA or terephthalyl-CoA. Both enzyme activities were oxygen-insensitive and inducible only after growth with o-phthalate. Further degradation of benzoyl-CoA proceeds analogous to the well-established anaerobic benzoyl-CoA degradation pathway of nitrate-reducing bacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Haloimpatiens lingqiaonensis gen. nov., sp. nov., an anaerobic bacterium isolated from paper-mill wastewater.

    PubMed

    Wu, Dildar; Zhang, Nai-Fang; Sun, Cong; Zhang, Wen-Wu; Han, Shuai-Bo; Pan, Jie; Wu, Min; Th, Dilbar; Zhu, Xu-Fen

    2016-02-01

    An anaerobic bacterium, strain ZC-CMC3 T , was isolated from a wastewater sample in Zhejiang, China. Cells were Gram-stain-positive, peritrichous, non-spore-forming, rod-shaped (0.6-1.2 × 2.9-5.1 μm) and catalase- and oxidase-negative. Strain ZC-CMC3 T was able to grow at 25-48 °C (optimum 43 °C) and pH 5.5-8.0 (optimum pH 7.0). The NaCl concentration range for growth was 0-3 % (w/v) (optimum 0 %). The major polar lipids of the isolate were diphosphatidylglycerol, phosphatidylglycerol, several phospholipids and glycolipids. Main fermentation products from PYG medium were formate, acetate, lactate and ethanol. Substrates which could be utilized were peptone, tryptone, yeast extract and beef extract. No respiratory quinone was detected. The main fatty acids were C 14 : 0 , C 16 : 0 , C 16 : 1 cis 7 and C 16 : 1 cis 9. The DNA G+C content was 30.0 mol%. 16S rRNA gene sequence analysis revealed that the isolate belonged to the family Clostridiaceae . Phylogenetically, the most closely related species were Oceanirhabdus sediminicola NH-JN4 T (92.8 % 16S rRNA gene sequence similarity) and Clostridium tepidiprofundi SG 508 T (92.6 %). On the basis of phylogenetic, chemotaxonomic and phenotypic characteristics, strain ZC-CMC3 T represents a novel species of a new genus in the family Clostridiaceae, for which the name Haloimpatiens lingqiaonensis gen. nov., sp. nov. is proposed. The type strain of the type species is ZC-CMC3 T ( = KCTC 15321 T  = JCM 19210 T  = CCTCC AB 2013104 T ).

  9. Aestuariispira insulae gen. nov., sp. nov., a lipolytic bacterium isolated from a tidal flat.

    PubMed

    Park, Sooyeon; Park, Ji-Min; Kang, Chul-Hyung; Yoon, Jung-Hoon

    2014-06-01

    A Gram-stain-negative, non-motile, aerobic, curved-to-spiral-rod-shaped bacterium, designated AH-MY2(T), was isolated from a tidal flat on Aphae island in the sea to the south-west of South Korea, and its taxonomic position was investigated using a polyphasic taxonomic approach. Strain AH-MY2(T) grew optimally at 30 °C, at pH 7.0-8.0 and in the presence of 2.0% (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain AH-MY2(T) clustered with the type strain of Terasakiella pusilla and that this cluster joined the clade comprising the type strains of species of the genus Thalassospira. Strain AH-MY2(T) exhibited 16S rRNA gene sequence similarity values of 90.6% to the type strain of Terasakiella pusilla and of less than 91.0% to the type strains of other species with validly published names. Strain AH-MY2(T) contained Q-10 as the predominant ubiquinone and C(18 : 1)ω7c as the major fatty acid. The major polar lipids detected in strain AH-MY2(T) were phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminolipids and one unidentified glycolipid. The DNA G+C content of strain AH-MY2(T) was 56.0 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain AH-MY2(T) represented a novel genus and species within the family Rhodospirillaceae of the class Alphaproteobacteria, for which the name Aestuariispira insulae gen. nov., sp. nov. is proposed. The type strain of Aestuariispira insulae is AH-MY2(T) ( = KCTC 32577(T) = CECT 8488(T)). © 2014 IUMS.

  10. Thioclava electrotropha sp. nov., a versatile electrode and sulfur-oxidizing bacterium from marine sediments.

    PubMed

    Chang, Rachel; Bird, Lina; Barr, Casey; Osburn, Magdalena; Wilbanks, Elizabeth; Nealson, Kenneth; Rowe, Annette

    2018-05-01

    A taxonomic and physiologic characterization was carried out on Thioclava strain ElOx9 T , which was isolated from a bacterial consortium enriched on electrodes poised at electron donating potentials. The isolate is Gram-negative, catalase-positive and oxidase-positive; the cells are motile short rods. The bacterium is facultatively anaerobic with the ability to utilize nitrate as an electron acceptor. Autotrophic growth with H2 and S 0 (oxidized to sulfate) was observed. The isolate also grows heterotrophically with organic acids and sugars. Growth was observed at salinities from 0 to 10% NaCl and at temperatures from 15 to 41 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belongs in the genus Thioclava; it had the highest sequence similarity of 98.8 % to Thioclava atlantica 13D2W-2 T , followed by Thioclava dalianensis DLFJ1-1 T with 98.5 % similarity, Thioclava pacifica TL 2 T with 97.7 % similarity, and then Thioclava indica DT23-4 T with 96.9 %. All other sequence similarities were below 97 % to characterized strains. The digital DNA-DNA hybridization estimated when compared to T. atlantica 13D2W-2 T , T. dalianensis DLFJ1-1 T , T. pacifica TL 2 T and T. indica DT23-4 T were 15.8±2.1, 16.7+2.1, 14.3±1.9 and 18.3±2.1 %. The corresponding average nucleotide identity values between these strains were determined to be 65.1, 67.8, 68.4 and 64.4 %, respectively. The G+C content of the chromosomal DNA is 63.4 mol%. Based on these results, a novel species Thioclava electrotropha sp. nov. is proposed, with the type strain ElOx9 T (=DSM 103712 T =ATCC TSD-100 T ).

  11. Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell.

    PubMed

    Yang, Gui-Qin; Zhang, Jun; Kwon, Soon-Wo; Zhou, Shun-Gui; Han, Lu-Chao; Chen, Ming; Ma, Chen; Zhuang, Li

    2013-03-01

    A Gram-negative, rod-shaped, non-spore-forming bacterium, designated SgZ-1(T), was isolated from the anode biofilm of a microbial fuel cell. The strain had the ability to grow under anaerobic condition via the oxidation of various organic compounds coupled to the reduction of anthraquione-2,6-disulfonate (AQDS) to anthrahydroquinone-2,6-disulfonate (AHQDS). Growth occurred in TSB in the presence of 0-5.5 % (w/v) NaCl (optimum 0-1 %), at 10-45 °C (optimum 25-37 °C) and at pH 6.0-10.0 (optimum 8.0-8.5). Based on 16S rRNA gene sequence similarity, strain SgZ-1(T) belonged to the genus Thauera. The highest level of 16S rRNA gene sequences similarity (96.7 %) was found to be with Thauera aminoaromatica S2(T) and Thauera selenatis AX(T), and lower values were obtained when compared with other recognized Thauera species. Chemotaxonomic analysis revealed that strain SgZ-1(T) contained Q-8 as the predominant quinone, and putrescine and 2-hydroxyputrescine as the major polyamines. The major cellular fatty acids (>5 %) were C16 : 1ω6c and/or C16 : 1ω7c (44.6 %), C16 : 0 (18.8 %), and C18 : 1ω6c and/or C18 : 1ω7c (12.7 %). Based on its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-1(T) ( = KACC 16524(T) = CCTCC M 2011497(T)) was designated the type strain of a novel species of the genus Thauera, for which the name Thauera humireducens sp. nov. was proposed.

  12. Natranaerobaculum magadiense gen. nov., sp. nov., an anaerobic, alkalithermophilic bacterium from soda lake sediment.

    PubMed

    Zavarzina, Daria G; Zhilina, Tatyana N; Kuznetsov, Boris B; Kolganova, Tatyana V; Osipov, Georgy A; Kotelev, Mikhail S; Zavarzin, Georgy A

    2013-12-01

    An obligately alkaliphilic, anaerobic, thermo- and halotolerant, spore-forming bacterium was isolated from sediments of soda lake Magadi (Kenya) and designated strain Z-1001(T). Cells of strain Z-1001(T) were straight, Gram-positive rods, slowly motile. Strain Z-1001(T) was found to be an obligate anaerobe. It grew within a pH range from 7.5 to 10.7 with an optimum at 9.25-9.5 (at 40 °C), a temperature range from 20 to 57 °C with an optimum at 45-50 °C, and a NaCl concentration range from 0 to 1.55 M with an optimum at 1.2-1.4 M. Peptides, such as meat and yeast extracts, peptone and tryptone, were fermented by Z-1001(T). Carbohydrates did not support growth. With yeast extract as an electron donor, strain Z-1001(T) reduced S(2)O(3)(2-), NO(-)(3), AsO(3-)(4), Fe(III) citrate and anthraquinone-2,6-disulfonate (AQDS) as electron acceptors. The isolate was able to grow oligotrophically with a very small amount of yeast extract: 0.03 g l(-1). The main fatty acids were C16 : 0, C16 : 1ω7c, C18 : 0 and C18 : 1ω9. The DNA G+C content of the isolate was 35.6 mol%. 16S rRNA gene sequence analysis showed that strain Z-1001(T) is a member of family Natranaerobiaceae, clustering with the type strain of Natranaerobius thermophilus (95.8-96.0 % sequence similarity). On the basis of physiological and phylogenetic data it is proposed that strain Z-1001(T) ( = DSM 24923(T) = VKM B-2666(T)) represents a novel genus and species, Natranaerobaculum magadiense gen. nov., sp. nov.

  13. Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth.

    PubMed

    Pikuta, Elena V; Hoover, Richard B; Bej, Asim K; Marsic, Damien; Whitman, William B; Cleland, David; Krader, Paul

    2003-09-01

    A novel alkaliphilic, sulfate-reducing bacterium, strain MLF1(T), was isolated from sediments of soda Mono Lake, California. Gram-negative vibrio-shaped cells were observed, which were 0.6-0.7x1.2-2.7 micro m in size, motile by a single polar flagellum and occurred singly, in pairs or as short spirilla. Growth was observed at 15-48 degrees C (optimum, 37 degrees C), >1-7 % NaCl, w/v (optimum, 3 %) and pH 8.0-10.0 (optimum, 9.5). The novel isolate is strictly alkaliphilic, requires a high concentration of carbonate in the growth medium and is obligately anaerobic and catalase-negative. As electron donors, strain MLF1(T) uses hydrogen, formate and ethanol. Sulfate, sulfite and thiosulfate (but not sulfur or nitrate) can be used as electron acceptors. The novel isolate is a lithoheterotroph and a facultative lithoautotroph that is able to grow on hydrogen without an organic source of carbon. Strain MLF1(T) is resistant to kanamycin and gentamicin, but sensitive to chloramphenicol and tetracycline. The DNA G+C content is 63.0 mol% (HPLC). DNA-DNA hybridization with the most closely related species, Desulfonatronum lacustre Z-7951(T), exhibited 51 % homology. Also, the genome size (1.6x10(9) Da) and T(m) value of the genomic DNA (71+/-2 degrees C) for strain MLF1(T) were significantly different from the genome size (2.1x10(9) Da) and T(m) value (63+/-2 degrees C) for Desulfonatronum lacustre Z-7951(T). On the basis of physiological and molecular properties, the isolate was considered to be a novel species of the genus Desulfonatronum, for which the name Desulfonatronum thiodismutans sp. nov. is proposed (the type strain is MLF1(T)=ATCC BAA-395(T)=DSM 14708(T)).

  14. Mobilisporobacter senegalensis gen. nov., sp. nov., an anaerobic bacterium isolated from tropical shea cake.

    PubMed

    Mbengue, Malick; Thioye, Abdoulaye; Labat, Marc; Casalot, Laurence; Joseph, Manon; Samb, Abdoulaye; Ben Ali Gam, Zouhaier

    2016-03-01

    A Gram-stain positive, endospore-forming, strictly anaerobic bacterium, designated strain Gal1 T , was isolated from shea cake, a waste material from the production of shea butter, originating from Saraya, Senegal. The cells were rod-shaped, slightly curved, and motile with peritrichous flagella. The strain was oxidase-negative and catalase-negative. Growth was observed at temperatures ranging from 15 to 45 °C (optimum 30 °C) and at pH 6.5-9.3 (optimum pH 7.8). The salinity range for growth was 0-3.5 % NaCl (optimum 1 %). Yeast extract was required for growth. Strain Gal1 T fermented various carbohydrates such as mannose, mannitol, arabinose, cellobiose, fructose, glucose, maltose, sucrose, trehalose and lactose and the major end-products were ethanol and acetate. The only major cellular fatty acid was C16 : 0 (19.6 %). The DNA base G+C content of strain Gal1 T was 33.8 mol%. Analysis of the 16S rRNA gene sequence of the isolate indicated that this strain was related to Mobilitalea sibirica DSM 26468 T with 94.27 % similarity, Clostridium populeti ATTC 35295 T with 93.94 % similarity, and Clostridium aminovalericum DSM 1283 T and Anaerosporobacter mobilis DSM 15930 T with 93.63 % similarity. On the basis of phenotypic characteristics, phylogenetic analysis and the results of biochemical and physiological tests, strain Gal1 T was clearly distinguished from closely related genera, and strain Gal1 T can be assigned to a novel species of a new genus for which the name Mobilisporobacter senegalensis gen. nov., sp. nov. is proposed. The type strain is Gal1 T ( = DSM 26537 T  = JCM 18753 T ).

  15. Desulfonatronum Thiodismutans sp. nov., a Novel Alkaliphilic, Sulfate-reducing Bacterium Capable of Lithoautotrophic Growth

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Cleland, David; Krader, Paul

    2003-01-01

    A novel alkaliphilic, sulfate-reducing bacterium, strain MLF1(sup T), was isolated from sediments of soda Mono Lake, California. Gram-negative vibrio-shaped cells were observed, which were 0.6-0.7 x 1.2-2.7 microns in size, motile by a single polar flagellum and occurred singly, in pairs or as short spirilla. Growth was observed at 15-48 C (optimum, 37 C), > 1-7 % NaCI, w/v (optimum, 3%) and pH 8.0-10.0 (optimum, 9.5). The novel isolate is strictly alkaliphilic, requires a high concentration of carbonate in the growth medium and is obligately anaerobic and catalase-negative. As electron donors, strain MLF1(sup T) uses hydrogen, formate and ethanol. Sulfate, sulfite and thiosulfate (but not sulfur or nitrate) can be used as electron acceptors. The novel isolate is a lithoheterotroph and a facultative lithoautotroph that is able to grow on hydrogen without an organic source of carbon. Strain MLF1(sup T) is resistant to kanamycin and gentamicin, but sensitive to chloramphenicol and tetracycline. The DNA G+C content is 63.0 mol% (HPLC). DNA-DNA hybridization with the most closely related species, Desulfonatronum lacustre Z-7951(sup T), exhibited 51 % homology. Also, the genome size (1.6 x 10(exp 9) Da) and T(sub m) value of the genomic DNA (71 +/- 2 C) for strain MLF1(sup T) were significantly different from the genome size (2.1 x 10(exp 9) Da) and T(sub m) value (63 +/- 2 C) for Desulfonatronum lacustre Z-7951(sup T). On the basis of physiological and molecular properties, the isolate was considered to be a novel species of the genus Desulfonatronum, for which the name Desulfonatronum thiodismutans sp. nov. is proposed (the type strain is MLF1(sup T) = ATCC BAA-395(sup T) = DSM 14708(sup T)).

  16. The construction of an engineered bacterium to remove cadmium from wastewater.

    PubMed

    Chang, S; Shu, H

    2014-01-01

    The removal of cadmium (Cd) from wastewater before it is released from factories is important for protecting human health. Although some researchers have developed engineered bacteria, the resistance of these engineered bacteria to Cd have not been improved. In this study, two key genes involved in glutathione synthesis (gshA and gshB), a serine acetyltransferase gene (cysE), a Thlaspi caerulescens phytochelatin synthase gene (TcPCS1), and a heavy metal ATPase gene (TcHMA3) were transformed into Escherichia coli BL21. The resistance of the engineered bacterium to Cd was significantly greater than that of the initial bacterium and the Cd accumulation in the engineered bacterium was much higher than in the initial bacterium. In addition, the Cd resistance of the bacteria harboring gshB, gshA, cysE, and TcPCS1 was higher than that of the bacteria harboring gshA, cysE, and TcPCS1. This finding demonstrated that gshB played an important role in glutathione synthesis and that the reaction catalyzed by glutathione synthase was the limiting step for producing phytochelatins. Furthermore, TcPCS1 had a greater specificity and a higher capacity for removing Cd than SpPCS1, and TcHMA3 not only played a role in T. caerulescens but also functioned in E. coli.

  17. Single Upconversion Nanoparticle-Bacterium Cotrapping for Single-Bacterium Labeling and Analysis.

    PubMed

    Xin, Hongbao; Li, Yuchao; Xu, Dekang; Zhang, Yueli; Chen, Chia-Hung; Li, Baojun

    2017-04-01

    Detecting and analyzing pathogenic bacteria in an effective and reliable manner is crucial for the diagnosis of acute bacterial infection and initial antibiotic therapy. However, the precise labeling and analysis of bacteria at the single-bacterium level are a technical challenge but very important to reveal important details about the heterogeneity of cells and responds to environment. This study demonstrates an optical strategy for single-bacterium labeling and analysis by the cotrapping of single upconversion nanoparticles (UCNPs) and bacteria together. A single UCNP with an average size of ≈120 nm is first optically trapped. Both ends of a single bacterium are then trapped and labeled with single UCNPs emitting green light. The labeled bacterium can be flexibly moved to designated locations for further analysis. Signals from bacteria of different sizes are detected in real time for single-bacterium analysis. This cotrapping method provides a new approach for single-pathogenic-bacterium labeling, detection, and real-time analysis at the single-particle and single-bacterium level. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fourier transform infrared spectroscopic characterisation of heavy metal-induced metabolic changes in the plant-associated soil bacterium Azospirillum brasilense Sp7

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Antonyuk, L. P.; Tugarova, A. V.; Tarantilis, P. A.; Polissiou, M. G.; Gardiner, P. H. E.

    2002-06-01

    Structural and compositional features of whole cells of the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp7 under standard and heavy metal-stressed conditions are analysed using Fourier transform infrared (FTIR) spectroscopy and compared with the FT-Raman spectroscopic data obtained previously [J. Mol. Struct. 563-564 (2001) 199]. The structural spectroscopic information is considered together with inductively coupled plasma-mass spectrometric (ICP-MS) analytical data on the content of the heavy metal cations (Co2+, Cu2+ and Zn2+) in the bacterial cells. As a bacterial response to heavy metal stress, all the three metals, being taken up by bacterial cells from the culture medium (0.2 mM) in significant amounts (ca. 0.12, 0.48 and 4.2 mg per gram of dry biomass for Co, Cu and Zn, respectively), are shown to induce essential metabolic changes in the bacterium revealed in the spectra, including the accumulation of polyester compounds in bacterial cells and their enhanced hydration affecting certain IR vibrational modes of functional groups involved.

  19. Roseomonas chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge.

    PubMed

    Chu, Cui-Wei; Chen, Qing; Wang, Cheng-Hong; Wang, Hong-Mei; Sun, Zhong-Guan; He, Qin; He, Jian; Gu, Jin-Gang

    2016-05-01

    A Gram-negative, aerobic, short rod-shaped, pink-pigmented, non-motile bacterium, designated BUT-13(T), was isolated from activated sludge of an herbicide-manufacturing wastewater treatment facility in Jiangsu province, China. Growth was observed at 0-5.5 % NaCl, pH 6.0-9.0 and 12-37 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain BUT-13(T) is a member of the genus Roseomonas, and shows high sequence similarities to R. pecuniae N75(T) (98.0 %) and R. rosea 173-96(T) (97.5 %), and lower (<97 %) sequence similarities to all other Roseomonas species. Chemotaxonomic analysis revealed that strain BUT-13(T) possesses Q-10 as the predominant ubiquinone; summed feature 8 (C18:1 w7c and/or C18:1 w6c; 38.8 %), C18:0 (16.6 %), C16:0 (15.2 %), summed feature 3 (C16:1 ω6c and/or C16:1 ω7; 7.9 %) and C18:1 w9c (4.7 %) as the major fatty acids. The polar lipids were found to consist of two aminolipids, a glycolipid, a phospholipid, a phosphoglycolipid, phosphatidylcholine, phosphatidylethanolamine and diphosphatidylglycerol. Strain BUT-13(T) showed low DNA-DNA relatedness with R. pecuniae N75(T) (45.2 %) and R. rosea 173-96(T) (51.2 %). The DNA G+C content was determined to be 67.6 mol%. Based on the phylogenetic analysis, DNA-DNA hybridization and chemotaxonomic analysis, as well as biochemical characteristics, strain BUT-13(T) can be clearly distinguished from all currently recognised Roseomonas species and should be classified as a novel species of the genus Roseomonas, for which the name Roseomonas chloroacetimidivorans sp. nov. is proposed. The type strain is BUT-13(T) (CCTCC AB 2015299(T) = JCM 31050(T)).

  20. Yersinia ruckeri sp. nov., the redmouth (RM) bacterium

    USGS Publications Warehouse

    Ewing, W.H.; Ross, A.J.; Brenner, Don J.; Fanning, G. R.

    1978-01-01

    Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine (G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteriaceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed. Strain 2396-61 (= ATCC 29473) is designated the type strain of the species.

  1. Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium-Alcaligenes sp. AQ05-001.

    PubMed

    Yusuf, Ibrahim; Ahmad, Siti Aqlima; Phang, Lai Yee; Syed, Mohd Arif; Shamaan, Nor Aripin; Abdul Khalil, Khalilah; Dahalan, Farrah Aini; Shukor, Mohd Yunus

    2016-12-01

    Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes. Copyright © 2016. Published by

  2. Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area.

    PubMed

    Sokolova, Tatyana G; Kostrikina, Nadezhda A; Chernyh, Nikolai A; Kolganova, Tatjana V; Tourova, Tatjana P; Bonch-Osmolovskaya, Elizaveta A

    2005-09-01

    A novel anaerobic, thermophilic, alkalitolerant bacterium, strain 2204(T), was isolated from a hot spring of the Baikal Lake region. The cells of strain 2204(T) were straight rods of variable length, Gram-positive with an S-layer, motile with one to two lateral flagella, and often formed aggregates of 3-15 cells. The isolate was shown to be an obligate anaerobe oxidizing CO and producing equimolar quantities of H(2) and CO(2) according to the equation CO+H(2)O-->CO(2)+H(2). No organic substrates were used as energy sources. For lithotrophic growth on CO, 0.2 g acetate or yeast extract l(-1) was required but did not support growth in the absence of CO. Growth was observed in the temperature range 37-68 degrees C, the optimum being 55 degrees C. The pH range for growth was 6.7-9.5, the optimum pH being 8.0. The generation time under optimal conditions was 1.3 h. The DNA G+C content was 45 mol%. Penicillin, erythromycin, streptomycin, rifampicin, vancomycin and tetracycline completely inhibited both growth and CO utilization by strain 2204(T). Thus, isolate 2204(T) was found to be the first known moderately thermophilic and alkalitolerant H(2)-producing anaerobic carboxydotroph. The novel bacterium fell within the cluster of the family Peptococcaceae within the low-G+C-content Gram-positive bacteria, where it formed a separate branch. On the basis of morphological, physiological and phylogenetic features, strain 2204(T) should be assigned to a novel genus and species, for which the name Thermincola carboxydiphila gen. nov., sp. nov. is proposed. The type strain is strain 2204(T) (=DSM 17129(T)=VKM B-2283(T)=JCM 13258(T)).

  3. Brockia lithotrophica gen. nov., sp. nov., an anaerobic thermophilic bacterium from a terrestrial hot spring.

    PubMed

    Perevalova, Anna A; Kublanov, Ilya V; Baslerov, R V; Zhang, Gengxin; Bonch-Osmolovskaya, Elizaveta A

    2013-02-01

    A novel thermophilic bacterium, strain Kam1851(T), was isolated from a terrestrial hot spring of the Uzon Caldera, Kamchatka Peninsula, Russia. Cells of strain Kam1851(T) were spore-forming rods with a gram-positive type of cell wall. Growth was observed between 46 and 78 °C, and pH 5.5-8.5. The optimal growth (doubling time, 6.0 h) was at 60-65 °C and pH 6.5. The isolate was an obligate anaerobe growing in pre-reduced medium only. It grew on mineral medium with molecular hydrogen or formate as electron donors, and elemental sulfur, thiosulfate or polysulfide as electron acceptors. The main cellular fatty acids were C(16 : 0) (34.2 %), iso-C(16 : 0) (18 %), C(18 : 0) (12.8 %) and iso-C(17 : 0) (11.1 %). The G+C content of the genomic DNA of strain Kam1851(T) was 63 mol%. 16S rRNA gene sequence analysis showed that strain Kam1851(T) belonged to the order Thermoanaerobacterales, but it was not closely related to representatives of any genera with validly published names. The most closely related strains, which had no more than 89.2 % sequence similarity, were members of the genera Ammonifex and Caldanaerobacter. On the basis of its phylogenetic position and novel phenotypic features, isolate Kam1851(T) is proposed to represent a novel species in a new genus, Brockia lithotrophica gen. nov., sp. nov.; the type strain of Brockia lithotrophica is Kam1851(T) ( = DSM 22653(T) = VKM B-2685(T)).

  4. Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice.

    PubMed

    Madhaiyan, Munusamy; Kim, Byung-Yong; Poonguzhali, Selvaraj; Kwon, Soon-Wo; Song, Myung-Hee; Ryu, Jeoung-Hyun; Go, Seung-Joo; Koo, Bon-Sung; Sa, Tong-Min

    2007-02-01

    A pink-pigmented, facultatively methylotrophic bacterium, strain CBMB20T, isolated from stem tissues of rice, was analysed by a polyphasic approach. Strain CBMB20T utilized 1-aminocyclopropane 1-carboxylate (ACC) as a nitrogen source and produced ACC deaminase. It was related phylogenetically to members of the genus Methylobacterium. 16S rRNA gene sequence analysis indicated that strain CBMB20T was most closely related to Methylobacterium fujisawaense, Methylobacterium radiotolerans and Methylobacterium mesophilicum; however, DNA-DNA hybridization values were less than 70 % with the type strains of these species. The DNA G+C content of strain CBMB20T was 70.6 mol%. The study presents a detailed phenotypic characterization of strain CBMB20T that allows its differentiation from other Methylobacterium species. In addition, strain CBMB20T is the only known member of the genus Methylobacterium to be described from the phyllosphere of rice. Based on the data presented, strain CBMB20T represents a novel species in the genus Methylobacterium, for which the name Methylobacterium oryzae sp. nov. is proposed, with strain CBMB20T (=DSM 18207T=LMG 23582T=KACC 11585T) as the type strain.

  5. Bacterial biodegradation of melamine-contaminated aged soil: influence of different pre-culture media or addition of activation material.

    PubMed

    Hatakeyama, Takashi; Takagi, Kazuhiro

    2016-08-01

    This study aimed to investigate the biodegrading potential of Arthrobacter sp. MCO, Arthrobacter sp. CSP, and Nocardioides sp. ATD6 in melamine-contaminated upland soil (melamine: approx. 10.5 mg/kg dry weight) after 30 days of incubation. The soil sample used in this study had undergone annual treatment of lime nitrogen, which included melamine; it was aged for more than 10 years in field. When R2A broth was used as the pre-culture medium, Arthrobacter sp. MCO could degrade 55 % of melamine after 30 days of incubation, but the other strains could hardly degrade melamine (approximately 25 %). The addition of trimethylglycine (betaine) in soil as an activation material enhanced the degradation rate of melamine by each strain; more than 50 % of melamine was degraded by all strains after 30 days of incubation. In particular, strain MCO could degrade 72 % of melamine. When the strains were pre-cultured in R2A broth containing melamine, the degradation rate of melamine in soil increased remarkably. The highest (72 %) melamine degradation rate was noted when strain MCO was used with betaine addition.

  6. Effects of Eu and Sm on Methylobacterium sp.

    NASA Astrophysics Data System (ADS)

    Hibi, Yoshihisa; Okuda, Masayo; Sakuma, Ryusuke; Iwama, Tomonori; Kawai, Keiichi

    Eu and Sm have been widely used in high technology products. In this study the authors isolated a soil bacterium, identified as Methylobacterium sp. MAFF211642, which exhibited colonies on 1/100 nutrient agar, supplemented by 30µM Eu and Sm; the soil bacterium was found to exhibit larger colonies than those in the absence of these elements. However, when 0.5% methanol was added to the nutrient agar, only Sm was found to stimulate the growth. Other rare earth and metal elements did not affect or inhibit, regardless of the presence of methanol. Addition of both Sm and methanol to the nutrient broth increased the growth of this strain 10-fold in colony forming unit larger than when both were absent. When both methanol and Sm were added to the nutrient broth, specific activity of methanol dehydrogenase in a crude extract of the bacterium increased approximately 5.4-fold.

  7. A Novel Exopolysaccharide with Metal Adsorption Capacity Produced by a Marine Bacterium Alteromonas sp. JL2810

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zilian; Cai, Ruanhong; Zhang, Wenhui

    Most marine bacteria can produce exopolysaccharides (EPS). However, very few structures of EPS produced by marine bacteria have been determined. The characterization of EPS structure is important for the elucidation of their biological functions and ecological roles. In this study, the structure of EPS produced by a marine bacterium, Alteromonas sp. JL2810, was characterized, and the biosorption of the EPS for heavy metals Cu 2+, Ni 2+, and Cr 6+ was also investigated. Nuclear magnetic resonance (NMR) analysis indicated that the JL2810 EPS have a novel structure consisting of the repeating unit of [-3)-α-Rhap-(1→3)-α-Manp-(1→4)-α-3OAc-GalAp-(1→]. The biosorption of the EPS formore » heavy metals was affected by a medium pH; the maximum biosorption capacities for Cu 2+ and Ni 2+ were 140.8-8.2 mg/g and 226.3-3.3 mg/g at pH 5.0; however, for Cr 6+ it was 215.2-5.1 mg/g at pH 5.5. Infrared spectrometry analysis demonstrated that the groups of O-H, C=O, and C-O-C were the main function groups for the adsorption of JL2810 EPS with the heavy metals. The adsorption equilibrium of JL2810 EPS for Ni 2+ was further analyzed, and the equilibrium data could be better represented by the Langmuir isotherm model. The novel EPS could be potentially used in industrial applications as a novel bio-resource for the removal of heavy metals.« less

  8. A Novel Exopolysaccharide with Metal Adsorption Capacity Produced by a Marine Bacterium Alteromonas sp. JL2810

    DOE PAGES

    Zhang, Zilian; Cai, Ruanhong; Zhang, Wenhui; ...

    2017-06-12

    Most marine bacteria can produce exopolysaccharides (EPS). However, very few structures of EPS produced by marine bacteria have been determined. The characterization of EPS structure is important for the elucidation of their biological functions and ecological roles. In this study, the structure of EPS produced by a marine bacterium, Alteromonas sp. JL2810, was characterized, and the biosorption of the EPS for heavy metals Cu 2+, Ni 2+, and Cr 6+ was also investigated. Nuclear magnetic resonance (NMR) analysis indicated that the JL2810 EPS have a novel structure consisting of the repeating unit of [-3)-α-Rhap-(1→3)-α-Manp-(1→4)-α-3OAc-GalAp-(1→]. The biosorption of the EPS formore » heavy metals was affected by a medium pH; the maximum biosorption capacities for Cu 2+ and Ni 2+ were 140.8-8.2 mg/g and 226.3-3.3 mg/g at pH 5.0; however, for Cr 6+ it was 215.2-5.1 mg/g at pH 5.5. Infrared spectrometry analysis demonstrated that the groups of O-H, C=O, and C-O-C were the main function groups for the adsorption of JL2810 EPS with the heavy metals. The adsorption equilibrium of JL2810 EPS for Ni 2+ was further analyzed, and the equilibrium data could be better represented by the Langmuir isotherm model. The novel EPS could be potentially used in industrial applications as a novel bio-resource for the removal of heavy metals.« less

  9. Anoxybacillus vitaminiphilus sp. nov., a strictly aerobic and moderately thermophilic bacterium isolated from a hot spring.

    PubMed

    Zhang, Xin-Qi; Zhang, Zhen-Li; Wu, Nan; Zhu, Xu-Fen; Wu, Min

    2013-11-01

    A strictly aerobic, Gram-stain-positive, motile and spore-forming bacterium, strain 3nP4(T), was isolated from the Puge hot spring located in the south-western geothermal area of China. Strain 3nP4(T) grew at 38-66 °C (optimum 57-60 °C), at pH 6.0-9.3 (optimum 7.0-7.5) and with 0-4 % (w/v) NaCl (optimum 0-0.5 %). Phylogenetic analysis of 16S rRNA gene sequences, as well as DNA-DNA relatedness values, indicated that the isolate represents a novel species of the genus Anoxybacillus, related most closely to Anoxybacillus voinovskiensis DSM 12111(T). Strain 3nP4(T) had diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and one unidentified phospholipid as major polar lipids and iso-C15 : 0 and iso-C17 : 0 as major fatty acids, which are both typical chemotaxonomic characteristics of the genus Anoxybacillus. The mean DNA G+C content of strain 3nP4(T) was 39.2±0.95 mol% (HPLC). A distinctive characteristic of the novel isolate was its extreme reliance on vitamin mixture or yeast extract for growth. Based on data from this taxonomic study using a polyphasic approach, strain 3nP4(T) is considered to represent a novel species of the genus Anoxybacillus, for which the name Anoxybacillus vitaminiphilus sp. nov. is proposed. The type strain is 3nP4(T) ( = CGMCC 1.8979(T) = JCM 16594(T)).

  10. Novel insights into the algicidal bacterium DH77-1 killing the toxic dinoflagellate Alexandrium tamarense.

    PubMed

    Yang, Xiaoru; Li, Xinyi; Zhou, Yanyan; Zheng, Wei; Yu, Changping; Zheng, Tianling

    2014-06-01

    Algicidal bacteria may play a major role in controlling harmful algal blooms (HABs) dynamics. Bacterium DH77-1 was isolated with high algicidal activity against the toxic dinoflagellate Alexandrium tamarense and identified as Joostella sp. DH77-1. The results showed that DH77-1 exhibited algicidal activity through indirect attack, which excreted active substance into the filtrate. It had a relatively wide host range and the active substance of DH77-1 was relatively stable since temperature, pH and storage condition had no obvious effect on the algicidal activity. The algicidal compound from bacterium DH77-1 was isolated based on activity-guided bioassay and the molecular weight was determined to be 125.88 by MALDI-TOF mass spectrometer, however further identification via nuclear magnetic resonance (NMR) spectra is ongoing. The physiological responses of algal cells after exposure to the DH77-1 algicidal substances were as follows: the antioxidant system of A. tamarense responded positively in self-defense; total protein content decreased significantly as did the photosynthetic pigment content; superoxide dismutase, peroxidase enzyme and malondialdehyde content increased extraordinarily and algal cell nucleic acid leaked seriously ultimately inducing cell death. Furthermore, DH77-1 is the first record of a Joostella sp. bacterium being algicidal to the harmful dinoflagellate A. tamarense, and the bacterial culture and the active compounds might be potentially used as a bio-agent for controlling harmful algal blooms. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica

    PubMed Central

    2013-01-01

    Background The use of microorganisms in the synthesis of nanoparticles emerges as an eco-friendly and exciting approach, for production of nanoparticles due to its low energy requirement, environmental compatibility, reduced costs of manufacture, scalability, and nanoparticle stabilization compared with the chemical synthesis. Results The production of gold nanoparticles by the thermophilic bacterium Geobacillus sp. strain ID17 is reported in this study. Cells exposed to Au3+ turned from colourless into an intense purple colour. This change of colour indicates the accumulation of intracellular gold nanoparticles. Elemental analysis of particles composition was verified using TEM and EDX analysis. The intracellular localization and particles size were verified by TEM showing two different types of particles of predominant quasi-hexagonal shape with size ranging from 5–50 nm. The mayority of them were between 10‒20 nm in size. FT-IR was utilized to characterize the chemical surface of gold nanoparticles. This assay supports the idea of a protein type of compound on the surface of biosynthesized gold nanoparticles. Reductase activity involved in the synthesis of gold nanoparticles has been previously reported to be present in others microorganisms. This reduction using NADH as substrate was tested in ID17. Crude extracts of the microorganism could catalyze the NADH-dependent Au3+ reduction. Conclusions Our results strongly suggest that the biosynthesis of gold nanoparticles by ID17 is mediated by enzymes and NADH as a cofactor for this biological transformation. PMID:23919572

  12. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park.

    PubMed

    Hamilton-Brehm, Scott D; Mosher, Jennifer J; Vishnivetskaya, Tatiana; Podar, Mircea; Carroll, Sue; Allman, Steve; Phelps, Tommy J; Keller, Martin; Elkins, James G

    2010-02-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47(T), was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 microm long by 0.2 microm wide and grew at temperatures between 55 and 85 degrees C, with the optimum at 78 degrees C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h(-1). The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47(T) was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47(T) within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073).

  13. Caldicellulosiruptor obsidiansis sp. nov., an Anaerobic, Extremely Thermophilic, Cellulolytic Bacterium Isolated from Obsidian Pool, Yellowstone National Park▿

    PubMed Central

    Hamilton-Brehm, Scott D.; Mosher, Jennifer J.; Vishnivetskaya, Tatiana; Podar, Mircea; Carroll, Sue; Allman, Steve; Phelps, Tommy J.; Keller, Martin; Elkins, James G.

    2010-01-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 μm long by 0.2 μm wide and grew at temperatures between 55 and 85°C, with the optimum at 78°C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h−1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073). PMID:20023107

  14. Isolation and Characterization of Two Cryptic Plasmids in the Ammonia-Oxidizing Bacterium Nitrosomonas sp. Strain ENI-11

    PubMed Central

    Yamagata, Akira; Kato, Junichi; Hirota, Ryuichi; Kuroda, Akio; Ikeda, Tsukasa; Takiguchi, Noboru; Ohtake, Hisao

    1999-01-01

    Two plasmids were discovered in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11, which was isolated from activated sludge. The plasmids, designated pAYS and pAYL, were relatively small, being approximately 1.9 kb long. They were cryptic plasmids, having no detectable plasmid-linked antibiotic resistance or heavy metal resistance markers. The complete nucleotide sequences of pAYS and pAYL were determined, and their physical maps were constructed. There existed two major open reading frames, ORF1 in pAYS and ORF2 in pAYL, each of which was more than 500 bp long. The predicted product of ORF2 was 28% identical to part of the replication protein of a Bacillus plasmid, pBAA1. However, no significant similarity to any known protein sequences was detected with the predicted product of ORF1. pAYS and pAYL had a highly homologous region, designated HHR, of 262 bp. The overall identity was 98% between the two nucleotide sequences. Interestingly, HHR-homologous sequences were also detected in the genomes of ENI-11 and the plasmidless strain Nitrosomonas europaea IFO14298. Deletion analysis of pAYS and pAYL indicated that HHR, together with either ORF1 or ORF2, was essential for plasmid maintenance in ENI-11. To our knowledge, pAYS and pAYL are the first plasmids found in the ammonia-oxidizing autotrophic bacteria. PMID:10348848

  15. Cloning, expression and biochemical characterization of a β-carbonic anhydrase from the soil bacterium Enterobacter sp. B13.

    PubMed

    Eminoğlu, Ayşenur; Vullo, Daniela; Aşık, Aycan; Çolak, Dilşat Nigar; Supuran, Claudiu T; Çanakçı, Sabriye; Osman Beldüz, Ali

    2016-12-01

    A recombinant carbonic anhydrase (CA, EC 4.2.1.1) from the soil-dwelling bacterium Enterobacter sp. B13 was cloned and purified by Co(2+) affinity chromatography. Bioinformatic analysis showed that the new enzyme (denominated here B13-CA) belongs to the β-class CAs and to possess 95% homology with the ortholog enzyme from Escherichia coli encoded by the can gene, whereas its sequence homology with the other such enzyme from E. coli (encoded by the cynT gene) was of 33%. B13-CA was characterized kinetically as a catalyst for carbon dioxide hydration to bicarbonate and protons. The enzyme shows a significant catalytic activity, with the following kinetic parameters at 20 °C and pH of 8.3: kcat of 4.8 × 10(5) s(-1) and kcat/Km of 5.6 × 10(7) M(-1) × s(-1). This activity was potently inhibited by acetazolamide which showed a KI of 78.9 nM. Although only this compound was investigated for the moment as B13-CA inhibitor, further studies may reveal new classes of inhibitors/activators of this enzyme which may show biomedical or environmental applications, considering the posssible role of this enzyme in CaCO3 biomineralization processes.

  16. Halomonas sinaiensis sp. nov., a novel halophilic bacterium isolated from a salt lake inside Ras Muhammad Park, Egypt.

    PubMed

    Romano, Ida; Lama, Licia; Orlando, Pierangelo; Nicolaus, Barbara; Giordano, Assunta; Gambacorta, Agata

    2007-11-01

    An alkalitolerant and halotolerant bacterium, designated strain Sharm was isolated from a salt lake inside Ras Muhammad. The morphological, physiological and genetic characteristics were compared with those of related species of the genus Halomonas. The isolate grew optimally at pH 7.0, 5-15% NaCl at 35 degrees C. The cells were Gram-negative rods, facultative anaerobes. They accumulated glycine-betaine, as a major osmolyte, and ectoine and glutamate as minor components. The strain Sharm(T) biosynthetised alpha-glucosidase. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and a novel phosphoglycolipid as major components. Ubiquinone with nine repetitive unities (Q9) was the only quinone found and, nC16:0 and C19:0 with cyclopropane were the main cellular fatty acids, accounting for 87.3% of total fatty acids. The G + C content of the genomic DNA was 64.7 mol %. The 16S rRNA sequence analysis indicated that strain Sharm was a member of the genus Halomonas. The closest relatives of the strain Sharm were Halomonas elongata and Halomonas eurihalina. However, DNA-DNA hybridisation results clearly indicated that strain Sham was a distinct species of Halomonas. On the basis of the evidence, we propose to assign strain Sharm as a new species of the genus Halomonas, H. sinaiensis sp. nov, with strain Sharm(T) as the type strain (DSM 18067(T); ATCC BAA-1308(T)).

  17. Venenivibrio stagnispumantis gen. nov., sp. nov., a thermophilic hydrogen-oxidizing bacterium isolated from Champagne Pool, Waiotapu, New Zealand.

    PubMed

    Hetzer, Adrian; McDonald, Ian R; Morgan, Hugh W

    2008-02-01

    A novel thermophilic, hydrogen-oxidizing bacterium, designated strain CP.B2(T), was isolated from a terrestrial hot spring in Waiotapu, New Zealand. Cells were motile, slightly rod-shaped, non-spore-forming and Gram-negative. Isolate CP.B2(T) was an obligate chemolithotroph, growing by utilizing H(2) as electron donor and O(2) as corresponding electron acceptor. Elemental sulfur (S(0)) or thiosulfate ( ) was essential for growth. Microbial growth occurred under microaerophilic conditions in 1.0-10.0 % (v/v) O(2) [optimum 4-8 % (v/v) O(2)], between 45 and 75 degrees C (optimum 70 degrees C) and at pH values of 4.8-5.8 (optimum pH 5.4). The DNA G+C content was 29.3 mol%. 16S rRNA gene sequence analysis demonstrated that strain CP.B2(T) belonged to the order Aquificales, with a close phylogenetic relationship to Sulfurihydrogenibium azorense (94 % sequence similarity to the type strain). However, genotypic and metabolic characteristics differentiated the novel isolate from previously described genera of the Aquificales. Therefore, CP.B2(T) represents a novel species in a new genus, for which the name Venenivibrio stagnispumantis gen. nov., sp. nov. is proposed. The type strain of Venenivibrio stagnispumantis is CP.B2(T) (=JCM 14244(T) =DSM 18763(T)).

  18. Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough.

    PubMed

    Toffin, Laurent; Zink, Klaus; Kato, Chiaki; Pignet, Patricia; Bidault, Adeline; Bienvenu, Nadège; Birrien, Jean-Louis; Prieur, Daniel

    2005-01-01

    A piezotolerant, mesophilic, marine lactic acid bacterium (strain LT20T) was isolated from a deep sub-seafloor sediment core collected at Nankai Trough, off the coast of Japan. Cells were Gram-positive, rod-shaped, non-sporulating and non-motile. The NaCl concentration range for growth was 0-120 g l(-1), with the optimum at 10-20 g l(-1). The temperature range for growth at pH 7.0 was 4-50 degrees C, with the optimum at 37-40 degrees C. The optimum pH for growth was 7.0-8.0. The optimum pressure for growth was 0.1 MPa with tolerance up to 30 MPa. The main cellular phospholipids were phosphatidylglycerols (25 %), diphosphatidylglycerols (34 %) and a group of compounds tentatively identified as ammonium-containing phosphatidylserines (32 %); phosphatidylethanolamines (9 %) were minor components. The fatty acid composition was dominated by side chains of 16 : 0, 14 : 0 and 16 : 1. The G+C content of the genomic DNA was 42 mol%. On the basis of 16S rRNA gene sequence analysis and the secondary structure of the V6 region, this organism was found to belong to the genus Marinilactibacillus and was closely related to Marinilactibacillus psychrotolerans M13-2(T) (99 %), Marinilactibacillus sp. strain MJYP.25.24 (99 %) and Alkalibacterium olivapovliticus strain ww2-SN4C (97 %). Despite the high similarity between their 16S rRNA gene sequences (99 %), the DNA-DNA hybridization levels were less than 20 %. On the basis of physiological and genetic characteristics, it is proposed that this organism be classified as a novel species, Marinilactibacillus piezotolerans sp. nov. The type strain is LT20T (=DSM 16108T=JCM 12337T).

  19. Complete genome sequence of the acetylene-fermenting Pelobacter sp. strain SFB93

    USGS Publications Warehouse

    Sutton, John M.; Baesman, Shaun; Fierst, Janna L.; Poret-Peterson, Amisha T.; Oremland, Ronald S.; Dunlap, Darren S.; Akob, Denise M.

    2017-01-01

    Acetylene fermentation is a rare metabolism that was previously reported as being unique to Pelobacter acetylenicus. Here, we report the genome sequence of Pelobacter sp. strain SFB93, an acetylene-fermenting bacterium isolated from sediments collected in San Francisco Bay, CA.

  20. Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops.

    PubMed

    Ma, Y; Rajkumar, M; Vicente, J A F; Freitas, H

    2011-02-01

    This study was conducted to elucidate effects of inoculating plant growth-promoting bacterium Psychrobacter sp. SRS8 on the growth and phytoextraction potential of energy crops Ricinus communis and Helianthus annuus in artificially Ni contaminated soils. The toxicity symptom in plants under Ni stress expressed as chlorophyll, protein content, growth inhibition, and Fe, P concentrations were studied, and the possible relationship among them were also discussed. The PGPB SRS8 was found capable of stimulating plant growth and Ni accumulation in both plant species. Further, the stimulation effect on plant biomass, chlorophyll, and protein content was concomitant with increased Fe and P assimilation from soil to plants. Further, the induction of catalase and peroxidase activities was also involved in the ability of SRS8 to increase the tolerance in both plant species under Ni stress. The findings suggest that strain SRS8 play an important role in promoting the growth and phytoextraction efficiency of R. communis and H. annuus, which may be used for remediation of metal contaminated sites.

  1. Stenotrophomonas sp. RZS 7, a novel PHB degrader isolated from plastic contaminated soil in Shahada, Maharashtra, Western India.

    PubMed

    Wani, S J; Shaikh, S S; Tabassum, B; Thakur, R; Gulati, A; Sayyed, R Z

    2016-12-01

    This paper reports an isolation and identification of novel poly-β-hydroxybutyrate (PHB) degrading bacterium Stenotrophomonas sp. RZS 7 and studies on its extracellular PHB degrading depolymerase enzyme. The bacterium isolated from soil samples of plastic contaminated sites of municipal area in Shahada, Maharashtra, Western India. It was identified as Stenotrophomonas sp. RZS 7 based on polyphasic approach. The bacterium grew well in minimal salt medium (MSM) and produced a zone (4.2 mm) of PHB hydrolysis on MSM containing PHB as the only source of nutrient. An optimum yield of enzyme was obtained on the fifth day of incubation at 37 °C and at pH 6.0. Further increase in enzyme production was recorded with Ca 2+ ions, while other metal ions like Fe 2+ (1 mM) and chemical viz. mercaptoethanol severally affected the production of enzyme.

  2. Emulsifier of Arthrobacter RAG-1: specificity of hydrocarbon substrate.

    PubMed Central

    Rosenberg, E; Perry, A; Gibson, D T; Gutnick, D L

    1979-01-01

    The purified extracellular emulsifying factor produced by Arthrobacter RAG-1 (EF-RAG) emulsified light petroleum oil, diesel oil, and a variety of crude oils and gas oils. Although kerosine and gasoline were emulsified poorly by EF-RAG, they were converted into good substrates for emulsification by addition of aromatic compounds, such as 2-methylnaphthalene. Neither aromatic nor aliphatic fractions of crude oil were emulsified by EF-RAG; however, mixtures containing both fractions were emulsified. Pure aliphatic or aromatic hydrocarbons were emulsified poorly by EF-RAG. Binary mixtures containing an aliphatic and an aromatic hydrocarbon, however, were excellent substrates for EF-RAG-induced emulsification. Of a variety of alkylcyclohexane and alkylbenzene derivatives tested, only hexyl- or heptylbenzene and octyl- or decylcyclohexane were effectively emulsified by EF-RAG. These data indicate that for EF-RAG to induce emulsification of hydrocarbons in water, the hydrocarbon substrate must contain both aliphatic and cyclic components. With binary mixtures of methylnaphthalene and hexadecane, maximum emulsion was obtained with 25% hexadecane. PMID:453821

  3. Pelagibacterium montanilacus sp. nov., an alkaliphilic bacterium isolated from Lake Cuochuolong on the Tibetan Plateau.

    PubMed

    Lu, Huibin; Xing, Peng; Phurbu, Dorji; Tang, Qian; Wu, Qinglong

    2018-05-11

    A Gram-stain negative, alkaliphilic and halotolerant bacterium, designated CCL18 T , was isolated from Lake Cuochuolong on the Tibetan Plateau. The strain was aerobic, short rod-shaped, catalase- and oxidase-positive, and motile by means of several polar flagella. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that strain CCL18 T belongs to the genus Pelagibacterium, with its two closest neighbours being Pelagibacterium halotolerans B2 T (96.6 %, 16S rRNA gene sequence similarity) and Pelagibacterium luteolum 1_C16_27 T (96.1 %). The predominant respiratory quinone of strain CCL18 T was Q-10, with Q-9 as a minor component. The major fatty acids were C18 : 1ω6c/C18 : 1ω7c (60.4 %), C19 : 0cyclo ω8c (8.1 %) and C18 : 0 (6.8 %). The polar lipids included phosphatidylglycerol, diphosphatidylglycerol, seven kinds of unidentified lipids and three kinds of glycolipids. The DNA G+C content was 60.1 mol%. DNA-DNA hybridization showed 35.2 % relatedness between strain CCL18 T and P. halotolerans B2 T and 24.6 % relatedness to P. luteolum 1_C16_27 T . Based on phylogenetic analysis, DNA-DNA hybridization and a range of physiological and biochemical characteristics, strain CCL18 T was clearly distinguishable from the other strains of the genus Pelagibacterium. It was evident that strain CCL18 T could be classified as a novel species of the genus Pelagibacterium, for which the name Pelagibacterium montanilacus sp. nov. is proposed. The type strain is CCL18 T (=CGMCC 1.16231 T =KCTC 62030 T ).

  4. Sedimentibacter acidaminivorans sp. nov., an anaerobic, amino-acid-utilizing bacterium isolated from marine subsurface sediment.

    PubMed

    Imachi, Hiroyuki; Sakai, Sanae; Kubota, Takaaki; Miyazaki, Masayuki; Saito, Yayoi; Takai, Ken

    2016-03-01

    A novel, anaerobic bacterium, strain MO-SEDI T , was isolated from a methanogenic microbial community, which was originally obtained from marine subsurface sediments collected from off the Shimokita Peninsula of Japan. Cells were Gram-stain-negative, non-motile, non-spore-forming rods, 0.4-1.4 μm long by 0.4-0.6 μm wide. The cells also formed long filaments of up to about 11 μm. The strain grew on amino acids (i.e. valine, leucine, isoleucine, methionine, glycine, phenylalanine, tryptophan, lysine and arginine), pyruvate and melezitose in the presence of yeast extract. Growth was observed at 4-37 °C (optimally at 30 °C), at pH 6.0 and 8.5 (optimally at 7.0-7.5) and in 0-60 g l - 1 NaCl (optimally 20 g NaCl l - 1 ). The G+C content of the DNA was 32.0 mol%. The polar lipids of strain MO-SEDI T were phosphatidylglycerol, phosphatidyl lipids and unknown lipids. The major cellular fatty acids (>10 % of the total) were C 14 : 0 , C 16 : 1 ω9 and C 16 : 0 dimethyl aldehyde. Comparative sequence analysis of the 16S rRNA gene showed that strain MO-SEDI T was affiliated with the genus Sedimentibacter within the phylum Firmicutes . It was related most closely to the type strain of Sedimentibacter saalensis (94 % sequence similarity). Based on the phenotypic and genetic characteristics, strain MO-SEDI T is considered to represent a novel species of the genus Sedimentibacter , for which the name Sedimentibacter acidaminivorans sp. nov. is proposed. The type strain is MO-SEDI T ( = JCM 17293 T  = DSM 24004 T ).

  5. A novel marine bacterium Isoptericola sp. JS-C42 with the ability to saccharifying the plant biomasses for the aid in cellulosic ethanol production.

    PubMed

    Santhi, Velayudhan Satheeja; Gupta, Ashutosh; Saranya, Somasundaram; Jebakumar, Solomon Robinson David

    2014-06-01

    The ever growing demands for food products such as starch and sugar produces; there is a need to find the sources for saccharification for cellulosic bioethanol production. This study provides the first evidence of the lignocellulolytic and saccharifying ability of a marine bacterium namely Isoptericola sp. JS-C42, a Gram positive actinobacterium with the cocci cells embedded on mycelia isolated from the Arabian Sea, India. It exhibited highest filter paper unit effect, endoglucanase, exoglucanase, cellobiohydrolase, β-glucosidase, xylanase and ligninase effect. The hydrolytic potential of the enzymes displayed the efficient saccharification capability of steam pretreated biomass. It was also found to degrade the paddy, sorghum, Acacia mangium and Ficus religiosa into simple reducing sugars by its efficient lignocellulose enzyme complex with limited consumption of sugars. Production of ethanol was also achieved with the Saccharomyces cerevisiae . Overall, it offers a great potential for the cellulosic ethanol production in an economically reliable and eco-friendly point-of-care.

  6. Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides x nigra DN34).

    PubMed

    Van Aken, Benoit; Peres, Caroline M; Doty, Sharon Lafferty; Yoon, Jong Moon; Schnoor, Jerald L

    2004-07-01

    A pink-pigmented, aerobic, facultatively methylotrophic bacterium, strain BJ001T, was isolated from internal poplar tissues (Populus deltoidesxnigra DN34) and identified as a member of the genus Methylobacterium. Phylogenetic analyses showed that strain BJ001T is related to Methylobacterium thiocyanatum, Methylobacterium extorquens, Methylobacterium zatmanii and Methylobacterium rhodesianum. However, strain BJ001T differed from these species in its carbon-source utilization pattern, particularly its use of methane as the sole source of carbon and energy, an ability that is shared with only one other member of the genus, Methylobacterium organophilum. In addition, strain BJ001T is the only member of the genus Methylobacterium to be described as an endophyte of poplar trees. On the basis of its physiological, genotypic and ecological properties, the isolate is proposed as a member of a novel species of the genus Methylobacterium, Methylobacterium populi sp. nov. (type strain, BJ001T=ATCC BAA-705T=NCIMB 13946T).

  7. Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem.

    PubMed

    Lim, H K; Syed, M A; Shukor, M Y

    2012-06-01

    A novel molybdate-reducing bacterium, tentatively identified as Klebsiella sp. strain hkeem and based on partial 16s rDNA gene sequencing and phylogenetic analysis, has been isolated. Strain hkeem produced 3 times more molybdenum blue than Serratia sp. strain Dr.Y8; the most potent Mo-reducing bacterium isolated to date. Molybdate was optimally reduced to molybdenum blue using 4.5 mM phosphate, 80 mM molybdate and using 1% (w/v) fructose as a carbon source. Molybdate reduction was optimum at 30 °C and at pH 7.3. The molybdenum blue produced from cellular reduction exhibited absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide, and potassium cyanide did not inhibit the molybdenum-reducing enzyme. Mercury, silver, and copper at 1 ppm inhibited molybdenum blue formation in whole cells of strain hkeem. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Complete genome of Pseudomonas sp. strain L10.10, a psychrotolerant biofertilizer that could promote plant growth.

    PubMed

    See-Too, Wah Seng; Lim, Yan-Lue; Ee, Robson; Convey, Peter; Pearce, David A; Yin, Wai-Fong; Chan, Kok Gan

    2016-03-20

    Pseudomonas sp. strain L10.10 (=DSM 101070) is a psychrotolerant bacterium which was isolated from Lagoon Island, Antarctica. Analysis of its complete genome sequence indicates its possible role as a plant-growth promoting bacterium, including nitrogen-fixing ability and indole acetic acid (IAA)-producing trait, with additional suggestion of plant disease prevention attributes via hydrogen cyanide production. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Limnobacter litoralis sp. nov., a thiosulfate-oxidizing, heterotrophic bacterium isolated from a volcanic deposit, and emended description of the genus Limnobacter.

    PubMed

    Lu, Hongsheng; Sato, Yoshinori; Fujimura, Reiko; Nishizawa, Tomoyasu; Kamijo, Takashi; Ohta, Hiroyuki

    2011-02-01

    A Gram-negative, aerobic, heterotrophic bacterium, designated KP1-19(T), was isolated from a 22-year-old volcanic deposit at a site lacking vegetation on the island of Miyake, Japan. Strain KP1-19(T) was able to use thiosulfate (optimum concentration 10 mM) as an additional energy source. 16S rRNA gene sequence analysis indicated that strain KP1-19(T) was closely related to Limnobacter thiooxidans CS-K2(T) within the class Betaproteobacteria (97.7 % 16S rRNA gene sequence similarity). The cellular fatty acid profile was characteristic of the genus Limnobacter: the major fatty acids (>5 %) were C(16 : 0), C(16 : 1)ω7c and C(18 : 1)ω7c and minor amounts of C(10 : 0) 3-OH were also found. DNA-DNA relatedness between strain KP1-19(T) and L. thiooxidans LMG 19593(T) was 18 %. Therefore, strain KP1-19(T) represents a novel species, for which the name Limnobacter litoralis sp. nov. is proposed. The type strain is KP1-19(T) (=LMG 24869(T) =NBRC 105857(T) =CIP 109929(T)).

  10. (Per)chlorate Reduction by the Thermophilic Bacterium Moorella perchloratireducens sp. nov., Isolated from Underground Gas Storage▿

    PubMed Central

    Balk, Melike; van Gelder, Ton; Weelink, Sander A.; Stams, Alfons J. M.

    2008-01-01

    A thermophilic bacterium, strain An10, was isolated from underground gas storage with methanol as a substrate and perchlorate as an electron acceptor. Cells were gram-positive straight rods, 0.4 to 0.6 μm in diameter and 2 to 8 μm in length, growing as single cells or in pairs. Spores were terminal with a bulged sporangium. The temperature range for growth was 40 to 70°C, with an optimum at 55 to 60°C. The pH optimum was around 7. The salinity range for growth was between 0 and 40 g NaCl liter−1 with an optimum at 10 g liter−1. Strain An10 was able to grow on CO, methanol, pyruvate, glucose, fructose, cellobiose, mannose, xylose, and pectin. The isolate was able to respire with (per)chlorate, nitrate, thiosulfate, neutralized Fe(III) complexes, and anthraquinone-2,6-disulfonate. The G+C content of the DNA was 57.6 mol%. On the basis of 16S rRNA analysis, strain An10 was most closely related to Moorella thermoacetica and Moorella thermoautotrophica. The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell extracts. Strain An10 is the first thermophilic and gram-positive bacterium with the ability to use (per)chlorate as a terminal electron acceptor. PMID:17981952

  11. Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome

    PubMed Central

    Schmidt, Johanna; Taipale, Sami J.; Doolittle, W. Ford; Koll, Ulrike

    2014-01-01

    A pure culture of an actinobacterium previously described as ‘Candidatus Rhodoluna lacicola’ strain MWH-Ta8 was established and deposited in two public culture collections. Strain MWH-Ta8T represents a free-living planktonic freshwater bacterium obtained from hypertrophic Meiliang Bay, Lake Taihu, PR China. The strain was characterized by phylogenetic and taxonomic investigations, as well as by determination of its complete genome sequence. Strain MWH-Ta8T is noticeable due to its unusually low values of cell size (0.05 µm3), genome size (1.43 Mbp), and DNA G+C content (51.5 mol%). Phylogenetic analyses based on 16S rRNA gene and RpoB sequences suggested that strain MWH-Ta8T is affiliated with the family Microbacteriaceae with Pontimonas salivibrio being its closest relative among the currently described species within this family. Strain MWH-Ta8T and the type strain of Pontimonas salivibrio shared a 16S rRNA gene sequence similarity of 94.3 %. The cell-wall peptidoglycan of strain MWH-Ta8T was of type B2β (B10), containing 2,4-diaminobutyric acid as the diamino acid. The predominant cellular fatty acids were anteiso-C15 : 0 (36.5 %), iso-C16 : 0 (16.5 %), iso-C15 : 0 (15.6 %) and iso-C14 : 0 (8.9 %), and the major (>10 %) menaquinones were MK-11 and MK-12. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and two unknown glycolipids. The combined phylogenetic, phenotypic and chemotaxonomic data clearly suggest that strain MWH-Ta8T represents a novel species of a new genus in the family Microbacteriaceae, for which the name Rhodoluna lacicola gen. nov., sp. nov. is proposed. The type strain of the type species is MWH-Ta8T ( = DSM 23834T = LMG 26932T). PMID:24984700

  12. Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome.

    PubMed

    Hahn, Martin W; Schmidt, Johanna; Taipale, Sami J; Doolittle, W Ford; Koll, Ulrike

    2014-09-01

    A pure culture of an actinobacterium previously described as 'Candidatus Rhodoluna lacicola' strain MWH-Ta8 was established and deposited in two public culture collections. Strain MWH-Ta8(T) represents a free-living planktonic freshwater bacterium obtained from hypertrophic Meiliang Bay, Lake Taihu, PR China. The strain was characterized by phylogenetic and taxonomic investigations, as well as by determination of its complete genome sequence. Strain MWH-Ta8(T) is noticeable due to its unusually low values of cell size (0.05 µm(3)), genome size (1.43 Mbp), and DNA G+C content (51.5 mol%). Phylogenetic analyses based on 16S rRNA gene and RpoB sequences suggested that strain MWH-Ta8(T) is affiliated with the family Microbacteriaceae with Pontimonas salivibrio being its closest relative among the currently described species within this family. Strain MWH-Ta8(T) and the type strain of Pontimonas salivibrio shared a 16S rRNA gene sequence similarity of 94.3 %. The cell-wall peptidoglycan of strain MWH-Ta8(T) was of type B2β (B10), containing 2,4-diaminobutyric acid as the diamino acid. The predominant cellular fatty acids were anteiso-C15 : 0 (36.5 %), iso-C16 : 0 (16.5 %), iso-C15 : 0 (15.6 %) and iso-C14 : 0 (8.9 %), and the major (>10 %) menaquinones were MK-11 and MK-12. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and two unknown glycolipids. The combined phylogenetic, phenotypic and chemotaxonomic data clearly suggest that strain MWH-Ta8(T) represents a novel species of a new genus in the family Microbacteriaceae, for which the name Rhodoluna lacicola gen. nov., sp. nov. is proposed. The type strain of the type species is MWH-Ta8(T) ( = DSM 23834(T) = LMG 26932(T)). © 2014 IUMS.

  13. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil.

    PubMed

    Lee, Yunho; Jeon, Che Ok

    2018-04-01

    A Gram-stain-negative, facultatively aerobic, aromatic hydrocarbon-degrading bacterium, designated strain BN5 T , was isolated from gasoline-contaminated soil. Cells were motile and slightly curved rods with a single flagellum showing catalase and oxidase activities. Growth was observed at 20-37 °C (optimum, 25-30 °C), pH 3-7 (optimum, pH 5-6) and 0-2 % NaCl (optimum, 0 %). Ubiquinone-8 was the predominant respiratory quinone. The major fatty acids were C16 : 0, cyclo-C19 : 0ω8c and summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c). Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phosphoamino lipid, three unidentified amino lipids and eight unidentified lipids were the identified polar lipids. The DNA G+C content was 62.93 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BN5 T formed a phylogenic lineage with members of the genus Paraburkholderia and showed the highest 16S rRNA gene sequence similarities to Paraburkholderia phytofirmans PsJN T (99.4 %), Paraburkholderia dipogonis DL7 T (98.8 %) and Paraburkholderia insulsa PNG-April T (98.8 %). The average nucleotide identity and in silico DNA-DNA hybridization (DDH) values between strain BN5 T and P. phytofirmans PsJN T were 88.5 and 36.5 %, respectively. The DDH values for strain BN5 T with P. dipogonis LMG 28415 T and P. insulsa DSM 28142 T were 41.0±4.9 % (reciprocal, 33.0±4.3 %) and 47.1±6.6 % (reciprocal, 51.7±5.4 %), respectively. Based on its physiological, chemotaxonomic and phylogenetic features, we conclude that strain BN5 T is a novel species of the genus Paraburkholderia, for which the name Paraburkholderia aromaticivorans sp. nov. is proposed. The type strain is BN5 T (=KACC 19419 T =JCM 32303 T ).

  14. Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes.

    PubMed

    Ast, Jennifer C; Cleenwerck, Ilse; Engelbeen, Katrien; Urbanczyk, Henryk; Thompson, Fabiano L; De Vos, Paul; Dunlap, Paul V

    2007-09-01

    Six representatives of a luminous bacterium commonly found in association with deep, cold-dwelling marine fishes were isolated from the light organs and skin of different fish species. These bacteria were Gram-negative, catalase-positive, and weakly oxidase-positive or oxidase-negative. Morphologically, cells of these strains were coccoid or coccoid-rods, occurring singly or in pairs, and motile by means of polar flagellation. After growth on seawater-based agar medium at 22 degrees C for 18 h, colonies were small, round and white, with an intense cerulean blue luminescence. Analysis of 16S rRNA gene sequence similarity placed these bacteria in the genus Photobacterium. Phylogenetic analysis based on seven housekeeping gene sequences (16S rRNA gene, gapA, gyrB, pyrH, recA, rpoA and rpoD), seven gene sequences of the lux operon (luxC, luxD, luxA, luxB, luxF, luxE and luxG) and four gene sequences of the rib operon (ribE, ribB, ribH and ribA), resolved the six strains as members of the genus Photobacterium and as a clade distinct from other species of Photobacterium. These strains were most closely related to Photobacterium phosphoreum and Photobacterium iliopiscarium. DNA-DNA hybridization values between the designated type strain, Photobacterium kishitanii pjapo.1.1(T), and P. phosphoreum LMG 4233(T), P. iliopiscarium LMG 19543(T) and Photobacterium indicum LMG 22857(T) were 51, 43 and 19 %, respectively. In AFLP analysis, the six strains clustered together, forming a group distinct from other analysed species. The fatty acid C(17 : 0) cyclo was present in these bacteria, but not in P. phosphoreum, P. iliopiscarium or P. indicum. A combination of biochemical tests (arginine dihydrolase and lysine decarboxylase) differentiates these strains from P. phosphoreum and P. indicum. The DNA G+C content of P. kishitanii pjapo.1.1(T) is 40.2 %, and the genome size is approximately 4.2 Mbp, in the form of two circular chromosomes. These strains represent a novel species, for

  15. Fervidicella metallireducens gen. nov., sp. nov., a thermophilic, anaerobic bacterium from geothermal waters.

    PubMed

    Ogg, Christopher D; Patel, Bharat K C

    2010-06-01

    A strictly anaerobic, thermophilic bacterium, designated strain AeB(T), was isolated from microbial mats colonizing a run-off channel formed by free-flowing thermal water from a bore well (registered number 17263) of the Great Artesian Basin, Australia. Cells of strain AeB(T) were slightly curved rods (2.5-6.0x1.0 mum) that stained Gram-negative and formed spherical terminal to subterminal spores. The strain grew optimally in tryptone-yeast extract-Casamino acids medium at 50 degrees C (range 37-55 degrees C) and pH 7 (range pH 5-9). Strain AeB(T) grew poorly on yeast extract (0.2 %) and tryptone (0.2 %) as sole carbon sources, which were obligately required for growth on other energy sources. Growth of strain AeB(T) increased in the presence of various carbohydrates and amino acids, but not organic acids. End products detected from glucose fermentation were ethanol, acetate, CO2 and H2. In the presence of 0.2 % yeast extract, iron(III), manganese(IV), vanadium(V) and cobalt(III) were reduced, but not sulfate, thiosulfate, sulfite, elemental sulfur, nitrate or nitrite. Iron(III) was also reduced in the presence of tryptone, peptone, Casamino acids and amyl media (Research Achievement), but not starch, xylan, chitin, glycerol, ethanol, pyruvate, benzoate, lactate, acetate, propionate, succinate, glycine, serine, lysine, threonine, arginine, glutamate, valine, leucine, histidine, alanine, aspartate, isoleucine or methionine. Growth was inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin and NaCl concentrations >2 %. The DNA G+C content was 35.4+/-1 mol%, as determined by the thermal denaturation method. 16S rRNA gene sequence analysis indicated that strain AeB(T) is a member of the family Clostridiaceae, class Clostridia, phylum 'Firmicutes', and is positioned approximately equidistantly between the genera Sarcina, Anaerobacter, Caloramator and Clostridium (16S rRNA gene similarity values of 87.8-90.9 %). On the basis of 16S rRNA gene

  16. A miniaturized solid contact test with Arthrobacter globiformis for the assessment of the environmental impact of silver nanoparticles.

    PubMed

    Engelke, Maria; Köser, Jan; Hackmann, Stephan; Zhang, Huanjun; Mädler, Lutz; Filser, Juliane

    2014-05-01

    Silver nanoparticles (AgNPs) are widely applied for their antibacterial activity. Their increasing use in consumer products implies that they will find their way into the environment via wastewater-treatment plants. The aim of the present study was to compare the ecotoxicological impact of 2 differently designed AgNPs using the solid contact test for the bacterial strain Arthrobacter globiformis. In addition, a miniaturized version of this test system was established, which requires only small-sized samples because AgNPs are produced in small quantities during the design level. The results demonstrate that the solid contact test can be performed in 24-well microplates and that the miniaturized test system fulfills the validity criterion. Soils spiked with AgNPs showed a concentration-dependent reduction of Arthrobacter dehydrogenase activity for both AgNPs and Ag ions (Ag(+)). The toxic effect of the investigated AgNPs on the bacterial viability differed by 1 order of magnitude and can be related to the release of dissolved Ag(+). The release of dissolved Ag(+) can be attributed to particle size and surface area or to the fact that AgNPs are in either metallic or oxide form. Environ © 2014 SETAC.

  17. Anticancer potential of pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (PPDHMP) extracted from a new marine bacterium, Staphylococcus sp. strain MB30.

    PubMed

    Lalitha, P; Veena, V; Vidhyapriya, P; Lakshmi, Pragna; Krishna, R; Sakthivel, N

    2016-05-01

    Marine bacterium, strain MB30 isolated from the deep sea sediment of Bay of Bengal, India, exhibited antimicrobial activity against human pathogenic bacteria. Based on the 16S rRNA sequence homology and subsequent phylogenetic tree analysis, the strain MB30 was identified as Staphylococcus sp. The bioactive metabolite produced by the strain MB30 was purified through silica gel column chromatography and preparative HPLC. Purified metabolite was further characterized by FT-IR, LC-MS and NMR analyses. On the basis of spectroscopic data, the metabolite was identified as pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (PPDHMP). The PPDHMP exhibited in vitro anticancer potential against lung (A549) and cervical (HeLa) cancer cells in a dose-dependent manner with the IC50 concentration of 19.94 ± 1.23 and 16.73 ± 1.78 μg ml(-1) respectively. The acridine orange (AO)/ethidium bromide (EB) and 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining of the IC50 concentration of PPDHMP-treated cancer cells exhibited an array of morphological changes such as nuclear condensation, cell shrinkage and formation of apoptotic bodies. The PPDHMP-treated cancer cells induced the progressive accumulation of fragmented DNA in a time-dependent manner. Based on the flow cytometric analysis, it has become evident that the compound was also effective in arresting the cell cycle at G1 phase. Further, the Western blotting analysis confirmed the down-regulation of cyclin-D1, cyclin dependent kinase (CDK-2), anti-apoptotic Bcl-2 family proteins (Bcl-2 and Bcl-xL), activation of caspase-9 and 3 with the cleavage of PARP. The PPDHMP-treated cancer cells also showed the inhibition of migration and invasive capacity of cancer cells. In the present investigation, for the first time, we have reported the extraction, purification and characterization of an anticancer metabolite, PPDHMP from a new marine bacterium, Staphylococcus sp. strain MB30.

  18. Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

    PubMed Central

    Bao, Peng; Xiao, Ke-Qing; Wang, Hui-Jiao; Xu, Hao; Xu, Peng-Peng; Jia, Yan; Häggblom, Max M.; Zhu, Yong-Guan

    2016-01-01

    A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4–86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4–84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy. PMID:27677458

  19. Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

    NASA Astrophysics Data System (ADS)

    Bao, Peng; Xiao, Ke-Qing; Wang, Hui-Jiao; Xu, Hao; Xu, Peng-Peng; Jia, Yan; Häggblom, Max M.; Zhu, Yong-Guan

    2016-09-01

    A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4-86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4-84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy.

  20. Piscibacillus salipiscarius gen. nov., sp. nov., a moderately halophilic bacterium from fermented fish (pla-ra) in Thailand.

    PubMed

    Tanasupawat, Somboon; Namwong, Sirilak; Kudo, Takuji; Itoh, Takashi

    2007-07-01

    A Gram-positive, spore-forming and moderately halophilic bacterium was isolated from fermented fish (pla-ra) in Thailand. Cells of the isolate, RBU1-1(T), were strictly aerobic, motile rods and contained meso-diaminopimelic acid in the cell-wall peptidoglycan. Menaquinone with seven isoprene units (MK-7) was the predominant quinone. This isolate grew at 15-48 degrees C, pH 5-9 and in 2-30 % NaCl (optimally 10-20 %). The major cellular fatty acids were iso-C(15 : 0) and anteiso-C(15 : 0). Polar lipid analysis revealed the presence of phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 36.7 mol%. 16S rRNA gene sequence analysis revealed that strain RBU1-1(T) was a member of the family Bacillaceae, and belonged to a cluster with Filobacillus and Tenuibacillus; strain RBU1-1(T) showed 16S rRNA gene sequence similarities of 96.0-96.9 % to members of these two genera. Strain RBU1-1(T) could also be differentiated from members of the genera Filobacillus and Tenuibacillus based on certain phenotypic characteristics such as cell-wall composition, mode of flagellation and growth pH range. Therefore, strain RBU1-1(T) is considered to represent a novel species in a new genus in the family Bacillaceae, for which the name Piscibacillus salipiscarius gen. nov., sp. nov. is proposed. The type strain of Piscibacillus salipiscarius is RBU1-1(T) (=JCM 13188(T)=PCU 270(T)=TISTR 1571(T)).

  1. Haererehalobacter sp. JS1, a bioemulsifier producing halophilic bacterium isolated from Indian solar salt works.

    PubMed

    Birdilla Selva Donio, Mariathason; Chelladurai Karthikeyan, Subbiahanadar; Michaelbabu, Mariavincent; Uma, Ganapathi; Raja Jeya Sekar, Ramaiyan; Citarasu, Thavasimuthu

    2018-05-18

    Bioemulsifier (BE)-producing Haererehalobacter sp. JS1 was isolated and identified from the solar salt works in India. The BE was extracted, purified, and characterized by Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Emulsification activity was performed against different oils and dye degradation potential against different dyes. The production of BE was optimized using different carbon sources (C), nitrogen sources (N), pH, and NaCl. BE screening methods revealed that, Haererehalobacter sp. JS1 was highly positive BE production. Identification by 16S rRNA sequencing and analyses was found that, the Haererehalobacter sp. JS1 was closely related to Salinicoccus halophilus and Haererehalobacter sp. The structural characterization analysis confirmed that the partially purified bioemulsifier belongs to siloxane-type. Emulsification activity (E24) revealed that the bioemulsifier significantly (p < = 0.001) emulsified the commercial oils including coconut oil, gingelly oil, olive oil, and palmolein oils. Haererehalobacter sp. JS1 also significantly (p < = 0.001) degraded the dyes such as orange MR, direct violet, cotton red, reactive yellow, nitro green, and azo dye. RSM regression co-efficient and contour plot analysis clearly indicated that the combination of pH and NaCl helped to increase BE production. Siloxane-type of BE obtained from Haererehalobacter sp. JS1 was able to emulsify different oils and commercial dyes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California

    USGS Publications Warehouse

    Blum, Jodi Switzer; Kulp, Thomas R.; Han, Sukkyun; Lanoil, Brian; Saltikov, Chad W.; Stolz, John F.; Miller, Laurence G.; Oremland, Ronald S.

    2012-01-01

    A haloalkaliphilic sulfate-respiring bacterium, strain SLSR-1, was isolated from a lactate-fed stable enrichment culture originally obtained from the extreme environment of Searles Lake, California. The isolate proved capable of growth via sulfate-reduction over a broad range of salinities (125–330 g/L), although growth was slowest at salt-saturation. Strain SLSR-1 was also capable of growth via dissimilatory arsenate-reduction and displayed an even broader range of salinity tolerance (50–330 g/L) when grown under these conditions. Strain SLSR-1 could also grow via dissimilatory nitrate reduction to ammonia. Growth experiments in the presence of high borate concentrations indicated a greater sensitivity of sulfate-reduction than arsenate-respiration to this naturally abundant anion in Searles Lake. Strain SLSR-1 contained genes involved in both sulfate-reduction (dsrAB) and arsenate respiration (arrA). Amplicons of 16S rRNA gene sequences obtained from DNA extracted from Searles Lake sediment revealed the presence of close relatives of strain SLSR-1 as part of the flora of this ecosystem despite the fact that sulfate-reduction activity could not be detected in situ. We conclude that strain SLSR-1 can only achieve growth via arsenate-reduction under the current chemical conditions prevalent at Searles Lake. Strain SLSR-1 is a deltaproteobacterium in the family Desulfohalobiacea of anaerobic, haloalkaliphilic bacteria, for which we propose the name Desulfohalophilus alkaliarsenatis gen. nov., sp. nov.

  3. Lutibacter litoralis gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from tidal flat sediment.

    PubMed

    Choi, Dong H; Cho, Byung C

    2006-04-01

    A rod-shaped marine bacterium, designated strain CL-TF09T, isolated from a tidal flat in Ganghwa, Korea, was characterized based on its physiological and biochemical features, fatty acid profile and phylogenetic position. 16S rRNA gene sequence analysis revealed a clear affiliation with the family Flavobacteriaceae. Strain CL-TF09T showed the closest phylogenetic relationship with the genera Tenacibaculum and Polaribacter; sequence similarities between CL-TF09T and the type strains of Tenacibaculum and Polaribacter species ranged from 90.7 to 91.8 %. Cells of strain CL-TF09T were non-motile and grew on solid media as yellow colonies. The strain grew in the presence of 1-5 % sea salts, within a temperature range of 5-30 degrees C and at pH 7-8. The strain had iso-C(15 : 0) 3-OH (17.4 %), iso-C(15 : 0) (16.7 %), anteiso-C(15 : 0) (15.1 %) and iso-C(16 : 0) 3-OH (13.4 %) as predominant fatty acids. The DNA G+C content was 33.9 mol%. Based on the physiological, fatty acid composition and phylogenetic data presented, strain CL-TF09T is considered to represent a novel genus and species of the family Flavobacteriaceae, for which the name Lutibacter litoralis gen. nov., sp. nov. is proposed. The type strain is CL-TF09T (=KCCM 42118T = JCM 13034T).

  4. Isolation and characterization of Keratinibaculum paraultunense gen. nov., sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity.

    PubMed

    Huang, Yan; Sun, Yingjie; Ma, Shichun; Chen, Lu; Zhang, Hui; Deng, Yu

    2013-08-01

    A novel thermophilic, anaerobic, keratinolytic bacterium designated KD-1 was isolated from grassy marshland. Strain KD-1 was a spore-forming rod with a Gram-positive type cell wall, but stained Gram-negative. The temperature, pH, and NaCl concentration range necessary for growth was 30-65 °C (optimum 55 °C), 6.0-10.5 (optimum 8.0-8.5), and 0-6% (optimum 0.2%) (w/v), respectively. Strain KD-1 possessed extracellular keratinase, and the optimum activity of the crude enzyme was pH 8.5 and 70 °C. The enzyme was identified as a thermostable serine-type protease. The strain was sensitive to rifampin, chloramphenicol, kanamycin, and tetracycline and was resistant to erythromycin, neomycin, penicillin, and streptomycin. The main cellular fatty acid was predominantly C15:0 iso (64%), and the G+C content was 28 mol%. Morphological and physiological characterization, together with phylogenetic analysis based on 16S rRNA gene sequencing identified KD-1 as a new species of a novel genus of Clostridiaceae with 95.3%, 93.8% 16S rRNA gene sequence similarity to Clostridium ultunense BS(T) (DSM 10521(T)) and Tepidimicrobium xylanilyticum PML14(T) (= JCM 15035(T)), respectively. We propose the name Keratinibaculum paraultunense gen. nov., sp. nov., with KD-1 (=JCM 18769(T) =DSM 26752(T)) as the type strain. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Whole-Genome Sequence of the Soil Bacterium Micrococcus sp. KBS0714.

    PubMed

    Kuo, V; Shoemaker, W R; Muscarella, M E; Lennon, J T

    2017-08-10

    We present here a draft genome assembly of Micrococcus sp. KBS0714, which was isolated from agricultural soil. The genome provides insight into the strategies that Micrococcus spp. use to contend with environmental stressors such as desiccation and starvation in environmental and host-associated ecosystems. Copyright © 2017 Kuo et al.

  6. Fine Structure and Host-Virus Relationship of a Marine Bacterium and Its Bacteriophage

    PubMed Central

    Valentine, Artrice F.; Chapman, George B.

    1966-01-01

    Valentine, Artrice F. (Georgetown University, Washington, D.C.), and George B. Chapman. Fine structure and host-virus relationship of a marine bacterium and its bacteriophage. J. Bacteriol. 92:1535–1554. 1966.—The fine structure of a gram-negative marine bacterium, Cytophaga marinoflava sp. n., has been revealed by ultrathin sectioning and electron microscopy. Stages in the morphogenesis of the bacterial virus NCMB 385, which has been shown to be highly specific for this organism, were also demonstrated in bacterial cells fixed according to the Kellenberger technique. The bacterium possessed a cell wall, cytoplasmic membrane, and nuclear and cytoplasmic regions typical of bacterial cells. Both the cell wall and the cytoplasmic membrane showed a tripartite structure, i.e., each was composed of two dense layers separated by a low-density zone. Intracytoplasmic membrane systems were also observed, especially in dividing cells and in cells in which new viruses were being formed. As many as 18 hexagonally shaped, empty phage heads (membranes only) were observed in untreated, infected bacterial cells. Phage heads, intermediate in density to empty heads and fully condensed ones, possibly representing stages in the morphological development of the virus, were also seen. Images PMID:5924277

  7. Oxygen-Dependent Growth of the Sulfate-Reducing Bacterium Desulfovibrio oxyclinae in Coculture with Marinobacter sp. Strain MB in an Aerated Sulfate-Depleted Chemostat

    PubMed Central

    Sigalevich, Pavel; Cohen, Yehuda

    2000-01-01

    A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae and the facultatively aerobic heterotroph Marinobacter sp. strain MB was grown for 1 week under anaerobic conditions at a dilution rate of 0.05 h−1. It was then exposed to an oxygen flux of 223 μmol min−1 by gassing the growth vessel with 5% O2. Sulfate reduction persisted under these conditions, though the amount of sulfate reduced decreased by 45% compared to the amount reduced during the initial anaerobic mode. After 1 week of growth under these conditions, sulfate was excluded from the incoming medium. The sulfate concentration in the growth vessel decreased exponentially from 4.1 mM to 2.5 μM. The coculture consumed oxygen effectively, and no residual oxygen was detected during either growth mode in which oxygen was supplied. The proportion of D. oxyclinae cells in the coculture as determined by in situ hybridization decreased from 86% under anaerobic conditions to 70% in the microaerobic sulfate-reducing mode and 34% in the microaerobic sulfate-depleted mode. As determined by the most-probable-number (MPN) method, the numbers of viable D. oxyclinae cells during the two microaerobic growth modes decreased compared to the numbers during the anaerobic growth mode. However, there was no significant difference between the MPN values for the two modes when oxygen was supplied. The patterns of consumption of electron donors and acceptors suggested that when oxygen was supplied in the absence of sulfate and thiosulfate, D. oxyclinae performed incomplete aerobic oxidation of lactate to acetate. This is the first observation of oxygen-dependent growth of a sulfate-reducing bacterium in the absence of either sulfate or thiosulfate. Cells harvested during the microaerobic sulfate-depleted stage and exposed to sulfate and thiosulfate in a respiration chamber were capable of anaerobic sulfate and thiosulfate reduction. PMID:11055958

  8. Optimization of four types of antimicrobial agents to increase the inhibitory ability of marine Arthrobacter oxydans KQ11 dextranase mouthwash

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Wang, Shujun; Lü, Mingsheng; Wang, Xiaobei; Fang, Yaowei; Jiao, Yuliang; Hu, Jianen

    2016-03-01

    We adopted the response surface methodology using single factor and orthogonal experiments to optimize four types of antimicrobial agents that could inhibit biofilm formation by Streptococcus mutans, which is commonly found in the human oral cavity and causes tooth decay. The objective was to improve the function of marine Arthrobacter oxydans KQ11 dextranase mouthwash (designed and developed by our laboratory). The experiment was conducted in a three-level, four-variable central composite design to determine the best combination of ZnSO4, lysozyme, citric acid and chitosan. The optimized antibacterial agents were 2.16 g/L ZnSO4, 14 g/L lysozyme, 4.5 g/L citric acid and 5 g/L chitosan. The biofilm formation inhibition reached 84.49%. In addition, microscopic observation of the biofilm was performed using scanning electron microscopy and confocal laser scanning microscopy. The optimized formula was tested in marine dextranase Arthrobacter oxydans KQ11 mouthwash and enhanced the inhibition of S. mutans. This work may be promoted for the design and development of future marine dextranase oral care products.

  9. Genome Sequence of Carbon Dioxide-Sequestering Serratia sp. Strain ISTD04 Isolated from Marble Mining Rocks.

    PubMed

    Kumar, Manish; Gazara, Rajesh Kumar; Verma, Sandhya; Kumar, Madan; Verma, Praveen Kumar; Thakur, Indu Shekhar

    2016-10-20

    The Serratia sp. strain ISTD04 has been identified as a carbon dioxide (CO 2 )-sequestering bacterium isolated from marble mining rocks in the Umra area, Rajasthan, India. This strain grows chemolithotrophically on media that contain sodium bicarbonate (NaHCO 3 ) as the sole carbon source. Here, we report the genome sequence of 5.07 Mb Serratia sp. ISTD04. Copyright © 2016 Kumar et al.

  10. Biodegradation of cyanide by acetonitrile-induced cells of Rhodococcus sp. UKMP-5M.

    PubMed

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Ibrahim, Abdul Latif; Cass, Anthony E G

    2013-01-01

    A Rhodococcus sp. UKMP-5M isolate was shown to detoxify cyanide successfully, suggesting the presence of an intrinsic property in the bacterium which required no prior cyanide exposure for induction of this property. However, in order to promote growth, Rhodococcus sp. UKMP-5M was fully acclimatized to cyanide after 7 successive subcultures in 0.1 mM KCN for 30 days. To further shorten the lag phase and simultaneously increase the tolerance towards higher cyanide concentrations, the bacterium was induced with various nitrile compounds sharing a similar degradatory pathway to cyanide. Acetonitrile emerged as the most favored inducer and the induced cells were able to degrade 0.1 mM KCN almost completely within 18 h. With the addition of subsequent aliquots of 0.1 mM KCN a shorter period for complete removal of cyanide was required, which proved to be advantageous economically. Both resting cells and crude enzyme of Rhodococcus sp. UKMP-5M were able to biodegrade cyanide to ammonia and formate without the formation of formamide, implying the identification of a simple hydrolytic cyanide degradation pathway involving the enzyme cyanidase. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Since the recent advancement in the application of biological methods in treating cyanide-bearing wastewater has been promising, the discovery of this new bacterium will add value by diversifying the existing microbial populations capable of cyanide detoxification.

  11. Biodegradation of nicotine by a novel nicotine-degrading bacterium, Pseudomonas plecoglossicida TND35 and its new biotransformation intermediates.

    PubMed

    Raman, Gurusamy; Mohan, KasiNadar; Manohar, Venkat; Sakthivel, Natarajan

    2014-02-01

    Tobacco wastes that contain nicotine alkaloids are harmful to human health and the environment. In the investigation, a novel nicotine-biodegrading bacterium TND35 was isolated and identified as Pseudomonas plecoglossicida on the basis of phenotypic, biochemical characteristics and 16S rRNA sequence homology. We have studied the nicotine biodegradation potential of strain TND35 by detecting the intermediate metabolites using an array of approaches such as HPLC, GC-MS, NMR and FT-IR. Biotransformation metabolites, N-methylmyosmine, 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) and other three new intermediate metabolites namely, 3,5-bis (1-methylpyrrolidin-2-yl) pyridine, 2,3-dihydro-1-methyl-5-(pyridin-3-yl)-1H-pyrrol-2-ol and 5-(pyridin-3-yl)-1H-pyrrol-2(3H)-one have been identified. Interestingly, these intermediate metabolites suggest that the strain TND35 employs a novel nicotine biodegradation pathway, which is different from the reported pathways of Aspergillus oryzae 112822, Arthrobacter nicotinovorans pAO1, Agrobacterium tumefaciens S33 and other species of Pseudomonas. The metabolite, HPB reported in this study can also be used as biochemical marker for tobacco related cancer studies.

  12. Draft genome sequence of Pseudomonas sp. strain M47T1, carried by Bursaphelenchus xylophilus isolated from Pinus pinaster.

    PubMed

    Proença, Diogo Neves; Espírito Santo, Christophe; Grass, Gregor; Morais, Paula V

    2012-09-01

    The draft genome sequence of Pseudomonas sp. strain M47T1, carried by the Bursaphelenchus xylophilus pinewood nematode, the causative agent of pine wilt disease, is presented. In Pseudomonas sp. strain M47T1, genes that make this a plant growth-promoting bacterium, as well as genes potentially involved in nematotoxicity, were identified.

  13. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Jeffrey G.

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  14. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE PAGES

    Gardner, Jeffrey G.

    2016-06-04

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  15. MEASURING GROWTH OF A PHENANTHRENE DEGRADING BACTERIAL INOCULUM IN SOIL WITH A QUANTITATIVE COMPETITIVE POLYMERASE CHAIN REACTION METHOD. (R825433)

    EPA Science Inventory

    We measured growth of a phenanthrene-degrading bacterium, Arthrobacter, strain RP17, in Forbes soil, amended with 500 small mu, Greekg g−1 phenanthrene using a quantitati...

  16. Isolation and Characterization of a Novel, Highly Selective Astaxanthin-Producing Marine Bacterium.

    PubMed

    Asker, Dalal

    2017-10-18

    A high-throughput screening approach for astaxanthin-producing bacteria led to the discovery of a novel, highly selective astaxanthin-producing marine bacterium (strain N-5). Phylogenetic analysis based on partial 16S rRNA gene and phenotypic metabolic testing indicated it belongs to the genus Brevundimonas. Therefore, it was designated as Brevundimonas sp. strain N-5. To identify and quantify carotenoids produced by strain N-5, HPLC-DAD and HPLC-MS methods were used. The culture conditions including media, shaking, and time had significant effects on cell growth and carotenoids production including astaxanthin. The total carotenoids were ∼601.2 μg g -1 dry cells including a remarkable amount (364.6 μg g -1 dry cells) of optically pure astaxanthin (3S, 3'S) isomer, with high selectivity (∼60.6%) under medium aeration conditions. Notably, increasing the culture aeration enhanced astaxanthin production up to 85% of total carotenoids. This is the first report that describes a natural, highly selective astaxanthin-producing marine bacterium.

  17. Draft Genome Sequence of a Tetrabromobisphenol A–Degrading Strain, Ochrobactrum sp. T, Isolated from an Electronic Waste Recycling Site

    PubMed Central

    Liang, Zhishu; Li, Guiying; Zhang, Guoxia; Das, Ranjit

    2016-01-01

    Ochrobactrum sp. T was previously isolated from a sludge sample collected from an electronic waste recycling site and characterized as a unique tetrabromobisphenol A (TBBPA)–degrading bacterium. Here, the draft genome sequence (3.9 Mb) of Ochrobactrum sp. T is reported to provide insights into its diversity and its TBBPA biodegradation mechanism in polluted environments. PMID:27445374

  18. Complete Genome Sequence of Bradyrhizobium sp. Strain CCGE-LA001, Isolated from Field Nodules of the Enigmatic Wild Bean Phaseolus microcarpus

    PubMed Central

    Servín-Garcidueñas, Luis E.; Rogel, Marco A.; Ormeño-Orrillo, Ernesto; Zayas-del Moral, Alejandra; Sánchez, Federico

    2016-01-01

    We present the complete genome sequence of Bradyrhizobium sp. strain CCGE-LA001, a nitrogen-fixing bacterium isolated from nodules of Phaseolus microcarpus. Strain CCGE-LA001 represents the first sequenced bradyrhizobial strain obtained from a wild Phaseolus sp. Its genome revealed a large and novel symbiotic island. PMID:26988045

  19. Corynebacterium riegelii sp. nov., an Unusual Species Isolated from Female Patients with Urinary Tract Infections

    PubMed Central

    Funke, Guido; Lawson, Paul A.; Collins, Matthew D.

    1998-01-01

    Four strains of an unknown coryneform bacterium were isolated in pure culture from females with urinary tract infections. Strong urease activity and the ability to slowly ferment maltose but not glucose were the most significant phenotypic features of this catalase-positive, nonmotile, nonlipophilic, rod-shaped bacterium which served to distinguish it from all other presently defined coryneform bacteria. Chemotaxonomic investigations demonstrated that the unknown bacterium belonged to the genus Corynebacterium. Comparative 16S rRNA gene sequence analysis revealed that the isolates were genealogically identical and represented a new subline within the genus Corynebacterium, for which the designation Corynebacterium riegelii sp. nov. is proposed. The type strain of Corynebacterium riegelii is CCUG 38180 (DSM 44326, CIP 105310). PMID:9508284

  20. Novel Trypanosomatid-Bacterium Association: Evolution of Endosymbiosis in Action

    PubMed Central

    Kostygov, Alexei Y.; Dobáková, Eva; Grybchuk-Ieremenko, Anastasiia; Váhala, Dalibor; Maslov, Dmitri A.; Votýpka, Jan

    2016-01-01

    ABSTRACT We describe a novel symbiotic association between a kinetoplastid protist, Novymonas esmeraldas gen. nov., sp. nov., and an intracytoplasmic bacterium, “Candidatus Pandoraea novymonadis” sp. nov., discovered as a result of a broad-scale survey of insect trypanosomatid biodiversity in Ecuador. We characterize this association by describing the morphology of both organisms, as well as their interactions, and by establishing their phylogenetic affinities. Importantly, neither partner is closely related to other known organisms previously implicated in eukaryote-bacterial symbiosis. This symbiotic association seems to be relatively recent, as the host does not exert a stringent control over the number of bacteria harbored in its cytoplasm. We argue that this unique relationship may represent a suitable model for studying the initial stages of establishment of endosymbiosis between a single-cellular eukaryote and a prokaryote. Based on phylogenetic analyses, Novymonas could be considered a proxy for the insect-only ancestor of the dixenous genus Leishmania and shed light on the origin of the two-host life cycle within the subfamily Leishmaniinae. PMID:26980834

  1. Enhancement of DNaseI Salt Tolerance by Mimicking the Domain Structure of DNase from an Extremely Halotolerant Bacterium Thioalkalivibrio sp. K90mix

    PubMed Central

    Alzbutas, Gediminas; Kaniusaite, Milda; Lagunavicius, Arunas

    2016-01-01

    In our previous work we showed that DNaseI-like protein from an extremely halotolerant bacterium Thioalkalivibrio sp. K90mix retained its activity at salt concentrations as high as 4 M NaCl and the key factor allowing this was the C-terminal DNA-binding domain, which comprised two HhH (helix-hairpin-helix) motifs. The further investigations revealed that this domain originated from proteins related to bacterial competence ComEA/ComE proteins. It is likely that in the course of evolution the DNA-binding domain from these proteins was fused to a metallo-β-lactamase superfamily domain. Very likely such domain organization having proteins subsequently “donated” the DNA-binding domain to bacterial DNases. In this study we have mimicked this evolutionary step by fusing bovine DNaseI and DNA-binding domains. We have created two fusions: one harboring the DNA-binding domain of DNaseI-like protein from Thioalkalivibrio sp. K90mix and the second one harboring the DNA-binding domain of bacterial competence protein ComEA from Bacillus subtilis. Both domains enhanced salt tolerance of DNaseI, albeit to different extent. Molecular modeling revealed the essential differences between their interaction with DNA shedding some light on the differences in salt tolerance. In this study we have enhanced salt tolerance of bovine DNaseI; thus, we successfully mimicked the Nature’s evolutionary engineering that created the extremely halotolerant bacterial DNase. We have demonstrated that the newly engineered DNaseI variants can be successfully used in applications where activity of the wild type bovine DNaseI is impeded by buffers used. PMID:26939122

  2. Crystal structure of the inactive state of the receiver domain of Spo0A from Paenisporosarcina sp. TG-14, a psychrophilic bacterium isolated from an Antarctic glacier.

    PubMed

    Lee, Chang Woo; Park, Sun-Ha; Lee, Sung Gu; Shin, Seung Chul; Han, Se Jong; Kim, Han-Woo; Park, Hyun Ho; Kim, Sunghwan; Kim, Hak Jun; Park, Hyun; Park, HaJeung; Lee, Jun Hyuck

    2017-06-01

    The two-component phosphorelay system is the most prevalent mechanism for sensing and transducing environmental signals in bacteria. Spore formation, which relies on the two-component phosphorelay system, enables the long-term survival of the glacial bacterium Paenisporosarcina sp. TG-14 in the extreme cold environment. Spo0A is a key response regulator of the phosphorelay system in the early stage of spore formation. The protein is composed of a regulatory N-terminal phospho-receiver domain and a DNA-binding C-terminal activator domain. We solved the three-dimensional structure of the unphosphorylated (inactive) form of the receiver domain of Spo0A (PaSpo0A-R) from Paenisporosarcina sp. TG-14. A structural comparison with phosphorylated (active form) Spo0A from Bacillus stearothermophilus (BsSpo0A) showed minor notable differences. A molecular dynamics study of a model of the active form and the crystal structures revealed significant differences in the α4 helix and the preceding loop region where phosphorylation occurs. Although an oligomerization study of PaSpo0A-R by analytical ultracentrifugation (AUC) has shown that the protein is in a monomeric state in solution, both crosslinking and crystal-packing analyses indicate the possibility of weak dimer formation by a previously undocumented mechanism. Collectively, these observations provide insight into the mechanism of phosphorylation-dependent activation unique to Spo0A.

  3. Novel structural features of xylanase A1 from Paenibacillus sp. JDR-2

    Treesearch

    Franz J. St John; James F. Preston; Edwin Pozharski

    2012-01-01

    The Gram-positive bacterium Paenibacillus sp. JDR-2 (PbJDR2) has been shown to have novel properties in the utilization of the abundant but chemically complex hemicellulosic sugar glucuronoxylan. Xylanase A1 of PbJDR2 (PbXynA1) has been implicated in an efficient process in which extracellular...

  4. Fate and metabolism of tetrabromobisphenol A in soil slurries without and with the amendment with the alkylphenol degrading bacterium Sphingomonas sp. strain TTNP3.

    PubMed

    Li, Fangjie; Wang, Jiajia; Nastold, Peter; Jiang, Bingqi; Sun, Feifei; Zenker, Armin; Kolvenbach, Boris Alexander; Ji, Rong; François-Xavier Corvini, Philippe

    2014-10-01

    Transformation of ring-(14)C-labelled tetrabromobisphenol-A (TBBPA) was studied in an oxic soil slurry with and without amendment with Sphingomonas sp. strain TTNP3, a bacterium degrading bisphenol-A. TBBPA degradation was accompanied by mineralization and formation of metabolites and bound-residues. The biotransformation was stimulated in the slurry bio-augmented with strain TTNP3, via a mechanism of metabolic compensation, although this strain did not grow on TBBPA. In the absence and presence of strain TTNP3, six and nine metabolites, respectively, were identified. The initial O-methylation metabolite (TBBPA-monomethyl ether) and hydroxytribromobisphenol-A were detected only when strain TTNP3 was present. Four primary metabolic pathways of TBBPA in the slurries are proposed: oxidative skeletal rearrangements, O-methylation, ipso-substitution, and reductive debromination. Our study provides for the first time the information about the complex metabolism of TBBPA in oxic soil and suggests that type II ipso-substitution could play a significant role in the fate of alkylphenol derivatives in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate- and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico.

    PubMed

    Miranda-Tello, Elizabeth; Fardeau, Marie-Laure; Sepúlveda, José; Fernández, Luis; Cayol, Jean-Luc; Thomas, Pierre; Ollivier, Bernard

    2003-09-01

    A novel Gram-positive, anaerobic and thermophilic bacterium, strain MET79(T), was isolated from an oil well located in the Gulf of Mexico. Cells were straight rods, motile by a subpolar flagellum. Spores were formed in old cultures. Inner gas vacuoles swelled the cells when exposed to air. The optimum growth conditions were 55 degrees C, pH 7.5 and 1 % NaCl. Yeast extract was required for growth. Strain MET79(T) fermented several sugars, some organic acids and Casamino acids. Glucose was fermented into lactate, acetate, butyrate, H(2) and CO(2). Strain MET79(T) reduced thiosulfate to hydrogen sulfide and nitrate to ammonium. The DNA G+C content was 30.9 mol%. The closest phylogenetic relative of strain MET79(T) was Caloranaerobacter azorensis (88.7 % 16S rDNA sequence similarity). As strain MET79(T) (=DSM 15102(T)=CIP 107615(T)) was physiologically and phylogenetically different from its closest relatives, it is assigned as the type strain of a novel species of a new genus, Garciella nitratireducens gen. nov., sp. nov.

  6. Complete genome sequence of "Thiodictyon syntrophicum" sp. nov. strain Cad16T, a photolithoautotrophic purple sulfur bacterium isolated from the alpine meromictic Lake Cadagno.

    PubMed

    Luedin, Samuel M; Pothier, Joël F; Danza, Francesco; Storelli, Nicola; Frigaard, Niels-Ulrik; Wittwer, Matthias; Tonolla, Mauro

    2018-01-01

    " Thiodictyon syntrophicum" sp. nov. strain Cad16 T is a photoautotrophic purple sulfur bacterium belonging to the family of Chromatiaceae in the class of Gammaproteobacteria . The type strain Cad16 T was isolated from the chemocline of the alpine meromictic Lake Cadagno in Switzerland. Strain Cad16 T represents a key species within this sulfur-driven bacterial ecosystem with respect to carbon fixation. The 7.74-Mbp genome of strain Cad16 T has been sequenced and annotated. It encodes 6237 predicted protein sequences and 59 RNA sequences. Phylogenetic comparison based on 16S rRNA revealed that Thiodictyon elegans strain DSM 232 T the most closely related species. Genes involved in sulfur oxidation, central carbon metabolism and transmembrane transport were found. Noteworthy, clusters of genes encoding the photosynthetic machinery and pigment biosynthesis are found on the 0.48 Mb plasmid pTs485. We provide a detailed insight into the Cad16 T genome and analyze it in the context of the microbial ecosystem of Lake Cadagno.

  7. Alkaliphilus namsaraevii sp. nov., an alkaliphilic iron- and sulfur-reducing bacterium isolated from a steppe soda lake.

    PubMed

    Zakharyuk, Anastasiya; Kozyreva, Lyudmila; Ariskina, Elena; Troshina, Olga; Kopitsyn, Dmitry; Shcherbakova, Viktoria

    2017-06-01

    A novel alkaliphilic spore-forming bacterium was isolated from the benthic sediments of the highly mineralized steppe Lake Khilganta (Transbaikal Region, Russia). Cells of the strain, designated Х-07-2T, were straight to slightly curved rods, Gram-stain-positive and motile. Strain Х-07-2T grew in the pH range from 7.0 to 10.7 (optimum pH 9.6-10.3). Growth was observed at 25-47 °C (optimum 30 °C) and at an NaCl concentration from 5 to 150 g l-1 with an optimum at 40 g l-1. Strain Х-07-2T was a chemo-organoheterotroph able to reduce amorphous ferric hydroxide, Fe(III) citrate and elemental sulfur in the presence of yeast extract as the electron donor. It used tryptone, peptone and trypticase with Fe(III) citrate as the electron acceptor. The predominant fatty acids in cell walls were C16:1ω8, iso-C15:0, C14 : 0 3-OH and C16 : 0. The DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis revealed that strain Х-07-2T was related most closely to members of the genus Alkaliphilus within the family Clostridiaceae. The closest relative was Alkaliphilus peptidifermentans Z-7036T (96.4 % similarity). On the basis of the genotypic, chemotaxonomic and phenotypic data, strain Х-07-2T represents a novel species in the genus Alkaliphilus, for which the name Alkaliphilus namsaraevii sp. nov. is proposed. The type strain is Х-07-2T (=VKM В-2746Т=DSM 26418Т).

  8. Statistical optimization of process parameters for inulinase production from Tithonia weed by Arthrobacter mysorens strain no.1.

    PubMed

    Kamble, Prajakta P; Kore, Maheshkumar V; Patil, Sushama A; Jadhav, Jyoti P; Attar, Yasmin C

    2018-06-01

    Tithonia rotundifolia is an easily available and abundant inulin rich weed reported to be competitive and allelopathic. This weed inulin is hydrolyzed by inulinase into fructose. Response surface methodology was employed to optimize culture conditions for the inulinase production from Arthrobacter mysorens strain no.1 isolated from rhizospheric area of Tithonia weed. Initially, Plackett- Burman design was used for screening 11 nutritional parameters for inulinase production including inulin containing weeds as cost effective substrate. The experiment shows that amongst the 11 parameters studied, K 2 HPO 4 , Inulin, Agave sisalana extract and Tithonia rotundifolia were the most significant variables for inulinase production. Quantitative effects of these 4 factors were further investigated using Box Behnken design. The medium having 0.27% K 2 HPO 4 , 2.54% Inulin, 6.57% Agave sisalana extract and 7.27% Tithonia rotundifolia extract were found to be optimum for maximum inulinase production. The optimization strategies used showed 2.12 fold increase in inulinase yield (1669.45 EU/ml) compared to non-optimized medium (787 EU/ml). Fructose produced by the action of inulinase was further confirmed by spectrophotometer, osazone, HPTLC and FTIR methods. Thus Tithonia rotundifolia can be used as an eco-friendly, economically feasible and promising alternative substrate for commercial inulinase production yielding fructose from Arthrobacter mysorens strain no.1. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Anoxybacillus calidus sp. nov., a thermophilic bacterium isolated from soil near a thermal power plant.

    PubMed

    Cihan, Arzu Coleri; Cokmus, Cumhur; Koc, Melih; Ozcan, Birgul

    2014-01-01

    A novel thermophilic, Gram-stain-positive, facultatively anaerobic, endospore-forming, motile, rod-shaped bacterium, strain C161ab(T), was isolated from a soil sample collected near Kizildere, Saraykoy-Buharkent power plant in Denizli. The isolate could grow at temperatures between 35 and 70 °C (optimum 55 °C), at pH 6.5-9.0 (optimum pH 8.0-8.5) and with 0-2.5 % NaCl (optimum 0.5 %, w/v). The strain formed cream-coloured, circular colonies and tolerated up to 70 mM boron. Its DNA G+C content was 37.8 mol%. The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. Strain C161ab(T) contained menaquinones MK-7 (96 %) and MK-6 (4 %). The major cellular fatty acids were iso-branched fatty acids: iso-C15 : 0 (52.2 %) and iso-C17 : 0 (28.0 %,) with small amounts of C16 : 0 (7.4 %). Phylogenetic analysis based on the 16S rRNA gene revealed 94.6-96.8 % sequence similarity with all recognized species of the genus Anoxybacillus. Strain C161ab(T) showed the greatest sequence similarity to Anoxybacillus rupiensis DSM 17127(T) and Anoxybacillus voinovskiensis DSM 17075(T), both had 96.8 % similarity to strain C161ab(T), as well as to Anoxybacillus caldiproteolyticus DSM 15730(T) (96.6 %). DNA-DNA hybridization revealed low levels of relatedness with the closest relatives of strain C161ab(T), A. rupiensis (21.2 %) and A. voinovskiensis (16.5 %). On the basis of the results obtained from phenotypic, chemotaxonomic, genomic fingerprinting, phylogenetic and hybridization analyses, the isolate is proposed to represent a novel species, Anoxybacillus calidus sp. nov. (type strain C161ab(T) = DSM 25520(T) = NCIMB 14851(T)).

  10. Sediminibacillus massiliensis sp. nov., a moderately halophilic, Gram-positive bacterium isolated from a stool sample of a young Senegalese man.

    PubMed

    Senghor, Bruno; Bassène, Hubert; Khelaifia, Saber; Robert, Catherine; Fournier, Pierre-Edouard; Ruimy, Raymond; Sokhna, Cheikh; Raoult, Didier; Lagier, Jean-Christophe

    2018-07-01

    A Gram-positive, moderately halophilic bacterium, referred to as strain Marseille-P3518 T , was isolated from a stool sample with 2% NaCl concentration from a healthy 15-year-old male living in Dielmo, a village in Senegal. Cells are aerobic, rod-shaped and motile and display endospore formation. Strain Marseille-P3518 T can grow in a medium with 0-20% (w/v) sodium chloride (optimally at 5-7.5% w/v). The major fatty acids were 12-methyl-tetradecanoic acid (45.8%), 13-methyl-tetradecanoic acid (26.9%) and 12-methyl-tridecanoic acid (12.8%). The genome is 4,347,479 bp long with 42.1% G+C content. It contains 4282 protein-coding and 107 RNA genes. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that strain Marseille-P3518 T is a member of the Bacillaceae family and is closely related to Sediminibacillus albus (97.4% gene sequence similarity). Strain Marseille-P3518 T was clearly differentiated from its phylogenetic neighbors on the basis of phenotypic and genotypic features. Strain Marseille-P3518 T is, therefore, considered to be a novel representative of the genus Sediminibacillus, for which the name Sediminibacillus massiliensis sp. nov. is proposed, and the type strain is Marseille-P3518 T (CSUR P3518T, DSM69894).

  11. Characterization of a new marine nitrite oxidizing bacterium, Nitrospina watsonii sp. nov., a member of the newly proposed phylum "Nitrospinae".

    PubMed

    Spieck, Eva; Keuter, Sabine; Wenzel, Thilo; Bock, Eberhard; Ludwig, Wolfgang

    2014-05-01

    Nitrite oxidizing bacteria are an integral part of the nitrogen cycle in marine waters, but the knowledge about their diversity is limited. Recently, a high abundance of Nitrospina-like 16S rRNA gene sequences has been detected in oceanic habitats with low oxygen content by molecular methods. Here, we describe a new strain of Nitrospina, which was sampled in 100m depth from the Black Sea. It coexisted with a not-yet cultivated chemoorganotrophic gammaproteobacterium and could be purified by classical isolation methods including Percoll density gradient centrifugation. The new Nitrospina-like bacterium grew lithoautotrophically at 28°C in diluted seawater supplemented with inorganic salts and nitrite. Gram-negative rods were characterized morphologically, physiologically and partly biochemically. The 16S rRNA gene of the new strain of Nitrospina is 97.9% similar to the described species N. gracilis and DNA/DNA hybridization experiments revealed a relatedness of 30.0%. The data from both Nitrospina species and environmental clones were used for an extensive 16S rRNA based phylogenetic study applying high quality filtering. Treeing analyses confirm the newly defined phylum status for "Nitrospinae" [18]. The results of phylogenetic and genotypic analyses support the proposal of a novel species Nitrospina watsonii sp. nov. (type strain 347(T), LMG 27401(T), NCIMB 14887(T)). Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Isolation of a human intestinal anaerobe, Bifidobacterium sp. strain SEN, capable of hydrolyzing sennosides to sennidins.

    PubMed Central

    Akao, T; Che, Q M; Kobashi, K; Yang, L; Hattori, M; Namba, T

    1994-01-01

    A strictly anaerobic bacterium capable of metabolizing sennosides was isolated from human feces and identified as Bifidobacterium sp., named strain SEN. The bacterium hydrolyzed sennosides A and B to sennidins A and B via sennidin A and B 8-monoglucosides, respectively. Among nine species of Bifidobacterium having beta-glucosidase activity, only Bifidobacterium dentium and B. adolescentis metabolized sennoside B to sennidin B, suggesting that the sennoside-metabolizing bacteria produce a novel type of beta-glucosidase capable of hydrolyzing sennosides to sennidins. PMID:8161172

  13. Genomic, Proteomic, and Metabolite Characterization of Gemfibrozil-Degrading Organism Bacillus sp. GeD10.

    PubMed

    Kjeldal, Henrik; Zhou, Nicolette A; Wissenbach, Dirk K; von Bergen, Martin; Gough, Heidi L; Nielsen, Jeppe L

    2016-01-19

    Gemfibrozil is a widely used hypolipidemic and triglyceride lowering drug. Excess of the drug is excreted and discharged into the environment primarily via wastewater treatment plant effluents. Bacillus sp. GeD10, a gemfibrozil-degrader, was previously isolated from activated sludge. It is the first identified bacterium capable of degrading gemfibrozil. Gemfibrozil degradation by Bacillus sp. GeD10 was here studied through genome sequencing, quantitative proteomics and metabolite analysis. From the bacterial proteome of Bacillus sp. GeD10 1974 proteins were quantified, of which 284 proteins were found to be overabundant by more than 2-fold (FDR corrected p-value ≤0.032, fold change (log2) ≥ 1) in response to gemfibrozil exposure. Metabolomic analysis identified two hydroxylated intermediates as well as a glucuronidated hydroxyl-metabolite of gemfibrozil. Overall, gemfibrozil exposure in Bacillus sp. GeD10 increased the abundance of several enzymes potentially involved in gemfibrozil degradation as well as resulted in the production of several gemfibrozil metabolites. The potential catabolic pathway/modification included ring-hydroxylation preparing the substrate for subsequent ring cleavage by a meta-cleaving enzyme. The identified genes may allow for monitoring of potential gemfibrozil-degrading organisms in situ and increase the understanding of microbial processing of trace level contaminants. This study represents the first omics study on a gemfibrozil-degrading bacterium.

  14. Transformation of Dibenzo-p-Dioxin by Pseudomonas sp. Strain HH69

    PubMed Central

    Harms, Hauke; Wittich, Rolf-Michael; Sinnwell, Volker; Meyer, Holger; Fortnagel, Peter; Francke, Wittko

    1990-01-01

    Dibenzo-p-dioxin was oxidatively cleaved by the dibenzofuran-degrading bacterium Pseudomonas sp. strain HH69 to produce minor amounts of 1-hydroxydibenzo-p-dioxin and catechol, while a 2-phenoxy derivative of muconic acid was formed as the major product. Upon acidic methylation, the latter yielded the dimethylester of cis, trans-2-(2-hydroxyphenoxy)-muconic acid. PMID:16348160

  15. Genome Sequence of Janthinobacterium sp. Strain PAMC 25724, Isolated from Alpine Glacier Cryoconite

    PubMed Central

    Kim, Su Jin; Shin, Seung Chul; Hong, Soon Gyu; Lee, Yung Mi; Lee, Hyoungseok; Lee, Jungeun

    2012-01-01

    The draft genome of Janthinobacterium sp. strain PAMC 25724, which is a violacein-producing psychrotolerant bacterium, was determined. The strain was isolated from glacier cryoconite of the Alps mountain permafrost region. The sequence will allow identification and characterization of the genetic determination of its cold-adaptive properties. PMID:22461541

  16. Salimesophilobacter vulgaris gen. nov., sp. nov., an anaerobic bacterium isolated from paper-mill wastewater.

    PubMed

    Zhang, Yan-Zhou; Fang, Ming-Xu; Zhang, Wen-Wu; Li, Tian-Tian; Wu, Min; Zhu, Xu-Fen

    2013-04-01

    A novel anaerobic, heterotrophic bacterium, designated strain Zn2(T), was isolated from the wastewater of a paper mill in Zhejiang, China. Cells were gram-type-positive rods, 0.5-0.8 µm wide and 2-4 µm long, and were motile by a lateral flagellum. The ranges of temperature and pH for growth were 10-50 °C and pH 6.0-9.5. Optimal growth occurred at 35 °C and pH 7.3-7.5. The strain did not require NaCl for growth, but its inclusion in the medium improved growth (optimum concentration 6 %). Substrates utilized as sole carbon sources were peptone, tryptone, Casamino acids, D-xylose, salicin, glycerol, formate, acetate and propionate. The main products of carbohydrate fermentation were acetate, formate, propionate and lactate. Elemental sulfur, thiosulfate and Fe(III) were used as electron acceptors, but sulfate, sulfite, nitrate, nitrite and Mn(IV) were not. Growth was inhibited by the addition of 10 µg ampicillin, penicillin, tetracycline or chloramphenicol ml(-1). iso-C15 : 0, C14 : 0, C16 : 0, C16 : 1 cis9 and C18 : 1 cis9 were the major fatty acids. Strain Zn2(T) did not contain any detectable menaquinones or ubiquinones. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, two unknown phospholipids and four unknown glycolipids. The genomic DNA G+C content was 37 mol%, as determined by HPLC. 16S rRNA gene sequence analysis revealed that strain Zn2(T) was a member of family Clostridiaceae, and was most closely related to the type strains of Geosporobacter subterraneus, Thermotalea metallivorans and Caminicella sporogenes, showing 91.2, 90.3 and 91.1 % sequence similarity, respectively. On the basis of its phenotypic and genotypic properties, strain Zn2(T) is suggested to represent a novel species of a new genus, for which the name Salimesophilobacter vulgaris gen. nov., sp. nov. is proposed. The type strain of Salimesophilobacter vulgaris is Zn2(T) ( = DSM 24770(T)

  17. Cometabolism of DDT analogs by a Pseudomonas sp.

    PubMed Central

    Francis, A J; Spanggord, R J; Ouchi, G I; Bohonos, N

    1978-01-01

    A Pseudomonas sp. capable of growth on several nonchlorinated and mono-p-chloro-substituted analogs of DDT as a sole carbon source degraded bis(p-chlorophenyl)methane and 1,1-bis(p-chlorophenyl)ethane only in the presence of diphenylethane. The products p-chlorophenylacetic acid and 2-(p-chlorophenyl)-propionic acid were not further metabolized by the bacterium. Other chlorinated analogs of DDT were found to be recalcitrant to cometabolic degradation with diphenylethane. PMID:637537

  18. A novel marine bacterium algicidal to the toxic dinoflagellate Alexandrium tamarense.

    PubMed

    Wang, B X; Zhou, Y Y; Bai, S J; Su, J Q; Tian, Y; Zheng, T L; Yang, X R

    2010-11-01

    This work is aiming at investigating algicidal characterization of a bacterium isolate DHQ25 against harmful alga Alexandrium tamarense. 16S rDNA sequence analysis showed that the most probable affiliation of DHQ25 belongs to the γ-proteobacteria subclass and the genus Vibrio. Bacterial isolate DHQ25 showed algicidal activity through an indirect attack. Xenic culture of A. tamarense was susceptible to the culture filtrate of DHQ25 by algicidal activity assay. Algicidal process demonstrated that the alga cell lysed and cellular substances released under the visual field of microscope. DHQ25 was a challenge controller of A. tamarense by the above characterizations of algicidal activity assay and algicidal process. Interactions between bacteria and harmful algal bloom (HAB) species proved to be an important factor regulating the population of these algae. This is the first report of a Vibrio sp. bacterium algicidal to the toxic dinoflagellate A. tamarense. The findings increase our knowledge of the role of bacteria in algal-bacterial interaction. © 2010 The Authors. © 2010 The Society for Applied Microbiology.

  19. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  20. Proteomic Analysis of Carbon Concentrating Chemolithotrophic Bacteria Serratia sp. for Sequestration of Carbon Dioxide

    PubMed Central

    Bharti, Randhir K.; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials. PMID:24619032

  1. Characterization of Actinomyces Isolates from Infected Root Canals of Teeth: Description of Actinomyces radicidentis sp. nov.

    PubMed Central

    Collins, Matthew D.; Hoyles, Lesley; Kalfas, Sotos; Sundquist, Goran; Monsen, Tor; Nikolaitchouk, Natalia; Falsen, Enevold

    2000-01-01

    Two strains of a previously undescribed Actinomyces-like bacterium were recovered in pure culture from infected root canals of teeth. Analysis by biochemical testing and polyacrylamide gel electrophoresis of whole-cell proteins indicated that the strains closely resembled each other phenotypically but were distinct from previously described Actinomyces and Arcanobacterium species. Comparative 16S rRNA gene-sequencing studies showed the bacterium to be a hitherto unknown subline within a group of Actinomyces species which includes Actinomyces bovis, the type species of the genus. Based on phylogenetic and phenotypic evidence, we propose that the unknown bacterium isolated from human clinical specimens be classified as Actinomyces radicidentis sp. nov. The type strain of Actinomyces radicidentis is CCUG 36733. PMID:10970390

  2. Ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry for determination of avicularin metabolites produced by a human intestinal bacterium.

    PubMed

    Zhao, Min; Xu, Jun; Qian, Dawei; Guo, Jianming; Jiang, Shu; Shang, Er-xin; Duan, Jin-ao; Yang, Jing; Du, Le-yue

    2014-02-15

    Intestinal bacteria from human were screened to isolate the specific bacteria involved in the metabolism of avicularin. A Gram-positive anaerobic bacterium, strain 46, capable of metabolizing avicularin (quercetin-3-O-arabinoside) was isolated for the first time. Its 16S rRNA gene sequence showed 99% similarity with that of Bacillus. Then strain 46 was identified as a species of the genus Bacillus, and was named to be Bacillus sp. 46. Additionally, the metabolites were analyzed by ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) technique combined with Metabolynx™ software. The structure of these metabolites were proposed and confirmed by comparing the UPLC retention time and MS/MS spectrum with that of authentic standards. Parent compound and six metabolites were detected in the isolated bacterial samples compared with blank samples. Avicularin (M1) was anaerobic metabolized to its aglycone quercetin (M2) and methoxylated avicularin (M3, M4), then quercetin was converted to quercetin glycosides: quercetin-3-O-rhamnoside (M5), quercetin-3-O-glucoside (M6) and quercetin-7-O-glucoside (M7) by Bacillus sp. 46. The metabolic pathway and metabolites of avicularin by the intestinal bacterium Bacillus sp. 46 were reported for the first time. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Co2 + interaction with Azospirillum brasilense Sp7 cells: a 57Co emission Mössbauer spectroscopic study

    NASA Astrophysics Data System (ADS)

    Kamnev, Alexander A.; Tugarova, Anna V.; Biró, Borbála; Kovács, Krisztina; Homonnay, Zoltán; Kuzmann, Ernő; Vértes, Attila

    2012-03-01

    Preliminary 57Co emission Mössbauer spectroscopic data were obtained for the soil bacterium Azospirillum brasilense Sp7 ( T = 80 K) in frozen 57Co2 + -containing suspensions and in their dried residues. The Mössbauer parameters were compared with those for A. brasilense strain Sp245 differing from strain Sp7 by ecological behaviour. Live cells of both strains showed metabolic transformations of 57Co2 + within an hour. Differences in the parameters observed for the two strains under similar conditions suggest dissimilarities in their metabolic response to Co2 + .

  4. Cyanide as a copper and quinone-directed inhibitor of amine oxidases from pea seedlings ( Pisum sativum) and Arthrobacter globiformis: evidence for both copper coordination and cyanohydrin derivatization of the quinone cofactor.

    PubMed

    Shepard, Eric M; Juda, Gregory A; Ling, Ke-Qing; Sayre, Lawrence M; Dooley, David M

    2004-04-01

    The interactions of cyanide with two copper-containing amine oxidases (CuAOs) from pea seedlings (PSAO) and the soil bacterium Arthrobacter globiformis (AGAO) have been investigated by spectroscopic and kinetic techniques. Previously, we rationalized the effects of azide and cyanide for several CuAOs in terms of copper coordination by these exogenous ligands and their effects on the internal redox equilibrium TPQ(amr)-Cu(II) right harpoon over left harpoon TPQ(sq)-Cu(I). The mechanism of cyanide inhibition was proposed to occur through complexation to Cu(I), thereby directly competing with O(2) for reoxidation of TPQ. Although cyanide readily and reversibly reacts with quinones, no direct spectroscopic evidence for cyanohydrin derivatization of TPQ has been previously documented for CuAOs. This work describes the first direct spectroscopic evidence, using both model and enzyme systems, for cyanohydrin derivatization of TPQ. K(d) values for Cu(II)-CN(-) and Cu(I)-CN(-), as well as the K(i) for cyanide inhibition versus substrate amine, are reported for PSAO and AGAO. In spite of cyanohydrin derivatization of the TPQ cofactor in these enzymes, the uncompetitive inhibition of amine oxidation is determined to arise almost exclusively through CN(-) complexation of Cu(I).

  5. Actinomyces hominis sp. nov., isolated from a wound swab.

    PubMed

    Funke, Guido; Englert, Ralf; Frodl, Reinhard; Bernard, Kathryn A; Stenger, Steffen

    2010-07-01

    A coryneform bacterium (strain 1094(T)) was isolated from a wound swab taken from an 89-year-old female patient. Chemotaxonomic investigations suggested that this bacterium was related to the genera Actinomyces, Arcanobacterium and Actinobaculum. Phylogenetic analysis of 16S rRNA gene sequences showed that strain 1094(T) was most closely related to Actinomyces europaeus CCUG 32789 A(T) (94.3 % similarity). Phenotypically, the isolate could be separated from its closest phylogenetic neighbours on the basis of being positive for catalase, CAMP reaction, acid phosphatase, N-acetyl-beta-glucosaminidase and raffinose fermentation. Based on the data presented, it is proposed that strain 1094(T) should be classified in a novel species, Actinomyces hominis sp. nov. The type strain is 1094(T) (=CCUG 57540(T) =DSM 22168(T)).

  6. Microbial Interactions within a Cheese Microbial Community▿ †

    PubMed Central

    Mounier, Jérôme; Monnet, Christophe; Vallaeys, Tatiana; Arditi, Roger; Sarthou, Anne-Sophie; Hélias, Arnaud; Irlinger, Françoise

    2008-01-01

    The interactions that occur during the ripening of smear cheeses are not well understood. Yeast-yeast interactions and yeast-bacterium interactions were investigated within a microbial community composed of three yeasts and six bacteria found in cheese. The growth dynamics of this community was precisely described during the ripening of a model cheese, and the Lotka-Volterra model was used to evaluate species interactions. Subsequently, the effects on ecosystem functioning of yeast omissions in the microbial community were evaluated. It was found both in the Lotka-Volterra model and in the omission study that negative interactions occurred between yeasts. Yarrowia lipolytica inhibited mycelial expansion of Geotrichum candidum, whereas Y. lipolytica and G. candidum inhibited Debaryomyces hansenii cell viability during the stationary phase. However, the mechanisms involved in these interactions remain unclear. It was also shown that yeast-bacterium interactions played a significant role in the establishment of this multispecies ecosystem on the cheese surface. Yeasts were key species in bacterial development, but their influences on the bacteria differed. It appeared that the growth of Arthrobacter arilaitensis or Hafnia alvei relied less on a specific yeast function because these species dominated the bacterial flora, regardless of which yeasts were present in the ecosystem. For other bacteria, such as Leucobacter sp. or Brevibacterium aurantiacum, growth relied on a specific yeast, i.e., G. candidum. Furthermore, B. aurantiacum, Corynebacterium casei, and Staphylococcus xylosus showed reduced colonization capacities in comparison with the other bacteria in this model cheese. Bacterium-bacterium interactions could not be clearly identified. PMID:17981942

  7. Micrococcus lactis sp. nov., isolated from dairy industry waste.

    PubMed

    Chittpurna; Singh, Pradip K; Verma, Dipti; Pinnaka, Anil Kumar; Mayilraj, Shanmugam; Korpole, Suresh

    2011-12-01

    A Gram-positive, yellow-pigmented, actinobacterial strain, DW152(T), was isolated from a dairy industry effluent treatment plant. 16S rRNA gene sequence analysis indicated that strain DW152(T) exhibited low similarity with many species with validly published names belonging to the genera Micrococcus and Arthrobacter. However, phenotypic properties including chemotaxonomic markers affiliated strain DW152(T) to the genus Micrococcus. Strain DW152(T) had ai-C(15:0) and i-C(15:0) as major cellular fatty acids, and MK-8(H(2)) as the major menaquinone. The cell-wall peptidoglycan of strain DW152(T) had l-lysine as the diagnostic amino acid and the type was A4α. The DNA G+C content of strain DW152(T) was 68.0 mol%. In 16S rRNA gene sequence analysis, strain DW152(T) exhibited significant similarity with Micrococcus terreus NBRC 104258(T), but the mean value of DNA-DNA relatedness between these strains was only 42.3%. Moreover, strain DW152(T) differed in biochemical and chemotaxonomic characteristics from M. terreus and other species of the genus Micrococcus. Based on the above differences, we conclude that strain DW152(T) should be treated as a novel species of the genus Micrococcus, for which the name Micrococcus lactis sp. nov. is proposed. The type strain of Micrococcus lactis sp. nov. is DW152(T) (=MTCC10523(T) =DSM 23694(T)).

  8. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    PubMed Central

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Chan, Kok-Gan

    2012-01-01

    We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium. PMID:23202161

  9. Physiology and biochemistry of a lignin degrading bacterium Erwinia sp. Cu 3614

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajan, J.S.

    1992-01-01

    Previous researchers have reported the isolation of a diphenylether cleaving organism, Erwinia sp., using an enrichment medium containing lignin. A copper and dinitrophenol resistant mutant of this organism, Erwinia sp. Cu3614, has also been reported. To assess the effect of copper on the growth and biochemistry of this organism, continuous cultivation was used employing an apparently optimized medium containing ethanol as carbon source. Upon increasing the concentration of copper sulfate in the medium from 5 [mu]g/ml to 10 [mu]g/ml increases in maximum specific growth rate and growth yield were seen. Also decrease in the values for doubling time and themore » coefficient for maintenance energy were seen. At higher levels of copper sulfate a [open quotes]non competitive[close quotes] inhibition of growth was seen as indicated by the values calculated for substrate affinity constant, and inhibition constant. To assess this organism's ligninolytic ability, an assay for residual lignin was developed. The assay measured a reaction between diazotized sulfanilic acid and lignin in alkaline solution by spectrophotometric monitoring of the resulting adduct. Use of this technique indicated that Erwinia sp. Cu3614 could degrade up to 80% of lignin in batch cultures. Further evidence about the ligninolytic ability of this organism was provided by examination of electron micrographs of lignocellulosic substrates incubated with cell suspensions. An assay for monitoring diphenylether cleaving abilities was also developed using resazurin, a redox dye. In vivo assays with cells obtained from continuous culture studies indicated a linear relationship between the rates of reaction with resazurin and the amount of copper associated with cells. In vitro assays, employing cell free extracts and resazurin, were used to obtain a fraction enriched in diphenylether cleaving activity by a heat treatment procedure.« less

  10. Cloning and characterization of a new cold-adapted and thermo-tolerant ι-carrageenase from marine bacterium Flavobacterium sp. YS-80-122.

    PubMed

    Li, Shangyong; Hao, Jianhua; Sun, Mi

    2017-09-01

    ι-Carrageenases play a role in marine ι-carrageenan degradation, and their enzymatic hydrolysates are thought to be excellent antioxidants. In this study, we identified a new ι-carrageenase, encoded by cgiF, in psychrophilic bacterium Flavobacterium sp. YS-80-122. The deduced ι-carrageenase, CgiF, belongs to glycoside hydrolase family 82 and shows less than 40% amino acid identity with characterized ι-carrageenases. The activity of recombinant CgiF peaked at 30°C (1,207.8U/mg). Notably, CgiF is a cold-adapted ι-carrageenase, which showed 36.5% and 57% of the maximum activity at 10°C and 15°C, respectively. In addition, it is a thermo-tolerant enzyme that recovered 58.2% of its initial activity after heat shock. Furthermore, although the activity of CgiF was enhanced by NaCl, the enzyme is active in absence of NaCl. This study also shows that CgiF is an endo-type ι-carrageenase that hydrolyzes β-1,4-linkages of ι-carrageenan, yielding neo-ι-carratetraose as the main product. Its cold-adaptation, thermo-tolerance, NaCl independence and high neo-ι-carratetraose yield make CgiF an excellent candidate for industrial applications in production of ι-carrageen oligosaccharides from seaweed polysaccharides. Copyright © 2017. Published by Elsevier B.V.

  11. Phylogenetic Analysis and Antimicrobial Profiles of Cultured Emerging Opportunistic Pathogens (Phyla Actinobacteria and Proteobacteria) Identified in Hot Springs

    PubMed Central

    Jardine, Jocelyn Leonie; Mavumengwana, Vuyo

    2017-01-01

    Hot spring water may harbour emerging waterborne opportunistic pathogens that can cause infections in humans. We have investigated the diversity and antimicrobial resistance of culturable emerging and opportunistic bacterial pathogens, in water and sediment of hot springs located in Limpopo, South Africa. Aerobic bacteria were cultured and identified using 16S ribosomal DNA (rDNA) gene sequencing. The presence of Legionella spp. was investigated using real-time polymerase chain reaction. Isolates were tested for resistance to ten antibiotics representing six different classes: β-lactam (carbenicillin), aminoglycosides (gentamycin, kanamycin, streptomycin), tetracycline, amphenicols (chloramphenicol, ceftriaxone), sulphonamides (co-trimoxazole) and quinolones (nalidixic acid, norfloxacin). Gram-positive Kocuria sp. and Arthrobacter sp. and gram-negative Cupriavidus sp., Ralstonia sp., Cronobacter sp., Tepidimonas sp., Hafnia sp. and Sphingomonas sp. were isolated, all recognised as emerging food-borne pathogens. Legionella spp. was not detected throughout the study. Isolates of Kocuria, Arthrobacter and Hafnia and an unknown species of the class Gammaproteobacteria were resistant to two antibiotics in different combinations of carbenicillin, ceftriaxone, nalidixic acid and chloramphenicol. Cronobacter sp. was sensitive to all ten antibiotics. This study suggests that hot springs are potential reservoirs for emerging opportunistic pathogens, including multiple antibiotic resistant strains, and highlights the presence of unknown populations of emerging and potential waterborne opportunistic pathogens in the environment. PMID:28914802

  12. Phylogenetic Analysis and Antimicrobial Profiles of Cultured Emerging Opportunistic Pathogens (Phyla Actinobacteria and Proteobacteria) Identified in Hot Springs.

    PubMed

    Jardine, Jocelyn Leonie; Abia, Akebe Luther King; Mavumengwana, Vuyo; Ubomba-Jaswa, Eunice

    2017-09-15

    Hot spring water may harbour emerging waterborne opportunistic pathogens that can cause infections in humans. We have investigated the diversity and antimicrobial resistance of culturable emerging and opportunistic bacterial pathogens, in water and sediment of hot springs located in Limpopo, South Africa. Aerobic bacteria were cultured and identified using 16S ribosomal DNA (rDNA) gene sequencing. The presence of Legionella spp. was investigated using real-time polymerase chain reaction. Isolates were tested for resistance to ten antibiotics representing six different classes: β-lactam (carbenicillin), aminoglycosides (gentamycin, kanamycin, streptomycin), tetracycline, amphenicols (chloramphenicol, ceftriaxone), sulphonamides (co-trimoxazole) and quinolones (nalidixic acid, norfloxacin). Gram-positive Kocuria sp. and Arthrobacter sp. and gram-negative Cupriavidus sp., Ralstonia sp., Cronobacter sp., Tepidimonas sp., Hafnia sp. and Sphingomonas sp. were isolated, all recognised as emerging food-borne pathogens. Legionella spp. was not detected throughout the study. Isolates of Kocuria , Arthrobacter and Hafnia and an unknown species of the class Gammaproteobacteria were resistant to two antibiotics in different combinations of carbenicillin, ceftriaxone, nalidixic acid and chloramphenicol. Cronobacter sp. was sensitive to all ten antibiotics. This study suggests that hot springs are potential reservoirs for emerging opportunistic pathogens, including multiple antibiotic resistant strains, and highlights the presence of unknown populations of emerging and potential waterborne opportunistic pathogens in the environment.

  13. Nautilia nitratireducens sp. nov., a thermophilic, anaerobic, chemosynthetic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent.

    PubMed

    Pérez-Rodríguez, Ileana; Ricci, Jessica; Voordeckers, James W; Starovoytov, Valentin; Vetriani, Costantino

    2010-05-01

    A thermophilic, anaerobic, chemosynthetic bacterium, designated strain MB-1(T), was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at degrees 50' N 10 degrees 17' W. The cells were Gram-negative-staining rods, approximately 1-1.5 mum long and 0.3-0.5 mum wide. Strain MB-1(T) grew at 25-65 degrees C (optimum 55 degrees C), with 10-35 g NaCl l(-1) (optimum 20 g l(-1)) and at pH 4.5-8.5 (optimum pH 7.0). Generation time under optimal conditions was 45.6 min. Growth occurred under chemolithoautotrophic conditions with H(2) as the energy source and CO(2) as the carbon source. Nitrate was used as the electron acceptor, with resulting production of ammonium. Thiosulfate, sulfur and selenate were also used as electron acceptors. No growth was observed in the presence of lactate, peptone or tryptone. Chemo-organotrophic growth occurred in the presence of acetate, formate, Casamino acids, sucrose, galactose and yeast extract under a N(2)/CO(2) gas phase. The G+C content of the genomic DNA was 36.0 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Nautilia profundicola AmH(T), Nautilia abyssi PH1209(T) and Nautilia lithotrophica 525(T) (95, 94 and 93 % sequence identity, respectively). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the genus Nautilia, Nautilia nitratireducens sp. nov. The type strain is MB-1(T) (=DSM 22087(T) =JCM 15746(T)).

  14. A marine bacterium, Micrococcus MCCB 104, antagonistic to vibrios in prawn larval rearing systems.

    PubMed

    Jayaprakash, N S; Pai, S Somnath; Anas, A; Preetha, R; Philip, Rosamma; Singh, I S Bright

    2005-12-30

    A marine bacterium, Micrococcus MCCB 104, isolated from hatchery water, demonstrated extracellular antagonistic properties against Vibrio alginolyticus, V. parahaemolyticus, V. vulnificus, V. fluviallis, V. nereis, V. proteolyticus, V. mediterranei, V cholerae and Aeromonas sp., bacteria associated with Macrobrachium rosenbergii larval rearing systems. The isolate inhibited the growth of V. alginolyticus during co-culture. The antagonistic component of the extracellular product was heat-stable and insensitive to proteases, lipase, catalase and alpha-amylase. Micrococcus MCCB 104 was demonstrated to be non-pathogenic to M. rosenbergii larvae.

  15. Synergistic effect of calcium stearate and photo treatment on the rate of biodegradation of low density polyethylene spent saline vials.

    PubMed

    Carol, D; Karpagam, S; Kingsley, S J; Vincent, S

    2012-07-01

    The biodegradation of spent saline bottles, a low density polyethylene product (LDPE) by two selected Arthrobacter sp. under in vitro conditions is reported. Chemical and UV pretreatment play a vital role in enhancing the rate of biodegradation. Treated LDPE film exhibits a higher weight loss and density when compared to untreated films. Arthrobacter oxydans and Arthrobacter globiformis grew better in medium containing pretreated film than in medium containing untreated film. The decrease in density and weight loss of LDPE was also more for pretreated film when compared to untreated film indicating the affect of abiotic treatment on mechanical properties of LDPE. The decrease in the absorbance corresponding to carbonyl groups and double bonds that were generated during pretreatment suggest that some of the double bonds were cut by Arthrobacter species. Since Arthrobacter sp. are capable of degrading urea, splitting of urea group were also seen in FTIR spectrum indicating the evidence of biodegradation after microbial incubation. The results indicated that biodegradation rate could be enhanced by exposing LDPE to calcium stearate (a pro-oxidant) which acts as an initiator for the oxidation of the polymers leading to a decrease of molecular weight and formation of hydrophilic group. Therefore, the initial step for biodegradation of many inert polymers depends on a photo-oxidation of those polymers. The application in sufficient details with improved procedures utilizing recombinant microorganism with polymer degradation capacity can lead to a better plastic waste management in biomedical field. The present plastic disposal trend of waste accumulation can be minimized with this promising eco-friendly technique.

  16. Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp.

    PubMed

    De Santi, Concetta; Leiros, Hanna-Kirsti S; Di Scala, Alessia; de Pascale, Donatella; Altermark, Bjørn; Willassen, Nils-Peder

    2016-05-01

    A gene encoding an esterase, ThaEst2349, was identified in the marine psychrophilic bacterium Thalassospira sp. GB04J01. The gene was cloned and overexpressed in E. coli as a His-tagged fusion protein. The recombinant enzyme showed optimal activity at 45 °C and the thermal stability displayed a retention of 75 % relative activity at 40 °C after 2 h. The optimal pH was 8.5 but the enzyme kept more than 75 % of its maximal activity between pH 8.0 and 9.5. ThaEst2349 also showed remarkable tolerance towards high concentrations of salt and it was active against short-chain p-nitrophenyl esters, displaying optimal activity with the acetate. The enzyme was tested for tolerance of organic solvents and the results are suggesting that it could function as an interesting candidate for biotechnological applications. The crystal structure of ThaEst2349 was determined to 1.69 Å revealing an asymmetric unit containing two chains, which also is the biological unit. The structure has a characteristic cap domain and a catalytic triad comprising Ser158, His285 and Asp255. To explain the cold-active nature of the enzyme, we compared it against thermophilic counterparts. Our hypothesis is that a high methionine content, less hydrogen bonds and less ion pairs render the enzyme more flexible at low temperatures.

  17. Optimization of culture conditions and medium composition for the marine algicidal bacterium Alteromonas sp. DH46 by uniform design

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zheng, Wei; Tian, Yun; Wang, Guizhong; Zheng, Tianling

    2013-09-01

    Harmful algal blooms (HABs) have led to extensive ecological and environmental issues and huge economic losses. Various HAB control techniques have been developed, and biological methods have been paid more attention. Algicidal bacteria is a general designation for bacteria which inhibit algal growth in a direct or indirect manner, and kill or damage the algal cells. A metabolite which is strongly toxic to the dinoflagellate Alexandrium tamarense was produced by strain DH46 of the alga-lysing bacterium Alteromonas sp. The culture conditions were optimized using a single-factor test method. Factors including carbon source, nitrogen source, temperature, initial pH value, rotational speed and salinity were studied. The results showed that the cultivation of the bacteria at 28°C and 180 r min-1 with initial pH 7 and 30 salt contcentration favored both the cell growth and the lysing effect of strain DH46. The optimal medium composition for strain DH46 was determined by means of uniform design experimentation, and the most important components influencing the cell density were tryptone, yeast extract, soluble starch, NaNO3 and MgSO4. When the following culture medium was used (tryptone 14.0g, yeast extract 1.63g, soluble starch 5.0 g, NaNO3 1.6 g, MgSO4 2.3 g in 1L), the largest bacterial dry weight (7.36 g L-1) was obtained, which was an enhancement of 107% compared to the initial medium; and the algal lysis rate was as high as 98.4% which increased nearly 10% after optimization.

  18. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    PubMed Central

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and contained cytochrome c3 and desulfoviridin. Except for furfural degradation, the characteristics of the furfural isolate were remarkably similar to those of the sulfate reducer Desulfovibrio gigas. The furfural isolate has been tentatively identified as Desulfovibrio sp. strain F-1. Images PMID:16346423

  19. Desulfoplanes formicivorans gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a blackish meromictic lake, and emended description of the family Desulfomicrobiaceae.

    PubMed

    Watanabe, Miho; Kojima, Hisaya; Fukui, Manabu

    2015-06-01

    A novel sulfate-reducing bacterium, designated strain Pf12BT, was isolated from sediment of meromictic Lake Harutori in Japan. Cells were vibroid (1.0 × 3.0-4.0 μm), motile and Gram-stain-negative. For growth, the optimum pH was 7.0-7.5 and the optimum temperature was 42-45 °C. Strain Pf12BT used sulfate, thiosulfate and sulfite as electron acceptors. The G+C content of the genomic DNA was 55.4 mol%. Major cellular fatty acids were C16 : 0 and C18 : 0. The strain was desulfoviridin-positive. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belonged to the order Desulfovibrionales in the class Deltaproteobacteria. The closest relative was Desulfomicrobium baculatum DSM 4028T with which it shared 91 % 16S rRNA gene sequence similarity. On the basis of phylogenetic and phenotypic characterization, a novel species of a new genus belonging to the family Desulfomicrobiaceae is proposed, Desulfoplanes formicivorans gen. nov., sp. nov. The type strain of Desulfoplanes formicivorans is Pf12BT ( = NBRC 110391T = DSM 28890T).

  20. Biosorption of Ag(I) from aqueous solutions by Klebsiella sp. 3S1.

    PubMed

    Muñoz, Antonio Jesús; Espínola, Francisco; Ruiz, Encarnación

    2017-05-05

    This study investigated the potential ability of Klebsiella sp. 3S1 to remove silver cations from aqueous solutions. The selected strain is a ubiquitous bacterium selected from among several microorganisms that had been isolated from wastewaters. To optimise the operating conditions in the biosorption process, a Rotatable Central Composite Experimental Design was developed establishing pH, temperature and biomass concentration as independent variables. Interaction mechanisms involved were analysed through kinetic and equilibrium studies. The experimental results suit pseudo-second order kinetics with two biosorption stages, being the first almost instantly. The Langmuir equilibrium model predicted a maximum capacity of biosorption (q) of 114.1mg Ag/g biomass. The study of the mechanisms involved in the biosorption was completed by employing advanced techniques which revealed that both bacterium-surface interactions and intracellular bioaccumulation participate in silver removal from aqueous solutions. The ability of Klebsiella sp. 3S1 to form silver chloride nanoparticles with interesting potential applications was also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Desulfosoma caldarium gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a terrestrial hot spring.

    PubMed

    Baena, Sandra; Perdomo, Natalia; Carvajal, Catalina; Díaz, Carolina; Patel, Bharat K C

    2011-04-01

    A thermophilic, sulfate-reducing bacterium, designated strain USBA-053(T), was isolated from a terrestrial hot spring located at a height of 2500 m in the Colombian Andes (5° 45' 33.29″ N 73° 6' 49.89″ W), Colombia. Cells of strain USBA-053(T) were oval- to rod-shaped, Gram-negative and motile by means of a single polar flagellum. The strain grew autotrophically with H(2) as the electron donor and heterotrophically on formate, propionate, butyrate, valerate, isovalerate, lactate, pyruvate, ethanol, glycerol, serine and hexadecanoic acid in the presence of sulfate as the terminal electron acceptor. The main end products from lactate degradation, in the presence of sulfate, were acetate, CO(2) and H(2)S. Strain USBA-053(T) fermented pyruvate in the absence of sulfate and grew optimally at 57 °C (growth temperature ranged from 50 °C to 62 °C) and pH 6.8 (growth pH ranged from 5.7 to 7.7). The novel strain was slightly halophilic and grew in NaCl concentrations ranging from 5 to 30 g l(-1), with an optimum at 25 g l(-1) NaCl. Sulfate, thiosulfate and sulfite were used as electron acceptors, but not elemental sulfur, nitrate or nitrite. The G+C content of the genomic DNA was 56±1 mol%. 16S rRNA gene sequence analysis indicated that strain USBA-053(T) was a member of the class Deltaproteobacteria, with Desulfacinum hydrothermale MT-96(T) as the closest relative (93 % gene sequence similarity). On the basis of physiological characteristics and phylogenetic analysis, it is suggested that strain USBA-053(T) represents a new genus and novel species for which the name Desulfosoma caldarium gen. nov., sp. nov. is proposed. The type strain of the type species is USBA-053(T) ( = KCTC 5670(T) = DSM 22027(T)).

  2. The growth of Steroidobacter agariperforans sp. nov., a novel agar-degrading bacterium isolated from soil, is enhanced by the diffusible metabolites produced by bacteria belonging to Rhizobiales.

    PubMed

    Sakai, Masao; Hosoda, Akifumi; Ogura, Kenjiro; Ikenaga, Makoto

    2014-01-01

    An agar-degrading bacterium was isolated from soil collected in a vegetable cropping field. The growth of this isolate was enhanced by supplying culture supernatants of bacteria belonging to the order Rhizobiales. Phylogenetic analysis based on 16S rRNA gene sequences indicated the novel bacterium, strain KA5-B(T), belonged to the genus Steroidobacter in Gammaproteobacteria, but differed from its closest relative, Steroidobacter denitrificans FS(T), at the species level with 96.5% similarity. Strain KA5-B(T) was strictly aerobic, Gram-negative, non-motile, non-spore forming, and had a straight to slightly curved rod shape. Cytochrome oxidase and catalase activities were positive. The strain grew on media containing culture supernatants in a temperature range of 15-37°C and between pH 4.5 and 9.0, with optimal growth occurring at 30°C and pH 6.0-8.0. No growth occurred at 10 or 42°C or at NaCl concentrations more than 3% (w/v). The main cellular fatty acids were iso-C15:0, C16:1ω7c, and iso-C17:1ω9c. The main quinone was ubiquinone-8 and DNA G+C content was 62.9 mol%. In contrast, strain FS(T) was motile, did not grow on the agar plate, and its dominant cellular fatty acids were C15:0 and C17:1ω8c. Based on its phylogenetic and phenotypic properties, strain KA5-B(T) (JCM 18477(T) = KCTC 32107(T)) represents a novel species in genus Steroidobacter, for which the name Steroidobacter agariperforans sp. nov. is proposed.

  3. Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater.

    PubMed

    Li, Chunyan; Wang, Shuting; Du, Xiaopeng; Cheng, Xiaosong; Fu, Meng; Hou, Ning; Li, Dapeng

    2016-11-01

    In this study, three bacteria with high Fe- and Mn-oxidizing capabilities were isolated from groundwater well sludge and identified as Acinetobacter sp., Bacillus megaterium and Sphingobacterium sp. The maximum removal ratios of Fe and Mn (99.75% and 96.69%) were obtained by an optimal combination of the bacteria at a temperature of 20.15°C, pH 7.09 and an inoculum size of 2.08%. Four lab-scale biofilters were tested in parallel for the removal of iron and manganese ions from groundwater. The results indicated that the Fe/Mn removal ratios of biofilter R4, which was inoculated with iron- and manganese-oxidizing bacteria and a biofilm-forming bacterium, were approximately 95% for each metal during continuous operation and were better than the other biofilters. This study demonstrated that the biofilm-forming bacterium could promote the immobilization of the iron- and manganese-oxidizing bacteria on the biofilters and enhance the removal efficiency of iron and manganese ions from groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Crystal structure of SP-PTP, a low molecular weight protein tyrosine phosphatase from Streptococcus pyogenes.

    PubMed

    Ku, Bonsu; Keum, Chae Won; Lee, Hye Seon; Yun, Hye-Yeoung; Shin, Ho-Chul; Kim, Bo Yeon; Kim, Seung Jun

    2016-09-23

    Streptococcus pyogenes, or Group A Streptococcus (GAS), is a pathogenic bacterium that causes a variety of infectious diseases. The GAS genome encodes one protein tyrosine phosphatase, SP-PTP, which plays an essential role in the replication and virulence maintenance of GAS. Herein, we present the crystal structure of SP-PTP at 1.9 Å resolution. Although SP-PTP has been reported to have dual phosphatase specificity for both phosphorylated tyrosine and serine/threonine, three-dimensional structural analysis showed that SP-PTP shares high similarity with typical low molecular weight protein tyrosine phosphatases (LMWPTPs), which are specific for phosphotyrosine, but not with dual-specificity phosphatases, in overall folding and active site composition. In the dephosphorylation activity test, SP-PTP consistently acted on phosphotyrosine substrates, but not or only minimally on phosphoserine/phosphothreonine substrates. Collectively, our structural and biochemical analyses verified SP-PTP as a canonical tyrosine-specific LMWPTP. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum.

    PubMed

    Svetlitshnyi, V; Rainey, F; Wiegel, J

    1996-10-01

    Three strains of an anaerobic thermophilic organoheterotrophic lipolytic alkalitolerant bacterium, Thermosyntropha lipolytica gen. nov., sp. nov. (type strain JW/VS-265T; DSM 11003), were isolated from alkaline hot springs of Lake Bogoria (Kenya). The cells were nonmotile, non-spore forming, straight or slightly curved rods. At 60 degrees C the pH range for growth determined at 25 degrees C [pH25 degrees C] was 7.15 to 9.5, with an optimum between 8.1 and 8.9 (pH60 degrees C of 7.6 and 8.1). At a pH25 degrees C of 8.5 the temperature range for growth was from 52 to 70 degrees C, with an optimum between 60 and 66 degrees C. The shortest doubling time was around 1 h. In pure culture the bacterium grew in a mineral base medium supplemented with yeast extract, tryptone, Casamino Acids, betaine, and crotonate as carbon sources, producing acetate as a major product and constitutively a lipase. During growth in the presence of olive oil, free long-chain fatty acids were accumulated in the medium but the pure culture could not utilize olive oil, triacylglycerols, short- and long-chain fatty acids, and glycerol for growth. In syntrophic coculture (Methanobacterium strain JW/VS-M29) the lipolytic bacteria grew on triacylglycerols and linear saturated and unsaturated fatty acids with 4 to 18 carbon atoms, but glycerol was not utilized. Fatty acids with even numbers of carbon atoms were degraded to acetate and methane, while from odd-numbered fatty acids 1 mol of propionate per mol of fatty acid was additionally formed. 16S rDNA sequence analysis identified Syntrophospora and Syntrophomonas spp. as closest phylogenetic neighbors.

  6. An Endohyphal Bacterium (Chitinophaga, Bacteroidetes) Alters Carbon Source Use by Fusarium keratoplasticum (F. solani Species Complex, Nectriaceae)

    PubMed Central

    Shaffer, Justin P.; U'Ren, Jana M.; Gallery, Rachel E.; Baltrus, David A.; Arnold, A. Elizabeth

    2017-01-01

    Bacterial endosymbionts occur in diverse fungi, including members of many lineages of Ascomycota that inhabit living plants. These endosymbiotic bacteria (endohyphal bacteria, EHB) often can be removed from living fungi by antibiotic treatment, providing an opportunity to assess their effects on functional traits of their fungal hosts. We examined the effects of an endohyphal bacterium (Chitinophaga sp., Bacteroidetes) on substrate use by its host, a seed-associated strain of the fungus Fusarium keratoplasticum, by comparing growth between naturally infected and cured fungal strains across 95 carbon sources with a Biolog® phenotypic microarray. Across the majority of substrates (62%), the strain harboring the bacterium significantly outperformed the cured strain as measured by respiration and hyphal density. These substrates included many that are important for plant- and seed-fungus interactions, such as D-trehalose, myo-inositol, and sucrose, highlighting the potential influence of EHB on the breadth and efficiency of substrate use by an important Fusarium species. Cases in which the cured strain outperformed the strain harboring the bacterium were observed in only 5% of substrates. We propose that additive or synergistic substrate use by the fungus-bacterium pair enhances fungal growth in this association. More generally, alteration of the breadth or efficiency of substrate use by dispensable EHB may change fungal niches in short timeframes, potentially shaping fungal ecology and the outcomes of fungal-host interactions. PMID:28382021

  7. Sphingobium barthaii sp. nov., a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterium isolated from cattle pasture soil.

    PubMed

    Maeda, Allyn H; Kunihiro, Marie; Ozeki, Yasuhiro; Nogi, Yuichi; Kanaly, Robert A

    2015-09-01

    A Gram-stain-negative, yellow, rod-shaped bacterium, designated strain KK22(T), was isolated from a microbial consortium that grew on diesel fuel originally recovered from cattle pasture soil. Strain KK22(T) has been studied for its ability to biotransform high molecular weight polycyclic aromatic hydrocarbons. On the basis of 16S rRNA gene sequence phylogeny, strain KK22(T) was affiliated with the genus Sphingobium in the phylum Proteobacteria and was most closely related to Sphingobium fuliginis TKP(T) (99.8%) and less closely related to Sphingobium quisquiliarum P25(T) (97.5%). Results of DNA-DNA hybridization (DDH) revealed relatedness values between strain KK22(T) and strain TKP(T) and between strain KK22(T) and strain P25(T) of 21 ± 4% (reciprocal hybridization, 27 ± 2%) and 15 ± 2% (reciprocal hybridization, 17 ± 1%), respectively. Chemotaxonomic analyses of strain KK22(T) showed that the major respiratory quinone was ubiquinone Q-10, that the polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidyl-N-methylethylethanolamine and sphingoglycolipid, and that C18 : 1ω7c and C14 : 0 2-OH were the main fatty acid and hydroxylated fatty acids, respectively. This strain was unable to reduce nitrate and the genomic DNA G+C content was 64.7 mol%. Based upon the results of the DDH analyses, the fact that strain KK22(T) was motile, and its biochemical and physiological characteristics, strain KK22(T) could be separated from recognized species of the genus Sphingobium. We conclude that strain KK22(T) represents a novel species of this genus for which the name Sphingobium barthaii sp. nov. is proposed; the type strain is KK22(T) ( = DSM 29313(T) = JCM 30309(T)).

  8. Thermotalea metallivorans gen. nov., sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia aquifer.

    PubMed

    Ogg, Christopher D; Patel, Bharat K C

    2009-05-01

    A strictly anaerobic, thermophilic bacterium, designated strain B2-1(T), was isolated from microbial mats colonizing a runoff channel formed by free-flowing thermal water from a Great Artesian Basin, Australia, bore well (registered number 17263). The cells of strain B2-1(T) were slightly curved rods (3.0-3.5 x 0.6-0.7 microm) which stained Gram-negative. The strain grew optimally in tryptone-yeast extract-glucose medium at 50 degrees C (temperature growth range 30-55 degrees C) and a pH of 8 (pH growth range 6.5-9). Strain B2-1(T) grew poorly on yeast extract (0.2 %) and/or tryptone (0.2 %), which were obligately required for growth on other energy sources, including a range of other carbohydrates and organic acids, but not amino acids. The end-products of glucose fermentation were ethanol and acetate. In the presence of 0.2 % yeast extract, iron(III), manganese(IV) and elemental sulfur were reduced but sulfate, thiosulfate, sulfite, nitrate and nitrite were not reduced. Growth was inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin, sodium azide and by NaCl concentrations greater than 4 % (w/v). The DNA G+C content was 48+/-1 mol% as determined by the thermal denaturation method. 16S rRNA gene sequence analysis indicated that strain B2-1(T) was a member of the family Clostridiaceae, class Clostridia, phylum Firmicutes and was most closely related to Geosporobacter subterraneus DSM 17957(T) (89.9 % similarity). On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain B2-1(T) is considered to represent a novel species of a new genus, for which the name Thermotalea metallivorans gen. nov., sp. nov. is proposed. The type strain is B2-1(T) (=KCTC 5625(T)=JCM 15105(T)=DSM 21119(T)).

  9. Tailoring nutritional and process variables for hyperproduction of catalase from a novel isolated bacterium Geobacillus sp. BSS-7.

    PubMed

    Kauldhar, Baljinder Singh; Sooch, Balwinder Singh

    2016-01-14

    Catalase (EC 1.11.1.6) is one of the important industrial enzyme employed in diagnostic and analytical methods in the form of biomarkers and biosensors in addition to their enormous applications in textile, paper, food and pharmaceutical sectors. The present study demonstrates the utility of a newly isolated and adapted strain of genus Geobacillus possessing unique combination of several industrially important extremophilic properties for the hyper production of catalase. The bacterium can grow over a wide range of pH (3-12) and temperature (10-90 °C) with extraordinary capability to produce catalase. A novel extremophilic strain belonging to genus Geobacillus was exploited for the production of catalase by tailoring its nutritional requirements and process variables. One variable at a time traditional approach followed by computational designing was applied to customize the fermentation process. A simple fermentation media containing only three components namely sucrose (0.55 %, w/v), yeast extract (1.0 %, w/v) and BaCl2 (0.08 %, w/v) was designed for the hyperproduction of catalase. A controlled and optimum air supply caused a tremendous increase in the enzyme production on moving the bioprocess from the flask to bioreactor level. The present paper reports high quantum of catalase production (105,000 IU/mg of cells) in a short fermentation time of 12 h. To the best of our knowledge, there is no report in the literature that matches the performance of the developed protocol for the catalase production. This is the first serious study covering intracellular catalase production from thermophilic genus Geobacillus. An increase in intracellular catalase production by 214.72 % was achieved in the optimized medium when transferred from the shake flask to the fermenter level. The extraordinary high production of catalase from Geobacillus sp. BSS-7 makes the isolated strain a prospective candidate for bulk catalase production on an industrial scale.

  10. Desulfomicrobium thermophilum sp. nov., a novel thermophilic sulphate-reducing bacterium isolated from a terrestrial hot spring in Colombia.

    PubMed

    Thevenieau, France; Fardeau, Marie-Laure; Ollivier, Bernard; Joulian, Catherine; Baena, Sandra

    2007-03-01

    A moderately thermophilic, sulphate-reducing bacterium, designated strain P6-2(T), was isolated from a terrestrial hot spring located at a height of 2,500 m in the Andean region, Colombia (5 degrees 43'69''N, 73 degrees 6'10''W). Cells of strain P6-2(T) were rod-shaped, stained Gram-negative and were motile by means of a single polar flagellum. The strain grew lithotrophically with H(2) as the electron donor and organotrophically on lactate, pyruvate, ethanol, malate, fumarate, n-propanol and succinate in the presence of sulphate as the terminal electron acceptor. Fumarate and pyruvate was fermented. Strain P6-2(T) grew optimally at 55 degrees C (range 37-60 degrees C), pH 6.6 (range 5.8-8.8) in the presence of 0.5% NaCl (range 0-4.5%) with lactate and sulphate and produced acetate, CO(2) and H(2)S as the major end-products. Sulphate, sulphite and thiosulphate could be used as electron acceptors but not elemental sulphur or nitrate. The G + C content of the genomic DNA was 58.7 mol%. The 16S rRNA sequence analysis indicated that strain P6-2(T) was a member of the class Deltaproteobacteria, domain Bacteria with Desulfomicrobium baculatum being the closest relative (similarity value of 94%). Phylogeny of genes encoding alpha- and beta-subunits of the dissimilatory sulphite reductase (dsrAB genes) supported its affiliation to members of the genus Desulfomicrobium. On the basis of this evidence, we propose to assign strain P6-2(T) as new species of the genus Desulfomicrobium, D. thermophilum sp. nov., with strain P6-2(T) as the type strain (= DSM 16697(T) = CCUG 49732(T)).

  11. Calculibacillus koreensis gen. nov., sp. nov., an anaerobic Fe(III)-reducing bacterium isolated from sediment of mine tailings.

    PubMed

    Min, Ui-Gi; Kim, So-Jeong; Hong, Heeji; Kim, Song-Gun; Gwak, Joo-Han; Jung, Man-Young; Kim, Jong-Geol; Na, Jeong-Geol; Rhee, Sung-Keun

    2016-06-01

    A strictly anaerobic bacterium, strain B5(T), was isolated from sediment of an abandoned coal mine in Taebaek, Republic of Korea. Cells of strain B5(T) were non-spore-forming, straight, Gram-positive rods. The optimum pH and temperature for growth were pH 7.0 and 30°C, respectively, while the strain was able to grow within pH and temperature ranges of 5.5-7.5 and 25-45°C, respectively. Growth of strain B5(T) was observed at NaCl concentrations of 0 to 6.0% (w/v) with an optimum at 3.0-4.0% (w/v). The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, an unknown phospholipid and three unknown polar lipids. Strain B5(T) grew anaerobically by reducing nitrate, nitrite, ferric-citrate, ferric-nitrilotriacetate, elemental sulfur, thiosulfate, and anthraquinone-2-sulfonate in the presence of proteinaceous compounds, organic acids, and carbohydrates as electron donors. The isolate was not able to grow by fermentation. Strain B5(T) did not grow under aerobic or microaerobic conditions. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B5(T) is most closely related to the genus Tepidibacillus (T. fermentans STGH(T); 96.3%) and Vulcanibacillus (V. modesticaldus BR(T); 94.6%). The genomic DNA G+C content (36.9 mol%) of strain B5(T) was higher than those of T. fermentans STGH(T) (34.8 mol%) and V. modesticaldus BR(T) (34.5 mol%). Based on its phenotypic, chemotaxonomic, and phylogenetic properties, we describe a new species of a novel genus Calculibacillus, represented by strain B5(T) (=KCTC 15397(T) =JCM 19989(T)), for which we propose the name Calculibacillus koreensis gen. nov., sp. nov.

  12. Pelolinea submarina gen. nov., sp. nov., an anaerobic, filamentous bacterium of the phylum Chloroflexi isolated from subseafloor sediment.

    PubMed

    Imachi, Hiroyuki; Sakai, Sanae; Lipp, Julius S; Miyazaki, Masayuki; Saito, Yumi; Yamanaka, Yuko; Hinrichs, Kai-Uwe; Inagaki, Fumio; Takai, Ken

    2014-03-01

    A novel, anaerobic filamentous bacterium, strain MO-CFX1(T), was isolated from a methanogenic community, which was originally established from subseafloor sediments collected from off the Shimokita Peninsula, Japan. Cells were non-spore-forming, non-motile, Gram-stain-negative and filamentous. The filaments were longer than 10 µm and 130-150 nm in width. Growth of the strain was observed at 10-37 °C (optimum 25-30 °C), at pH 5.5-8.5 (optimum pH 7.0) and in 0-50 g NaCl l(-1) (optimum 15 g NaCl l(-1)). The strain was able to grow with a number of carbohydrates in the presence of yeast extract. The major cellular fatty acids were monounsaturated C18 : 1ω9, C16 : 1ω7 and saturated C18 : 0 and C16 : 0. The intact polar lipids of the strain were dominated by diacylglyceride and sphingolipid core lipid structures with monoglycosidic, mixed phosphomonoglycosidic and fatty-acid-modified monoglycosidic polar head groups. The G+C content of the genomic DNA was 52.4 mol%. Based on the comparative 16S rRNA gene sequence analysis, strain MO-CFX1(T) was affiliated with the class Anaerolineae within the phylum Chloroflexi and was most closely related to Leptolinea tardivitalis YMTK-2(T) (sequence identity of 91.0 %). Based on phenotypic and genetic properties of the novel isolate, we propose a novel species representing a new genus Pelolinea submarina gen. nov., sp. nov., for strain MO-CFX1(T) ( = JCM 17238(T), = KCTC 5975(T)). This is the first formal description, to our knowledge, of an isolate of the phylum Chloroflexi from the deep-sea sedimentary environment.

  13. Limonoate dehydrogenase from Arthrobacter globiformis: the native enzyme and its N-terminal sequence.

    PubMed

    Suhayda, C G; Omura, M; Hasegawa, S

    1995-09-01

    Bitter limonoids in citrus juice lower the quality and value of commercial juices. Limonoate dehydrogenase converts the precursor of bitter limonin, limonoate A-ring lactone, to nonbitter 17-dehydrolimonoate A-ring lactone. This enzyme was isolated from Arthrobacter globiformis cells by a combination of ammonium sulfate fractionation, Cibacron Blue affinity chromatography and DEAE ion exchange HPLC. Using this protocol a 428-fold purification of the enzyme was obtained. Gel filtration HPLC indicated a M(r) of 118,000 for the native enzyme. SDS-PAGE indicated an individual subunit M(r) of 31,000. N-Terminal sequencing of the protein provided a sequence of the first 16 amino acid residues. Since LDH activity in citrus is very low, cloning the gene for this bacterial enzyme into citrus trees should enhance the natural debittering mechanism in citrus fruit.

  14. Characterization of Marinomonas algicida sp. nov., a novel algicidal marine bacterium isolated from seawater.

    PubMed

    Kristyanto, Sylvia; Chaudhary, Dhiraj Kumar; Lee, Sang-Seob; Kim, Jaisoo

    2017-11-01

    A novel Marinomonas-like, aerobic, Gram-reaction-negative, moderately halophilic, acidophilic, motile by a single polar flagellum, non-spore-forming, rod-shaped bacterium that showed algalytic activity, designated strain Yeongu 1-4 T , was isolated from surface seawater of Geoje Island in the South Sea, Republic of Korea. The strain was oxidase-negative and weakly positive for catalase. Growth of this bacterium was observed at temperatures from 4 to 42 °C, at salinities from 0 to 12 % and at pH from 4.5 to 9.0, and it was not able to degrade starch, gelatin, casein or Tween 80. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Yeongu 1-4 T was related most closely to Marinomonas spartinae SMJ19 T with similarity of 99.3 %. However, levels of DNA-DNA relatedness between strain Yeongu 1-4 T and the most closely related species were lower than 70 %, confirming that they represent distinct genomic species. The genomic DNA G+C content of strain Yeongu 1-4 T was 44.2 mol%. The organism used Q-8 as the predominant respiratory quinone, and C16 : 1ω7c, C18 : 1ω7c and C16 : 0 as major cellular fatty acids. Based on data from this polyphasic taxonomic study, strain Yeongu 1-4 T belongs to a novel species of the genus Marinomonas, within the family Oceanospirillaceae, for which the name Marinomonas algicida is proposed. The type strain is Yeongu 1-4 T (=KEMB 9005-327 T =MCCC 1K00609 T ).

  15. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization (Towards Lignin valorization: How a soil bacterium extracts building blocks and metabolic energy from "Lignolysis")

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varman, Arul M.; He, Lian; Follenfant, Rhiannon

    Lignin is a major resources for the production of next generation renewable aromatics. Sphingobium sp. SYK-6 is a bacterium that has been well-studied for the breakdown of lignin-derived compounds. There has been a lot of interest in SYK-6 lignolytic activity and many recent works have focused on understanding the unique catabolic pathway it possesses for the degradation of lignin derived monomers and oligomers. Furthermore, there has been no prior effort in understanding the central fluxome based on lignin derived substrates into value-added chemicals.

  16. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization (Towards Lignin valorization: How a soil bacterium extracts building blocks and metabolic energy from "Lignolysis")

    DOE PAGES

    Varman, Arul M.; He, Lian; Follenfant, Rhiannon; ...

    2016-09-15

    Lignin is a major resources for the production of next generation renewable aromatics. Sphingobium sp. SYK-6 is a bacterium that has been well-studied for the breakdown of lignin-derived compounds. There has been a lot of interest in SYK-6 lignolytic activity and many recent works have focused on understanding the unique catabolic pathway it possesses for the degradation of lignin derived monomers and oligomers. Furthermore, there has been no prior effort in understanding the central fluxome based on lignin derived substrates into value-added chemicals.

  17. Lysinibacillus endophyticus sp. nov., an indole-3-acetic acid producing endophytic bacterium isolated from corn root (Zea mays cv. Xinken-5).

    PubMed

    Yu, Jiang; Guan, Xuejiao; Liu, Chongxi; Xiang, Wensheng; Yu, Zhenhua; Liu, Xiaobing; Wang, Guanghua

    2016-10-01

    A Gram-positive, aerobic, motile, rod-shaped bacterium, designated strain C9(T), was isolated from surface sterilised corn roots (Zea mays cv. Xinken-5) and found to be able to produce indole-3-acetic acid. A polyphasic taxonomic study was carried out to determine the status of strain C9(T). The major cellular fatty acids were found to contain iso-C15:0, anteiso-C15:0 and anteiso-C17:0, and the only menaquinone was identified as MK-7. The polar lipid profile was found to contain diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and an unidentified lipid. The cell wall peptidoglycan was found to be of the A4α L-Lys-D-Asp type and the whole cell sugar was found to be glucose. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain C9(T) belongs to the genus Lysinibacillus and is closely related to Lysinibacillus chungkukjangi NBRC 108948(T) (98.1 % similarity) and Lysinibacillus sinduriensis DSM 27595(T) (98.0 %). However, the low levels of DNA-DNA relatedness and some differential phenotypic characteristics allowed the strain to be distinguished from its close relatives. Therefore, it is concluded that strain C9(T) represents a novel species of the genus Lysinibacillus, for which the name Lysinibacillus endophyticus sp. nov. is proposed. The type strain is C9(T) (=DSM 100506(T) = CGMCC 1.15291(T)).

  18. Paenibacillus qinlingensis sp. nov., an indole-3-acetic acid-producing bacterium isolated from roots of Sinopodophyllum hexandrum (Royle) Ying.

    PubMed

    Xin, Kaiyun; Li, Muhang; Chen, Chaoqiong; Yang, Xu; Li, Qiqi; Cheng, Juanli; Zhang, Lei; Shen, Xihui

    2017-04-01

    A novel indole-3-acetic acid-producing bacterium, designated TEGT-2T, was isolated from the roots of Sinopodophyllum hexandrum collected from the Qinling Mountains in shaanxi province, northwestern China, and was subjected to a taxonomic study by using a polyphasic approach. Cells of strain TEGT-2T were Gram-stain-positive, strictly aerobic, endospore-forming rods and motile by means of peritrichous flagella. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain TEGT-2T was a member of the genus Paenibacillus, exhibiting the highest sequence similarity to Paenibacillus pectinilyticus KCTC 13222T (97.9 %), Paenibacillus frigoriresistens CCTCC AB 2011150T (97.3 %), Paenibacillus ferrarius CCTCC AB 2013369T (96.9 %) and Paenibacillus alginolyticus NBRC 15375T (96.5 %). The only menaquinone detected was MK-7, and the major fatty acid was anteiso-C15 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, two unidentified phospholipids, an unidentified aminolipid and two unidentified lipids. meso-Diaminopimelic acid was detected in the peptidoglycan. The DNA G+C content was 46.6 mol%. DNA-DNA relatedness values for strain TEGT-2T with respect to its closest phylogenetic relatives Paenibacilluspectinilyticus KCTC 13222T and Paenibacillus. frigoriresistens CCTCC AB 2011150T were lower than 40 %. Based on the phenotypic, phylogenetic and genotypic data, strain TEGT-2T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus qinlingensis sp. nov. is proposed. The type strain is TEGT-2T (=CCTCC AB 2015258T=KCTC 33806T).

  19. Desulfomusa hansenii gen. nov., sp. nov., a novel marine propionate-degrading, sulfate-reducing bacterium isolated from Zostera marina roots.

    PubMed

    Finster, K; Thomsen, T R; Ramsing, N B

    2001-11-01

    The physiology and phylogeny of a novel sulfate-reducing bacterium, isolated from surface-sterilized roots of the marine macrophyte Zostera marina, are presented. The strain, designated P1T, was enriched and isolated in defined oxygen-free, bicarbonate-buffered, iron-reduced seawater medium with propionate as sole carbon source and electron donor and sulfate as electron acceptor. Strain P1T had a rod-shaped, slightly curved cell morphology and was motile by means of a single polar flagellum. Cells generally aggregated in clumps throughout the growth phase. High CaCl2 (10 mM) and MgCl2 (50 mM) concentrations were required for optimum growth. In addition to propionate, strain P1T utilized fumarate, succinate, pyruvate, ethanol, butanol and alanine. Oxidation of propionate was incomplete and acetate was formed in stoichiometric amounts. Strain P1T thus resembles members of the sulfate-reducing genera Desulfobulbus and Desulforhopalus, which both oxidize propionate incompletely and form acetate in addition to CO2. However, sequence analysis of the small-subunit rDNA and the dissimilatory sulfite reductase gene revealed that strain P1T was unrelated to the incomplete oxidizers Desulfobulbus and Desulforhopalus and that it constitutes a novel lineage affiliated with the genera Desulfococcus, Desulfosarcina, Desulfonema and 'Desulfobotulus'. Members of this branch, with the exception of 'Desulfobotulus sapovorans', oxidize a variety of substrates completely to CO2. Strain P1T (= DSM 12642T = ATCC 700811T) is therefore proposed as Desulfomusa hansenii gen. nov., sp. nov. Strain p1T thus illustrates the difficulty of extrapolating rRNA similarities to physiology and/or ecological function.

  20. Characterization of Desulfovibrio salinus sp. nov., a slightly halophilic sulfate-reducing bacterium isolated from a saline lake in Tunisia.

    PubMed

    Ben Ali Gam, Zouhaier; Thioye, Abdoulaye; Cayol, Jean-Luc; Joseph, Manon; Fauque, Guy; Labat, Marc

    2018-03-01

    A novel slightly halophilic sulfate-reducing bacterium, designated strain P1BSR T , was isolated from water of a saline lake in Tunisia. Strain P1BSR T had motile (single polar flagellum), Gram-negative, rod-shaped, non-spore-forming cells, occurring singly or in pairs. Strain P1BSR T grew at temperatures between 15 and 45 °C (optimum 40 °C), and in a pH range between 6 and 8.5 (optimum pH 6.7). The strain required NaCl for growth (1 % w/v), and tolerated high NaCl concentration (up to 12 % w/v) with an optimum of 3 % (w/v). Sulfate, thiosulfate and sulfite served as terminal electron acceptors, but not elemental sulfur, fumarate, nitrate and nitrite. Strain P1BSR T utilized lactate, pyruvate, formate, d-fructose and glycerol as carbon and energy sources. The main cellular fatty acid was C16 : 0 (50.8 %). The genomic DNA G+C content was 47.7 mol%. Phylogenetic analysis of 16S rRNA gene sequence similarity indicated that strain P1BSR T was affiliated to the genus Desulfovibrio, with the type strains Desulfovibrio salexigens (96.51 %), Desulfovibrio zosterae (95.68 %), Desulfovibrio hydrothermalis (94.81 %) and Desulfovibrio ferrireducens (94.73 %) as its closest phylogenetic relatives. On the basis of genotypic, phenotypic and phylogenetic characteristics, it is proposed to assign strain P1BSR T to a novel species of the genus Desulfovibrio, Desulfovibrio salinus sp. nov. The type strain is P1BSR T (=DSM 101510 T =JCM 31065 T ).

  1. Rhodonellum psychrophilum gen. nov., sp. nov., a novel psychrophilic and alkaliphilic bacterium of the phylum Bacteroidetes isolated from Greenland.

    PubMed

    Schmidt, Mariane; Priemé, Anders; Stougaard, Peter

    2006-12-01

    A novel alkaliphilic and psychrophilic bacterium was isolated from the cold and alkaline ikaite tufa columns of the Ikka Fjord in south-west Greenland. According to 16S rRNA gene sequence analysis, strain GCM71(T) belonged to the family 'Flexibacteraceae' in the phylum Bacteroidetes. Strain GCM71(T), together with five related isolates from ikaite columns, formed a separate cluster with 86-93 % gene sequence similarity to their closest relative, Belliella baltica. The G+C content of the DNA from strain GCM71(T) was 43.1 mol%, whereas that of B. baltica was reported to be 35 mol%. DNA-DNA hybridization between strain GCM71(T) and B. baltica was 9.5 %. The strain was red pigmented, Gram-negative, strictly aerobic with non-motile, rod-shaped cells. The optimal growth conditions for strain GCM71(T) were pH 9.2-10.0, 5 degrees C and 0.6 % NaCl. The fatty acid profile of the novel strain was dominated by branched and unsaturated fatty acids (90-97 %), with a high abundance of iso-C(17 : 1)omega9c (17.5 %), iso-C(17 : 0) 3-OH (17.5 %) and summed feature 3, comprising iso-C(15 : 0) 2-OH and/or C(16 : 1)omega7c (12.6 %). Phylogenetic, chemotaxonomic and physiological characteristics showed that the novel strain could not be affiliated to any known genus. A new genus, Rhodonellum gen. nov., is proposed to accommodate the novel strain. Strain GCM71(T) (=DSM 17998(T)=LMG 23454(T)) is proposed as the type strain of the type species, Rhodonellum psychrophilum sp. nov.

  2. Genetic and Biochemical Characterization of 2-Chloro-5-Nitrophenol Degradation in a Newly Isolated Bacterium, Cupriavidus sp. Strain CNP-8

    PubMed Central

    Min, Jun; Chen, Weiwei; Wang, Jinpei; Hu, Xiaoke

    2017-01-01

    Compound 2-chloro-5-nitrophenol (2C5NP) is a typical chlorinated nitroaromatic pollutant. To date, the bacteria with the ability to degrade 2C5NP are rare, and the molecular mechanism of 2C5NP degradation remains unknown. In this study, Cupriavidus sp. strain CNP-8 utilizing 2-chloro-5-nitrophenol (2C5NP) and meta-nitrophenol (MNP) via partial reductive pathways was isolated from pesticide-contaminated soil. Biodegradation kinetic analysis indicated that 2C5NP degradation by this strain was concentration dependent, with a maximum specific degradation rate of 21.2 ± 2.3 μM h−1. Transcriptional analysis showed that the mnp genes are up-regulated in both 2C5NP- and MNP-induced strain CNP-8. Two Mnp proteins were purified to homogeneity by Ni-NTA affinity chromatography. In addition to catalyzing the reduction of MNP, MnpA, a NADPH-dependent nitroreductase, also catalyzes the partial reduction of 2C5NP to 2-chloro-5-hydroxylaminophenol via 2-chloro-5-nitrosophenol, which was firstly identified as an intermediate of 2C5NP catabolism. MnpC, an aminohydroquinone dioxygenase, is likely responsible for the ring-cleavage reaction of 2C5NP degradation. Gene knockout and complementation indicated that mnpA is necessary for both 2C5NP and MNP catabolism. To our knowledge, strain CNP-8 is the second 2C5NP-utilizing bacterium, and this is the first report of the molecular mechanism of microbial 2C5NP degradation. PMID:28959252

  3. Pontibacillus litoralis sp. nov., a facultatively anaerobic bacterium isolated from a sea anemone, and emended description of the genus Pontibacillus.

    PubMed

    Chen, Yi-Guang; Zhang, Yu-Qin; Yi, Lang-Bo; Li, Zhao-Yang; Wang, Yong-Xiao; Xiao, Huai-Dong; Chen, Qi-Hui; Cui, Xiao-Long; Li, Wen-Jun

    2010-03-01

    A facultatively anaerobic, moderately halophilic, Gram-positive, endospore-forming, motile, catalase- and oxidase-positive, rod-shaped bacterium, strain JSM 072002(T), was isolated from a sea anemone (Anthopleura xanthogrammica) collected from the South China Sea. Strain JSM 072002(T) was able to grow with 0.5-15 % (w/v) NaCl and at pH 6.0-10.0 and 15-50 degrees C; optimum growth was observed with 2-5 % (w/v) NaCl and at pH 7.5 and 35 degrees C. meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The major cellular fatty acids were iso-C(15 : 0) and anteiso-C(15 : 0). The predominant respiratory quinone was menaquinone 7 and the genomic DNA G+C content was 41.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 072002(T) should be assigned to the genus Pontibacillus and revealed relatively low 16S rRNA gene sequence similarities (<97 %) with the type strains of the three recognized Pontibacillus species (Pontibacillus chungwhensis BH030062(T), 96.8 %; Pontibacillus marinus KCTC 3917(T), 96.7 %; Pontibacillus halophilus JSM 076056(T), 96.0 %). The combination of phylogenetic analysis, DNA-DNA relatedness values, phenotypic characteristics and chemotaxonomic data supports the view that strain JSM 072002(T) represents a novel species of the genus Pontibacillus, for which the name Pontibacillus litoralis sp. nov. is proposed. The type strain is JSM 072002(T) (=DSM 21186(T)=KCTC 13237(T)). An emended description of the genus Pontibacillus is also presented.

  4. Production and characterization of biodiesel from carbon dioxide concentrating chemolithotrophic bacteria, Serratia sp. ISTD04.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-02-01

    A chemolithotrophic bacterium, Serratia sp. ISTD04, enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was evaluated for potential of carbon dioxide (CO2) sequestration and biofuel production. CO2 sequestration efficiency of the bacterium was determined by enzymatic activity of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Further, Western blot analysis confirmed presence of RuBisCO. The bacterium produced 0.487 and 0.647mgmg(-1) per unit cell dry weight of hydrocarbons and lipids respectively. The hydrocarbons were within the range of C13-C24 making it equivalent to light oil. GC-MS analysis of lipids produced by the bacterium indicated presence of C15-C20 organic compounds that made it potential source of biodiesel after transesterification. GC-MS, FTIR and NMR spectroscopic characterization of the fatty acid methyl esters revealed the presence of 55% and 45% of unsaturated and saturated organic compounds respectively, thus making it a balanced biodiesel composition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp.

    PubMed Central

    Tapia, Javier E.; González, Bernardo; Goulitquer, Sophie; Potin, Philippe; Correa, Juan A.

    2016-01-01

    Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae–microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga. PMID:26941722

  6. Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp.

    PubMed

    Tapia, Javier E; González, Bernardo; Goulitquer, Sophie; Potin, Philippe; Correa, Juan A

    2016-01-01

    Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae-microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga.

  7. Screening of Microorganisms Producing Cold-Active Oxidoreductases to Be Applied in Enantioselective Alcohol Oxidation. An Antarctic Survey

    PubMed Central

    Araújo, Lidiane S.; Kagohara, Edna; Garcia, Thaís P.; Pellizari, Vivian H.; Andrade, Leandro H.

    2011-01-01

    Several microorganisms were isolated from soil/sediment samples of Antarctic Peninsula. The enrichment technique using (RS)-1-(phenyl)ethanol as a carbon source allowed us to isolate 232 psychrophile/psychrotroph microorganisms. We also evaluated the enzyme activity (oxidoreductases) for enantioselective oxidation reactions, by using derivatives of (RS)-1-(phenyl)ethanol as substrates. Among the studied microorganisms, 15 psychrophile/psychrotroph strains contain oxidoreductases that catalyze the (S)-enantiomer oxidation from racemic alcohols to their corresponding ketones. Among the identified microorganisms, Flavobacterium sp. and Arthrobacter sp. showed excellent enzymatic activity. These new bacteria strains were selected for optimization study, in which the (RS)-1-(4-methyl-phenyl)ethanol oxidation was evaluated in several reaction conditions. From these studies, it was observed that Flavobacterium sp. has an excellent enzymatic activity at 10 °C and Arthrobacter sp. at 15 and 25 °C. We have also determined the growth curves of these bacteria, and both strains showed optimum growth at 25 °C, indicating that these bacteria are psychrotroph. PMID:21673897

  8. Purification and characterization of an alginate lyase from marine Bacterium Vibrio sp. mutant strain 510-64.

    PubMed

    Hu, Xiaoke; Jiang, Xiaolu; Hwang, Huey-Min

    2006-08-01

    Marine Vibrio sp. 510 was chosen as a parent strain for screening high producers of alginate lyase using the complex mutagenesis of Ethyl Methanesulphonate and UV radiation treatments. The mutant strain Vibrio sp. 510-64 was selected and its alginate lyase activity was increased by 3.87-fold (reaching 46.12 EU/mg) over that of the parent strain. An extracellular alginate lyase was purified from Vibrio sp. 510-64 cultural supernatant by successive fractionation on DEAE Sepharose FF and two steps of Superdex 75. The purified enzyme yielded a single band on SDS-PAGE with the molecular weight of 34.6 kDa. Data of the N-terminal amino acid sequence indicated that this protein might be a novel alginate lyase. The substrate specificity results demonstrated that the alginate lyase had the specificity for poly G block.

  9. Soil-Bacterium Compatibility Model as a Decision-Making Tool for Soil Bioremediation.

    PubMed

    Horemans, Benjamin; Breugelmans, Philip; Saeys, Wouter; Springael, Dirk

    2017-02-07

    Bioremediation of organic pollutant contaminated soil involving bioaugmentation with dedicated bacteria specialized in degrading the pollutant is suggested as a green and economically sound alternative to physico-chemical treatment. However, intrinsic soil characteristics impact the success of bioaugmentation. The feasibility of using partial least-squares regression (PLSR) to predict the success of bioaugmentation in contaminated soil based on the intrinsic physico-chemical soil characteristics and, hence, to improve the success of bioaugmentation, was examined. As a proof of principle, PLSR was used to build soil-bacterium compatibility models to predict the bioaugmentation success of the phenanthrene-degrading Novosphingobium sp. LH128. The survival and biodegradation activity of strain LH128 were measured in 20 soils and correlated with the soil characteristics. PLSR was able to predict the strain's survival using 12 variables or less while the PAH-degrading activity of strain LH128 in soils that show survival was predicted using 9 variables. A three-step approach using the developed soil-bacterium compatibility models is proposed as a decision making tool and first estimation to select compatible soils and organisms and increase the chance of success of bioaugmentation.

  10. Isolation of a thermophilic bacterium capable of low-molecular-weight polyethylene degradation.

    PubMed

    Jeon, Hyun Jeong; Kim, Mal Nam

    2013-02-01

    A thermophilic bacterium capable of low-molecular-weight polyethylene (LMWPE) degradation was isolated from a compost sample, and was identified as Chelatococcus sp. E1, through sequencing of the 16S rRNA gene. LMWPE was prepared by thermal degradation of commercial PE in a strict nitrogen atmosphere. LMWPE with a weight-average-molecular-weight (Mw) in the range of 1,700-23,700 was noticeably mineralized into CO(2) by the bacterium. The biodegradability of LMWPE decreased as the Mw increased. The low molecular weight fraction of LMWPE decreased significantly as a result of the degradation process, and thereby both the number-average-molecular-weight and Mw increased after biodegradation. The polydispersity of LMWPE was either narrowed or widened, depending on the initial Mw of LMWPE, due to the preferential elimination of the low molecular weight fraction, in comparison to the high molecular weight portion. LMWPE free from an extremely low molecular weight fraction was also mineralized by the strain at a remarkable rate, and FTIR peaks assignable to C-O stretching appeared as a result of microbial action. The FTIR peaks corresponding to alkenes also became more intense, indicating that dehydrogenations occurred concomitantly with microbial induced oxidation.

  11. An arsenate-reducing and alkane-metabolizing novel bacterium, Rhizobium arsenicireducens sp. nov., isolated from arsenic-rich groundwater.

    PubMed

    Mohapatra, Balaram; Sarkar, Angana; Joshi, Swati; Chatterjee, Atrayee; Kazy, Sufia Khannam; Maiti, Mrinal Kumar; Satyanarayana, Tulasi; Sar, Pinaki

    2017-03-01

    A novel arsenic (As)-resistant, arsenate-respiring, alkane-metabolizing bacterium KAs 5-22 T , isolated from As-rich groundwater of West Bengal was characterized by physiological and genomic properties. Cells of strain KAs 5-22 T were Gram-stain-negative, rod-shaped, motile, and facultative anaerobic. Growth occurred at optimum of pH 6.0-7.0, temperature 30 °C. 16S rRNA gene affiliated the strain KAs 5-22 T to the genus Rhizobium showing maximum similarity (98.4 %) with the type strain of Rhizobium naphthalenivorans TSY03b T followed by (98.0 % similarity) Rhizobium selenitireducens B1 T . The genomic G + C content was 59.4 mol%, and DNA-DNA relatedness with its closest phylogenetic neighbors was 50.2 %. Chemotaxonomy indicated UQ-10 as the major quinone; phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol as major polar lipids; C 16:0 , C 17:0 , 2-OH C 10:0 , 3-OH C 16:0 , and unresolved C 18:1 ɷ7C/ɷ9C as predominant fatty acids. The cells were found to reduce O 2 , As 5+ , NO 3 - , SO 4 2- and Fe 3+ as alternate electron acceptors. The strain's ability to metabolize dodecane or other alkanes as sole carbon source using As 5+ as terminal electron acceptor was supported by the presence of genes encoding benzyl succinate synthase (bssA like) and molybdopterin-binding site (mopB) of As 5+ respiratory reductase (arrA). Differential phenotypic, chemotaxonomic, genotypic as well as physiological properties revealed that the strain KAs 5-22 T is separated from its nearest recognized Rhizobium species. On the basis of the data presented, strain KAs 5-22 T is considered to represent a novel species of the genus Rhizobium, for which the name Rhizobium arsenicireducens sp. nov. is proposed as type strain (=LMG 28795 T =MTCC 12115 T ).

  12. Paenibacillus yonginensis sp. nov., a potential plant growth promoting bacterium isolated from humus soil of Yongin forest.

    PubMed

    Sukweenadhi, Johan; Kim, Yeon-Ju; Lee, Kwang Je; Koh, Sung-Cheol; Hoang, Van-An; Nguyen, Ngoc-Lan; Yang, Deok-Chun

    2014-11-01

    Strain DCY84(T), a Gram-stain positive, rod-shaped, aerobic, spore-forming bacterium, motile by means of peritrichous flagella, was isolated from humus soil from Yongin forest in Gyeonggi province, South Korea. Strain DCY84(T) shared the highest sequence similarity with Paenibacillus barengoltzii KACC 15270(T) (96.86 %), followed by Paenibacillus timonensis KACC 11491(T) (96.49 %) and Paenibacillus phoenicis NBRC 106274(T) (95.77 %). Strain DCY84(T) was found to able to grow best in TSA at temperature 30 °C, at pH 8 and at 0.5 % NaCl. MK-7 menaquinone was identified as the isoprenoid quinone. The major polar lipids were identified as phosphatidylethanolamine, an unidentified aminophospholipid, two unidentified aminolipids and an unidentified polar lipid. The peptidoglycan was found to contain the amino acids meso-diaminopimelic acid, alanine and D-glutamic acid. The major fatty acids of strain DCY84(T) were identified as branched chain anteiso-C15:0, saturated C16:0 and branched chain anteiso-C17:0. The cell wall sugars of strain DCY84(T) were found to comprise of ribose, galactose and xylose. The major polyamine was identified as spermidine. The DNA G+C content was determined to be 62.6 mol%. After 6 days of incubation, strain DCY84(T) produced 52.96 ± 1.85 and 72.83 ± 2.86 µg/ml L-indole-3-acetic acid, using media without L-tryptophan and supplemented with L-tryptophan, respectively. Strain DCY84(T) was also found to be able to solubilize phosphate and produce siderophores. On the basis of the phenotypic characteristics, genotypic analysis and chemotaxonomic characteristics, strain DCY84(T) is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus yonginensis sp. nov. is proposed. The type strain is DCY84(T) (=KCTC 33428(T) = JCM 19885(T)).

  13. Anoxybacillusgeothermalis sp. nov., a facultatively anaerobic, endospore-forming bacterium isolated from mineral deposits in a geothermal station.

    PubMed

    Filippidou, Sevasti; Jaussi, Marion; Junier, Thomas; Wunderlin, Tina; Jeanneret, Nicole; Palmieri, Fabio; Palmieri, Ilona; Roussel-Delif, Ludovic; Vieth-Hillebrand, Andrea; Vetter, Alexandra; Chain, Patrick S; Regenspurg, Simona; Junier, Pilar

    2016-08-01

    A novel endospore-forming bacterium designated strain GSsed3T was isolated from deposits clogging aboveground filters from the geothermal power platform of Groß Schönebeck in northern Germany. The novel isolate was Gram-staining-positive, facultatively anaerobic, catalase-positive and oxidase-positive. Optimum growth occurred at 60 °C, 0.5 % (w/v) NaCl and pH 7-8. Analysis of the 16S rRNA gene sequence similarity indicated that strain GSsed3T belonged to the genus Anoxybacillus, and showed 99.8 % sequence similarity to Anoxybacillus rupiensis R270T, 98.2 % similarity to Anoxybacillus tepidamans GS5-97T, 97.9 % similarity to Anoxybacillus voinovskiensis TH13T, 97.7 % similarity to Anoxybacillus caldiproteolyticus DSM 15730T and 97.6 % similarity to Anoxybacillus amylolyticus MR3CT. DNA-DNA hybridization (DDH) indicated only 16 % relatedness to Anoxybacillus rupiensis DSM 17127T. Furthermore, DDH estimation based on genomes analysis indicated only 19.9 % overall nucleotide similarity to Anoxybacillus amylolyticus DSM 15939T. The major respiratory menaquinone was MK-8. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unknown phosphoglycolipid and one unknown phospholipid. The predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0, C16 : 0, iso-C16 : 0 and anteiso-C17 : 0. The peptidoglycan type was A1γ meso-Dpm-direct. The genomic DNA G+C content of the strain was 46.9 mol%. The phenotypic, genotypic and chemotaxonomic characterization indicated that strain GSsed3T differs from related species of the genus. Therefore, strain GSsed3T is considered to be a representative of a novel species of the genus Anoxybacillus, for which the name Anoxybacillus geothermalis sp. nov. is proposed. The type strain of Anoxybacillus geothermalis is GSsed3T (=CCOS808T =ATCC BAA2555T).

  14. Genome Sequence of Herbaspirillum sp. Strain GW103, a Plant Growth-Promoting Bacterium

    PubMed Central

    Lee, Gun Woong; Lee, Kui-Jae

    2012-01-01

    Herbaspirillum sp. strain GW103 was isolated from rhizosphere soil of the reed Phragmites australis on reclaimed land. Here we report the 5.05-Mb draft genome sequence of the strain, providing bioinformation about the agronomic benefits of this strain, such as multiple traits relevant to plant root colonization and plant growth promotion. PMID:22815460

  15. Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae).

    PubMed

    Briones-Roblero, Carlos I; Rodríguez-Díaz, Roberto; Santiago-Cruz, José A; Zúñiga, Gerardo; Rivera-Orduña, Flor N

    2017-01-01

    Bark beetles (Curculionidae: Scolytinae) feed on the xylem and phloem of their host, which are composed of structural carbohydrates and organic compounds that are not easily degraded by the insects. Some of these compounds might be hydrolyzed by digestive enzymes produced by microbes present in the gut of these insects. In this study, we evaluated the enzymatic capacity of bacteria (Acinetobacter lwoffii, Arthrobacter sp., Pseudomonas putida, Pseudomonas azotoformans, and Rahnella sp.) and yeasts (Candida piceae, Candida oregonensis, Cyberlindnera americana, Zygoascus sp., and Rhodotorula mucilaginosa) isolated from the Dendroctonus rhizophagus gut to hydrolyze cellulose, xylan, pectin, starch, lipids, and esters. All isolates, with the exception of C. piceae, showed lipolytic activity. Furthermore, P. putida, P. azotoformans, C. americana, C. piceae, and R. mucilaginosa presented amylolytic activity. Esterase activity was shown by A. lwoffii, P. azotoformans, and Rahnella sp. Cellulolytic and xylanolytic activities were present only in Arthrobacter sp. and P. azotoformans. The pectinolytic activity was not recorded in any isolate. This is the first study to provide evidence on the capacity of microbes associated with the D. rhizophagus gut to hydrolyze specific substrates, which might cover part of the nutritional requirements for the development, fitness, and survival of these insects.

  16. Production of uracil from methane by a newly isolated Methylomonas sp. SW1.

    PubMed

    Kim, Sangwoo; Lee, Wangjun; Song, Insu; Kwon, Yuhyun; Yun, Seokhun; Park, Soohyun; Cho, Sukhyeong; Oh, Byung-Keun; Oh, Han Bin; Lee, Jinwon

    2016-12-20

    Methane is an abundant, inexpensive one-carbon feedstock and one of the most powerful greenhouse gases. Because it does not compete with food demand, it is considered a promising carbon feedstock for the production of valuable products using methanotrophic bacteria. Here, we isolated a novel methanotrophic bacterium, Methylomonas sp. SW1, from a sewage sample obtained from Wonju City Water Supply Drainage Center, Republic of Korea. The conditions for uracil production by Methylomonas sp. SW1, such as Cu 2+ concentration and temperature were investigated and optimized. As a result, Methylomonas sp. SW1 produced uracil from methane as a sole carbon source with a titer of 2.1mg/L in 84h without genetic engineering under the optimized condition. The results in this study demonstrate the feasibility of using Methylomonas sp. SW1 for the production of uracil from methane. This is the first report of uracil production from gas feedstock by methanotrophic bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. PLASMID-ENCODED PHTHALATE CATABOLIC PATHWAY IN ARTHROBACTER KEYSERI 12B: BIOTRANSFORMATIONS OF 2-SUBSTITUTED BENZOATES AND THEIR USE IN CLONING AND CHARACTERIZATION OF PHTHALATE CATABOLISM GENES AND GENE PRODUCTS

    EPA Science Inventory

    Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates)...

  18. Isolation and Identification of Novel Microcystin-Degrading Bacteria▿

    PubMed Central

    Manage, Pathmalal M.; Edwards, Christine; Singh, Brajesh K.; Lawton, Linda A.

    2009-01-01

    Of 31 freshwater bacterial isolates screened using the Biolog MT2 assay to determine their metabolism of the microcystin LR, 10 were positive. Phylogenetic analysis (16S rRNA) identified them as Arthrobacter spp., Brevibacterium sp., and Rhodococcus sp. This is the first report of microcystin degraders that do not belong to the Proteobacteria. PMID:19734339

  19. Isolation and application of Gordonia sp. JC11 for removal of boat lubricants.

    PubMed

    Chanthamalee, Jirapat; Luepromchai, Ekawan

    2012-01-01

    Boat lubricants are continuously released into the marine environment and thereby cause chronic oil pollution. This study aims to isolate lubricant-degrading microorganisms from Thai coastal areas as well as to apply a selected strain for removal of boat lubricants. Ten microorganisms in the genera of Gordonia, Microbacterium, Acinetobacter, Pseudomonas, Brucella, Enterococcus and Candida were initially isolated by crude oil enrichment culture techniques. The lubricant-removal activity of these isolates was investigated with mineral-based lubricants that had been manufactured for the 4-stroke diesel engines of fishing boats. Gordonia sp. JC11, the most effective strain was able to degrade 25-55% of 1,000 mg L(-1) total hydrocarbons in six tested lubricants, while only 0-15% of the lubricants was abiotically removed. The bacterium had many characteristics that promoted lubricant degradation such as hydrocarbon utilization ability, emulsification activity and cell surface hydrophobicity. For bioaugmentation treatment of lubricant contaminated seawater, the inoculum of Gordonia sp. JC11 was prepared by immobilizing the bacterium on polyurethane foam (PUF). PUF-immobilized Gordonia sp. JC11 was able to remove 42-56% of 100-1,000 mg L(-1) waste lubricant No. 2 within 5 days. This lubricant removal efficiency was higher than those of free cells and PUF without bacterial cells. The bioaugmentation treatment significantly increased the number of lubricant-degrading microorganisms in the fishery port seawater microcosm and resulted in rapid removal of waste lubricant No. 2.

  20. Draft Genome Sequence of a Kale (Brassica oleracea L.) Root Endophyte, Pseudomonas sp. Strain C9.

    PubMed

    Laugraud, Aurelie; Young, Sandra; Gerard, Emily; O'Callaghan, Maureen; Wakelin, Steven

    2017-04-13

    Pseudomonas sp. strain C9 is a plant growth-promoting bacterium isolated from the root tissue of Brassica oleracea L. grown in soil from Marlborough, New Zealand. Its draft genome of 6,350,161 bp contains genes associated with plant growth promotion and biological control. Copyright © 2017 Laugraud et al.

  1. Sphingobium sp. SYK-6 LigG involved in lignin degradation is structurally and biochemically related to the glutathione transferase ω class.

    PubMed

    Meux, Edgar; Prosper, Pascalita; Masai, Eiji; Mulliert, Guillermo; Dumarçay, Stéphane; Morel, Mélanie; Didierjean, Claude; Gelhaye, Eric; Favier, Frédérique

    2012-11-16

    SpLigG is one of the three glutathione transferases (GSTs) involved in the process of lignin breakdown in the soil bacterium Sphingobium sp. SYK-6. Sequence comparisons showed that SpLigG and several proteobacteria homologues form an independent cluster within cysteine-containing GSTs. The relationship between SpLigG and other GSTs was investigated. The X-ray structure and biochemical properties of SpLigG indicate that this enzyme belongs to the omega class of glutathione transferases. However, the hydrophilic substrate binding site of SpLigG, together with its known ability to stereoselectively deglutathionylate the physiological substrate α-glutathionyl-β-hydroxypropiovanillone, argues for broadening the definition of the omega class. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Enhanced biosynthesis of dihydrodaidzein and dihydrogenistein by a newly isolated bovine rumen anaerobic bacterium.

    PubMed

    Wang, Xiu-Ling; Shin, Kwang-Hee; Hur, Hor-Gil; Kim, Su-Il

    2005-02-09

    A rod-shaped and Gram-positive anaerobic bacterium, named Niu-O16, which was isolated from bovine rumen contents, was found to be capable of anaerobically converting isoflavones daidzein and genistein to dihydrodaidzein (DHD) and dihydrogenistein (DHG), respectively. The metabolites DHD and DHG were identified using EI-MS and NMR spectrometric analyses. Stereoisomeric metabolites, which were separated on chiral stationary phase HPLC, were formed in equal amounts by the strain Niu-O16. Tautomerization reaction occurred on the B-ring of DHD and DHG seems to be attributed to the equal production of stereoisomeric metabolites. For the synthesis of DHD, the strain Niu-O16 showed an optimal pH range from 6.0 to 7.0 and completely reduced up to 800 microM of daidzein to DHD with the initial OD600nm=1.0 and pH 7.0 for 3 days incubation. The strain Niu-O16, showed relatively faster reduction activity toward daidzein to produce DHD than the previously isolated human intestinal bacterium Clostridium sp. HGH6.

  3. Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring.

    PubMed

    Rubiano-Labrador, Carolina; Baena, Sandra; Díaz-Cárdenas, Carolina; Patel, Bharat K C

    2013-04-01

    An anaerobic, moderately thermophilic, terminal-spore-forming bacterium, designated strain USBA A(T), was isolated from a terrestrial hot spring located at an altitude of 2683 m in the Andean region of Colombia (04° 50' 14.0″ N 75° 32' 53.4″ W). Cells of strain USBA A(T) were Gram-stain-positive, straight to slightly curved rods (0.9×2.5 µm), that were arranged singly or in pairs, and were motile by means of flagella. Growth occurred at 37-55 °C and pH 6.0-8.0, with a doubling time of 2 h under the optimal conditions (50 °C and pH 7.0). Glucose fermentation in strain USBA A(T) required yeast extract or peptone (each at 0.2 %, w/v). The novel strain fermented sugars, amino acids, Casamino acids, propanol, propionate, starch and dextrin, but no growth was observed on galactose, lactose, xylose, histidine, serine, threonine, benzoate, butyrate, lactate, pyruvate, succinate, methanol, ethanol, glycerol, casein, gelatin or xylan. The end products of glucose fermentation were formate, acetate, ethanol and lactate. Strain USBA A(T) did not grow autotrophically (with CO2 as carbon source and H2 as electron donor) and did not reduce thiosulfate, sulfate, elemental sulfur, sulfite, vanadium (V) or Fe (III) citrate. Growth of strain USBA A(T) was inhibited by ampicillin, chloramphenicol, kanamycin, penicillin and streptomycin (each at 10 µg ml(-1)). The predominant fatty acids were iso-C15 : 0, C16 : 0 and iso-C17 : 0 and the genomic DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis indicated that strain USBA A(T) belonged in the phylum Firmicutes and that its closest relative was Caloramator viterbiensis JW/MS-VS5(T) (95.0 % sequence similarity). A DNA-DNA relatedness value of only 30 % was recorded in hybridization experiments between strain USBA A(T) and Caloramator viterbiensis DSM 13723(T). Based on the phenotypic, chemotaxonomic and phylogenetic evidence and the results of the DNA-DNA hybridization experiments, strain USBA A

  4. Sporosalibacterium faouarense gen. nov., sp. nov., a moderately halophilic bacterium isolated from oil-contaminated soil.

    PubMed

    Rezgui, Raja; Ben Ali Gam, Zouhaier; Ben Hamed, Said; Fardeau, Marie-Laure; Cayol, Jean-Luc; Maaroufi, Abderrazak; Labat, Marc

    2011-01-01

    A novel strictly anaerobic, moderately halophilic and mesophilic bacterium, designated strain SOL3f37(T), was isolated from a hydrocarbon-polluted soil surrounding a deep petroleum environment located in south Tunisia. Cells of strain SOL3f37(T) stained Gram-positive and were motile, straight and spore-forming. Strain SOL3f37(T) had a typical Gram-positive-type cell-wall structure, unlike the thick, multilayered cell wall of its closest relative Clostridiisalibacter paucivorans. The major fatty acids were iso-C(15 : 0) (41 %), iso-C(14 : 0) 3-OH and/or iso-C(15 : 0) dimethyl acetal (21.6 %), iso-C(13 : 0) (4.4 %), anteiso-C(15 : 0) (3.9 %) and iso-C(15 : 1) (2.8 %). Strain SOL3f37(T) grew between 20 and 48 °C (optimum 40 °C) and at pH 6.2-8.1 (optimum pH 6.9). Strain SOL3f37(T) required at least 0.5 NaCl l(-1) and grew in the presence of NaCl concentrations up to 150 g l(-1) (optimum 40 g l(-1)). Yeast extract (2 g l(-1)) was required for degradation of pyruvate, fumarate, fructose, glucose and mannitol. Also, strain SOL3f37(T) grew heterotrophically on yeast extract, peptone and bio-Trypticase, but was unable to grow on Casamino acids. Sulfate, thiosulfate, sulfite, elemental sulfur, fumarate, nitrate and nitrite were not reduced. The DNA G+C content was 30.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SOL3f37(T) was a member of the family Clostridiaceae in the order Clostridiales; strain SOL3f37(T) was related to members of various genera of the family Clostridiaceae. It exhibited highest 16S rRNA gene sequence similarity (93.4 %) with Clostridiisalibacter paucivorans 37HS60(T), 91.8 % with Thermohalobacter berrensis CTT3(T) and 91.7 % with Caloranaerobacter azorensis MV1087(T). On the basis of genotypic, phenotypic and phylogenetic data, it is suggested that strain SOL3f37(T) represents a novel species in a new genus. The name Sporosalibacterium faouarense gen. nov., sp. nov. is

  5. Cloning, expression and structural stability of a cold-adapted ß-Galactosidase from Rahnella sp.R3

    USDA-ARS?s Scientific Manuscript database

    A novel gene was isolated for the first time from a psychrophilic gram-negative bacterium Rahnella sp.R3. It encoded a cold-adapted ß-galactosidase (R-ß-Gal). Recombinant R-ß-Gal was expressed in Escherichia coli BL21 (DE3), purified, and characterized. R-ß-Gal belongs to the glycosyl hydrolase fami...

  6. Draft Genome Sequence of Deinococcus sp. Strain RL Isolated from Sediments of a Hot Water Spring

    PubMed Central

    Mahato, Nitish Kumar; Tripathi, Charu; Verma, Helianthous; Singh, Neha

    2014-01-01

    Deinococcus sp. strain RL, a moderately thermophilic bacterium, was isolated from sediments of a hot water spring in Manikaran, India. Here, we report the draft genome (2.79 Mbp) of this strain, which contains 62 contigs and 2,614 coding DNA sequences, with an average G+C content of 69.4%. PMID:25035332

  7. Purification and Characterization of Carbaryl Hydrolase from Blastobacter sp. Strain M501

    PubMed Central

    Hayatsu, Masahito; Nagata, Tadahiro

    1993-01-01

    A bacterium capable of hydrolyzing carbaryl (1-naphthyl-N-methylcarbamate) was isolated from a soil enrichment. This bacterium was characterized taxonomically as a Blastobacter sp. and designated strain M501. A carbaryl hydrolase present in this strain was purified to homogeneity by protamine sulfate treatment, ammonium sulfate precipitation, and hydrophobic, anion-exchange, gel filtration, and hydroxylapatite chromatographies. The native enzyme had a molecular mass of 166,000 Da and was composed of two subunits with molecular masses of 84,000 Da. The optimum pH and temperature of the enzyme activity were 9.0 and 45°C, respectively. The enzyme was not stable at temperatures above 40°C. The purified enzyme hydrolyzed seven N-methylcarbamate insecticides and also exhibited activity against 1-naphthyl acetate and 4-nitrophenyl acetate. Images PMID:16348989

  8. Methylocystis hirsuta sp. nov., a novel methanotroph isolated from a groundwater aquifer.

    PubMed

    Lindner, Angela S; Pacheco, Adriana; Aldrich, Henry C; Costello Staniec, Andria; Uz, Ilker; Hodson, David J

    2007-08-01

    Strain CSC1(T), a Gram-negative, aerobic, methane-oxidizing bacterium, was isolated from an uncontaminated aquifer nearly 20 years ago. Based on 16S rRNA gene sequence similarity, this strain was identified as a member of the Alphaproteobacteria, most closely related to an uncultured member of the Methylocystaceae as well as two cultured organisms, Methylocystis sp. L32 and Methylocystis sp. SC2. This strain differed from extant species in cell shape, size, expression of soluble methane monooxygenase and its unique spiny surface layers, composed of polysaccharide. DNA-DNA hybridization results showed only 3.8 % relatedness with Methylocystis echinoides NCIMB 13100 and 41.1 % relatedness with Methylocystis rosea SV97(T). Based on these genotypic and physiological differences, this isolate is proposed as a member of a novel species of the genus Methylocystis, Methylocystis hirsuta sp. nov. (type strain CSC1(T) =ATCC BAA-1344(T) =DSM 18500(T)).

  9. Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth.

    PubMed

    Radhakrishnan, Ramalingam; Park, Jae-Man; Lee, In-Jung

    2016-12-01

    Very few bacterial species were identified as bio-herbicides for weed control. The present research was focused to elucidate the plant growth retardant properties of Enterobacter sp. I-3 during their interaction by determining the changes in endogenous photosynthetic pigments, plant hormones and amino acids. The two bacterial isolates I-4-5 and I-3 were used to select the superior bacterium for controlling weed seeds (Echinochloa crus-galli L. and Portulaca oleracea L.) germination. The post-inoculation of I-3 (Enterobacter sp. I-3) significantly inhibited the weeds seed germination than their controls. The mechanism of bacterium induced plant growth reduction was identified in lettuce treated with I-3 bacterium and compared their effects with known chemical herbicide, trinexapac-ethyl (TE). The treatment of I-3 and TE showed a significant inhibitory effect on shoot length, leaf number, leaf length, leaf width, shoot weight, root weight and chlorophyll content in lettuce seedlings. The endogenous gibberellins (GAs) and abscisic acid (ABA) analysis showed that Enterobacter sp. I-3 treated plants had lower levels of GAs (GA 12 , GA 19 , GA 20 and GA 8 ) and GAs/ABA ratio and then, the higher level of ABA when compared to their controls. Indeed, the individual amino acids ie., aspartic acid, glutamic acid, glycine, threonine, alanine, serine, leucine, isoleucine and tyrosine were declined in TE and I-3 exposed plants. Our results suggest that the utilization of Enterobacter sp. I-3 inhibits the GAs pathway and amino acids synthesis in weeds to control their growth can be an alternative to chemical herbicides. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Carboxydocella manganica sp. nov., a thermophilic, dissimilatory Mn(IV)- and Fe(III)-reducing bacterium from a Kamchatka hot spring.

    PubMed

    Slobodkina, G B; Panteleeva, A N; Sokolova, T G; Bonch-Osmolovskaya, E A; Slobodkin, A I

    2012-04-01

    A thermophilic, anaerobic, dissimilatory Mn(IV)- and Fe(III)-reducing bacterium (strain SLM 61T) was isolated from a terrestrial hot spring on the Kamchatka peninsula. The cells were straight rods, 0.5-0.6 µm in diameter and 1.0-6.0 µm long, and exhibited tumbling motility by means of peritrichous flagellation. The strain grew at 26-70 °C, with an optimum at 58-60 °C, and at pH 5.5-8.0, with an optimum at pH 6.5. Growth of SLM 61T was observed at 0-2.0 % (w/v) NaCl, with an optimum at 0.5 % (w/v). The generation time under optimal growth conditions was 40 min. Strain SLM 61T grew and reduced Mn(IV), Fe(III) or nitrate with a number of organic acids and complex proteinaceous compounds as electron donors. It was capable of chemolithoautotrophic growth using molecular hydrogen as an electron donor, Fe(III) but not Mn(IV) or nitrate as an electron acceptor and CO2 as a carbon source. It also was able to ferment pyruvate, yeast extract, glucose, fructose, sucrose and maltose. The G+C content of DNA of strain SLM 61T was 50.9 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Carboxydocella thermautotrophica 41T (96.9 % similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Carboxydocella manganica sp. nov. is proposed. The type strain is SLM 61T (=DSM 23132T=VKM B-2609T). C. manganica is the first described representative of the genus Carboxydocella that possesses the ability to reduce metals and does not utilize CO.

  11. Sphaerochaeta multiformis sp. nov., an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genus Sphaerochaeta.

    PubMed

    Miyazaki, Masayuki; Sakai, Sanae; Ritalahti, Kirsti M; Saito, Yayoi; Yamanaka, Yuko; Saito, Yumi; Tame, Akihiko; Uematsu, Katsuyuki; Löffler, Frank E; Takai, Ken; Imachi, Hiroyuki

    2014-12-01

    An anaerobic, psychrophilic bacterium, strain MO-SPC2(T), was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediments collected from off the Shimokita Peninsula of Japan in the north-western Pacific Ocean. Cells were pleomorphic: spherical, annular, curved rod, helical and coccoid cell morphologies were observed. Motility only occurred in helical cells. Strain MO-SPC2(T) grew at 0-17 °C (optimally at 9 °C), at pH 6.0-8.0 (optimally at pH 6.8-7.2) and in 20-40 g NaCl l(-1) (optimally at 20-30 NaCl l(-1)). The strain grew chemo-organotrophically with mono-, di- and polysaccharides. The major end products of glucose fermentation were acetate, ethanol, hydrogen and carbon dioxide. The abundant polar lipids of strain MO-SPC2(T) were phosphatidylglycolipids, phospholipids and glycolipids. The major cellular fatty acids were C14 : 0, C16 : 0 and C16 : 1ω9. Isoprenoid quinones were not detected. The G+C content of the DNA was 32.3 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-SPC2(T) was affiliated with the genus Sphaerochaeta within the phylum Spirochaetes, and its closest relatives were Sphaerochaeta pleomorpha Grapes(T) (88.4 % sequence identity), Sphaerochaeta globosa Buddy(T) (86.7 %) and Sphaerochaeta coccoides SPN1(T) (85.4 %). Based on phenotypic characteristics and phylogenetic traits, strain MO-SPC2(T) is considered to represent a novel species of the genus Sphaerochaeta, for which the name Sphaerochaeta multiformis sp. nov. is proposed. The type strain is MO-SPC2(T) ( = JCM 17281(T) = DSM 23952(T)). An emended description of the genus Sphaerochaeta is also proposed. © 2014 IUMS.

  12. Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge.

    PubMed

    Voordeckers, James W; Starovoytov, Valentin; Vetriani, Costantino

    2005-03-01

    A thermophilic, anaerobic, chemolithoautotrophic bacterium, designated strain TB-2(T), was isolated from the walls of an active deep-sea hydrothermal vent chimney on the Mid-Atlantic Ridge at 36 degrees 14' N 33 degrees 54' W. The cells were Gram-negative rods approximately 1.5 microm in length and 0.75 microm in width. Strain TB-2(T) grew between 45 and 70 degrees C (optimum 55 degrees C), 10 and 40 g NaCl l(-1) (optimum 30 g l(-1)) and pH 4.5 and 7.5 (optimum pH 5.5). Generation time under optimal conditions was 50 min. Growth occurred under chemolithoautotrophic conditions with H(2) as the energy source and CO(2) as the carbon source. Nitrate or sulfur was used as the electron acceptor, with resulting production of ammonium and hydrogen sulfide, respectively. Oxygen, thiosulfate, sulfite, selenate and arsenate were not used as electron acceptors. Growth was inhibited by the presence of acetate, lactate, formate and peptone. The G+C content of the genomic DNA was 25.6 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Caminibacter hydrogeniphilus and Caminibacter profundus (95.9 and 96.3 % similarity, respectively). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the genus Caminibacter, Caminibacter mediatlanticus sp. nov. The type strain is TB-2(T) (=DSM 16658(T)=JCM 12641(T)).

  13. Biodegradation of pentachloronitrobenzene by Cupriavidus sp. YNS-85 and its potential for remediation of contaminated soils.

    PubMed

    Teng, Ying; Wang, Xiaomi; Zhu, Ye; Chen, Wei; Christie, Peter; Li, Zhengao; Luo, Yongming

    2017-04-01

    Pentachloronitrobenzene (PCNB) is a toxic chlorinated nitroaromatic compound. However, only a few bacteria have been reported to be able to utilize PCNB. In the present study, one pentachloronitrobenzene (PCNB)-degrading bacterium, Cupriavidus sp. YNS-85, was isolated from a contaminated Panax notoginseng plantation. The strain co-metabolized 200 mg L -1 PCNB in aqueous solution with a removal rate of 73.8% after 5 days. The bacterium also degraded PCNB effectively under acid conditions (pH 4-6) and showed resistance to toxic trace elements (arsenic, copper, and cadmium). Its ability to utilize proposed PCNB intermediates as sole carbon sources was also confirmed. The soil microcosm experiment further demonstrated that bacterial bioaugmentation enhanced the removal of PCNB (37.8%) from soil and the accumulation of pentachloroaniline (89.3%) after 30 days. Soil enzyme activity and microbial community functional diversity were positively influenced after bioremediation. These findings indicate that Cupriavidus sp. YNS-85 may be a suitable inoculant for in situ bioremediation of PCNB-polluted sites, especially those with acid soils co-contaminated with heavy metal(loid)s.

  14. Global transcriptomic response of Anoxybacillus sp. SK 3-4 to aluminum exposure.

    PubMed

    Lim, Jia Chun; Thevarajoo, Suganthi; Selvaratnam, Chitra; Goh, Kian Mau; Shamsir, Mohd Shahir; Ibrahim, Zaharah; Chong, Chun Shiong

    2017-02-01

    Anoxybacillus sp. SK 3-4 is a Gram-positive, rod-shaped bacterium and a member of family Bacillaceae. We had previously reported that the strain is an aluminum resistant thermophilic bacterium. This is the first report to provide a detailed analysis of the global transcriptional response of Anoxybacillus when the cells were exposed to 600 mg L -1 of aluminum. The transcriptome was sequenced using Illumina MiSeq sequencer. Total of 708 genes were differentially expressed (fold change >2.00) with 316 genes were up-regulated while 347 genes were down-regulated, in comparing to control with no aluminum added in the culture. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the majority of genes encoding for cell metabolism such as glycolysis, sulfur metabolism, cysteine and methionine metabolism were up-regulated; while most of the gene associated with tricarboxylic acid cycle (TCA cycle) and valine, leucine and isoleucine metabolism were down-regulated. In addition, a significant number of the genes encoding ABC transporters, metal ions transporters, and some stress response proteins were also differentially expressed following aluminum exposure. The findings provide further insight and help us to understand on the resistance of Anoxybacillus sp. SK 3-4 toward aluminium. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Polycyclovorans algicola gen. nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton.

    PubMed

    Gutierrez, Tony; Green, David H; Nichols, Peter D; Whitman, William B; Semple, Kirk T; Aitken, Michael D

    2013-01-01

    A strictly aerobic, halotolerant, rod-shaped bacterium, designated strain TG408, was isolated from a laboratory culture of the marine diatom Skeletonema costatum (CCAP1077/1C) by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (<92% sequence similarity) in the family Sinobacteraceae. The strain exhibited a narrow nutritional spectrum, preferring to utilize aliphatic and aromatic hydrocarbon compounds and small organic acids. Notably, it displayed versatility in degrading two- and three-ring PAHs. Moreover, catechol 2,3-dioxygenase activity was detected in lysates, indicating that this strain utilizes the meta-cleavage pathway for aromatic compound degradation. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain TG408 was Q-8, and the dominant fatty acids were C(16:0), C(16:1) ω7c, and C(18:1) ω7c. The G+C content of the isolate's DNA was 64.3 mol% ± 0.34 mol%. On the basis of distinct phenotypic and genotypic characteristics, strain TG408 represents a novel genus and species in the class Gammaproteobacteria for which the name Polycyclovorans algicola gen. nov., sp. nov., is proposed. Quantitative PCR primers targeting the 16S rRNA gene of this strain were developed and used to show that this organism is found associated with other species of marine phytoplankton. Phytoplankton may be a natural biotope in the ocean where new species of hydrocarbon-degrading bacteria await discovery and which contribute significantly to natural remediation processes.

  16. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.

    PubMed

    Hanada, Yuichi; Nishimiya, Yoshiyuki; Miura, Ai; Tsuda, Sakae; Kondo, Hidemasa

    2014-08-01

    Antifreeze proteins (AFPs) are structurally diverse macromolecules that bind to ice crystals and inhibit their growth to protect the organism from injuries caused by freezing. An AFP identified from the Antarctic bacterium Colwellia sp. strain SLW05 (ColAFP) is homologous to AFPs from a wide variety of psychrophilic microorganisms. To understand the antifreeze function of ColAFP, we have characterized its antifreeze activity and determined the crystal structure of this protein. The recombinant ColAFP exhibited thermal hysteresis activity of approximately 4 °C at a concentration of 0.14 mm, and induced rapid growth of ice crystals in the hexagonal direction. Fluorescence-based ice plane affinity analysis showed that ColAFP binds to multiple planes of ice, including the basal plane. These observations show that ColAFP is a hyperactive AFP. The crystal structure of ColAFP determined at 1.6 Å resolution revealed an irregular β-helical structure, similar to known homologs. Mutational and molecular docking studies showed that ColAFP binds to ice through a compound ice-binding site (IBS) located at a flat surface of the β-helix and the adjoining loop region. The IBS of ColAFP lacks the repetitive sequences that are characteristic of hyperactive AFPs. These results suggest that ColAFP exerts antifreeze activity through a compound IBS that differs from the characteristic IBSs shared by other hyperactive AFPs. This study demonstrates a novel method for protection from freezing by AFPs in psychrophilic microorganisms. Structural data for ColAFP have been submitted to the Protein Data Bank (PDB) under accession number 3WP9. © 2014 FEBS.

  17. Deferrisoma palaeochoriense sp. nov., a thermophilic, iron(III)-reducing bacterium from a shallow-water hydrothermal vent in the Mediterranean Sea.

    PubMed

    Pérez-Rodríguez, Ileana; Rawls, Matthew; Coykendall, D Katharine; Foustoukos, Dionysis I

    2016-02-01

    A novel thermophilic, anaerobic, mixotrophic bacterium, designated strain MAG-PB1T, was isolated from a shallow-water hydrothermal vent system in Palaeochori Bay off the coast of the island of Milos, Greece. The cells were Gram-negative, rugose, short rods, approximately 1.0 μm long and 0.5 μm wide. Strain MAG-PB1T grew at 30-70 °C (optimum 60 °C), 0-50 g NaCl l- 1 (optimum 15-20 g l- 1) and pH 5.5-8.0 (optimum pH 6.0). Generation time under optimal conditions was 2.5 h. Optimal growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Fe(III), Mn(IV), arsenate and selenate were used as electron acceptors. Peptone, tryptone, Casamino acids, sucrose, yeast extract, d-fructose, α-d-glucose and ( - )-d-arabinose also served as electron donors. No growth occurred in the presence of lactate or formate. The G+C content of the genomic DNA was 66.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Deferrisoma camini, the first species of a recently described genus in the Deltaproteobacteria. Based on the 16S rRNA gene phylogenetic analysis and on physiological, biochemical and structural characteristics, the strain was found to represent a novel species, for which the name Deferrisoma palaeochoriense sp. nov. is proposed. The type strain is MAG-PB1T ( = JCM 30394T = DSM 29363T).

  18. Desulfovibrio tunisiensis sp. nov., a novel weakly halotolerant, sulfate-reducing bacterium isolated from exhaust water of a Tunisian oil refinery.

    PubMed

    Ben Ali Gam, Zouhaier; Oueslati, Ridha; Abdelkafi, Slim; Casalot, Laurence; Tholozan, Jean Luc; Labat, Marc

    2009-05-01

    A novel weakly halotolerant, sulfate-reducing bacterium, designated strain RB22(T), was isolated from exhaust water of a Tunisian oil refinery. Cells of strain RB22(T) were Gram-negative, motile, vibrio-shaped or sigmoid and non-spore-forming, and occurred singly or in chains. Strain RB22(T) grew between 15 and 45 degrees C (optimum, 37 degrees C) and at pH 4.5 to 9 (optimum, pH 7). NaCl was not required for growth, but the strain tolerated high NaCl concentrations (up to 70 g l(-1)) with an optimum of 40 g l(-1). Sulfate, thiosulfate, sulfite and elemental sulfur served as electron acceptors, but not fumarate. Nitrate and nitrite were not reduced. Strain RB22(T) utilized lactate, formate, fumarate, succinate, glycerol, H(2)+CO(2) and methanol as substrates. The DNA G+C content was found to be 59.6 mol%. Phylogenetic analysis based on the 16S rRNA gene revealed that the isolate was a member of the genus Desulfovibrio, with no close relatives at the species level (16S rRNA gene sequence similarity of less than 95 %). Strain RB22(T) exhibited levels of 16S rRNA gene sequence similarity of 94.6 and 94.12 % to the type strains of the closely related species Desulfovibrio aespoeensis and Desulfovibrio dechloracetivorans, respectively. On the basis of genotypic and phylogenetic characteristics, and significant phenotypic differences, we suggest that strain RB22(T) represents a novel species, for which the name Desulfovibrio tunisiensis sp. nov. is proposed. The type strain is RB22(T) (=NCIMB 14400(T)=JCM 15076(T)=DSM 19275(T)).

  19. Aminobacterium thunnarium sp. nov., a mesophilic, amino acid-degrading bacterium isolated from an anaerobic sludge digester, pertaining to the phylum Synergistetes.

    PubMed

    Hamdi, Olfa; Ben Hania, Wajdi; Postec, Anne; Bouallagui, Hassib; Hamdi, Moktar; Bonin, Patricia; Ollivier, Bernard; Fardeau, Marie-Laure

    2015-02-01

    A new Gram-staining-positive, non-sporulating, mesophilic, amino acid-degrading anaerobic bacterium, designated strain OTA 102(T), was isolated from an anaerobic sequencing batch reactor treating wastewater from cooking tuna. The cells were curved rods (0.6-2.5×0.5 µm) and occurred singly or in pairs. The strain was motile by means of one lateral flagellum. Strain OTA 102(T) grew at temperatures between 30 and 45 °C (optimum 40 °C), between pH 6.0 and 8.4 (optimum pH 7.2) and NaCl concentrations between 1 and 5 % (optimum 2 %, w/v). Strain OTA 102(T) required yeast extract for growth. Serine, threonine, glycine, cysteine, citrate, fumarate, α-ketoglutarate and pyruvate were fermented. When co-cultured with Methanobacterium formicicum as the hydrogen scavenger, strain OTA 102(T) oxidized alanine, valine, leucine, isoleucine, aspartate, tyrosine, methionine, histidine and asparagine. The genomic DNA G+C content of strain OTA 102(T) was 41.7 mol%. The main fatty acid was iso-C15 : 0. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain OTA 102(T) was related to Aminobacterium colombiense and Aminobacterium mobile (95.5 and 95.2 % similarity, respectively), of the phylum Synergistetes. On the basis of phylogenetic, genetic and physiological characteristics, strain OTA 102(T) is proposed to represent a novel species of the genus Aminobacterium, Aminobacterium thunnarium sp. nov. The type strain is OTA 102(T) ( = DSM 27500(T) = JCM 19320(T)). © 2015 IUMS.

  20. Draft Genome Sequence of Thermoanaerobacter sp. Strain YS13, a Novel Thermophilic Bacterium.

    PubMed

    Peng, Tingting; Pan, Siyi; Christopher, Lew; Sparling, Richard; Levin, David B

    2015-06-04

    Here, we report the draft genome sequence of Thermoanerobacter sp. YS13, isolated from a geothermal hot spring in Yellowstone National Park, which consists of 2,713,030 bp with a mean G+C content of 34.05%. A total of 2,779 genes, including 2,707 protein-coding genes, 12 rRNAs, and 59 tRNAs were identified. Copyright © 2015 Peng et al.

  1. Superoxide Production by a Manganese-Oxidizing Bacterium Facilitates Iodide Oxidation

    PubMed Central

    Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A.; Kaplan, Daniel I.; Santschi, Peter H.; Hansel, Colleen M.

    2014-01-01

    The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I−), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2−). In the absence of Mn2+, Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments. PMID:24561582

  2. Superoxide production by a manganese-oxidizing bacterium facilitates iodide oxidation.

    PubMed

    Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A; Kaplan, Daniel I; Santschi, Peter H; Hansel, Colleen M; Yeager, Chris M

    2014-05-01

    The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I(-)), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2(-)). In the absence of Mn(2+), Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments.

  3. A novel 17β-hydroxysteroid dehydrogenase in Rhodococcus sp. P14 for transforming 17β-estradiol to estrone.

    PubMed

    Ye, Xueying; Wang, Hui; Kan, Jie; Li, Jin; Huang, Tongwang; Xiong, Guangming; Hu, Zhong

    2017-10-01

    17β-hydroxysteroid dehydrogenases (17β-HSD) are a group of oxidoreductase enzymes that exhibit high specificity for 17C reduction/oxidation. However, the mechanism of 17β-HSD in oxidizing steroid hormone 17β-estradiol to estrone in bacterium is still unclear. In this work, a functional bacterium Rhodococcus sp. P14 was identified having rapid ability to oxidize estradiol into estrone in mineral salt medium (MSM) within 6 h. The functional genes encoding NADH-dependent oxidoreductase were successfully detected with the help of bioinformatics, and it was identified that it contained two consensus regions affiliated to the short-chain dehydrogenase/reductase (SDR) superfamily. Expression of 17β-HSD could be induced by estradiol in strain P14. The 17β-HSD gene from Rhodococcus sp. P14 was expressed in Escherichia coli strain BL21. Furthermore, recombinant 17β-HSD-expressing BL21 cells showed a high transformation rate, they are capable of transforming estradiol to estrone up to 94%. The purified His-17β-HSD protein also exhibited high catalyzing efficiency. In conclusion, this study provides the first evidence that a novel 17β-HSD in Rhodococcus sp. P14 can catalyze the oxidation of estradiol. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Removal of Soluble Strontium via Incorporation into Biogenic Carbonate Minerals by Halophilic Bacterium Bacillus sp. Strain TK2d in a Highly Saline Solution

    PubMed Central

    Dotsuta, Yuma; Nakano, Yuriko; Ochiai, Asumi; Utsunomiya, Satoshi; Ohnuki, Toshihiko

    2017-01-01

    ABSTRACT Radioactive strontium (90Sr) leaked into saline environments, including the ocean, from the Fukushima Daiichi Nuclear Power Plant after a nuclear accident. Since the removal of 90Sr using general adsorbents (e.g., zeolite) is not efficient at high salinity, a suitable alternative immobilization method is necessary. Therefore, we incorporated soluble Sr into biogenic carbonate minerals generated by urease-producing microorganisms from a saline solution. An isolate, Bacillus sp. strain TK2d, from marine sediment removed >99% of Sr after contact for 4 days in a saline solution (1.0 × 10−3 mol liter−1 of Sr, 10% marine broth, and 3% [wt/vol] NaCl). Transmission electron microscopy and energy-dispersive X-ray spectroscopy showed that Sr and Ca accumulated as phosphate minerals inside the cells and adsorbed at the cell surface at 2 days of cultivation, and then carbonate minerals containing Sr and Ca developed outside the cells after 2 days. Energy-dispersive spectroscopy revealed that Sr, but not Mg, was present in the carbonate minerals even after 8 days. X-ray absorption fine-structure analyses showed that a portion of the soluble Sr changed its chemical state to strontianite (SrCO3) in biogenic carbonate minerals. These results indicated that soluble Sr was selectively solidified into biogenic carbonate minerals by the TK2d strain in highly saline environments. IMPORTANCE Radioactive nuclides (134Cs, 137Cs, and 90Sr) leaked into saline environments, including the ocean, from the Fukushima Daiichi Nuclear Power Plant accident. Since the removal of 90Sr using general adsorbents, such as zeolite, is not efficient at high salinity, a suitable alternative immobilization method is necessary. Utilizing the known concept that radioactive 90Sr is incorporated into bones by biomineralization, we got the idea of removing 90Sr via incorporation into biominerals. In this study, we revealed the ability of the isolated ureolytic bacterium to remove Sr under high

  5. Cold active β-galactosidase from Thalassospira sp. 3SC-21 to use in milk lactose hydrolysis: a novel source from deep waters of Bay-of-Bengal.

    PubMed

    Ghosh, Mrinmoy; Pulicherla, K K; Rekha, V P B; Raja, P Kumar; Sambasiva Rao, K R S

    2012-09-01

    The cold active β-galactosidase from psychrophilic bacteria accelerate the possibility of outperforming the current commercial β-galactosidase production from mesophilic sources. The present study is carried out to screen and isolate a cold active β-galactosidase producing bacterium from profound marine waters of Bay-of-Bengal and to optimize the factors for lactose hydrolysis in milk. Isolated bacterium 3SC-21 was characterized as marine psychrotolerant, halophile, gram negative, rod shaped strain producing an intracellular cold active β-galactosidase enzyme. Further, based upon the 16S rRNA gene sequence, bacterium 3SC-21 was identified as Thalassospira sp. The isolated strain Thalassospira sp. 3SC-21 had shown the enzyme activity between 4 and 20 °C at pH of 6.5 and the enzyme was completely inactivated at 45 °C. The statistical method, central composite rotatable design of response surface methodology was employed to optimize the hydrolysis of lactose and to reveal the interactions between various factors behind this hydrolysis. It was found that maximum of 80.18 % of lactose in 8 ml of raw milk was hydrolysed at pH of 6.5 at 20 °C in comparison to 40 % of lactose hydrolysis at 40 °C, suggesting that the cold active β-galactosidase from Thalassospira sp. 3SC-21 would be best suited for manufacturing the lactose free dairy products at low temperature.

  6. Biofilm Formation by a Metabolically Versatile Bacterium

    DTIC Science & Technology

    2009-03-19

    ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium that has good potential as a biocatalyst for the production ofhydrogen gas, a biofuel...Biofilm formation by a metabolically versatile bacterium: final report Report Title ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium...agricultural waste. We characterized five new Rhodopseudomonas genome sequences and isolated and described R. palustris mutant strains that produce

  7. Genome Sequence of Citrobacter sp. CtB7.12, Isolated from the Gut of the Desert Subterranean Termite Heterotermes aureus

    PubMed Central

    Fontes-Perez, Héctor; Olvera-García, Myrna; Chávez-Martínez, America; Rodriguez-Almeida, Felipe A.; Arzola-Alvarez, Claudio A.

    2015-01-01

    The draft genome of Citrobacter sp. CtB7.12, isolated from termite gut, is presented here. This organism has been reported as a cellulolytic bacterium, which is biotechnologically important because it can be used as a gene donor for the ethanol and biofuel industries. PMID:26543121

  8. Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp.

    PubMed

    Sangthong, Chirawee; Setkit, Kunchaya; Prapagdee, Benjaphorn

    2016-01-01

    Cadmium-resistant Micrococcus sp. TISTR2221, a plant growth-promoting bacterium, has stimulatory effects on the root lengths of Zea mays L. seedlings under toxic cadmium conditions compared to uninoculated seedlings. The performance of Micrococcus sp. TISTR2221 on promoting growth and cadmium accumulation in Z. mays L. was investigated in a pot experiment. The results indicated that Micrococcus sp. TISTR2221significantly promoted the root length, shoot length, and dry biomass of Z. mays L. transplanted in both uncontaminated and cadmium-contaminated soils. Micrococcus sp. TISTR2221 significantly increased cadmium accumulation in the roots and shoots of Z. mays L. compared to uninoculated plants. At the beginning of the planting period, cadmium accumulated mainly in the shoots. With a prolonged duration of cultivation, cadmium content increased in the roots. As expected, little cadmium was found in maize grains. Soil cadmium was significantly reduced with time, and the highest percentage of cadmium removal was found in the bacterial-inoculated Z. mays L. after transplantation for 6 weeks. We conclude that Micrococcus sp. TISTR2221 is a potent bioaugmenting agent, facilitating cadmium phytoextraction in Z. mays L.

  9. Desulfosoma profundi sp. nov., a thermophilic sulfate-reducing bacterium isolated from a deep terrestrial geothermal spring in France.

    PubMed

    Grégoire, Patrick; Fardeau, Marie-Laure; Guasco, Sophie; Lagière, Joël; Cambar, Jean; Michotey, Valérie; Bonin, Patricia; Ollivier, Bernard

    2012-03-01

    A novel strictly anaerobic bacterium designated SPDX02-08(T) was isolated from a deep terrestrial geothermal spring located in southwest France. Cells (1-2 × 2-6 μm) were non-motile, non sporulating and stained Gram negative. Strain SPDX02-08(T) grew at a temperature between 40 and 60°C (optimum 55°C), pH between 6.3 and 7.3 (optimum 7.2) and a NaCl concentration between 0 and 5 g/l (optimum 2 g/l). Sulfate, thiosulfate and sulfite were used as terminal electron acceptors, but not elemental sulfur, nitrate, nitrite, Fe (III) or fumarate. In the presence of sulfate, strain SPDX02-08(T) completely oxidized pyruvate, propionate, butyrate, isobutyrate, valerate, isovalerate and hexadecanoate. Stoichiometric measurements revealed a complete oxidation of part of lactate (0.125 mol of acetate produced per mole lactate oxidized). Strain SPDX02-08(T) required yeast extract to oxidize formate and H(2) but did not grow autotrophically on H(2). Among the substrates tested, only pyruvate was fermented. The G+C content of the genomic DNA was 57.6 mol%. Major cellular fatty acids of strain SPDX02-08(T) were iso-C(15:0), C(15:0), and C(16:0). Phylogenetic analysis of the 16S small-subunit (SSU) ribosomal RNA gene sequence indicated that strain SPDX02-08(T) belongs to the genus Desulfosoma, family Syntrophobacteraceae, having Desulfosoma caldarium as its closest phylogenetic relative (97.6% similarity). The mean DNA/DNA reassociation value between strain SPDX02-08(T) and Desulfosoma caldarium was 16.9 ± 2.7%. Based on the polyphasic differences, strain SPDX02-08(T) is proposed to be assigned as a new species of the genus Desulfosoma, Desulfosoma profundi sp. nov. (DSM 22937(T) = JCM 16410(T)). GenBank accession number for the 16S rRNA gene sequence of strain SPDX02-08(T) is HM056226.

  10. Cetia pacifica gen. nov., sp. nov., a chemolithoautotrophic, thermophilic, nitrate-ammonifying bacterium from a deep-sea hydrothermal vent.

    PubMed

    Grosche, Ashley; Sekaran, Hema; Pérez-Rodríguez, Ileana; Starovoytov, Valentin; Vetriani, Costantino

    2015-04-01

    A thermophilic, anaerobic, chemolithoautotrophic bacterium, strain TB-6(T), was isolated from a deep-sea hydrothermal vent located on the East Pacific Rise at 9° N. The cells were Gram-staining-negative and rod-shaped with one or more polar flagella. Cell size was approximately 1-1.5 µm in length and 0.5 µm in width. Strain TB-6(T) grew between 45 and 70 °C (optimum 55-60 °C), 0 and 35 g NaCl l(-1) (optimum 20-30 g l(-1)) and pH 4.5 and 7.5 (optimum pH 5.5-6.0). Generation time under optimal conditions was 2 h. Growth of strain TB-6(T) occurred with H2 as the energy source, CO2 as the carbon source and nitrate or sulfur as electron acceptors, with formation of ammonium or hydrogen sulfide, respectively. Acetate, (+)-d-glucose, Casamino acids, sucrose and yeast extract were not used as carbon and energy sources. Inhibition of growth occurred in the presence of lactate, peptone and tryptone under a H2/CO2 (80 : 20; 200 kPa) gas phase. Thiosulfate, sulfite, arsenate, selenate and oxygen were not used as electron acceptors. The G+C content of the genomic DNA was 36.8 mol%. Phylogenetic analysis of the 16S rRNA gene of strain TB-6(T) showed that this organism branched separately from the three most closely related genera, Caminibacter , Nautilia and Lebetimonas , within the family Nautiliaceae . Strain TB-6(T) contained several unique fatty acids in comparison with other members of the family Nautiliaceae . Based on experimental evidence, it is proposed that the organism represents a novel species and genus within the family Nautiliaceae , Cetia pacifica, gen. nov., sp. nov. The type strain is TB-6(T) ( = DSM 27783(T) = JCM 19563(T)). © 2015 IUMS.

  11. Near-Complete Genome Sequence of Thalassospira sp. Strain KO164 Isolated from a Lignin-Enriched Marine Sediment Microcosm.

    PubMed

    Woo, Hannah L; O'Dell, Kaela B; Utturkar, Sagar; McBride, Kathryn R; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Daum, Chris; Shapiro, Nicole; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Woyke, Tanja; Brown, Steven D; Hazen, Terry C

    2016-11-23

    Thalassospira sp. strain KO164 was isolated from eastern Mediterranean seawater and sediment laboratory microcosms enriched on insoluble organosolv lignin under oxic conditions. The near-complete genome sequence presented here will facilitate analyses into this deep-ocean bacterium's ability to degrade recalcitrant organics such as lignin. Copyright © 2016 Woo et al.

  12. ACANTHAMOEBA SP.S-11 PHAGOCYTOTIC ACTIVITY ON MYCOBACTERIUM LEPRAE IN DIFFERENT NUTRIENT CONDITIONS.

    PubMed

    Paling, Sepling; Wahyuni, Ratna; Ni'matuzahroh; Winarni, Dwi; Iswahyudi; Astari, Linda; Adriaty, Dinar; Agusni, Indropo; Izumi, Shinzo

    2018-01-01

    Mycobacterium leprae ( M. leprae ) is a pathogenic bacterium that causes leprosy. The presence of M. leprae in the environment is supported by microorganisms that act as the new host for M. leprae . Acanthamoeba 's potential to be a host of M. leprae in the environment. Acanthamoeba sp. is Free Living Amoeba (FLA) that classified as holozoic, saprophytic, and saprozoic. The existence of nutrients in the environment influence Acanthamoeba ability to phagocytosis or pinocytosis. This study is aimed to determine Acanthamoeba sp.S-11 phagocytic activity to Mycobacterium leprae ( M. leprae ) which cultured in non-nutrient media and riched-nutrient media. This research conducted by culturing Acanthamoeba sp.S-11 and M. leprae on different nutrient media conditions. M. leprae intracellular DNA were isolated and amplified by M. leprae specific primers through Real Time PCR (Q-PCR). The results showed that Acanthamoeba co-cultured on non-nutrient media were more active to phagocyte M. leprae than on rich-nutrient media. The use of non-nutrient media is recommended to optimize Acanthamoeba sp. phagocytic activity to M. leprae .

  13. Structural analysis of a glycosides hydrolase family 42 cold-adapted ß-galactosidase from Rahnella sp. R3

    USDA-ARS?s Scientific Manuscript database

    The ß-galactosidase isolated from a psychrotrophic bacterium, Rahnella sp. R3 (R-ß-Gal), exhibits high activity at low temperature. R-ß-Gal is a member of the glycoside hydrolases family 42 (GH42), and forms a 225 kDa trimeric structure in solution. The X-ray crystal structure of R-ß-Gal was determi...

  14. Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov.

    DOE PAGES

    Billings, Andrew F.; Fortney, Julian L.; Hazen, Terry C.; ...

    2015-11-19

    Tolumonas lignolytica BRL6-1 T sp. nov. is the type strain of T. lignolytica sp. nov., a proposed novel species of the Tolumonas genus. This strain was isolated from tropical rainforest soils based on its ability to utilize lignin as a sole carbon source. Cells of Tolumonas lignolytica BRL6-1 T are mesophilic, non-spore forming, Gram-negative rods that are oxidase and catalase negative. The genome for this isolate was sequenced and returned in seven unique contigs totaling 3.6Mbp, enabling the characterization of several putative pathways for lignin breakdown. Particularly, we found an extracellular peroxidase involved in lignin depolymerization, as well as severalmore » enzymes involved in β-aryl ether bond cleavage, which is the most abundant linkage between lignin monomers. We also found genes for enzymes involved in ferulic acid metabolism, which is a common product of lignin breakdown. Finally, by characterizing pathways and enzymes employed in the bacterial breakdown of lignin in anaerobic environments, this work should assist in the efficient engineering of biofuel production from lignocellulosic material.« less

  15. Porphyromonas loveana sp. nov., isolated from the oral cavity of Australian marsupials.

    PubMed

    Bird, Philip S; Trott, Darren J; Mikkelsen, Deirdre; Milinovich, Gabriel J; Hillman, Kristine M; Burrell, Paul C; Blackall, Linda L

    2016-10-01

    An obligatory anaerobic, Gram-stain-negative coccobacillus with black-pigmented colonies was isolated from the oral cavity of selected Australian marsupial species. Phenotypic and molecular criteria showed that this bacterium was a distinct species within the genus Porphyromonas, and was closely related to Porphyromonas gingivalis and Porphyromonas gulae. This putative novel species and P. gulae could be differentiated from P. gingivalis by catalase activity. Further characterization by multi-locus enzyme electrophoresis of glutamate dehydrogenase and malate dehydrogenase enzyme mobility and matrix-assisted laser desorption ionization time-of-flight MS showed that this putative novel species could be differentiated phenotypically from P. gingivalis and P. gulae. Definitive identification by 16S rRNA gene sequencing showed that this bacterium belonged to a unique monophyletic lineage, phylogenetically distinct from P. gingivalis (94.9 % similarity) and P. gulae (95.5 %). This also was supported by 16S-23S rRNA intergenic spacer region and glutamate dehydrogenase gene sequencing. A new species epithet, Porphyromonas loveana sp. nov., is proposed for this bacterium, with DSM 28520T (=NCTC 13658T=UQD444T=MRK101T), isolated from a musky rat kangaroo, as the type strain.

  16. Isolation and identification of Staphylococcus sp. in powdered infant milk

    NASA Astrophysics Data System (ADS)

    Palilu, Prayolga Toban; Budiarso, Tri Yahya

    2017-05-01

    Staphylococcus sp. is one of the most dangerous bacteria that could cause food poisoning. It is a pathogenic bacterium which is able to produce enterotoxin in foods. Milk is an ideal growth medium for Staphylococcus sp., that may cause problem if it is to be consumed, especially by infant. It is the objective of this research to detect the presence of Staphylococcus sp. in powdered infant milk. As many as 14 samples obtained from market were used as samples for bacterial isolation. The isolation were done by employing enrichment step on BHI-broth, continued with Baird-Parker Agar which will produce a typical colony. It is then picked and grown on Mannitol Salt Agar, and gram staining, coagulase assay, and fermentation tests. The confirmation step was done by using API-Staph which gives the identification of Staphylococcus hemoliticus, Staphylococcus aureus and Staphylococcus epidermidis, with a percentage of identity ranging from 65.9-97.7%. Two isolates with the highest identification similarity values were then picked for molecular detection. A PCR primer pair targeting gene coding for enterotoxin A was used, and it gives positive result for the two isolates being tested. It is then concluded that the two isolates belong to Staphylococcus sp., and further research need to be done to correctly identify these isolates.

  17. Anaerobium acetethylicum gen. nov., sp. nov., a strictly anaerobic, gluconate-fermenting bacterium isolated from a methanogenic bioreactor.

    PubMed

    Patil, Yogita; Junghare, Madan; Pester, Michael; Müller, Nicolai; Schink, Bernhard

    2015-10-01

    A novel strictly anaerobic, mesophilic bacterium was enriched and isolated with gluconate as sole substrate from a methanogenic sludge collected from a biogas reactor. Cells of strain GluBS11T stained Gram-positive and were non-motile, straight rods, measuring 3.0-4.5 × 0.8-1.2 μm. The temperature range for growth was 15-37 °C, with optimal growth at 30 °C, the pH range was 6.5-8.5, with optimal growth at pH 7, and the generation time under optimal conditions was 60 min. API Rapid 32A reactions were positive for α-galactosidase, α-glucosidase and β-glucosidase and negative for catalase and oxidase. A broad variety of substrates was utilized, including gluconate, glucose, fructose, maltose, sucrose, lactose, galactose, melezitose, melibiose, mannitol, erythritol, glycerol and aesculin. Products of gluconate fermentation were ethanol, acetate, formate, H2 and CO2. Neither sulfate nor nitrate served as an electron acceptor. Predominant cellular fatty acids (>10 %) were C14 : 0, C16 : 0, C16 : 1ω7c/iso-C15 : 0 2-OH and C18 : 1ω7c. The DNA G+C content of strain GluBS11T was 44.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequence data revealed that strain GluBS11T is a member of subcluster XIVa within the order Clostridiales. The closest cultured relatives are Clostridium herbivorans (93.1 % similarity to the type strain), Clostridium populeti (93.3 %), Eubacterium uniforme (92.4 %) and Clostridium polysaccharolyticum (91.5 %). Based on this 16S rRNA gene sequence divergence (>6.5 %) as well as on chemotaxonomic and phenotypic differences from these taxa, strain GluBS11T is considered to represent a novel genus and species, for which the name Anaerobium acetethylicum gen. nov., sp. nov. is proposed. The type strain of Anaerobium acetethylicum is GluBS11T ( = LMG 28619T = KCTC 15450T = DSM 29698T).

  18. Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator.

    PubMed

    Grison, Claire M; Jackson, Stephen; Merlot, Sylvain; Dobson, Alan; Grison, Claude

    2015-05-01

    A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming bacterium (ChimEc512(T)) was isolated from 56 host seedlings of the hyperaccumulating Anthyllis vulneraria legume, which was on an old zinc mining site at Les Avinières, Saint-Laurent-Le-Minier, Gard, South of France. On the basis of 16S rRNA gene sequence similarities, strain ChimEc512(T) was shown to belong to the genus Rhizobium and to be most closely related to Rhizobium endophyticum CCGE 2052(T) (98.4%), Rhizobium tibeticum CCBAU 85039(T) (98.1%), Rhizobium grahamii CCGE 502(T) (98.0%) and Rhizobium mesoamericanum CCGE 501(T) (98.0%). The phylogenetic relationships of ChimEc512(T) were confirmed by sequencing and analyses of recA and atpD genes. DNA-DNA relatedness values of strain ChimEc512(T) with R. endophyticum CCGE 2052(T), R. tibeticum CCBAU 85039(T), R. mesoamericanum CCGE 52(T), Rhizobium grahamii CCGE 502(T), Rhizobium etli CCBAU 85039(T) and Rhizobium radiobacter KL09-16-8-2(T) were 27, 22, 16, 18, 19 and 11%, respectively. The DNA G+C content of strain ChimEc512(T) was 58.9 mol%. The major cellular fatty acid was C18 : 1ω7c, characteristic of the genus Rhizobium . The polar lipid profile included phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine and moderate amounts of aminolipids, phospholipid and sulfoquinovosyl diacylglycerol. Although ChimEc512(T) was able to nodulate A. vulneraria, the nodC and nifH genes were not detected by PCR. The rhizobial strain was tolerant to high concentrations of heavy metals: up to 35 mM Zn and up to 0.5 mM Cd and its growth kinetics was not impacted by Zn. The results of DNA-DNA hybridizations and physiological tests allowed genotypic and phenotypic differentiation of strain ChimEc512(T) from species of the genus Rhizobium with validly published names. Strain ChimEc512(T), therefore, represents a novel species, for which the name Rhizobium metallidurans sp. nov. is proposed, with the type strain

  19. Identification and Characterization of a High Efficiency Aniline Resistance and Degrading Bacterium MC-01.

    PubMed

    Yang, Liu; Ying, Chen; Fang, Ni; Zhong, Yao; Zhao-Xiang, Zhong; Yun, Sun

    2017-05-01

    Biodegradation is one of the important methods for the treatment of industrial wastewater containing aniline. In this paper, a degrading bacterium named MC-01, which could survive in high concentration aniline wastewater, was screened from industrial wastewater containing aniline and sludge. MC-01 was preliminarily identified as Ochrobactrum sp. based on the amplified 16S rDNA gene sequence and Biolog system identification. MC-01 was highly resistant to aniline. After 24-h culture under aniline concentration of 6500 mg/L, the amount of bacterium survived still remained 0.05 × 10 6  CFU/mL. Experiments showed that there was no coupling expression between the growth of MC-01 and aniline degradation. The optimum growth conditions in LB culture were pH 6.0, 30 °C of temperature, and 4% of incubation amount, respectively. And the optimum conditions of aniline degradation of MC-01 were pH 7.0, 45 °C of temperature, and 3.0% of salt concentration, respectively. The degradation rate of MC-01 (48 h) in different aniline concentrations (200~1600 mg/L) was stable under the optimum conditions, which could reach more than 75%.

  20. Deferrisoma paleochoriense sp. nov., a thermophilic, iron(III)-reducing bacterium from a shallow-water hydrothermal vent in the Mediterranean Sea

    USGS Publications Warehouse

    Perez-Rodriguez, Ileana M.; Rawls, Matthew; Coykendall, D. Katharine; Foustoukos, Dionysis I.

    2016-01-01

    A novel thermophilic, anaerobic, mixotrophic bacterium, designated strain MAG-PB1T, was isolated from a shallow-water hydrothermal vent system in Palaeochori Bay off the coast of the island of Milos, Greece. The cells were Gram-negative, rugose, short rods, approximately 1.0 μm long and 0.5 μm wide. Strain MAG-PB1T grew at 30–70 °C (optimum 60 °C), 0–50 g NaCl l− 1 (optimum 15–20 g l− 1) and pH 5.5–8.0 (optimum pH 6.0). Generation time under optimal conditions was 2.5 h. Optimal growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Fe(III), Mn(IV), arsenate and selenate were used as electron acceptors. Peptone, tryptone, Casamino acids, sucrose, yeast extract, d-fructose, α-d-glucose and ( − )-d-arabinose also served as electron donors. No growth occurred in the presence of lactate or formate. The G+C content of the genomic DNA was 66.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Deferrisoma camini, the first species of a recently described genus in the Deltaproteobacteria. Based on the 16S rRNA gene phylogenetic analysis and on physiological, biochemical and structural characteristics, the strain was found to represent a novel species, for which the name Deferrisoma palaeochoriense sp. nov. is proposed. The type strain is MAG-PB1T ( = JCM 30394T = DSM 29363T). 

  1. Characterization and Genomic Analysis of a Highly Efficient Dibutyl Phthalate-Degrading Bacterium Gordonia sp. Strain QH-12.

    PubMed

    Jin, Decai; Kong, Xiao; Liu, Huijun; Wang, Xinxin; Deng, Ye; Jia, Minghong; Yu, Xiangyang

    2016-06-25

    A bacterial strain QH-12 isolated from activated sludge was identified as Gordonia sp. based on analysis of 16S rRNA gene sequence and was found to be capable of utilizing dibutyl phthalate (DBP) and other common phthalate esters (PAEs) as the sole carbon and energy source. The degradation kinetics of DBP under different concentrations by the strain QH-12 fit well with the modified Gompertz model (R² > 0.98). However, strain QH-12 could not utilize the major intermediate product phthalate (phthalic acid; PA) as the sole carbon and energy source, and only a little amount of PA was detected. The QH-12 genome analysis revealed the presence of putative hydrolase/esterase genes involved in PAEs-degradation but no phthalic acid catabolic gene cluster was found, suggesting that a novel degradation pathway of PAEs was present in Gordonia sp. QH-12. This information will be valuable for obtaining a more holistic understanding on diverse genetic mechanisms of PAEs-degrading Gordonia sp. strains.

  2. Microbe–microbe interactions trigger Mn(II)-oxidizing gene expression

    PubMed Central

    Liang, Jinsong; Bai, Yaohui; Men, Yujie; Qu, Jiuhui

    2017-01-01

    Manganese (Mn) is an important metal in geochemical cycles. Some microorganisms can oxidize Mn(II) to Mn oxides, which can, in turn, affect the global cycles of other elements by strong sorption and oxidation effects. Microbe–microbe interactions have important roles in a number of biological processes. However, how microbial interactions affect Mn(II) oxidation still remains unknown. Here, we investigated the interactions between two bacteria (Arthrobacter sp. and Sphingopyxis sp.) in a co-culture, which exhibited Mn(II)-oxidizing activity, although neither were able to oxidize Mn(II) in isolation. We demonstrated that the Mn(II)-oxidizing activity in co-culture was most likely induced via contact-dependent interactions. The expressed Mn(II)-oxidizing protein in the co-culture was purified and identified as a bilirubin oxidase belonging to strain Arthrobacter. Full sequencing of the bilirubin oxidase-encoding gene (boxA) was performed. The Mn(II)-oxidizing protein and the transcripts of boxA were detected in the co-culture, but not in either of the isolated cultures. This indicate that boxA was silent in Arthrobacter monoculture, and was activated in response to presence of Sphingopyxis in the co-culture. Further, transcriptomic analysis by RNA-Seq, extracellular superoxide detection and cell density quantification by flow cytometry indicate induction of boxA gene expression in Arthrobacter was co-incident with a stress response triggered by co-cultivation with Sphingopyxis. Our findings suggest the potential roles of microbial physiological responses to stress induced by other microbes in Mn(II) oxidation and extracellular superoxide production. PMID:27518809

  3. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia

    PubMed Central

    Rahman, Raja Noor Zaliha Raja Abd; Leow, Thean Chor; Salleh, Abu Bakar; Basri, Mahiran

    2007-01-01

    Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0) as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%). Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T) and Geobacillus kaustophilus (DSM 7263T). Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T). Conclusion Strain T1T was able to secrete extracellular thermostable lipase into

  4. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia.

    PubMed

    Abd Rahman, Raja Noor Zaliha Raja; Leow, Thean Chor; Salleh, Abu Bakar; Basri, Mahiran

    2007-08-10

    Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78 degrees C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0) as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5-99.2%). Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70 degrees C and was also stable up to 60 degrees C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T) and Geobacillus kaustophilus (DSM 7263T). Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T). Strain T1T was able to secrete extracellular thermostable lipase into culture

  5. Characteristics and optimized fermentation of a novel magnetotactic bacterium, Magnetospirillum sp. ME-1.

    PubMed

    Ke, Linfeng; Chen, Yajun; Liu, Pengming; Liu, Shan; Wu, Dandan; Yuan, Yihui; Wu, Yan; Gao, Meiying

    2018-03-04

    Magnetotactic bacteria (MTB) can biosynthesize magnetosomes, which have great potential for applications. A new MTB strain, Magnetospirillum sp. ME-1, was isolated and cultivated from freshwater sediments of East Lake (Wuhan, China) using the limiting dilution method. ME-1 had a chain of 17 ± 4 magnetosomes in the form of cubooctahedral crystals with a shape factor of 0.89. ME-1 was closest to Magnetospirillum sp. XM-1 according to 16S rRNA gene sequence similarity. Compared with XM-1, ME-1 possessed additional copy of mamPA and a larger mamO in magnetosome-specific genes. ME-1 had an intact citric acid cycle, and complete pathway models of ammonium assimilation and dissimilatory nitrate reduction. Potential carbon and nitrogen sources in these pathways were confirmed to be used in ME-1. Adipate was determined to be used in the fermentation medium as a new kind of dicarboxylic acid. The optimized fermentation medium was determined by orthogonal tests. The large-scale production of magnetosomes was achieved and the magnetosome yield (wet weight) reached 120 mg/L by fed-batch cultivation of ME-1 at 49 h in a 10-L fermenter with the optimized fermentation medium. This study may provide insights into the isolation and cultivation of other new MTB strains and the production of magnetosomes.

  6. Draft Genome Sequence of Isoproturon-Mineralizing Sphingomonas sp. SRS2, Isolated from an Agricultural Field in the United Kingdom

    PubMed Central

    Nielsen, Tue Kjærgaard; Hansen, Lars Hestbjerg

    2015-01-01

    Sphingomonas sp. SRS2 was the first described pure strain that is capable of mineralizing the phenylurea herbicide isoproturon and some of its related compounds. This strain has been studied thoroughly and shows potential for bioremediation purposes. We present the draft genome sequence of this bacterium, which will aid future studies. PMID:26021936

  7. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals

    PubMed Central

    Sneed, Jennifer M.; Sharp, Koty H.; Ritchie, Kimberly B.; Paul, Valerie J.

    2014-01-01

    Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species. PMID:24850918

  8. Butyric acid production from red algae by a newly isolated Clostridium sp. S1.

    PubMed

    Lee, Kyung Min; Choi, Okkyoung; Kim, Ki-Yeon; Woo, Han Min; Kim, Yunje; Han, Sung Ok; Sang, Byoung-In; Um, Youngsoon

    2015-09-01

    To produce butyric acid from red algae such as Gelidium amansii in which galactose is a main carbohydrate, microorganisms utilizing galactose and tolerating inhibitors in hydrolysis including levulinic acid and 5-hydroxymethylfurfural (HMF) are required. A newly isolated bacterium, Clostridium sp. S1 produced butyric acid not only from galactose as the sole carbon source but also from a mixture of galactose and glucose through simultaneous utilization. Notably, Clostridium sp. S1 produced butyric acid and a small amount of acetic acid with the butyrate:acetate ratio of 45.4:1 and it even converted acetate to butyric acid. Clostridium sp. S1 tolerated 0.5-2 g levulinic acid/l and recovered from HMF inhibition at 0.6-2.5 g/l, resulting in 85-92% butyric acid concentration of the control culture. When acid-pretreated G. amansii hydrolysate was used, Clostridium sp. S1 produced 4.83 g butyric acid/l from 10 g galactose/l and 1 g glucose/l. Clostridium sp. S1 produces butyric acid from red algae due to its characteristics in sugar utilization and tolerance to inhibitors, demonstrating its advantage as a red algae-utilizing microorganism.

  9. ­Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis

    PubMed Central

    Undabarrena, Agustina; Ugalde, Juan A.; Seeger, Michael

    2017-01-01

    Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance (97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment. PMID:28229018

  10. Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers.

    PubMed

    Ke, Qian; Zhang, Yunge; Wu, Xilin; Su, Xiaomei; Wang, Yuyang; Lin, Hongjun; Mei, Rongwu; Zhang, Yu; Hashmi, Muhammad Zaffar; Chen, Chongjun; Chen, Jianrong

    2018-09-15

    In this study, high-efficient phenol-degrading bacterium Bacillus sp. SAS19 which was isolated from activated sludge by resuscitation-promoting factor (Rpf) addition, were immobilized on porous carbonaceous gels (CGs) for phenol degradation. The phenol-degrading capabilities of free and immobilized Bacillus sp. SAS19 were evaluated under various initial phenol concentrations. The obtained results showed that phenol could be removed effectively by both free and immobilized Bacillus sp. SAS19. Furthermore, for degradation of phenol at high concentrations, long-term utilization and recycling were more readily achieved for immobilized bacteria as compared to free bacteria. Immobilized bacteria exhibited significant increase in phenol-degrading capabilities in the third cycle of recycling and reuse, which demonstrated 87.2% and 100% of phenol (1600 mg/L) degradation efficiency at 12 and 24 h, respectively. The present study revealed that immobilized Bacillus sp. SAS19 can be potentially used for enhanced treatment of synthetic phenol-laden wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A new Microbacterium species isolated from the blood of a patient with fever: Microbacterium pyrexiae sp. nov.

    PubMed

    Ko, Kwan Soo; Oh, Won Sup; Lee, Mi Young; Peck, Kyong Ran; Lee, Nam Yong; Song, Jae-Hoon

    2007-04-01

    A Gram-positive bacterium, SMC-A8265(T), which was isolated from the blood of a patient with fever but could not be identified by a conventional microbiologic method, was finally characterized by performing phenotypic and genotypic analyses. 16S rRNA gene sequence analysis revealed that the strain SMC-A8265(T) belonged to the genus Microbacterium, but it did not correspond to any of the previously described Microbacterium spp. Biochemical tests and cellular fatty acid composition analysis also confirmed that this bacterium is distinct from other Microbacterium spp. Based on the phenotypic and genotypic characteristics, we propose that the strain SMC-A8265(T) should be classified as a new species, namely, Microbacterium pyrexiae sp. nov.

  12. Physiological and proteomic analysis of plant growth enhancement by the rhizobacteria Bacillus sp. JS.

    PubMed

    Kim, Ji Seong; Lee, Jeong Eun; Nie, Hualin; Lee, Yong Jae; Kim, Sun Tae; Kim, Sun-Hyung

    2018-02-01

    In this study, the effects of the plant growth-promoting rhizobacterium (PGPR), Bacillus sp. JS on the growth of tobacco (Nicotiana tabacum 'Xanthi') and lettuce (Lactuca sativa 'Crispa'), were evaluated by comparing various growth parameters between plants treated with the bacterium and those exposed to water or nutrient broth as control. In both tobacco and lettuce, fresh weight and length of shoots were increased upon exposure to Bacillus sp. JS. To explain the overall de novo expression of plant proteins by bacterial volatiles, two-dimensional gel electrophoresis was performed on samples from PGPR-treated tobacco plants. Our results showed that chlorophyll a/b binding proteins were significantly up-regulated, and total chlorophyll content was also increased. Our findings indicate the potential benefits of using Bacillus sp. JS as a growth-promoting factor in agricultural practice, and highlight the need for further research to explore these benefits.

  13. Crystallization and preliminary crystallographic analysis of maganese(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from Bacillus sp. JF8

    PubMed Central

    Senda, Miki; Hatta, Takashi; Kimbara, Kazuhide; Senda, Toshiya

    2010-01-01

    A thermostable manganese(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase derived from Bacillus sp. JF8 was crystallized. The initial screening for crystallization was performed by the sitting-drop vapour-diffusion method using a crystallization robot, resulting in the growth of two crystal forms. The first crystal belonged to space group P1, with unit-cell parameters a = 62.7, b = 71.4, c = 93.6 Å, α = 71.2, β = 81.0, γ = 64.0°, and diffracted to 1.3 Å resolution. The second crystal belonged to space group I222, with unit-cell parameters a = 74.2, b = 90.8, c = 104.3 Å, and diffracted to 1.3 Å resolution. Molecular-replacement trials using homoprotocatechuate 2,3-dioxygenase from Arthrobacter globiformis (28% amino-acid sequence identity) as a search model provided a satisfactory solution for both crystal forms. PMID:20208161

  14. Complete genome sequence of Thioalkalivibrio sp. K90mix

    PubMed Central

    Muyzer, Gerard; Sorokin, Dimitry Y.; Mavromatis, Konstantinos; Lapidus, Alla; Foster, Brian; Sun, Hui; Ivanova, Natalia; Pati, Amrita; D'haeseleer, Patrik; Woyke, Tanja; Kyrpides, Nikos C.

    2011-01-01

    Thioalkalivibrio sp. K90mix is an obligately chemolithoautotrophic, natronophilic sulfur-oxidizing bacterium (SOxB) belonging to the family Ectothiorhodospiraceae within the Gammaproteobacteria. The strain was isolated from a mixture of sediment samples obtained from different soda lakes located in the Kulunda Steppe (Altai, Russia) based on its extreme potassium carbonate tolerance as an enrichment method. Here we report the complete genome sequence of strain K90mix and its annotation. The genome was sequenced within the Joint Genome Institute Community Sequencing Program, because of its relevance to the sustainable removal of sulfide from wastewater and gas streams. PMID:22675584

  15. Complete genome sequence of Paenibacillus sp. strain JDR-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Virginia; Nong, Guang; St. John, Franz J.

    2012-01-01

    Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of -1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single repliconmore » with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.« less

  16. Molecular exploration of the highly radiation resistant cyanobacterium Arthrospira sp. PCC 8005

    NASA Astrophysics Data System (ADS)

    Badri, Hanène; Leys, Natalie; Wattiez, Ruddy

    Arthrospira (Spirulina) is a photosynthetic cyanobacterium able to use sunlight to release oxygen from water and remove carbon dioxide and nitrate from water. In addition, it is suited for human consumption (edible). For these traits, the cyanobacterium Arthrospira sp. PCC 8005 was selected by the European Space Agency (ESA) as part of the life support system MELiSSA for recycling oxygen, water, and food during future long-haul space missions. However, during such extended missions, Arthrospira sp. PCC 8005 will be exposed to continuous artificial illumination and harmful cosmic radiation. The aim of this study was to investigate how Arthrospira will react and behave when exposed to such stress environment. The cyanobacterium Arthrospira sp. PCC 8005 was exposed to high gamma rays doses in order to unravel in details the response of this bacterium following such stress. Test results showed that after acute exposure to high doses of 60Co gamma radiation upto 3200 Gy, Arthrospira filaments were still able to restart photosynthesis and proliferate normally. Doses above 3200 Gy, did have a detrimental effect on the cells, and delayed post-irradiation proliferation. The photosystem activity, measured as the PSII quantum yield immediately after irradiation, decreased significantly at radiation doses above 3200 Gy. Likewise through pigment content analysis a significant decrease in phycocyanin was observed following exposure to 3200 Gy. The high tolerance of this bacterium to 60Co gamma rays (i.e. ca. 1000x more resistant than human cells for example) raised our interest to investigate in details the cellular and molecular mechanisms behind this amazing resistance. Optimised DNA, RNA and protein extraction methods and a new microarray chip specific for Arthrospira sp. PCC 8005 were developed to identify the global cellular and molecular response following exposure to 3200 Gy and 5000 Gy A total of 15,29 % and 30,18 % genes were found differentially expressed in RNA

  17. Influence of culture conditions and medium composition on the production of antibacterial compounds by marine Serratia sp. WPRA3.

    PubMed

    Jafarzade, Mahtab; Yahya, Nur Ain; Shayesteh, Fatemeh; Usup, Gires; Ahmad, Asmat

    2013-06-01

    This study was undertaken to investigate the influence of culture conditions and medium components on production of antibacterial compounds by Serratia sp. WPRA3 (JX020764) which was isolated from marine water of Port Dickson, Malaysia. Biochemical, morphological, and molecular characteristics suggested that the isolate is a new candidate of the Serratia sp. The isolate showed strong antimicrobial activity against fungi, Gram-negative and Gram-positive bacteria. This bacterium exhibited optimum antibacterial compounds production at 28°C, pH 7 and 200 rev/min aeration during 72 h of incubation period. Highest antibacterial activity was obtained when sodium chloride (2%), yeast extract (0.5%), and glucose concentration (0.75%) were used as salt, nitrogen, and carbon sources respectively. Different active fractions were obtained by Thin-Layer Chromatography (TLC) and Flash Column Chromatography (FCC) from ethyl acetate crude extracts namely OCE and RCE in different culture conditions, OCE (pH 5, 200 rev/min) and RCE (pH 7/without aeration). In conclusion, the results suggested different culture conditions have a significant impact on the types of secondary metabolites produced by the bacterium.

  18. NREL Researchers Discover How a Bacterium, Clostridium thermocellum,

    Science.gov Websites

    containing the bacterium actually promotes the growth of C. thermocellum, yet its mechanistic details remained a puzzle. This enhanced growth implied the bacterium had the ability to use CO2 and prompted NREL researchers to investigate the phenomena enhancing the bacterium's growth. "It took us by surprise that

  19. Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. 638 increases biomass but does not impact leaf level physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, A.; McDonald, K.; Muehlbauer, M. F.

    Endophytic bacteria have been shown to provide several advantages to their host, including enhanced growth. Inoculating biofuel species with endophytic bacteria is therefore an attractive option to increase the productivity of biofuel feedstocks. Here, we investigated the effect of inoculating hard wood cuttings of Populus deltoides Bartr. x Populus. nigra L. clone OP367 with Enterobacter sp. 638. After 17 weeks, plants inoculated with Enterobacter sp. 638 had 55% greater total biomass than un-inoculated control plants. Study of gas exchange and fluorescence in developing and mature leaves over a diurnal cycle and over a 5 week measurement campaign revealed no effectsmore » of inoculation on photosynthesis, stomatal conductance, photosynthetic water use efficiency or the maximum and operating efficiency of photosystem II. However, plants inoculated with Enterobacter sp. 638 had a canopy that was 39% larger than control plants indicating that the enhanced growth was fueled by increased leaf area, not by improved physiology. Leaf nitrogen content was determined at two stages over the 5 week measurement period. No effect of Enterobacter sp. 638 on leaf nitrogen content was found indicating that the larger plants were acquiring sufficient nitrogen. Enterobacter sp. 638 lacks the genes for N{sub 2} fixation, therefore the increased availability of nitrogen likely resulted from enhanced nitrogen acquisition by the 84% larger root system. These data show that Enterobacter sp. 638 has the potential to dramatically increase productivity in poplar. If fully realized in the production environment, these results indicate that an increase in the environmental and economic viability of poplar as a biofuel feedstock is possible when inoculated with endophytic bacteria like Enterobacter sp. 638.« less

  20. Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes.

    PubMed

    Tarpgaard, Irene H; Boetius, Antje; Finster, Kai

    2006-01-01

    A psychrotrolerant acetate-oxidizing sulfate-reducing bacterium (strain akvb(T)) was isolated from sediment from the northern part of The North Sea with annual temperature fluctuations between 8 and 14 degrees C. Of the various substrates tested, strain akvb(T) grew exclusively by the oxidation of acetate coupled to the reduction of sulfate. The cells were motile, thick rods with round ends and grew in dense aggregates. Strain akvb(T) grew at temperatures ranging from -3.6 to 26.3 degrees C. Optimal growth was observed at 20 degrees C. The highest cell specific sulfate reduction rate of 6.2 fmol cell(-1) d(-1) determined by the (35)SO(2-)(40) method was measured at 26 degrees C. The temperature range of short-term sulfate reduction rates exceeded the temperature range of growth by 5 degrees C. The Arrhenius relationship for the temperature dependence of growth and sulfate reduction was linear, with two distinct slopes below the optimum temperatures of both processes. The critical temperature was 6.4 degrees C. The highest growth yield (4.3-4.5 g dry weight mol(-1) acetate) was determined at temperatures between 5 and 15 degrees C. The cellular fatty acid composition was determined with cultures grown at 4 and 20 degrees C, respectively. The relative proportion of cellular unsaturated fatty acids (e.g. 16:1omega7c) was higher in cells grown at 4 degrees C than in cells grown at 20 degrees C. The physiological responses to temperature changes showed that strain akvb(T) was well adapted to the temperature regime of the environment from which it was isolated. Phylogenetic analysis showed that strain akvb(T) is closest related to Desulfobacter hydrogenophilus, with a 16S rRNA gene sequence similarity of 98.6%. DNA-DNA-hybridization showed a similarity of 32% between D. hydrogenophilus and strain akvb(T). Based on phenotypic and DNA-based characteristics we propose that strain akvb(T) is a member of a new species, Desulfobacter psychrotolerans sp. nov.

  1. Draft Genome Sequence of Streptomyces sp. Strain Wb2n-11, a Desert Isolate with Broad-Spectrum Antagonism against Soilborne Phytopathogens

    DOE PAGES

    Köberl, Martina; White, Richard A.; Erschen, Sabine; ...

    2015-08-06

    Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria, and nematodes. The 8.2-Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants.

  2. Uptake of L-nicotine and of 6-hydroxy-L-nicotine by Arthrobacter nicotinovorans and by Escherichia coli is mediated by facilitated diffusion and not by passive diffusion or active transport.

    PubMed

    Ganas, Petra; Brandsch, Roderich

    2009-06-01

    The mechanism by which l-nicotine is taken up by bacteria that are able to grow on it is unknown. Nicotine degradation by Arthrobacter nicotinovorans, a Gram-positive soil bacterium, is linked to the presence of the catabolic megaplasmid pAO1. l-[(14)C]Nicotine uptake assays with A. nicotinovorans showed transport of nicotine across the cell membrane to be energy-independent and saturable with a K(m) of 6.2+/-0.1 microM and a V(max) of 0.70+/-0.08 micromol min(-1) (mg protein)(-1). This is in accord with a mechanism of facilitated diffusion, driven by the nicotine concentration gradient. Nicotine uptake was coupled to its intracellular degradation, and an A. nicotinovorans strain unable to degrade nicotine (pAO1(-)) showed no nicotine import. However, when the nicotine dehydrogenase genes were expressed in this strain, import of l-[(14)C]nicotine took place. A. nicotinovorans pAO1(-) and Escherichia coli were also unable to import 6-hydroxy-l-nicotine, but expression of the 6-hydroxy-l-nicotine oxidase gene allowed both bacteria to take up this compound. l-Nicotine uptake was inhibited by d-nicotine, 6-hydroxy-l-nicotine and 2-amino-l-nicotine, which may indicate transport of these nicotine derivatives by a common permease. Attempts to correlate nicotine uptake with pAO1 genes possessing similarity to amino acid transporters failed. In contrast to the situation at the blood-brain barrier, nicotine transport across the cell membrane by these bacteria was not by passive diffusion or active transport but by facilitated diffusion.

  3. Draft Genome Sequence of the Polyextremophilic Exiguobacterium sp. Strain S17, Isolated from Hyperarsenic Lakes in the Argentinian Puna.

    PubMed

    Ordoñez, Omar F; Lanzarotti, Esteban; Kurth, Daniel; Gorriti, Marta F; Revale, Santiago; Cortez, Néstor; Vazquez, Martin P; Farías, María E; Turjanski, Adrian G

    2013-07-25

    Exiguobacterium sp. strain S17 is a moderately halotolerant, arsenic-resistant bacterium that was isolated from Laguna Socompa stromatolites in the Argentinian Puna. The draft genome sequence suggests potent enzyme candidates that are essential for survival under multiple environmental extreme conditions, such as high levels of UV radiation, elevated salinity, and the presence of critical arsenic concentrations.

  4. Draft Genome Sequence of Isoproturon-Mineralizing Sphingomonas sp. SRS2, Isolated from an Agricultural Field in the United Kingdom.

    PubMed

    Nielsen, Tue Kjærgaard; Sørensen, Sebastian R; Hansen, Lars Hestbjerg

    2015-05-28

    Sphingomonas sp. SRS2 was the first described pure strain that is capable of mineralizing the phenylurea herbicide isoproturon and some of its related compounds. This strain has been studied thoroughly and shows potential for bioremediation purposes. We present the draft genome sequence of this bacterium, which will aid future studies. Copyright © 2015 Nielsen et al.

  5. Complete genome sequence of Burkholderia sp. strain PAMC28687, a potential octopine-utilizing bacterium isolated from Antarctica lichen.

    PubMed

    Han, So-Ra; Yu, Sang-Cheol; Ahn, Do-Hwan; Park, Hyun; Oh, Tae-Jin

    2016-05-20

    We report the complete genome sequence of Burkholderia sp. PAMC28687, which was isolated from the Antarctica lichen Useea sp., for better understanding of its catabolic traits in utilizing octopine as a source of carbon/nitrogen between Burkholderia and lichen. The genome consists of three circular chromosomes with five circular plasmids for the total 6,881,273bp sized genome with a G+C content of 58.14%. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol.

    PubMed Central

    Radehaus, P M; Schmidt, S K

    1992-01-01

    A pentachlorophenol (PCP)-mineralizing bacterium was isolated from polluted soil and identified as Pseudomonas sp. strain RA2. In batch cultures, Pseudomonas sp. strain RA2 used PCP as its sole source of carbon and energy and was capable of completely degrading this compound as indicated by radiotracer studies, stoichiometric release of chloride, and biomass formation. Pseudomonas sp. strain RA2 was able to mineralize a higher concentration of PCP (160 mg liter-1) than any previously reported PCP-degrading pseudomonad. At a PCP concentration of 200 mg liter-1, cell growth was completely inhibited and PCP was not degraded, although an active population of Pseudomonas sp. RA2 was still present in these cultures after 2 weeks. The inhibitory effect of PCP was partially attributable to its effect on the growth rate of Pseudomonas sp. strain RA2. The highest specific growth rate (mu = 0.09 h-1) was reached at a PCP concentration of 40 mg liter-1 but decreased at higher or lower PCP concentrations, with the lowest mu (0.05 h-1) occurring at 150 mg liter-1. Despite this reduction in growth rate, total biomass production was proportional to PCP concentration at all PCP concentrations degraded by Pseudomonas sp. RA2. In contrast, final cell density was reduced to below expected values at PCP concentrations greater than 100 mg liter-1. These results indicate that, in addition to its effect as an uncoupler of oxidative phosphorylation, PCP may also inhibit cell division in Pseudomonas sp. strain RA2.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1444401

  7. Descriptions of Roseiarcus fermentans gen. nov., sp. nov., a bacteriochlorophyll a-containing fermentative bacterium related phylogenetically to alphaproteobacterial methanotrophs, and of the family Roseiarcaceae fam. nov.

    PubMed

    Kulichevskaya, Irina S; Danilova, Olga V; Tereshina, Vera M; Kevbrin, Vadim V; Dedysh, Svetlana N

    2014-08-01

    A light-pink-pigmented, microaerophilic bacterium was obtained from a methanotrophic consortium enriched from acidic Sphagnum peat and designated strain Pf56(T). Cells of this bacterium were Gram-negative, non-motile, thick curved rods that contained a vesicular intracytoplasmic membrane system characteristic of some purple non-sulfur alphaproteobacteria. The absorption spectrum of acetone/methanol extracts of cells grown in the light showed maxima at 363, 475, 505, 601 and 770 nm; the peaks at 363 and 770 nm are characteristic of bacteriochlorophyll a. However, in contrast to purple non-sulfur bacteria, strain Pf56(T) was unable to grow phototrophically under anoxic conditions in the light. Best growth occurred on some sugars and organic acids under micro-oxic conditions by means of fermentation. The fermentation products were propionate, acetate and hydrogen. Slow chemo-organotrophic growth was also observed under fully oxic conditions. Light stimulated growth. C1 substrates were not utilized. Strain Pf56(T) grew at pH 4.0-7.0 (optimum pH 5.5-6.5) and at 15-30 °C (optimum 22-28 °C). The major cellular fatty acids were 19 : 0 cyclo ω8c and 18 : 1ω7c; quinones were represented by ubiquinone Q-10. The G+C content of the DNA was 70.0 mol%. Strain Pf56 displays 93.6-94.7 and 92.7-93.7% 16S rRNA gene sequence similarity to members of the families Methylocystaceae and Beijerinckiaceae, respectively, and belongs to a large cluster of environmental sequences retrieved from various wetlands and forest soils in cultivation-independent studies. Phenotypic, genotypic and chemotaxonomic characteristics of strain Pf56(T) suggest that it represents a novel genus and species of bacteriochlorophyll a-containing fermentative bacteria, for which the name Roseiarcus fermentans gen. nov., sp. nov. is proposed. Strain Pf56(T) ( = DSM 24875(T) = VKM B-2876(T)) is the type strain of Roseiarcus fermentans, and is also the first characterized member of a novel family

  8. Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent.

    PubMed

    Sathyavathi, S; Manjula, A; Rajendhran, J; Gunasekaran, P

    2014-08-01

    In the present study, a nickel resistant bacterium MRS-1 was isolated from nickel electroplating industrial effluent, capable of converting soluble NiSO4 into insoluble NiO nanoparticles and identified as Microbacterium sp. The formation of NiO nanoparticles in the form of pale green powder was observed on the bottom of the flask upon prolonged incubation of liquid nutrient medium containing high concentration of 2000ppm NiSO4. The properties of the produced NiO nanoparticles were characterized. NiO nanoparticles exhibited a maximum absorbance at 400nm. The NiO nanoparticles were 100-500nm in size with unique flower like structure. The elemental composition of the NiO nanoparticles was 44:39. The cells of MRS-1 were utilized for the treatment of nickel electroplating industrial effluent and showed nickel removal efficiency of 95%. Application of Microbacterium sp. MRS-1 would be a potential bacterium for bioremediation of nickel electroplating industrial waste water and simultaneous synthesis of NiO nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A new QRT-PCR assay designed for the differentiation between elements provided from Agrobacterium sp. in GMOs plant events and natural Agrobacterium sp. bacteria.

    PubMed

    Nabi, Nesrine; Chaouachi, Maher; Zellama, Mohamed Salem; Ben Hafsa, Ahmed; Mrabet, Besma; Saïd, Khaled; Fathia, Harzallah Skhiri

    2016-04-01

    The question asked in the present work was how to differentiate between contamination of field samples with and GM plants contained sequences provided from this bacterium in order to avoid false positives in the frame of the detection and the quantification of GMO. For this, new set of primers and corresponding TaqMan Minor Groove Binder (MGB) probes were designed to target Agrobacterium sp. using the tumor-morphology-shooty gene (TMS1). Final standard curves were calculated for each pathogen by plotting the threshold cycle value against the bacterial number (log (colony forming units) per milliliter) via linear regression. The method designed was highly specific and sensitive, with a detection limit of 10CFU/ml. No significant cross-reaction was observed. Results from this study showed that TaqMan real-time PCR, is potentially an effective method for the rapid and reliable quantification of Agrobacterium sp. in samples containing GMO or non GMO samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Marinobacter lacisalsi sp. nov., a moderately halophilic bacterium isolated from the saline-wetland wildfowl reserve Fuente de Piedra in southern Spain.

    PubMed

    Aguilera, Margarita; Jiménez-Pranteda, Maria L; Kharroub, Karima; González-Paredes, Ana; Durban, Juan J; Russell, Nick J; Ramos-Cormenzana, Alberto; Monteoliva-Sánchez, Mercedes

    2009-07-01

    A Gram-negative, non-spore-forming, motile, moderately halophilic, aerobic, rod-shaped bacterium, designated strain FP2.5(T), was isolated from the inland hypersaline lake Fuente de Piedra, a saline-wetland wildfowl reserve located in the province of Málaga in southern Spain. Strain FP2.5(T) was subjected to a polyphasic taxonomic study. It produced colonies with a light-yellow pigment. Strain FP2.5(T) grew at salinities of 3-15 % (w/v) and at temperatures of 20-40 degrees C. The pH range for growth was 5-9. Strain FP2.5(T) was able to utilize various organic acids as sole carbon and energy source. Its major fatty acids were C(16 : 0), C(18 : 1)omega9c and C(16 : 1)omega9c. The DNA G+C content was 58.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain FP2.5(T) appeared to be a member of the genus Marinobacter and clustered closely with the type strains of Marinobacter segnicrescens, Marinobacter bryozoorum and Marinobacter gudaonensis (levels of 16S rRNA gene sequence similarity of 98.1, 97.4 and 97.2 %, respectively). However, DNA-DNA relatedness between the new isolate and the type strains of its closest related Marinobacter species was low; levels of DNA-DNA relatedness between strain FP2.5(T) and M. segnicrescens LMG 23928(T), M. bryozoorum DSM 15401(T) and M. gudaonensis DSM 18066(T) were 36.3, 32.1 and 24.9 %, respectively. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data, strain FP2.5(T) is considered to represent a novel species of the genus Marinobacter, for which the name Marinobacter lacisalsi sp. nov. is proposed. The type strain is FP2.5(T) (=CECT 7297(T)=LMG 24237(T)).

  11. Defluviitalea raffinosedens sp. nov., a thermophilic, anaerobic, saccharolytic bacterium isolated from an anaerobic batch digester treating animal manure and rice straw.

    PubMed

    Ma, Shichun; Huang, Yan; Wang, Cong; Fan, Hui; Dai, Lirong; Zhou, Zheng; Liu, Xing; Deng, Yu

    2017-05-01

    A thermophilic, anaerobic, fermentative bacterium, strain A6T, was obtained from an anaerobic batch digester treating animal manure and rice straw. Cells were Gram-stain-positive, slightly curved rods with a size of 0.6-1×2.5-8.2 µm, non-motile and produced terminal spores. The temperature, pH and NaCl concentration ranges for growth were 40-60 °C, 6.5-8.0 and 0-15.0 g l-1, with optimum growth noted at 50-55 °C, pH 7.5 and in the absence of NaCl, respectively. Yeast extract was required for growth. d-Glucose, maltose, d-xylose, d-galactose, d-fructose, d-ribose, lactose, raffinose, sucrose, d-arabinose, cellobiose, d-mannose and yeast extract were used as carbon and energy sources. The fermentation products from glucose were ethanol, lactate, acetate, propionate, butyrate, valerate, iso-butyrate, iso-valerate, H2 and CO2. The G+C content of the genomic DNA was 36.6 mol%. The predominant fatty acids were C16 : 0, iso-C17 : 1, C14 : 0, C16 : 1ω7c, C16 : 0 N-alcohol and C13 : 0 3-OH. Respiratory quinones were not detected. The polar lipid profile comprised phosphoglycolipids, phospholipids, glycolipids, a diphosphatidylglycerol, a phosphatidylglycerol and an unidentified lipid. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the strain was closely related to Defluviitalea saccharophila DSM 22681T with a similarity of 96.0 %. Based on the morphological, physiological and taxonomic characterization, strain A6T is considered to represent a novel species of the genus Defluviitalea, for which the name Defluviitalea raffinosedens sp. nov. is proposed. The type strain is A6T (=DSM 28090T=ACCC 19951T).

  12. Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment.

    PubMed

    Finster, K; Coates, J D; Liesack, W; Pfennig, N

    1997-07-01

    A mesophilic, acetate-oxidizing, sulfur-reducing bacterium, strain NZ27T, was isolated from anoxic mud from a freshwater sulfur spring. The cells were ovoid, motile, and gram negative. In addition to acetate, the strain oxidized pyruvate, succinate, and fumarate. Sulfur flower could be replaced by polysulfide as an electron acceptor. Ferric nitrilotriacetic acid was reduced in the presence of pyruvate; however, this reduction did not sustain growth. These phenotypic characteristics suggested that strain NZ27T is affiliated with the genus Desulfuromonas. A phylogenetic analysis based on the results of comparative 16S ribosomal DNA sequencing confirmed that strain NZ27T belongs to the Desulfuromonas cluster in the recently proposed family "Geobacteracea" in the delta subgroup of the Proteobacteria. In addition, the results of DNA-DNA hybridization studies confirmed that strain NZ27T represents a novel species. Desulfuromonas thiophila, a name tentatively used in previous publication, is the name proposed for strain NZ27T in this paper.

  13. Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment

    USGS Publications Warehouse

    Finster, K.; Coates, J.D.; Liesack, W.; Pfennig, N.

    1997-01-01

    A mesophilic, acetate-oxidizing, sulfur-reducing bacterium, strain NZ27(T), was isolated from anoxic mud from a freshwater sulfur spring. The cells were ovoid, motile, and gram negative. In addition to acetate, the strain oxidized pyruvate, succinate, and fumarate. Sulfur flower could be replaced by polysulfide as an electron acceptor. Ferric nitrilotriacetic acid was reduced in the presence of pyruvate; however, this reduction did not sustain growth. These phenotypic characteristics suggested that strain NZ27(T) is affiliated with the genus Desulfuromonas. A phylogenetic analysis based on the results of comparative 16S ribosomal DNA sequencing confirmed that strain NZ27(T) belongs to the Desulfuromonas cluster in the recently proposed family 'Geobacteraceae' in the delta subgroup of the Proteobacteria. In addition, the results of DNA-DNA hybridization studies confirmed that strain NZ27(T) represents a novel species. Desulfuromonas thiophila, a name tentatively used in previous publications, is the name proposed for strain NZ27(T) in this paper.

  14. Isolation of Corynebacterium tuscaniae sp. nov. from Blood Cultures of a Patient with Endocarditis

    PubMed Central

    Riegel, Philippe; Creti, Roberta; Mattei, Romano; Nieri, Alfredo; von Hunolstein, Christina

    2006-01-01

    A strain of an unknown coryneform bacterium was repeatedly isolated in pure culture from the blood of a patient affected by endocarditis. Comparative 16S rRNA gene sequence analysis revealed that this isolate represented a new subline within the genus Corynebacterium. This new taxon can be identified by the presence of corynomycolic acids and its enzymatic activities and fermentation of sugars. Acid production from glucose and maltose, pyrazinamidase and alkaline phoshatase activities, and hippurate hydrolysis were the most characteristic phenotypic features of the bacterium. On the basis of both phenotypic and phylogenetic evidence, it is proposed that this isolate be classified as a novel species, Corynebacterium tuscaniae sp. nov. The type strain, ISS-5309, has been deposited in the American Type Culture Collection (ATCC BAA-1141) and in the Culture Collection of the University of Göteborg (CCUG 51321). PMID:16455875

  15. Use of Silica-Encapsulated Pseudomonas sp. Strain NCIB 9816-4 in Biodegradation of Novel Hydrocarbon Ring Structures Found in Hydraulic Fracturing Waters

    PubMed Central

    Aukema, Kelly G.; Kasinkas, Lisa; Aksan, Alptekin

    2014-01-01

    The most problematic hydrocarbons in hydraulic fracturing (fracking) wastewaters consist of fused, isolated, bridged, and spiro ring systems, and ring systems have been poorly studied with respect to biodegradation, prompting the testing here of six major ring structural subclasses using a well-characterized bacterium and a silica encapsulation system previously shown to enhance biodegradation. The direct biological oxygenation of spiro ring compounds was demonstrated here. These and other hydrocarbon ring compounds have previously been shown to be present in flow-back waters and waters produced from hydraulic fracturing operations. Pseudomonas sp. strain NCIB 9816-4, containing naphthalene dioxygenase, was selected for its broad substrate specificity, and it was demonstrated here to oxidize fundamental ring structures that are common in shale-derived waters but not previously investigated with this or related enzymes. Pseudomonas sp. NCIB 9816-4 was tested here in the presence of a silica encasement, a protocol that has previously been shown to protect bacteria against the extremes of salinity present in fracking wastewaters. These studies demonstrate the degradation of highly hydrophobic compounds by a silica-encapsulated model bacterium, demonstrate what it may not degrade, and contribute to knowledge of the full range of hydrocarbon ring compounds that can be oxidized using Pseudomonas sp. NCIB 9816-4. PMID:24907321

  16. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries.

    PubMed

    Bharagava, Ram Naresh; Mishra, Sandhya

    2018-01-01

    Present study deals with the isolation and characterization of a bacterium capable for the effective reduction of Cr(VI) from tannery wastewater. Based on the 16S rRNA gene sequence analysis, this bacterium was identified as Cellulosimicrobium sp. (KX710177). During the Cr(VI) reduction experiment performed at 50, 100, 200,and 300mg/L of Cr(VI) concentrations, the bacterium showed 99.33% and 96.98% reduction at 50 and 100mg/L at 24 and 96h, respectively. However, at 200 and 300mg/L concentration of Cr(VI), only 84.62% and 62.28% reduction was achieved after 96h, respectively. The SEM analysis revealed that bacterial cells exposed to Cr(VI) showed increased cell size in comparison to unexposed cells, which might be due to either the precipitation or adsorption of reduced Cr(III) on bacterial cells. Further, the Energy Dispersive X-ray (EDX) analysis showed some chromium peaks for cells exposed to Cr(VI), which might be either due to the presence of precipitated reduced Cr(III) on cells or complexation of Cr(III) with cell surface molecules. The bacterium also showed resistance and sensitivity against the tested antibiotics with a wide range of MIC values ranging from 250 to 800mg/L for different heavy metals. Thus, this multi-drug and multi-metal resistant bacterium can be used as a potential agent for the effective bioremediation of metal contaminated sites. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Ultrastructure and Development of Pasteuria sp. (S-1 strain), an Obligate Endoparasite of Belonolaimus longicaudatus (Nemata: Tylenchida).

    PubMed

    Giblin-Davis, R M; Williams, D S; Wergin, W P; Dickson, D W; Hewlett, T E; Bekal, S; Becker, J O

    2001-12-01

    Pasteuria sp., strain S-1, is a gram-positive, obligate endoparasitic bacterium that uses the phytoparasitic sting nematode, Belonolaimus longicaudatus, as its host in Florida. The host attachment of S-1 appears to be specific to the genus Belonolaimus with development occurring only in juveniles and adults of B. longicaudatus. This bacterium is characterized from other described species of Pasteuria using ultrastructure of the mature endospore. Penetration, development, and sporogenesis were elucidated with TEM, LTSEM, and SEM and are similar to other nematode-specific Pasteuria. Recent analysis of 16S rDNA sequence homology confirms its congeneric ranking with other Pasteuria species and strains from nematodes and cladocerans, and corroborates ultrastructural, morphological, morphometric, and host-range evidence suggesting separate species status.

  18. A Microbiomic Analysis in African Americans with Colonic Lesions Reveals Streptococcus sp.VT162 as a Marker of Neoplastic Transformation

    PubMed Central

    Brim, Hassan; Yooseph, Shibu; Lee, Edward; Sherif, Zaki A.; Abbas, Muneer; Laiyemo, Adeyinka O.; Varma, Sudhir; Torralba, Manolito; Dowd, Scot E.; Nelson, Karen E.; Pathmasiri, Wimal; Sumner, Susan; de Vos, Willem; Liang, Qiaoyi; Yu, Jun; Zoetendal, Erwin; Ashktorab, Hassan

    2017-01-01

    Increasing evidence suggests a role of the gut microbiota in colorectal carcinogenesis (CRC). To detect bacterial markers of colorectal cancer in African Americans a metabolomic analysis was performed on fecal water extracts. DNA from stool samples of adenoma and healthy subjects and from colon cancer and matched normal tissues was analyzed to determine the microbiota composition (using 16S rDNA) and genomic content (metagenomics). Metagenomic functions with discriminative power between healthy and neoplastic specimens were established. Quantitative Polymerase Chain Reaction (q-PCR) using primers and probes specific to Streptococcus sp. VT_162 were used to validate this bacterium association with neoplastic transformation in stool samples from two independent cohorts of African Americans and Chinese patients with colorectal lesions. The metabolomic analysis of adenomas revealed low amino acids content. The microbiota in both cancer vs. normal tissues and adenoma vs. normal stool samples were different at the 16S rRNA gene level. Cross-mapping of metagenomic data led to 9 markers with significant discriminative power between normal and diseased specimens. These markers identified with Streptococcus sp. VT_162. Q-PCR data showed a statistically significant presence of this bacterium in advanced adenoma and cancer samples in an independent cohort of CRC patients. We defined metagenomic functions from Streptococcus sp. VT_162 with discriminative power among cancers vs. matched normal and adenomas vs. healthy subjects’ stools. Streptococcus sp. VT_162 specific 16S rDNA was validated in an independent cohort. These findings might facilitate non-invasive screening for colorectal cancer. PMID:29120399

  19. Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1.

    PubMed

    Tallur, Preeti N; Megadi, Veena B; Ninnekar, Harichandra Z

    2008-02-01

    A bacterium capable of utilizing pyrethroid pesticide cypermethrin as sole source of carbon was isolated from soil and identified as a Micrococcus sp. The organism also utilized fenvalerate, deltamethrin, perimethrin, 3-phenoxybenzoate, phenol, protocatechuate and catechol as growth substrates. The organism degraded cypermethrin by hydrolysis of ester linkage to yield 3-phenoxybenzoate, leading to loss of its insecticidal activity. 3-Phenoxybenzoate was further metabolized by diphenyl ether cleavage to yield protocatechuate and phenol as evidenced by isolation and identification of metabolites and enzyme activities in the cell-free extracts. Protocatechuate and phenol were oxidized by ortho-cleavage pathway. Thus, the organism was versatile in detoxification and complete mineralization of pyrethroid cypermethrin.

  20. Isolation and characterization of a novel endo-beta-galactofuranosidase from Bacillus sp.

    PubMed

    Ramli, N; Fujinaga, M; Tabuchi, M; Takegawa, K; Iwahara, S

    1995-10-01

    A soil bacterium capable of growing on a polysaccharide-containing beta(1-->6)galactofuranoside residues derived from the acidic polysaccharide of Fusarium sp. as a carbon source has been isolated. From various bacteriological characteristics, the organism was identified as a Bacillus sp. The bacterium produced beta-galactofuranosidase inductively in the culture media. The most effective inducer for the beta-galactofuranosidase production was a polysaccharide containing beta(1-->5) or beta(1-->6)-linked galactofuranoside residues, but gum arabic, gum guar, gum ghati, arabinogalactam, araban, and pectic acid did not induce the enzyme. The enzyme had three different molecular weight forms. The low molecular-weight form was purified by a combination of Toyopearl HW-55 and DEAE-Toyopearl 650S column chromatographies, and preparative polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 67,000 by SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 6 and 37 degrees C, and was stable between pH 4 to 8 at 5 degrees C. The action of the enzyme was inhibited by the addition of Cd2+, Co2+, Hg2+, Zn2+, iodoacetic acid, and EDTA. The purified enzyme cleaved beta(1-->5) and beta(1-->6)-linked galactofuranosyl chains. Based upon the mode of liberation of galactofuranosyl residues from pyridylamino-beta(1-->6)-linked galactofuranoside oligomers, the enzyme can be classified as an endo-beta-galactofuranosidase that randomly hydrolyzes the linkage.