Sample records for bacterium bacillus megaterium

  1. Isolation, Identification, and Optimization of Culture Conditions of a Bioflocculant-Producing Bacterium Bacillus megaterium SP1 and Its Application in Aquaculture Wastewater Treatment

    PubMed Central

    Luo, Liang; Huang, Xiaoli; Du, Xue; Wang, Chang'an; Li, Jinnan; Wang, Liansheng

    2016-01-01

    A bioflocculant-producing bacterium, Bacillus megaterium SP1, was isolated from biofloc in pond water and identified by using both 16S rDNA sequencing analysis and a Biolog GEN III MicroStation System. The optimal carbon and nitrogen sources for Bacillus megaterium SP1 were 20 g L−1 of glucose and 0.5 g L−1 of beef extract at 30°C and pH 7. The bioflocculant produced by strain SP1 under optimal culture conditions was applied into aquaculture wastewater treatment. The removal rates of chemical oxygen demand (COD), total ammonia nitrogen (TAN), and suspended solids (SS) in aquaculture wastewater reached 64, 63.61, and 83.8%, respectively. The volume of biofloc (FV) increased from 4.93 to 25.97 mL L−1. The addition of Bacillus megaterium SP1 in aquaculture wastewater could effectively improve aquaculture water quality, promote the formation of biofloc, and then form an efficient and healthy aquaculture model based on biofloc technology. PMID:27840823

  2. Systems Biology of Recombinant Protein Production in Bacillus megaterium

    NASA Astrophysics Data System (ADS)

    Biedendieck, Rebekka; Bunk, Boyke; Fürch, Tobias; Franco-Lara, Ezequiel; Jahn, Martina; Jahn, Dieter

    Over the last two decades the Gram-positive bacterium Bacillus megaterium was systematically developed to a useful alternative protein production host. Multiple vector systems for high yield intra- and extracellular protein production were constructed. Strong inducible promoters were combined with DNA sequences for optimised ribosome binding sites, various leader peptides for protein export and N- as well as C-terminal affinity tags for affinity chromatographic purification of the desired protein. High cell density cultivation and recombinant protein production were successfully tested. For further system biology based control and optimisation of the production process the genomes of two B. megaterium strains were completely elucidated, DNA arrays designed, proteome, fluxome and metabolome analyses performed and all data integrated using the bioinformatics platform MEGABAC. Now, solid theoretical and experimental bases for primary modeling attempts of the production process are available.

  3. Getting the big beast to work--systems biotechnology of Bacillus megaterium for novel high-value proteins.

    PubMed

    Korneli, Claudia; David, Florian; Biedendieck, Rebekka; Jahn, Dieter; Wittmann, Christoph

    2013-01-20

    The high industrial relevance of the soil bacterium Bacillus megaterium as host for recombinant proteins is driving systems-wide analyses of its metabolic and regulatory networks. The present review highlights novel systems biology tools available to unravel the various cellular components on the level of metabolic and regulatory networks. These provide a rational platform for systems metabolic engineering of B. megaterium. In line, a number of interesting studies have particularly focused on studying recombinant B. megaterium in its industrial bioprocess environment thus integrating systems metabolic engineering with systems biotechnology and providing the full picture toward optimal processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: statistical modeling and process optimization.

    PubMed

    Motaghed, M; Mousavi, S M; Rastegar, S O; Shojaosadati, S A

    2014-11-01

    The present study evaluated the potential of Bacillus megaterium as a cyanogenic bacterium to produce cyanide for solubilization of platinum and rhenium from a spent refinery catalyst. Response surface methodology was applied to study the effects and interaction between two main effective parameters including initial glycine concentration and pulp density. Maximum Pt and Re recovery was obtained 15.7% and 98%, respectively, under optimum conditions of 12.8 g/l initial glycine concentration and 4% (w/v) pulp density after 7 days. Increasing the free cyanide concentration to 3.6 mg/l, varying the pH from 6.7 to 9, and increasing the dissolved oxygen from 2 to 5mg/l demonstrated the growth characteristics of B. megaterium during bioleaching process. The modified shrinking core model was used to determine the rate limiting step of the process. It was found that diffusion through the product layer is the rate controlling step. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    PubMed

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.

  6. Enhancement of simultaneous gold and copper extraction from computer printed circuit boards using Bacillus megaterium.

    PubMed

    Arshadi, M; Mousavi, S M

    2015-01-01

    In this research simultaneous gold and copper recovery from computer printed circuit boards (CPCBs) was evaluated using central composite design of response surface methodology (CCD-RSM). To maximize simultaneous metals' extraction from CPCB waste four factors which affected bioleaching were selected to be optimized. A pure culture of Bacillus megaterium, a cyanogenic bacterium, was used to produce cyanide as a leaching agent. Initial pH 10, pulp density 2g/l, particle mesh#100 and glycine concentration 0.5g/l were obtained as optimal conditions. Gold and copper were extracted simultaneously at about 36.81 and 13.26% under optimum conditions, respectively. To decrease the copper effect as an interference agent in the leaching solution, a pretreatment strategy was examined. For this purpose firstly using Acidithiobacillus ferrooxidans copper in the CPCB powder was totally extracted, then the residual sediment was subjected to further experiments for gold recovery by B. megaterium. Using pretreated sample under optimal conditions 63.8% gold was extracted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Production of extracellular polysaccharide by Bacillus megaterium RB-05 using jute as substrate.

    PubMed

    Chowdhury, Sougata Roy; Basak, Ratan Kumar; Sen, Ramkrishna; Adhikari, Basudam

    2011-06-01

    Bacillus megaterium RB-05 was grown on glucose and on "tossa-daisee" (Corchorus olitorius)-derived jute, and production and composition of extracellular polysaccharide (EPS) were monitored. An EPS yield of 0.065 ± 0.013 and of 0.297 g ± 0.054 g(-1) substrate after 72 h was obtained for glucose and jute, respectively. EPS production in the presence of jute paralleled bacterial cellulase activity. High performance liquid chromatography (HPLC), matrix assisted LASER desorption/ionization-time of flight (MALDI-ToF) mass spectroscopy, and fourier transform infrared (FT-IR) spectroscopy demonstrated that the EPS synthesized in jute culture (JC) differed from that synthesized in glucose mineral salts medium (GMSM). While fucose was only a minor constituent (4.9 wt.%) of EPS from GMSM, it a major component (41.9 wt.%) of EPS synthesized in JC. This study establishes jute as an effective fermentation substrate for EPS production by a cellulase-producing bacterium. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Bacillus megaterium SF185 induces stress pathways and affects the cell cycle distribution of human intestinal epithelial cells.

    PubMed

    Di Luccia, B; D'Apuzzo, E; Varriale, F; Baccigalupi, L; Ricca, E; Pollice, A

    2016-09-01

    The interaction between the enteric microbiota and intestinal cells often involves signal molecules that affect both microbial behaviour and host responses. Examples of such signal molecules are the molecules secreted by bacteria that induce quorum sensing mechanisms in the producing microorganism and signal transduction pathways in the host cells. The pentapeptide competence and sporulation factor (CSF) of Bacillus subtilis is a well characterized quorum sensing factor that controls competence and spore formation in the producing bacterium and induces cytoprotective heat shock proteins in intestinal epithelial cells. We analysed several Bacillus strains isolated from human ileal biopsies of healthy volunteers and observed that some of them were unable to produce CSF but still able to act in a CSF-like fashion on model intestinal epithelial cells. One of those strains belonging to the Bacillus megaterium species secreted at least two factors with effects on intestinal HT29 cells: a peptide smaller than 3 kDa able to induce heat shock protein 27 (hsp27) and p38-MAPK, and a larger molecule able to induce protein kinase B (PKB/Akt) with a pro-proliferative effect.

  9. High yield production of extracellular recombinant levansucrase by Bacillus megaterium.

    PubMed

    Korneli, Claudia; Biedendieck, Rebekka; David, Florian; Jahn, Dieter; Wittmann, Christoph

    2013-04-01

    In this study, a high yield production bioprocess with recombinant Bacillus megaterium for the production of the extracellular enzyme levansucrase (SacB) was developed. For basic optimization of culture parameters and nutrients, a recombinant B. megaterium reporter strain that produced green fluorescent protein under control of a vector-based xylose-inducible promoter was used. It enabled efficient microtiter plate-based screening via fluorescence analysis. A pH value of pH 6, 20 % of dissolved oxygen, 37 °C, and elevated levels of biotin (100 μg L(-1)) were found optimal with regard to high protein yield and reduced overflow metabolism. Among the different compounds tested, fructose and glycerol were identified as the preferred source of carbon. Subsequently, the settings were transferred to a B. megaterium strain recombinantly producing levansucrase SacB based on the plasmid-located xylose-inducible expression system. In shake flask culture under the optimized conditions, the novel strain already secreted the target enzyme in high amounts (14 U mL(-1) on fructose and 17.2 U mL(-1) on glycerol). This was further increased in high cell density fed-batch processes up to 55 U mL(-1), reflecting a levansucrase concentration of 0.52 g L(-1). This is 100-fold more than previous efforts for this enzyme in B. megaterium and more than 10-fold higher than reported values of other extracellular protein produced in this microorganism so far. The recombinant strain could also handle raw glycerol from biodiesel industry which provided the same amount and quality of the recombinant protein and suggests future implementation into existing biorefinery concepts.

  10. Characterization of Polyhydroxyalkanoate Produced by Bacillus megaterium VB89 Isolated from Nisargruna Biogas Plant.

    PubMed

    Baikar, Vishakha; Rane, Ashwini; Deopurkar, Rajendra

    2017-09-01

    Polyhydroxyalkanoates (PHAs) are naturally occurring biodegradable polymers that can curb the extensive use of polypropylene based plastics. In contrast to chemically synthesized polypropylene plastics, PHAs are biodegradable and thus environmentally safe. PHAs have attracted much attention as biocompatible and biodegradable thermoplastics. The present study involves isolation of bacteria from different environments capable of synthesizing PHAs. The bacterium producing highest yield of PHA (0.672 ± 0.041 g/L) was identified as Bacillus megaterium VB89 by biochemical and molecular techniques such as 16S rDNA sequence analysis. Strain VB89 produced polyhydroxybutyrate (PHB) as revealed by FTIR and NMR. This PHB had an average molecular weight of 2.89 × 10 5  Da and a polydispersity index of 2.37. Thermal properties of the PHB included a glass transition temperature of 13.97 °C, a melting temperature of 181.74 °C, and a decomposition temperature of 234 °C. All these properties indicated that VB89 produced PHB of high purity and good thermal stability.

  11. SYNTHESIS AND DEGRADATION OF POLY-β-HYDROXYBUTYRIC ACID IN CONNECTION WITH SPORULATION OF BACILLUS MEGATERIUM

    PubMed Central

    Slepecky, Ralph A.; Law, John H.

    1961-01-01

    Slepecky, Ralph A. (Northwestern University, Evanston, Ill.), and John H. Law. Synthesis and degradation of poly-β-hydroxybutyric acid in connection with sporulation of Bacillus megaterium. J. Bacteriol. 82:37–42. 1961.—The production of poly-β-hydroxybutyrate has been followed in Bacillus megaterium, a sporulating strain, and B. megaterium strain KM, a nonsporulating strain, by an improved assay procedure and by the use of C14-acetate. The production of polymer in the KM strain follows the growth curve very slowly and reaches a peak at the time the cells are entering the stationary phase of growth. Slow utilization of polymer follows. When the sporulating strain is grown under conditions favorable for polymer production, no spores are formed; polymer production and utilization follow kinetics similar to those observed with asporogenous strains. When the sporulating strain is grown under conditions unfavorable for polymer production but favorable for sporulation, less polymer is produced and peak production occurs during the log phase of growth. Rapid utilization of the polymer precedes sporulation. If the medium is made favorable for polymer production by the addition of glucose and acetate and vigorous aeration conditions are used, sporulation can be obtained after good polymer production and subsequent utilization. PMID:16561914

  12. Bio-removal of Nickel ions by Sporosarcina pasteurii and Bacillus megaterium, A Comparative Study

    NASA Astrophysics Data System (ADS)

    Gheethi, AA; Efaq, AN; Mohamed, RM; Abdel-Monem, MO; Halid Abdullah, Abd; Hashim, M. Amir

    2017-08-01

    The aim of this work was to study the potential of Sporosarcina pasteurii 586S and Bacillus megaterium 1295S isolated from sewage treatment plants (STPs) in removing of nickel ions from the aqueous solution. The bacterial cells were used as living and dead cell biomass. The efficiency of bio-removal process was investigated as a response for nickel and biomass concentrations, time, pH and temperature. The bio-removal capacity (Qmax) of both strains were compared. The highest bio-removal percentage was recorded by dead cells in comparison to living cells. Dead cell biomass of B. megaterium 1295S exhibited higher efficiency for bio-removing of Ni2+ than S. pasteurii 586S at196.4 and 200.2 mg Ni2+ g-1, respectively. It can be concluded that both bacterial strains have high potential to be applied in the biotechnology for removing of Ni2+ ions, however, dead cells of B. megaterium 1295S is the most potent.

  13. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.

    PubMed

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-12-01

    Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

  14. Effects of culture conditions on the size, morphology and wet density of spores of Bacillus cereus 569 and Bacillus megaterium QM B1551.

    PubMed

    Xu Zhou, K; Wisnivesky, F; Wilson, D I; Christie, G

    2017-07-01

    The influence of variable culture conditions on the size and wet density of spores of Bacillus cereus and Bacillus megaterium were examined in this work. Culture temperature and initial pH was shown to have a significant impact on the size of both species, with increasingly alkaline culture media and elevated culture temperatures resulting in spores that were, on average, up to 25% reduced in volume. Increasing concentrations of inorganic salts in sporulation media exerted differing effects on each species; whereas a fivefold increase in the concentration of all salts resulted in only minor differences to the dimensions of B. cereus spores, B. megaterium spores became more elongated, displaying an average increase in volume of almost 30%. Similarly, as the spore elongated to yield aspect ratios larger than 1·4, their shape changed from typical prolate spheroids to cylinders with hemispherical ends. In contrast with previous studies, culture conditions employed in this study exerted no discernible impact on the wet density of B. cereus or B. megaterium spores. Bacterial spores of the genera Bacillus and Clostridium represent nature's most durable cells in terms of their extreme resistance to a variety of deleterious environments. As a result, they are of concern in the food processing, healthcare and other sectors, and are of increasing biotechnological interest. Improved understanding of variance in spore size, morphology and density may aid the development of certain spore-associated applications (e.g. spore surface display) while contributing to active areas of research such as spore adhesion and resistance to heat. © 2017 The Authors. Letters in Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  15. Enhancement of simultaneous gold and copper recovery from discarded mobile phone PCBs using Bacillus megaterium: RSM based optimization of effective factors and evaluation of their interactions.

    PubMed

    Arshadi, M; Mousavi, S M; Rasoulnia, P

    2016-11-01

    Bioleaching of Au from mobile phone printed circuit boards (MPPCBs) was studied, using Bacillus megaterium which is a cyanogenic bacterium. To maximize Au extraction, initial pH, pulp density, and glycine concentration were optimized via response surface methodology (RSM). Bioleaching of Cu, an important inhibitor on Au recovery, was also examined. To maximize Au recovery, the optimal condition suggested by the models was initial pH of 10, pulp density of 8.13g/l, and glycine concentration of 10g/l. Under the optimal condition, approximately 72% of Cu and 65g Au/ton MPPCBs, which is 7 times greater than the recovery from gold mines, was extracted. Cu elimination from the MPPCBs having a rich content of Au did not cause a significant effect on Au recovery. It was found that when the ratio of Cu to Au is high, Cu elimination can considerably improve Au recovery. B. megaterium could extract the total Au from PCBs containing 130g Au/ton MPPCBs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Characterization of Bacillus megaterium, Bacillus pumilus, and Paenibacillus polymyxa isolated from a Pinot noir wine from Western Washington State.

    PubMed

    von Cosmos, Nicolas H; Watson, Bruce A; Fellman, J K; Mattinson, D S; Edwards, Charles G

    2017-10-01

    This report provides the first confirmed evidence of Bacillus-like bacteria present in a wine from Washington State. These bacteria were isolated from a 2013 Pinot noir wine whose aroma was sensorially described as being 'dirty' or 'pond scum.' Based on physiological traits and genetic sequencing, three bacterial isolates were identified as Bacillus megaterium (strain NHO-1), Bacillus pumilus (strain NHO-2), and Paenibacillus polymyxa (strain NHO-3). These bacteria grew in synthetic media of low pH (pH 3.5) while some survived ethanol concentrations up to 15% v/v. However, none tolerated molecular SO 2 concentrations ≥0.4 mg/l. Growth of strains NHO-1 and NHO-3 in a Merlot grape juice resulted in increases of titratable and volatile acidities while decreases in titratable acidity were noted for NHO-2. Copyright © 2017. Published by Elsevier Ltd.

  17. POROSITY OF ISOLATED CELL WALLS OF SACCHAROMYCES CEREVISIAE AND BACILLUS MEGATERIUM.

    PubMed

    GERHARDT, P; JUDGE, J A

    1964-04-01

    Gerhardt, Philipp (The University of Michigan, Ann Arbor), and Jean A. Judge. Porosity of isolated cell walls of a yeast and a bacillus. J. Bacteriol. 87:945-951. 1964.-Decagram masses of cell walls were isolated from Saccharomyces cerevisiae and Bacillus megaterium; their porosity was examined by measuring the extent of uptake with polyethylene glycols and dextrans varying in molecular weight from 62 to 2,000,000. The results indicated that both walls are heteroporous. The near equality of extrapolated water-uptake values and determined moisture contents suggested that water in the cell walls is mainly free for distribution of solutes. Polymers with molecular weights of 4,500 and above were excluded by the yeast walls, and those with molecular weights of 57,000 were excluded by the bacillus walls; from these results, maximal openings of 36 and 107 A, respectively, were calculated. Electron micrographs of shadowed, stained, and sectioned walls revealed fine structure not inconsistent with heteroporosity, but the predicted openings were not seen. Altogether, in structure and permeability behavior, the cell walls were like a random meshwork of cross-linked macromolecular strands.

  18. Functionalized PHB granules provide the basis for the efficient side-chain cleavage of cholesterol and analogs in recombinant Bacillus megaterium.

    PubMed

    Gerber, Adrian; Kleser, Michael; Biedendieck, Rebekka; Bernhardt, Rita; Hannemann, Frank

    2015-07-29

    Cholesterol, the precursor of all steroid hormones, is the most abundant steroid in vertebrates and exhibits highly hydrophobic properties, rendering it a difficult substrate for aqueous microbial biotransformations. In the present study, we developed a Bacillus megaterium based whole-cell system that allows the side-chain cleavage of this sterol and investigated the underlying physiological basis of the biocatalysis. CYP11A1, the side-chain cleaving cytochrome P450, was recombinantly expressed in the Gram-positive soil bacterium B. megaterium combined with the required electron transfer proteins. By applying a mixture of 2-hydroxypropyl-β-cyclodextrin and Quillaja saponin as solubilizing agents, the zoosterols cholesterol and 7-dehydrocholesterol, as well as the phytosterol β-sitosterol could be efficiently converted to pregnenolone or 7-dehydropregnenolone. Fluorescence-microscopic analysis revealed that cholesterol accumulates in the carbon and energy storage-serving poly(3-hydroxybutyrate) (PHB) bodies and that the membrane proteins CYP11A1 and its redox partner adrenodoxin reductase (AdR) are likewise localized to their surrounding phospholipid/protein monolayer. The capacity to store cholesterol was absent in a mutant strain devoid of the PHB-producing polymerase subunit PhaC, resulting in a drastically decreased cholesterol conversion rate, while no effect on the expression of the recombinant proteins could be observed. We established a whole-cell system based on B. megaterium, which enables the conversion of the steroid hormone precursor cholesterol to pregnenolone in substantial quantities. We demonstrate that the microorganism's PHB granules, aggregates of bioplastic coated with a protein/phospholipid monolayer, are crucial for the high conversion rate by serving as substrate storage. This microbial system opens the way for an industrial conversion of the abundantly available cholesterol to any type of steroid hormones, which represent one of the

  19. Photoabsorption Study of Bacillus megaterium, DNA and Related Biological Materials in the Phosphorus K-edge Region

    NASA Technical Reports Server (NTRS)

    Frigo, Sean P.; McNulty, Ian; Richmond, Robert C.; Ehret, Charles F.

    2002-01-01

    We have measured the x-ray transmission spectra of several biologically related samples in the phosphorus K-edge absorption region. These include elemental red phosphorus, hydrated sodium phosphate (Na3PO4.12H2O), deoxyribonucleic acid (DNA), adenosinetriphosphate (ATP), diolylphosphatidyl choline (DOPC), and Bacillus megaterium spores. Elemental red phosphorus essentially displays an edge-jump. All other spectra are similar in form and energy position. Each spectrum for these substances is dominated by a narrower, more intense first peak and a broader but less intense second peak. The corresponding K-edge absorption thresholds are shifted towards higher energy relative to that for elemental red phosphorus, as expected for increasing degrees of phosphorus oxidation. The B. megaterium spectrum has aspects common to both the phosphate and DNA spectra and is therefore interpreted as a composite of spectra arising from DNA/RNA and phosphates within the spore. The B. megaterium spore spectrum provides needed information for resonant radiation damage studies in the phosphorus K-edge absorption region by identifying candidate photoexcitations. In addition,the absorption spectra will be useful in macromolecular crystallography studies employing anomalous dispersion effects at the phosphorus K-edge.

  20. Purification and characterization of a protease produced by Bacillus megaterium RRM2: application in detergent and dehairing industries.

    PubMed

    Rajkumar, Renganathan; Jayappriyan, Kothilmozhian Ranishree; Rengasamy, Ramasamy

    2011-12-01

    An alkaline serine protease produced by Bacillus megaterium RRM2 isolated from the red alga, Kappaphycus alvarezii (Doty) Doty ex Silva was studied for the first time and the same analyzed for the production of protease in the present study. Identification of the bacterium was done on the basis of both biochemical analysis and by 16S rDNA sequence analysis. The extracellular protease obtained from B. megaterium RRM2 was purified by a three-step process involving ammonium sulphate precipitation, gel filtration (Sephadex G100) and Q-Sepharose column chromatography. The purity was found to be 30.6-fold with a specific activity of 3591.5 U/mg protein with a molecular weight of 27 kDa. The metal ions Ca(2+), Mg(2+), K(+) and Na(+) marginally enhanced the activity of the purified enzyme while Hg(2+), Cu(2+), Fe(2+), CO(2+) and Zn(2+), had reduced the activity. The enzyme was found to be active in the pH range of 9.0-10.0 and remained active up to 60 °C. Phenyl Methyl Sulfonyl Fluoride (PMSF) inhibited the enzyme activity, thus, confirming that this enzyme is an alkaline serine protease. Likewise, DTT also inhibited the enzyme thus confirming the disulfide nature of the enzyme. The enzyme exhibited a high degree of tolerance to Sodium Dodecyl Sulphate (SDS). The partially purified protease when used as an additive in the commercial detergents was found to be a suitable source for washing clothes especially those stained with blood. Further, it showed good dehairing activity within a short duration in goat skin without affecting its collagen component. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Isolation of a Gram-positive poly(3-hydroxybutyrate) (PHB)-degrading bacterium from compost, and cloning and characterization of a gene encoding PHB depolymerase of Bacillus megaterium N-18-25-9.

    PubMed

    Takaku, Hiroaki; Kimoto, Ayumi; Kodaira, Shoko; Nashimoto, Masayuki; Takagi, Masamichi

    2006-11-01

    A Gram-positive poly(3-hydroxybutyrate) (PHB)-degrading bacterial strain was isolated from compost. This organism, identified as Bacillus megaterium N-18-25-9, produced a clearing zone on opaque NB-PHB agar, indicating the presence of extracellular PHB depolymerase. A PHB depolymerase gene, PhaZ(Bm), of B. megaterium N-18-25-9 was cloned and sequenced, and the recombinant gene product was purified from Escherichia coli. The N-terminal half region of PhaZ(Bm) shared significant homologies with a catalytic domain of other PHB depolymerases. Although the C-terminal half region of PhaZ(Bm) showed no significant similarity with those of other PHB depolymerases, that region was necessary for the PHB depolymerase activity. Therefore, this enzyme's domain structure is unique among extracellular PHB depolymerase domain structures. The addition of PHB to the medium led to a sixfold increase in PhaZ(Bm) mRNA, while the presence of glucose repressed PhaZ(Bm) expression. The maximum activity was observed at pH 9.0 at 65 degrees C.

  2. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants.

    PubMed

    Porcel, Rosa; Zamarreño, Ángel María; García-Mina, José María; Aroca, Ricardo

    2014-01-25

    Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria which benefit plants by improving plant productivity and immunity. The mechanisms involved in these processes include the regulation of plant hormone levels such as ethylene and abscisic acid (ABA). The aim of the present study was to determine whether the activity of Bacillus megaterium PGPR is affected by the endogenous ABA content of the host plant. The ABA-deficient tomato mutants flacca and sitiens and their near-isogenic wild-type parental lines were used. Growth, stomatal conductance, shoot hormone concentration, competition assay for colonization of tomato root tips, and root expression of plant genes expected to be modulated by ABA and PGPR were examined. Contrary to the wild-type plants in which PGPR stimulated growth rates, PGPR caused growth inhibition in ABA-deficient mutant plants. PGPR also triggered an over accumulation of ethylene in ABA-deficient plants which correlated with a higher expression of the pathogenesis-related gene Sl-PR1b. Positive correlation between over-accumulation of ethylene and a higher expression of Sl-PR1b in ABA-deficient mutant plants could indicate that maintenance of normal plant endogenous ABA content may be essential for the growth promoting action of B. megaterium by keeping low levels of ethylene production.

  3. Extracellular synthesis of silver nanoparticles using Bacillus megaterium against malarial and dengue vector (Diptera: Culicidae).

    PubMed

    Banu, A Najitha; Balasubramanian, C

    2015-11-01

    Biosynthesis of silver nanoparticles has provoked nowadays and alternative to physical and chemical approaches. In the present study, silver nanoparticles (AgNPs) were synthesized extracellular method using Bacillus megaterium. The AgNPs formations were confirmed initially through color change, and the aliquots were characterized through UV-visible spectrophotometer, followed by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, and Fourier transform infrared (FTIR) spectra. The surface plasmon resonance band was shown at 430 nm in UV-vis spectrophotometer. The bioreduction was categorized through identifying the compounds responsible for the AgNP synthesis, and the functional group present in B. megaterium cell-free culture was scrutinized using FTIR. The topography and morphology of the particles were determined using SEM. In addition, this biosynthesized AgNPs were found to show higher insecticidal efficacy against vector mosquitoes. The LC50 and LC90 were found to be 0.567, 2.260; 0.90, 4.44; 1.349, 8.269; and 1.640, 9.152 and 0.240, 0.955; 0.331, 1.593; 0.494, 2.811; and 0.700, 4.435 with respect to the first, second, third, and fourth instar larvae of Culex quinquefasciatus and Aedes aegypti. All the calculated χ (2) values are highly significant compared with the tabulated value. Therefore, B. megaterium-synthesized silver nanoparticles would be used as a potent larvicidal agent against Cx. quinquefasciatus and Ae. aegypti.

  4. alpha-Galactosidase from Bacillus megaterium VHM1 and its application in removal of flatulence-causing factors from soymilk.

    PubMed

    Patil, Aravind Goud G; K, Praveen Kumar S; Mulimani, Veerappa H; Veeranagouda, Yaligara; Lee, Kyoung

    2010-11-01

    A bacterial strain capable of producing extracellular alpha-galactosidase was isolated from sugar cane industrial waste soil sample. Microbiological, physiological, and biochemical studies revealed that isolate belonged to Bacillus sp,. Furthermore, 16S rDNA sequence analysis of new isolates was identified as Bacillus megaterium VHM1. The production of alpha-galactosidase was optimized by various physical culture conditions. Guar gum and yeast extract acted as the best carbon and nitrogen source, respectively for the production of alpha-galactosidase. The enzyme showed an optimum pH at 7.5 and was stable over a pH between 5 and 9. The enzyme was optimally active in 55degreesC and the enzyme was thermostable with half life of 120 minutes at 55 degrees C and lost their 90%, residual activity in 120 minutes at 60 degrees C. alpha-Galactosidase was strongly inhibited by Ag2, Cu2, and Hg2+ at 1mM concentration. The metal ions Fe2, Mn2+, and Mg2+ had no effect on alpha-galactosidase activity, Zn2+,Ni2+, and Ca2+ reduced the enzyme activity slightly. The B megaterium VHM1 enzyme treatment completely hydrolyzed flatulence-causing sugars of soymilk within one and half hour.

  5. Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and Aflatoxin Production on Stored Rice Grains

    PubMed Central

    Mannaa, Mohamed; Oh, Ji Yeon

    2017-01-01

    In our previous study, three bacterial strains, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15, were selected as effective biocontrol agents against Aspergillus flavus on stored rice grains. In this study, we evaluated the inhibitory effects of the volatiles produced by the strains on A. flavus growth and aflatoxin production on stored rice grains. The three strains significantly reduced mycelial growth of A. flavus in dual-culture assays compared with the negative control strain, Sphingomonas aquatilis KU408, and an untreated control. Of these tested strains, volatiles produced by B. megaterium KU143 and P. protegens AS15 markedly inhibited mycelial growth, sporulation, and conidial germination of A. flavus on agar medium and suppressed the fungal populations in rice grains. Moreover, volatiles produced by these two strains significantly reduced aflatoxin production in the rice grains by A. flavus. To our knowledge, this is the first report of the suppression of A. flavus aflatoxin production in rice grains using B. megaterium and P. protegens volatiles. PMID:29138628

  6. Divalent cation mobility throughout exponential growth and sporulation of Bacillus megaterium.

    PubMed

    Krueger, W B; Kolodziej, B J

    1978-01-01

    Each of the five elements considered was taken up by Bacillus megaterium during exponential growth. Initial Mg and Mn uptake was rapid and ended by mid-log. For Ca, Fe, and Zn, uptake continued throughout exponential growth. Elements were released from the cells immediately following initial uptake. For Mn, egression continued to t2, with release of 36% of total accumulated. Secondary uptake followed immediately and continued through stage V. Magnesium egression continued to t1 with release of 33% accumulated. Secondary uptake began by t5 (stage IV) and continued slowly through sporulation. Calcium egression ceased by t4 with release of 25% total accumulated. Secondary uptake began by t6 (stage V) and continued until depleted. Zinc egression stopped by t5 with release of 34% accumulated with some secondary uptake by stage V. Iron egression terminated at t4 with release of 59% of total accumulated. This was followed by secondary uptake after t12 (stage VI).

  7. Endotrophic Calcium, Strontium, and Barium Spores of Bacillus megaterium and Bacillus cereus1

    PubMed Central

    Foerster, Harold F.; Foster, J. W.

    1966-01-01

    Foerster, Harold F. (The University of Texas, Austin), and J. W. Foster. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 91:1333–1345. 1966.—Spores were produced by washed vegetative cells suspended in deionized water supplemented with CaCl2, SrCl2, or BaCl2. Normal, refractile spores were produced in each case; a portion of the barium spores lost refractility and darkened. Thin-section electron micrographs revealed no apparent anatomical differences among the three types of spores. Analyses revealed that the different spore types were enriched specifically in the metal to which they were exposed during sporogenesis. The calcium content of the strontium and the barium spores was very small. From binary equimolar mixtures of the metal salts, endotrophic spores accumulated both metals to nearly the same extent. Viability of the barium spores was considerably less than that of the other two types. Strontium and barium spores were heat-resistant; however, calcium was essential for maximal heat resistance. Significant differences existed in the rates of germination; calcium spores germinated fastest, strontium spores were slower, and barium spores were slowest. Calcium-barium and calcium-strontium spores germinated readily. Endotrophic calcium and strontium spores germinated without the prior heat activation essential for growth spores. Chemical germination of the different metal-type spores with n-dodecylamine took place at the same relative rates as physiological germination. Heat-induced release of dipicolinic acid occurred much faster with barium and strontium spores than with calcium spores. The washed “coat fraction” from disrupted spores contained little of the spore calcium but most of the spore barium. The metal in this fraction was released by dilute acid. The demineralized coats reabsorbed calcium and barium at neutral pH. Images PMID:4956334

  8. Measurement of Metabolic Activity in Dormant Spores of Bacillus Species

    DTIC Science & Technology

    2015-01-14

    SECURITY CLASSIFICATION OF: Spores of Bacillus megaterium and Bacillus subtilis were harvested shortly after release from sporangia, incubated under...Measurement of Metabolic Activity in Dormant Spores of Bacillus Species Report Title Spores of Bacillus megaterium and Bacillus subtilis were...ribosomal RNA when newly harvested Bacillus subtilis spores are incubated at physiological temperatures, as well as some evidence for transcription in

  9. Photoabsorption study of Bacillus megaterium, DNA and Related Biological Materials in the Phosphorus K-edge Region

    NASA Technical Reports Server (NTRS)

    Frigo, Sean P.; McNulty,Ian; Richmond, Robert C.; Ehret, Charles F.

    2003-01-01

    We have measured the x-ray transmission spectra of several biologically related samples in the phosphorus K-edge absorption region. These include red phosphorus, hydrated sodium phosphate (Na3PO4 12 H2O), deoxyribonucleic acid (DNA), adenosinetriphosphate (ATP), diolylphosphatidyl choline (DOPC), and Bacillus megaterium spores. Red phosphorus essentially displays an edge-jump. All other spectra are similar in form and energy position, where each is dominated by a narrower, more intense first peak and a broader but less intense second peak. The corresponding K-edge absorption thresholds are shifted towards higher energy relative to that for red phosphorus, as expected for increasing degrees of phosphorus oxidation. The B.meguterium spectrum has aspects common to both the phosphate and DNA spectra and is therefore interpreted as a composite of spectra arising from DNA/RNA and phosphates within the spore. The B. megaterium spore spectrum provides needed information for resonant radiation damage studies in the phosphorus K-edge absorption region by identifying candidate photoexcitations. In addition, the absorption spectra will be useful in macromolecular crystallography studies employing anomalous dispersion effects at the phosphorus K-edge.

  10. Composition analysis and material characterization of an emulsifying extracellular polysaccharide (EPS) produced by Bacillus megaterium RB-05: a hydrodynamic sediment-attached isolate of freshwater origin.

    PubMed

    Chowdhury, S R; Manna, S; Saha, P; Basak, R K; Sen, R; Roy, D; Adhikari, B

    2011-12-01

    This work was aimed to isolate, purify and characterize an extracellular polysaccharide (EPS) produced by a freshwater dynamic sediment-attached micro-organism, Bacillus megaterium RB-05, and study its emulsifying potential in different hydrocarbon media. Bacillus megaterium RB-05 was found to produce EPSs in glucose mineral salts medium, and maximum yield (0.864 g l(-1) ) was achieved after 24-h incubation. The recovery rates of the polysaccharide material by ion-exchange and gel filtration chromatography were around 67 and 93%, respectively. As evident from HPLC and FT-IR analyses, the polysaccharide was found to be a heteropolymer-containing glucose, galactose, mannose, arabinose, fucose and N-acetyl glucosamine. Different oligosaccharide combinations namely hexose(3), hexose(4), hexose(5) deoxyhexose(1) and hexose(5) deoxyhexose(1) pentose(3) were obtained after partial hydrolysis of the polymer using MALDI-ToF-MS. The polysaccharide with an average molecular weight of 170 kDa and thermal stability up to 180°C showed pseudoplastic rheology and significant emulsifying activity in hydrocarbon media. Isolated polysaccharide was found to be of high molecular weight and thermally stable. The purified EPS fraction was composed of hexose, pentose and deoxyhexose sugar residues, which is a rare combination for bacterial polysaccharides. Emulsifying property was either better or comparable to that of other commercially available natural gums and polysaccharides. This is probably one of the few reports about characterizing an emulsifying EPS produced by a freshwater sediment-attached bacterium. The results of this study contribute to understand the influence of chemical composition and material properties of a new microbial polysaccharide on its application in industrial biotechnology. Furthermore, this work reconfirms freshwater dynamic sediment as a potential habitat for bioprospecting extracellular polymer-producing bacteria. This study will improve our knowledge on

  11. Genome Sequence of Bacillus megaterium Strain YC4-R4, a Plant Growth-Promoting Rhizobacterium Isolated from a High-Salinity Environment.

    PubMed

    Vílchez, Juan Ignacio; Tang, Qiming; Kaushal, Richa; Wang, Wei; Lv, Suhui; He, Danxia; Chu, Zhaoqing; Zhang, Heng; Liu, Renyi; Zhang, Huiming

    2018-06-21

    Here, we report the complete genome sequence for Bacillus megaterium strain YC4-R4, a highly salt-tolerant rhizobacterium that promotes growth in plants. The sequencing process was performed by combining pyrosequencing and single-molecule sequencing techniques. The complete genome is estimated to be approximately 5.44 Mb, containing a total of 5,673 predicted protein-coding DNA sequences (CDSs). Copyright © 2018 Vílchez et al.

  12. In situ affinity purification of his-tagged protein A from Bacillus megaterium cultivation using recyclable superparamagnetic iron oxide nanoparticles.

    PubMed

    Gädke, Johannes; Kleinfeldt, Lennart; Schubert, Chris; Rohde, Manfred; Biedendieck, Rebekka; Garnweitner, Georg; Krull, Rainer

    2017-01-20

    This paper discusses the use of recyclable functionalized nanoparticles for an improved downstream processing of recombinant products. The Gram-positive bacterium Bacillus megaterium was used to secrete recombinant protein A fused to a histidine tag into the culture supernatant in shaker flasks. Superparamagnetic iron oxide nanoparticles functionalized with 3-glycidoxypropyl-trimethoxysilane-coupled-nitrilotriacetic-acid groups (GNTA-SPION) were synthesized and added directly to the growing culture. After 10min incubation time, >85% of the product was adsorbed onto the particles. The particles were magnetically separated using handheld neodymium magnets and the product was eluted. The GNTA-SPION were successfully regenerated and reused in five consecutive cycles. In the one-step purification, the purity of the product reached >99.9% regarding protein A. A very low particle concentration of 0.5g/L was sufficient for effective product separation. Bacterial growth was not influenced negatively by this concentration. Particle analysis showed similar properties between freshly synthesized and regenerated GNTA-SPION. The overall process efficiency was however influenced by partial disintegration of particle agglomerates and thus loss of particles. The demonstration of very fast in situ product removal from growing bacterial culture combined with a very high product purity within one step shows possibilities for automated large scale purification combined with recycling of biomass. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Valorization of glycerol through the production of biopolymers: the PHB case using Bacillus megaterium.

    PubMed

    Naranjo, Javier M; Posada, John A; Higuita, Juan C; Cardona, Carlos A

    2013-04-01

    In this work technical and economic analyses were performed to evaluate the glycerol transformation into Polyhydroxybutyrate using Bacillus megaterium. The production of PHB was compared using glycerol or glucose as substrates and similar yields were obtained. The total production costs for PHB generation with both substrates were estimated at an industrial scale. Compared to glucose, glycerol showed a 10% and 20% decrease in the PHB production costs using two different separation schemes respectively. Moreover, a 20% profit margin in the PHB sales price using glycerol as substrate resulted in a 166% valorization of crude glycerol. In this work, the feasibility of glycerol as feedstock for the production of PHB at laboratory (up to 60% PHB accumulation) and industrial (2.6US$/kgPHB) scales is demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Microbially induced selective flotation of sphalerite from galena using mineral-adapted strains of Bacillus megaterium.

    PubMed

    Vasanthakumar, B; Ravishankar, H; Subramanian, S

    2013-12-01

    The selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using cells and extracellular secretions of Bacillus megaterium after adaptation to the chosen minerals. The extracellular secretions obtained after thermolysis of bacterial cells adapted to sphalerite yield the highest flotation recovery of sphalerite with a selectivity index value of 24.5, in comparison to the other cellular and extra-cellular bio-reagents studied. The protein profile for the unadapted and mineral-adapted cells has been found to differ distinctly, attesting to variation in the yield and nature of extra-cellular polymeric substances (EPS). The changes induced in the bacterial cell wall components after adaptation to sphalerite or galena with respect to the contents of phosphate, uronic acid and acetylated sugars of B. megaterium have been quantified. The role of the dissolved metal ions from the minerals as well as that of the constituents of extracellular secretions in modulating the surface charge of the bacterial cells as well as the minerals under study has been confirmed using various enzymatic treatments of the bacterial cells. It has been demonstrated that the induction of additional molecular weight protein fractions as well as the higher amount of extracellular proteins and phosphate secreted after adaptation to sphalerite vis-à-vis galena are contributory factors for the selective separation of sphalerite from galena. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Measurement of cellular copper levels in Bacillus megaterium during exponential growth and sporulation.

    PubMed

    Krueger, W B; Kolodziej, B J

    1976-01-01

    Both atomic absorption spectrophotometry (AAS) and neutron activation analysis have been utilized to determine cellular Cu levels in Bacillus megaterium ATCC 19213. Both methods were selected for their sensitivity to detection of nanogram quantities of Cu. Data from both methods demonstrated identical patterms of Cu uptake during exponenetial growth and sporulation. Late exponential phase cells contained less Cu than postexponential t2 cells while t5 cells contained amounts equivalent to exponential cells. The t11 phase-bright forespore containing cells had a higher Cu content than those of earlier time periods, and the free spores had the highest Cu content. Analysis of the culture medium by AAS corroborated these data by showing concomitant Cu uptake during exponential growth and into t2 postexponential phase of sporulation. From t2 to t4, Cu egressed from the cells followed by a secondary uptake during the maturation of phase-dark forespores into phase-bright forespores (t6--t9).

  16. From Genome to Function: Systematic Analysis of the Soil Bacterium Bacillus Subtilis

    PubMed Central

    Crawshaw, Samuel G.; Wipat, Anil

    2001-01-01

    Bacillus subtilis is a sporulating Gram-positive bacterium that lives primarily in the soil and associated water sources. Whilst this bacterium has been studied extensively in the laboratory, relatively few studies have been undertaken to study its activity in natural environments. The publication of the B. subtilis genome sequence and subsequent systematic functional analysis programme have provided an opportunity to develop tools for analysing the role and expression of Bacillus genes in situ. In this paper we discuss analytical approaches that are being developed to relate genes to function in environments such as the rhizosphere. PMID:18628943

  17. Chlorxanthomycin, a Fluorescent, Chlorinated, Pentacyclic Pyrene from a Bacillus sp.†

    PubMed Central

    Magyarosy, Andrew; Ho, Jonathan Z.; Rapoport, Henry; Dawson, Scott; Hancock, Joe; Keasling, Jay D.

    2002-01-01

    A gram-positive Bacillus sp. that fluoresces yellow under long-wavelength UV light on several common culture media was isolated from soil samples. On the basis of carbon source utilization studies, fatty acid methyl ester analysis, and 16S ribosomal DNA analysis, this bacterium was most similar to Bacillus megaterium. Chemical extraction yielded a yellow-orange fluorescent pigment, which was characterized by X-ray crystallography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The fluorescent compound, chlorxanthomycin, is a pentacyclic, chlorinated molecule with the molecular formula C22H15O6Cl and a molecular weight of 409.7865. Chlorxanthomycin appears to be located in the cytoplasm, does not diffuse out of the cells into the culture medium, and has selective antibiotic activity. PMID:12147512

  18. Purification and Properties of a New L-Sorbose Dehydrogenase Accelerative Protein from Bacillus megaterium Bred by Ion-Beam Implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Shiguang; Yao, Liming; Su, Caixin; Wang, Tao; Wang, Jun; Tang, Mingli; Yu, Zengliang

    2008-06-01

    Bacillus megaterium BM302 bred by ion-beam implantation produces L-sorbose dehydrogenase accelerative protein (SAP) to accelerate the activity of L-sorbose dehydrogenase (SDH) of Gluconobacter oxydans in the 2-keto-L-gulonic acid (2KLG) fermentation from L-sorbose by the mixed culture of B. megaterium BM302 and G. oxydans. The SAP purified by three chromatographic steps gave 35-fold purification with a yield of 13% and a specific activity of 5.21 units/mg protein. The molecular weight of the purified SAP was about 58 kDa. The SDH accelerative activity of SAP at pH 7 and 50°C was the highest. Additionally, it retained 60% activity at a pH range of 6.5 ~ 10 and was stable at 20°C ~ 60°C. After 0.32-unit SAP was added to the single cultured G. oxydans strains, the SDH activity was apparently accelerated and the 2KLG yield of GO29, GO112, G0 and GI13 was enhanced 2.1, 3.3, 3.5 and 2.9 folds respectively over that of the strains without the addition of SAP.

  19. CYP109E1 is a novel versatile statin and terpene oxidase from Bacillus megaterium.

    PubMed

    Putkaradze, Natalia; Litzenburger, Martin; Abdulmughni, Ammar; Milhim, Mohammed; Brill, Elisa; Hannemann, Frank; Bernhardt, Rita

    2017-12-01

    CYP109E1 is a cytochrome P450 monooxygenase from Bacillus megaterium with a hydroxylation activity for testosterone and vitamin D3. This study reports the screening of a focused library of statins, terpene-derived and steroidal compounds to explore the substrate spectrum of this enzyme. Catalytic activity of CYP109E1 towards the statin drug-precursor compactin and the prodrugs lovastatin and simvastatin as well as biotechnologically relevant terpene compounds including ionones, nootkatone, isolongifolen-9-one, damascones, and β-damascenone was found in vitro. The novel substrates induced a type I spin-shift upon binding to P450 and thus permitted to determine dissociation constants. For the identification of conversion products by NMR spectroscopy, a B. megaterium whole-cell system was applied. NMR analysis revealed for the first time the ability of CYP109E1 to catalyze an industrially highly important reaction, the production of pravastatin from compactin, as well as regioselective oxidations generating drug metabolites (6'β-hydroxy-lovastatin, 3'α-hydroxy-simvastatin, and 4″-hydroxy-simvastatin) and valuable terpene derivatives (3-hydroxy-α-ionone, 4-hydroxy-β-ionone, 11,12-epoxy-nootkatone, 4(R)-hydroxy-isolongifolen-9-one, 3-hydroxy-α-damascone, 4-hydroxy-β-damascone, and 3,4-epoxy-β-damascone). Besides that, a novel compound, 2-hydroxy-β-damascenone, produced by CYP109E1 was identified. Docking calculations using the crystal structure of CYP109E1 rationalized the experimentally observed regioselective hydroxylation and identified important amino acid residues for statin and terpene binding.

  20. Process development for the production of 15β-hydroxycyproterone acetate using Bacillus megaterium expressing CYP106A2 as whole-cell biocatalyst.

    PubMed

    Kiss, Flora M; Lundemo, Marie T; Zapp, Josef; Woodley, John M; Bernhardt, Rita

    2015-03-05

    CYP106A2 from Bacillus megaterium ATCC 13368 was first identified as a regio- and stereoselective 15β-hydroxylase of 3-oxo-∆4-steroids. Recently, it was shown that besides 3-oxo-∆4-steroids, 3-hydroxy-∆5-steroids as well as di- and triterpenes can also serve as substrates for this biocatalyst. It is highly selective towards the 15β position, but the 6β, 7α/β, 9α, 11α and 15α positions have also been described as targets for hydroxylation. Based on the broad substrate spectrum and hydroxylating capacity, it is an excellent candidate for the production of human drug metabolites and drug precursors. In this work, we demonstrate the conversion of a synthetic testosterone derivative, cyproterone acetate, by CYP106A2 under in vitro and in vivo conditions. Using a Bacillus megaterium whole-cell system overexpressing CYP106A2, sufficient amounts of product for structure elucidation by nuclear magnetic resonance spectroscopy were obtained. The product was characterized as 15β-hydroxycyproterone acetate, the main human metabolite. Since the product is of pharmaceutical interest, our aim was to intensify the process by increasing the substrate concentration and to scale-up the reaction from shake flasks to bioreactors to demonstrate an efficient, yet green and cost-effective production. Using a bench-top bioreactor and the recombinant Bacillus megaterium system, both a fermentation and a transformation process were successfully implemented. To improve the yield and product titers for future industrial application, the main bottlenecks of the reaction were addressed. Using 2-hydroxypropyl-β-cyclodextrin, an effective bioconversion of 98% was achieved using 1 mM substrate concentration, corresponding to a product formation of 0.43 g/L, at a 400 mL scale. Here we describe the successful scale-up of cyproterone acetate conversion from shake flasks to bioreactors, using the CYP106A2 enzyme in a whole-cell system. The substrate was converted to its main human

  1. Inhibitory effects of spice essential oils on the growth of Bacillus species.

    PubMed

    Ozcan, Mehmet Musa; Sağdiç, Osman; Ozkan, Gülcan

    2006-01-01

    A series of essential oils of 11 Turkish plant spices [black thyme, cumin, fennel (sweet), laurel, marjoram, mint, oregano, pickling herb, sage, savory, and thyme], used in foods mainly for their flavor, aromas, and preservation, in herbal tea, in alternative medicines, and in natural therapies, were screened for antibacterial effects at 1:50, 1:100, 1:250, and 1:500 dilutions by the paper disc diffusion method against six Bacillus species (Bacillus amyloliquefaciens ATCC 3842, Bacillus brevis FMC 3, Bacillus cereus FMC 19, Bacillus megaterium DSM 32, Bacillus subtilis IMG 22, and B. subtilis var. niger ATCC 10). All of the tested essential oils (except for cumin) showed antibacterial activity against one or more of the Bacillus species used in this study. Generally, the essential oils at 1:50 and 1:100 levels were more effective. Only one essential oil (laurel) was not found effective against the tested bacteria. The bacterium most sensitive to all of the spice essential oils was B. amyloliquefaciens ATCC 3842. Based on the results of this study, it is likely that essential oils of some spices may be used as antimicrobial agents to prevent the spoilage of food products.

  2. Influence of amino acid residues near the active site of cytochrome P450 from Bacillus megaterium on the selectivity of n-octane oxidation to octanol regioisomers

    NASA Astrophysics Data System (ADS)

    Miyaji, Akimitsu; Baba, Toshihide

    2017-09-01

    A mutant of cytochrome P450 from Bacillus megaterium (CYP450BM-3) was prepared by replacing two alanine residues around active site of the enzyme, alanine 328 and alanine 82, with leucine and tryptophan, respectively. The CYP450BM-3 mutant produced 2-octanol selectively from n-octane under atmospheric temperature and pressure; its selectivity was 74%. Furthermore, the mutant produced 1-octanol, which is not produced by wild-type enzyme.

  3. Bacillus megaterium sporal peptidoglycan synthesis studied by high-resolution autoradiography.

    PubMed

    Frehel, C; Ryter, A

    1980-11-01

    Cells of a Dap- Lys- mutant strain of Bacillus megaterium were pulse labeled with [3H]diaminopimelic acid at different times of growth and sporulation. They were processed for radioactivity measurements and high-resolution autoradiography either just after the pulse or after a chase in a nonradioactive medium until refractile forespores started to appear at time (t)4,5. In the pulse-labeled cells, autoradiographs and radioactivity measurements showed that the radioactivity incorporated during a pulse decreased abruptly after t0 and stayed at a low level until t5, although the forespore wall and cortex were formed between t4 and t5. In the pulse-chased bacteria, the acid-insoluble radioactivity, as well as the number of silver grains on autoradiographs, increased during the chase in cells labeled at t1 to t2, whereas it decreased in those labeled before t0. Furthermore, analysis of silver grain distribution showed that, in stage IV bacteria, grains were distributed at the outside of the forespore, mostly on the sporangium cell wall, when pulse-labeling occurred before or at t0; they were located along the cortex and in the forespore cytoplasm when labeling was made at t1 or t2. These facts show that [3H]diaminopimelic acid necessary for spore envelope synthesis was incorporated before their morphological appearance. Free or small diaminopimelic acid precursors entered the sporangium between t1 and t2. The appearance of silver grains in the forespore cytoplasm suggests that the forespore is implicated in sporal peptidoglycan synthesis.

  4. Development of a biologically based fertilizer, incorporating Bacillus megaterium A6, for improved phosphorus nutrition of oilseed rape.

    PubMed

    Hu, Xiaojia; Roberts, Daniel P; Xie, Lihua; Maul, Jude E; Yu, Changbing; Li, Yinshui; Zhang, Shujie; Liao, Xing

    2013-04-01

    Sustainable methods with diminished impact on the environment need to be developed for the production of oilseed rape in China and other regions of the world. A biological fertilizer consisting of Bacillus megaterium A6 cultured on oilseed rape meal improved oilseed rape seed yield (P < 0.0001) relative to the nontreated control in 2 greenhouse pot experiments using natural soil. This treatment resulted in slightly greater yield than oilseed rape meal without strain A6 in 1 of 2 experiments, suggesting a role for strain A6 in improving yield. Strain A6 was capable of solubilizing phosphorus from rock phosphate in liquid culture and produced enzymes capable of mineralizing organic phosphorus (acid phosphatase, phytase) in liquid culture and in the biological fertilizer. The biologically based fertilizer, containing strain A6, improved plant phosphorus nutrition in greenhouse pot experiments resulting in significantly greater available phosphorus in natural soil and in significantly greater plant phosphorus content relative to the nontreated control. Seed yield and available phosphorus in natural soil were significantly greater with a synthetic chemical fertilizer treatment, reduced in phosphorus content, than the biological fertilizer treatment, but a treatment containing the biological fertilizer combined with the synthetic fertilizer provided the significantly greatest seed yield, available phosphorus in natural soil, and plant phosphorus content. These results suggest that the biological fertilizer was capable of improving oilseed rape seed yield, at least in part, through the phosphorus-solubilizing activity of B. megaterium A6.

  5. Five new amicoumacins isolated from a marine-derived bacterium Bacillus subtilis.

    PubMed

    Li, Yongxin; Xu, Ying; Liu, Lingli; Han, Zhuang; Lai, Pok Yui; Guo, Xiangrong; Zhang, Xixiang; Lin, Wenhan; Qian, Pei-Yuan

    2012-02-01

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature.

  6. Molecular Sieving by the Bacillus megaterium Cell Wall and Protoplast

    PubMed Central

    Scherrer, Rene; Gerhardt, Philipp

    1971-01-01

    Passive permeabilities of the cell wall and protoplast of Bacillus megaterium strain KM were characterized by use of 50 hydrophilic probing molecules (tritiated water, sugars, dextrans, glycols, and polyglycols) which varied widely in size. Weight per cent uptake values (Rw) were measured at diffusional equilibrium under conditions that negated the influences of adsorption or active transport. Plots of Rw for intact cells as a function of number-average molecular weight (¯Mn) or Einstein-Stokes hydrodynamic radius (¯rES) of the solutes showed three phases: a protoplast uptake phase with a polydisperse exclusion threshold of ¯Mn = 0.6 × 103 to 1.1 × 103, ¯rES = 0.6 to 1.1 nm; a cell wall uptake phase with a polydisperse exclusion threshold of ¯Mn = 0.7 × 105 to 1.2 × 105, ¯rES ≅ 8.3 nm; and a total exclusion phase. Isolated cell walls showed only the latter two phases. However, it became evident that the cell wall selectively passed only the smallest molecules in a heterodisperse polymer sample. When the molecular-weight distributions of polyglycol samples (¯Mn = 1,000, 1,450, and 3,350) were determined by analytical gel chromatography before and after uptake by intact cells or isolated cell walls, a quasi-monodisperse exclusion threshold was obtained corresponding to Mn = 1,200, rES = 1.1 nm. The permeability of isolated protoplasts was assessed by the relative ability of solutes to effect osmotic stabilization. An indefinite exclusion threshold, evident even with monodisperse sugars, was attributed to lengthwise orientation of the penetrating rod-shaped molecules. Altogether, the best estimate of the limiting equivalent porosity of the protoplast was 0.4 to 0.6 nm in radius and of the cell wall, 1.1 nm. PMID:4999413

  7. Biochemical and structural characterization of CYP109A2, a vitamin D3 25-hydroxylase from Bacillus megaterium.

    PubMed

    Abdulmughni, Ammar; Jóźwik, Ilona K; Brill, Elisa; Hannemann, Frank; Thunnissen, Andy-Mark W H; Bernhardt, Rita

    2017-11-01

    Cytochrome P450 enzymes are increasingly investigated due to their potential application as biocatalysts with high regio- and/or stereo-selectivity and under mild conditions. Vitamin D 3 (VD 3 ) metabolites are of pharmaceutical importance and are applied for the treatment of VD 3 deficiency and other disorders. However, the chemical synthesis of VD 3 derivatives shows low specificity and low yields. In this study, cytochrome P450 CYP109A2 from Bacillus megaterium DSM319 was expressed, purified, and shown to oxidize VD 3 with high regio-selectivity. The in vitro conversion, using cytochrome P450 reductase (BmCPR) and ferredoxin (Fdx2) from the same strain, showed typical Michaelis-Menten reaction kinetics. A whole-cell system in B. megaterium overexpressing CYP109A2 reached 76 ± 5% conversion after 24 h and allowed to identify the main product by NMR analysis as 25-hydroxylated VD 3 . Product yield amounted to 54.9 mg·L -1 ·day -1 , rendering the established whole-cell system as a highly promising biocatalytic route for the production of this valuable metabolite. The crystal structure of substrate-free CYP109A2 was determined at 2.7 Å resolution, displaying an open conformation. Structural analysis predicts that CYP109A2 uses a highly similar set of residues for VD 3 binding as the related VD 3 hydroxylases CYP109E1 from B. megaterium and CYP107BR1 (Vdh) from Pseudonocardia autotrophica. However, the folds and sequences of the BC loops in these three P450s are highly divergent, leading to differences in the shape and apolar/polar surface distribution of their active site pockets, which may account for the observed differences in substrate specificity and the regio-selectivity of VD 3 hydroxylation. The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession code 5OFQ (substrate-free CYP109A2). Cytochrome P450 monooxygenase CYP109A2, EC 1.14.14.1, UniProt ID: D5DF88, Ferredoxin, UniProt ID: D5DFQ0, cytochrome P450

  8. Biopotentiality of High Efficient Aerobic Denitrifier Bacillus megaterium S379 for Intensive Aquaculture Water Quality Management.

    PubMed

    Gao, Junqian; Gao, Dan; Liu, Hao; Cai, Jiajai; Zhang, Junqi; Qi, Zhengliang

    2018-05-24

    Excessive nitrite accumulation is a very tough issue for intensive aquaculture. A high efficient aerobic denitrifier Bacillus megaterium S379 with 91.71±0.17% of NO 2 - -N (65 mg L -1 ) removal was successfully isolated for solving the problem. Denitrification of S379 showed excellent environment adaptation that it kept high nitrite removal ratio (more than 85%) when temperature ranged from 25°C to 40°C and pH varied between 7.0 and 9.0, and could endure as high as 560 mg L -1 of NO 2 - -N. Immobilization of S379 could enhance denitrification even when NO 2 - -N adding amount got to 340 mg L -1 . Immobilized cells also showed well pollutants removal performance in aquaculture wastewater treatment. Moreover, S379 possessed positive hydrolase activities for starch, casein, cellulose and fat and bore more than 60 ppt of salinity. Totally, all the results revealed significant potentiality of immobilized S379 applied in aquaculture water quality management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Structural evidence for the partially oxidized dipyrromethene and dipyrromethanone forms of the cofactor of porphobilinogen deaminase: structures of the Bacillus megaterium enzyme at near-atomic resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azim, N.; Deery, E.; Warren, M. J.

    The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses a key early step in the biosynthesis of tetrapyrroles in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. Two near-atomic resolution structures of PBGD from B. megaterium are reported that demonstrate the time-dependent accumulation of partially oxidized forms of the cofactor, including one that possesses a tetrahedral C atom in the terminal pyrrole ring. The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form amore » linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor, which is covalently linked by a thioether bridge to an invariant cysteine residue (Cys241 in the Bacillus megaterium enzyme). The cofactor is extended during the reaction by the sequential addition of the four substrate molecules, which are released as a linear tetrapyrrole product. Expression in Escherichia coli of a His-tagged form of B. megaterium PBGD has permitted the X-ray analysis of the enzyme from this species at high resolution, showing that the cofactor becomes progressively oxidized to the dipyrromethene and dipyrromethanone forms. In previously solved PBGD structures, the oxidized cofactor is in the dipyromethenone form, in which both pyrrole rings are approximately coplanar. In contrast, the oxidized cofactor in the B. megaterium enzyme appears to be in the dipyrromethanone form, in which the C atom at the bridging α-position of the outer pyrrole ring is very clearly in a tetrahedral configuration. It is suggested that the pink colour of the freshly purified protein is owing to the presence of the dipyrromethene form of the cofactor which, in the structure reported here, adopts the same conformation as the fully reduced dipyrromethane form.« less

  10. Polyhydroxyalkanoate from marine Bacillus megaterium using CSMCRI's Dry Sea Mix as a novel growth medium.

    PubMed

    Dhangdhariya, Jaykishan H; Dubey, Sonam; Trivedi, Hiral B; Pancha, Imran; Bhatt, Jwalant K; Dave, Bharti P; Mishra, Sandhya

    2015-05-01

    Oceans have significant potential to empower mankind and thus marine organisms are believed to be an enormous source for useful biomolecules. Polyhydroxyalkanoates (PHAs) are biological macromolecules that can be applied in nearly all fields. In the present study, Bacillus megaterium strain JK4h has been exploited for maximum PHB production using novel Dry Sea Mix (DSM) via Central Composite Design (CCD) of Response Surface Methodology (RSM) approach. The isolate was found to be producing 56.77% Cell Dry Weight (CDW) of PHAs within 24h, with optimized combinations of peptone, yeast extract and glucose. The PHB yield had been increased 2.61 fold compared to un-optimized experiments. The obtained PHA/PHB had been chemically characterized through Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results indicate the successful optimization for maximum production of biological macromolecule and it was found to be highly pure polyhydroxybutyrate (PHB). Thus, DSM can be served as a novel and cost effective medium for PHA production offering the use of marine resources as a "green" sustainable alternative. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Characterization of cytochrome P450 CYP109E1 from Bacillus megaterium as a novel vitamin D3 hydroxylase.

    PubMed

    Abdulmughni, Ammar; Jóźwik, Ilona K; Putkaradze, Natalia; Brill, Elisa; Zapp, Josef; Thunnissen, Andy-Mark W H; Hannemann, Frank; Bernhardt, Rita

    2017-02-10

    In this study the ability of CYP109E1 from Bacillus megaterium to metabolize vitamin D 3 (VD 3 ) was investigated. In an in vitro system using bovine adrenodoxin reductase (AdR) and adrenodoxin (Adx 4-108 ), VD 3 was converted by CYP109E1 into several products. Furthermore, a whole-cell system in B. megaterium MS941 was established. The new system showed a conversion of 95% after 24h. By NMR analysis it was found that CYP109E1 catalyzes hydroxylation of VD 3 at carbons C-24 and C-25, resulting in the formation of 24(S)-hydroxyvitamin D 3 (24S(OH)VD 3 ), 25-hydroxyvitamin D 3 (25(OH)VD 3 ) and 24S,25-dihydroxyvitamin D 3 (24S,25(OH) 2 VD 3 ). Through time dependent whole-cell conversion of VD 3 , we identified that the formation of 24S,25(OH) 2 VD 3 by CYP109E1 is derived from VD 3 via the intermediate 24S(OH)VD 3 . Moreover, using docking analysis and site-directed mutagenesis, we identified important active site residues capable of determining substrate specificity and regio-selectivity. HPLC analysis of the whole-cell conversion with the I85A-mutant revealed an increased selectivity towards 25-hydroxylation of VD 3 compared with the wild type activity, resulting in an approximately 2-fold increase of 25(OH)VD 3 production (45mgl -1 day -1 ) compared to wild type (24.5mgl -1 day -1 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Obtaining of granular fertilizers based on ashes from combustion of waste residues and ground bones using phosphorous solubilization by bacteria Bacillus megaterium.

    PubMed

    Rolewicz, M; Rusek, P; Borowik, K

    2018-06-15

    The article presents research results on obtaining phosphorus granulated fertilizers on the basis of microbiologically activated sewage sludge ashes, ground bones and dried blood from meat industry. Granulation tests were carried out using a laboratory pan granulator as well as on an experimental pilot plant. The aim of the studies was to select the proper composition of the mixture of raw materials and binding agents to obtain granulated fertilizers from waste materials such as MSSA and MBM and bacteria lyophilisate. Obtained fertilizer samples were subjected to physical tests (granulation tests etc.) and quality assessment. The tests confirmed that it was possible to produce granulated phosphate fertilizers using the Bacillus megaterium for solubilization of phosphorus in a simple process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome

    PubMed Central

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E.; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert. PMID:26294639

  14. Isolation and characterization of Leu[7]-Surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Bacillus mojavensis is an endophytic bacterium patented for control of fungal diseases in maize and other plants. Culture extracts and filtrates from this bacterium were antagonistic to the pathogenic and mycotoxic fungus Fusarium verticillioides. However, the identity of the inhibitory substance ...

  15. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium.

    PubMed

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter; Vangronsveld, Jaco

    2016-06-23

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. Copyright © 2016 Gkorezis et al.

  16. Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus

    PubMed Central

    Xiu, Pengyuan; Liu, Rui

    2017-01-01

    ABSTRACT Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium (Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes (flgA and flgP) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and

  17. Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus.

    PubMed

    Xiu, Pengyuan; Liu, Rui; Zhang, Dechao; Sun, Chaomin

    2017-06-15

    Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium ( Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes ( flgA and flgP ) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote

  18. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Gary; Dalin, Eileen; Tice, Hope

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  19. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10.

    PubMed

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-11-25

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10.

  20. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  1. Bacillus thermotolerans sp. nov., a thermophilic bacterium capable of reducing humus.

    PubMed

    Yang, Guiqin; Zhou, Xuemei; Zhou, Shungui; Yang, Dehui; Wang, Yueqiang; Wang, Dingmei

    2013-10-01

    A novel thermotolerant bacterium, designated SgZ-8(T), was isolated from a compost sample. Cells were non-motile, endospore-forming, Gram-staining positive, oxidase-negative and catalase-positive. The isolate was able to grow at 20-65 °C (optimum 50 °C) and pH 6.0-9.0 (optimum 6.5-7.0), and tolerate up to 9.0 % NaCl (w/v) under aerobic conditions. Anaerobic growth occurred with anthraquinone-2,6-disulphonate (AQDS), fumarate and NO3(-) as electron acceptors. Phylogenetic analysis based on the16S rRNA and gyrB genes grouped strain SgZ-8(T) into the genus Bacillus, with the highest similarity to Bacillus badius JCM 12228(T) (96.2 % for 16S rRNA gene sequence and 83.5 % for gyrB gene sequence) among all recognized species in the genus Bacillus. The G+C content of the genomic DNA was 49.3 mol%. The major isoprenoid quinone was menaquinone 7 (MK-7) and the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major cellular fatty acid was iso-C16 : 0. On the basis of its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-8(T) ( = CCTCC AB 2012108(T) = KACC 16706(T)) was designated the type strain of a novel species of the genus Bacillus, for which the name Bacillus thermotolerans sp. nov. is proposed.

  2. Killing of Bacillus Megaterium Spores by X-rays at the Phosphorus K-edge

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Frigo, Sean P.; Ehret, Charles F.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This study continues a progression of experiments on the radiation-induced killing of bacterial spores that began at the Argonne National Laboratory in 1957. A series of aliquots of Bacillus megaterium spores were prepared onto polycarbonate filters and irradiated with photons of 2159 eV compared to 2140 eV energy on the 2-IDB beamline at the Advanced Photon Source. Flux density was approximately 10(exp 18) photons/sec/sq mm. The phosphorous K-edge absorption spectrum in these spores was determined to peak at 2159 eV, wheras 2140 eV was determined to be outside that absorption spectrum. Spores on filters were irradiated at ambient conditions, and were either immediately plated for colony formation after irradiation, or were held for postirradiation exposure to oxygen prior to plating. Slopes of survival curves from the four conditions of irradiation, i.e., two photon energies each comparing immediate plating vs postirradiation holding, were used for quantitative determination of differences in rates of spore killing over a range of radiation doses. It was found that spores irradiated at the phosphorus K-edge were killed 20% more efficiently than when irradiated with 2140 eV photons, and this was true for both immediate plating and postirradiation holding in air. Postirradiation holding in air increased killing efficiency by about 12% for both photon energies compared to plating immediately after irradiation. The increase of killing efficiency with postirradiation holding is less than expected from earlier experiments using relatively low-flux X-rays, and raises the possibility of dose-mitigation by radical-radical recombination in the case of high-flux X-rays from the synchrotron.

  3. Killing of Bacillus Megaterium Spores by X-Rays at the Phosphorus K-Edge

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Frigo, Sean P.; Ehret, Charles F.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This study continues a progression of experiments on the radiation-induced killing of bacterial spores that began at the Argonne National Laboratory in 1957. A series of aliquots of Bacillus megaterium spores were prepared onto polycarbonate filters and irradiated with photons of 2159 eV compared to 2140 eV energy on the 2-IDB beamline at the Advanced Photon Source. Flux density was approximately 10 photons/sec/mm . The phosphorous K-edge absorption spectrum in these spores was determined to peak at 2159 eV, wheras 2140 eV was determined to be outside that absorption spectrum. Spores on filters were irradiated at ambient conditions, and were either immediately plated for colony formation after irradiation, or were held for postirradiation exposure to oxygen prior to plating. Slopes of survival curves from the four conditions of irradiation, i.e., two photon energies each comparing immediate plating vs postirradiation holding, were used for quantitative determination of differences in rates of spore killing over a range of radiation doses. It was found that spores irradiated at the phosphorus K-edge were killed 20% more efficiently than when irradiated with 2140eV photons, and this was true for both immediate plating and postirradiation holding in air. Postirradiation holding in air increased killing efficiency by about 12% for both photon energies compared to plating immediately after irradiation. The increase of killing efficiency with postirradiation holding is less than expected from earlier experiments using relatively low-flux X-rays, and raises the possibility of dose-mitigation by radical-radical recombination in the case of high-flux X-rays from the synchrotron.

  4. Inhibitory effects of Bacillus subtilis on plant pathogens of conservatory in high latitudes

    NASA Astrophysics Data System (ADS)

    Xue, Chun-Mei; Wang, Xue; Yang, Jia-Li; Zhang, Yue-Hua

    2018-03-01

    Researching the effect of three kinds of Bacillus and their mixed strains inhibitory on common fungal diseases of conservatory vegetables. The results showed that B. megaterium culture medium had a significant inhibition effect on Cucumber Fusarium wilt, and the inhibition rate was up to 84.36%; B. mucilaginosus and B. megaterium sterile superna-tant had an obvious inhibitory effect on brown disease of eggplant, and the inhibition rate as high as 85.49%; B. subtilis sterile supernatant had a good inhibitory effect on the spore germination of C. Fusarium wilt, and the inhibition rate was 76.83%. The results revealed that Bacillus had a significant inhibitory effect on five common fungal pathogens. Three kinds of Bacillus can be used for the prevention and control of common fungal diseases in conservatory vegetables.

  5. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhee, Mun Su; Moritz, Brelan E.; Xie, Gary

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strainmore » 36D1, is presented and discussed.« less

  6. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    PubMed Central

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  7. Basic studies on the role of components of Bacillus megaterium as flotation biocollectors in sulphide mineral separation.

    PubMed

    Vasanthakumar, Balasubramanian; Ravishankar, Honnavar; Subramanian, Sankaran

    2014-03-01

    Studies were carried out to assess the utility of the cellular and extracellular constituents of Bacillus megaterium for the flotation of sphalerite and galena minerals. Based on the flotation results on the individual minerals, it was observed that sphalerite was preferentially floated compared to galena. A maximum selectivity index (SI) value of 11.7 was achieved in the presence of the soluble fraction of the thermolysed cells, which was higher than that obtained with the intact cells (SI of 6.5) and the insoluble fraction of the thermolysed cells (SI of 9.6). The results of the various enzymatic treatment tests revealed that extracellular DNA played a vital role in the selective flotation of sphalerite. A noteworthy finding was that the single-stranded DNA (ssDNA) had a higher biocollector capacity vis-à-vis the double-stranded DNA (dsDNA), leading to better flotation efficiency. About 95 % recovery of sphalerite could be achieved from the mineral mixture by the combined addition of the ssDNA with the non-DNA components of the bacterial cells, resulting in a maximum SI of 19.1. Calcium and phosphate components of the nutrient media were found to be essential for better selectivity of separation of sphalerite. The mechanisms of microbe-mineral interaction are discussed.

  8. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10

    PubMed Central

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-01-01

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10. PMID:26601700

  9. A pathway closely related to the (D)-tagatose pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis.

    PubMed

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard

    2013-06-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  10. Use of HPLC for the detection of iron chelators in cultures of bacteria, fungi, and algae. [E. coli; Bacillus megaterium; Ustilago sphaerogena; Anabaena flos-aqua

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, G.L.; Speirs, R.J.; Morse, P.D.

    1990-06-01

    Iron is essential for the growth of living cells. To meet biochemical needs, microorganisms, including algae, produce high affinity chelators termed siderophores. These compounds solubilize Fe and increase its bioavailability. We have developed a new method to study siderophore formation in cultured and natural environments. Based on the fact siderophores tightly bind 55-Fe, the radioactive complexes can be separated by HPLC using an inert PRP-1 column and detected by scintillation counting. This method cleanly resolves several known siderophores, including ferrichrome A, ferrichrome, desferal, and rhodotorulic acid. The optimization of the method and its use for analysis of siderophore formation inmore » bacteria (E. coli, and Bacillus megaterium), fungi (Ustilago sphaerogena), and cyanobacteria (Anabaena flos-aqua UTEX 1444 and Anabaena sp. ATCC 27898) will be presented.« less

  11. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  12. Decolourization of 4-Chloro-2-Nitrophenol by a Soil Bacterium, Bacillus subtilis RKJ 700

    PubMed Central

    Arora, Pankaj Kumar

    2012-01-01

    A 4-Chloro-2-nitrophenol (4C2NP) decolourizing strain RKJ 700 was isolated from soil collected from a pesticide contaminated site of India and identified as Bacillus subtilis on the basis of the 16S rRNA gene sequence analysis. Bacillus subtilis RKJ 700 decolourized 4C2NP up to concentration of 1.5 mM in the presence of additional carbon source. The degradation pathway of 4C2NP was studied and 4-chloro-2-aminophenol, 4-chloro-2-acetaminophenol and 5-chloro-2-methylbenzoxazole (5C2MBZ) were identified as metabolites by high performance liquid chromatography and gas chromatography-mass spectrometry. Resting cell studies showed that Bacillus subtilis RKJ 700 depleted 4C2NP completely with stoichiometric formation of 5C2MBZ. This is the first report of (i) the degradation of 4C2NP at high concentration (1.5 mM) and, (ii) the formation of 5C2MBZ by a soil bacterium. PMID:23251673

  13. Decolourization of 4-chloro-2-nitrophenol by a soil bacterium, Bacillus subtilis RKJ 700.

    PubMed

    Arora, Pankaj Kumar

    2012-01-01

    A 4-Chloro-2-nitrophenol (4C2NP) decolourizing strain RKJ 700 was isolated from soil collected from a pesticide contaminated site of India and identified as Bacillus subtilis on the basis of the 16S rRNA gene sequence analysis. Bacillus subtilis RKJ 700 decolourized 4C2NP up to concentration of 1.5 mM in the presence of additional carbon source. The degradation pathway of 4C2NP was studied and 4-chloro-2-aminophenol, 4-chloro-2-acetaminophenol and 5-chloro-2-methylbenzoxazole (5C2MBZ) were identified as metabolites by high performance liquid chromatography and gas chromatography-mass spectrometry. Resting cell studies showed that Bacillus subtilis RKJ 700 depleted 4C2NP completely with stoichiometric formation of 5C2MBZ. This is the first report of (i) the degradation of 4C2NP at high concentration (1.5 mM) and, (ii) the formation of 5C2MBZ by a soil bacterium.

  14. Bacillus megaterium strains derived from water and soil exhibit differential responses to the herbicide mesotrione.

    PubMed

    Dobrzanski, Tatiane; Gravina, Fernanda; Steckling, Bruna; Olchanheski, Luiz R; Sprenger, Ricardo F; Espírito Santo, Bruno C; Galvão, Carolina W; Reche, Péricles M; Prestes, Rosilene A; Pileggi, Sônia A V; Campos, Francinete R; Azevedo, Ricardo A; Sadowsky, Michael J; Beltrame, Flávio L; Pileggi, Marcos

    2018-01-01

    The intense use of herbicides for weed control in agriculture causes selection pressure on soil microbiota and water ecosystems, possibly resulting in changes to microbial processes, such as biogeochemical cycles. These xenobiotics may increase the production of reactive oxygen species and consequently affect the survival of microorganisms, which need to develop strategies to adapt to these conditions and maintain their ecological functionality. This study analyzed the adaptive responses of bacterial isolates belonging to the same species, originating from two different environments (water and soil), and subjected to selection pressure by herbicides. The effects of herbicide Callisto and its active ingredient, mesotrione, induced different adaptation strategies on the cellular, enzymatic, and structural systems of two Bacillus megaterium isolates obtained from these environments. The lipid saturation patterns observed may have affected membrane permeability in response to this herbicide. Moreover, this may have led to different levels of responses involving superoxide dismutase and catalase activities, and enzyme polymorphisms. Due to these response systems, the strain isolated from water exhibited higher growth rates than did the soil strain, in evaluations made in oligotrophic culture media, which would be more like that found in semi-pristine aquatic environments. The influence of the intracellular oxidizing environments, which changed the mode of degradation of mesotrione in our experimental model and produced different metabolites, can also be observed in soil and water at sites related to agriculture. Since the different metabolites may present different levels of toxicity, we suggest that this fact should be considered in studies on the fate of agrochemicals in different environments.

  15. Bacillus megaterium strains derived from water and soil exhibit differential responses to the herbicide mesotrione

    PubMed Central

    Gravina, Fernanda; Olchanheski, Luiz R.; Sprenger, Ricardo F.; Espírito Santo, Bruno C.; Galvão, Carolina W.; Reche, Péricles M.; Prestes, Rosilene A.; Pileggi, Sônia A. V.; Campos, Francinete R.; Azevedo, Ricardo A.; Sadowsky, Michael J.; Beltrame, Flávio L.

    2018-01-01

    The intense use of herbicides for weed control in agriculture causes selection pressure on soil microbiota and water ecosystems, possibly resulting in changes to microbial processes, such as biogeochemical cycles. These xenobiotics may increase the production of reactive oxygen species and consequently affect the survival of microorganisms, which need to develop strategies to adapt to these conditions and maintain their ecological functionality. This study analyzed the adaptive responses of bacterial isolates belonging to the same species, originating from two different environments (water and soil), and subjected to selection pressure by herbicides. The effects of herbicide Callisto and its active ingredient, mesotrione, induced different adaptation strategies on the cellular, enzymatic, and structural systems of two Bacillus megaterium isolates obtained from these environments. The lipid saturation patterns observed may have affected membrane permeability in response to this herbicide. Moreover, this may have led to different levels of responses involving superoxide dismutase and catalase activities, and enzyme polymorphisms. Due to these response systems, the strain isolated from water exhibited higher growth rates than did the soil strain, in evaluations made in oligotrophic culture media, which would be more like that found in semi-pristine aquatic environments. The influence of the intracellular oxidizing environments, which changed the mode of degradation of mesotrione in our experimental model and produced different metabolites, can also be observed in soil and water at sites related to agriculture. Since the different metabolites may present different levels of toxicity, we suggest that this fact should be considered in studies on the fate of agrochemicals in different environments. PMID:29694403

  16. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation

    PubMed Central

    Yin, Liang; Xue, Yanfen; Ma, Yanhe

    2015-01-01

    The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl) and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine), were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress. PMID:26030352

  17. Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater.

    PubMed

    Li, Chunyan; Wang, Shuting; Du, Xiaopeng; Cheng, Xiaosong; Fu, Meng; Hou, Ning; Li, Dapeng

    2016-11-01

    In this study, three bacteria with high Fe- and Mn-oxidizing capabilities were isolated from groundwater well sludge and identified as Acinetobacter sp., Bacillus megaterium and Sphingobacterium sp. The maximum removal ratios of Fe and Mn (99.75% and 96.69%) were obtained by an optimal combination of the bacteria at a temperature of 20.15°C, pH 7.09 and an inoculum size of 2.08%. Four lab-scale biofilters were tested in parallel for the removal of iron and manganese ions from groundwater. The results indicated that the Fe/Mn removal ratios of biofilter R4, which was inoculated with iron- and manganese-oxidizing bacteria and a biofilm-forming bacterium, were approximately 95% for each metal during continuous operation and were better than the other biofilters. This study demonstrated that the biofilm-forming bacterium could promote the immobilization of the iron- and manganese-oxidizing bacteria on the biofilters and enhance the removal efficiency of iron and manganese ions from groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Bacillus flexus strain As-12, a new arsenic transformer bacterium isolated from contaminated water resources.

    PubMed

    Jebeli, Mohammad Ahmadi; Maleki, Afshin; Amoozegar, Mohammad Ali; Kalantar, Enayatollah; Izanloo, Hassan; Gharibi, Fardin

    2017-02-01

    A total of 14 arsenic-resistant bacteria were isolated from an arsenic-contaminated travertine spring water in the central district of Qorveh county, Kurdistan Province, Iran. One of strains designated As-12 was selected for further investigation because of its ability to transform arsenic. The strain was identified by cultural, morphological and biochemical tests, and 16S rRNA gene sequencing. Finally, the growth characteristics of the isolate were investigated in a chemically defined medium which included varied ranges of environmental factors such as pH, temperature and salinity. Moreover, the resistance of this strain to some heavy metals was evaluated. The bacterium was a Gram-positive, endospore-forming with all other characteristics of the genus Bacillus. It revealed maximum similarity at the 16S rRNA gene level with Bacillus flexus. The optimum growth of the strain was observed at 38 °C, pH 9 and 2% salinity. This strain was resistant to heavy metals such as zinc, chromium, lead, nickel, copper, mercuric and cadmium at concentrations of 15 mM, 15.5 mM, 11.5 mM, 12 mM, 11 mM, 5.5 mM, and 1 mM, respectively. The isolated bacterium was able to reduce As (V) to As (III) (about 28%) and oxidize As (III) to As (V) (about 45%) after 48 h of incubation at 37 °C. In conclusion, Bacillus flexus strain As-12, was identified as an arsenic transformer, for the first time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Biodegradation of di-n-butyl phthalate (DBP) by a novel endophytic Bacillus megaterium strain YJB3.

    PubMed

    Feng, Nai-Xian; Yu, Jiao; Mo, Ce-Hui; Zhao, Hai-Ming; Li, Yan-Wen; Wu, Bing-Xiao; Cai, Quan-Ying; Li, Hui; Zhou, Dong-Mei; Wong, Ming-Hung

    2018-03-01

    Phthalic acid esters (PAEs) are a group of recalcitrant and hazardous organic compounds that pose a great threat to both ecosystem and human beings. A novel endophytic strain YJB3 that could utilize a wide range of PAEs as the sole carbon and energy sources for cell growth was isolated from Canna indica root tissue. It was identified as Bacillus megaterium based on morphological characteristics and 16S rDNA sequence homology analysis. The degradation capability of the strain YJB3 was investigated by incubation in mineral salt medium containing di-n-butyl-phthalate (DBP), one of important PAEs under different environmental conditions, showing 82.5% of the DBP removal in 5days of incubation under the optimum conditions (acetate 1.2g·L -1 , inocula 1.8%, and temperature 34.2°C) achieved by two-step sequential optimization technologies. The DBP metabolites including mono-butyl phthalate (MBP), phthalic acid (PA), protocatechuic acid (PCA), etc. were determined by GC-MS. The PCA catabolic genes responsible for the aromatic ring cleavage of PCA in the strain YJB3 were excavated by whole-genome sequencing. Thus, a degradation pathway of DBP by the strain YJB3 was proposed that MBP was formed, followed by PA, and then the intermediates were further utilized till complete degradation. To our knowledge, this is the first study to show the biodegradation of PAEs using endophyte. The results in the present study suggest that the strain YJB3 is greatly promising to act as a competent inoculum in removal of PAEs in both soils and crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Membrane-bound dd-carboxypeptidases from Bacillus megaterium KM. General properties, substrate specificity and sensitivity to penicillins, cephalosporins and peptide inhibitors of the activity at pH5

    PubMed Central

    Diaz-Mauriño, Teresa; Nieto, Manuel; Perkins, Harold R.

    1974-01-01

    1. The membrane from Bacillus megaterium KM contained a dd-carboxypeptidase with optimum activity under the following conditions: pH5.2, bivalent cation, 3mm; ionic strength, 40mm; temperature, 35°C. It was inactivated by treatment with p-chloromercuribenzoate but was fairly insensitive to 2-mercaptoethanol. 2. The enzyme was inhibited by penicillins and cephalosporins. The inhibition of this enzyme was partially reversed on dialysis but 0.2m-2-mercaptoethanol could neither prevent nor reverse the inhibition. 3. The enzyme was extremely sensitive to changes in the configuration and size of the side chain of the C-terminal dipeptide of the substrate. An aliphatic side chain of a well-defined length and polarity was required in the residue that precedes the C-terminal dipeptide. 4. The enzyme was inhibited by a wide range of analogues of the peptidic portion of the natural substrate. PMID:4218954

  1. Cell viability and protein turnover in nongrowing Bacillus megaterium at sporulation suppressing temperature.

    PubMed

    Kucerová, H; Strnadová, M; Ludvík, J; Chaloupka, J

    1999-01-01

    In Bacillus megaterium, a temperature that suppresses sporulation (43 degrees C) only slightly exceeds both the optimum growth temperature and the temperature still permitting sporulation (40-41 degrees C). Here we show that, when cells grown at 35 degrees C and transferred to a sporulation medium, were subjected to shifts between 35 degrees C and the sporulation suppressing temperature (SST, 43 degrees C), their development and proteolytic activities were deeply affected. During the reversible sporulation phase that took place at 35 degrees C for 2-3 h (T2-T3), the cells developed forespores and their protein turnover was characterized by degradation of short-lived proteins and proteins made accessible to the proteolytic attack because of starvation. During the following irreversible sporulation phase refractile heat-resistant spores appeared at T4-T5. Protein turnover rate increased again after T2 and up to T8 60-70% prelabelled proteins were degraded. The SST suppressed sporulation at its beginning; at T3 no asymmetric septa were observed and the amount of heat-resistant spores at T8 was by 4-5 orders lower than at 35 degrees C. However, the cells remained viable and were able to sporulate when transferred to a lower temperature. Protein degradation was increased up to T3 but then its velocity sharply dropped and the amount of degraded protein at T8 corresponded to slightly more than one-half of that found at 35 degrees C. The cytoplasmic proteolytic activity was enhanced but the activity in the membrane fraction was decreased. When a temperature shift to SST was applied at the beginning of the irreversible sporulation phase (T2.5), the sporulation process was impaired. A portion of forespores lyzed, the others were able to complete their development but most spores were not heat-resistant and their coats showed defects. Protein degradation increased again because an effective proteolytic system was developed during the reversible sporulation phase but the

  2. Influence of nutritional and physicochemical variables on PHB production from raw glycerol obtained from a Colombian biodiesel plant by a wild-type Bacillus megaterium strain.

    PubMed

    Moreno, Paalo; Yañez, Camilo; Cardozo, Nilo Sérgio Medeiros; Escalante, Humberto; Combariza, Marianny Y; Guzman, Carolina

    2015-12-25

    Biodegradable polymers are currently viable alternatives to traditional synthetic polymers. For instance, polyhydroxybutyrate (PHB) is intracellularly produced and accumulated by Bacillus species, among others. This study reports several wild-type Bacillus strains with the ability to accumulate PHB using raw glycerol from biodiesel production as the sole carbon source. Out of 15 strains from different sources, B. megaterium B2 was selected as the most promising strain for further statistical optimization of the medium composition. Plackett-Burman and central composite designs were used to establish key variables and optimal culture conditions for PHB production using both 250-mL shake flasks and a 7.5-L bioreactor. Temperature and concentrations of glycerol and Na2HPO4 are the experimental variables with the most significant influence on PHB production by B2. After 14 hours of fermentation in shake flasks with optimized medium, B2 produced 0.43 g/L of PHB with a 34% accumulation in the cells. In contrast, under the same conditions, a maximum PHB concentration of 1.20 g/L in the bioreactor was reached at 11 hours. These values correspond to a 48% and 314% increase in PHB production compared to the initial culture conditions. These results suggest the potential of B2 as a PHB producer using raw glycerol, which is an inexpensive, abundant and readily available carbon source. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Draft Genome Sequence of Bacillus amyloliquefaciens EBL11, a New Strain of Plant Growth-Promoting Bacterium Isolated from Rice Rhizosphere

    PubMed Central

    Wang, Yinghuan; Greenfield, Paul; Jin, Decai

    2014-01-01

    Bacillus amyloliquefaciens strain EBL11 is a bacterium that can promote plant growth by inhibiting the growth of fungi on plant surfaces and providing nutrients as a nonchemical biofertilizer. The estimated genome of this strain is 4.05 Mb in size and harbors 3,683 coding genes (CDSs). PMID:25059875

  4. Bacillus nitroreducens sp. nov., a humus-reducing bacterium isolated from a compost.

    PubMed

    Guo, Junhui; Wang, Yue Qiang; Yang, Guiqin; Chen, Yunqi; Zhou, Shungui; Zhao, Yong; Zhuang, Li

    2016-05-01

    A Gram-staining-positive, facultative anaerobic, motile and rod-shaped bacterium, designated GSS08(T), was isolated from a windrow compost pile and characterized by means of a polyphasic approach. Growth occurred with 0-4 % (w/v) NaCl (optimum 1 %), at pH 6.5-9.5 (optimum pH 7.5) and at 20-45 °C (optimum 37 °C). Anaerobic growth occurred with anthraquinone-2,6-disulphonate, fumarate and NO3 (-) as electron acceptor. The main respiratory quinone was MK-7. The predominant polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. The major fatty acids (>5 %) were iso-C15:0 (43.1 %), anteiso-C15:0 (27.4 %) and iso-C16:0 (8.3 %). The DNA G + C content was 39.6 mol%. The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GSS08(T) formed a phyletic lineage with the type strain of Bacillus humi DSM 16318(T) with a high sequence similarity of 97.5 %, but it displayed low sequence similarity with other valid species in the genus Bacillus (<96.0 %). The DNA-DNA relatedness between strains GSS08(T) and B. humi DSM 16318(T) was 50.8 %. The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain GSS08(T) represents a novel species, for which the name Bacillus nitroreducens sp. nov. is proposed. The type strain is GSS08(T) (=KCTC 33699(T) = MCCC 1K01091(T)).

  5. Antimicrobial cholic acid derivatives from the Pitch Lake bacterium Bacillus amyloliquefaciens UWI-W23.

    PubMed

    Dobson, Tresha E; Maxwell, Anderson R; Ramsubhag, Adesh

    2018-07-01

    Six cholic acid derivatives (1-6) were isolated from broth cultures of Bacillus amyloliquefaciens UWI-W23, an isolate from the Trinidad Pitch Lake. The compounds were extracted via solvent extraction and/or XAD resin adsorption and purified using silica gel column chromatography. Their structures were elucidated using 1D, 2D NMR and ESI-MS spectrometry and FT-IR spectrophotometry. One of the compounds, taurodeoxycholate (2) is for the first time being reported from a bacterial source while deoxycholate (4) is for the first time being reported from a Gram-positive bacterium. The other compounds have not been previously isolated from Bacillus spp. viz. cholate (1), taurocholic acid (3); glycodeoxycholic acid (5) and glycocholic acid (6). All six compounds exhibited antimicrobial activity against P. aeruginosa and B. cereus with MICs ranging from 7 to 250 µg/mL. Cholate (1) also showed activity against MRSA (MICs = 125 µg/mL) and glycocholic acid (6) against S. cerevisiae (MICs = 15.6 µg/mL). Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Structural characterization and anticancer activity of extracellular polysaccharides from ascidian symbiotic bacterium Bacillus thuringiensis.

    PubMed

    Ramamoorthy, Sathishkumar; Gnanakan, Ananthan; S Lakshmana, Senthil; Meivelu, Moovendhan; Jeganathan, Arun

    2018-06-15

    In the present study, extracellular polysaccharides (EPS) producing bacterium Bacillus thuringiensis RSK CAS4 was isolated from ascidian Didemnum granulatum and its production was optimized by response surface methodology. Fructose and galactose were found as the major monosaccharides in the EPS from the strain RSK CAS4. Functional groups and structural characteristics of the EPS were characterized with FT-IR and 1 HNMR. The purified EPS showed potent antioxidant properties in investigation against DPPH, hydroxyl, superoxide free radicals. In vitro anticancer activity of purified EPS was evaluated on HEp-2 cells, A549 and Vero cell lines. Growth of cancer cells was inhibited by the EPS in a dose-dependent manner and maximum anticancer activity was found to be 76% against liver cancer at 1000 μg/ml. The antioxidant and anticancer potentials of theEPS from marine bacterium Bacillusthuringiensis RSK CAS4 suggests it as a potential natural source and its scopeas an alternative to synthetics for pharmaceutical application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Characterization of a flavin reductase from a thermophilic dibenzothiophene-desulfurizing bacterium, Bacillus subtilis WU-S2B.

    PubMed

    Takahashi, Shusuke; Furuya, Toshiki; Ishii, Yoshitaka; Kino, Kuniki; Kirimura, Kohtaro

    2009-01-01

    Bacillus subtilis WU-S2B is a thermophilic dibenzothiophene (DBT)-desulfurizing bacterium and produces a flavin reductase (Frb) that couples with DBT and DBT sulfone monooxygenases. The recombinant Frb was purified from Escherichia coli cells expressing the frb gene and was characterized. The purified Frb exhibited high stability over wide temperature and pH ranges of 20-55 degrees C and 2-12, respectively. Frb contained FMN and exhibited both flavin reductase and nitroreductase activities.

  8. Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403.

    PubMed

    Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna

    2017-10-01

    Brown seaweed Anthophycus longifolius (Turner) Kützing (family Sargassaceae) associated heterotrophic bacterium Bacillus subtilis MTCC 10403 was found to be a potent isolate with broad range of antibacterial activity against important perceptive food pathogens Vibrio parahaemolyticus, V. vulnificus, and Aeromonas hydrophila. This bacterium was positive for polyketide synthetase gene (KC589397), and therefore, was selected to bioprospect specialized metabolites bearing polyketide backbone. Bioactivity-guided chromatographic fractionation of the ethyl acetate extract of the seaweed-associated bacterium segregated four homologous polyketide furanoterpenoids with potential antibacterial activities against clinically important pathogens. The minimum inhibitory concentration (MIC) assay showed that the referral antibiotics tetracycline and ampicillin were active at 25 μg/mL against the test pathogens, whereas the previously undescribed (4E)-methyl 13-((16-(furan-2-yl) ethyl)-octahydro-7-hydroxy-4-((E)-23-methylbut-21-enyl)-2H-chromen-6-yl)-4-methylpent-4-enoate (compound 1) and methyl 3-(hexahydro-9-((E)-3-methylpent-1-enyl)-4H-furo[3,2-g]isochromen-6-yl) propanoate (compound 3) displayed antibacterial activities against the test pathogens at a lesser concentration (MIC < 7 μg/mL). The title compounds were characterized by comprehensive nuclear magnetic resonance and mass spectroscopic experiments. Polyketide synthase catalyzed putative biosynthetic mechanism additionally corroborated the structural ascriptions of the hitherto undescribed furanoterpenoids from seaweed-associated bacterial symbiont. The electronic and hydrophobic parameters appeared to hold a conspicuous part in directing the antibacterial properties of the compounds. Seaweed-associated B. subtilis MTCC 10403 demonstrated to represent a potential source of antimicrobial polyketides for pharmaceutical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Global Microarray Analysis of Carbohydrate Use in Alkaliphilic Hemicellulolytic Bacterium Bacillus sp. N16-5

    PubMed Central

    Song, Yajian; Xue, Yanfen; Ma, Yanhe

    2013-01-01

    The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources. PMID:23326578

  10. Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75.

    PubMed

    Shah, Ziaullah; Krumholz, Lee; Aktas, Deniz Fulya; Hasan, Fariha; Khattak, Mutiullah; Shah, Aamer Ali

    2013-11-01

    A polyurethane (PU) degrading bacterial strain MZA-75 was isolated from soil through enrichment technique. The bacterium was identified through 16S rRNA gene sequencing, the phylogenetic analysis indicated the strain MZA-75 belonged to genus Bacillus having maximum similarity with Bacillus subtilis strain JBE0016. The degradation of PU films by strain MZA-75 in mineral salt medium (MSM) was analyzed by scanning electron microscopy (SEM), fourier transform infra-red spectroscopy (FT-IR) and gel permeation chromatography (GPC). SEM revealed the appearance of widespread cracks on the surface. FTIR spectrum showed decrease in ester functional group. Increase in polydispersity index was observed in GPC, which indicates chain scission as a result of microbial treatment. CO2 evolution and cell growth increased when PU was used as carbon source in MSM in Sturm test. Increase in both cell associated and extracellular esterases was observed in the presence of PU indicated by p-Nitrophenyl acetate (pNPA) hydrolysis assay. Analysis of cell free supernatant by gas chromatography-mass spectrometry (GC-MS) revealed that 1,4-butanediol and adipic acid monomers were produced. Bacillus subtilis strain MZA-75 can degrade the soft segment of polyester polyurethane, unfortunately no information about the fate of hard segment could be obtained. Growth of strain MZA-75 in the presence of these metabolites indicated mineralization of ester hydrolysis products into CO2 and H2O.

  11. Distribution and identification of proteolytic Bacillus spp. in paddy field soil under rice cultivation.

    PubMed

    Watanabe, K; Hayano, K

    1993-07-01

    Proteolytic bacteria in paddy field soils under rice cultivation were characterized and enumerated using azocoll agar plates. Bacillus spp. were the proteolytic bacteria that were most frequently present, comprising 59% of the isolates. They were always the numerically dominant proteolytic bacteria isolated from three kinds of fertilizer treatments (yearly application of rice-straw compost and chemical fertilizer, yearly application of chemical fertilizer, and no fertilizer application) and at three different stages of rice development (vegetative growth stage, maximal tillering stage, and harvest stage). Of the 411 proteolytic bacteria isolated, 124 isolates had stronger proteolytic activity than others on the basis of gelatin liquefaction tests and most of them were Bacillus spp. (100% in 1989 and 92.4% in 1991). Bacillus subtilis and Bacillus cereus were the main bacteria of this group and Bacillus mycoides, Bacillus licheniformis, and Bacillus megaterium were also present. We conclude that these Bacillus spp. are the primary source of soil protease in these paddy fields.

  12. Levels of small molecules and enzymes in the mother cell compartment and the forespore of sporulating Bacillus megaterium.

    PubMed

    Singh, R P; Setlow, B; Setlow, P

    1977-06-01

    We have determined the amounts of a number of small molecules and enzymes in the mother cell compartment and the developing forespore during sporulation of Bacillus megaterium. Significant amounts of adenosine 5'-triphosphate and reduced nicotinamide adenine dinucleotide were present in the forespore compartment before accumulation of dipicolinic acid (DPA), but these compounds disappeared as DPA was accumulated. 3-Phosphoglyceric acid (3-PGA) accumulated only within the developing forespore, beginning 1 to 2 h before DPA accumulation. Throughout its development the forespore contained constant levels of enzymes of both 3-PGA synthesis (phosphoglycerate kinase and glyceraldehyde-3-phosphate dehydrogenase) and 3-PGA utilization (phosphoglycerate mutase, enolase, and pyruvate kinase) at levels similar to those in the mother cell and the dormant spore. Despite the presence of enzymes for 3-PGA utilization, this compound was stable within isolated forespores. Two acid-soluble proteins (A and B proteins) also accumulated only in the forespore, beginning 1 to 2 h before DPA accumulation. At this time the specific protease involved in degradation of the A and B proteins during germination also appeared, but only in the forespore compartment. Nevertheless, the A and B proteins were stable within isolated forespores. Arginine and glutamic acid accumulated within the forespore in parallel with DPA accumulation. The forespore also contained the enzyme arginase at a level similar to that in the mother cell and a level of glutamic acid decarboxylase 2- to 25-fold higher than that in the mother cell, depending on when in sporulation the forespores were isolated. The specific activities of several other enzymes (protease active on hemoglobin, ornithine transcarbamylase, malate dehydrogenase, aconitase, and isocitrate dehydrogenase) in forespores were about 10% or less of the values in the mother cell. Aminopeptidase was present at similar levels in both compartments; threonine

  13. Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization.

    PubMed

    Posada, Luisa F; Alvarez, Javier C; Hu, Chia-Hui; de-Bashan, Luz E; Bashan, Yoav

    2016-09-01

    Strains of Bacillus subtilis are plant growth-promoting bacteria (PGPB) of many crops and are used as inoculants. PGPB colonization is an important trait for success of a PGPB on plants. A specific probe, based on the 16 s rRNA of Bacillus subtilis, was designed and evaluated to distinguishing, by fluorescence in situ hybridization (FISH), between this species and the closely related Bacillus amyloliquefaciens. The selected target for the probe was between nucleotides 465 and 483 of the gene, where three different nucleotides can be identified. The designed probe successfully hybridized with several strains of Bacillus subtilis, but failed to hybridize not only with B. amyloliquefaciens, but also with other strains such as Bacillus altitudinis, Bacillus cereus, Bacillus gibsonii, Bacillus megaterium, Bacillus pumilus; and with the external phylogenetic strains Azospirillum brasilense Cd, Micrococcus sp. and Paenibacillus sp. The results showed the specificity of this molecular probe for B. subtilis.

  14. Engineering a self-sufficient Mycobacterium tuberculosis CYP130 by gene fusion with the reductase-domain of CYP102A1 from Bacillus megaterium.

    PubMed

    Ortega Ugalde, Sandra; Luirink, Rosa A; Geerke, Daan P; Vermeulen, Nico P E; Bitter, Wilbert; Commandeur, Jan N M

    2018-03-01

    CYP130 belongs to the subset of cytochrome P450s from Mycobacterium tuberculosis (Mtb) that have been structurally characterized. Despite several efforts for its functional characterization, CYP130 is still considered an orphan enzyme for which no endogenous or exogenous substrate has been identified. In addition, functional redox-partners for CYP130 have not been clearly established yet, hampering the elucidation of its physiological role. In the present study, a catalytically active fusion protein involving CYP130 and the NADPH reductase-domain of CYP102A1 from Bacillus megaterium was created. By screening a panel of known substrates of human P450s, dextromethorphan N-demethylation was identified as a reaction catalyzed by CYP130. The fusion enzyme showed higher catalytic activity, when compared to CYP130 reconstituted with a selection of non-native redox-partners. Molecular dynamics simulation studies based on the crystal structure of CYP130 revealed two primary docking poses of dextromethorphan within the active site consistent with the experimentally observed N-demethylation reaction during the entire molecular dynamics simulation. The dextromethorphan N-demethylation reaction was strongly inhibited by azole-drugs and maybe applied to identify mechanism-based inhibitors of CYP130. Furthermore, the present active CYP130-fusion protein may facilitate the identification of endogenous substrates from Mtb. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product.

    PubMed

    Mishra, Rashmi Ranjan; Prajapati, Sunita; Das, Jyotirmayee; Dangar, Tushar Kanti; Das, Nigamananda; Thatoi, Hrudayanath

    2011-08-01

    Two Gram (+) bacterial strains, BSB6 and BSB12, showing resistance and potential for Se(IV) reduction among 26 moderately halotolerant isolates from the Bhitarkanika mangrove soil were characterized by biochemical and 16S rDNA sequence analyses. Both of them were strictly aerobic and able to grow in a wide range of pH (4-11), temperature (4-40°C) and salt concentration (4-12%) having an optimum growth at 37°C, pH ∼7.5 and 7% salt (NaCl). The biochemical characteristics and 16S rDNA sequence analysis of BSB6 and BSB12 showed the closest phylogenetic similarity with the species Bacillus megaterium. Both the strains effectively reduced Se(IV) and complete reduction of selenite (up to 0.25 mM) was achieved within 40 h. SEM with energy dispersive X-ray and TEM analyses revealed the formation of nano size spherical selenium particles in and around the bacterial cells which were also supported by the confocal micrograph study. The UV-Vis diffuse reflectance spectra and XRD of selenium precipitates revealed that the selenium particles are in the nanometric range and crystalline in nature. These bacterial strains may be exploited further for bioremediation process of Se(IV) at relatively high salt concentrations and green synthesis of selenium nanoparticles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Bacillus Endospores Isolated from Granite: Close Molecular Relationships to Globally Distributed Bacillus spp. from Endolithic and Extreme Environments

    PubMed Central

    Fajardo-Cavazos, Patricia; Nicholson, Wayne

    2006-01-01

    As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain ∼500 cultivable Bacillus spores and ∼104 total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted. PMID:16597992

  17. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations

    USDA-ARS?s Scientific Manuscript database

    Sclerotinia sclerotiorum causes serious yield losses in crops in The People’s Republic of China. Two formulations of oilseed rape seed containing the endophytic bacterium Bacillus subtilis Tu-100 were evaluated for suppression of this pathogen in field trials conducted at two independent locations....

  18. Development of plasmid vector and electroporation condition for gene transfer in sporogenic lactic acid bacterium, Bacillus coagulans.

    PubMed

    Rhee, Mun Su; Kim, Jin-Woo; Qian, Yilei; Ingram, L O; Shanmugam, K T

    2007-07-01

    Bacillus coagulans is a sporogenic lactic acid bacterium that ferments glucose and xylose, major components of plant biomass, a potential feedstock for cellulosic ethanol. The temperature and pH for optimum rate of growth of B. coagulans (50 to 55 degrees C, pH 5.0) are very similar to that of commercially developed fungal cellulases (50 degrees C; pH 4.8). Due to this match, simultaneous saccharification and fermentation (SSF) of cellulose to products by B. coagulans is expected to require less cellulase than needed if the SSF is conducted at a sub-optimal temperature, such as 30 degrees C, the optimum for yeast, the main biocatalyst used by the ethanol industry. To fully exploit B. coagulans as a platform organism, we have developed an electroporation method to transfer plasmid DNA into this genetically recalcitrant bacterium. We also constructed a B. coagulans/E. coli shuttle vector, plasmid pMSR10 that contains the rep region from a native plasmid (pMSR0) present in B. coagulans strain P4-102B. The native plasmid, pMSR0 (6823bp), has 9 ORFs, and replicates by rolling-circle mode of replication. Plasmid pNW33N, developed for Geobacillus stearothermophilus, was also transformed into this host and stably maintained while several other Bacillus/Escherichia coli shuttle vector plasmids were not transformed into B. coagulans. The transformation efficiency of B. coagulans strain P4-102B using the plasmids pNW33N or pMSR10 was about 1.5x10(16) per mole of DNA. The availability of shuttle vectors and an electroporation method is expected to aid in genetic and metabolic engineering of B. coagulans.

  19. Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

    PubMed Central

    Bao, Peng; Xiao, Ke-Qing; Wang, Hui-Jiao; Xu, Hao; Xu, Peng-Peng; Jia, Yan; Häggblom, Max M.; Zhu, Yong-Guan

    2016-01-01

    A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4–86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4–84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy. PMID:27677458

  20. Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

    NASA Astrophysics Data System (ADS)

    Bao, Peng; Xiao, Ke-Qing; Wang, Hui-Jiao; Xu, Hao; Xu, Peng-Peng; Jia, Yan; Häggblom, Max M.; Zhu, Yong-Guan

    2016-09-01

    A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4-86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4-84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy.

  1. In vitro susceptibility of Bacillus spp. to selected antimicrobial agents.

    PubMed Central

    Weber, D J; Saviteer, S M; Rutala, W A; Thomann, C A

    1988-01-01

    Although often dismissed as contaminants when isolated from blood cultures, Bacillus spp. are increasingly recognized as capable of causing serious systemic infections. As part of a clinical-microbiological study, 89 strains of Bacillus spp. isolated from clinical blood cultures between 1981 and 1985 had their species determined and were tested for antimicrobial agent susceptibility to 18 antibiotics. Species of isolates were determined by the API 50CH and API 20E systems. Bacillus cereus (54 strains) was the most common species isolated, followed by B. megaterium (13 strains), B. polymyxa (5 strains), B. pumilus (4 strains), B. subtilis (4 strains), B. circulans (3 strains), B. amyloliquefaciens (2 strains), B. licheniformis (1 strain), and Bacillus spp. (3 strains). Microdilution MIC susceptibility tests revealed all B. cereus strains to be susceptible to imipenem, vancomycin, chloramphenicol, gentamicin, and ciprofloxacin. Non-B. cereus strains were most susceptible to imipenem, vancomycin, LY146032, and ciprofloxacin. Disk susceptibility testing suggested that B. cereus was rarely susceptible to penicillins, semisynthetic penicillins, or cephalosporins with the exception of mezlocillin. In contrast, many non-B. cereus strains were susceptible to penicillins, semisynthetic penicillins, and cephalosporins, but marked variability was noted among species. PMID:3395100

  2. Increased biomass and quality and reduced heavy metal accumulation of edible tissues of vegetables in the presence of Cd-tolerant and immobilizing Bacillus megaterium H3.

    PubMed

    Wang, Qi; Zhang, Wen-Ji; He, Lin-Yan; Sheng, Xia-Fang

    2018-02-01

    A Cd-resistant and immobilizing Bacillus megaterium H3 was characterized for its impact on the biomass and quality and heavy metal uptake of edible tissues of two vegetables (Brassica campestris L. var. Aijiaohuang and Brassica rapa L. var. Shanghaiqing) grown in heavy metal-polluted soil. The impact of strain H3 on the soil quality was also evaluated. The increase in the edible tissue biomass and the contents of soluble proteins and vitamin C of the vegetables inoculated with strain H3 ranged from 18% to 33%, 17% to 31%, and 15% to 19%, respectively, compared with the controls. Strain H3 significantly decreased the edible tissue Cd and Pb contents of the two greens (41-80%), DTPA-extractable Cd content (35-47%) of the rhizosphere soils, and Cd and Pb translocation factors (25-56%) of the greens compared with the controls. Moreover, strain H3 significantly increased the organic matter content (17-21%) and invertase activity (13-14%) of the rhizosphere soils compared with the controls. Our results demonstrated the increased edible tissue biomass and quality, decreased Cd and Pb uptake of the edible tissues, and improved soil quality in the presence of strain H3. The results also suggested an effective bacterial-enhanced technique for decreased metal uptake of greens and improved vegetable and soil qualities in the metal-contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Draft Genome Sequence of Bacillus urumqiensis BZ-SZ-XJ18T, a Moderately Haloalkaliphilic Bacterium Isolated from a Saline-Alkaline Lake.

    PubMed

    Liao, Ziya; Ren, Chao; Guo, Xiaomeng; Yan, Yanchun; Li, Jun; Zhao, Baisuo

    2018-05-31

    The moderately haloalkaliphilic bacterium Bacillus urumqiensis BZ-SZ-XJ18 T was isolated from a saline-alkaline lake located in the Xinjiang Uyghur Autonomous Region of China. Optimum growth occurred at the total Na + concentration of 1.08 M, with a broad optimum pH of 8.5 to 9.5. The draft genome consists of approximately 3.28 Mb and contains 3,228 predicted genes. A number of genes associated with adaptation strategies for osmotic balance and alkaline pH homeostasis were identified, providing pertinent insight into specific adaptations to the double-extreme environment. Copyright © 2018 Liao et al.

  4. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  5. Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles.

    PubMed

    Fajardo, C; Saccà, M L; Martinez-Gomariz, M; Costa, G; Nande, M; Martin, M

    2013-10-01

    Nanosized zero valent iron (nZVI) is emerging as an option for treating contaminated soil and groundwater even though the potentially toxic impact exerted by nZVI on soil microorganisms remains uncertain. In this work, we focus on nanotoxicological studies performed in vitro using commercial nZVI and one common soil bacterium (Bacillus cereus). Results showed a negative impact of nZVI on B. cereus growth capability, consistent with the entrance of cells in an early sporulation stage, observed by TEM. Despite no changes at the transcriptional level are detected in genes of particular relevance in cellular activity (narG, nirS, pykA, gyrA and katB), the proteomic approach used highlights differentially expressed proteins in B. cereus under nZVI exposure. We demonstrate that proteins involved in oxidative stress-response and tricarboxilic acid cycle (TCA) modulation are overexpressed; moreover proteins involved in motility and wall biosynthesis are repressed. Our results enable to detect a molecular-level response as early warning signal, providing new insight into first line defense response of a soil bacterium after nZVI exposure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Microbial culturomics to isolate halophilic bacteria from table salt: genome sequence and description of the moderately halophilic bacterium Bacillus salis sp. nov.

    PubMed

    Seck, E H; Diop, A; Armstrong, N; Delerce, J; Fournier, P-E; Raoult, D; Khelaifia, S

    2018-05-01

    Bacillus salis strain ES3 T (= CSUR P1478 = DSM 100598) is the type strain of B. salis sp. nov. It is an aerobic, Gram-positive, moderately halophilic, motile and spore-forming bacterium. It was isolated from commercial table salt as part of a broad culturomics study aiming to maximize the culture conditions for the in-depth exploration of halophilic bacteria in salty food. Here we describe the phenotypic characteristics of this isolate, its complete genome sequence and annotation, together with a comparison with closely related bacteria. Phylogenetic analysis based on 16S rRNA gene sequences indicated 97.5% similarity with Bacillus aquimaris, the closest species. The 8 329 771 bp long genome (one chromosome, no plasmids) exhibits a G+C content of 39.19%. It is composed of 18 scaffolds with 29 contigs. Of the 8303 predicted genes, 8109 were protein-coding genes and 194 were RNAs. A total of 5778 genes (71.25%) were assigned a putative function.

  7. In vitro antimicrobial effect of Satureja wiedemanniana against Bacillus species isolated from raw meat samples.

    PubMed

    Yucel, Nihal; Aslim, Belma; Ozdoğan, Hakan

    2009-08-01

    In this study a total of 30 raw meat samples obtained from Ankara, Turkey were screened for the presence of Bacillus species. Among the meat samples analyzed, the predominant species isolated was Bacillus circulans; other Bacillus species were identified as Bacillus firmus, Bacillus lentus, Bacillus megaterium, Bacillus licheniformis, Bacillus mycoides, Bacillus sphaericus, and Bacillus cereus. Minced meat samples were more contaminated with Bacillus species than sliced beef sample. From these samples, 242 Bacillus species isolates were obtained, which were investigated for proteolytic and lipolytic activity, associated with meat spoilage. Interestingly, some Bacillus strains produced the highest values of proteolytic/lipolytic activities. Nineteen Bacillus strains were selected among the 242 isolates according to their proteolytic/lipolytic activity with a clear zone diameter of > or =6 mm. The essential oil of Satureja wiedemanniana (Lalem) Velen was also tested against these 19 Bacillus species that had proteolytic and lipolytic activity. The essential oil yield obtained from the aerial parts of the plant was 0.35% (vol/wt). The inhibition zones of the essential oil obtained against all the Bacillus species were in the range of 5.0-12.0 mm. The oil showed high antimicrobial activities against B. licheniformis M 6(26), M 11(16), and M 12(1) strains. B. licheniformis 12(1) showed high lipolytic activity (18.0 mm). Also, B. licheniformis M 6(26) and M 11(16) showed high proteolytic activity (16.0 and 14.0 mm). These results may suggest that an essential oil of S. wiedemanniana can be used as a natural preservative in meat against spoilage bacteria.

  8. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus.

    PubMed

    Tsuge, Takeharu; Hyakutake, Manami; Mizuno, Kouhei

    2015-08-01

    This review highlights the recent investigations of class IV polyhydroxyalkanoate (PHA) synthases, the newest classification of PHA synthases. Class IV synthases are prevalent in organisms of the Bacillus genus and are composed of a catalytic subunit PhaC (approximately 40 kDa), which has a PhaC box sequence ([GS]-X-C-X-[GA]-G) at the active site, and a second subunit PhaR (approximately 20 kDa). The representative PHA-producing Bacillus strains are Bacillus megaterium and Bacillus cereus; the nucleotide sequence of phaC and the genetic organization of the PHA biosynthesis gene locus are somewhat different between these two strains. It is generally considered that class IV synthases favor short-chain-length monomers such as 3-hydroxybutyrate (C4) and 3-hydroxyvalerate (C5) for polymerization, but can polymerize some unusual monomers as minor components. In Escherichia coli expressing PhaRC from B. cereus YB-4, the biosynthesized PHA undergoes synthase-catalyzed alcoholytic cleavage using endogenous and exogenous alcohols. This alcoholysis is thought to be shared among class IV synthases, and this reaction is useful not only for the regulation of PHA molecular weight but also for the modification of the PHA carboxy terminus. The novel properties of class IV synthases will open up the possibility for the design of new PHA materials.

  9. Bacillus cereus-type polyhydroxyalkanoate biosynthetic gene cluster contains R-specific enoyl-CoA hydratase gene.

    PubMed

    Kihara, Takahiro; Hiroe, Ayaka; Ishii-Hyakutake, Manami; Mizuno, Kouhei; Tsuge, Takeharu

    2017-08-01

    Bacillus cereus and Bacillus megaterium both accumulate polyhydroxyalkanoate (PHA) but their PHA biosynthetic gene (pha) clusters that code for proteins involved in PHA biosynthesis are different. Namely, a gene encoding MaoC-like protein exists in the B. cereus-type pha cluster but not in the B. megaterium-type pha cluster. MaoC-like protein has an R-specific enoyl-CoA hydratase (R-hydratase) activity and is referred to as PhaJ when involved in PHA metabolism. In this study, the pha cluster of B. cereus YB-4 was characterized in terms of PhaJ's function. In an in vitro assay, PhaJ from B. cereus YB-4 (PhaJ YB4 ) exhibited hydration activity toward crotonyl-CoA. In an in vivo assay using Escherichia coli as a host for PHA accumulation, the recombinant strain expressing PhaJ YB4 and PHA synthase led to increased PHA accumulation, suggesting that PhaJ YB4 functioned as a monomer supplier. The monomer composition of the accumulated PHA reflected the substrate specificity of PhaJ YB4 , which appeared to prefer short chain-length substrates. The pha cluster from B. cereus YB-4 functioned to accumulate PHA in E. coli; however, it did not function when the phaJ YB4 gene was deleted. The B. cereus-type pha cluster represents a new example of a pha cluster that contains the gene encoding PhaJ.

  10. Biotransformation of benzo[a]pyrene by the thermophilic bacterium Bacillus licheniformis M2-7.

    PubMed

    Guevara-Luna, Joseph; Alvarez-Fitz, Patricia; Ríos-Leal, Elvira; Acevedo-Quiroz, Macdiel; Encarnación-Guevara, Sergio; Moreno-Godinez, Ma Elena; Castellanos-Escamilla, Mildred; Toribio-Jiménez, Jeiry; Romero-Ramírez, Yanet

    2018-06-09

    Benzo[a]pyrene (BaP) is recognized as a potentially carcinogenic and mutagenic hydrocarbon, and thus, its removal from the environment is a priority. The use of thermophilic bacteria capable of biodegrading or biotransforming this compound to less toxic forms has been explored in recent decades, since it provides advantages compared to mesophilic organisms. This study assessed the biotransformation of BaP by the thermophilic bacterium Bacillus licheniformis M2-7. Our analysis of the biotransformation process mediated by strain M2-7 on BaP shows that it begins during the first 3 h of culture. The gas chromatogram of the compound produced shows a peak with a retention time of 17.38 min, and the mass spectra shows an approximate molecular ion of m/z 167, which coincides with the molecular weight of the chemical formula C 6 H 4 (COOH) 2 , confirming a chemical structure corresponding to phthalic acid. Catechol 2,3-dioxygenase (C23O) enzyme activity was detected in minimal saline medium supplemented with BaP (0.33 U mg -1 of protein). This finding suggests that B. licheniformis M2-7 uses the meta pathway for biodegrading BaP using the enzyme C23O, thereby generating phthalic acid as an intermediate.

  11. Smallpox and pan-Orthodox Virus Detection by Real-Time 3’-Minor Groove Binder TaqMan Assays Oil the Roche LightCycler and the Cepheid Smart Cycler Platforms

    DTIC Science & Technology

    2003-11-08

    Bacillus anthracis BA0068 Ames Sterne SPS 97.13.213 Bacillus cereus Bacillus coagulans Bacillus licheniformis Bacillus macerans Bacillus ...megaterium Bacillus polymyxa Bacillus sphaericus Bacillus stearothermophilus Bacillus subtilis subsp. niger Bacillus thuringiensis Bacillus popilliae...varicella- zoster virus, and Bacillus anthracis DNA by LightCycler polymerase chain reaction after autoclaving:

  12. Characterization of Wet-Heat Inactivation of Single Spores of Bacillus Species by Dual-Trap Raman Spectroscopy and Elastic Light Scattering▿

    PubMed Central

    Zhang, Pengfei; Kong, Lingbo; Setlow, Peter; Li, Yong-qing

    2010-01-01

    Dual-trap laser tweezers Raman spectroscopy (LTRS) and elastic light scattering (ELS) were used to investigate dynamic processes during high-temperature treatment of individual spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis in water. Major conclusions from these studies included the following. (i) After spores of all three species were added to water at 80 to 90°C, the level of the 1:1 complex of Ca2+ and dipicolinic acid (CaDPA; ∼25% of the dry weight of the spore core) in individual spores remained relatively constant during a highly variable lag time (Tlag), and then CaDPA was released within 1 to 2 min. (ii) The Tlag values prior to rapid CaDPA release and thus the times for wet-heat killing of individual spores of all three species were very heterogeneous. (iii) The heterogeneity in kinetics of wet-heat killing of individual spores was not due to differences in the microscopic physical environments during heat treatment. (iv) During the wet-heat treatment of spores of all three species, spore protein denaturation largely but not completely accompanied rapid CaDPA release, as some changes in protein structure preceded rapid CaDPA release. (v) Changes in the ELS from individual spores of all three species were strongly correlated with the release of CaDPA. The ELS intensities of B. cereus and B. megaterium spores decreased gradually and reached minima at T1 when ∼80% of spore CaDPA was released, then increased rapidly until T2 when full CaDPA release was complete, and then remained nearly constant. The ELS intensity of B. subtilis spores showed similar features, although the intensity changed minimally, if at all, prior to T1. (vi) Carotenoids in B. megaterium spores' inner membranes exhibited two changes during heat treatment. First, the carotenoid's two Raman bands at 1,155 and 1,516 cm−1 decreased rapidly to a low value and to zero, respectively, well before Tlag, and then the residual 1,155-cm−1 band disappeared, in parallel

  13. Phylogeny of marine Bacillus isolates from the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Larios-Sanz, M.; Nakamura, L. K.; Slepecky, R. A.; Paul, J. H.; Moore, E. R.; Fox, G. E.; Jurtshuk, P. Jr

    2000-01-01

    The phylogeny of 11 pigmented, aerobic, spore-forming isolates from marine sources was studied. Forty-two biochemical characteristics were examined, and a 16S rDNA sequence was obtained for each isolate. In a phylogenetic tree based on 16S sequencing, four isolates (NRRL B-14850, NRRL B-14904, NRRL B-14907, and NRRL B-14908) clustered with B. subtilis and related organisms; NRRL B-14907 was closely related to B. amyloliquefaciens. NRRL B-14907 and NRRL B-14908 were phenotypically similar to B. amyloliquefaciens and B. pumilus, respectively. Three strains (NRRL B-14906, NRRL B-14910, and NRRL B-14911) clustered in a clade that included B. firmus, B. lentus, and B. megaterium. NRRL B-14910 was closely related phenotypically and phylogenetically to B. megaterium. NRRL B-14905 clustered with the mesophilic round spore-producing species, B. fusiformis and B. sphaericus; the isolate was more closely related to B. fusiformis. NRRL B-14905 displayed characteristics typical of the B. sphaericus-like organisms. NRRL B-14909 and NRRL B-14912 clustered with the Paenibacillus species and displayed characteristics typical of the genus. Only NRRL B-14851, an unusually thin rod that forms very small spores, may represent a new Bacillus species.

  14. Surfactin production by strains of Bacillus mojavensis

    USDA-ARS?s Scientific Manuscript database

    Bacillus mojavensis, RRC101 is an endophytic bacterium patented for control of fungal diseases in maize and other plants. DNA fingerprint analysis of the rep-PCR fragments of 35 B. mojavensis and 4 B. subtilis strains using the Diversilab genotyping system revealed genotypic distinctive strains alon...

  15. Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production.

    PubMed

    Irla, Marta; Heggeset, Tonje M B; Nærdal, Ingemar; Paul, Lidia; Haugen, Tone; Le, Simone B; Brautaset, Trygve; Wendisch, Volker F

    2016-01-01

    Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.

  16. Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production

    PubMed Central

    Irla, Marta; Heggeset, Tonje M. B.; Nærdal, Ingemar; Paul, Lidia; Haugen, Tone; Le, Simone B.; Brautaset, Trygve; Wendisch, Volker F.

    2016-01-01

    Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium. PMID:27713731

  17. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components

    NASA Technical Reports Server (NTRS)

    Reyes, A. L.; Campbell, J. E.

    1978-01-01

    The experiments conducted to determine the heat resistance of Bacillus megaterium ATCC 6458 at 90 and 100 C were completed. Estimates from replicate experiments at eight percent relative humidities (less than 0.001 to 100% RH) for each temperature were computed. A Bacillus cereus strain with high heat resistance was cultured and the resistance determined in phosphate buffer (D sub 121.1 = 2.16 min and z = 8.7 C). The profile of the dry heat resistance of B. megaterium is summarized and the most resistant condition to the three spores (Bacillus subtilis var. niger, ATCC 29669, and Bacillus stearothermophilus, strain 1518) is compared.

  18. Exploring potential applications of a novel extracellular polymeric substance synthesizing bacterium (Bacillus licheniformis) isolated from gut contents of earthworm (Metaphire posthuma) in environmental remediation.

    PubMed

    Biswas, Jayanta Kumar; Banerjee, Anurupa; Rai, Mahendra Kumar; Rinklebe, Jörg; Shaheen, Sabry M; Sarkar, Santosh Kumar; Dash, Madhab Chandra; Kaviraj, Anilava; Langer, Uwe; Song, Hocheol; Vithanage, Meththika; Mondal, Monojit; Niazi, Nabeel Khan

    2018-05-22

    The aim was to isolate, characterize, and explore potentials of gut bacteria from the earthworm (Metaphire posthuma) and imply these bacteria for remediation of Cu(II) and Zn(II). An extracellular polymeric substance (EPS) producing gut bacteria (Bacillus licheniformis strain KX657843) was isolated and identified based on 16S rRNA sequencing and phylogenetic analysis. The strain showed maximum tolerance of 8 and 6 mM for Cu(II) and Zn(II) respectively. It removed 34.5% of Cu(II) and 54.4% of Zn(II) at 25 mg L -1 after 72 and 96 h incubation respectively. The bacteria possessed a great potential to produce indole acetic acid (38.49 μg mL -1 ) at 5 mg mL -1 L-tryptophan following 12 days incubation. The sterilized seeds of mung beans (Vigna radiata) displayed greater germination and growth under bacterium enriched condition. We observed that the bacterial strain phosphate solubilization ability with a maximum of 204.2 mg L -1 in absence of Cu(II) and Zn(II). Endowed with biosurfactant property the bacterium exhibited 24% emulsification index. The bacterium offered significant potential of plant growth promotion, Cu(II) and Zn(II) removal, and as such this study is the first report on EPS producing B. licheniformis KX657843 from earthworm which can be applied as powerful tool in remediation programs of Cu(II) and Zn(II) contaminated sites.

  19. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments.

    PubMed

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies. Bacillus species-Spores-Germination-High salinity-Salt stress-NaCl-Inhibition. Astrobiology 16, 500-512.

  20. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments

    NASA Astrophysics Data System (ADS)

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies.

  1. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Satomi, Masataka; Venkateswaran, Kasthuri

    2004-01-01

    A round-spore-forming Bacillus species that produces an exosporium was isolated from the surface of the Mars Odyssey spacecraft. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and is a Gram-positive, aerobic, rod-shaped, endospore-forming eubacterium. Ultrathin sections of the spores showed the presence of an exosporium, spore coat, cortex and core. 16S rDNA sequence similarities between this strain, Bacillus fusiformis and Bacillus silvestris were approximately 96% and DNA-DNA reassociation values with these two bacilli were 23 and 17%, respectively. Spores of the novel species were resistant to desiccation, H2O2 and UV and gamma radiation. Of all strains tested, the spores of this strain were the most consistently resistant and survived all of the challenges posed, i.e. exposure to conditions of desiccation (100% survival), H2O2 (26% survival), UV radiation (10% survival at 660 J m(-2)) and gamma radiation (0.4% survival). The name proposed for this novel bacterium is Bacillus odysseyi sp. nov.; the type strain is 34hs-1T (=ATCC PTA-4993T=NRRL B-30641T=NBRC 100172T).

  2. Bacillus thuringeniensis: potential for management of emerald ash borer

    Treesearch

    Leah S. Bauer; Donald Dean; Jo Handelsman

    2006-01-01

    The active ingredients of microbial insecticides are live microorganisms pathogenic to certain insects. One such insect pathogen is Bacillus thuringiensis (Bt), a bacterium found naturally in soil, on leaves, in places were insects are abundant (such as grain silos and insectaries), and in infected insects.

  3. Pathogenicity of Bacillus thuringiensis variety kurstaki to Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Zhioua, Elyes; Heyer, Klaus; Browning, M.; Ginsberg, Howard S.; LeBrun, Roger A.

    1999-01-01

    Pathogenicity of the entomopathogenic bacterium Bacillus thuringiensis var. kurstaki de Barjac & Lemille was tested against the black-legged tick, Ixodes scapularis Say. Engorged larvae dipped in a solution of 108 spores per ml showed 96% mortality, 3 wk post-infection. The LC50 value for engorged larvae (concentration required to kill 50% of ticks) was 107 spores/ml. Bacillus thuringiensis shows considerable potential as a microbial control agent for the management of Ixodes scapularis.

  4. Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.

    PubMed

    Liu, Yunpeng; Chen, Lin; Zhang, Nan; Li, Zunfeng; Zhang, Guishan; Xu, Yu; Shen, Qirong; Zhang, Ruifu

    2016-04-01

    Mechanisms by which beneficial rhizobacteria promote plant growth include tryptophan-dependent indole-3-acetic acid (IAA) synthesis. The abundance of tryptophan in the rhizosphere, however, may influence the level of benefit provided by IAA-producing rhizobacteria. This study examined the cucumber-Bacillus amyloliquefaciens SQR9 system and found that SQR9, a bacterium previously shown to enhance the growth of cucumber, increased root secretion of tryptophan by three- to fourfold. Using a split-root system, SQR9 colonization of roots in one chamber not only increased tryptophan secretion from the noninoculated roots but also increased the expression of the cucumber tryptophan transport gene but not the anthranilate synthesis gene in those roots. The increased tryptophan in isolated rhizosphere exudates was sufficient to support increased IAA production by SQR9. Moreover, SQR9 colonization of roots in one chamber in the split-root system resulted in sufficient tryptophan production by the other roots to upregulate SQR9 IAA biosynthesis genes, including a 27-fold increase in the indole-3-acetonitrilase gene yhcX during subsequent colonization of those roots. Deletion of yhcX eliminated SQR9-mediated increases in root surface area, likely by reducing IAA-stimulated lateral root growth. This study demonstrates a chemical dialogue between B. amyloliquefaciens and cucumber in which this communication contributes to bacteria-mediated plant-growth enhancement.

  5. Binding of Radioactive Benzylpenicillin to Sporulating Bacillus Cultures: Chemistry and Fluctuations in Specific Binding Capacity

    PubMed Central

    Lawrence, Paul J.; Rogolsky, Marvin; Hanh, Vo Thi

    1971-01-01

    The chemistry of the binding of 14C-benzylpenicillin to sporulating cultures of Bacillus megaterium and B. subtilis is similar to that in a 4-hr vegetative culture of Staphylococcus aureus. Unlabeled penicillins prevent the binding of 14C-benzylpenicillin, but benzylpenicilloic acid and benzylpenilloic acid do not. Bound antibiotic can be removed from cells with neutral hydroxylamine at 25 C. Sporulating cultures display two intervals of enhanced binding, whereas binding to stationaryphase S. aureus cells remains constant. The first period of increased binding activity occurs during formation of the spore septum or cell wall primordium development, and the second coincides with cortex biosynthesis. PMID:4942758

  6. Effect of Bacillus subtilis on Granite Weathering: A Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Song, W.; Ogawa, N.; Oguchi, C. T.; Hatta, T.; Matsukura, Y.

    2006-12-01

    We performed a comparative experiment to investigate how the ubiquitous soil bacterium Bacillus subtilis weathers granite and which granite-forming minerals weather more rapidly via biological processes. Batch type experiments (granite specimen in a 500 ml solution including NaCl, glucose, yeast extract and bacteria Bacillus subtilis at 27°E C) were carried out for 30 days. Granite surfaces were observed by SEM before and after the experiment. Bacillus subtilis had a strong influence on granite weathering by forming pits. There were 2.4 times as many pits and micropores were 2.3 times wider in granite exposed to Bacillus subtilis when compared with bacteria-free samples. Bacillus subtilis appear to preferentially select an optimum place to adhere to the mineral and dissolve essential elements from the mineral to live. Plagioclase was more vulnerable to bacterial weathering than biotite among the granite composing minerals.

  7. Bacillus subtilis biofilm induction by plant polysaccharides.

    PubMed

    Beauregard, Pascale B; Chai, Yunrong; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2013-04-23

    Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidopsis thaliana roots it forms biofilms that depend on the same matrix genes required in vitro. B. subtilis biofilm formation was triggered by certain plant polysaccharides. These polysaccharides served as a signal for biofilm formation transduced via the kinases controlling the phosphorylation state of the master regulator Spo0A. In addition, plant polysaccharides are used as a source of sugars for the synthesis of the matrix exopolysaccharide. The bacterium's response to plant polysaccharides was observed across several different strains of the species, some of which are known to have beneficial effects on plants. These observations provide evidence that biofilm genes are crucial for Arabidopsis root colonization by B. subtilis and provide insights into how matrix synthesis may be triggered by this plant.

  8. Extraction of Copper from Malanjkhand Low-Grade Ore by Bacillus stearothermophilus.

    PubMed

    Singh, Sradhanjali; Sukla, Lala Behari; Mishra, Baroda Kanta

    2011-10-01

    Thermophilic bacteria are actively prevalent in hot water springs. Their potential to grow and sustain at higher temperatures makes them exceptional compare to other microorganism. The present study was initiated to isolate, identify and determine the feasibility of extraction of copper using thermophilic heterotrophic bacterial strain. Bacillus stearothermophilus is a thermophilic heterotrophic bacterium isolated from hot water spring, Atri, Orissa, India. This bacterium was adapted to low-grade chalcopyrite ore and its efficiency to solubilize copper from Malanjkhand low-grade ore was determined. The low-grade copper ore contains 0.27% Cu, in which the major copper-bearing mineral is chalcopyrite associated with other minerals present as minor phase. Variation in parameters such as pulp-density and temperatures were studied. After 30 days of incubation, it was found that Bacillus stearothermophilus solubilize copper up to 81.25% at pH 6.8 at 60°C.

  9. [Potential of Bacillus thuringiensis israelensis Berliner for controlling Aedes aegypti].

    PubMed

    Polanczyk, Ricardo Antonio; Garcia, Marcelo de Oliveira; Alves, Sérgio Batista

    2003-12-01

    The importance of the entomopathogenic bacterium Bacillus thuringiensis israelensis in the control of Aedes aegypti is presented. The use and potential of B. thuringiensis israelensis against the mosquito vector of dengue fever is described. Other aspects such as insect's resistance development against chemicals and advantages and constraints of using microbial control are discussed. Emphasis is given to the importance of the use of this bacterium in Brazil, which could contribute significantly to solving the mosquito problem without affecting the environment, humans and others invertebrate organisms in critical regions.

  10. Surfactin A Production and Isoform Characterizations in Strains of Bacillus mojavensis for Potential Control of Fusarium verticillioides and Fumonisin in Maize

    USDA-ARS?s Scientific Manuscript database

    Bacillus mojavensis, a species recently distinguished as a cryptic species within Bacillus subtilis, was discovered in maize kernels and later determined to possess endophytic characteristics. The bacterium was also determined to have biocontrol potential due to its strong antagonism to the fungus...

  11. Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein.

    PubMed

    Hosseini-Abari, Afrouzossadat; Kim, Byung-Gee; Lee, Sang-Hyuk; Emtiazi, Giti; Kim, Wooil; Kim, June-Hyung

    2016-12-01

    Tyrosinases, copper-containing monooxygenases, are widely used enzymes for industrial, medical, and environmental applications. We report the first functional surface display of Bacillus megaterium tyrosinase on Bacillus subtilis spores using CotE as an anchor protein. Flow Cytometry was used to verify surface expression of tyrosinase on the purified spores. Moreover, tyrosinase activity of the displayed enzyme on B. subtilis spores was monitored in the presence of L-tyrosine (substrate) and CuSO 4 (inducer). The stability of the spore-displayed tyrosinase was then evaluated after 15 days maintenance of the spores at room temperature, and no significant decrease in the enzyme activity was observed. In addition, the tyrosinase-expressing spores could be repeatedly used with 62% retained enzymatic activity after six times washing with Tris-HCl buffer. This genetically immobilized tyrosinase on the spores would make a new advance in industrial, medical, and environmental applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Putative Virulence Factor Expression by Clinical and Food Isolates of Bacillus spp. after Growth in Reconstituted Infant Milk Formulae

    PubMed Central

    Rowan, Neil J.; Deans, Karen; Anderson, John G.; Gemmell, Curtis G.; Hunter, Iain S.; Chaithong, Thararat

    2001-01-01

    Forty-seven strains representing 14 different Bacillus species isolated from clinical and food samples were grown in reconstituted infant milk formulae (IMF) and subsequently assessed for adherence to, invasion of, and cytotoxicity toward HEp-2 and Caco-2 cells. Cell-free supernatant fluids from 38 strains (81%) were shown to be cytotoxic, 43 strains (91%) adhered to the test cell lines, and 23 strains (49%) demonstrated various levels of invasion. Of the 21 Bacillus cereus strains examined, 5 (24%) were invasive. A larger percentage of clinically derived Bacillus species (20%) than of similar species tested from the food environment were invasive. Increased invasion occurred after growth of selected Bacillus species in reconstituted IMF containing glucose. While PCR primer studies revealed that many different Bacillus species contained DNA sequences encoding the hemolysin BL (HBL) enterotoxin complex and B. cereus enterotoxin T, not all of these isolates expressed these diarrheagenic genes after growth in reconstituted IMF. Of the 47 Bacillus isolates examined, 3 isolates of B. cereus and 1 isolate of B. subtilis produced the HBL enterotoxin after 18 h of growth in brain heart infusion broth. However, eight isolates belonging to the species B. cereus, B. licheniformis, B. circulans, and B. megaterium were found to produce this enterotoxin after growth in reconstituted IMF when assessed with the B. cereus enterotoxin (diarrheal type) reversed passive latex agglutination (RPLA) kit. It is concluded that several Bacillus species occurring occasionally in clinical specimens and food samples are of potential medical significance due to the expression of putative virulence factors. PMID:11525980

  13. Preparative isolation and purification of macrolactin antibiotics from marine bacterium Bacillus amyloliquefaciens using high-speed counter-current chromatography in stepwise elution mode.

    PubMed

    He, Shan; Wang, Hongqiang; Yan, Xiaojun; Zhu, Peng; Chen, Juanjuan; Yang, Rui

    2013-01-11

    Preparative high-speed counter-current chromatography (HSCCC) was successfully applied to the isolation and purification of two macrolactin antibiotics from marine bacterium Bacillus amyloliquefaciens for the first time using stepwise elution with a pair of two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water at (1:4:1:4, v/v) and (3:4:3:4, v/v). The preparative HSCCC separation was performed on 300 mg of crude sample yielding macrolactin B (22.7 mg) and macrolactin A (40.4 mg) in a one-step separation, with purities over 95% as determined by HPLC. The structures of these compounds were identified by MS, (1)H NMR and (13)C NMR. Our results demonstrated that HSCCC was an efficient technique to separate marine antibiotics, which provide an approach to solve the problem of their sample availability for drug development. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry for determination of avicularin metabolites produced by a human intestinal bacterium.

    PubMed

    Zhao, Min; Xu, Jun; Qian, Dawei; Guo, Jianming; Jiang, Shu; Shang, Er-xin; Duan, Jin-ao; Yang, Jing; Du, Le-yue

    2014-02-15

    Intestinal bacteria from human were screened to isolate the specific bacteria involved in the metabolism of avicularin. A Gram-positive anaerobic bacterium, strain 46, capable of metabolizing avicularin (quercetin-3-O-arabinoside) was isolated for the first time. Its 16S rRNA gene sequence showed 99% similarity with that of Bacillus. Then strain 46 was identified as a species of the genus Bacillus, and was named to be Bacillus sp. 46. Additionally, the metabolites were analyzed by ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) technique combined with Metabolynx™ software. The structure of these metabolites were proposed and confirmed by comparing the UPLC retention time and MS/MS spectrum with that of authentic standards. Parent compound and six metabolites were detected in the isolated bacterial samples compared with blank samples. Avicularin (M1) was anaerobic metabolized to its aglycone quercetin (M2) and methoxylated avicularin (M3, M4), then quercetin was converted to quercetin glycosides: quercetin-3-O-rhamnoside (M5), quercetin-3-O-glucoside (M6) and quercetin-7-O-glucoside (M7) by Bacillus sp. 46. The metabolic pathway and metabolites of avicularin by the intestinal bacterium Bacillus sp. 46 were reported for the first time. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Native granule associated short chain length polyhydroxyalkanoate synthase from a marine derived Bacillus sp. NQ-11/A2.

    PubMed

    Prabhu, Nimali N; Santimano, Maria Celisa; Mavinkurve, Suneela; Bhosle, Saroj N; Garg, Sandeep

    2010-01-01

    A rapidly growing marine derived Bacillus sp. strain NQ-11/A2, identified as Bacillus megaterium, accumulated 61% polyhydroxyalkanoate by weight. Diverse carbon sources served as substrates for the accumulation of short chain length polyhydroxyalkanoate. Three to nine granules either single or attached as buds could be isolated intact from each cell. Maximum activity of polyhydroxyalkanoate synthase was associated with the granules. Granule-bound polyhydroxyalkanoate synthase had a K(m) of 7.1 x 10(-5) M for DL-beta-hydroxybutyryl-CoA. Temperature and pH optima for maximum activity were 30 degrees C and 7.0, respectively. Sodium ions were required for granule-bound polyhydroxyalkanoate synthase activity and inhibited by potassium. Granule-bound polyhydroxyalkanoate synthase was apparently covalently bound to the polyhydroxyalkanoate-core of the granules and affected by the chaotropic reagent urea. Detergents inhibited the granule-bound polyhydroxyalkanoate synthase drastically whilst glycerol and bovine serum albumin stabilized the synthase.

  16. O-heterocyclic derivatives with antibacterial properties from marine bacterium Bacillus subtilis associated with seaweed, Sargassum myriocystum.

    PubMed

    Chakraborty, Kajal; Thilakan, Bini; Chakraborty, Rekha Devi; Raola, Vamshi Krishna; Joy, Minju

    2017-01-01

    The brown seaweed, Sargassum myriocystum associated with heterotrophic bacterium, Bacillus subtilis MTCC 10407 (JF834075) exhibited broad-spectra of potent antibacterial activities against pathogenic bacteria Aeromonas hydrophila, Vibrio vulnificus, and Vibrio parahaemolyticus. B. subtilis MTCC 10407 was found to be positive for polyketide synthetase (pks) gene, and therefore, was considered to characterize secondary metabolites bearing polyketide backbone. Using bioassay-guided fractionation, two new antibacterial O-heterocyclic compounds belonging to pyranyl benzoate analogs of polyketide origin, with activity against pathogenic bacteria, have been isolated from the ethyl acetate extract of B. subtilis MTCC 10407. In the present study, the secondary metabolites of B. subtilis MTCC 10407 with potent antibacterial action against bacterial pathogens was recognized to represent the platform of pks-1 gene-encoded products. Two homologous compounds 3 (3-(methoxycarbonyl)-4-(5-(2-ethylbutyl)-5,6-dihydro-3-methyl-2H-pyran-2-yl)-butyl benzoate) and 4 [2-(8-butyl-3-ethyl-3,4,4a,5,6,8a-hexahydro-2H-chromen-6-yl)-ethyl benzoate] also have been isolated from the ethyl acetate extract of host seaweed S. myriocystum. The two compounds isolated from ethyl acetate extract of S. myriocystum with lesser antibacterial properties shared similar structures with the compounds purified from B. subtilis that suggested the ecological and metabolic relationship between these compounds in seaweed-bacterial relationship. Tetrahydropyran-2-one moiety of the tetrahydropyrano-[3,2b]-pyran-2(3H)-one system of 1 might be cleaved by the metabolic pool of seaweeds to afford methyl 3-(dihydro-3-methyl-2H-pyranyl)-propanoate moiety of 3, which was found to have no significant antibacterial activity. It is therefore imperative that the presence of dihydro-methyl-2H-pyran-2-yl propanoate system is essentially required to impart the greater activity. The direct involvement of polarisability (Pl) with

  17. Production of amino acids using auxotrophic mutants of methylotrophic bacillus

    DOEpatents

    Hanson, Richard S.; Flickinger, Michael C.; Schendel, Frederick J.; Guettler, Michael V.

    2001-07-17

    A method of producing amino acids by culturing an amino acid auxotroph of a biologically pure strain of a type I methylotrophic bacterium of the genus Bacillus which exhibits sustained growth at 50.degree. C. using methanol as a carbon and energy source and requiring vitamin B.sub.12 and biotin is provided.

  18. Resistance: a threat to the insecticidal crystal proteins of Bacillus thuringiensis

    Treesearch

    Leah S. Bauer

    1995-01-01

    Insecticidal crystal proteins (also known as d-endotoxins) synthesized by the bacterium Bacillus thuringiensis Berliner (Bt) are the active ingredient of various environmentally friendly insecticides that are 1) highly compatible with natural enemies and other nontarget organisms due to narrow host specificity, 2) harmless to vertebrates, 3) biodegradable in the...

  19. Genome Sequence of a Chromium-Reducing Strain, Bacillus cereus S612

    DOE PAGES

    Wang, Dongping; Boukhalfa, Hakim; Ware, Doug S.; ...

    2015-12-10

    We report here the genome sequence of an effective chromium-reducing bacterium,Bacillus cereusstrain S612. We found that the size of the draft genome sequence is approximately 5.4 Mb, with a G+C content of 35%, and it is predicted to contain 5,450 protein-coding genes.

  20. Site-Directed Mutagenesis and Structural Studies Suggest that the Germination Protease, GPR, in Spores of Bacillus Species Is an Atypical Aspartic Acid Protease

    PubMed Central

    Carroll, Thomas M.; Setlow, Peter

    2005-01-01

    Germination protease (GPR) initiates the degradation of small, acid-soluble spore proteins (SASP) during germination of spores of Bacillus and Clostridium species. The GPR amino acid sequence is not homologous to members of the major protease families, and previous work has not identified residues involved in GPR catalysis. The current work has focused on identifying catalytically essential amino acids by mutagenesis of Bacillus megaterium gpr. A residue was selected for alteration if it (i) was conserved among spore-forming bacteria, (ii) was a potential nucleophile, and (iii) had not been ruled out as inessential for catalysis. GPR variants were overexpressed in Escherichia coli, and the active form (P41) was assayed for activity against SASP and the zymogen form (P46) was assayed for the ability to autoprocess to P41. Variants inactive against SASP and unable to autoprocess were analyzed by circular dichroism spectroscopy and multiangle laser light scattering to determine whether the variant's inactivity was due to loss of secondary or quaternary structure, respectively. Variation of D127 and D193, but no other residues, resulted in inactive P46 and P41, while variants of each form were well structured and tetrameric, suggesting that D127 and D193 are essential for activity and autoprocessing. Mapping these two aspartate residues and a highly conserved lysine onto the B. megaterium P46 crystal structure revealed a striking similarity to the catalytic residues and propeptide lysine of aspartic acid proteases. These data indicate that GPR is an atypical aspartic acid protease. PMID:16199582

  1. Laser induced fluorescence lifetime characterization of Bacillus endospore species using time correlated single photon counting analysis with the multi-exponential fit method

    NASA Astrophysics Data System (ADS)

    Smith, Clint; Edwards, Jarrod; Fisher, Andmorgan

    2010-04-01

    Rapid detection of biological material is critical for determining presence/absence of bacterial endospores within various investigative programs. Even more critical is that if select material tests positive for bacillus endospores then tests should provide data at the species level. Optical detection of microbial endospore formers such as Bacillus sp. can be heavy, cumbersome, and may only identify at the genus level. Data provided from this study will aid in characterization needed by future detection systems for further rapid breakdown analysis to gain insight into a more positive signature collection of Bacillus sp. Literature has shown that fluorescence spectroscopy of endospores could be statistically separated from other vegetative genera, but could not be separated among one another. Results of this study showed endospore species separation is possible using laser-induce fluorescence with lifetime decay analysis for Bacillus endospores. Lifetime decays of B. subtilis, B. megaterium, B. coagulans, and B. anthracis Sterne strain were investigated. Using the Multi-Exponential fit method data showed three distinct lifetimes for each species within the following ranges, 0.2-1.3 ns; 2.5-7.0 ns; 7.5-15.0 ns, when laser induced at 307 nm. The four endospore species were individually separated using principle component analysis (95% CI).

  2. Bacillus oryzisoli sp. nov., isolated from rice rhizosphere.

    PubMed

    Zhang, Xiao-Xia; Gao, Ju-Sheng; Zhang, Lei; Zhang, Cai-Wen; Ma, Xiao-Tong; Zhang, Jun

    2016-09-01

    The taxonomy of strain 1DS3-10T, a Gram-staining-positive, endospore-forming bacterium isolated from rice rhizosphere, was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the novel strain was grouped with established members of the genus Bacillus and appeared to be closely related to the type strains Bacillus benzoevorans DSM 5391T (97.9 %), Bacillus circulans DSM 11T (97.7 %), Bacillus novalis JCM 21709T (97.3 %), Bacillus soli JCM 21710T (97.3 %), Bacillus oceanisediminis CGMCC 1.10115T (97.3 %) and BacillusnealsoniiFO-92T (97.1 %). The fatty acid profile of strain 1DS3-10T, which showed a predominance of iso-C15 : 0 and anteiso-C15 : 0, supported the allocation of the strain to the genus Bacillus. The predominant menaquinone was MK-7 (100 %). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminolipids. Cell-wall peptidoglycan contained meso-diaminopimelic acid. DNA-DNA hybridization values between strain 1DS3-10T and the type strains of closely related species were 25-33 %, which supported that 1DS3-10T represented a novel species in the genus Bacillus. The results of some physiological and biochemical tests also allowed the phenotypic differentiation of strain 1DS3-10T from the most closely related recognized species. On the basis of the phylogenetic and phenotypic evidence, strain 1DS3-10T represents a novel species of the genus Bacillus, for which the name Bacillus oryzisoli sp. nov. is proposed. The type strain of the novel species is 1DS3-10T (=ACCC 19781T=DSM 29761T).

  3. Genomic, Proteomic, and Metabolite Characterization of Gemfibrozil-Degrading Organism Bacillus sp. GeD10.

    PubMed

    Kjeldal, Henrik; Zhou, Nicolette A; Wissenbach, Dirk K; von Bergen, Martin; Gough, Heidi L; Nielsen, Jeppe L

    2016-01-19

    Gemfibrozil is a widely used hypolipidemic and triglyceride lowering drug. Excess of the drug is excreted and discharged into the environment primarily via wastewater treatment plant effluents. Bacillus sp. GeD10, a gemfibrozil-degrader, was previously isolated from activated sludge. It is the first identified bacterium capable of degrading gemfibrozil. Gemfibrozil degradation by Bacillus sp. GeD10 was here studied through genome sequencing, quantitative proteomics and metabolite analysis. From the bacterial proteome of Bacillus sp. GeD10 1974 proteins were quantified, of which 284 proteins were found to be overabundant by more than 2-fold (FDR corrected p-value ≤0.032, fold change (log2) ≥ 1) in response to gemfibrozil exposure. Metabolomic analysis identified two hydroxylated intermediates as well as a glucuronidated hydroxyl-metabolite of gemfibrozil. Overall, gemfibrozil exposure in Bacillus sp. GeD10 increased the abundance of several enzymes potentially involved in gemfibrozil degradation as well as resulted in the production of several gemfibrozil metabolites. The potential catabolic pathway/modification included ring-hydroxylation preparing the substrate for subsequent ring cleavage by a meta-cleaving enzyme. The identified genes may allow for monitoring of potential gemfibrozil-degrading organisms in situ and increase the understanding of microbial processing of trace level contaminants. This study represents the first omics study on a gemfibrozil-degrading bacterium.

  4. [Characteristics of Bacillus cereus dissociants].

    PubMed

    Doroshenko, E V; Loĭko, N G; Il'inskaia, O N; Kolpakov, A I; Gornova, I B; Klimanova, E V; El'-Registan, G I

    2001-01-01

    The autoregulation of the phenotypic (populational) variability of the Bacillus cereus strain 504 was studied. The isolated colonial morphotypes of this bacterium were found to differ in their growth characteristics and the synthesis of extracellular proteases. The phenotypic variabilities of vegetative proliferating cells and those germinated from endospores and cystlike refractory cells were different. Bacterial variants also differed in the production of the d1 and d2 factors (the autoinducers of dormancy and autolysis, respectively) and sensitivity to them. The possible role of these factors in the dissociation of microorganisms is discussed.

  5. Functional Characterization of Key Enzymes involved in l-Glutamate Synthesis and Degradation in the Thermotolerant and Methylotrophic Bacterium Bacillus methanolicus

    PubMed Central

    Krog, Anne; Heggeset, Tonje Marita Bjerkan; Ellingsen, Trond Erling

    2013-01-01

    Bacillus methanolicus wild-type strain MGA3 secretes 59 g/liter−1 of l-glutamate in fed-batch methanol cultivations at 50°C. We recently sequenced the MGA3 genome, and we here characterize key enzymes involved in l-glutamate synthesis and degradation. One glutamate dehydrogenase (GDH) that is encoded by yweB and two glutamate synthases (GOGATs) that are encoded by the gltAB operon and by gltA2 were found, in contrast to Bacillus subtilis, which has two different GDHs and only one GOGAT. B. methanolicus has a glutamine synthetase (GS) that is encoded by glnA and a 2-oxoglutarate dehydrogenase (OGDH) that is encoded by the odhAB operon. The yweB, gltA, gltB, and gltA2 gene products were purified and characterized biochemically in vitro. YweB has a low Km value for ammonium (10 mM) and a high Km value for l-glutamate (250 mM), and the Vmax value is 7-fold higher for l-glutamate synthesis than for the degradation reaction. GltA and GltA2 displayed similar Km values (1 to 1.4 mM) and Vmax values (4 U/mg) for both l-glutamate and 2-oxoglutarate as the substrates, and GltB had no effect on the catalytic activities of these enzymes in vitro. Complementation assays indicated that GltA and not GltA2 is dependent on GltB for GOGAT activity in vivo. To our knowledge, this is the first report describing the presence of two active GOGATs in a bacterium. In vivo experiments indicated that OGDH activity and, to some degree, GOGAT activity play important roles in regulating l-glutamate production in this organism. PMID:23811508

  6. Functional characterization of key enzymes involved in L-glutamate synthesis and degradation in the thermotolerant and methylotrophic bacterium Bacillus methanolicus.

    PubMed

    Krog, Anne; Heggeset, Tonje Marita Bjerkan; Ellingsen, Trond Erling; Brautaset, Trygve

    2013-09-01

    Bacillus methanolicus wild-type strain MGA3 secretes 59 g/liter(-1) of l-glutamate in fed-batch methanol cultivations at 50°C. We recently sequenced the MGA3 genome, and we here characterize key enzymes involved in l-glutamate synthesis and degradation. One glutamate dehydrogenase (GDH) that is encoded by yweB and two glutamate synthases (GOGATs) that are encoded by the gltAB operon and by gltA2 were found, in contrast to Bacillus subtilis, which has two different GDHs and only one GOGAT. B. methanolicus has a glutamine synthetase (GS) that is encoded by glnA and a 2-oxoglutarate dehydrogenase (OGDH) that is encoded by the odhAB operon. The yweB, gltA, gltB, and gltA2 gene products were purified and characterized biochemically in vitro. YweB has a low Km value for ammonium (10 mM) and a high Km value for l-glutamate (250 mM), and the Vmax value is 7-fold higher for l-glutamate synthesis than for the degradation reaction. GltA and GltA2 displayed similar Km values (1 to 1.4 mM) and Vmax values (4 U/mg) for both l-glutamate and 2-oxoglutarate as the substrates, and GltB had no effect on the catalytic activities of these enzymes in vitro. Complementation assays indicated that GltA and not GltA2 is dependent on GltB for GOGAT activity in vivo. To our knowledge, this is the first report describing the presence of two active GOGATs in a bacterium. In vivo experiments indicated that OGDH activity and, to some degree, GOGAT activity play important roles in regulating l-glutamate production in this organism.

  7. Complete Genome Sequence of the Poly-γ-Glutamate-Synthesizing Bacterium Bacillus subtilis Bs-115.

    PubMed

    Wang, Fengqing; Gong, Lijuan; Zhou, Lihong; Liang, Jinzhong

    2018-04-19

    Bacillus subtilis Bs-115 was isolated from the soil of a corn field in Yutai County, Jinan City, Shandong Province, People's Republic of China, and is characterized by the efficient synthesis of poly-γ-glutamate (γ-PGA), with corn saccharification liquid as the sole energy and carbon source during the process of γ-PGA formation. Here, we report the complete genome sequence of Bacillus subtilis Bs-115 and the genes associated with poly-γ-glutamate synthesis. Copyright © 2018 Wang et al.

  8. Bacteriocins of Bacillus thuringiensis can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide.

    PubMed

    de la Fuente-Salcido, Norma M; Casados-Vázquez, Luz Edith; Barboza-Corona, J Eleazar

    2013-08-01

    Various strains of Bacillus thuringiensis are among the most successful entomopathogenic bacteria used commercially as biopesticides owing to their ability to synthesize insecticidal crystal (Cry) and cytolytic (Cyt) protein toxins during sporulation, and vegetative insecticidal (VIPs) proteins during the vegetative phase of growth. Whereas much is known about the molecular biology of Cry, Cyt, and VIPs, comparatively little is known about other proteins and metabolites synthesized by B. thuringiensis that could also have applied value. Here, we review recent reports on bacteriocins synthesized by this bacterium as they relate to antibacterial activity, molecular genetics, biophysical and biochemical properties, and methods used to separate and purify these antimicrobial peptides. We highlight the potential of bacteriocins for use as food preservatives, antibiotics, plant protection, and plant growth promoters. We suggest that B. thuringiensis could be used not only in biological control of insects but also in other agronomical and industrial areas of public interest.

  9. Antibacterial activity of antagonistic bacterium Bacillus subtilis DJM-51 against phytopathogenic Clavibacter michiganense subsp. michiganense ATCC 7429 in vitro.

    PubMed

    Jung, W J; Mabood, F; Souleimanov, A; Whyte, L G; Niederberger, T D; Smith, D L

    2014-12-01

    To investigate antibacterial activity against the tomato pathogen Clavibacter michiganense subsp. michiganense ATCC 7429 (Cmm ATCC 7429), Bacillus subtilis DJM-51 was isolated from rhizosphere soil. For isolation of bacteria, samples were taken from rhizosphere soil. The isolate, DJA-51, had strong antagonistic ability against Tomato pathogen Cmm ATCC 7429 on nutrient-broth yeast extract agar (NBYA) as indicated by inhibition zones around colonies. On the basis of the nucleotide sequence of a conserved segment of the 16S rRNA gene, the bacterium has been identified as B. subtilis DJM-51. The growth of Cmm ATCC 7429 on NBYA plates was inhibited by culture broth of B. subtilis DJM-51 including cells, by the supernatant of culture broth of B. subtilis DJM-51, and by the liquid material resulting from butanol extract of bacterial cultures. The OD value in co-culture mixture was lower than the control throughout the entire incubation period. Antibiotics obtained from B. subtilis DJM-51 inhibited the growth of Tomato pathogen Cmm ATCC 7429. These results provide potentially information about the protection of tomato from pathogen Cmm ATCC 7429 under greenhouse conditions in Quebec. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Bacillus caseinilyticus sp. nov., an alkali- and thermotolerant bacterium isolated from a soda lake.

    PubMed

    Vishnuvardhan Reddy, Sultanpuram; Thirumala, Mothe; Farooq, Mohammed

    2015-08-01

    A novel Gram-stain-positive, rod-shaped, motile, endospore-forming and proteolytic bacterial strain, SPT, was isolated from Lonar soda lake, in India. On the basis of 16S rRNA gene sequence analysis it was identified as belonging to the class Firmibacteria and was most closely related to Bacillus cellulosilyticus DSM 2522T (96.7%) and other members of the genus Bacillus ( < 95.9%). Strain SPT was catalase- and oxidase-positive. The cell-wall peptidoglycan of strain SPT contained meso-diaminopimelic acid. Polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three phospholipids, two aminolipids and two unknown lipids. The predominant isoprenoid quinone was MK-7. Anteiso-C15 : 0 (26.8%) was the predominant fatty acid and significant proportions (>5%) of iso-C15 : 0 (20.9%), C16 : 1ω7c alcohol (6.3%), iso-C16 : 0 (6.3%) and anteiso-C17 : 0 (5.3  %) were also detected in strain SPT. The DNA G+C content of strain SPT was 38.9 mol%. The results of phylogenetic, chemotaxonomic and biochemical tests allowed a clear differentiation of strain SPT from all other members of the genus Bacillus. Strain SPT represents a novel member of the genus Bacillus, for which the name Bacilluscaseinilyticus sp. nov. is proposed. The type strain is SPT ( = MCC 2612T = JCM 30246T).

  11. Effect of corona electric field on the production of gamma-poly glutamic acid based on bacillus natto

    NASA Astrophysics Data System (ADS)

    Qi, Hong; Na, Ri; Xin, Jiletu; Jie Xie, Ya; Guo, Jiu Feng

    2013-03-01

    Bacillus Natto is an important strain for gamma-poly glutamic acid (γ-PGA) production. The mutagenesis of Bacillus Natto 20646 under corona electric field and the screening of high γ-PGA producing mutant were investigated. A new mutant bacillus natto Ndlz01 was isolated from Bacillus Natto 20646 after mutation in corona electric field at 9kV for 2min. The Ndlz01 exhibited genetic stability of high γ-PGA producing ability even after five generation cultures. When the bacterium was mutated in streamer discharge state at 9kV for 2min, its death rate was more than 90%. Compared with the yield of γ-PGA based on the original Bacillus Natto 20646, the γ-PGA yield of mutant bacillus natto Ndlz01 increased from 2.6 to 5.94 g/L, with an increase rate of 129.78%.

  12. Identification of diacetonamine from soybean curd residue as a sporulation-inducing factor toward Bacillus spp.

    PubMed

    Ikeda, Aki; Kim, Dongyeop; Hashidoko, Yasuyuki

    2017-12-01

    Under bioassay-guided investigation, a sporulation-inducing factor (SIF) toward Bacillus spp. was searched for in methanol (MeOH) extracts of soybean curd residues, and diacetonamine (1) was identified as the active compound. SIF was first isolated as a monoacetylated derivative (2, 4.1 mg from 655 g soybean curd residues), and its chemical structure was elucidated by field desorption mass spectrometry, electron ionization mass spectrometry, and nuclear magnetic resonance (NMR) analyses. After 48-h incubation, 40 µM diacetonamine hydrochloride (1b) exhibited sporulation-inducing activity with 35% sporulation frequency toward a Bacillus amyloliquefaciens wild-type strain (AHU 2170), whereas 40 µM diacetone acrylamide (3) showed 99% sporulation induction, which was much higher than that of 1b. Although Bacillus megaterium NBRC 15308 was sporulated by the treatment with 400 µM 1b with 36 and 70% sporulation frequency after 72- and 96-h incubation respectively, 3 at the same concentration showed only 2% sporulation after 72-h incubation. Hence, diacetonamine (1) was characterized as a genuine SIF from soybean curd residues, but it was uncertain whether 1 is a natural product or an artifact. Spores of B. amyloliquefaciens induced by 1b survived after treatment with heating at 95 °C for 10 min, also suggesting that 1 is genuine SIF in soybean curd residue. As sporulation induction is likely linked to activation of antibiotic production in some spore-forming Firmicutes bacteria, compound 1 would be a possible chemical tool to develop an effective fermentation technology in Bacillus species.

  13. [Isolation and Identification of Petroleum Degradation Bacteria and Interspecific Interactions Among Four Bacillus Strains].

    PubMed

    Wang, Jia-nan; Shi, Yan-yun; Zheng, Li-yan; Wang, Zhe; Cai, Zhang; Liu, Jie

    2015-06-01

    Six petroleum-degrading strains were isolated from oil-contaminated soil at Dagang oil field and oil sewage on Bohai offshore drilling platform in Tianjin using enrichment culture and isolation method. The physiological biochemical test together with 16S rDNA sequencing analysis indicated that they belonged to Bacillus (S1, S2, S3, S4), Pseudomonas (W1) and Ochrobactrum (W2), respectively. The strain S3 had the maximum degradation rate of alkane (41.3%) and aromatic hydrocarbon (30.9%) among all isolated strains showing the better degradation efficiency by endogenous bacteria when compared to that by the exogenous bacteria. The four Bacillus strains were used to construct microbiome, thereafter subjected to petroleum degradation efficiency test and analyzed. The results showed that microbiome F3 consisting of S1 and S4 had the maximum degradation rates of alkane (50.5%) and aromatic hydrocarbon (54.0%), which were 69.9% and 156.1% higher than those by single bacterium, respectively. Furthermore, they were 22.1% and 74.6% respectively higher than those by the most optimal degradation bacterium S3. Microbiome F4 consisting of S2 and S3 had the minimum degradation rates of alkane (18.5%) and aromatic hydrocarbon (18.9%) which were 55.3% and 39.0% lower than the degradation rates of single bacterium, respectively. The results also demonstrated that there were both microbial synergy promotion and antagonism inhibition among bacteria of the same genus in the petroleum degradation period. Bacteria with close affinity in Bacillus genus displayed mainly promoted petroleum degradation effect.

  14. Different small, acid-soluble proteins of the alpha/beta type have interchangeable roles in the heat and UV radiation resistance of Bacillus subtilis spores.

    PubMed Central

    Mason, J M; Setlow, P

    1987-01-01

    Spores of Bacillus subtilis strains which carry deletion mutations in one gene (sspA) or two genes (sspA and sspB) which code for major alpha/beta-type small, acid-soluble spore proteins (SASP) are known to be much more sensitive to heat and UV radiation than wild-type spores. This heat- and UV-sensitive phenotype was cured completely or in part by introduction into these mutant strains of one or more copies of the sspA or sspB genes themselves; multiple copies of the B. subtilis sspD gene, which codes for a minor alpha/beta-type SASP; or multiple copies of the SASP-C gene, which codes for a major alpha/beta-type SASP of Bacillus megaterium. These findings suggest that alpha/beta-type SASP play interchangeable roles in the heat and UV radiation resistance of bacterial spores. Images PMID:3112127

  15. Introduction and expression of the cry1Ac gene of Bacillus thuringiensis in a cereal-associated bacterium, Bacillus polymyxa.

    PubMed

    Sudha, S N; Jayakumar, R; Sekar, V

    1999-03-01

    The abilities of Bacillus polymyxa and Bacillus thuringiensis to survive on the rice phyllospere were compared; it was found that B. polymyxa colonizes the crop better. This study also showed that B. polymyxa inoculation to rice plants increased the shoot and the root growth of the crop. Efforts were made to introduce the cry1Ac gene of B. thuringiensis subsp. kurstaki into B. polymyxa so that the application of such transgenic B. polymyxa strains would prove to be dually beneficial to rice crops both as a biopesticide and as a biofertilizer. Immunoblot analysis of the recombinant organism containing the cry1Ac gene, strain BP113, indicated efficient expression of this gene in the heterologous host. Bioassays with the first instar larvae of the yellow stem borer of rice (Scirpophaga incertulas) revealed that the protein preparations from BP113 were toxic.

  16. Antibacterial efficacy of silver nanoparticles and ethyl acetate's metabolites of the potent halophilic (marine) bacterium, Bacillus cereus A30 on multidrug resistant bacteria.

    PubMed

    Arul, Dhayalan; Balasubramani, Govindasamy; Balasubramanian, Velramar; Natarajan, Thillainathan; Perumal, Pachiappan

    2017-10-01

    Bacteria are generally responsible for the prevalence of several diseases and pathogenic bacteria are showing increasing resistance to different antibacterials. During the present study an extremophilic bacterium-A30 isolated from the marine waters was characterized and evaluated against four multi-drug resistant (MDR) pathogens, viz; Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The sensitivity pattern of the selected pathogens was tested with 31 antibiotics. Among the 47 marine microbial extracts tested on 4-MDR pathogens viz: Methicillin-resistant Staphylococcus aureus (MRSA), E. coli, K. pneumoniae and P. aeruginosa, only our strain A30 strain exhibited highest efficacy. This strain was subsequently subjected to 16S rDNA sequencing which confirmed its allocation as Bacillus cereus. Silver nanoparticle (AgNPs) synthesis and ethyl acetate extraction were performed using the supernatant of B. cereus. The synthesized AgNPs were characterized by UV-Visible, Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), Field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and Zeta potential analyses. The presence of functional groups and 13 bioactive components in the ethyl acetate extract were analyzed using FT-IR and gas chromatography-mass spectrometry (GC-MS). The synthesized of AgNPs and the ethyl acetate extract showed preponderant activity against P. aeruginosa and MRSA, respectively. The effects of AgNPs were significant when compared to ethyl acetate extract. Therefore, the halophilic bacterium, B. cereus mediated AgNPs could provide antibacterial applications in the biomedical industries.

  17. Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp.

    PubMed

    Rajendran, Geetha; Sing, Falguni; Desai, Anjana J; Archana, G

    2008-07-01

    Endophytic bacteria which are known to reside in plant tissues have often been shown to promote plant growth. Present study deals with the isolation of putative endophytes from the surface sterilized root nodules of pigeon pea (Cajanus cajan) designated as non-rhizobial (NR) isolates. Three of these non-rhizobial isolates called NR2, NR4 and NR6 showed plant growth promotion with respect to increase in plant fresh weight, chlorophyll content, nodule number and nodule fresh weight when co-inoculated with the rhizobial bioinoculant strain IC3123. The three isolates were neither able to nodulate C. cajan nor did they show significant plant growth promotion when inoculated alone without Rhizobium spp. IC3123. All the three isolates were gram positive rods with NR2 and NR4 showing endospore formation and formed one single cluster in Amplified Ribosomal DNA Restriction Analysis (ARDRA). Partial sequences of 16S rRNA genes of NR4 and NR6 showed 97% similarity to Bacillus megaterium. The Bacillus strains NR4 and NR6 were able to produce siderophores which the rhizobial bioinoculant IC3123 was able to cross-utilize. Under iron starved conditions IC3123 showed enhanced growth in the presence of the Bacillus isolates indicating that siderophore mediated interactions may be underlying mechanism of beneficial effect of the NR isolates on nodulation by IC3123.

  18. Antibiotic-Resistant Bacteria.

    ERIC Educational Resources Information Center

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  19. Evidence of mercury trapping in biofilm-EPS and mer operon-based volatilization of inorganic mercury in a marine bacterium Bacillus cereus BW-201B.

    PubMed

    Dash, Hirak R; Basu, Subham; Das, Surajit

    2017-04-01

    Biofilm-forming mercury-resistant marine bacterium Bacillus cereus BW-201B has been explored to evident that the bacterial biofilm-EPS (exopolymers) trap inorganic mercury but subsequently release EPS-bound mercury for induction of mer operon-mediated volatilization of inorganic mercury. The isolate was able to tolerate 50 ppm of mercury and forms biofilm in presence of mercury. mer operon-mediated volatilization was confirmed, and -SH was found to be the key functional group of bacterial EPS responsible for mercury binding. Biofilm-EPS-bound mercury was found to be internalized to the bacterial system as confirmed by reversible conformational change of -SH group and increased expression level of merA gene in a timescale experiment. Biofilm-EPS trapped Hg after 24 h of incubation, and by 96 h, the volatilization process reaches to its optimum confirming the internalization of EPS-bound mercury to the bacterial cells. Biofilm disintegration at the same time corroborates the results.

  20. Clinical effects of probiotics containing Bacillus species on gingivitis: a pilot randomized controlled trial.

    PubMed

    Alkaya, B; Laleman, I; Keceli, S; Ozcelik, O; Cenk Haytac, M; Teughels, W

    2017-06-01

    Lactobacillus spp. and bifidobacteria are the most frequently used probiotics in oral health research. However, although probiotic effects have been suggested for other genera, such as bacilli, no trials are available to describe the effect of bacilli probiotics on gingivitis in humans. The aim of the present study was to evaluate the clinical effects of a bacilli-containing toothpaste, a mouthrinse and a toothbrush cleaner versus a placebo in patients with generalized gingivitis. In this double-blind placebo-controlled randomized clinical trial, nonsmoking, systemically healthy patients with generalized gingivitis were included. They used a placebo or an experimental probiotic Bacillus subtilis-, Bacillus megaterium- and Bacillus pumulus-containing toothpaste, mouthrinse and toothbrush cleaner for 8 wk. Primary outcome measures of interest were plaque and gingivitis index, and the secondary outcome measures were pocket probing depth and bleeding on probing. Twenty male and 20 female patients were randomized over the two groups. All participants could be included in the final analysis. Although plaque and gingivitis indices were significantly reduced after 8 wk, no intergroup differences could be found at any time point. Also, for the secondary outcome measure, intragroup but no intergroup differences could be detected. No harm or unintended effects were reported by the patients after using the study products. This study did not show any statistically significant differences between a placebo and a bacilli-containing toothpaste, mouthrinse and toothbrush cleaner on gingivitis parameters. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Characterization of silver nanoparticles synthesized by Bacillus thuringiensis as a nanobiopesticide for insect pest control

    USDA-ARS?s Scientific Manuscript database

    Nanotechnology has become one of the most promising new approaches for pest control in recent years. In this research, biocompatible silver nanoparticles (Btk-AgNPs) were synthesised by using the entomopathogenic bacterium, Bacillus thuringiensis kurstaki (Btk) as a low-cost and eco-friendly product...

  2. Inactivation of Bacillus spores by the supercritical carbon dioxide micro-bubble method.

    PubMed

    Ishikawa, H; Shimoda, M; Tamaya, K; Yonekura, A; Kawano, T; Osajima, Y

    1997-06-01

    Bacillus spores were effectively inactivated by the supercritical (SC) CO2 micro-bubble method. The micro-bubble SC CO2 treatment of B. cereus, B. subtilis, B. megaterium, B. polymyxa, and B. coagulans at 40 degrees C and 30 MPa for 30 min produced greater reduction (about 3 log cycles of reduction) than a similar treatment without a filter. The SC CO2 treatment of B. polymyxa, B. cereus, and B. subtilis spores at 45 degrees C, 50 degrees C, respectively, and 30 MPa for 60 min resulted in a 6-log cycle reduction of survival. The SC CO2 treatment under the foregoing conditions should offer higher efficiency than that of heat treatment at 100 degrees C for 60 min. In addition, the SC CO2 treatment (30 MPa, 60 degrees C, 30 min) of B. polymyxa and B. cereus spores also produced a 6-log cycle reduction.

  3. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  4. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis.

    PubMed

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S; Qian, Pei-Yuan

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning "plug-and-play" approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  5. Classification of Bacillus beneficial substances related to plants, humans and animals.

    PubMed

    Mongkolthanaruk, Wiyada

    2012-12-01

    Genus Bacillus is a spore-forming bacterium that has unique properties in cell differentiation, allowing the forming of spores in stress conditions and activated in the vegetative cell, with suitable environments occurring during the life cycle acting as a trigger. Their habitat is mainly in soil; thus, many species of Bacillus are associated with plants as well as rhizosphere bacteria and endophytic bacteria. Signal transduction is the principal mechanism of interactions, both within the cell community and with the external environment, which provides the subsequent functions or properties for the cell. The antimicrobial compounds of Bacillus sp. are potentially useful products, which have been used in agriculture for the inhibition of phytopathogens, for the stimulation of plant growth, and in the food industry as probiotics. There are two systems for the synthesis of these substances: nonribosomal synthesis of cyclic lipopeptides (NRPS) and polyketides (PKS). For each group, the structures, properties, and genes of the main products are described. The different compounds described and the way in which they co-exist exhibit the relationship of Bacillus substances to plants, humans, and animals.

  6. Survival of diverse bacillus thuringiensis strains in gypsy moth (Lepidotera: Lymantriidae) is correlated with urease production

    USDA-ARS?s Scientific Manuscript database

    Bacillus thuringiensis is an entomopathogenic bacterium that can kill a variety of pest insects, but seldom causes epizootics because it replicates poorly in insects. By attempting to repeatedly pass lepidopteran-active B. thuringiensis strains through gypsy moth larvae, we found that only those str...

  7. Tomato ethylene sensitivity determines interaction with plant growth-promoting bacteria.

    PubMed

    Ibort, Pablo; Molina, Sonia; Núñez, Rafael; Zamarreño, Ángel María; García-Mina, José María; Ruiz-Lozano, Juan Manuel; Orozco-Mosqueda, Maria Del Carmen; Glick, Bernard R; Aroca, Ricardo

    2017-07-01

    Plant growth-promoting bacteria (PGPB) are soil micro-organisms able to interact with plants and stimulate their growth, positively affecting plant physiology and development. Although ethylene plays a key role in plant growth, little is known about the involvement of ethylene sensitivity in bacterial inoculation effects on plant physiology. Thus, the present study was pursued to establish whether ethylene perception is critical for plant-bacteria interaction and growth induction by two different PGPB strains, and to assess the physiological effects of these strains in juvenile and mature tomato ( Solanum lycopersicum ) plants. An experiment was performed with the ethylene-insensitive tomato never ripe and its isogenic wild-type line in which these two strains were inoculated with either Bacillus megaterium or Enterobacter sp. C7. Plants were grown until juvenile and mature stages, when biomass, stomatal conductance, photosynthesis as well as nutritional, hormonal and metabolic statuses were analysed. Bacillus megaterium promoted growth only in mature wild type plants. However, Enterobacter C7 PGPB activity affected both wild-type and never ripe plants. Furthermore, PGPB inoculation affected physiological parameters and root metabolite levels in juvenile plants; meanwhile plant nutrition was highly dependent on ethylene sensitivity and was altered at the mature stage. Bacillus megaterium inoculation improved carbon assimilation in wild-type plants. However, insensitivity to ethylene compromised B. megaterium PGPB activity, affecting photosynthetic efficiency, plant nutrition and the root sugar content. Nevertheless, Enterobacter C7 inoculation modified the root amino acid content in addition to stomatal conductance and plant nutrition. Insensitivity to ethylene severely impaired B. megaterium interaction with tomato plants, resulting in physiological modifications and loss of PGPB activity. In contrast, Enterobacter C7 inoculation stimulated growth independently of

  8. Purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis (X5B).

    PubMed

    Ghafoori, Hossein; Askari, Mansoure; Sarikhan, Sajjad

    2016-03-01

    This study reports the purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis, strain X5B. The enzyme was purified to homogeneity by acetone precipitation, ultrafiltration and carboxymethyl (CM) cation exchange chromatography, respectively. The purified protease was a monomeric enzyme with a relative molecular mass of 48-50 kDa and it was inhibited by PMSF indicating that it is a serine-protease. The optimum pH, temperature and NaCl concentration were 9.5, 35 °C and 0.98 M, respectively. The enzyme showed a significant tolerance to salt and alkaline pH. It retained approximately 50% of activity at 2.5 M NaCl and about 70% of activity at highly alkaline pH of 11.0; therefore, it was a moderately halophilic and also can be activated by metals, especially by Ca(2+). The specific activity of the purified protease was measured to be 425.23 μmol of tyrosine/min per mg of protein using casein as a substrate. The apparent K m and V max values were 0.126 mM and 0.523 mM/min, respectively and the accurate value of k cat was obtained as 3.284 × 10(-2) s(-1). These special and important characteristics make this serine protease as valuable tool for industrial applications.

  9. Performance of Microbial Concrete Developed Using Bacillus Subtilus JC3

    NASA Astrophysics Data System (ADS)

    Rao, M. V. Seshagiri; Reddy, V. Srinivasa; Sasikala, Ch.

    2017-12-01

    Concrete is vulnerable to deterioration, corrosion, and cracks, and the consequent damage and loss of strength requires immensely expensive remediation and repair. So need for special concrete that they would respond to crack formation with an autonomous self-healing action lead to research and development of microbial concrete. The microbial concrete works on the principle of calcite mineral precipitation by a specific group of alkali-resistant spore-forming bacteria related to the genus Bacillus called Bacillus subtilis JC3, this phenomenon is called biomineralization or Microbiologically Induced Calcite Crystal Precipitation. Bacillus subtilis JC3, a common soil bacterium, has inherent ability to precipitate calcite crystals continuously which enhances the strength and durability performance of concrete enormously. This microbial concrete can be called as a "Self healing Bacterial Concrete" because it can remediate its cracks by itself without any human intervention and would make the concrete more durable and sustainable. This paper discuss the incorporation of microorganism Bacillus subtilis JC3 (developed at JNTU, India) into concrete and presents the results of experimental investigations carried out to study the improved durability and sustainability characteristics of microbial concrete.

  10. Alternative Differential Identification Approaches for 2 Similar Bacilli Commonly Studied in Microbiology.

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.

    1991-01-01

    Alternatives to the traditional unknown tests that permit a clear and unequivocal differential identification decision between Bacillus subtilis and Bacillus megaterium are presented. Plates of Phenylethyl Alcohol agar with Blood (PEAB), slants of Bile Esculin agar and plates of DNA agar are used. The materials, methods, results, and conclusions…

  11. [A METHOD FOR DIFFERENTIATION OF BACILLUS ANTHRACIS STRAINS AND PHYLOGENETICALLY RELATED SPECIES BASED ON DETERMINATION OF THE STRUCTURAL DIFFERENCESBETWEEN CHROMOSOMAL GENES FOR BIOSYNTHESIS OF FLAGELLIN AND METHIONINE].

    PubMed

    Mikshis, N I; Kashtanova, T N; Kutyrev, V V

    2015-01-01

    Nucleotide sequence analysis of several genes responsible for the anthrax pathogen definitive properties--motility and penicillinase activity--determined a chromosomal locus promising for interspecies differentiation. We demonstrated that the gene fliC encoding flagellin synthesis contains extended region, distinguishing B. anthracis strains from the majority of non-pathogenic and opportunistic bacilli. A novel method for the anthrax pathogen indication and identification based on determination of the differences in the chromosomal genes fliC and hom2 structure was suggested. A total of 60 strains of different Bacillus spp. (B. anthracis, B. cereus, B. thuringiensis, B. mycoides, B. megaterium, B. subtilis, etc.) were tested using two chromosomal DNA targets. The algorithm developed in this work permits to detect the pathogenic microorganism and reliably differentiate it from other Bacillus spp. representatives. The introduction of primers complementary to specific sequences of pXO1 and pXQ2 plasmids into the multiplex PCR makes it possible to receive additional information on proposed virulence of the isolate.

  12. A probability model for enterotoxin production of Bacillus cereus as a function of pH and temperature

    USDA-ARS?s Scientific Manuscript database

    Bacillus cereus is frequently isolated from a variety of foods including vegetables, dairy products, meat, and other raw and processed foods. The bacterium is capable of producing enterotoxin and emetic toxin that can cause severe nausea, vomiting and diarrhea. The objectives of this study were to a...

  13. Bacillus siamensis sp. nov., isolated from salted crab (poo-khem) in Thailand.

    PubMed

    Sumpavapol, Punnanee; Tongyonk, Linna; Tanasupawat, Somboon; Chokesajjawatee, Nipa; Luxananil, Plearnpis; Visessanguan, Wonnop

    2010-10-01

    A Gram-positive, endospore-forming, rod-shaped bacterium, strain PD-A10(T), was isolated from salted crab (poo-khem) in Thailand and subjected to a taxonomic study. Phenotypic and chemotaxonomic characteristics, including phylogenetic analyses, showed that the novel strain was a member of the genus Bacillus. The novel strain grew in medium with 0-14 % (w/v) NaCl, at 4-55°C and at pH4.5-9. The predominant quinone was a menaquinone with seven isoprene units (MK-7). The major fatty acids were anteiso-C₁₅:₀ and anteiso-C₁₇:₀. Polar lipid analysis revealed the presence of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, lysylphosphatidylglycerol, glycolipid and unknown lipids. The DNA G+C content was 41.4 mol%. The 16S rRNA gene sequence similarities between strain PD-A10(T) and Bacillus amyloliquefaciens NBRC 15535(T), Bacillus subtilis DSM 10(T), Bacillus vallismortis DSM 11031(T) and Bacillus mojavensis IFO 15718(T) were 99.5, 99.4, 99.4 and 99.2 %, respectively. Strain PD-A10(T) showed a low degree similarity of rep-PCR fingerprints and low DNA-DNA relatedness with the above-mentioned species. On the basis of the data gathered in this study, strain PD-A10(T) should be classified as representing a novel species of the genus Bacillus, for which the name Bacillus siamensis sp. nov. is proposed. The type strain is PD-A10(T) (=BCC 22614(T)=KCTC 13613(T)).

  14. Bacillus nanhaiisediminis sp. nov., an alkalitolerant member of Bacillus rRNA group 6.

    PubMed

    Zhang, Jianli; Wang, Jiewei; Song, Fei; Fang, Caiyuan; Xin, Yuhua; Zhang, Yabo

    2011-05-01

    A Gram-stain-positive, rod-shaped bacterium, designated strain NH3(T), was isolated from a sediment sample from the South China Sea and was subjected to a polyphasic taxonomic study. The isolate grew optimally at 37 °C and pH 9. Strain NH3(T) had cell-wall peptidoglycan based on meso-diaminopimelic acid and MK-7 as the predominant menaquinone. The cellular fatty acid profile included significant amounts of iso-C(15 : 0) and iso-C(14 : 0). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content of strain NH3(T) was 40.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain NH3(T) was a member of rRNA group 6 of the genus Bacillus, which includes alkalitolerant, alkaliphilic and halotolerant species. The closest phylogenetic relatives were Bacillus akibai 1139(T) (96.82 % 16S rRNA gene sequence similarity), B. pseudofirmus DSM 8715(T) (96.76 %), B. okhensis Kh10-101(T) (96.76 %) and B. alkalidiazotrophicus MS 6(T) (96.47 %). Strain NH3(T) could be distinguished from these phylogenetically close neighbours based on a number of phenotypic properties. On the basis of phenotypic and chemotaxonomic characteristics and phylogenetic data, we conclude that strain NH3(T) ( = CGMCC 1.10116(T)  = JCM 16507(T)) merits classification as the type strain of a novel species, for which the name Bacillus nanhaiisediminis sp. nov. is proposed.

  15. Draft Genome Sequence of the Nicotinate-Metabolizing Soil Bacterium Bacillus niacini DSM 2923

    PubMed Central

    Harvey, Zachary H.

    2014-01-01

    Bacillus niacini is a member of a small yet diverse group of bacteria able to catabolize nicotinic acid. We report here the availability of a draft genome for B. niacini, which we will use to understand the evolution of its namesake phenotype, which appears to be unique among the species in its phylogenetic neighborhood. PMID:25477409

  16. Comparative evaluation of extracellular β-D-fructofuranosidase in submerged and solid-state fermentation produced by newly identified Bacillus subtilis strain.

    PubMed

    Lincoln, Lynette; More, Sunil S

    2018-04-17

    To screen and identify a potential extracellular β-D-fructofuranosidase or invertase producing bacterium from soil, and comparatively evaluate the enzyme biosynthesis under submerged and solid-state fermentation. Extracellular invertase producing bacteria were screened from soil. Identification of the potent bacterium was performed based on microscopic examinations and 16S rDNA molecular sequencing. Bacillus subtilis LYN12 invertase secretion was surplus with wheat bran humidified with molasses medium (70%), with elevated activity at 48 h and 37 °C under solid-state fermentation, whereas under submerged conditions increased activity was observed at 24 h and 45 °C in the molasses medium. The study revealed a simple fermentative medium for elevated production of extracellular invertase from a fast growing Bacillus strain. Bacterial invertases are scarce and limited reports are available. By far, this is the first report on the comparative analysis of optimization of extracellular invertase synthesis from Bacillus subtilis strain by submerged and solid-state fermentation. The use of agricultural residues increased yields resulting in development of a cost-effective and stable approach. Bacillus subtilis LYN12 invertase possesses excellent fermenting capability to utilize agro-industrial residues under submerged and solid-state conditions. This could be a beneficial candidate in food and beverage processing industries. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Antibacterial and anticancer activity of ε-poly-L-lysine (ε-PL) produced by a marine Bacillus subtilis sp.

    PubMed

    El-Sersy, Nermeen A; Abdelwahab, Abeer E; Abouelkhiir, Samia S; Abou-Zeid, Dunja-Manal; Sabry, Soraya A

    2012-10-01

    A marine Bacillus subtilis SDNS was isolated from sea water in Alexandria and identified using 16S rDNA sequence analysis. The bacterium produced a compound active against a number of gram negativeve bacteria. Moreover, the anticancer activity of this bacterium was tested against three different human cell lines (Hela S3, HepG2 and CaCo). The highest inhibition activity was recorded against Hela S3 cell line (77.2%), while almost no activity was recorded towards CaCo cell line. HPLC and TLC analyses supported evidence that Bacillus subtilis SDNS product is ε-poly-L-lysine. To achieve maximum production, Plackett-Burman experimental design was applied. A 1.5 fold increase was observed when Bacillus subtilis SDNS was grown in optimized medium composed of g/l: (NH(4))(2) SO(4), 15; K(2)HPO(4), 0.3; KH(2)PO(4), 2; MgSO(4) · 7 H(2)O, 1; ZnSO(4) · 7 H(2)O, 0; FeSO(4) · 7 H(2)O, 0.03; glucose, 25; yeast extract, 1, pH 6.8. Under optimized culture condition, a product value of 76.3 mg/l could be obtained. According to available literature, this is the first announcement for the production of ε-poly-L-lysine (ε-PL) by a member of genus Bacillus. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal

    NASA Astrophysics Data System (ADS)

    Vreeland, Russell H.; Rosenzweig, William D.; Powers, Dennis W.

    2000-10-01

    Bacteria have been found associated with a variety of ancient samples, however few studies are generally accepted due to questions about sample quality and contamination. When Cano and Borucki isolated a strain of Bacillus sphaericus from an extinct bee trapped in 25-30 million-year-old amber, careful sample selection and stringent sterilization techniques were the keys to acceptance. Here we report the isolation and growth of a previously unrecognized spore-forming bacterium (Bacillus species, designated 2-9-3) from a brine inclusion within a 250million-year-old salt crystal from the Permian Salado Formation. Complete gene sequences of the 16S ribosomal DNA show that the organism is part of the lineage of Bacillus marismortui and Virgibacillus pantothenticus. Delicate crystal structures and sedimentary features indicate the salt has not recrystallized since formation. Samples were rejected if brine inclusions showed physical signs of possible contamination. Surfaces of salt crystal samples were sterilized with strong alkali and acid before extracting brines from inclusions. Sterilization procedures reduce the probability of contamination to less than 1 in 10 9.

  19. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal.

    PubMed

    Vreeland, R H; Rosenzweig, W D; Powers, D W

    2000-10-19

    Bacteria have been found associated with a variety of ancient samples, however few studies are generally accepted due to questions about sample quality and contamination. When Cano and Borucki isolated a strain of Bacillus sphaericus from an extinct bee trapped in 25-30 million-year-old amber, careful sample selection and stringent sterilization techniques were the keys to acceptance. Here we report the isolation and growth of a previously unrecognized spore-forming bacterium (Bacillus species, designated 2-9-3) from a brine inclusion within a 250 million-year-old salt crystal from the Permian Salado Formation. Complete gene sequences of the 16S ribosomal DNA show that the organism is part of the lineage of Bacillus marismortui and Virgibacillus pantothenticus. Delicate crystal structures and sedimentary features indicate the salt has not recrystallized since formation. Samples were rejected if brine inclusions showed physical signs of possible contamination. Surfaces of salt crystal samples were sterilized with strong alkali and acid before extracting brines from inclusions. Sterilization procedures reduce the probability of contamination to less than 1 in 10(9).

  20. Expression of Bacillus anthracis Protective Antigen in Bacillus megaterium

    DTIC Science & Technology

    2004-03-01

    was easily purified to homogeneity in a single step by ion exchange chromatography. N-terminal amino acid sequencing of the final product confirmed...and this material was purified in a single step by ion-exchange chromatography. N-terminal amino acid sequencing definitively proved that the rPA was...production of a poly-D-glutamic acid capsule, encoded by pXO2, is essential for immune evasion and cellular survival in the host [3,4]. The lethal effects

  1. The carotenoid pigments of a marine Bacillus firmus strain.

    PubMed

    Pane, L; Radin, L; Franconi, G; Carli, A

    1996-01-01

    As carotenoids have important biological functions, it is important to discover new natural sources of these pigments. The bacterial strains isolated from a sea water rock pool were cultivated on marine agar containing yeast extract and identified by conventional methods. The bacterial pigments were extracted with methanol and analyzed by reversed-phase HPLC with diode array detection. The major pigment of a Bacillus firmus strain was identified as astaxanthin; the results obtained suggest potential use of this bacterium in aquaculture and in pharmaceutical field.

  2. Bacillus cereus Biofilms—Same, Only Different

    PubMed Central

    Majed, Racha; Faille, Christine; Kallassy, Mireille; Gohar, Michel

    2016-01-01

    Bacillus cereus displays a high diversity of lifestyles and ecological niches and include beneficial as well as pathogenic strains. These strains are widespread in the environment, are found on inert as well as on living surfaces and contaminate persistently the production lines of the food industry. Biofilms are suspected to play a key role in this ubiquitous distribution and in this persistency. Indeed, B. cereus produces a variety of biofilms which differ in their architecture and mechanism of formation, possibly reflecting an adaptation to various environments. Depending on the strain, B. cereus has the ability to grow as immersed or floating biofilms, and to secrete within the biofilm a vast array of metabolites, surfactants, bacteriocins, enzymes, and toxins, all compounds susceptible to act on the biofilm itself and/or on its environment. Within the biofilm, B. cereus exists in different physiological states and is able to generate highly resistant and adhesive spores, which themselves will increase the resistance of the bacterium to antimicrobials or to cleaning procedures. Current researches show that, despite similarities with the regulation processes and effector molecules involved in the initiation and maturation of the extensively studied Bacillus subtilis biofilm, important differences exists between the two species. The present review summarizes the up to date knowledge on biofilms produced by B. cereus and by two closely related pathogens, Bacillus thuringiensis and Bacillus anthracis. Economic issues caused by B. cereus biofilms and management strategies implemented to control these biofilms are included in this review, which also discuss the ecological and functional roles of biofilms in the lifecycle of these bacterial species and explore future developments in this important research area. PMID:27458448

  3. Draft Genome Sequence of Bacillus stratosphericus LAMA 585, Isolated from the Atlantic Deep Sea

    PubMed Central

    Cabral, Alencar; Andreote, Fernando Dini; Cavalett, Angélica; Pessatti, Marcos Luiz; Dini-Andreote, Francisco; da Silva, Marcus Adonai Castro

    2013-01-01

    Bacillus stratosphericus LAMA 585 was isolated from the Mid-Atlantic-Ridge seafloor (5,500-m depth). This bacterium presents the capacity for cellulase, xylanase, and lipase production when growing aerobically in marine-broth media. Genes involved in the tolerance of oligotrophic and extreme conditions and prospection of biotechnological products were annotated in the draft genome (3.7 Mb). PMID:23640380

  4. Vacuum distillation residue upgrading by an indigenous bacillus cereus

    PubMed Central

    2013-01-01

    Background Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly. Results A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332). This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR), as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively. Conclusion Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils. PMID:24499629

  5. Vacuum distillation residue upgrading by an indigenous Bacillus cereus.

    PubMed

    Tabatabaee, Mitra Sadat; Mazaheri Assadi, Mahnaz

    2013-07-16

    Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly. A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332). This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR), as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively. Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils.

  6. Draft Genome Sequence of the Nicotinate-Metabolizing Soil Bacterium Bacillus niacini DSM 2923.

    PubMed

    Harvey, Zachary H; Snider, Mark J

    2014-12-04

    Bacillus niacini is a member of a small yet diverse group of bacteria able to catabolize nicotinic acid. We report here the availability of a draft genome for B. niacini, which we will use to understand the evolution of its namesake phenotype, which appears to be unique among the species in its phylogenetic neighborhood. Copyright © 2014 Harvey and Snider.

  7. Molecular mechanisms involved in Bacillus subtilis biofilm formation

    PubMed Central

    Mielich-Süss, Benjamin; Lopez, Daniel

    2014-01-01

    Summary Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil-dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programs of cellular specialization and cell-cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis. In particular, a special emphasis is placed on summarizing the most recent discoveries in the field and integrating them into the general view of these truly sophisticated microbial communities. PMID:24909922

  8. Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers.

    PubMed

    Ke, Qian; Zhang, Yunge; Wu, Xilin; Su, Xiaomei; Wang, Yuyang; Lin, Hongjun; Mei, Rongwu; Zhang, Yu; Hashmi, Muhammad Zaffar; Chen, Chongjun; Chen, Jianrong

    2018-09-15

    In this study, high-efficient phenol-degrading bacterium Bacillus sp. SAS19 which was isolated from activated sludge by resuscitation-promoting factor (Rpf) addition, were immobilized on porous carbonaceous gels (CGs) for phenol degradation. The phenol-degrading capabilities of free and immobilized Bacillus sp. SAS19 were evaluated under various initial phenol concentrations. The obtained results showed that phenol could be removed effectively by both free and immobilized Bacillus sp. SAS19. Furthermore, for degradation of phenol at high concentrations, long-term utilization and recycling were more readily achieved for immobilized bacteria as compared to free bacteria. Immobilized bacteria exhibited significant increase in phenol-degrading capabilities in the third cycle of recycling and reuse, which demonstrated 87.2% and 100% of phenol (1600 mg/L) degradation efficiency at 12 and 24 h, respectively. The present study revealed that immobilized Bacillus sp. SAS19 can be potentially used for enhanced treatment of synthetic phenol-laden wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Draft Genome Sequence of Bacillus cereus CITVM-11.1, a Strain Exhibiting Interesting Antifungal Activities.

    PubMed

    Caballero, Javier; Peralta, Cecilia; Molla, Antonella; Del Valle, Eleodoro E; Caballero, Primitivo; Berry, Colin; Felipe, Verónica; Yaryura, Pablo; Palma, Leopoldo

    2018-01-01

    Bacillus cereus is a gram-positive, spore-forming bacterium possessing an important and historical record as a human-pathogenic bacterium. However, several strains of this species exhibit interesting potential to be used as plant growth-promoting rhizobacteria. Here, we report the draft genome sequence of B. cereus strain CITVM-11.1, which consists of 37 contig sequences, accounting for 5,746,486 bp (with a GC content of 34.8%) and 5,752 predicted protein-coding sequences. Several of them could potentially be involved in plant-bacterium interactions and may contribute to the strong antagonistic activity shown by this strain against the charcoal root rot fungus, Macrophomina phaseolina. This genomic sequence also showed a number of genes that may confer this strain resistance against several polluting heavy metals and for the bioconversion of mycotoxins. © 2018 S. Karger AG, Basel.

  10. Detection of Bacillus spores using PCR and FTA filters.

    PubMed

    Lampel, Keith A; Dyer, Deanne; Kornegay, Leroy; Orlandi, Palmer A

    2004-05-01

    Emphasis has been placed on developing and implementing rapid detection systems for microbial pathogens. We have explored the utility of expanding FTA filter technology for the preparation of template DNA for PCR from bacterial spores. Isolated spores from several Bacillus spp., B. subtilis, B. cereus, and B. megaterium, were applied to FTA filters, and specific DNA products were amplified by PCR. Spore preparations were examined microscopically to ensure that the presence of vegetative cells, if any, did not yield misleading results. PCR primers SRM86 and SRM87 targeted a conserved region of bacterial rRNA genes, whereas primers Bsub5F and Bsub3R amplified a product from a conserved sequence of the B. subtilis rRNA gene. With the use of the latter set of primers for nested PCR, the sensitivity of the PCR-based assay was increased. Overall, 53 spores could be detected after the first round of PCR, and the sensitivity was increased to five spores by nested PCR. FTA filters are an excellent platform to remove PCR inhibitors and have universal applications for environmental, clinical, and food samples.

  11. [Growth peculiarities and properties of Bacillus subtilis IMV B-7023 cell surface in the medium with glycerophosphate].

    PubMed

    Roĭ, A A; Gordienko, A S; Kurdish, I K

    2009-01-01

    It is established that, depending on the amount of the basic elements of carbon and phosphorus nutrition in the cultivation medium, Bacillus subtilis IMV B-7023 can use glycerophosphate as a source of carbon, carbon and phosphorus, or phosphorus. The found differences in bacterium physiology correlate with the change of cell surface properties.

  12. Physiological and proteomic analysis of plant growth enhancement by the rhizobacteria Bacillus sp. JS.

    PubMed

    Kim, Ji Seong; Lee, Jeong Eun; Nie, Hualin; Lee, Yong Jae; Kim, Sun Tae; Kim, Sun-Hyung

    2018-02-01

    In this study, the effects of the plant growth-promoting rhizobacterium (PGPR), Bacillus sp. JS on the growth of tobacco (Nicotiana tabacum 'Xanthi') and lettuce (Lactuca sativa 'Crispa'), were evaluated by comparing various growth parameters between plants treated with the bacterium and those exposed to water or nutrient broth as control. In both tobacco and lettuce, fresh weight and length of shoots were increased upon exposure to Bacillus sp. JS. To explain the overall de novo expression of plant proteins by bacterial volatiles, two-dimensional gel electrophoresis was performed on samples from PGPR-treated tobacco plants. Our results showed that chlorophyll a/b binding proteins were significantly up-regulated, and total chlorophyll content was also increased. Our findings indicate the potential benefits of using Bacillus sp. JS as a growth-promoting factor in agricultural practice, and highlight the need for further research to explore these benefits.

  13. Whole genomic sequence analysis of Bacillus infantis: defining the genetic blueprint of strain NRRL B-14911, an emerging cardiopathogenic microbe

    USDA-ARS?s Scientific Manuscript database

    Background: We recently reported the identification of Bacillus sp. NRRL B-14911 that induces heart autoimmunity by generating cardiac-reactive T cells through molecular mimicry. This marine bacterium was originally isolated from the Gulf of Mexico, but no associations with human diseases were rep...

  14. Isolation and identification of bacteria to improve the strength of concrete.

    PubMed

    Krishnapriya, S; Venkatesh Babu, D L; G, Prince Arulraj

    2015-05-01

    The objective of this research work is to isolate and identify calcite precipitating bacteria and to check the suitability of these bacteria for use in concrete to improve its strength. Bacteria to be incorporated in concrete should be alkali resistant to endure the high pH of concrete and endospore forming to withstand the mechanical stresses induced in concrete during mixing. They must exhibit high urease activity to precipitate calcium carbonate in the form of calcite. Bacterial strains were isolated from alkaline soil samples of a cement factory and were tested for urease activity, potential to form endospores and precipitation of calcium carbonate. Based on these results, three isolates were selected and identified by 16S rRNA gene sequencing. They were identified as Bacillus megaterium BSKAU, Bacillus licheniformis BSKNAU and Bacillus flexus BSKNAU. The results were compared with B. megaterium MTCC 1684 obtained from Microbial Type Culture Collection and Gene Bank, Chandigarh, India. Experimental work was carried out to assess the influence of bacteria on the compressive strength and tests revealed that bacterial concrete specimens showed enhancement in compressive strength. The efficiency of bacteria toward crack healing was also tested. Substantial increase in strength and complete healing of cracks was observed in concrete specimens cast with B. megaterium BSKAU, B. licheniformis BSKNAU and B. megaterium MTCC 1684. This indicates the suitability of these bacterial strains for use in concrete. The enhancement of strength and healing of cracks can be attributed to the filling of cracks in concrete by calcite which was visualized by scanning electron microscope. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Photoreactivation of Ultraviolet-Irradiated, Plasmid-Bearing and Plasmid-Free Strains of Bacillus anthracis

    DTIC Science & Technology

    1985-12-19

    positive bacterium Bacillus anthracis, is a virulent and highly contagious disease to which most warm-blooded animals, including man, are susceptible... Virulent strains of B. anthracis produce a capsule composed of poly-0-glutamic acid and an exotoxin. The toxin is composed of three proteins identified...as ederma factor (EF), protective antigen (PA), and lethal factor (LF) (17). Anthrax toxin and capsule production are associated with two separate

  16. The dtd gene from Bacillus amyloliquefaciens encodes a putative D-tyrosyl-tRNATyr deacylase and is a selectable marker for Bacillus subtilis.

    PubMed

    Geraskina, Natalia V; Butov, Ivan A; Yomantas, Yurgis A V; Stoynova, Nataliya V

    2015-02-01

    Genetically engineered microbes are of high practical importance due to their cost-effective production of valuable metabolites and enzymes, and the search for new selectable markers for genetic manipulation is of particular interest. Here, we revealed that the soil bacterium Bacillus amyloliquefaciens A50 is tolerant to the non-canonical amino acid D-tyrosine (D-Tyr), in contrast to the closely related Bacillus strain B. subtilis 168, which is a widely used "domesticated" laboratory strain. The gene responsible for resistance to D-Tyr was identified. The resistance was associated with the activity of a potential D-tyrosyl-tRNA(Tyr) deacylase. Orthologs of this enzyme are capable of hydrolyzing the ester bond and recycling misacetylated D-aminoacyl-tRNA molecules into free tRNAs and D-amino acids. This gene, yrvI (dtd), is applicable as a convenient, small selectable marker for non-antibiotic resistance selection in experiments aimed at genome editing of D-Tyr-sensitive microorganisms. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. A love affair with Bacillus subtilis.

    PubMed

    Losick, Richard

    2015-01-30

    My career in science was launched when I was an undergraduate at Princeton University and reinforced by graduate training at the Massachusetts Institute of Technology. However, it was only after I moved to Harvard University as a junior fellow that my affections were captured by a seemingly mundane soil bacterium. What Bacillus subtilis offered was endless fascinating biological problems (alternative sigma factors, sporulation, swarming, biofilm formation, stochastic cell fate switching) embedded in a uniquely powerful genetic system. Along the way, my career in science became inseparably interwoven with teaching and mentoring, which proved to be as rewarding as the thrill of discovery. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Accumulation of 2-Keto-L-Gulonate at 33°C by a Thermotolerant Gluconobacter Oxydans Mutant Obtained by Ion Beam Implantation

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Xu, An; Zhang, Wan; Zhou, Wei; Wang, Jun; Yao, Jianming; Yu, Zengliang

    2006-03-01

    To obtain thermotolerant mutants of G. oxydans, which can enhance the transformation rate of L-sorbose to 2-Keto-L-gulonate (2-KLG) at 33oC in a two-step process of vitamin C manufacture, ion beam was used as a mutation source. Gluconobacter oxydans G0 and Bacillus megaterium B0 were used in this study. The original strain Gluconobacter oxydans G0 was mutated by the heavy ion implantation facility at the Institute of Plasma Physics, Chinese Academy of Sciences. Several mutants including Gluconobacter oxydans GI13 were isolated and cocultured with Bacillus megaterium B0 at 33oC in shaking flasks. The average transformation rate of the new mixed strain GI13-B0 in per gram-molecule reached 94.4% after seven passages in shaking flasks, which was increased by 7% when compared with the original mixed strain G0-B0 (Gluconobacter oxydans G0 and Bacillus megaterium B0). Moreover, the transformation rate of I13B0 was stable at 94% at temperatures ranging from 25oC to 33oC, which would be of much value in reducing energy consumption in the manufacture of L-ascorbic acid, especially in the season of summer. To clarify some mechanism of the mutation, the specific activities of L-sorbose dehydrogenase in both G0 and GI13 were estimated.

  19. Increased toxicity of Bacillus thuringiensis Cry3Aa against Crioceris quatuordecimpunctata, Phaedon brassicae and Colaphellus bowringi by a Tenebrio molitor cadherin fragment

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Biopesticides containing Cry insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are effective against many lepidopteran pests, but there is a lack of Bt-based pesticides to efficiently control important coleopteran pests. Based on the reported increase of Bt toxin olig...

  20. Bacillus thuringiensis plants expressing Cry1Ac, Cry2Ab and Cry1F are not toxic to the assassin bug, Zelus renardii

    USDA-ARS?s Scientific Manuscript database

    Cotton and maize delivering insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), have been commercialized since 1996. Bt plants are subjected to environmental risk assessments for non-target organisms, especially natural enemies that suppress pest populations. In th...

  1. A novel strategy for acetonitrile wastewater treatment by using a recombinant bacterium with biofilm-forming and nitrile-degrading capability.

    PubMed

    Li, Chunyan; Yue, Zhenlei; Feng, Fengzhao; Xi, Chuanwu; Zang, Hailian; An, Xuejiao; Liu, Keran

    2016-10-01

    There is a great need for efficient acetonitrile removal technology in wastewater treatment to reduce the discharge of this pollutant in untreated wastewater. In this study, a nitrilase gene (nit) isolated from a nitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was cloned and transformed into a biofilm-forming bacterium (Bacillus subtilis N4) that expressed the recombinant protein upon isopropylthio-β-galactoside (IPTG) induction. The recombinant bacterium (B. subtilis N4-pHT01-nit) formed strong biofilms and had nitrile-degrading capability. Further testing demonstrated that biofilms formed by B. subtilis N4-pHT01-nit were highly resistant to loading shock from acetonitrile and almost completely degraded the initial concentration of acetonitrile (800 mg L(-1)) within 24 h in a moving bed biofilm reactor (MBBR) after operation for 35 d. The bacterial composition of the biofilm, identified by high-throughput sequencing, in a reactor in which the B. subtilis N4-pHT01-nit bacterium was introduced indicated that the engineered bacterium was successfully immobilized in the reactor and became dominant genus. This work demonstrates that an engineered bacterium with nitrile-degrading and biofilm-forming capacity can improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing the biological oxidation of toxic pollutants in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Characterization of Bacillus strains from apple and pear trees in South Africa antagonistic to Erwinia amylovora.

    PubMed

    Jock, Susanne; Völksch, Beate; Mansvelt, Lucienne; Geider, Klaus

    2002-06-04

    In order to find reasons for the absence of fire blight in most countries of the Southern hemisphere, bark samples from apple and pear trees in orchards of the Western Cape region in South Africa were extracted for bacteria which could be antagonistic to Erwinia amylovora. Screening was done in the late growth season and mainly Gram-positive bacteria were isolated. Approximately half of them produced growth inhibition zones on a lawn of E. amylovora. Most isolates were classified as Bacillus megaterium by microbiological assays and in API 50 test systems. They were visualized in the light microscope as non-motile large rods. These strains may not be responsible for the absence of fire blight in orchards, but they may indicate unfavourable climatic conditions for Gram-negative bacteria including E. amylovora. They may reduce the ability of E. amylovora to establish fire blight and could also be useful for application in biological disease control.

  3. The Blueprint of a Minimal Cell: MiniBacillus

    PubMed Central

    Reuß, Daniel R.; Commichau, Fabian M.; Gundlach, Jan; Zhu, Bingyao

    2016-01-01

    SUMMARY Bacillus subtilis is one of the best-studied organisms. Due to the broad knowledge and annotation and the well-developed genetic system, this bacterium is an excellent starting point for genome minimization with the aim of constructing a minimal cell. We have analyzed the genome of B. subtilis and selected all genes that are required to allow life in complex medium at 37°C. This selection is based on the known information on essential genes and functions as well as on gene and protein expression data and gene conservation. The list presented here includes 523 and 119 genes coding for proteins and RNAs, respectively. These proteins and RNAs are required for the basic functions of life in information processing (replication and chromosome maintenance, transcription, translation, protein folding, and secretion), metabolism, cell division, and the integrity of the minimal cell. The completeness of the selected metabolic pathways, reactions, and enzymes was verified by the development of a model of metabolism of the minimal cell. A comparison of the MiniBacillus genome to the recently reported designed minimal genome of Mycoplasma mycoides JCVI-syn3.0 indicates excellent agreement in the information-processing pathways, whereas each species has a metabolism that reflects specific evolution and adaptation. The blueprint of MiniBacillus presented here serves as the starting point for a successive reduction of the B. subtilis genome. PMID:27681641

  4. Sticking together: building a biofilm the Bacillus subtilis way

    PubMed Central

    Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto

    2014-01-01

    Preface Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long-served as a robust model organism to examine the molecular mechanisms of biofilm formation and a number of studies have revealed that this process is subject to a number of integrated regulatory pathways. In this Review, we focus on the molecular mechanisms controlling biofilm assembly and briefly summarize the current state of knowledge regarding their disassembly. We also discuss recent progress that has expanded our understanding of biofilm formation on plant roots, which are a natural habitat for this soil bacterium. PMID:23353768

  5. Sticking together: building a biofilm the Bacillus subtilis way.

    PubMed

    Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto

    2013-03-01

    Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long served as a robust model organism to examine the molecular mechanisms of biofilm formation, and a number of studies have revealed that this process is regulated by several integrated pathways. In this Review, we focus on the molecular mechanisms that control B. subtilis biofilm assembly, and then briefly summarize the current state of knowledge regarding biofilm disassembly. We also discuss recent progress that has expanded our understanding of B. subtilis biofilm formation on plant roots, which are a natural habitat for this soil bacterium.

  6. Bacillus galliciensis sp. nov., isolated from faeces of wild seahorses (Hippocampus guttulatus).

    PubMed

    Balcázar, José Luis; Pintado, José; Planas, Miquel

    2010-04-01

    A Gram-positive-staining, motile, rod-shaped, endospore-forming bacterium (BFLP-1( T)) was isolated from faeces of wild long-snouted seahorses ( Hippocampus guttulatus) captured in north-west Spain (Toralla, Galicia). Strain BFLP-1(T) grew at 10-30 degrees C and pH 5.5-9 (optimally at 20 degrees C and pH 7.2) and with 0-7 % (w/v) NaCl (optimally with 2 % NaCl). The G+C content of the DNA was 48.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BFLP-1(T) was a member of the genus Bacillus and was most closely related to Bacillus herbersteinensis D-1,5a(T) (96.6 %), B. shackletonii LMG 18435(T) (96.0 %) and B. isabeliae CVS-8(T) (95.9 %). Chemotaxonomic data (peptidoglycan type, meso-diaminopimelic acid; major menaquinone, MK-7; predominant fatty acids, anteiso-C(15 : 0 ), anteiso-C(17 : 0) and C(16 : 1 )omega11c; major polar lipids, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown aminoglycophospholipid) supported the affiliation of strain BFLP-1(T) to the genus Bacillus . Comparative analysis of 16S rRNA gene sequences and chemotaxonomic and phenotypic features indicated that strain BFLP-1(T) represents a novel species within the genus Bacillus, for which the name Bacillus galliciensis sp. nov. is proposed. The type strain is BFLP-1( T) (=DSM 21539(T) =LMG 24668(T)).

  7. Analysis of the relationship between the decrease in pH and accumulation of 3-phosphoglyceric acid in developing forespores of Bacillus species.

    PubMed

    Magill, N G; Cowan, A E; Leyva-Vazquez, M A; Brown, M; Koppel, D E; Setlow, P

    1996-04-01

    Analysis of the pH decrease and 3-phosphoglyceric acid (3PGA) accumulation in the forespore compartment of sporulating cells of Bacillus subtilis showed that the pH decrease of 1 to 1.2 units at approximately 4 h of sporulation preceded 3PGA accumulation, as observed previously in B. megaterium. These data, as well as analysis of the forespore pH decrease in asporogenous mutants of B. subtilis, indicated that sigma G-dependent forespore transcription, but not sigma K-dependent mother cell transcription, is required for the forespore pH decrease. Further analysis of these asporogenous mutants showed an excellent correlation between the forespore pH decrease and the forespore's accumulation of 3PGA. These latter results are consistent with our previous suggestion that the decrease in forespore pH results in greatly decreased activity of phosphoglycerate mutase in the forespore, which in turn leads to 3PGA accumulation. In further support of this suggestion, we found that (i) elevating the pH of developing forespores of B. megaterium resulted in rapid utilization of the forespore's 3PGA depot and (ii) increasing forespore levels of PGM approximately 10-fold in B. subtilis resulted in a large decrease in the spore's depot of 3PGA. The B. subtilis strain with a high phosphoglycerate mutase level sporulated, and the spores germinated and went through outgrowth normally, indicating that forespore accumulation of a large 3PGA depot is not essential for these processes.

  8. Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici.

    PubMed

    Aravind, R; Kumar, A; Eapen, S J; Ramana, K V

    2009-01-01

    To isolate and identify black pepper (Piper nigrum L) associated endophytic bacteria antagonistic to Phytophthora capsici causing foot rot disease. Endophytic bacteria (74) were isolated, characterized and evaluated against P. capsici. Six genera belong to Pseudomonas spp (20 strains), Serratia (1 strain), Bacillus spp. (22 strains), Arthrobacter spp. (15 strains), Micrococcus spp. (7 strains), Curtobacterium sp. (1 strain) and eight unidentified strains were isolated from internal tissues of root and stem. Three isolates, IISRBP 35, IISRBP 25 and IISRBP 17 were found effective for Phytophthora suppression in multilevel screening assays which recorded over 70% disease suppression in greenhouse trials. A species closest match (99% similarity) of IISRBP 35 was established as Pseudomonas aeruginosa (Pseudomonas EF568931), IISRBP 25 as P. putida (Pseudomonas EF568932), and IISRBP 17 as Bacillus megaterium (B. megaterium EU071712) based on 16S rDNA sequencing. Black pepper associated P. aeruginosa, P. putida and B. megaterium were identified as effective antagonistic endophytes for biological control of Phytophthora foot rot in black pepper. This work provides the first evidence for endophytic bacterial diversity in black pepper stem and roots, with biocontrol potential against P. capsici infection.

  9. Production, optimization and characterization of fibrinolytic enzyme by Bacillus subtilis RJAS19.

    PubMed

    Kumar, D J Mukesh; Rakshitha, R; Vidhya, M Annu; Jennifer, P Sharon; Prasad, Sandip; Kumar, M Ravi; Kalaichelvan, P T

    2014-04-01

    The present study aimed at the production, purification and characterization of fibrinolytic nattokinase enzyme from the bacteria isolated from natto food. For the purpose, a fibrinolytic bacterium was isolated and identified as Bacillus subtilis based on 16S rDNA sequence analysis. The strain was employed for the production and optimization of fibrinolytic enzyme. The strain showed better enzyme production during 72nd h of incubation time with 50 degrees C at the pH 9. The lactose and peptone were found to be increasing the enzyme production rate. The enzyme produced was purified and also characterized with the help of SDS-PAGE analysis. The activity and stability profile of the purified enzyme was tested against different temperature and pH. The observations suggesting that the potential of fibrinolytic enzyme produced by Bacillus subtilis RJAS 19 for its applications in preventive medicines.

  10. Effects of Interactions of Auxin-Producing Bacteria and Bacterial-Feeding Nematodes on Regulation of Peanut Growths

    PubMed Central

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil. PMID:25867954

  11. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    PubMed

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  12. Identification of Bacillus spp. from Bikalga, fermented seeds of Hibiscus sabdariffa: phenotypic and genotypic characterization.

    PubMed

    Ouoba, L I I; Parkouda, C; Diawara, B; Scotti, C; Varnam, A H

    2008-01-01

    To identify Bacillus spp. responsible of the fermentation of Hibiscus sabdariffa for production of Bikalga, an alkaline fermented food used as a condiment in Burkina Faso. Seventy bacteria were isolated from Bikalga produced in different regions of Burkina Faso and identified by phenotyping and genotyping using PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS-PCR), repetitive sequence-based PCR (rep-PCR) and DNA sequencing. The isolates were characterized as motile, rod-shaped, endospore forming, catalase positive, Gram-positive bacteria. ITS-PCR allowed typing mainly at species level. Rep-PCR was more discriminative and allowed a typing at ssp. level. The DNA sequencing combined with the Blast search program and fermentation profiles using API 50CHB system allowed an identification of the bacteria as Bacillus subtilis, B. licheniformis, B. cereus, B. pumilus, B. badius, Brevibacillus bortelensis, B. sphaericus and B. fusiformis. B. subtilis were the predominant bacterium (42) followed by B. licheniformis (16). Various species and ssp. of Bacillus are involved in fermentation of H. sabdariffa for production of Bikalga. Selection of starter cultures of Bacillus for controlled production of Bikalga, selection of probiotic bacteria.

  13. Production of mannanase from Bacillus Subtilis LBF-005 and its potential for manno-oligosaccharides production

    NASA Astrophysics Data System (ADS)

    Yopi, Rahmani, Nanik; Jannah, Alifah Mafatikhul; Nugraha, Irfan Pebi; Ramadana, Roni Masri

    2017-11-01

    Endo-β-1, 4-mannanase is the key enzymes for randomly hydrolyzing the β-1,4-linkages within the mannan backbone releasing manno-oligosaccharides (MOS). A marine bacterium of Bacillus subtilis LBF-005 was reported have ability to produce endo-type mannanase. The aims of this research were to compare commercial biomass Locust Bean Gum (LBG) and raw biomass contaning mannan as carbon source for mannanase production from Bacillus subtilis LBF-005, to analyze the optimum condition of mannanase production, and to find out the potential of the mannanase for MOS production. Bacillus subtilis LBF-005 was cultivated in Artificial Sea Water (ASW) medium contain NaCl and various mannan biomass as carbon source for mannanase production. The cells were grown in submerged fermentation. The maximum enzyme activity was obtained with porang potato as a substrate with concentration 1%, pH medium 8, and incubation temperature 50°C with an enzyme activity of 37.7 U/mL. The mainly MOS product released by crude mannanase produced by Bacillus subtilis LBF-005 were mannobiose (M2), mannotriose (M3), mannotetraose (M4), and mannopentaose (M5).

  14. Assessing the Impact of Germination and Sporulation Conditions on the Adhesion of Bacillus Spores to Glass and Stainless Steel by Fluid Dynamic Gauging

    PubMed Central

    Xu Zhou, Ke; Li, Nan; Christie, Graham

    2017-01-01

    Abstract The adhesion of spores of 3 Bacillus species with distinctive morphologies to stainless steel and borosilicate glass was studied using the fluid dynamic gauging technique. Marked differences were observed between different species of spores, and also between spores of the same species prepared under different sporulation conditions. Spores of the food‐borne pathogen B. cereus were demonstrated to be capable of withstanding shear stresses greater than 1500 Pa when adhered to stainless steel, in contrast to spores of Bacillus subtilis and Bacillus megaterium, which detached in response to lower shear stress. An extended DLVO model was shown to be capable of predicting the relative differences in spore adhesion between spores of different species and different culture conditions, but did not predict absolute values of force of adhesion well. Applying the model to germinating spores showed a significant reduction in adhesion force shortly after triggering germination, indicating a potential strategy to achieve enhanced removal of spores from surfaces in response to shear stress, such as during cleaning‐in‐place procedures. Practical Application Spore‐forming bacteria are a concern to the food industry because they have the potential to cause food‐borne illness and product spoilage, while being strongly adhesive to processing surfaces and resistant to cleaning‐in‐place procedures. This work is of significance to the food processors and manufacturers because it offers insight to the properties of spore adhesion and identifies a potential strategy to facilitate the removal of spores during cleaning procedures. PMID:29125641

  15. Genetic Tool Development for a New Host for Biotechnology, the Thermotolerant Bacterium Bacillus coagulans▿ †

    PubMed Central

    Kovács, Ákos T.; van Hartskamp, Mariska; Kuipers, Oscar P.; van Kranenburg, Richard

    2010-01-01

    Bacillus coagulans has good potential as an industrial production organism for platform chemicals from renewable resources but has limited genetic tools available. Here, we present a targeted gene disruption system using the Cre-lox system, development of a LacZ reporter assay for monitoring gene transcription, and heterologous d-lactate dehydrogenase expression. PMID:20400555

  16. Single Upconversion Nanoparticle-Bacterium Cotrapping for Single-Bacterium Labeling and Analysis.

    PubMed

    Xin, Hongbao; Li, Yuchao; Xu, Dekang; Zhang, Yueli; Chen, Chia-Hung; Li, Baojun

    2017-04-01

    Detecting and analyzing pathogenic bacteria in an effective and reliable manner is crucial for the diagnosis of acute bacterial infection and initial antibiotic therapy. However, the precise labeling and analysis of bacteria at the single-bacterium level are a technical challenge but very important to reveal important details about the heterogeneity of cells and responds to environment. This study demonstrates an optical strategy for single-bacterium labeling and analysis by the cotrapping of single upconversion nanoparticles (UCNPs) and bacteria together. A single UCNP with an average size of ≈120 nm is first optically trapped. Both ends of a single bacterium are then trapped and labeled with single UCNPs emitting green light. The labeled bacterium can be flexibly moved to designated locations for further analysis. Signals from bacteria of different sizes are detected in real time for single-bacterium analysis. This cotrapping method provides a new approach for single-pathogenic-bacterium labeling, detection, and real-time analysis at the single-particle and single-bacterium level. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [Use of antagonistic Bacillus subtilis bacteria for treatment of nosocomial urinary tract infections].

    PubMed

    Pushkarev, A M; Tuĭgunova, V G; Zaĭnullin, R R; Kuznetsova, T N; Gabidullin, Iu Z

    2007-01-01

    Effect of Bactisporin--a probiotic, containing spores of aerobic Bacillus subtilis 3H bacterium--for complex treatment of patients with nosocomial urinary tract infections was studied. 68 Cultures of different species of conditionally pathogenic bacteria were isolated from urine of the patients. Susceptibility of the isolated cultures to antibiotics before and after application of B. subtilis 3H metabolites was determined. The metabolites were accumulated on potato-glucose agar (PGA) while bacterium was cultivated on kapron membranes placed on surface of the medium. Influence of obtained metabolites on isolated strains was assessed by cultivation of each strain in metabolites-rich PGA during 24 h. Metabolites of B. subtilis led to decrease in resistance of isolated uropathogenic microflora to antibiotics. Use of Bactisporin in complex treatment of nosocomial urinary tract infections resulted in accelerated elimination of causative microorganism.

  18. Enhanced agarose and xylan degradation for production of polyhydroxyalkanoates by co-culture of marine bacterium, Saccharophagus degradans and its contaminant, Bacillus cereus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawant, Shailesh S.; Salunke, Bipinchandra K.; Taylor, II, Larry E.

    Over reliance on energy or petroleum products has raised concerns both in regards to the depletion of their associated natural resources as well as their increasing costs. Bioplastics derived from microbes are emerging as promising alternatives to fossil fuel derived petroleum plastics. The development of a simple and eco-friendly strategy for bioplastic production with high productivity and yield, which is produced in a cost effective manner utilising abundantly available renewable carbon sources, would have the potential to result in an inexhaustible global energy source. Here we report the biosynthesis of bioplastic polyhydroxyalkanoates (PHAs) in pure cultures of marine bacterium, Saccharophagusmore » degradans 2-40 ( Sde 2-40), its contaminant, Bacillus cereus, and a co-culture of these bacteria ( Sde 2-40 and B. cereus) degrading plant and algae derived complex polysaccharides. Sde 2-40 degraded the complex polysaccharides agarose and xylan as sole carbon sources for biosynthesis of PHAs. The ability of Sde 2-40 to degrade agarose increased after co-culturing with B. cereus. The association of Sde 2-40 with B. cereus resulted in increased cell growth and higher PHA production (34.5% of dry cell weight) from xylan as a carbon source in comparison to Sde 2-40 alone (22.7% of dry cell weight). Lastly, the present study offers an innovative prototype for production of PHA through consolidated bioprocessing of complex carbon sources by pure and co-culture of microorganisms.« less

  19. Enhanced agarose and xylan degradation for production of polyhydroxyalkanoates by co-culture of marine bacterium, Saccharophagus degradans and its contaminant, Bacillus cereus

    DOE PAGES

    Sawant, Shailesh S.; Salunke, Bipinchandra K.; Taylor, II, Larry E.; ...

    2017-02-28

    Over reliance on energy or petroleum products has raised concerns both in regards to the depletion of their associated natural resources as well as their increasing costs. Bioplastics derived from microbes are emerging as promising alternatives to fossil fuel derived petroleum plastics. The development of a simple and eco-friendly strategy for bioplastic production with high productivity and yield, which is produced in a cost effective manner utilising abundantly available renewable carbon sources, would have the potential to result in an inexhaustible global energy source. Here we report the biosynthesis of bioplastic polyhydroxyalkanoates (PHAs) in pure cultures of marine bacterium, Saccharophagusmore » degradans 2-40 ( Sde 2-40), its contaminant, Bacillus cereus, and a co-culture of these bacteria ( Sde 2-40 and B. cereus) degrading plant and algae derived complex polysaccharides. Sde 2-40 degraded the complex polysaccharides agarose and xylan as sole carbon sources for biosynthesis of PHAs. The ability of Sde 2-40 to degrade agarose increased after co-culturing with B. cereus. The association of Sde 2-40 with B. cereus resulted in increased cell growth and higher PHA production (34.5% of dry cell weight) from xylan as a carbon source in comparison to Sde 2-40 alone (22.7% of dry cell weight). Lastly, the present study offers an innovative prototype for production of PHA through consolidated bioprocessing of complex carbon sources by pure and co-culture of microorganisms.« less

  20. Rapid acquisition and model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria

    PubMed Central

    Wienecke, Sarah; Ishwarbhai, Alka; Tsipa, Argyro; Aw, Rochelle; Kylilis, Nicolas; Bell, David J.; McClymont, David W.; Jensen, Kirsten; Biedendieck, Rebekka

    2018-01-01

    Native cell-free transcription–translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription–translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription–translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications. PMID:29666238

  1. Amylocyclicin, a Novel Circular Bacteriocin Produced by Bacillus amyloliquefaciens FZB42

    PubMed Central

    Scholz, Romy; Vater, Joachim; Budiharjo, Anto; Wang, Zhiyuan; He, Yueqiu; Dietel, Kristin; Schwecke, Torsten; Herfort, Stefanie; Lasch, Peter

    2014-01-01

    Bacillus amyloliquefaciens FZB42 is a Gram-positive plant growth-promoting bacterium with an impressive capacity to synthesize nonribosomal secondary metabolites with antimicrobial activity. Here we report on a novel circular bacteriocin which is ribosomally synthesized by FZB42. The compound displayed high antibacterial activity against closely related Gram-positive bacteria. Transposon mutagenesis and subsequent site-specific mutagenesis combined with matrix-assisted laser desorption ionization–time of flight mass spectroscopy revealed that a cluster of six genes covering 4,490 bp was responsible for the production, modification, and export of and immunity to an antibacterial compound, here designated amylocyclicin, with a molecular mass of 6,381 Da. Peptide sequencing of the fragments obtained after tryptic digestion of the purified peptide revealed posttranslational cleavage of an N-terminal extension and head-to-tail circularization of the novel bacteriocin. Homology to other putative circular bacteriocins in related bacteria let us assume that this type of peptide is widespread among the Bacillus/Paenibacillus taxon. PMID:24610713

  2. Discovery of Novel Cell Wall-Active Compounds Using PywaC, a Sensitive Reporter of Cell Wall Stress, in the Model Gram-Positive Bacterium Bacillus subtilis

    PubMed Central

    Czarny, T. L.; Perri, A. L.; French, S.

    2014-01-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. PMID:24687489

  3. Water-soluble Moringa oleifera lectin interferes with growth, survival and cell permeability of corrosive and pathogenic bacteria.

    PubMed

    Moura, M C; Napoleão, T H; Coriolano, M C; Paiva, P M G; Figueiredo, R C B Q; Coelho, L C B B

    2015-09-01

    This work evaluated the antibacterial activity of a water-soluble Moringa oleifera seed lectin (WSMoL) by evaluating its effect on growth, survival and cell permeability of Bacillus sp., Bacillus cereus, Bacillus pumillus, Bacillus megaterium, Micrococcus sp., Pseudomonas sp., Pseudomonas fluorescens, Pseudomonas stutzeri and Serratia marcescens. In addition, the effect of lectin on membrane integrity of most sensitive species was also evaluated. All the tested bacteria are able to cause biocorrosion and some are also responsible for human infections. WSMoL inhibited the bacterial growth, induced agglutination and promoted the leakage of proteins from cells of all strains. Bactericidal effect was detected against Bacillus sp., B. pumillus, B. megaterium, Ps. fluorescens and Ser. marcescens. The bacteriostatic effect of lectin was evident with only 6 h of incubation. Fluorescence microscopy of Ser. marcescens showed that WSMoL caused loss of cell integrity and indicated an anti-biofilm activity of the lectin. WSMoL was active against the bacteria by inhibiting growth and affecting cell permeability. The lectin also interfered with membrane integrity of Ser. marcescens, the most sensitive species. The study indicates that WSMoL was active against bacteria that cause serious problems in both industrial and health sectors. Also, the study contributes for the 'state-of-art' on antibacterial mechanisms of lectins. © 2015 The Society for Applied Microbiology.

  4. Arthromitus (Bacillus cereus) symbionts in the cockroach Blaberus giganteus: dietary influences on bacterial development and population density.

    PubMed

    Feinberg, L; Jorgensen, J; Haselton, A; Pitt, A; Rudner, R; Margulis, L

    1999-01-01

    The filamentous spore-forming bacterium Arthromitus, discovered in termites, millipedes, sow bugs and other soil-dwelling arthropods by Leidy (1850), is the intestinal stage of Bacillus cereus. We extend the range of Arthromitus habitats to include the hindgut of Blaberus giganteus, the large tropical American cockroach. The occurrence and morphology of the intestinal form of the bacillus were compared in individual cockroaches (n=24) placed on four different diet regimes: diurnally maintained insects fed (1) dog food, (2) soy protein only, (3)purified cellulose only, and (4) a dog food-fed group maintained in continuous darkness. Food quality exerted strong influence on population densities and developmental stages of the filamentous bacterium and on fecal pellet composition. The most dramatic rise in Arthromitus populations, defined as the spore-forming filament intestinal stage, occurred in adult cockroaches kept in the dark on a dog food diet. Limited intake of cellulose or protein alone reduced both the frequency of Arthromitus filaments and the rate of weight gain of the insects. Spores isolated from termites, sow bugs, cockroaches and moths, grown on various hard surfaces display a branching mobility and resistance to antibiotics characteristic to group I Bacilli whose members include B. cereus, B. circulans, B. alvei and B. macerans. DNA isolated from pure cultures of these bacilli taken from the guts of Blaberus giganteus (cockroach), Junonia coenia (moth), Porcellio scaber (sow bug) and Cryptotermes brevis (termite) and subjected to Southern hybridization with a 23S-5S B. subtilis ribosomal sequence probe verified that they are indistinguishable from laboratory strains of Bacillus cereus.

  5. Arthromitus (Bacillus cereus) symbionts in the cockroach Blaberus giganteus: dietary influences on bacterial development and population density

    NASA Technical Reports Server (NTRS)

    Feinberg, L.; Jorgensen, J.; Haselton, A.; Pitt, A.; Rudner, R.; Margulis, L.

    1999-01-01

    The filamentous spore-forming bacterium Arthromitus, discovered in termites, millipedes, sow bugs and other soil-dwelling arthropods by Leidy (1850), is the intestinal stage of Bacillus cereus. We extend the range of Arthromitus habitats to include the hindgut of Blaberus giganteus, the large tropical American cockroach. The occurrence and morphology of the intestinal form of the bacillus were compared in individual cockroaches (n=24) placed on four different diet regimes: diurnally maintained insects fed (1) dog food, (2) soy protein only, (3)purified cellulose only, and (4) a dog food-fed group maintained in continuous darkness. Food quality exerted strong influence on population densities and developmental stages of the filamentous bacterium and on fecal pellet composition. The most dramatic rise in Arthromitus populations, defined as the spore-forming filament intestinal stage, occurred in adult cockroaches kept in the dark on a dog food diet. Limited intake of cellulose or protein alone reduced both the frequency of Arthromitus filaments and the rate of weight gain of the insects. Spores isolated from termites, sow bugs, cockroaches and moths, grown on various hard surfaces display a branching mobility and resistance to antibiotics characteristic to group I Bacilli whose members include B. cereus, B. circulans, B. alvei and B. macerans. DNA isolated from pure cultures of these bacilli taken from the guts of Blaberus giganteus (cockroach), Junonia coenia (moth), Porcellio scaber (sow bug) and Cryptotermes brevis (termite) and subjected to Southern hybridization with a 23S-5S B. subtilis ribosomal sequence probe verified that they are indistinguishable from laboratory strains of Bacillus cereus.

  6. Activity of Bacillus thuringiensis Cry1Ie2, Cry2Ac7, and Cry7Ab3 proteins against Anticarsia gemmatalis, Chrysodeixis includens and Ceratoma trifurcata

    USDA-ARS?s Scientific Manuscript database

    Transgenic soybeans producing the Cry1Ac insecticidal protein from the bacterium Bacillus thuringiensis (or “Bt”) are currently used to control larvae of the velvetbean caterpillar (Anticarsia gemmatalis Hübner) and the soybean looper [Chrysodeixis includens (Walker)]. The main threat to the sustain...

  7. Over-expression of the gene (bglBC1) from Bacillus circulans encoding an endo-beta-(1-->3),(1-->4)-glucanase useful for the preparation of oligosaccharides from barley beta-glucan.

    PubMed

    Kim, Ki-Hoon; Kim, Yea-Oon; Ko, Bong-Sun; Youn, Hyun-Joo; Lee, Dong-Seok

    2004-11-01

    An endo-beta-(1-->3),(1-->4)-glucanase gene (bglBC1) from Bacillus circulans ATCC21367 was modified by substituting its native promoter with a strong promoter, BJ27X, to increase expression of the gene when cloned into B. subtilis RM125 and B. megaterium ATCC14945. A 771-bp endo-beta-(1-->3),(1-->4)-glucanase open reading frame was inserted into a new shuttle plasmid, pBLC771, by ligating the ORF and pBE1, the latter of which contained the strong promoter, BJ27X. B. subtilis , transformed with the recombinant plasmid pBLC771, produced an extracellular endo-beta-(1-->3),(1-->4)-glucanase that was 130 times (7176 mU ml(-1)) more active than that of the gene donor cells (55 mU ml(-1)), while the enzyme from the transformed B. megaterium was 7 times (378 mU ml(-1)) more active than that of the gene donor cells. M(r) of the enzyme was 28 kDa, with proteolytic processing of the enzyme being observed only in B. subtilis cells. The major products of water-soluble beta-glucan hydrolyzed by over-produced endo-beta-(1-->3),(1-->4)-glucanase were tri- and tetra-oligosaccharides which can be developed as useful products such as anti-hypercholesterolemic, anti-hypertriglyceridemic, and anti-hyperglycemic agents.

  8. Bacterial treatment of alkaline cement kiln dust using Bacillus halodurans strain KG1.

    PubMed

    Kunal; Rajor, Anita; Siddique, Rafat

    2016-01-01

    This study was conducted to isolate an acid-producing, alkaliphilic bacterium to reduce the alkalinity of cement industry waste (cement kiln dust). Gram-positive isolate KG1 grew well at pH values of 6-12, temperatures of 28-50°C, and NaCl concentrations of 0-16% and thus was further screened for its potential to reduce the pH of an alkaline medium. Phenotypic characteristics of the KG1 isolate were consistent with those of the genus Bacillus, and the highest level of 16S rRNA gene sequence similarity was found with Bacillus halodurans strain DSM 497 (94.7%). On the basis of its phenotypic characteristics and genotypic distinctiveness from other phylogenetic neighbors belonging to alkaliphilic Bacillus species, the isolated strain was designated B. halodurans strain KG1, with GenBank accession number JQ307184 (= NCIM 5439). Isolate KG1 reduced the alkalinity (by 83.64%) and the chloride content (by 86.96%) of cement kiln dust and showed a potential to be used in the cement industry for a variety of applications. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Determination of the X-ray structure of the snake venom protein omwaprin by total chemical synthesis and racemic protein crystallography.

    PubMed

    Banigan, James R; Mandal, Kalyaneswar; Sawaya, Michael R; Thammavongsa, Vilasak; Hendrickx, Antoni P A; Schneewind, Olaf; Yeates, Todd O; Kent, Stephen B H

    2010-10-01

    The 50-residue snake venom protein L-omwaprin and its enantiomer D-omwaprin were prepared by total chemical synthesis. Radial diffusion assays were performed against Bacillus megaterium and Bacillus anthracis; both L- and D-omwaprin showed antibacterial activity against B. megaterium. The native protein enantiomer, made of L-amino acids, failed to crystallize readily. However, when a racemic mixture containing equal amounts of L- and D-omwaprin was used, diffraction quality crystals were obtained. The racemic protein sample crystallized in the centrosymmetric space group P2(1)/c and its structure was determined at atomic resolution (1.33 A) by a combination of Patterson and direct methods based on the strong scattering from the sulfur atoms in the eight cysteine residues per protein. Racemic crystallography once again proved to be a valuable method for obtaining crystals of recalcitrant proteins and for determining high-resolution X-ray structures by direct methods.

  10. Structure and Composition of the Bacillus anthracis Capsule

    PubMed Central

    Avakyan, A. A.; Katz, L. N.; Levina, K. N.; Pavlova, I. B.

    1965-01-01

    Avakyan, A. A. (Academy of Medical Sciences, Moscow, USSR), L. N. Katz, K. N. Levina, and I. B. Pavlova. Structure and composition of the Bacillus anthracis capsule. J. Bacteriol. 90:1082–1095. 1965.—Observations by various methods of light microscopy (phase contrast, dark-field, and fluorescence) revealed the complex structure of the Bacillus anthracis capsule, which changes regularly during the growth cycle of the culture. Special cytological methods of staining the capsule made it possible to study its fine structure, which is not revealed by negative staining with India ink. For example, the capsule shows a membranelike outline, fine transverse lines, and interruptions and transverse septa traversing the entire capsule. By using cytochemical methods, it was found that the capsule has a stratified structure and that the various layers of the capsule differ as to the value of the isoelectric point, metachromatic ability, sensitivity to various enzymes, and, consequently, chemical composition. It was thus shown that the membranelike outline of the capsule consists of peptides and neutral mucopolysaccharides. The middle part of the capsule consists of a complex of substances of both polysaccharide and protein nature, and the inner part consists of acid mucopolysaccharides. Observation of the capsular forms of B. anthracis by means of an electron microscope revealed differences in the osmiophilia and submicroscopic structure of the membranelike outline and the middle and inner parts of the capsule. Immunochemical studies conducted by the fluorescent-antibody method revealed localization of antigens in different parts of the capsule, and made it possible to differentiate the capsular antigens according to their serum-staining ability and according of their relations to enzymes, i.e., their chemical composition. This paper concerns the possibility of studying the fine structure of bacterial capsules in fixed preparations, and the differences and similarities of

  11. Monitoring the Wet-Heat Inactivation Dynamics of Single Spores of Bacillus Species by Using Raman Tweezers, Differential Interference Contrast Microscopy, and Nucleic Acid Dye Fluorescence Microscopy▿

    PubMed Central

    Zhang, Pengfei; Kong, Lingbo; Wang, Guiwen; Setlow, Peter; Li, Yong-qing

    2011-01-01

    Dynamic processes during wet-heat treatment of individual spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis at 80 to 90°C were investigated using dual-trap Raman spectroscopy, differential interference contrast (DIC) microscopy, and nucleic acid stain (SYTO 16) fluorescence microscopy. During spore wet-heat treatment, while the spores' 1:1 chelate of Ca2+ with dipicolinic acid (CaDPA) was released rapidly at a highly variable time Tlag, the levels of spore nucleic acids remained nearly unchanged, and the Tlag times for individual spores from the same preparation were increased somewhat as spore levels of CaDPA increased. The brightness of the spores' DIC image decreased by ∼50% in parallel with CaDPA release, and there was no spore cortex hydrolysis observed. The lateral diameters of the spores' DIC image and SYTO 16 fluorescence image also decreased in parallel with CaDPA release. The SYTO 16 fluorescence intensity began to increase during wet-heat treatment at a time before Tlag and reached maximum at a time slightly later than Trelease. However, the fluorescence intensities of wet-heat-inactivated spores were ∼15-fold lower than those of nutrient-germinated spores, and this low SYTO 16 fluorescence intensity may be due in part to the low permeability of the dormant spores' inner membranes to SYTO 16 and in part to nucleic acid denaturation during the wet-heat treatment. PMID:21602365

  12. Is the Insect World Overcoming the Efficacy of Bacillus thuringiensis?

    PubMed

    Peralta, Cecilia; Palma, Leopoldo

    2017-01-18

    The use of chemical pesticides revolutionized agriculture with the introduction of DDT (Dichlorodiphenyltrichloroethane) as the first modern chemical insecticide. However, the effectiveness of DDT and other synthetic pesticides, together with their low cost and ease of use, have led to the generation of undesirable side effects, such as pollution of water and food sources, harm to non-target organisms and the generation of insect resistance. The alternative comes from biological control agents, which have taken an expanding share in the pesticide market over the last decades mainly promoted by the necessity to move towards more sustainable agriculture. Among such biological control agents, the bacterium Bacillus thuringiensis (Bt) and its insecticidal toxins have been the most studied and commercially used biological control agents over the last 40 years. However, some insect pests have acquired field-evolved resistance to the most commonly used Bt-based pesticides, threatening their efficacy, which necessitates the immediate search for novel strains and toxins exhibiting different modes of action and specificities in order to perpetuate the insecticidal potential of this bacterium.

  13. Discovery of novel cell wall-active compounds using P ywaC, a sensitive reporter of cell wall stress, in the model gram-positive bacterium Bacillus subtilis.

    PubMed

    Czarny, T L; Perri, A L; French, S; Brown, E D

    2014-06-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Removal of Soluble Strontium via Incorporation into Biogenic Carbonate Minerals by Halophilic Bacterium Bacillus sp. Strain TK2d in a Highly Saline Solution

    PubMed Central

    Dotsuta, Yuma; Nakano, Yuriko; Ochiai, Asumi; Utsunomiya, Satoshi; Ohnuki, Toshihiko

    2017-01-01

    ABSTRACT Radioactive strontium (90Sr) leaked into saline environments, including the ocean, from the Fukushima Daiichi Nuclear Power Plant after a nuclear accident. Since the removal of 90Sr using general adsorbents (e.g., zeolite) is not efficient at high salinity, a suitable alternative immobilization method is necessary. Therefore, we incorporated soluble Sr into biogenic carbonate minerals generated by urease-producing microorganisms from a saline solution. An isolate, Bacillus sp. strain TK2d, from marine sediment removed >99% of Sr after contact for 4 days in a saline solution (1.0 × 10−3 mol liter−1 of Sr, 10% marine broth, and 3% [wt/vol] NaCl). Transmission electron microscopy and energy-dispersive X-ray spectroscopy showed that Sr and Ca accumulated as phosphate minerals inside the cells and adsorbed at the cell surface at 2 days of cultivation, and then carbonate minerals containing Sr and Ca developed outside the cells after 2 days. Energy-dispersive spectroscopy revealed that Sr, but not Mg, was present in the carbonate minerals even after 8 days. X-ray absorption fine-structure analyses showed that a portion of the soluble Sr changed its chemical state to strontianite (SrCO3) in biogenic carbonate minerals. These results indicated that soluble Sr was selectively solidified into biogenic carbonate minerals by the TK2d strain in highly saline environments. IMPORTANCE Radioactive nuclides (134Cs, 137Cs, and 90Sr) leaked into saline environments, including the ocean, from the Fukushima Daiichi Nuclear Power Plant accident. Since the removal of 90Sr using general adsorbents, such as zeolite, is not efficient at high salinity, a suitable alternative immobilization method is necessary. Utilizing the known concept that radioactive 90Sr is incorporated into bones by biomineralization, we got the idea of removing 90Sr via incorporation into biominerals. In this study, we revealed the ability of the isolated ureolytic bacterium to remove Sr under high

  15. Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids.

    PubMed

    White, James F; Torres, Mónica S; Sullivan, Raymond F; Jabbour, Rabih E; Chen, Qiang; Tadych, Mariusz; Irizarry, Ivelisse; Bergen, Marshall S; Havkin-Frenkel, Daphna; Belanger, Faith C

    2014-11-01

    We report the occurrence of Bacillus amyloliquefaciens in vanilla orchids (Vanilla phaeantha) and cultivated hybrid vanilla (V. planifolia × V. pompona) as a systemic bacterial endophyte. We determined with light microscopy and isolations that tissues of V. phaeantha and the cultivated hybrid were infected by a bacterial endophyte and that shoot meristems and stomatal areas of stems and leaves were densely colonized. We identified the endophyte as B. amyloliquefaciens using DNA sequence data. Since additional endophyte-free plants and seed of this orchid were not available, additional studies were performed on surrogate hosts Amaranthus caudatus, Ipomoea tricolor, and I. purpurea. Plants of A. caudatus inoculated with B. amyloliquefaciens demonstrated intracellular colonization of guard cells and other epidermal cells, confirming the pattern observed in the orchids. Isolations and histological studies suggest that the bacterium may penetrate deeply into developing plant tissues in shoot meristems, forming endospores in maturing tissues. B. amyloliquefaciens produced fungal inhibitors in culture. In controlled experiments using morning glory seedlings we showed that the bacterium promoted seedling growth and reduced seedling necrosis due to pathogens. We detected the gene for phosphopantetheinyl transferase (sfp), an enzyme in the pathway for production of antifungal lipopeptides, and purified the lipopeptide "surfactin" from cultures of the bacterium. We hypothesize that B. amyloliquefaciens is a robust endophyte and defensive mutualist of vanilla orchids. Whether the symbiosis between this bacterium and its hosts can be managed to protect vanilla crops from diseases is a question that should be evaluated in future research. © 2014 Wiley Periodicals, Inc.

  16. [Susceptibility of Aedes aegypti (L.) strains from Havana to a Bacillus thuringiensis var. israelensis].

    PubMed

    Menéndez Díaz, Zulema; Rodríguez Rodríguez, Jinnay; Gato Armas, René; Companioni Ibañez, Ariamys; Díaz Pérez, Manuel; Bruzón Aguila, Rosa Yirian

    2012-01-01

    the integration of chemical and biological methods is one of the strategies for the vector control, due to the existing environmental problems and the concerns of the community as a result of the synthetic organic insecticide actions. The bacterium called Bacillus thuringiensis var. israelensis in liquid formulation has been widely used in the vector control programs in several countries and has shown high efficacy at lab in Cuba. to determine the susceptibility of Aedes aegypti collected in the municipalities of La Habana province to Bacillus thuringiensis var. israelensis. fifteen Aedes aegypti strains, one from each municipality, were used including larvae and pupas collected in 2010 and one reference strain known as Rockefeller. The aqueous formulation of Bacillus thuringiensis var. israelensis (Bactivec, Labiofam, Cuba) was used. The bioassays complied with the World Health Organization guidelines for use of bacterial larvicides in the public health sector. The larval mortality was read after 24 hours and the results were processed by the statistical system SPSS (11.0) through Probit analysis. the evaluated mosquito strains showed high susceptibility to biolarvicide, there were no significant differences in LC50 values of Ae. aegypti strains, neither in the comparison of these values with those of the reference strain. the presented results indicate that the use of Bacillus thuringiensis var. israelensis continues to be a choice for the control of Aedes aegypti larval populations in La Habana province.

  17. In vitro evaluation of bioactive potential of Bacillus methylotrophicus YML008 against Propionibacterium acnes.

    PubMed

    Choi, Uk-Han; Nam, Eun Sook; Ahmad, Rather Irfan; Park, Yong-Ha

    2016-05-01

    Acne vulgaris is the most common skin diseases that people experience during their lives. Thirteen rhizosphere isolates were screened against Propionibacterium acnes. The bacterium exhibited the highest activity against P. acnes was identified as Bacillus methylotrophicus YML008 by 16S rRNA gene sequencing. Scanning electron microscopy was used to assess the changes in morphology of P. acnes. Preliminary studies on the antimicrobial substance demonstrated the hydrophilic nature of compound with MIC of 0.17mg/ml and MBC of 0.3mg/ml. The cytotoxic effect of the extract was least (80% survival) as compared to benzyperoxide (40% survival). These results suggest YML008 as a promising bioresource and may be useful as a lead bacterium to develop a new type of anti-acne skin care prep to cure or prevent acne. Further, mechanism of action and proper clinical trials may be promising for this research.

  18. Characterization of acetanilide herbicides degrading bacteria isolated from tea garden soil.

    PubMed

    Wang, Yei-Shung; Liu, Jian-Chang; Chen, Wen-Ching; Yen, Jui-Hung

    2008-04-01

    Three different green manures were added to the tea garden soils separately and incubated for 40 days. After, incubation, acetanilide herbicides alachlor and metolachlor were spiked into the soils, separately, followed by the isolation of bacteria in each soil at designed intervals. Several bacterial strains were isolated from the soils and identified as Bacillus silvestris, B. niacini, B. pseudomycoides, B. cereus, B. thuringiensis, B. simplex, B. megaterium, and two other Bacillus sp. (Met1 and Met2). Three unique strains with different morphologies were chosen for further investigation. They were B. megaterium, B. niacini, and B. silvestris. The isolated herbicide-degrading bacteria showed optimal performance among three incubation temperatures of 30 degrees C and the best activity in the 10 to 50 microg/ml concentration of the herbicide. Each bacterial strain was able to degrade more than one kind of test herbicides. After incubation for 119 days, B. cereus showed the highest activity to degrade alachlor and propachlor, and B. thuringiensis to degrade metolachlor.

  19. Use of Lactobacillus plantarum fermentation products in bread-making to prevent Bacillus subtilis ropy spoilage.

    PubMed

    Valerio, Francesca; De Bellis, Palmira; Lonigro, Stella L; Visconti, Angelo; Lavermicocca, Paola

    2008-03-20

    Four fermentation products (FPs) of the lactic acid bacterium Lactobacillus plantarum ITM21B were screened for their anti-Bacillus activity in vitro and in bread-making trials. Results of the storage tests performed with loaves prepared with an FP or calcium propionate demonstrated that after 3 days at 30 degrees C, gross spoilage was evident in only the control loaves, which contained Bacillus subtilis at numbers of about 10(9) cfu/g. The highest inhibitory activity was shown by DM-FP obtained by growing L. plantarum in a defined medium (DM). Significantly, this medium contained an amino acceptor of the aminoacid transamination, namely alpha-ketoglutaric acid, and an aminoacid pool. With loaves prepared using the DM-acid mixture which simulated the DM-FP composition, the same reduction of ropy spoilage as with DM-FP was obtained after 3 days, while the efficacy of the mixture decreased after 7 days. This result suggests the potential involvement of some unknown metabolites in the inhibitory activity of DM-FP. In baked products made with flour based media (M1-FP, M2-FP, M3-FP), no ropy symptoms were noticeable after 3 days storage although a considerable Bacillus count was detected. DM-FP was as effective as calcium propionate (0.3% w/w, based on flour mass) in prolonging the Bacillus free-shelf life of yeast-leavened bread for 7 days.

  20. Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system.

    PubMed

    Wang, Dian-Bing; Tian, Bo; Zhang, Zhi-Ping; Deng, Jiao-Yu; Cui, Zong-Qiang; Yang, Rui-Fu; Wang, Xu-Ying; Wei, Hong-Ping; Zhang, Xian-En

    2013-04-15

    There is an urgent need for convenient, sensitive, and specific methods to detect the spores of Bacillus anthracis, the causative agent of anthrax, because of the bioterrorism threat posed by this bacterium. In this study, we firstly develop a super-paramagnetic lateral-flow immunological detection system for B. anthracis spores. This system involves the use of a portable magnetic assay reader, super-paramagnetic iron oxide particles, lateral-flow strips and two different monoclonal antibodies directed against B. anthracis spores. This detection system specifically recognises as few as 400 pure B. anthracis spores in 30 min. This system has a linear range of 4×10³-10⁶ CFU ml⁻¹ and reproducible detection limits of 200 spores mg⁻¹ milk powder and 130 spores mg⁻¹ soil for simulated samples. In addition, this approach shows no obvious cross-reaction with other related Bacillus spores, even at high concentrations, and has no significant dependence on the duration of the storage of the immunological strips. Therefore, this super-paramagnetic lateral-flow immunological detection system is a promising tool for the rapid and sensitive detection of Bacillus anthracis spores under field conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Bacillus thuringiensis and Its Pesticidal Crystal Proteins

    PubMed Central

    Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D. R.; Dean, D. H.

    1998-01-01

    During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism’s pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit. PMID:9729609

  2. Bacillus subtilis spreads by surfing on waves of surfactant

    PubMed Central

    Angelini, Thomas E.; Roper, Marcus; Kolter, Roberto; Weitz, David A.; Brenner, Michael P.

    2009-01-01

    The bacterium Bacillus subtilis produces the molecule surfactin, which is known to enhance the spreading of multicellular colonies on nutrient substrates by lowering the surface tension of the surrounding fluid, and to aid in the formation of aerial structures. Here we present experiments and a mathematical model that demonstrate how the differential accumulation rates induced by the geometry of the bacterial film give rise to surfactant waves. The spreading flux increases with increasing biofilm viscosity. Community associations are known to protect bacterial populations from environmental challenges such as predation, heat, or chemical stresses, and enable digestion of a broader range of nutritive sources. This study provides evidence of enhanced dispersal through cooperative motility, and points to nonintuitive methods for controlling the spread of biofilms. PMID:19826092

  3. Tepidimonas arfidensis Sp. Nov., a Novel Gram-negative and thermophilic bacterium isolated from the bone marrow of a patient with leukemia in Korea.

    PubMed

    Ko, Kwan Soo; Lee, Nam Yong; Oh, Won Sup; Lee, Jang Ho; Ki, Hyun Kyun; Peck, Kyong Ran; Song, Jae-Hoon

    2005-01-01

    A Gram-negative bacillus, SMC-6271(T), which was isolated from the bone marrow of a patient with leukemia but could not be identified by a conventional microbiologic method, was characterized by a genotypic analysis of 16S rRNA gene. Sequences of the 16S rRNA gene revealed that this bacterium was closely related to Tepidimonas ignava and other slightly thermophilic isolates but diverged distinctly from them. Analyses of cellular fatty acid composition and performance of biochemical tests confirmed that this bacterium is a distinct species from the other Tepidimonas species. Based on the evaluated phenotypic and genotypic characteristics, it is proposed that SMC-6271T (=ABB 0301T =KCTC 12412T =JCM 13232T) should be classified as a new species, namely Tepidimonas arfidensis sp. nov.

  4. Disarming Fungal Pathogens: Bacillus safensis Inhibits Virulence Factor Production and Biofilm Formation by Cryptococcus neoformans and Candida albicans

    PubMed Central

    2017-01-01

    ABSTRACT Bacteria interact with each other in nature and often compete for limited nutrient and space resources. However, it is largely unknown whether and how bacteria also interact with human fungal pathogens naturally found in the environment. Here, we identified a soil bacterium, Bacillus safensis, which potently blocked several key Cryptococcus neoformans virulence factors, including formation of the antioxidant pigment melanin and production of the antiphagocytic polysaccharide capsule. The bacterium also inhibited de novo cryptococcal biofilm formation but had only modest inhibitory effects on already formed biofilms or planktonic cell growth. The inhibition of fungal melanization was dependent on direct cell contact and live bacteria. B. safensis also had anti-virulence factor activity against another major human-associated fungal pathogen, Candida albicans. Specifically, dual-species interaction studies revealed that the bacterium strongly inhibited C. albicans filamentation and biofilm formation. In particular, B. safensis physically attached to and degraded candidal filaments. Through genetic and phenotypic analyses, we demonstrated that bacterial chitinase activity against fungal cell wall chitin is a factor contributing to the antipathogen effect of B. safensis. PMID:28974618

  5. Combination of a recombinant bacterium with organonitrile-degrading and biofilm-forming capability and a positively charged carrier for organonitriles removal.

    PubMed

    Li, Chunyan; Sun, Yueling; Yue, Zhenlei; Huang, Mingyan; Wang, Jinming; Chen, Xi; An, Xuejiao; Zang, Hailian; Li, Dapeng; Hou, Ning

    2018-04-10

    The immobilization of organonitrile-degrading bacteria via the addition of biofilm-forming bacteria represents a promising technology for the treatment of organonitrile-containing wastewater, but biofilm-forming bacteria simply mixed with degrading bacteria may reduce the biodegradation efficiency. Nitrile hydratase and amidase genes, which play critical roles in organonitriles degradation, were cloned and transformed into the biofilm-forming bacterium Bacillus subtilis N4 to construct a recombinant bacterium B. subtilis N4/pHTnha-ami. Modified polyethylene carriers with positive charge was applied to promote bacterial adherence and biofilm formation. The immobilized B. subtilis N4/pHTnha-ami was resistant to organonitriles loading shocks and could remove organic cyanide ion with a initial concentration of 392.6 mg/L for 24 h in a moving bed biofilm reactor. The imputed quorum-sensing signal and the high-throughput sequencing analysis of the biofilm indicated that B. subtilis N4/pHTnha-ami was successfully immobilized and became dominant. The successful application of the immobilized recombinant bacterium offers a novel strategy for the biodegradation of recalcitrant compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Marine Bacillus spp. associated with the egg capsule of Concholepas concholepas (common name "loco") have an inhibitory activity toward the pathogen Vibrio parahaemolyticus.

    PubMed

    Leyton, Yanett; Riquelme, Carlos

    2010-10-01

    The pandemic bacterium Vibrio parahaemolyticus, isolated from seawater, sediment, and marine organisms, is responsible for gastroenteric illnesses in humans and also cause diseases in aquaculture industry in Chile and other countries around the world. In this study, bacterial flora with inhibitory activity against pathogenic V. parahaemolyticus were collected from egg capsules of Concholepas concholepas and evaluated. The 16S rRNA fragment was sequenced from each isolated strain to determine its identity using the GenBank database. A phylogenetic analysis was made, and tests for the productions of antibacterial substance were performed using the double-layer method. Forty-five morphotypes of bacterial colonies were isolated, 8 of which presented an inhibitory effect on the growth of V. parahaemolyticus. 16S rRNA sequence and phylogenetic analysis show that these strains constitute taxa that are phylogenetically related to the Bacillus genus and are probably sister species or strains of the species Bacillus pumilus, Bacillus licheniform, or Bacillus sp. It is important to determine the nature of the antibacterial substance to evaluate their potential for use against the pathogen species V. parahaemolyticus.

  7. The Genome of a Bacillus Isolate Causing Anthrax in Chimpanzees Combines Chromosomal Properties of B. cereus with B. anthracis Virulence Plasmids

    PubMed Central

    Nattermann, Herbert; Brüggemann, Holger; Dupke, Susann; Wollherr, Antje; Franz, Tatjana; Pauli, Georg; Appel, Bernd; Liebl, Wolfgang; Couacy-Hymann, Emmanuel; Boesch, Christophe; Meyer, Frauke-Dorothee; Leendertz, Fabian H.; Ellerbrok, Heinz; Gottschalk, Gerhard; Grunow, Roland; Liesegang, Heiko

    2010-01-01

    Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as “B. cereus variety (var.) anthracis”. PMID:20634886

  8. Extracellular Vesicles Produced by the Gram-positive Bacterium Bacillus subtilis are Disrupted by the Lipopeptide Surfactin

    PubMed Central

    Brown, Lisa; Kessler, Anne; Cabezas-Sanchez, Pablo; Luque-Garcia, Jose L.; Casadevall, Arturo

    2014-01-01

    Summary Previously, extracellular vesicle production in Gram-positive bacteria was dismissed due to the absence of an outer membrane, where Gram-negative vesicles originate, and the difficulty in envisioning how such a process could occur through the cell wall. However, recent work has shown that Gram-positive bacteria produce extracellular vesicles and that the vesicles are biologically active. In this study, we show that Bacillus subtilis produces extracellular vesicles similar in size and morphology to other bacteria, characterized vesicles using a variety of techniques, provide evidence that these vesicles are actively produced by cells, show differences in vesicle production between strains, and identified a mechanism for such differences based on vesicle disruption. We found that in wild strains of B. subtilis, surfactin disrupted vesicles while in laboratory strains harboring a mutation in the gene sfp, vesicles accumulated in the culture supernatant. Surfactin not only lysed B. subtilis vesicles, but also vesicles from Bacillus anthracis, indicating a mechanism that crossed species boundaries. To our knowledge, this is the first time a gene and a mechanism has been identified in the active disruption of extracellular vesicles and subsequent release of vesicular cargo in Gram-positive bacteria. We also identify a new mechanism of action for surfactin. PMID:24826903

  9. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus

    USDA-ARS?s Scientific Manuscript database

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  10. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria

    PubMed Central

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2015-01-01

    The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of

  11. Recovery of Bacillus Spore Contaminants from Rough Surfaces: a Challenge to Space Mission Cleanliness Control▿

    PubMed Central

    Probst, Alexander; Facius, Rainer; Wirth, Reinhard; Wolf, Marco; Moissl-Eichinger, Christine

    2011-01-01

    Microbial contaminants on spacecraft can threaten the scientific integrity of space missions due to probable interference with life detection experiments. Therefore, space agencies measure the cultivable spore load (“bioburden”) of a spacecraft. A recent study has reported an insufficient recovery of Bacillus atrophaeus spores from Vectran fabric, a typical spacecraft airbag material (A. Probst, R. Facius, R. Wirth, and C. Moissl-Eichinger, Appl. Environ. Microbiol. 76:5148-5158, 2010). Here, 10 different sampling methods were compared for B. atrophaeus spore recovery from this rough textile, revealing significantly different efficiencies (0.5 to 15.4%). The most efficient method, based on the wipe-rinse technique (foam-spatula protocol; 13.2% efficiency), was then compared to the current European Space Agency (ESA) standard wipe assay in sampling four different kinds of spacecraft-related surfaces. Results indicate that the novel protocol out-performed the standard method with an average efficiency of 41.1% compared to 13.9% for the standard method. Additional experiments were performed by sampling Vectran fabric seeded with seven different spore concentrations and five different Bacillus species (B. atrophaeus, B. anthracis Sterne, B. megaterium, B. thuringiensis, and B. safensis). Among these, B. atrophaeus spores were recovered with the highest (13.2%) efficiency and B. anthracis Sterne spores were recovered with the lowest (0.3%) efficiency. Different inoculation methods of seeding spores on test surfaces (spotting and aerosolization) resulted in different spore recovery efficiencies. The results of this study provide a step forward in understanding the spore distribution on and recovery from rough surfaces. The results presented will contribute relevant knowledge to the fields of astrobiology and B. anthracis research. PMID:21216908

  12. Draft Genome Sequence of Bacillus sp. GZT, a 2,4,6-Tribromophenol-Degrading Strain Isolated from the River Sludge of an Electronic Waste-Dismantling Region

    PubMed Central

    Liang, Zhishu; Li, Guiying; Das, Ranjit

    2016-01-01

    Here, we report the draft genome sequence of Bacillus sp. strain GZT, a 2,4,6-tribromophenol (TBP)-degrading bacterium previously isolated from an electronic waste-dismantling region. The draft genome sequence is 5.18 Mb and has a G+C content of 35.1%. This is the first genome report of a brominated flame retardant-degrading strain. PMID:27257197

  13. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings

    PubMed Central

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

    2014-01-01

    Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings. PMID:25009362

  14. Bacillus vanillea sp. nov., Isolated from the Cured Vanilla Bean.

    PubMed

    Chen, Yong-gan; Gu, Feng-lin; Li, Ji-hua; Xu, Fei; He, Shu-zhen; Fang, Yi-ming

    2015-02-01

    A Gram-positive bacterium, designated strain XY18(T), was isolated from a cured vanilla bean in Hainan province, China. Cells were rod-shaped, endospore producing, and peritrichous flagella. Strain XY18(T) grew at salinities of 0-8 % (w/v) NaCl (optimally 1-4 %), pH 4.0-8.0 (optimally 5.0-7.0 %) and temperature range 20-45 °C (optimally 28-35 °C). The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, and iso-C17:0. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain XY18(T) was a member of the genus Bacillus, and closely related to B. amyloliquefaciens NBRC 15535(T) and B. siamensis PD-A10(T), with 99.1 and 99.2 % sequence similarity, respectively. However, the DNA-DNA hybridization value between strain XY18(T) and B. amyloliquefaciens NBRC 15535(T) was 35.7 %. The genomic DNA G+C content of strain XY18(T) was 46.4 mol%, significantly differed from B. siamensis PD-A10(T) (41.4 %), which was higher than the range of 4 % indicative of species. On the basis of polyphasic taxonomic study, including phenotypic features, chemotaxonomy, and phylogenetic analyses, strain XY18(T) represents a novel species within the genus Bacillus, for which the name Bacillus vanillea sp. nov. is proposed. The type strain is XY18(T) (=CGMCC 8629 = NCCB 100507).

  15. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi.

    PubMed

    Othman, A R; Bakar, N A; Halmi, M I E; Johari, W L W; Ahmad, S A; Jirangon, H; Syed, M A; Shukor, M Y

    2013-01-01

    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30 °C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants p max, K(s), S(m), and n was 5.88 μmole Mo-blue hr(-1), 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.

  16. Marinospirillum insulare sp. nov., a novel halophilic helical bacterium isolated from kusaya gravy.

    PubMed

    Satomi, M; Kimura, B; Hayashi, M; Okuzumi, M; Fujii, T

    2004-01-01

    A novel species that belongs to the genus Marinospirillum is described on the basis of phenotypic characteristics, phylogenetic analysis of 16S rRNA and gyrB gene sequences and DNA-DNA hybridization. Four strains of helical, halophilic, Gram-negative, heterotrophic bacteria were isolated from kusaya gravy, which is fermented brine that is used for the production of traditional dried fish in the Izu Islands of Japan. All of the new isolates were motile by means of bipolar tuft flagella, of small cell size, coccoid-body-forming and aerophilic; it was concluded that they belong to the same bacterial species, based on DNA-DNA hybridization values (>70% DNA relatedness). DNA G+C contents of the new strains were 42-43 mol% and they had isoprenoid quinone Q-8 as the major component. Phylogenetic analysis of 16S rRNA gene sequences indicated that the new isolates were members of the genus Marinospirillum; sequence similarity of the new isolates to Marinospirillum minutulum, Marinospirillum megaterium and Marinospirillum alkaliphilum was 98.5, 98.2 and 95.2%, respectively. Phylogenetic analysis based on the gyrB gene indicated that the new isolates had enough phylogenetic distance from M. minutulum and M. megaterium to be regarded as different species, with 84.7 and 78.7% sequence similarity, respectively. DNA-DNA hybridization showed that the new isolates had <36% DNA relatedness to M. minutulum and M. megaterium, supporting the phylogenetic conclusion. Thus, a novel species is proposed: Marinospirillum insulare sp. nov. (type strain, KT=LMG 21802T=NBRC 100033T).

  17. Screening and characterization of extracelluar L-asparaginase producing Bacillus subtilis strain hswx88, isolated from Taptapani hotspring of Odisha, India

    PubMed Central

    Pradhan, Biswaprakash; Dash, Sashi K; Sahoo, Sabuj

    2013-01-01

    Objective To screen and isolate an eco-friendly, a thermophilic and potent L-asparaginase producing bacterium, with novel immunological properties that may obviates hypersensitivity reactions. Methods In the present study bacterial strain isolated for extracellular L-asparaginase production from hotspring, identified by morphological, biochemical and physiological tests followed by 16S rDNA technology and the L-asparaginase production ability was tested by both semi quantitative and quantitative enzymatic assay. Result The bacterial strain was identified as Bacillus subtilis strain hswx88 (GenBank Accession Number: JQ237656.1). The extracellular enzyme yielding capacity isolate Bacillus subtilis strain hswx88 (23.8 IU/mL) was found to be 1.7 and 14.5 times higher than the reference organism Pectobacterium carotovorum MTCC 1428 (14.2 IU/mL) and Bacillus sp. BCCS 034 (1.64 IU/mL). Conclusion The isolate is eco-friendly and useful to produce bulk quantity of extracellular, thermophilic L-asparaginase for the treatment of various tumor cases and for preparation of acrylamide free fry food preparation. PMID:24093783

  18. Bacillus alkalilacus sp. nov., isolated from a sediment sample from a lake in India.

    PubMed

    Singh, Harjodh; Kaur, Manpreet; Sharma, Shivani; Kaur, Lakhwinder; Mishra, Sunita; Tanuku, Naga Radha Srinivas; Pinnaka, Anil Kumar

    2018-05-01

    An aerobic, endospore-forming, haloalkali-tolerant, Gram-stain-positive, motile, rod-shaped bacterium, designated strain AK73 T , was isolated from a sediment sample collected from Sambhar lake, Jaipur, Rajasthan, India. Colonies were circular, 1-2 mm in diameter, glossy, smooth, yellowish and convex with an entire margin after 48 h growth on marine agar at pH 9 and 37 °C. Growth occurred at 15-42 °C, 0-10 % (w/v) NaCl and at a pH range of 7-12. Strain AK73 T was positive for catalase and arginine dihydrolase 2 activities, hydrolysis of Tweens 20, 40 and 80, and negative for esculinase, caseinase, gelatinase, β-galactosidase, lipase (Tween 60) and urease activities. The fatty acids were dominated by branched iso-, anteiso-, saturated fatty acids with a high abundance of iso-C15 : 0, anteiso-C15 : 0, C16 : 0 and anteiso-C17 : 0; MK-7 was the major menaquinone. The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid, four unidentified phospholipids and three unidentified lipids. The DNA G+C content of strain AK73 T was 54 mol%. Analysis based on comparative 16S rRNA gene sequence analysis indicated that Bacillus alcalophilus was the nearest phylogenetic neighbour, with a pair-wise sequence similarity of 96.0 %. Phylogenetic analysis showed that strain AK73 T formed a separate lineage but was loosely associated with a peripheral cluster of organisms that contained Bacillus gibsonii, Bacillus murimartini and Bacillus plakortidis with similarity values of 93.6, 93.5 and 93.4 %, respectively. Based on its phenotypic characteristics and on phylogenetic inference, strain AK73 T represents a novel species of the genus Bacillus, for which the name Bacillus alkalilacus sp. nov. is proposed. The type strain is AK73 T (=JCM 32184 T =MTCC 12637 T =KCTC 33880 T ).

  19. Bioaugmentation of Soil Contaminated with Azoxystrobin.

    PubMed

    Baćmaga, Małgorzata; Wyszkowska, Jadwiga; Kucharski, Jan

    2017-01-01

    The presence of fungicides in the natural environment, either resulting from deliberate actions or not, has become a serious threat to many ecosystems, including soil. This can be prevented by taking appropriate measures to clear the environment of organic contamination, including fungicides. Therefore, a study was conducted aimed at determining the effect of bioaugmentation of soil exposed to azoxystrobin on its degradation and activity of selected enzymes (dehydrogenases, catalase, urease, acidic phosphatase, alkaline phosphatase). A model experiment was conducted for 90 days on two types of soil: loamy sand (pH KCl -5.6) and sandy loam (pH KCl -7.0), which were contaminated by azoxystrobin at 22.50 mg kg -1 DM of soil and inoculated with a specific consortium of microorganisms. Four strains of bacteria were used in the experiment ( Bacillus sp. LM655314.1, B. cereus KC848897.1, B. weihenstephanensis KF831381.1, B. megaterium KJ843149.1) and two strains of mould fungi ( Aphanoascus terreus AB861677.1, A. fulvescens JN943451.1). Inoculation of soil with the consortium of microorganisms accelerated the degradation of azoxystrobin. The isolated microorganisms were more active in loamy sand because within 90 days azoxystrobin was degraded by 24% ( Bacillus sp., B. cereus , B. weihenstephanensis , B. megaterium ) to 78% ( Aphanoascus terreus , A. fulvescens ). In sandy loam, azoxystrobin was degraded by 9% ( Aphanoascus terreus , A. fulvescens ) to 29% ( Bacillus sp., B. cereus , B. weihenstephanensis , B. megaterium and Aphanoascus terreus , A. fulvescens ). The activity of soil enzymes was also changed as a result of inoculation of soil with microorganisms. The activity of all of the enzymes under study was found to have increased when soil augmentation was performed.

  20. A COMPARATIVE STUDY OF THE BIOLOGICAL CHARACTERS AND PATHOGENESIS OF BACILLUS X (STERNBERG), BACILLUS ICTEROIDES (SANARELLI), AND THE HOG-CHOLERA BACILLUS (SALMON AND SMITH)

    PubMed Central

    Reed, Walter; Carroll, James

    1900-01-01

    1. Bacillus X (Sternberg) belongs to the colon group. 2. Bacillus icteroides (Sanarelli) is a member of the hog-cholera group. 3. The various channels of infection, the duration of the disease and the gross and microscopical lesions in mice, guinea-pigs and rabbits are the same for Bacillus icteroides and the hog-cholera bacillus. 4. The clinical symptoms and the lesions observed in dogs inoculated intravenously with Bacillus icteroides, are reproduced in these animals by infection with the hog-cholera bacillus. 5. Bacillus icteroides when fed to the domestic pig causes fatal infection, accompanied by diphtheritic, necrotic and ulcerative lesions in the digestive tract, such as are seen in hogs when infected with the hog-cholera bacillus. 6. This disease may be acquired by exposing swine in pens already infected with Bacillus icteroides, or by feeding them with the viscera of infected pigs. 7. Guinea-pigs may be immunized with sterilized cultures ofBacillus icteroides from a fatal dose of the hog-cholera bacillus and vice versa. 8. Rabbits may be rendered immune by gradually increasing doses of a living culture of Bacillus icteroides of weak virulence from a fatal dose of a virulent culture of the hog-cholera bacillus 9. The sera of animals immunized with Bacillus icteroides and with the hog-cholera bacillus, respectively, show a marked reciprocal agglutinative reaction. 10. While the blood of yellow fever practically does not exercise an agglutinative reaction upon Bacillus icteroides, the blood of hog-cholera agglutinates this bacillus in a much more marked degree, thus pointing, we think, to the closer etiological relationship of this bacillus to hog-cholera than to yellow fever. PMID:19866945

  1. Anti-Pigmentary Effect of (-)-4-Hydroxysattabacin from the Marine-Derived Bacterium Bacillus sp.

    PubMed

    Kim, Kyuri; Leutou, Alain S; Jeong, Haein; Kim, Dayoung; Seong, Chi Nam; Nam, Sang-Jip; Lim, Kyung-Min

    2017-05-13

    Bioactivity-guided isolation of a crude extract from a culture broth of Bacillus sp. has led to the isolation of (-)-4-hydroxysattabacin (1). The inhibitory effect of (-)-4-hydroxysattabacin (1) was investigated on melanogenesis in the murine melanoma cell line, B16F10, and human melanoma cell line, MNT-1, as well as a pigmented 3D-human skin model. (-)-4-Hydroxysattabacin treatment decreased melanin contents in a dose-dependent manner in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. Quantitative real time PCR (qRT-PCR) demonstrated that treatment with (-)-4-hydroxysattabacin down-regulated several melanogenic genes, including tyrosinase, tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2) while their enzymatic activities were unaffected. The anti-melanogenic effects of (-)-4-hydroxysattabacin were further demonstrated in a pigmented 3D human epidermal skin model, MelanodermTM, and manifested as whitening and regression of melanocyte activation in the tissue.

  2. Anti-Pigmentary Effect of (-)-4-Hydroxysattabacin from the Marine-Derived Bacterium Bacillus sp.

    PubMed Central

    Kim, Kyuri; Leutou, Alain S.; Jeong, Haein; Kim, Dayoung; Seong, Chi Nam; Nam, Sang-Jip; Lim, Kyung-Min

    2017-01-01

    Bioactivity-guided isolation of a crude extract from a culture broth of Bacillus sp. has led to the isolation of (-)-4-hydroxysattabacin (1). The inhibitory effect of (-)-4-hydroxysattabacin (1) was investigated on melanogenesis in the murine melanoma cell line, B16F10, and human melanoma cell line, MNT-1, as well as a pigmented 3D-human skin model. (-)-4-Hydroxysattabacin treatment decreased melanin contents in a dose-dependent manner in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. Quantitative real time PCR (qRT–PCR) demonstrated that treatment with (-)-4-hydroxysattabacin down-regulated several melanogenic genes, including tyrosinase, tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2) while their enzymatic activities were unaffected. The anti-melanogenic effects of (-)-4-hydroxysattabacin were further demonstrated in a pigmented 3D human epidermal skin model, MelanodermTM, and manifested as whitening and regression of melanocyte activation in the tissue. PMID:28505073

  3. An attenuated strain of Bacillus anthracis (CDC 684) has a large chromosomal inversion and altered growth kinetics

    PubMed Central

    2011-01-01

    Background An isolate originally labeled Bacillus megaterium CDC 684 was found to contain both pXO1 and pXO2, was non-hemolytic, sensitive to gamma-phage, and produced both the protective antigen and the poly-D-glutamic acid capsule. These phenotypes prompted Ezzell et al., (J. Clin. Microbiol. 28:223) to reclassify this isolate to Bacillus anthracis in 1990. Results We demonstrate that despite these B. anthracis features, the isolate is severely attenuated in a guinea pig model. This prompted whole genome sequencing and closure. The comparative analysis of CDC 684 to other sequenced B. anthracis isolates and further analysis reveals: a) CDC 684 is a close relative of a virulent strain, Vollum A0488; b) CDC 684 defines a new B. anthracis lineage (at least 51 SNPs) that includes 15 other isolates; c) the genome of CDC 684 contains a large chromosomal inversion that spans 3.3 Mbp; d) this inversion has caused a displacement of the usual spatial orientation of the origin of replication (ori) to the termination of replication (ter) from 180° in wild-type B. anthracis to 120° in CDC 684 and e) this isolate also has altered growth kinetics in liquid media. Conclusions We propose two alternative hypotheses explaining the attenuated phenotype of this isolate. Hypothesis 1 suggests that the skewed ori/ter relationship in CDC 684 has altered its DNA replication and/or transcriptome processes resulting in altered growth kinetics and virulence capacity. Hypothesis 2 suggests that one or more of the single nucleotide polymorphisms in CDC 684 has altered the expression of a regulatory element or other genes necessary for virulence. PMID:21962024

  4. An attenuated strain of Bacillus anthracis (CDC 684) has a large chromosomal inversion and altered growth kinetics.

    PubMed

    Okinaka, Richard T; Price, Erin P; Wolken, Spenser R; Gruendike, Jeffrey M; Chung, Wai Kwan; Pearson, Talima; Xie, Gary; Munk, Chris; Hill, Karen K; Challacombe, Jean; Ivins, Bruce E; Schupp, James M; Beckstrom-Sternberg, Stephen M; Friedlander, Arthur; Keim, Paul

    2011-09-30

    An isolate originally labeled Bacillus megaterium CDC 684 was found to contain both pXO1 and pXO2, was non-hemolytic, sensitive to gamma-phage, and produced both the protective antigen and the poly-D-glutamic acid capsule. These phenotypes prompted Ezzell et al., (J. Clin. Microbiol. 28:223) to reclassify this isolate to Bacillus anthracis in 1990. We demonstrate that despite these B. anthracis features, the isolate is severely attenuated in a guinea pig model. This prompted whole genome sequencing and closure. The comparative analysis of CDC 684 to other sequenced B. anthracis isolates and further analysis reveals: a) CDC 684 is a close relative of a virulent strain, Vollum A0488; b) CDC 684 defines a new B. anthracis lineage (at least 51 SNPs) that includes 15 other isolates; c) the genome of CDC 684 contains a large chromosomal inversion that spans 3.3 Mbp; d) this inversion has caused a displacement of the usual spatial orientation of the origin of replication (ori) to the termination of replication (ter) from 180° in wild-type B. anthracis to 120° in CDC 684 and e) this isolate also has altered growth kinetics in liquid media. We propose two alternative hypotheses explaining the attenuated phenotype of this isolate. Hypothesis 1 suggests that the skewed ori/ter relationship in CDC 684 has altered its DNA replication and/or transcriptome processes resulting in altered growth kinetics and virulence capacity. Hypothesis 2 suggests that one or more of the single nucleotide polymorphisms in CDC 684 has altered the expression of a regulatory element or other genes necessary for virulence.

  5. Functional Feed Assessment on Litopenaeus vannamei Using 100% Fish Meal Replacement by Soybean Meal, High Levels of Complex Carbohydrates and Bacillus Probiotic Strains

    PubMed Central

    Olmos, Jorge; Ochoa, Leonel; Paniagua-Michel, Jesus; Contreras, Rosalia

    2011-01-01

    Functional feed supplemented with alternative-economic nutrient sources (protein, carbohydrates, lipids) and probiotics are being considered in shrimp/fish aquaculture production systems as an option to increase yield and profits and to reduce water pollution. In this study the probiotic potential to formulate functional feeds have been evaluated using four dietary treatments: Treatment 1 (B + Bs); Bacillus subtilis potential probiotic strain was supplemented to a soybeanmeal (SBM)—carbohydrates (CHO) basal feed. Treatment 2 (B + Bm); Bacillus megaterium potential probiotic strain was supplemented to the same SBM-CHO basal feed. In Treatment 3 (B); SBM-CHO basal feed was not supplemented with probiotic strains. Treatment 4 (C); fishmeal commercial feed (FM) was utilized as positive control. Feeding trials evaluated the survival, growth, and food conversion ratio and stress tolerance of juvenile Litopenaeus vannamei (Boone) Pacific white shrimp. Best overall shrimp performance was observed for animals fed with Treatment 1 (B+Bs); additionally, stress tolerance and hemolymph metabolites also showed the best performance in this treatment. SBM-CHO basal feed not supplemented with probiotic strains (B) presented smaller growth and lower feed conversion ratio (FCR). Shrimps fed with the fishmeal commercial feed (C) presented the lowest stress tolerance to high ammonia and low oxygen levels. Specifically selected B. subtilis strains are recommended to formulate functional and economical feeds containing high levels of vegetable; protein and carbohydrates as main dietary sources in L. vannamei cultures. PMID:21747750

  6. Functional feed assessment on Litopenaeus vannamei using 100% fish meal replacement by soybean meal, high levels of complex carbohydrates and Bacillus probiotic strains.

    PubMed

    Olmos, Jorge; Ochoa, Leonel; Paniagua-Michel, Jesus; Contreras, Rosalia

    2011-01-01

    Functional feed supplemented with alternative-economic nutrient sources (protein, carbohydrates, lipids) and probiotics are being considered in shrimp/fish aquaculture production systems as an option to increase yield and profits and to reduce water pollution. In this study the probiotic potential to formulate functional feeds have been evaluated using four dietary treatments: Treatment 1 (B + Bs); Bacillus subtilis potential probiotic strain was supplemented to a soybeanmeal (SBM)-carbohydrates (CHO) basal feed. Treatment 2 (B + Bm); Bacillus megaterium potential probiotic strain was supplemented to the same SBM-CHO basal feed. In Treatment 3 (B); SBM-CHO basal feed was not supplemented with probiotic strains. Treatment 4 (C); fishmeal commercial feed (FM) was utilized as positive control. Feeding trials evaluated the survival, growth, and food conversion ratio and stress tolerance of juvenile Litopenaeus vannamei (Boone) Pacific white shrimp. Best overall shrimp performance was observed for animals fed with Treatment 1 (B+Bs); additionally, stress tolerance and hemolymph metabolites also showed the best performance in this treatment. SBM-CHO basal feed not supplemented with probiotic strains (B) presented smaller growth and lower feed conversion ratio (FCR). Shrimps fed with the fishmeal commercial feed (C) presented the lowest stress tolerance to high ammonia and low oxygen levels. Specifically selected B. subtilis strains are recommended to formulate functional and economical feeds containing high levels of vegetable; protein and carbohydrates as main dietary sources in L. vannamei cultures.

  7. Experimental design and Bayesian networks for enhancement of delta-endotoxin production by Bacillus thuringiensis.

    PubMed

    Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio

    2015-12-01

    Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.

  8. Peptide Conjugated Phosphorodiamidate Morpholino Oligomers Increase Survival of Mice Challenged with Ames Bacillus anthracis

    PubMed Central

    Geller, Bruce L.; Mellbye, Brett; Lane, Douglas; Iversen, Patrick L.; Bavari, Sina

    2012-01-01

    Targeting bacterial essential genes using antisense phosphorodiamidate morpholino oligomers (PMOs) represents an important strategy in the development of novel antibacterial therapeutics. PMOs are neutral DNA analogues that inhibit gene expression in a sequence-specific manner. In this study, several cationic, membrane-penetrating peptides were conjugated to PMOs (PPMOs) that target 2 bacterial essential genes: acyl carrier protein (acpP) and gyrase A (gyrA). These were tested for their ability to inhibit growth of Bacillus anthracis, a gram-positive spore-forming bacterium and causative agent of anthrax. PPMOs targeted upstream of both target gene start codons and conjugated with the bacterium-permeating peptide (RFF)3R were found to be most effective in inhibiting bacterial growth in vitro. Both of the gene-targeted PPMOs protected macrophages from B. anthracis induced cell death. Subsequent, in vivo testing of the PPMOs resulted in increased survival of mice challenged with the virulent Ames strain of B. anthracis. Together, these studies suggest that PPMOs targeting essential genes have the potential of being used as antisense antibiotics to treat B. anthracis infections. PMID:22978365

  9. Isolation of a halophilic bacterium, Bacillus sp. strain NY-6 for organic contaminants removal in saline wastewater on ship

    NASA Astrophysics Data System (ADS)

    Gao, Jie; Yu, Zhenjiang; Zhang, Xiaohui; Zhao, Dan; Zhao, Fangbo

    2013-06-01

    The objective of this research was to examine if certain strains of Bacillus bacteria, could survive in dry powder products and if so, could the bacteria degrade organic contaminants in saline wastewater on a ship. As part of the study, we isolated 7 domesticated strains named NY1, NY2,..., and NY7, the strain NY6 showed to have the best performance for organic matter degradation and could survive in dry powder more than 3 months. NY6 was identified as Bacillus aerius, based on the morphological and physic-chemical properties. Its optimal growth conditions were as follows: salinity was 2%; temperature was 37°C; pH was in 6.5-7.0; best ratio of C: N: P was 100:5:1. The capability of its dry powder for Chemical Oxygen Demand (COD) removal was 800mg COD/g in synthesized marine wastewater with 2% salinity. The spores in the dry powder were 1.972×108 g -1.

  10. Exploring the origins of selectivity in soluble epoxide hydrolase from Bacillus megaterium† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ob01847a

    PubMed Central

    Serrano-Hervás, Eila

    2017-01-01

    Epoxide hydrolase (EH) enzymes catalyze the hydration of racemic epoxides to yield their corresponding vicinal diols. These enzymes present different enantio- and regioselectivity depending upon either the substrate structure or the substitution pattern of the epoxide ring. In this study, we computationally investigate the Bacillus megaterium epoxide hydrolase (BmEH)-mediated hydrolysis of racemic styrene oxide (rac-SO) and its para-nitro styrene oxide (rac-p-NSO) derivative using density functional theory (DFT) and an active site cluster model consisting of 195 and 197 atoms, respectively. Full reaction mechanisms for epoxide ring opening were evaluated considering the attack at both oxirane carbons and considering two possible orientations of the substrate at the BmEH active site. Our results indicate that for both SO and p-NSO substrates the BmEH enantio- and regioselectivity is opposite to the inherent (R)-BmEH selectivity, the attack at the benzylic position (C1) of the (S)-enantiomer being the most favoured chemical outcome. PMID:29026902

  11. Kinetic modeling of sporulation and product formation in stationary phase by Bacillus coagulans RK-02 vis-à-vis other Bacilli.

    PubMed

    Das, Subhasish; Sen, Ramkrishna

    2011-10-01

    A logistic kinetic model was derived and validated to characterize the dynamics of a sporogenous bacterium in stationary phase with respect to sporulation and product formation. The kinetic constants as determined using this model are particularly important for describing intrinsic properties of a sporogenous bacterial culture in stationary phase. Non-linear curve fitting of the experimental data into the mathematical model showed very good correlation with the predicted values for sporulation and lipase production by Bacillus coagulans RK-02 culture in minimal media. Model fitting of literature data of sporulation and product (protease and amylase) formation in the stationary phase by some other Bacilli and comparison of the results of model fitting with those of Bacillus coagulans helped validate the significance and robustness of the developed kinetic model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Caenorhabditis elegans Predation on Bacillus anthracis: Decontamination of Spore Contaminated Soil with Germinants and Nematodes.

    PubMed

    Schelkle, Bettina; Choi, Young; Baillie, Leslie W; Richter, William; Buyuk, Fatih; Celik, Elif; Wendling, Morgan; Sahin, Mitat; Gallagher, Theresa

    2017-01-01

    Remediation of Bacillus anthracis -contaminated soil is challenging and approaches to reduce overall spore levels in environmentally contaminated soil or after intentional release of the infectious disease agent in a safe, low-cost manner are needed. B. anthracis spores are highly resistant to biocides, but once germinated they become susceptible to traditional biocides or potentially even natural predators such as nematodes in the soil environment. Here, we describe a two-step approach to reducing B. anthracis spore load in soil during laboratory trials, whereby germinants and Caenorhabditis elegans nematodes are applied concurrently. While the application of germinants reduced B. anthracis spore load by up to four logs depending on soil type, the addition of nematodes achieved a further log reduction in spore count. These laboratory based results suggest that the combined use of nematodes and germinants could represent a promising approach for the remediation of B. anthracis spore contaminated soil. Originality-Significance Statement: This study demonstrates for the first time the successful use of environmentally friendly decontamination methods to inactivate Bacillus anthracis spores in soil using natural predators of the bacterium, nematode worms.

  13. Crossing of the epithelial barriers by Bacillus anthracis: the Known and the Unknown

    PubMed Central

    Goossens, Pierre L.; Tournier, Jean-Nicolas

    2015-01-01

    Anthrax, caused by Bacillus anthracis, a Gram-positive spore-forming bacterium, is initiated by the entry of spores into the host body. There are three types of human infection: cutaneous, inhalational, and gastrointestinal. For each form, B. anthracis spores need to cross the cutaneous, respiratory or digestive epithelial barriers, respectively, as a first obligate step to establish infection. Anthrax is a toxi-infection: an association of toxemia and rapidly spreading infection progressing to septicemia. The pathogenicity of Bacillus anthracis mainly depends on two toxins and a capsule. The capsule protects bacilli from the immune system, thus promoting systemic dissemination. The toxins alter host cell signaling, thereby paralyzing the immune response of the host and perturbing the endocrine and endothelial systems. In this review, we will mainly focus on the events and mechanisms leading to crossing of the respiratory epithelial barrier, as the majority of studies have addressed inhalational infection. We will discuss the critical gaps of knowledge that need to be addressed to gain a comprehensive view of the initial steps of inhalational anthrax. We will then discuss the few data available on B. anthracis crossing the cutaneous and digestive epithelia. PMID:26500645

  14. Screening and characterization of extracelluar L-asparaginase producing Bacillus subtilis strain hswx88, isolated from Taptapani hotspring of Odisha, India.

    PubMed

    Pradhan, Biswaprakash; Dash, Sashi K; Sahoo, Sabuj

    2013-12-01

    To screen and isolate an eco-friendly, a thermophilic and potent L-asparaginase producing bacterium, with novel immunological properties that may obviates hypersensitivity reactions. In the present study bacterial strain isolated for extracellular L-asparaginase production from hotspring, identified by morphological, biochemical and physiological tests followed by 16S rDNA technology and the L-asparaginase production ability was tested by both semi quantitative and quantitative enzymatic assay. The bacterial strain was identified as Bacillus subtilis strain hswx88 (GenBank Accession Number: JQ237656.1). The extracellular enzyme yielding capacity isolate Bacillus subtilis strain hswx88 (23.8 IU/mL) was found to be 1.7 and 14.5 times higher than the reference organism Pectobacterium carotovorum MTCC 1428 (14.2 IU/mL) and Bacillus sp. BCCS 034 (1.64 IU/mL). The isolate is eco-friendly and useful to produce bulk quantity of extracellular, thermophilic L-asparaginase for the treatment of various tumor cases and for preparation of acrylamide free fry food preparation. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  15. Study of mural painting isolates, leading to the transfer of 'Bacillus maroccanus' and 'Bacillus carotarum' to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to 'Bacillus macroides' and description of Bacillus muralis sp. nov.

    PubMed

    Heyrman, Jeroen; Logan, Niall A; Rodríguez-Díaz, Marina; Scheldeman, Patsy; Lebbe, Liesbeth; Swings, Jean; Heyndrickx, Marc; De Vos, Paul

    2005-01-01

    A group of 24 strains was isolated from deteriorated mural paintings situated in Spain (necropolis of Carmona) and Germany (church of Greene-Kreiensen). (GTG)5-PCR genomic fingerprinting was performed on these strains to assess their genomic variability and the strains were delineated into four groups. Representatives were studied by 16S rRNA gene sequencing and were found to be closely related to Bacillus simplex and the species 'Bacillus macroides' (strain NCIMB 8796) and 'Bacillus maroccanus' (names not validly published) according to a fasta search. The close similarity between B. simplex, 'B. macroides' NCIMB 8796, 'B. maroccanus' and the mural painting isolates was confirmed by additional (GTG)5-PCR, ARDRA, FAME and SDS-PAGE analyses. Furthermore, these techniques revealed that strains of 'Bacillus carotarum', another name that has not been validly published, also showed high similarity to this group of organisms. On the other hand, it was shown that the strains labelled 'B. macroides' in different collections do not all belong to the same species. Strain NCIMB 8796 can be allocated to B. simplex, while strain DSM 54 (=ATCC 12905) shares the highest 16S rRNA gene sequence similarity with Bacillus sphaericus and Bacillus fusiformis (both around 98.6 %). On the basis of further DNA-DNA hybridization data and the study of phenotypic characteristics, one group of five mural painting strains was attributed to a novel species in the genus Bacillus, for which the name Bacillus muralis sp. nov. is proposed. Finally, the remaining mural painting strains, one (LMG 18508=NCIMB 8796) of two strains belonging to 'B. macroides' and strains belonging to 'B. maroccanus' and 'B. carotarum' are allocated to the species B. simplex and an emended description of B. simplex is given.

  16. Chromosomal Organization of Rrna Operons in Bacillus Subtilis

    PubMed Central

    Jarvis, E. D.; Widom, R. L.; LaFauci, G.; Setoguchi, Y.; Richter, I. R.; Rudner, R.

    1988-01-01

    Integrative mapping with vectors containing ribosomal DNA sequences were used to complete the mapping of the 10 rRNA gene sets in the endospore forming bacterium Bacillus subtilis. Southern hybridizations allowed the assignment of nine operons to distinct BclI restriction fragments and their genetic locus identified by transductional crosses. Nine of the ten rRNA gene sets are located between 0 and 70° on the genomic map. In the region surrounding cysA14, two sets of closely spaced tandem clusters are present. The first (rrnJ and rrnW) is located between purA16 and cysA14 closely linked to the latter; the second (rrnI, rrnH and rrnG) previously mapped within this area is located between attSPO2 and glpT6. The operons at or near the origin of replication (rrnO,rrnA and rrnJ,rrnW) represent ``hot spots'' of plasmid insertion. PMID:2465199

  17. Generation of multiple cell types in Bacillus subtilis.

    PubMed

    Lopez, Daniel; Vlamakis, Hera; Kolter, Roberto

    2009-01-01

    Bacillus subtilis is a Gram-positive bacterium that is well known for its ability to differentiate into metabolically inactive spores that are highly resistant to environmental stresses. In fact, populations of genetically identical B. subtilis comprise numerous distinct cell types. In addition to spores, cells can become genetically competent, motile, produce extracellular matrix or degradative enzymes, or secrete toxins that allow them to cannibalize their neighbors. Many of the cell fates listed above appear to be mutually exclusive. In this review, we discuss how individual cells within a population control their gene expression to ensure that proper regulation of differentiation occurs. These different cell fates are regulated by an intricate network that relies primarily on the activity of three major transcriptional regulators: Spo0A, DegU, and ComK. While individual cells must choose distinct cell fates, the population as a whole exhibits a spectrum of phenotypes whose diversity may increase fitness.

  18. CRISPR/Cas9 Editing of the Bacillus subtilis Genome

    PubMed Central

    Burby, Peter E.; Simmons, Lyle A.

    2017-01-01

    A fundamental procedure for most modern biologists is the genetic manipulation of the organism under study. Although many different methods for editing bacterial genomes have been used in laboratories for decades, the adaptation of CRISPR/Cas9 technology to bacterial genetics has allowed researchers to manipulate bacterial genomes with unparalleled facility. CRISPR/Cas9 has allowed for genome edits to be more precise, while also increasing the efficiency of transferring mutations into a variety of genetic backgrounds. As a result, the advantages are realized in tractable organisms and organisms that have been refractory to genetic manipulation. Here, we describe our method for editing the genome of the bacterium Bacillus subtilis. Our method is highly efficient, resulting in precise, markerless mutations. Further, after generating the editing plasmid, the mutation can be quickly introduced into several genetic backgrounds, greatly increasing the speed with which genetic analyses may be performed. PMID:28706963

  19. Crystallization and preliminary X-ray characterization of arylamine N-acetyltransferase C (BanatC) from Bacillus anthracis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluvinage, Benjamin; Li de la Sierra-Gallay, Inés; Martins, Marta

    2007-10-01

    Bacillus anthracis arylamine N-acetyltransferase C (BanatC) is an enzyme that metabolizes the drug sulfamethoxazole. Crystals of the purified enzyme that diffract at 1.95 Å are reported. The arylamine N-acetyltransferase (NAT) enzymes are xenobiotic metabolizing enzymes that have been found in a large range of eukaryotes and prokaryotes. These enzymes catalyse the acetylation of arylamine drugs and/or pollutants. Recently, a Bacillus anthracis NAT isoform (BanatC) has been cloned and shown to acetylate the sulfonamide antimicrobial sulfamethoxazole (SMX). Subsequently, it was shown that BanatC contributes to the resistance of this bacterium to SMX. Here, the crystallization and the X-ray characterization of BanatCmore » (Y38F mutant) are reported. The crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 53.70, c = 172.40 Å, and diffract to 1.95 Å resolution on a synchrotron source.« less

  20. Separation and determination of peptide metabolite of Bacillus licheniformis in a microbial fuel cell by high-speed capillary micellar electrokinetic chromatography.

    PubMed

    Wang, Wei; Bai, Ruiguang; Cai, Xiaoyu; Lin, Ping; Ma, Lihong

    2017-11-01

    A method using high-speed capillary micellar electrokinetic chromatography and a microbial fuel cell was applied to determine the metabolite of the peptides released by Bacillus licheniformis. Two peptides, l-carnosine and l-alanyl-l-glutamine were used as the substrate to feed Bacillus licheniformis in a microbial fuel cell. The metabolism process of the bacterium was monitored by analyzing the voltage outputs of the microbial fuel cell. A home-made spontaneous injection device was applied to perform high-speed capillary micellar electrokinetic chromatography. Under the optimized conditions, tryptophan, glycine, valine, tyrosine and the two peptides could be rapidly separated within 2.5 min with micellar electrokinetic chromatography mode. Then the method was applied to analyze the solutions sampled from the microbial fuel cell. After 92 h running, valine, as the metabolite, was successfully detected with concentration 3.90 × 10 -5 M. The results demonstrated that Bacillus licheniformis could convert l-carnosine and l-alanyl-l-glutamine into valine. The method employed in this work was proved to have great potential in analysis of metabolites, such as amino acids, for microorganisms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Surfactin, Iturin, and Fengycin Biosynthesis by Endophytic Bacillus sp. from Bacopa monnieri.

    PubMed

    Jasim, B; Sreelakshmi, K S; Mathew, Jyothis; Radhakrishnan, E K

    2016-07-01

    Endophytic microorganisms which are ubiquitously present in plants may colonize intracellularly or intercellularly without causing any diseases. By living within the unique chemical environment of a host plant, they produce a vast array of compounds with a wide range of biological activities. Because of this, natural products of endophytic origin have been exploited for antimicrobial, antiviral, anticancer, and antioxidant properties. Also, they can be considered to function as an efficient microbial barrier to protect plants from various pathogens. In the present study, endophytic bacterium BmB 9 with antifungal and antibacterial activity isolated from the stem tissue of Bacopa monnieri was studied for the molecular and chemical basis of its activity. PCR-based genome mining for various biosynthetic gene clusters proved the presence of surfactin, iturin, and type I polyketide synthase (PKS) genes in the isolate. The LC-MS/MS based analysis of the extract further confirmed the production of surfactin derivatives (M + H(+)-1008.6602, 1022.6755), iturin (M + H(+)-1043.5697), and fengycin (M + H(+)-1491.8195, 1477.8055) by the selected bacterial isolate. The 16S rDNA sequence similarity based analysis identified the isolate BmB 9 as Bacillus sp. with 100 % identity to Bacillus sp. LCF1 (KP257289).

  2. Large-Scale Bioinformatics Analysis of Bacillus Genomes Uncovers Conserved Roles of Natural Products in Bacterial Physiology.

    PubMed

    Grubbs, Kirk J; Bleich, Rachel M; Santa Maria, Kevin C; Allen, Scott E; Farag, Sherif; Shank, Elizabeth A; Bowers, Albert A

    2017-01-01

    metabolites produced by Bacillus species are highly conserved, known compounds with important signaling roles in the physiology and development of this bacterium. Additionally, there is significant unique biosynthetic machinery distributed across the genus that might lead to new, unknown metabolites with diverse biological functions. Inspired by the findings of our genomic analysis, we speculate that the highly conserved alkylpyrones might have an important biological activity within this genus. We go on to validate this prediction by demonstrating that these natural products are developmental signals in Bacillus and act by inhibiting sporulation.

  3. Biological treatment of chicken feather waste for improved biogas production.

    PubMed

    Forgács, Gergely; Alinezhad, Saeid; Mirabdollah, Amir; Feuk-Lagerstedt, Elisabeth; Horváth, Ilona Sárvári

    2011-01-01

    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas. Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production. Chopped, autoclaved chicken feathers (4%, W/V) were completely degraded, resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain. During the subsequent anaerobic batch digestion experiments, methane production of 0.35 Nm3/kg dry feathers (i.e., 0.4 Nm3/kg volatile solids of feathers), corresponding to 80% of the theoretical value on proteins, was achieved from the feather hydrolyzates, independently of the pre-hydrolysis time period of 1, 2 or 8 days. Cultivation with a native keratinase producing strain, Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate, which then was digested achieving a maximum accumulated methane production of 0.31 Nm3/kg dry feathers. Feather hydrolyzates treated with the wild type B. megaterium produced 0.21 Nm3 CH4/kg dry feathers as maximum yield.

  4. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    NASA Astrophysics Data System (ADS)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  5. Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens

    PubMed Central

    Powers, Matthew J.; Sanabria-Valentín, Edgardo; Bowers, Albert A.

    2015-01-01

    ABSTRACT Interspecies interactions have been described for numerous bacterial systems, leading to the identification of chemical compounds that impact bacterial physiology and differentiation for processes such as biofilm formation. Here, we identified soil microbes that inhibit biofilm formation and sporulation in the common soil bacterium Bacillus subtilis. We did so by creating a reporter strain that fluoresces when the transcription of a biofilm-specific gene is repressed. Using this reporter in a coculture screen, we identified Pseudomonas putida and Pseudomonas protegens as bacteria that secrete compounds that inhibit biofilm gene expression in B. subtilis. The active compound produced by P. protegens was identified as the antibiotic and antifungal molecule 2,4-diacetylphloroglucinol (DAPG). Colonies of B. subtilis grown adjacent to a DAPG-producing P. protegens strain had altered colony morphologies relative to B. subtilis colonies grown next to a DAPG-null P. protegens strain (phlD strain). Using a subinhibitory concentration of purified DAPG in a pellicle assay, we saw that biofilm-specific gene transcription was delayed relative to transcription in untreated samples. These transcriptional changes also corresponded to phenotypic alterations: both biofilm biomass and spore formation were reduced in B. subtilis liquid cultures treated with subinhibitory concentrations of DAPG. Our results add DAPG to the growing list of antibiotics that impact bacterial development and physiology at subinhibitory concentrations. These findings also demonstrate the utility of using coculture as a means to uncover chemically mediated interspecies interactions between bacteria. IMPORTANCE Biofilms are communities of bacteria adhered to surfaces by an extracellular matrix; such biofilms can have important effects in both clinical and agricultural settings. To identify chemical compounds that inhibited biofilm formation, we used a fluorescent reporter to screen for bacteria that

  6. Effective feather degradation and keratinase production by Bacillus pumilus GRK for its application as bio-detergent additive.

    PubMed

    Ramakrishna Reddy, M; Sathi Reddy, K; Ranjita Chouhan, Y; Bee, Hameeda; Reddy, Gopal

    2017-11-01

    An effecient feather-degrading bacterium was isolated from poultry dumping yard and identified as Bacillus pumilus GRK based on 16S rRNA sequencing. Complete feather degradation (98.3±1.52%) with high keratinase production (373±4 U/ml) was observed in 24h under optimized conditions (substrate 1% (w/w); inoculum size 4% (v/v); pH 10; 200rpm at 37°C) with feathers as sole carbon and nitrogen source in tap water. The fermented broth was enriched with amino acids like tryptophan (221.44µg/ml), isoleucine (15.0µg/ml), lysine (10.81µg/ml) and methionine (7.24µg/ml) suggesting its potential use as feed supplement. The keratinase produced was a detergent stable serine protease and its activity was further enhanced by Ca +2 and Mg +2 . Bacillus pumilus GRK keratinase was successfully utilised as bioadditive in detergent formulations for removing the blood stains from cloth without affecting its fiber and texture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Qualitative composition of dominating forms of microorganisms isolated from radionuclide contaminated soil and their ability to accumulate 137Cs].

    PubMed

    Pareniuk, O Iu; Moshynets', O V; Tytova, L V; Levchuk, S Ie

    2013-01-01

    Qualitative composition of the dominating forms of microorganisms isolated from radionuclide contaminated soils has been studied. The ability to accumulate 137Cs by freshly isolated species and collection cultures that were not adapted to the presence of the radionuclide has been analyzed. It is shown that among the analyzed microorganisms the greatest ability to accumulate the radionuclide is inherent in the collection culture Bacillus megaterium UKMV-5724.

  8. Molecular study of a squalene cyclase homolog gene in Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Bosak, T.; Pearson, A.; Losick, R.

    2005-12-01

    Polycyclic triterpenoids such as hopanes and steranes are formed by enzymatic cyclization of linear isoprenoid precursors by squalene cyclases and oxidosqualene cyclases. Due to their amazing preservation potential, polycyclic triterpenoids have been used to indicate the source of organic matter in oils and sediments for decades, although many cannot be attributed to known organisms and genes. To bridge the gap between the genomic database and the geochemical record, we are using molecular tools to study the expression, intracellular localization, and products of a squalene cyclase homolog found in Bacillus subtilis, a Gram-positive soil bacterium. We find that the gene is expressed during sporulation and is localized to the spore coat. Our results may help to understand the source of some previously unassigned natural products, and they may also provide clues to the physiological role of triterpenoids in the Bacillales.

  9. Mechanisms of adaptation to nitrosative stress in Bacillus subtilis.

    PubMed

    Rogstam, Annika; Larsson, Jonas T; Kjelgaard, Peter; von Wachenfeldt, Claes

    2007-04-01

    Bacteria use a number of mechanisms for coping with the toxic effects exerted by nitric oxide (NO) and its derivatives. Here we show that the flavohemoglobin encoded by the hmp gene has a vital role in an adaptive response to protect the soil bacterium Bacillus subtilis from nitrosative stress. We further show that nitrosative stress induced by the nitrosonium cation donor sodium nitroprusside (SNP) leads to deactivation of the transcriptional repressor NsrR, resulting in derepression of hmp. Nitrosative stress induces the sigma B-controlled general stress regulon. However, a sigB null mutant did not show increased sensitivity to SNP, suggesting that the sigma B-dependent stress proteins are involved in a nonspecific protection against stress whereas the Hmp flavohemoglobin plays a central role in detoxification. Mutations in the yjbIH operon, which encodes a truncated hemoglobin (YjbI) and a predicted 34-kDa cytosolic protein of unknown function (YjbH), rendered B. subtilis hypersensitive to SNP, suggesting roles in nitrosative stress management.

  10. Caenorhabditis elegans Predation on Bacillus anthracis: Decontamination of Spore Contaminated Soil with Germinants and Nematodes

    PubMed Central

    Schelkle, Bettina; Choi, Young; Baillie, Leslie W.; Richter, William; Buyuk, Fatih; Celik, Elif; Wendling, Morgan; Sahin, Mitat; Gallagher, Theresa

    2018-01-01

    Remediation of Bacillus anthracis-contaminated soil is challenging and approaches to reduce overall spore levels in environmentally contaminated soil or after intentional release of the infectious disease agent in a safe, low-cost manner are needed. B. anthracis spores are highly resistant to biocides, but once germinated they become susceptible to traditional biocides or potentially even natural predators such as nematodes in the soil environment. Here, we describe a two-step approach to reducing B. anthracis spore load in soil during laboratory trials, whereby germinants and Caenorhabditis elegans nematodes are applied concurrently. While the application of germinants reduced B. anthracis spore load by up to four logs depending on soil type, the addition of nematodes achieved a further log reduction in spore count. These laboratory based results suggest that the combined use of nematodes and germinants could represent a promising approach for the remediation of B. anthracis spore contaminated soil. Originality-Significance Statement: This study demonstrates for the first time the successful use of environmentally friendly decontamination methods to inactivate Bacillus anthracis spores in soil using natural predators of the bacterium, nematode worms. PMID:29379472

  11. Inhibition of Bacillus licheniformis LMG 19409 from ropy cider by enterocin AS-48.

    PubMed

    Grande, M J; Lucas, R; Abriouel, H; Valdivia, E; Ben Omar, N; Maqueda, M; Martínez-Cañamero, M; Gálvez, A

    2006-08-01

    To determine the activity of enterocin AS-48 against ropy-forming Bacillus licheniformis from cider. Enterocin AS-48 was tested on B. licheniformis LMG 19409 from ropy cider in MRS-G broth, fresh-made apple juice and in two commercial apple ciders (A and B). Bacillus licheniformis was rapidly inactivated in MRS-G by 0.5 microg ml(-1)AS-48 and in fresh-made apple juice by 3 microg ml(-1). Concentration-dependent inactivation of this bacterium in two commercial apple ciders (A and B) stored at 4, 15 and 30 degrees C for 15 days was also demonstrated. Counts from heat-activated endospores in cider A plus AS-48 decreased very slowly. Application of combined treatments of heat (95 degrees C) and enterocin AS-48 reduced the time required to achieved complete inactivation of intact spores in cider A to 4 min for 6 microg ml(-1) and to 1 min for 12 microg ml(-1). D and z values also decreased as the bacteriocin concentration increased. Enterocin AS-48 can inhibit ropy-forming B. licheniformis in apple cider and increase the heat sensitivity of spores. Results from this study support the potential use of enterocin AS-48 to control B. licheniformis in apple cider.

  12. Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of Its DegU phosphorylation.

    PubMed

    Xu, Zhihui; Zhang, Ruifu; Wang, Dandan; Qiu, Meihua; Feng, Haichao; Zhang, Nan; Shen, Qirong

    2014-05-01

    Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU∼P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU∼P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9.

  13. Biofilm Formation by a Metabolically Versatile Bacterium

    DTIC Science & Technology

    2009-03-19

    ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium that has good potential as a biocatalyst for the production ofhydrogen gas, a biofuel...Biofilm formation by a metabolically versatile bacterium: final report Report Title ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium...agricultural waste. We characterized five new Rhodopseudomonas genome sequences and isolated and described R. palustris mutant strains that produce

  14. Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07.

    PubMed

    Gaur, Rajeeva; Tiwari, Soni

    2015-03-19

    The rising concerns about the scarcity of fossil fuels, the emission of green house gasses and air pollution by incomplete combustion of fossil fuel have also resulted in an increasing focus on the use of cellulases to perform enzymatic hydrolysis of the lignocellulosic materials for the generation of bioethanol. The aim of this study was to isolate a potential thermo-solvent tolerant cellulase producing bacterium from natural resources, and then applied for purification and characterization. The purified enzyme was to be accessible for the bioethanol production as well as industrial exploitation (discuss in our next study). It is the first instance when thermo-solvent tolerant cellulase producing bacterium was isolated from soil sample. The culture was identified as Bacillus vallismortis RG-07 by 16S rDNA sequence analysis. Bacillus vallismortis RG-07 reported maximum cellulase production from sugarcane baggase (4105 U ml(-1)) used as agro-waste carbon source. The cellulase enzyme produced by the Bacillus sp. was purified by (NH4)2SO4 precipitation, ion exchange and gel filtration chromatography, with overall recovery of 28.8%. The molecular weight of purified cellulase was 80 kDa as revealed by SDS-PAGE and activity gel analysis. The optimum temperature and pH for enzyme activity was determined as 65°C and 7.0 and it retained 95 and 75% of activity even at 95°C, and 9.0 respectively. The enzyme activity was enhanced in the presence of organic solvents (30%) n-dodecane, iso-octane, n-decane, xylene, toluene, n-haxane, n-butanol, and cyclohexane, after prolonged incubation (7 days). The enzyme activity was also stimulated by Ca(2+), mercaptoethanol, Tween-60, and Sodium hypochloride whereas strongly inhibited by Hg. Kinetic analysis of purified enzyme showed the Km and Vmax to be 1.923 mg ml(-1) and 769.230 μg ml(-1) min(-1), respectively. The unique property of solvent-thermostable-alkalophilic, nature proves the potential candidature of this isolate for

  15. Bacillus anthracis (image)

    MedlinePlus

    ... aerobic spore-forming bacterium that causes disease in humans and animals. The bacteria is found in two forms: cutaneous anthrax and inhalation anthrax. Cutaneous anthrax is an infection of the skin caused by direct contact with the bacterium. Inhalation ...

  16. NprR-NprX Quorum-Sensing System Regulates the Algicidal Activity of Bacillus sp. Strain S51107 against Bloom-Forming Cyanobacterium Microcystis aeruginosa.

    PubMed

    Wu, Lishuang; Guo, Xingliang; Liu, Xianglong; Yang, Hong

    2017-01-01

    Harmful cyanobacterial blooms have severely impaired freshwater quality and threatened human health worldwide. Here, a Gram-positive bacterium, Bacillus sp. strain S51107, which exhibits strong algicidal activity against Microcystis aeruginosa , was isolated from Lake Taihu. We found that the algicidal activity of strain S51107 was regulated primarily by NprR-NprX quorum sensing (QS), in which the mature form of the signaling peptide NprX was identified as the SKPDIVG heptapeptide. Disruption of the nprR-nprX cassette markedly decreased the algicidal activity, and complemented strains showed significantly recovered algicidal activity. Strain S51107 produced low-molecular-weight algicidal compounds [indole-3-carboxaldehyde and cyclo(Pro-Phe)] and high-molecular-weight algicidal substance(s) (>3 kDa). Moreover, the production of high-molecular-weight algicidal substance(s) was regulated by NprR-NprX QS, but the production of low-molecular-weight algicidal compounds was not. High-molecular-weight algicidal substance(s) played a more important role than low-molecular-weight algicidal compounds in the algicidal activity of strain S51107. The results of this study could increase our knowledge about algicidal characteristics of a potential algicidal bacterium, Bacillus sp. strain S51107, and provide the first evidence that the algicidal activity of Gram-positive algicidal bacteria is regulated by QS, which will greatly enhance our understanding of the interactions between algae and indigenous algicidal bacteria, thereby providing aid in the design and optimization of strategies to control harmful algae blooms.

  17. NprR-NprX Quorum-Sensing System Regulates the Algicidal Activity of Bacillus sp. Strain S51107 against Bloom-Forming Cyanobacterium Microcystis aeruginosa

    PubMed Central

    Wu, Lishuang; Guo, Xingliang; Liu, Xianglong; Yang, Hong

    2017-01-01

    Harmful cyanobacterial blooms have severely impaired freshwater quality and threatened human health worldwide. Here, a Gram-positive bacterium, Bacillus sp. strain S51107, which exhibits strong algicidal activity against Microcystis aeruginosa, was isolated from Lake Taihu. We found that the algicidal activity of strain S51107 was regulated primarily by NprR-NprX quorum sensing (QS), in which the mature form of the signaling peptide NprX was identified as the SKPDIVG heptapeptide. Disruption of the nprR-nprX cassette markedly decreased the algicidal activity, and complemented strains showed significantly recovered algicidal activity. Strain S51107 produced low-molecular-weight algicidal compounds [indole-3-carboxaldehyde and cyclo(Pro-Phe)] and high-molecular-weight algicidal substance(s) (>3 kDa). Moreover, the production of high-molecular-weight algicidal substance(s) was regulated by NprR-NprX QS, but the production of low-molecular-weight algicidal compounds was not. High-molecular-weight algicidal substance(s) played a more important role than low-molecular-weight algicidal compounds in the algicidal activity of strain S51107. The results of this study could increase our knowledge about algicidal characteristics of a potential algicidal bacterium, Bacillus sp. strain S51107, and provide the first evidence that the algicidal activity of Gram-positive algicidal bacteria is regulated by QS, which will greatly enhance our understanding of the interactions between algae and indigenous algicidal bacteria, thereby providing aid in the design and optimization of strategies to control harmful algae blooms. PMID:29075240

  18. Differentiation of Bacillus Anthracis and Other Bacillus Species by Use of Lectins

    DTIC Science & Technology

    1983-07-18

    TITL9 fAnd Subtfitle) S.TypeO REPORT gi PZRCC rvt 4 DIFFERENTIATION OF BACIL-LUSg’ ANTHRAtgACIS D OTHER BACILLUS , SPECIES BY-USE OYLECTINS" Inter[im...Ricinus communis. Some strains of Bacillus cer-eus var. m-ycoides (B. Mycoides) were strongly reactive with the lectin from Helbi pomtia and weakly reacti...ve with the Glycine max lectin. The differential iCnteractions between Bacillus species and lectins af forded a means of distinguishing B. anthracis

  19. Heterotrophic nitrogen removal in Bacillus sp. K5: involvement of a novel hydroxylamine oxidase.

    PubMed

    Yang, Yunlong; Lin, Ershu; Huang, Shaobin

    2017-12-01

    An aerobic denitrifying bacterium isolated from a bio-trickling filter treating NOx, Bacillus sp. K5, is able to convert ammonium to nitrite, in which hydroxylamine oxidase (HAO) plays a critical role. In the present study, the performance for simultaneous nitrification and denitrification was investigated with batch experiments and an HAO was purified by an anion-exchange and gel-filtration chromatography from strain K5. The purified HAO's molecular mass was determined by SDS-PAGE and its activity by measuring the change in the concentration of ferricyanide, the electron acceptor. Results showed that as much as 87.8 mg L -1 ammonium-N was removed without nitrite accumulation within 24 hours in the sodium citrate medium at C/N of 15. The HAO isolated from the strain K5 was approximately 71 KDa. With hydroxylamine (NH 2 OH) as a substrate and potassium ferricyanide as an electron acceptor, the enzyme was capable of oxidizing NH 2 OH to nitrite in vitro when the pH varied from 7 to 9 and temperature ranged from 25 °C to 40 °C. This is the first time that an HAO has been purified from the Bacillus genus, and the findings revealed that it is distinctive in its molecular mass and enzyme properties.

  20. Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants

    PubMed Central

    Monnerat, Rose Gomes; Soares, Carlos Marcelo; Capdeville, Guy; Jones, Gareth; Martins, Érica Soares; Praça, Lilian; Cordeiro, Bruno Arrivabene; Braz, Shélida Vasconcelos; Dos Santos, Roseane Cavalcante; Berry, Colin

    2009-01-01

    Summary The major biological pesticide for the control of insect infestations of crops, Bacillus thuringiensis was found to be present naturally within cotton plants from fields that had never been treated with commercial formulations of this bacterium. The ability of B. thuringiensis to colonize plants as an endophyte was further established by the introduction of a strain marked by production of green fluorescent protein (GFP). After inoculation of this preparation close to the roots of cotton and cabbage seedlings, GFP‐marked bacteria could be re‐isolated from all parts of the plant, having entered the roots and migrated through the xylem. Leaves taken from the treated plants were able to cause toxicity when fed to the Lepidoptera Spodoptera frugiperda (cotton) and Plutella xylostella (cabbage). These results open up new horizons for understanding the natural ecology and evolution of B. thuringiensis and use of B. thuringiensis in insect control. PMID:21255282

  1. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    PubMed

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective.

  2. Mechanisms of Adaptation to Nitrosative Stress in Bacillus subtilis▿ †

    PubMed Central

    Rogstam, Annika; Larsson, Jonas T.; Kjelgaard, Peter; von Wachenfeldt, Claes

    2007-01-01

    Bacteria use a number of mechanisms for coping with the toxic effects exerted by nitric oxide (NO) and its derivatives. Here we show that the flavohemoglobin encoded by the hmp gene has a vital role in an adaptive response to protect the soil bacterium Bacillus subtilis from nitrosative stress. We further show that nitrosative stress induced by the nitrosonium cation donor sodium nitroprusside (SNP) leads to deactivation of the transcriptional repressor NsrR, resulting in derepression of hmp. Nitrosative stress induces the sigma B-controlled general stress regulon. However, a sigB null mutant did not show increased sensitivity to SNP, suggesting that the sigma B-dependent stress proteins are involved in a nonspecific protection against stress whereas the Hmp flavohemoglobin plays a central role in detoxification. Mutations in the yjbIH operon, which encodes a truncated hemoglobin (YjbI) and a predicted 34-kDa cytosolic protein of unknown function (YjbH), rendered B. subtilis hypersensitive to SNP, suggesting roles in nitrosative stress management. PMID:17293416

  3. A major protein component of the Bacillus subtilis biofilm matrix.

    PubMed

    Branda, Steven S; Chu, Frances; Kearns, Daniel B; Losick, Richard; Kolter, Roberto

    2006-02-01

    Microbes construct structurally complex multicellular communities (biofilms) through production of an extracellular matrix. Here we present evidence from scanning electron microscopy showing that a wild strain of the Gram positive bacterium Bacillus subtilis builds such a matrix. Genetic, biochemical and cytological evidence indicates that the matrix is composed predominantly of a protein component, TasA, and an exopolysaccharide component. The absence of TasA or the exopolysaccharide resulted in a residual matrix, while the absence of both components led to complete failure to form complex multicellular communities. Extracellular complementation experiments revealed that a functional matrix can be assembled even when TasA and the exopolysaccharide are produced by different cells, reinforcing the view that the components contribute to matrix formation in an extracellular manner. Having defined the major components of the biofilm matrix and the control of their synthesis by the global regulator SinR, we present a working model for how B. subtilis switches between nomadic and sedentary lifestyles.

  4. First steps of bacteriophage SPP1 entry into Bacillus subtilis.

    PubMed

    Jakutytė, Lina; Lurz, Rudi; Baptista, Catarina; Carballido-Lopez, Rut; São-José, Carlos; Tavares, Paulo; Daugelavičius, Rimantas

    2012-01-20

    The mechanism of genome transfer from the virion to the host cytoplasm is critical to understand and control the beginning of viral infection. The initial steps of bacteriophage SPP1 infection of the Gram-positive bacterium Bacillus subtilis were monitored by following changes in permeability of the cytoplasmic membrane (CM). SPP1 leads to a distinctively faster CM depolarization than the one caused by podovirus ϕ29 or myovirus SP01 during B. subtilis infection. Depolarization requires interaction of SPP1 infective virion to its receptor protein YueB. The amplitude of depolarization depends on phage input and concentration of YueB at the cell surface. Sub-millimolar concentrations of Ca(2+) are necessary and sufficient for SPP1 reversible binding to the host envelope and thus to trigger depolarization while DNA delivery to the cytoplasm depends on millimolar concentrations of this divalent cation. A model describing the early events of bacteriophage SPP1 infection is presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    PubMed Central

    Gillis, Annika; Mahillon, Jacques

    2014-01-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  6. Bacillus infantis sp. nov. and Bacillus idriensis sp. nov., isolated from a patient with neonatal sepsis.

    PubMed

    Ko, Kwan Soo; Oh, Won Sup; Lee, Mi Young; Lee, Jang Ho; Lee, Hyuck; Peck, Kyong Ran; Lee, Nam Yong; Song, Jae-Hoon

    2006-11-01

    Two Gram-positive bacilli, designated as strains SMC 4352-1T and SMC 4352-2T, were isolated sequentially from the blood of a newborn child with sepsis. They could not be identified by using conventional clinical microbiological methods. 16S rRNA gene sequencing and phylogenetic analysis revealed that both strains belonged to the genus Bacillus but clearly diverged from known Bacillus species. Strain SMC 4352-1T and strain SMC 4352-2T were found to be closely related to Bacillus firmus NCIMB 9366T (98.2% sequence similarity) and Bacillus cibi JG-30T (97.1% sequence similarity), respectively. They also displayed low DNA-DNA reassociation values (less than 40%) with respect to the most closely related Bacillus species. On the basis of their polyphasic characteristics, strain SMC 4352-1T and strain SMC 4352-2T represent two novel species of the genus Bacillus, for which the names Bacillus infantis sp. nov. (type strain SMC 4352-1T=KCCM 90025T=JCM 13438T) and Bacillus idriensis sp. nov. (type strain SMC 4352-2T=KCCM 90024T=JCM 13437T) are proposed.

  7. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  8. Characterization of a Bacillus amyloliquefaciens strain for reduction of citrulline accumulation during soy sauce fermentation.

    PubMed

    Zhang, Jiran; Du, Guocheng; Chen, Jian; Fang, Fang

    2016-10-01

    To reduce the amount of citrulline produced by arginine-consuming bacteria in the moromi mash during soy sauce production. Bacillus amyloliquefaciens JY06, a salt-tolerant strain with high arginine consumption ability and low citrulline accumulation capacity, was isolated from moromi mash. The concentration of citrulline was decreased from 26.8 to 5.1 mM and ethyl carbamate in soy sauce, after sterilization, decreased from 97 to 17 μg kg(-1) when B. amyloliquefaciens JY06 was added during fermentation. The aroma of the sauce was improved by increasing the ester content. B. amyloliquefaciens JY06 is a beneficial bacterium that can be used in soy sauce fermentation to eliminate ethyl carbonate and enhance the flavor of the sauce.

  9. Potassium sensing histidine kinase in Bacillus subtilis.

    PubMed

    López, Daniel; Gontang, Erin A; Kolter, Roberto

    2010-01-01

    The soil-dwelling organism Bacillus subtilis is able to form multicellular aggregates known as biofilms. It was recently reported that the process of biofilm formation is activated in response to the presence of various, structurally diverse small-molecule natural products. All of these small-molecule natural products made pores in the membrane of the bacterium, causing the leakage of potassium cations from the cytoplasm of the cell. The potassium cation leakage was sensed by the membrane histidine kinase KinC, triggering the genetic pathway to the production of the extracellular matrix that holds cells within the biofilm. This chapter presents the methodology used to characterize the leakage of cytoplasmic potassium as the signal that induces biofilm formation in B. subtilis via activation of KinC. Development of novel techniques to monitor activation of gene expression in microbial populations led us to discover the differentiation of a subpopulation of cells specialized to produce the matrix that holds all cells together within the biofilm. This phenomenon of cell differentiation was previously missed by conventional techniques used to monitor transcriptional gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Concomitant production of detergent compatible enzymes by Bacillus flexus XJU-1.

    PubMed

    Niyonzima, Francois N; More, Sunil S

    2014-01-01

    A soil screened Bacillus flexus XJU-1 was induced to simultaneously produce alkaline amylase, alkaline lipase and alkaline protease at their optimum levels on a common medium under submerged fermentation. The basal cultivation medium consisted of 0.5% casein, 0.5% starch and 0.5% cottonseed oil as an inducer for protease, amylase, and lipase, respectively. The casein also served as nitrogen source for all 3 enzymes. The starch was also found to act as carbon source additive for both lipase and protease. Maximum enzyme production occurred on fermentation medium with 1.5% casein, 1.5% soluble starch, 2% cottonseed oil, 2% inoculum size, initial pH of 11.0, incubation temperature of 37 °C and 1% soybean meal as a nitrogen source supplement. The analysis of time course study showed that 24 h was optimum incubation time for amylase whereas 48 h was the best time for both lipase and protease. After optimization, a 3.36-, 18.64-, and 27.33-fold increase in protease, amylase and lipase, respectively was recorded. The lipase was produced in higher amounts (37.72 U/mL) than amylase and protease about 1.27 and 5.85 times, respectively. As the 3 enzymes are used in detergent formulations, the bacterium can be commercially exploited to secrete the alkaline enzymes for use in detergent industry. This is the first report for concomitant production of 3 alkaline enzymes by a bacterium.

  11. NREL Researchers Discover How a Bacterium, Clostridium thermocellum,

    Science.gov Websites

    containing the bacterium actually promotes the growth of C. thermocellum, yet its mechanistic details remained a puzzle. This enhanced growth implied the bacterium had the ability to use CO2 and prompted NREL researchers to investigate the phenomena enhancing the bacterium's growth. "It took us by surprise that

  12. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607

    NASA Astrophysics Data System (ADS)

    Schiering, N.; Kabsch, W.; Moore, M. J.; Distefano, M. D.; Walsh, C. T.; Pai, E. F.

    1991-07-01

    SEVERAL hundred million tons of toxic mercurials are dispersed in the biosphere1. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase2 and mercuric ion reductase (MerA) 3-5. The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases6, catalyses the reaction NADPH + Hg(II) --> NADP+ + H+Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase7,8 serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure9 and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), pI258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved10,11. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn5Ol and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon11. These domains can be proteolytically cleaved off without changing the catalytic efficiency3. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.

  13. Microbial inoculants and organic amendment improves the establishment of autochtonous shrub species and microbial activity recovery in a semiarid soil

    NASA Astrophysics Data System (ADS)

    Mengual, Carmen; Schoebitz, Mauricio; Azcon, Rosario; Torres, Pilar; Caravaca, Fuensanta; Roldan, Antonio

    2014-05-01

    The re-establishment of autochthonous shrub species is an essential strategy for recovering degraded soils under semiarid Mediterranean conditions. A field assay was carried out to determine the combined effects of the inoculation with native rhizobacteria (B. megaterium, Enterobacter sp, B. thuringiensis and Bacillus sp) and the addition of composted sugar beet (SB) residue on physicochemical soil properties and Lavandula dentata L. establishment. One year after planting, Bacillus sp. and B. megaterium+SB were the most effective treatments for increasing shoot dry biomass (by 5-fold with respect to control) and Enterobacter sp+SB was the most effective treatments for increasing dry root biomass. All the treatments evaluated significantly increased the foliar nutrient content (NPK) compared to control values (except B. thuringiensis+SB). The organic amendment had significantly increased available phosphorus content in rhizosphere soil by 29% respect to the control. Enterobacter sp combined with sugar beet residue improved total N content in soil (by 46% respect to the control) as well as microbiological and biochemical properties. The selection of the most efficient rhizobacteria strains and their combined effect with organic residue seems to be a critical point that drives the effectiveness of using these biotechnological tools for the revegetation and rehabilitation of degraded soils under semiarid conditions.

  14. Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew.

    PubMed

    Li, Yunlong; Gu, Yilin; Li, Juan; Xu, Mingzhu; Wei, Qing; Wang, Yuanhong

    2015-01-01

    Powdery mildew is a fungal disease found in a wide range of plants and can significantly reduce crop yields. Bacterial strain LJ02 is a biocontrol agent (BCA) isolated from a greenhouse in Tianjin, China. In combination of morphological, physiological, biochemical and phylogenetic analyses, strain LJ02 was classified as a new member of Bacillus amyloliquefaciens. Greenhouse trials showed that LJ02 fermentation broth (LJ02FB) can effectively diminish the occurrence of cucurbits powdery mildew. When treated with LJ02FB, cucumber seedlings produced significantly elevated production of superoxide dismutase, peroxidase, polyphenol oxidase and phenylalanine ammonia lyase as compared to that of the control. We further confirmed that the production of free salicylic acid (SA) and expression of one pathogenesis-related (PR) gene PR-1 in cucumber leaves were markedly elevated after treating with LJ02FB, suggesting that SA-mediated defense response was stimulated. Moreover, LJ02FB-treated cucumber leaves could secrete resistance-related substances into rhizosphere that inhibit the germination of fungi spores and the growth of pathogens. Finally, we separated bacterium and its fermented substances to test their respective effects and found that both components have SA-inducing activity and bacterium plays major roles. Altogether, we identified a BCA against powdery mildew and its mode of action by inducing systemic resistance such as SA signaling pathway.

  15. Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3.

    PubMed

    Müller, Jonas E N; Litsanov, Boris; Bortfeld-Miller, Miriam; Trachsel, Christian; Grossmann, Jonas; Brautaset, Trygve; Vorholt, Julia A

    2014-03-01

    Bacillus methanolicus MGA3 is a facultative methylotroph of industrial relevance that is able to grow on methanol as its sole source of carbon and energy. The Gram-positive bacterium possesses a soluble NAD(+) -dependent methanol dehydrogenase and assimilates formaldehyde via the ribulose monophosphate (RuMP) cycle. We used label-free quantitative proteomics to generate reference proteome data for this bacterium and compared the proteome of B. methanolicus MGA3 on two different carbon sources (methanol and mannitol) as well as two different growth temperatures (50°C and 37°C). From a total of approximately 1200 different detected proteins, approximately 1000 of these were used for quantification. While the levels of 213 proteins were significantly different at the two growth temperatures tested, the levels of 109 proteins changed significantly when cells were grown on different carbon sources. The carbon source strongly affected the synthesis of enzymes related to carbon metabolism, and in particular, both dissimilatory and assimilatory RuMP cycle enzyme levels were elevated during growth on methanol compared to mannitol. Our data also indicate that B. methanolicus has a functional tricarboxylic acid cycle, the proteins of which are differentially regulated on mannitol and methanol. Other proteins presumed to be involved in growth on methanol were constitutively expressed under the different growth conditions. All MS data have been deposited in the ProteomeXchange with the identifiers PXD000637 and PXD000638 (http://proteomecentral.proteomexchange.org/dataset/PXD000637, http://proteomecentral.proteomexchange.org/dataset/PXD000638). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bacillus Probiotic Enzymes: External Auxiliary Apparatus to Avoid Digestive Deficiencies, Water Pollution, Diseases, and Economic Problems in Marine Cultivated Animals.

    PubMed

    Olmos Soto, Jorge

    Exploitation of marine fishes is the main source of several life-supporting feed compounds such as proteins, lipids, and carbohydrates that maintain the production of most trading marine organisms by aquaculture. However, at this rate the marine inventory will go to the end soon, since fishery resources are finite. In this sense, the availability of the principal ingredients obtained from marine fishes is going to decrease considerably, increasing the diet prices and affecting the economy of this activity. Therefore, aquaculture industry needs to find nonexpensive land unconventional resources of protein, carbohydrates, and lipids and use bacterial probiotics to improve digestion-assimilation of these unfamiliar compounds. Bacillus subtilis is a cosmopolitan probiotic bacterium with a great enzymatic profile that could improve nutrient digestion-assimilation, induce healthy growth, and avoid water pollution, decreasing economic problems and increasing yields in the aquaculture industry. In this chapter, we present how Bacillus enzymes can help marine animals to assimilate nutrients from unconventional and economic plant resources. © 2017 Elsevier Inc. All rights reserved.

  17. The sigma factors of Bacillus subtilis.

    PubMed Central

    Haldenwang, W G

    1995-01-01

    The specificity of DNA-dependent RNA polymerase for target promotes is largely due to the replaceable sigma subunit that it carries. Multiple sigma proteins, each conferring a unique promoter preference on RNA polymerase, are likely to be present in all bacteria; however, their abundance and diversity have been best characterized in Bacillus subtilis, the bacterium in which multiple sigma factors were first discovered. The 10 sigma factors thus far identified in B. subtilis directly contribute to the bacterium's ability to control gene expression. These proteins are not merely necessary for the expression of those operons whose promoters they recognize; in many instances, their appearance within the cell is sufficient to activate these operons. This review describes the discovery of each of the known B. subtilis sigma factors, their characteristics, the regulons they direct, and the complex restrictions placed on their synthesis and activities. These controls include the anticipated transcriptional regulation that modulates the expression of the sigma factor structural genes but, in the case of several of the B. subtilis sigma factors, go beyond this, adding novel posttranslational restraints on sigma factor activity. Two of the sigma factors (sigma E and sigma K) are, for example, synthesized as inactive precursor proteins. Their activities are kept in check by "pro-protein" sequences which are cleaved from the precursor molecules in response to intercellular cues. Other sigma factors (sigma B, sigma F, and sigma G) are inhibited by "anti-sigma factor" proteins that sequester them into complexes which block their ability to form RNA polymerase holoenzymes. The anti-sigma factors are, in turn, opposed by additional proteins which participate in the sigma factors' release. The devices used to control sigma factor activity in B, subtilis may prove to be as widespread as multiple sigma factors themselves, providing ways of coupling sigma factor activation to

  18. Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium.

    PubMed

    Naik, Umesh Chandra; Srivastava, Shaili; Thakur, Indu Shekhar

    2011-08-01

    Electroplating industries are the main sources of heavy metals, chromium, nickel, lead, zinc, cadmium and copper. The highest concentrations of chromium (VI) in the effluent cause a direct hazards to human and animals. Therefore, there is a need of an effective and affordable biotechnological solution for removal of chromium from electroplating effluent. Bacterial strains were isolated from electroplating effluent to find out higher tolerant isolate against chromate. The isolate was identified by 16S rDNA sequence analysis. Absorbed chromium level of bacterium was determined by inductively coupled plasma-atomic emission spectrometer (ICP-AES), atomic absorption spectrophotometer (AAS), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray analysis (EDX). Removal of metals by bacterium from the electroplating effluent eventually led to the detoxification of effluent confirmed by MTT assay. Conformational changes of functional groups of bacterial cell surface were studied through Fourier transform infrared spectroscopy. The chromate tolerant isolate was identified as Bacillus cereus. Bacterium has potency to remove more than 75% of chromium as measured by ICP-AES and AAS. The study indicated the accumulation of chromium (VI) on bacterial cell surface which was confirmed by the SEM-EDX and TEM analysis. The biosorption of metals from the electroplating effluent eventually led to the detoxification of effluent. The increased survivability of Huh7 cells cultured with treated effluent also confirmed the detoxification as examined by MTT assay. Isolated strain B. cereus was able to remove and detoxify chromium (VI). It would be an efficient tool of the biotechnological approach in mitigating the heavy metal pollutants.

  19. Adaptation of Bacillus subtilis to Life at Extreme Potassium Limitation.

    PubMed

    Gundlach, Jan; Herzberg, Christina; Hertel, Dietrich; Thürmer, Andrea; Daniel, Rolf; Link, Hannes; Stülke, Jörg

    2017-07-05

    Potassium is the most abundant metal ion in every living cell. This ion is essential due to its requirement for the activity of the ribosome and many enzymes but also because of its role in buffering the negative charge of nucleic acids. As the external concentrations of potassium are usually low, efficient uptake and intracellular enrichment of the ion is necessary. The Gram-positive bacterium Bacillus subtilis possesses three transporters for potassium, KtrAB, KtrCD, and the recently discovered KimA. In the absence of the high-affinity transporters KtrAB and KimA, the bacteria were unable to grow at low potassium concentrations. However, we observed the appearance of suppressor mutants that were able to overcome the potassium limitation. All these suppressor mutations affected amino acid metabolism, particularly arginine biosynthesis. In the mutants, the intracellular levels of ornithine, citrulline, and arginine were strongly increased, suggesting that these amino acids can partially substitute for potassium. This was confirmed by the observation that the supplementation with positively charged amino acids allows growth of B. subtilis even at the extreme potassium limitation that the bacteria experience if no potassium is added to the medium. In addition, a second class of suppressor mutations allowed growth at extreme potassium limitation. These mutations result in increased expression of KtrAB, the potassium transporter with the highest affinity and therefore allow the acquisition and accumulation of the smallest amounts of potassium ions from the environment. IMPORTANCE Potassium is essential for every living cell as it is required for the activity for many enzymes and for maintaining the intracellular pH by buffering the negative charge of the nucleic acids. We have studied the adaptation of the soil bacterium Bacillus subtilis to life at low potassium concentrations. If the major high-affinity transporters are missing, the bacteria are unable to grow

  20. Isolation and Characterisation of a Molybdenum-reducing and Metanil Yellow Dye-decolourising Bacillus sp. strain Neni-10 in Soils from West Sumatera, Indonesia

    PubMed Central

    Mansur, Rusnam; Gusmanizar, Neni; Roslan, Muhamad Akhmal Hakim; Ahmad, Siti Aqlima; Shukor, Mohd Yunus

    2017-01-01

    A molybdenum reducing bacterium with the novel ability to decolorise the azo dye Metanil Yellow is reported. Optimal conditions for molybdenum reduction were pH 6.3 and at 34°C. Glucose was the best electron donor. Another requirement includes a narrow phosphate concentration between 2.5 and 7.5 mM. A time profile of Mo-blue production shows a lag period of approximately 12 hours, a maximum amount of Mo-blue produced at a molybdate concentration of 20 mM, and a peak production at 52 h of incubation. The heavy metals mercury, silver, copper and chromium inhibited reduction by 91.9, 82.7, 45.5 and 17.4%, respectively. A complete decolourisation of the dye Metanil Yellow at 100 and 150 mg/L occurred at day three and day six of incubations, respectively. Higher concentrations show partial degradation, with an approximately 20% decolourisation observed at 400 mg/L. The bacterium is partially identified based on biochemical analysis as Bacillus sp. strain Neni-10. The absorption spectrum of the Mo-blue suggested the compound is a reduced phosphomolybdate. The isolation of this bacterium, which shows heavy metal reduction and dye-decolorising ability, is sought after, particularly for bioremediation. PMID:28228917

  1. Isolation and Characterisation of a Molybdenum-reducing and Metanil Yellow Dye-decolourising Bacillus sp. strain Neni-10 in Soils from West Sumatera, Indonesia.

    PubMed

    Mansur, Rusnam; Gusmanizar, Neni; Roslan, Muhamad Akhmal Hakim; Ahmad, Siti Aqlima; Shukor, Mohd Yunus

    2017-01-01

    A molybdenum reducing bacterium with the novel ability to decolorise the azo dye Metanil Yellow is reported. Optimal conditions for molybdenum reduction were pH 6.3 and at 34°C. Glucose was the best electron donor. Another requirement includes a narrow phosphate concentration between 2.5 and 7.5 mM. A time profile of Mo-blue production shows a lag period of approximately 12 hours, a maximum amount of Mo-blue produced at a molybdate concentration of 20 mM, and a peak production at 52 h of incubation. The heavy metals mercury, silver, copper and chromium inhibited reduction by 91.9, 82.7, 45.5 and 17.4%, respectively. A complete decolourisation of the dye Metanil Yellow at 100 and 150 mg/L occurred at day three and day six of incubations, respectively. Higher concentrations show partial degradation, with an approximately 20% decolourisation observed at 400 mg/L. The bacterium is partially identified based on biochemical analysis as Bacillus sp. strain Neni-10. The absorption spectrum of the Mo-blue suggested the compound is a reduced phosphomolybdate. The isolation of this bacterium, which shows heavy metal reduction and dye-decolorising ability, is sought after, particularly for bioremediation.

  2. Clostridium and bacillus binary enterotoxins: bad for the bowels, and eukaryotic being.

    PubMed

    Stiles, Bradley G; Pradhan, Kisha; Fleming, Jodie M; Samy, Ramar Perumal; Barth, Holger; Popoff, Michel R

    2014-09-05

    Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin.

  3. Insight into the bacterial diversity of fermentation woad dye vats as revealed by PCR-DGGE and pyrosequencing.

    PubMed

    Milanović, Vesna; Osimani, Andrea; Taccari, Manuela; Garofalo, Cristiana; Butta, Alessandro; Clementi, Francesca; Aquilanti, Lucia

    2017-07-01

    The bacterial diversity in fermenting dye vats with woad (Isatis tinctoria L.) prepared and maintained in a functional state for approximately 12 months was examined using a combination of culture-dependent and -independent PCR-DGGE analyses and next-generation sequencing of 16S rRNA amplicons. An extremely complex ecosystem including taxa potentially contributing to both indigo reduction and formation, as well as indigo degradation was found. PCR-DGGE analyses revealed the presence of Paenibacillus lactis, Sporosarcina koreensis, Bacillus licheniformis, and Bacillus thermoamylovorans, while Bacillus thermolactis, Bacillus pumilus and Bacillus megaterium were also identified but with sequence identities lower than 97%. Dominant operational taxonomic units (OTUs) identified by pyrosequencing included Clostridium ultunense, Tissierella spp., Alcaligenes faecalis, Erysipelothrix spp., Enterococcus spp., Virgibacillus spp. and Virgibacillus panthothenicus, while sub-dominant OTUs included clostridia, alkaliphiles, halophiles, bacilli, moderately thermophilic bacteria, lactic acid bacteria, Enterobacteriaceae, aerobes, and even photosynthetic bacteria. Based on the current knowledge of indigo-reducing bacteria, it is considered that indigo-reducing bacteria constituted only a small fraction in the unique microcosm detected in the natural indigo dye vats.

  4. Redundancy and modularity in membrane-associated dissimilatory nitrate reduction in Bacillus

    PubMed Central

    Heylen, Kim; Keltjens, Jan

    2012-01-01

    The genomes of two phenotypically denitrifying type strains of the genus Bacillus were sequenced and the pathways for dissimilatory nitrate reduction were reconstructed. Results suggest that denitrification proceeds in the periplasmic space and in an analogous fashion as in Gram-negative organisms, yet with the participation of proteins that tend to be membrane-bound or membrane-associated. A considerable degree of functional redundancy was observed with marked differences between B. azotoformans LMG 9581T and B. bataviensis LMG 21833T. In addition to the already characterized menaquinol/cyt c-dependent nitric oxide reductase (Suharti et al., 2001, 2004) of which the encoding genes could be identified now, evidence for another novel nitric oxide reductase (NOR) was found. Also, our analyses confirm earlier findings on branched electron transfer with both menaquinol and cytochrome c as reductants. Quite unexpectedly, both bacilli have the disposal of two parallel pathways for nitrite reduction enabling a life style as a denitrifier and as an ammonifying bacterium. PMID:23087684

  5. Modeling the acid-base properties of bacterial surfaces: A combined spectroscopic and potentiometric study of the gram-positive bacterium Bacillus subtilis.

    PubMed

    Leone, Laura; Ferri, Diego; Manfredi, Carla; Persson, Per; Shchukarev, Andrei; Sjöberg, Staffan; Loring, John

    2007-09-15

    In this study, macroscopic and spectroscopic data were combined to develop a surface complexation model that describes the acid-base properties of Bacillus subtilis. The bacteria were freeze-dried and then resuspended in 0.1 M NaCl ionic medium. Macroscopic measurements included potentiometric acid-base titrations and electrophoretic mobility measurements. In addition, ATR-FTIR spectra of wet pastes from suspensions of Bacillus subtilis at different pH values were collected. The least-squares program MAGPIE was used to generate a surface complexation model that takes into account the presence of three acid-base sites on the surface: tripple bond COOH, tripple bond NH+, and tripple bond PO-, which were identified previously by XPS measurements. Both potentiometric titration data and ATR-FTIR spectra were used quantitatively, and electrostatic effects at the charged bacterial surface were accounted for using the constant capacitance model. The model was calculated using two different approaches: in the first one XPS data were used to constrain the ratio of the total concentrations of all three surface sites. The capacitance of the double layer, the total buffer capacity, and the deprotonation constants of the tripple bond NH+, tripple bond POH, and tripple bond COOH species were determined in the fit. A second approach is presented in which the ratio determined by XPS of the total concentrations of tripple bond NH+ to tripple bond PO- sites is relaxed. The total concentration of tripple bond PO- sites was determined in the fit, while the deprotonation constant for tripple bond POH was manually varied until the minimization led to a model which predicted an isoelectric point that resulted in consistency with electrophoretic mobility data. The model explains well the buffering capacity of Bacillus subtilis suspensions in a wide pH range (between pH=3 and pH=9) which is of considerable environmental interest. In particular, a similar quantitative use of the IR data

  6. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    PubMed

    Khatri, Indu; Sharma, Shailza; Ramya, T N C; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  7. Bacillus odysseyi isolate

    NASA Technical Reports Server (NTRS)

    La Duc, Myron Thomas (Inventor); Venkateswaran, Kasthuri (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus odysseyi isolate with high adherence and sterilization resistant properties. B. odysseyi is a round spore forming Bacillus species that produces an exosporium. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and the type strain is 34hs-1.sup.T (=ATCC PTA-4993.sup.T=NRRL B-30641.sup.T=NBRC 100172.sup.T). The GenBank accession number for the 16S rDNA sequence of strain 34hs-1.sup.T is AF526913.

  8. Oxygenated N-Acyl Alanine Methyl Esters (NAMEs) from the Marine Bacterium Roseovarius tolerans EL-164.

    PubMed

    Bruns, Hilke; Herrmann, Jennifer; Müller, Rolf; Wang, Hui; Wagner Döbler, Irene; Schulz, Stefan

    2018-01-26

    The marine bacterium Roseovarius tolerans EL-164 (Rhodobacteraceae) can produce unique N-acylalanine methyl esters (NAMEs) besides strucutrally related N-acylhomoserine lactones (AHLs), bacterial signaling compounds widespread in the Rhodobacteraceae. The structures of two unprecedented NAMEs carrying a rare terminally oxidized acyl chain are reported here. The compounds (Z)-N-16-hydroxyhexadec-9-enoyl-l-alanine methyl ester (Z9-16-OH-C16:1-NAME, 3) and (Z)-N-15-carboxypentadec-9-enoyl-l-alanine methyl ester (16COOH-C16:1-NAME, 4) were isolated, and the structures were determined by NMR and MS experiments. Both compounds were synthesized to prove assignments and to test their biological activity. Finally, non-natural, structurally related Z9-3-OH-C16:1-NAME (18) was synthesized to investigate the mass spectroscopy of structurally related NAMEs. Compound 3 showed moderate antibacterial activity against microorganisms such as Bacillus, Streptococcus, Micrococcus, or Mucor strains. In contrast to AHLs, quorum-sensing or quorum-quenching activity was not observed.

  9. In Bacillus subtilis, the SatA (Formerly YyaR) Acetyltransferase Detoxifies Streptothricin via Lysine Acetylation.

    PubMed

    Burckhardt, Rachel M; Escalante-Semerena, Jorge C

    2017-11-01

    Soil is a complex niche, where survival of microorganisms is at risk due to the presence of antimicrobial agents. Many microbes chemically modify cytotoxic compounds to block their deleterious effects. Streptothricin is a broad-spectrum antibiotic produced by streptomycetes that affects Gram-positive and Gram-negative bacteria alike. Here we identify the SatA (for s treptothricin a ce t yltransferase A , formerly YyaR) enzyme of Bacillus subtilis as the mechanism used by this soil bacterium to detoxify streptothricin. B. subtilis strains lacking satA were susceptible to streptothricin. Ectopic expression of satA + restored streptothricin resistance to B. subtilis satA ( Bs SatA) strains. Purified Bs SatA acetylated streptothricin in vitro at the expense of acetyl-coenzyme A (acetyl-CoA). A single acetyl moiety transferred onto streptothricin by SatA blocked the toxic effects of the antibiotic. SatA bound streptothricin with high affinity ( K d [dissociation constant] = 1 μM), and did not bind acetyl-CoA in the absence of streptothricin. Expression of B. subtilis satA + in Salmonella enterica conferred streptothricin resistance, indicating that SatA was necessary and sufficient to detoxify streptothricin. Using this heterologous system, we showed that the SatA homologue from Bacillus anthracis also had streptothricin acetyltransferase activity. Our data highlight the physiological relevance of lysine acetylation for the survival of B. subtilis in the soil. IMPORTANCE Experimental support is provided for the functional assignment of gene products of the soil-dwelling bacilli Bacillus subtilis and Bacillus anthracis This study focuses on one enzyme that is necessary and sufficient to block the cytotoxic effects of a common soil antibiotic. The enzyme alluded to is a member of a family of proteins that are broadly distributed in all domains of life but poorly studied in B. subtilis and B. anthracis The initial characterization of the enzyme provides insights into its

  10. In Bacillus subtilis, the SatA (Formerly YyaR) Acetyltransferase Detoxifies Streptothricin via Lysine Acetylation

    PubMed Central

    Burckhardt, Rachel M.

    2017-01-01

    ABSTRACT Soil is a complex niche, where survival of microorganisms is at risk due to the presence of antimicrobial agents. Many microbes chemically modify cytotoxic compounds to block their deleterious effects. Streptothricin is a broad-spectrum antibiotic produced by streptomycetes that affects Gram-positive and Gram-negative bacteria alike. Here we identify the SatA (for streptothricin acetyltransferase A, formerly YyaR) enzyme of Bacillus subtilis as the mechanism used by this soil bacterium to detoxify streptothricin. B. subtilis strains lacking satA were susceptible to streptothricin. Ectopic expression of satA+ restored streptothricin resistance to B. subtilis satA (BsSatA) strains. Purified BsSatA acetylated streptothricin in vitro at the expense of acetyl-coenzyme A (acetyl-CoA). A single acetyl moiety transferred onto streptothricin by SatA blocked the toxic effects of the antibiotic. SatA bound streptothricin with high affinity (Kd [dissociation constant] = 1 μM), and did not bind acetyl-CoA in the absence of streptothricin. Expression of B. subtilis satA+ in Salmonella enterica conferred streptothricin resistance, indicating that SatA was necessary and sufficient to detoxify streptothricin. Using this heterologous system, we showed that the SatA homologue from Bacillus anthracis also had streptothricin acetyltransferase activity. Our data highlight the physiological relevance of lysine acetylation for the survival of B. subtilis in the soil. IMPORTANCE Experimental support is provided for the functional assignment of gene products of the soil-dwelling bacilli Bacillus subtilis and Bacillus anthracis. This study focuses on one enzyme that is necessary and sufficient to block the cytotoxic effects of a common soil antibiotic. The enzyme alluded to is a member of a family of proteins that are broadly distributed in all domains of life but poorly studied in B. subtilis and B. anthracis. The initial characterization of the enzyme provides insights into its

  11. Performance of trichlorfon degradation by a novel Bacillus tequilensis strain PA F-3 and its proposed biodegradation pathway.

    PubMed

    Tian, Jiang; Yu, Chenlei; Xue, Yingwen; Zhao, Ruixue; Wang, Jing; Chen, Lanzhou

    2016-11-01

    The novel trichlorfon (TCF)-degrading bacterium PA F-3, identified as Bacillus tequilensis, was isolated from pesticide-polluted soils by using an effective screening and domesticating procedure. The TCF biodegradation pathways of PA F-3 were also systematically elucidated. As revealed by high-performance liquid chromatography, the TCF residues in the mineral salt medium demonstrated that PA F-3 can utilize TCF as its sole carbon source and reach the highest degradation of 71.1 % at an initial TCF concentration of 200 mg/L within 5 days. The TCF degradation conditions were optimized using response surface methodology as follows: temperature, 28 °C; inoculum amount, 4 %; and initial TCF concentration, 125 mg/L. Biodegradation treatments supplemented with exogenous carbon sources and yeast extract markedly increased the microbial dry weights and TCF-degrading performance of PA F-3, respectively. Meanwhile, five metabolic products of TCF were identified through gas chromatography/mass spectrometry, and a biodegradation pathway was proposed. Results indicated that deoxidation and dehydration (including the cleavage of the P-C phosphonate bond and the C-O bond) were the preferred metabolic reactions of TCF in this TCF-degrading bacterium.

  12. Effects of detergents on ribosomal precursor subunits of Bacillus megaterium.

    PubMed

    Body, A; Brownstein, B H

    1978-01-01

    Cell extracts prepared by osmotic lysis of protoplasts were analyzed by sucrose gradient sedimentation. In the absence of detergents, ribosomal precursor particles were found in a gradient fraction which sedimented faster than mature 50S subunits and in two other fractions coincident with mature 50S and 30S ribosomal subunits. Phospholipid, an indicator of membrane, was shown to be associated with only the fastest-sedimenting ribosomal precursor particle fraction. After the extracts were treated with detergents, all phospholipid was found at the top of the gradients. Brij 58, Triton X-100, and Nonidet P-40 did not cause a change in the sedimentation values of precursors; however, the detergents deoxycholate or LOC (Amway Corp.) disrupted the fastest-sedimenting precursor and converted the ribosomal precursor subunits which sedimented at the 50S and 30S positions to five different classes of more slowly sedimenting particles. Earlier reports on the in vivo assembly of ribosomal subunits have shown that several stages of ribosomal precursor subunits exist, and, in the presence of the detergents deoxycholate and LOC, which had been used to prepare cell extracts, the precursors sedimented more slowly. Our data are consistent with the hypothesis that those detergents selectively modify the structure of ribosomal precursors and lend further support to the hypothesis that the in vivo ribosomal precursor subunits have 50S and 30S sedimentation values. In addition, these data support the idea that the ribosomal precursor particles found in the fast-sedimenting fraction may constitute a unique precursor fraction.

  13. Effects of Detergents on Ribosomal Precursor Subunits of Bacillus megaterium

    PubMed Central

    Body, Barbara A.; Brownstein, Bernard H.

    1978-01-01

    Cell extracts prepared by osmotic lysis of protoplasts were analyzed by sucrose gradient sedimentation. In the absence of detergents, ribosomal precursor particles were found in a gradient fraction which sedimented faster than mature 50S subunits and in two other fractions coincident with mature 50S and 30S ribosomal subunits. Phospholipid, an indicator of membrane, was shown to be associated with only the fastest-sedimenting ribosomal precursor particle fraction. After the extracts were treated with detergents, all phospholipid was found at the top of the gradients. Brij 58, Triton X-100, and Nonidet P-40 did not cause a change in the sedimentation values of precursors; however, the detergents deoxycholate or LOC (Amway Corp.) disrupted the fastest-sedimenting precursor and converted the ribosomal precursor subunits which sedimented at the 50S and 30S positions to five different classes of more slowly sedimenting particles. Earlier reports on the in vivo assembly of ribosomal subunits have shown that several stages of ribosomal precursor subunits exist, and, in the presence of the detergents deoxycholate and LOC, which had been used to prepare cell extracts, the precursors sedimented more slowly. Our data are consistent with the hypothesis that those detergents selectively modify the structure of ribosomal precursors and lend further support to the hypothesis that the in vivo ribosomal precursor subunits have 50S and 30S sedimentation values. In addition, these data support the idea that the ribosomal precursor particles found in the fast-sedimenting fraction may constitute a unique precursor fraction. PMID:412833

  14. Isolation and characterization of a novel endo-beta-galactofuranosidase from Bacillus sp.

    PubMed

    Ramli, N; Fujinaga, M; Tabuchi, M; Takegawa, K; Iwahara, S

    1995-10-01

    A soil bacterium capable of growing on a polysaccharide-containing beta(1-->6)galactofuranoside residues derived from the acidic polysaccharide of Fusarium sp. as a carbon source has been isolated. From various bacteriological characteristics, the organism was identified as a Bacillus sp. The bacterium produced beta-galactofuranosidase inductively in the culture media. The most effective inducer for the beta-galactofuranosidase production was a polysaccharide containing beta(1-->5) or beta(1-->6)-linked galactofuranoside residues, but gum arabic, gum guar, gum ghati, arabinogalactam, araban, and pectic acid did not induce the enzyme. The enzyme had three different molecular weight forms. The low molecular-weight form was purified by a combination of Toyopearl HW-55 and DEAE-Toyopearl 650S column chromatographies, and preparative polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 67,000 by SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 6 and 37 degrees C, and was stable between pH 4 to 8 at 5 degrees C. The action of the enzyme was inhibited by the addition of Cd2+, Co2+, Hg2+, Zn2+, iodoacetic acid, and EDTA. The purified enzyme cleaved beta(1-->5) and beta(1-->6)-linked galactofuranosyl chains. Based upon the mode of liberation of galactofuranosyl residues from pyridylamino-beta(1-->6)-linked galactofuranoside oligomers, the enzyme can be classified as an endo-beta-galactofuranosidase that randomly hydrolyzes the linkage.

  15. Complete genome sequence of Bacillus velezensis QST713: A biocontrol agent that protects Agaricus bisporus crops against the green mould disease.

    PubMed

    Pandin, Caroline; Le Coq, Dominique; Deschamps, Julien; Védie, Régis; Rousseau, Thierry; Aymerich, Stéphane; Briandet, Romain

    2018-04-24

    Bacillus subtilis QST713 is extensively used as a biological control agent in agricultural fields including in the button mushroom culture, Agaricus bisporus. This last use exploits its inhibitory activity against microbial pathogens such as Trichoderma aggressivum f. europaeum, the main button mushroom green mould competitor. Here, we report the complete genome sequence of this bacterium with a genome size of 4 233 757 bp, 4263 predicted genes and an average GC content of 45.9%. Based on phylogenomic analyses, strain QST713 is finally designated as Bacillus velezensis. Genomic analyses revealed two clusters encoding potential new antimicrobials with NRPS and TransATPKS synthetase. B. velezensis QST713 genome also harbours several genes previously described as being involved in surface colonization and biofilm formation. This strain shows a strong ability to form in vitro spatially organized biofilm and to antagonize T. aggressivum. The availability of this genome sequence could bring new elements to understand the interactions with micro or/and macroorganisms in crops. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Draft Genome Sequence of the Entomopathogenic Bacterium Bacillus pumilus 15.1, a Strain Highly Toxic to the Mediterranean Fruit Fly Ceratitis capitata

    PubMed Central

    García-Ramón, Diana C.; Palma, Leopoldo; Berry, Colin; Osuna, Antonio

    2015-01-01

    We present the draft whole-genome sequence of the entomopathogenic Bacillus pumilus 15.1 strain that consists of 3,795,691 bp and 3,776 predicted protein-coding genes. This genome sequence provides the basis for understanding the potential mechanism behind the toxicity and virulence of B. pumilus 15.1 against the Mediterranean fruit fly. PMID:26404596

  17. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics

    PubMed Central

    Ramya, T. N. C.; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions. PMID:27258038

  18. Symbiotic performance and induction of systemic resistance against Cercospora sojina in soybean plants co-inoculated with Bacillus sp. CHEP5 and Bradyrhizobium japonicum E109.

    PubMed

    Tonelli, María Laura; Magallanes-Noguera, C; Fabra, A

    2017-11-01

    Soybean is an economically very important crop throughout the word and particularly in Argentina. Soybean yield may be affected by many factors such as the lack of some essential nutrients or pathogens attack. In this work we demonstrated that the co-inoculation of the native biocontrol bacterium Bacillus sp. CHEP5 which induces resistance against Cercospora sojina in soybean and the nitrogen fixing strain Bradyrhizobium japonicum E109, was more effective in reducing frog leaf spot severity than the inoculation of the biocontrol agent alone. Probably, this is related with the increase in the ability to form biofilm when both bacteria are growing together. Furthermore, Bacillus sp. CHEP5 inoculation did not affect Bradyrhizobium japonicum E109 symbiotic behavior and flavonoids composition of root exudates in pathogen challenged plants. These results suggest that co-inoculation of plants with rhizobia and biocontrol agents could be a strategy to improve soybean production in a sustainable system.

  19. Purification, Characterization and Comparison between Two New L-asparaginases from Bacillus PG03 and Bacillus PG04

    PubMed Central

    Rahimzadeh, Mahsa; Poodat, Manijeh; Javadpour, Sedigheh; Qeshmi, Fatemeh Izadpanah; Shamsipour, Fereshteh

    2016-01-01

    Background: L-asparaginase has been used as a chemotherapeutic agent in treatment of lymphoblastic leukemia. In the present investigation, Bacillus sp. PG03 and Bacillus sp. PG04 were studied. Methods: L- asparaginases were produced using different culture media and were purified using ion exchange chromatography. Results: Maximum productivity was obtained when asparagine was used as the nitrogen source at pH 7 and 48 h after cultivation. New intracellular L-asparaginases showed an apparent molecular weight of 25 kDa and 30 kDa by SDS-PAGE respectively. These enzymes were active in a wide pH range (3-9) with maximum activity at pH 6 for Bacillus PG03 and pH 7 for Bacillus PG04 L-asparaginase. Bacillus PG03 enzyme was optimally active at 37 ˚C and Bacillus PG04 maximum activity was observed at 40˚C. Kinetic parameters km and Vmax of both enzymes were studied using L-asparagine as the substrate. Thermal inactivation studies of Bacillus PG03 and Bacillus PG04 L-asparaginase exhibited t1/2 of 69.3 min and 34.6 min in 37 ˚C respectively. Also T50 and ∆G of inactivation were measured for both enzymes. Conclusion: The results revealed that both enzymes had appropriate characteristics and thus could be a potential candidate for medical applications. PMID:27999622

  20. Visualization of tandem repeat mutagenesis in Bacillus subtilis.

    PubMed

    Dormeyer, Miriam; Lentes, Sabine; Ballin, Patrick; Wilkens, Markus; Klumpp, Stefan; Kohlheyer, Dietrich; Stannek, Lorena; Grünberger, Alexander; Commichau, Fabian M

    2018-03-01

    Mutations are crucial for the emergence and evolution of proteins with novel functions, and thus for the diversity of life. Tandem repeats (TRs) are mutational hot spots that are present in the genomes of all organisms. Understanding the molecular mechanism underlying TR mutagenesis at the level of single cells requires the development of mutation reporter systems. Here, we present a mutation reporter system that is suitable to visualize mutagenesis of TRs occurring in single cells of the Gram-positive model bacterium Bacillus subtilis using microfluidic single-cell cultivation. The system allows measuring the elimination of TR units due to growth rate recovery. The cultivation of bacteria carrying the mutation reporter system in microfluidic chambers allowed us for the first time to visualize the emergence of a specific mutation at the level of single cells. The application of the mutation reporter system in combination with microfluidics might be helpful to elucidate the molecular mechanism underlying TR (in)stability in bacteria. Moreover, the mutation reporter system might be useful to assess whether mutations occur in response to nutrient starvation. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A Combinatorial Kin Discrimination System in Bacillus subtilis.

    PubMed

    Lyons, Nicholas A; Kraigher, Barbara; Stefanic, Polonca; Mandic-Mulec, Ines; Kolter, Roberto

    2016-03-21

    Multicellularity inherently involves a number of cooperative behaviors that are potentially susceptible to exploitation but can be protected by mechanisms such as kin discrimination. Discrimination of kin from non-kin has been observed in swarms of the bacterium Bacillus subtilis, but the underlying molecular mechanism has been unknown. We used genetic, transcriptomic, and bioinformatic analyses to uncover kin recognition factors in this organism. Our results identified many molecules involved in cell-surface modification and antimicrobial production and response. These genes varied significantly in expression level and mutation phenotype among B. subtilis strains, suggesting interstrain variation in the exact kin discrimination mechanism used. Genome analyses revealed a substantial diversity of antimicrobial genes present in unique combinations in different strains, with many likely acquired by horizontal gene transfer. The dynamic combinatorial effect derived from this plethora of kin discrimination genes creates a tight relatedness cutoff for cooperation that has likely led to rapid diversification within the species. Our data suggest that genes likely originally selected for competitive purposes also generate preferential interactions among kin, thus stabilizing multicellular lifestyles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Optimization of water absorbing exopolysaccharide production on local cheap substrates by Bacillus strain CMG1403 using one variable at a time approach.

    PubMed

    Muhammadi; Afzal, Muhammad

    2014-01-01

    Optimum culture conditions, and carbon and nitrogen sources for production of water absorbing exopolysaccharide by Bacillus strain CMG1403 on local cheap substrates were determined using one variable at a time approach. Carbon source was found to be sole substrate for EPS biosynthesis in the presence of yeast extract that supported the growth only and hence, indirectly enhanced the EPS yield. Whereas, urea only coupled with carbon source could enhance the EPS production but no effect on growth. The maximum yield of EPS was obtained when Bacillus strain CMG1403 was grown statically in neutral minimal medium with 25% volumetric aeration at 30°C for 10 days. Under these optimum conditions, a maximum yield of 2.71±0.024, 3.82±0.005, 4.33±0.021, 4.73±0.021, 4.85±0.024, and 5.52±0.016 g/L culture medium was obtained with 20 g (sugar) of sweet whey, glucose, fructose, sucrose, cane molasses and sugar beet the most efficient one respectively as carbon sources. Thus, the present study showed that under optimum culture conditions, the local cheap substrates could be superior and efficient alternatives to synthetic carbon sources providing way for an economical production of water absorbing EPS by indigenous soil bacterium Bacillus strain CMG1403.

  3. Characterization of the cellulose-degrading bacterium NCIMB 10462

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, C.; Scott, T.C.; Phelps, T.J.

    The gram-negative cellulase-producing bacterium NCIMB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulose. Because of renewed interest in cellulose-degrading bacteria for use in the bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its true metabolic potential. Metabolic and physical characterization of NCIMB 10462 revealed that this is an alkalophilic, non-fermentative, gram-negative, oxidase-positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium has few characteristics consistent with a classification of P. fluorescens and a very low probability match with the genus Sphingomonas. However, total lipid analysismore » did not reveal that any sphingolipid bases are produced by this bacterium. NCIMB 10462 grows best aerobically, but also grows well in complex media under reducing conditions. NCIMB 10462 grows slowly under anaerobic conditions on complex media, but growth on cellulosic media occurred only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIMB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is its ability to degrade cellulose, we suggest that it be called Pseudomonas cellulosa.« less

  4. Clostridium and Bacillus Binary Enterotoxins: Bad for the Bowels, and Eukaryotic Being

    PubMed Central

    Stiles, Bradley G.; Pradhan, Kisha; Fleming, Jodie M.; Samy, Ramar Perumal; Barth, Holger; Popoff, Michel R.

    2014-01-01

    Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin. PMID:25198129

  5. Cell wall peptidoglycan architecture in Bacillus subtilis

    PubMed Central

    Hayhurst, Emma J.; Kailas, Lekshmi; Hobbs, Jamie K.; Foster, Simon J.

    2008-01-01

    The bacterial cell wall is essential for viability and shape determination. Cell wall structural dynamics allowing growth and division, while maintaining integrity is a basic problem governing the life of bacteria. The polymer peptidoglycan is the main structural component for most bacteria and is made up of glycan strands that are cross-linked by peptide side chains. Despite study and speculation over many years, peptidoglycan architecture has remained largely elusive. Here, we show that the model rod-shaped bacterium Bacillus subtilis has glycan strands up to 5 μm, longer than the cell itself and 50 times longer than previously proposed. Atomic force microscopy revealed the glycan strands to be part of a peptidoglycan architecture allowing cell growth and division. The inner surface of the cell wall has a regular macrostructure with ≈50 nm-wide peptidoglycan cables [average 53 ± 12 nm (n = 91)] running basically across the short axis of the cell. Cross striations with an average periodicity of 25 ± 9 nm (n = 96) along each cable are also present. The fundamental cabling architecture is also maintained during septal development as part of cell division. We propose a coiled-coil model for peptidoglycan architecture encompassing our data and recent evidence concerning the biosynthetic machinery for this essential polymer. PMID:18784364

  6. Effects of gamma irradiation on the radiation-resistant bacteria and polyphenol oxidase activity in fresh kale juice

    NASA Astrophysics Data System (ADS)

    Kim, Dongho; Song, Hyunpa; Lim, Sangyong; Yun, Hyejeong; Chung, Jinwoo

    2007-07-01

    Gamma radiation was performed to prolong the shelf life of natural kale juice. The total aerobic bacteria in fresh kale juice, prepared by a general kitchen process, was detected in the range of 10 6 cfu/ml, and about 10 2 cfu/ml of the bacteria survived in the juice in spite of gamma irradiation treatment with a dose of 5 kGy. Two typical radiation-resistant bacteria, Bacillus megaterium and Exiguobacterium acetylicum were isolated and identified from the 5 kGy-irradiated kale juices. The D10 values of the vegetative cell and endospore of the B. megaterium in peptone water were 0.63±0.05 and 1.52±0.05 kGy, respectively. The D10 value of the E. acetylicum was calculated as 0.65±0.06 kGy. In the inoculation test, the growth of the surviving B. megaterium and E. acetylicum in the 3-5 kGy-irradiated kale juice retarded and/or decreased significantly during a 3 d post-irradiation storage period. However, there were no significant differences in the residual polyphenol oxidase activity and browning index between the nonirradiated control and the gamma irradiated kale juice during a post-irradiation period.

  7. Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis.

    PubMed

    Castro-Cerritos, Karla Viridiana; Yasbin, Ronald E; Robleto, Eduardo A; Pedraza-Reyes, Mario

    2017-02-15

    The Gram-positive microorganism Bacillus subtilis relies on a single class Ib ribonucleotide reductase (RNR) to generate 2'-deoxyribonucleotides (dNDPs) for DNA replication and repair. In this work, we investigated the influence of RNR levels on B. subtilis stationary-phase-associated mutagenesis (SPM). Since RNR is essential in this bacterium, we engineered a conditional mutant of strain B. subtilis YB955 (hisC952 metB5 leu427) in which expression of the nrdEF operon was modulated by isopropyl-β-d-thiogalactopyranoside (IPTG). Moreover, genetic inactivation of ytcG, predicted to encode a repressor (NrdR) of nrdEF in this strain, dramatically increased the expression levels of a transcriptional nrdE-lacZ fusion. The frequencies of mutations conferring amino acid prototrophy in three genes were measured in cultures under conditions that repressed or induced RNR-encoding genes. The results revealed that RNR was necessary for SPM and overexpression of nrdEF promoted growth-dependent mutagenesis and SPM. We also found that nrdEF expression was induced by H 2 O 2 and such induction was dependent on the master regulator PerR. These observations strongly suggest that the metabolic conditions operating in starved B. subtilis cells increase the levels of RNR, which have a direct impact on SPM. Results presented in this study support the concept that the adverse metabolic conditions prevailing in nutritionally stressed bacteria activate an oxidative stress response that disturbs ribonucleotide reductase (RNR) levels. Such an alteration of RNR levels promotes mutagenic events that allow Bacillus subtilis to escape from growth-limited conditions. Copyright © 2017 American Society for Microbiology.

  8. Bacillus pumilus SAFR-032 isolate

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri J. (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus pumilus SAFR-032 isolate with UV sterilization resistant properties. This novel strain has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus. The GenBank accession number for the 16S rDNA sequence of the Bacillus pumilus SAFR-032 isolate is AY167879.

  9. Draft Genome Sequence of Bacillus thuringiensis Strain BrMgv02-JM63, a Chitinolytic Bacterium Isolated from Oil-Contaminated Mangrove Soil in Brazil.

    PubMed

    Marcon, Joelma; Taketani, Rodrigo Gouvêa; Dini-Andreote, Francisco; Mazzero, Giulia Inocêncio; Soares, Fabio Lino; Melo, Itamar Soares; Azevedo, João Lúcio; Andreote, Fernando Dini

    2014-01-30

    Here, we report the draft genome sequence and the automatic annotation of Bacillus thuringiensis strain BrMgv02-JM63. This genome comprises a set of genes involved in the metabolism of chitin and N-acetylglucosamine utilization, thus suggesting the possible role of this strain in the cycling of organic matter in mangrove soils.

  10. Nano-Mechanical Properties of Heat Inactivated Bacillus anthracis and Bacillus thuringiensis Spores

    DTIC Science & Technology

    2008-03-01

    Scanner Laser Mirror Cantilever Sample Probe Tip 16 cereus strain 569, and Bacillus globigii var. niger . Zolock determined that there wer...been used to measure the surface elasticities of a variety of microbial organisms including Pseudomonas putida, Bacillus subtilis, Aspergillus ...66:307-311 (2005). Zhao, Liming, David Schaefer, and Mark R. Marten. “Assessment of Elasticity and Topography of Aspergillus nidulans Spores via

  11. Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.

    PubMed

    Delvecchio, Vito G; Connolly, Joseph P; Alefantis, Timothy G; Walz, Alexander; Quan, Marian A; Patra, Guy; Ashton, John M; Whittington, Jessica T; Chafin, Ryan D; Liang, Xudong; Grewal, Paul; Khan, Akbar S; Mujer, Cesar V

    2006-09-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Delta-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development.

  12. Proteomic Profiling and Identification of Immunodominant Spore Antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis‡

    PubMed Central

    DelVecchio, Vito G.; Connolly, Joseph P.; Alefantis, Timothy G.; Walz, Alexander; Quan, Marian A.; Patra, Guy; Ashton, John M.; Whittington, Jessica T.; Chafin, Ryan D.; Liang, Xudong; Grewal, Paul; Khan, Akbar S.; Mujer, Cesar V.

    2006-01-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Δ-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development. PMID:16957262

  13. Co-administration of Bacillus subtilis RJGP16 and Lactobacillus salivarius B1 strongly enhances the intestinal mucosal immunity of piglets.

    PubMed

    Deng, Jun; Li, Yunfeng; Zhang, Jinhua; Yang, Qian

    2013-02-01

    Probiotics, including Bacillus spp. and Lactobacillus, are potential replacements for low dose in-feed antibiotics for pig. This study aimed to evaluate the effect of the co-administration of Bacillus subtilis RJGP16 and Lactobacillus salivarius B1 as potential probiotics to stimulate local immune responses. Thirty two newborn piglets were divided into four groups and orally administrated with different combination of probiotics (none; RJGP16; B1; RJGP16 and B1) at the age of 0, 7 and 11 days. We analysed the parameters of the mucosal immunity of piglets a week after weaning. Our results showed that the gene expression of interleukin (IL)-6 in the duodenum and ileum, porcine beta-defensins (pBD)-2 in the duodenum were significantly increased (p<0.01) with co-administration of the RJGP16 and B1. Also the expression and release of TLR-2 and the number of immunoglobulin (Ig) A producing cells were increased (p<0.01). The results demonstrate that the co-administration of the two bacteria stimulate a more intense mucosal immunity than the administration of each bacterium alone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Sensitive change of iso-branched fatty acid (iso-15:0) in Bacillus pumilus PAMC 23174 in response to environmental changes.

    PubMed

    Yi, Da-Hye; Sathiyanarayanan, Ganesan; Seo, Hyung Min; Kim, Jung-Ho; Bhatia, Shashi Kant; Kim, Yun-Gon; Park, Sung-Hee; Jung, Ji-Young; Lee, Yoo Kyung; Yang, Yung-Hun

    2016-01-01

    In this study, the environmental adaptive metabolic processes were investigated using a psychrotrophic polar bacterium Bacillus pumilus PAMC 23174 in response to various temperatures and nutrients, especially in regard to the synthesis of fatty acids. Fatty acid methyl ester analysis was performed using gas chromatography-mass spectrometry and we found that a sensitive changes in iso-branched fatty acid (iso-15:0) synthesis occurred when adjusting the nutritional ratio of branched chain fatty acids (anteiso/iso) with different temperatures, resulting in a change in the balance of anteiso- and iso-form fatty acids. We also observed that this Arctic bacterium preferred amino acid leucine for the synthesis of fatty acids. The increased and decreased synthesis of iso-form fatty acids in response to different temperatures and leucine preference, changes the fatty acid ratio in bacteria, which further affects the membrane fluidity and it is also directly correlated with survival of bacteria in an extreme environment. Hence, this study suggests that B. pumilus PAMC 23174 is a potential model organism for the analysis of the unique ecological adaptations of polar bacteria in changing and the extreme environments.

  15. A parametric study ot protease production in batch and fed-batch cultures of Bacillus firmus.

    PubMed

    Moon, S H; Parulekar, S J

    1991-03-05

    Proteolytic enzymes produced by Bacillus species find a wide variety of applications in brewing, detergent, food, and leather industries. Owing to significant differences normally observed in culture conditions promoting cell growth and those promoting production of metabolites such as enzymes, for increased efficacy of bioreactor operations it is essential to identify these sets of conditions (including medium formulation). This study is focused on formulation of a semidefined medium that substantially enhances synthesis and secretion of an alkaline protease in batch cultures of Bacillus firmus NRS 783, a known superior producer of this enzyme. The series of experiments conducted to identify culture conditions that lead to improved protease production also enables investigation of the regulatory effects of important culture parameters including pH, dissolved oxygen, and concentrations of nitrogen and phosphorous sources and yeast extract in the medium on cell growth, synthesis and secretion of protease, and production of two major nonbiomass products, viz., acetic acid and ethanol. Cell growth and formation of the three nonbiomass products are hampered significantly under nitrogen, phosphorous, or oxygen limitation, with the cells being unable to grow in an oxygen-free environment. Improvement in protease production is achieved with respect to each culture parameter, leading in the process to 80% enhancement in protease activity over that attained using media reported in the literature. Results of a few fed-batch experiments with constant feed rate, conducted to examine possible enhancement in protease production and to further investigate repression of protease synthesis by excess of the principal carbon and nitrogen sources, are also discussed. The detailed investigation of stimulatory and repressory effects of simple and complex nutrients on protease production and metabolism of Bacillus firmus conducted in this study will provide useful guidelines for design

  16. Single Bacterium Detection Using Sers

    NASA Astrophysics Data System (ADS)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  17. Biotransformation of prednisone and dexamethasone by cytochrome P450 based systems - Identification of new potential drug candidates.

    PubMed

    Putkaradze, Natalia; Kiss, Flora Marta; Schmitz, Daniela; Zapp, Josef; Hutter, Michael C; Bernhardt, Rita

    2017-01-20

    Prednisone and dexamethasone are synthetic glucocorticoids widely used as anti-inflammatory and immunosuppressive drugs. Since their hydroxylated derivatives could serve as novel potential drug candidates, our aim was to investigate their biotransformation by the steroid hydroxylase CYP106A2 from Bacillus megaterium ATCC13368. In vitro we were able to demonstrate highly selective 15β-hydroxylation of the steroids with a reconstituted CYP106A2 system. The reactions were thoroughly characterized, determining the kinetic parameters and the equilibrium dissociation constant. The observed lower conversion rate in the case of dexamethasone hydroxylation was clarified by quantum chemical calculations, which suggest a rearrangement of the intermediately formed radical species. To identify the obtained conversion products with NMR, CYP106A2-based Bacillus megaterium whole-cell systems were applied resulting in an altered product pattern for prednisone, yet no significant change for dexamethasone conversion compared to in vitro. Even the MS941 control strain performed a highly selective biotransformation of prednisone producing the known metabolite 20β-dihydrocortisone. The identified novel prednisone derivatives 15β, 17, 20β, 21-tetrahydroxy-preg-4-en-3,11-dione and 15β, 17, 20β, 21-tetrahydroxy-preg-1,4-dien-3,11-dione as well as the 15β-hydroxylated variants of both drugs are promising candidates for drug-design and development approaches. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Enzymatic Manganese(II) Oxidation by Metabolically Dormant Spores of Diverse Bacillus Species

    PubMed Central

    Francis, Chris A.; Tebo, Bradley M.

    2002-01-01

    Bacterial spores are renowned for their longevity, ubiquity, and resistance to environmental insults, but virtually nothing is known regarding whether these metabolically dormant structures impact their surrounding chemical environments. In the present study, a number of spore-forming bacteria that produce dormant spores which enzymatically oxidize soluble Mn(II) to insoluble Mn(IV) oxides were isolated from coastal marine sediments. The highly charged and reactive surfaces of biogenic metal oxides dramatically influence the oxidation and sorption of both trace metals and organics in the environment. Prior to this study, the only known Mn(II)-oxidizing sporeformer was the marine Bacillus sp. strain SG-1, an extensively studied bacterium in which Mn(II) oxidation is believed to be catalyzed by a multicopper oxidase, MnxG. Phylogenetic analysis based on 16S rRNA and mnxG sequences obtained from 15 different Mn(II)-oxidizing sporeformers (including SG-1) revealed extensive diversity within the genus Bacillus, with organisms falling into several distinct clusters and lineages. In addition, active Mn(II)-oxidizing proteins of various sizes, as observed in sodium dodecyl sulfate-polyacrylamide electrophoresis gels, were recovered from the outer layers of purified dormant spores of the isolates. These are the first active Mn(II)-oxidizing enzymes identified in spores or gram-positive bacteria. Although extremely resistant to denaturation, the activities of these enzymes were inhibited by azide and o-phenanthroline, consistent with the involvement of multicopper oxidases. Overall, these studies suggest that the commonly held view that bacterial spores are merely inactive structures in the environment should be revised. PMID:11823231

  19. Influence of heterologous MreB proteins on cell morphology of Bacillus subtilis.

    PubMed

    Schirner, Kathrin; Errington, Jeff

    2009-11-01

    The prokaryotic cytoskeletal protein MreB is thought to govern cell shape by positioning the cell wall synthetic apparatus at growth sites in the cell. In rod-shaped bacteria it forms helical filaments that run around the periphery of the rod during elongation. Gram-positive bacteria often contain more than one mreB gene. Bacillus subtilis has three mreB-like genes, mreB, mbl and mreBH, the first two of which have been shown to be essential under normal growth conditions. Expression of an mreB homologue from the closely related organism Bacillus licheniformis did not have any effect on cell growth or morphology. In contrast, expression of mreB from the phylogenetically more distant bacterium Clostridium perfringens produced shape defects and ultimately cell death, due to disruption of the endogenous MreB cytoskeleton. However, expression of either mreB(B. licheniformis) (mreB(Bl)) or mreB(C. perfringens) (mreB(Cp)) was sufficient to confer a rod shape to B. subtilis deleted for the three mreB isologues, supporting the idea that the three proteins have largely redundant functions in cell morphogenesis. Expression of mreBCD(Bl) could fully compensate for the loss of mreBCD in B. subtilis and led to the formation of rod-shaped cells. In contrast, expression of mreBCD(Cp) was not sufficient to confer a rod shape to B. subtilis Delta mreBCD, indicating that a complex of these three cell shape determinants is not enough for cell morphogenesis of B. subtilis.

  20. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications.

    PubMed

    Gu, Yang; Xu, Xianhao; Wu, Yaokang; Niu, Tengfei; Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Liu, Long

    2018-05-15

    Bacillus subtilis is the most characterized gram-positive bacterium that has significant attributes, such as growing well on cheap carbon sources, possessing clear inherited backgrounds, having mature genetic manipulation methods, and exhibiting robustness in large-scale fermentations. Till date, B. subtilis has been identified as attractive hosts for the production of recombinant proteins and chemicals. By applying various systems and synthetic biology tools, the productivity features of B. subtilis can be thoroughly analyzed and further optimized via metabolic engineering. In the present review, we discussed why B. subtilis is the primary organisms used for metabolic engineering and industrial applications. Additionally, we summarized the recent advances in systems and synthetic biology, engineering strategies for improving cellular performances, and metabolic engineering applications of B. subtilis. In particular, we proposed emerging opportunities and essential strategies to enable the successful development of B. subtilis as microbial cell factories. Copyright © 2018. Published by Elsevier Inc.

  1. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores

    PubMed Central

    Wood, Joseph P.; Meyer, Kathryn M.; Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011

  2. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment.

    PubMed

    Li, Chunyan; Li, Yue; Cheng, Xiaosong; Feng, Liping; Xi, Chuanwu; Zhang, Ying

    2013-03-01

    In this study, a unique biofilm consisting of three bacterial strains with high biofilm-forming capability (Bacillus subtilis E2, E3, and N4) and an acetonitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was established for acetonitrile-containing wastewater treatment. The results indicated that this biofilm exhibited strong resistance to acetonitrile loading shock and displayed a typical spatial and structural heterogeneity and completely depleted the initial concentration of acetonitrile (800mgL(-1)) within 24h in a moving-bed-biofilm reactor (MBBR) after operation for 30days. The immobilization of BX2 cells in the biofilm was confirmed by PCR-DGGE. It has been demonstrated that biofilm-forming bacteria can promote the immobilization of contaminant-degrading bacteria in the biofilms and can subsequently improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing biological oxidation of toxic pollutants in wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Antimicrobial prenylated dihydrochalcones from Eriosema glomerata.

    PubMed

    Awouafack, Maurice D; Kouam, Simeon F; Hussain, Hidayat; Ngamga, Dieudonne; Tane, Pierre; Schulz, Barbara; Green, Ivan R; Krohn, Karsten

    2008-01-01

    Two new natural dihydrochalcones exhibiting antimicrobial properties together with six known compounds were isolated from the Cameroonian medicinal plant Eriosema glomerata. The structures of the new dihydrochalcones were elucidated as 2',4'-dihydroxy-4-methoxy-3'-( gamma, gamma-dimethylallyl)dihydrochalcone and 2',4'-dihydroxy-3'-( gamma, gamma-dimethylallyl)dihydrochalcone by detailed spectroscopic analysis. The two new dihydrochalcones, named erioschalcones A ( 1) and B ( 2), demonstrated significant inhibitory activity against the microbial strains Bacillus megaterium, Escherichia coli, Chlorella fusca and Microbotryum violaceum.

  4. Drought resistant of bacteria producing exopolysaccharide and IAA in rhizosphere of soybean plant (Glycine max) in Wonogiri Regency Central Java Indonesia

    NASA Astrophysics Data System (ADS)

    Susilowati, A.; Puspita, A. A.; Yunus, A.

    2018-03-01

    Drought is one of the main problem which limitating the agriculture productivity in most arid region such as in district Eromoko, Wuryantro and SelogiriWonogiri Central Java Indonesia. Bacteria are able to survive under stress condition by producte exopolysaccharide. This study aims to determine the presence of exopolysaccharide-producing drought-resistant bacteria on rhizosphere of soybean (Glycine max) and to determine the species of bacteria based on 16S rRNA gene. Isolation of bacteria carried out by the spread plate method. The decreased of osmotic potential for screening drought tolerant bacteria according to the previous equation [12]. Selection of exopolysaccharide-producing bacteria on solid media ATCC 14 followed by staining the capsule. 16S rRNA gene amplification performed by PCR using primers of 63f and 1387r. The identificationof the bacteria is determined by comparing the results of DNA sequence similarity with bacteria databank in NCBI database. The results showed 11 isolates were exopolysaccharide-producing drought tolerant bacteria. The identity of the bacteria which found are Bacillus sp, Bacillus licheniformis, Bacillus megaterium and Bacillus pumilus.

  5. Isolation and characterization of a furfural-degrading bacterium Bacillus cereus sp. strain DS1.

    PubMed

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Gao, Chunlei

    2015-02-01

    Furfural was found to be the main organic pollutant in the wastewater coming from the Diosgenin factory. This substance is derived from acidic pentosan in Dioscorea zingiberensis and is also found in a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust. It is regarded as a toxicant and an inhibitor to the growth of microorganism in both sewage disposal and biological fermentation. A furfural-degrading strain (DS1) was isolated from activated sludge of wastewater treatment plant in a diosgenin factory by continuous enrichment culture. The strain was identified as Bacillus cereus based on morphological, physiological tests, as well as on 16S rDNA sequence and Biolog analyses. The capacity of this strain to grow on a mineral salt medium, utilizing furfural as the sole carbon and energy source to degrade furfural, was investigated in this study. Under the condition of pH 9.0, temperature 35 °C, with rotating speed of 150 rpm, and an inoculum of 6 %, the strain showed that the furfural degradation capacity reaches 35 % in 7 days, as measured by high-performance liquid chromatography. The addition of inorganic carbon sources could bring down the biodegradation efficiency of the furfural. The strain DS1 showed better furfural removal capacity, as compared to other inorganic carbon sources in the media. Furthermore, a furfural concentration of as high as 4,000 mg L(-1) was tolerated by the culture. The capacity to degrade furfural was demonstrated for the first time by using the genus B. cereus. This study suggests the possible application in biodegradation strategies.

  6. Exploitation of microbes for enhancing bacoside content and reduction of Meloidogyne incognita infestation in Bacopa monnieri L.

    PubMed

    Gupta, Rupali; Tiwari, Sudeep; Saikia, Shilpi K; Shukla, Virendra; Singh, Rashmi; Singh, S P; Kumar, P V Ajay; Pandey, Rakesh

    2015-01-01

    Despite the vast exploration of rhizospheric microbial wealth for crop yield enhancement, knowledge about the efficacy of microbial agents as biocontrol weapons against root-knot disease is scarce, especially in medicinal plants, viz., Bacopa monnieri. In the present investigation, rhizospheric microbes, viz., Bacillus megaterium, Glomus intraradices, Trichoderma harzianum ThU, and their combinations were evaluated for the management of Meloidogyne incognita (Kofoid and White) Chitwood and bacoside content enhancement in B. monnieri var CIM-Jagriti. A novel validated method Fourier transform near infrared was used for rapid estimation of total bacoside content. A significant reduction (2.75-fold) in root-knot indices was observed in the combined treatment of B. megaterium and T. harzianum ThU in comparison to untreated control plants. The same treatment also showed significant enhancement (1.40-fold) in total bacoside contents (plant active molecule) content using Fourier transform near-infrared (FT-NIR) method that analyses samples rapidly in an hour without solvent usage and provides ample scope for natural product studies.

  7. Modeling and parameters identification of 2-keto-L-gulonic acid fed-batch fermentation.

    PubMed

    Wang, Tao; Sun, Jibin; Yuan, Jingqi

    2015-04-01

    This article presents a modeling approach for industrial 2-keto-L-gulonic acid (2-KGA) fed-batch fermentation by the mixed culture of Ketogulonicigenium vulgare (K. vulgare) and Bacillus megaterium (B. megaterium). A macrokinetic model of K. vulgare is constructed based on the simplified metabolic pathways. The reaction rates obtained from the macrokinetic model are then coupled into a bioreactor model such that the relationship between substrate feeding rates and the main state variables, e.g., the concentrations of the biomass, substrate and product, is constructed. A differential evolution algorithm using the Lozi map as the random number generator is utilized to perform the model parameters identification, with the industrial data of 2-KGA fed-batch fermentation. Validation results demonstrate that the model simulations of substrate and product concentrations are well in coincidence with the measurements. Furthermore, the model simulations of biomass concentrations reflect principally the growth kinetics of the two microbes in the mixed culture.

  8. Enhanced degradation of pendimethalin by immobilized cells of Bacillus lehensis XJU.

    PubMed

    More, Veena S; Tallur, Preeti N; Niyonzima, Francois N; More, Sunil S

    2015-12-01

    A bacterium capable of degrading pendimethalin was isolated from the contaminated soil samples and identified as Bacillus lehensis XJU based on 16S rRNA gene sequence analysis. 6-Aminopendimethalin and 3,4-dimethyl 2,6-dinitroaniline were identified as the metabolites of pendimethalin degradation by the bacterium. The biodegradation of pendimethalin by freely suspended and the immobilized cells of B. lehensis on various matrices namely agar, alginate, polyacrylamide, and polyurethane foam was also investigated. The batch degradation rate was nearly the same for both free and immobilized cells in agar and alginate, whereas polyacrylamide- and PUF-immobilized cells degraded 93 and 100 of 0.1 % pendimethalin after 96 and 72 h, respectively. At higher concentration, the degradation rate of freely suspended cells decreased; whereas the same immobilized cells on polyurethane foam completely degraded 0.2 % pendimethalin within 96 h. The repeated batch degradation with the polyurethane foam-immobilized cells was reused for 35 cycles without losing the 0.1 % pendimethalin degrading ability. In contrast, agar-, alginate- and polyacrylamide-immobilized cells could be reused for 15, 18, and 25 cycles, respectively. When the pendimethalin concentration was increased to 0.2 %, the immobilized cells could be reused but the pendimethalin degradation rate was decreased. Polyurethane foam-immobilized cells exhibited better tolerance to pH and temperature alterations than freely suspended cells and could be stored for more than 3 months without losing pendimethalin degrading ability. The immobilization of cells capable of degrading pendimethalin may serve as an ideal technique for the complete degradation of the herbicide in the environment.

  9. Bacillus Strains Most Closely Related to Bacillus nealsonii Are Not Effectively Circumscribed within the Taxonomic Species Definition

    PubMed Central

    Peak, K. Kealy; Duncan, Kathleen E.; Luna, Vicki A.; King, Debra S.; McCarthy, Peter J.; Cannons, Andrew C.

    2011-01-01

    Bacillus strains with >99.7% 16S rRNA gene sequence similarity were characterized with DNA:DNA hybridization, cellular fatty acid (CFA) analysis, and testing of 100 phenotypic traits. When paired with the most closely related type strain, percent DNA:DNA similarities (% S) for six Bacillus strains were all far below the recommended 70% threshold value for species circumscription with Bacillus nealsonii. An apparent genomic group of four Bacillus strain pairings with 94%–70% S was contradicted by the failure of the strains to cluster in CFA- and phenotype-based dendrograms as well as by their differentiation with 9–13 species level discriminators such as nitrate reduction, temperature range, and acid production from carbohydrates. The novel Bacillus strains were monophyletic and very closely related based on 16S rRNA gene sequence. Coherent genomic groups were not however supported by similarly organized phenotypic clusters. Therefore, the strains were not effectively circumscribed within the taxonomic species definition. PMID:22046187

  10. Biosorption of Congo Red from aqueous solution by Bacillus weihenstephanensis RI12; effect of SPB1 biosurfactant addition on biodecolorization potency.

    PubMed

    Mnif, Inès; Fendri, Raouia; Ghribi, Dhouha

    2015-01-01

    Bacillus weihenstephanensis RI12, isolated from hydrocarbon contaminated soil, was assessed for Congo Red bio-treatment potency. Results suggested the potential of this bacterium for use in effective treatment of Congo Red contaminated wastewaters under shaking conditions at acidic and neutral pH value. The strain could tolerate higher doses of dyes as it could decolorize up to 1,000 mg/l of Congo Red. When used as microbial surfactant to enhance Congo Red biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized the decolorization efficiency at an optimal concentration of biosurfactant of about 0.075%. Studies ensured that Congo Red removal by this strain could be due to an adsorption phenomena. Germination potencies of tomato seeds using the treated dyes under different conditions showed the efficient biotreatment of the azo dye Congo Red especially with the addition of SPB1 biosurfactant. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing the effective decolorization period; the biosurfactant stimulated bacterial decolorization method may provide a highly efficient, inexpensive and time-saving procedure in the treatment of textile effluents.

  11. Mutants of Saccharomyces cerevisiae and Bacillus citri Changed the Protein Content of the Nigerian Oryza sativa variety “Igbimo” during Fermentation

    PubMed Central

    Boboye, Bolatito E; Adeleke, Mutiat A; Olawale, Anthony O

    2012-01-01

    Effect of mutation on protein production by Saccharomyces cerevisiae and Bacillus citri, the best protein producing yeast and bacterium isolated during a previous natural fermentation of a Nigerian rice (“Igbimo”). The two microorganisms were grown to logarithmic phase and mutagenized separately using ethylmethyl sulphonate (EMS). The wild-types and variants were inoculated individually into sterile “Igbimo” rice. Fermentation was allowed to take place at 27°C for 7 days after which protein released into the rice was quantified using the Biuret reagent method. The data obtained showed that the mutants are different from each other. Some mutants did form the protein at lower concentrations, others at the same and higher concentrations than the mother strains. The parental strains of S. cerevisiae and B. citri synthesized 0.89 mg/mL and 0.36 mg/mL protein respectively. Four groups of the mutants are recognized: classes I, II, III and IV which are the Poor, Average, Good and Super Protein Producers with 0-0.20, 0.21-0.50, 0.51-1.0 and 1.0 mg/mL protein respectively The yeast mutants produced higher amounts of protein than those of the bacterium. PMID:23166568

  12. ResDE Two-Component Regulatory System Mediates Oxygen Limitation-Induced Biofilm Formation by Bacillus amyloliquefaciens SQR9.

    PubMed

    Zhou, Xuan; Zhang, Nan; Xia, Liming; Li, Qing; Shao, Jiahui; Shen, Qirong; Zhang, Ruifu

    2018-04-15

    Efficient biofilm formation and root colonization capabilities facilitate the ability of beneficial plant rhizobacteria to promote plant growth and antagonize soilborne pathogens. Biofilm formation by plant-beneficial Bacillus strains is triggered by environmental cues, including oxygen deficiency, but the pathways that sense these environmental signals and regulate biofilm formation have not been thoroughly elucidated. In this study, we showed that the ResDE two-component regulatory system in the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens strain SQR9 senses the oxygen deficiency signal and regulates biofilm formation. ResE is activated by sensing the oxygen limitation-induced reduction of the NAD + /NADH pool through its PAS domain, stimulating its kinase activity, and resulting in the transfer of a phosphoryl group to ResD. The phosphorylated ResD directly binds to the promoter regions of the qoxABCD and ctaCDEF operons to improve the biosynthesis of terminal oxidases, which can interact with KinB to activate biofilm formation. These results not only revealed the novel regulatory function of the ResDE two-component system but also contributed to the understanding of the complicated regulatory network governing Bacillus biofilm formation. This research may help to enhance the root colonization and the plant-beneficial efficiency of SQR9 and other Bacillus rhizobacteria used in agriculture. IMPORTANCE Bacillus spp. are widely used as bioinoculants for plant growth promotion and disease suppression. The exertion of their plant-beneficial functions is largely dependent on their root colonization, which is closely related to their biofilm formation capabilities. On the other hand, Bacillus is the model bacterium for biofilm study, and the process and molecular network of biofilm formation are well characterized (B. Mielich-Süss and D. Lopez, Environ Microbiol 17:555-565, 2015, https://doi.org/10.1111/1462-2920.12527; L. S. Cairns, L. Hobley, and

  13. Impact of Bacillus cereus NRKT on grape ripe rot disease through resveratrol synthesis in berry skin.

    PubMed

    Aoki, Takanori; Aoki, Yoshinao; Ishiai, Shiho; Otoguro, Misa; Suzuki, Shunji

    2017-01-01

    Vine growers are faced with the difficult problem of how to control grape ripe rot disease in vineyards because of fear of accumulation of pesticide residues on grape berries near harvest. Biological control is an alternative non-hazardous technique to control the diseases. Application of resveratrol-synthesis-promoting bacterium, Bacillus cereus strain NRKT, reduced the incidence of grape ripe rot disease caused by Colletotrichum gloeosporioides in a vineyard. The application of NRKT to berry bunches upregulated the gene expression of stilbene synthase, a key enzyme for resveratrol synthesis in berry skins, thereby promoting resveratrol synthesis in berry skins. The potential use of NRKT in vineyards is expected to contribute to the increase in resveratrol content in berry skins, thereby protecting grape berries against fungal diseases. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. A specific binding protein from Tenebrio molitor for the insecticidal toxin of Bacillus thuringiensis subsp. tenebrionis.

    PubMed

    Belfiore, C J; Vadlamudi, R K; Osman, Y A; Bulla, L A

    1994-04-15

    Biopesticides based on the bacterium Bacillus thuringiensis have attracted wide attention as safe alternatives to chemical insecticides. In this paper, we report, for the first time, the identification of a single binding protein from a coleopteran insect, Tenebrio molitor, that is specific for the cryIII toxin of B. thuringiensis. The protein appeared as a single band of 144 kDa on radioligand and immunoblots of total proteins extracted from brush border membrane vesicles of the midgut of T. molitor. Radiolabelled cryIIIA toxin bound to the protein with a Kd value of 17.5 nM and could be specifically blocked by unlabelled toxin but not by toxins from other subspecies of B. thuringiensis. This study lays the groundwork to clone the cryIIIA toxin binding protein and to determine the molecular mechanism(s) of toxin action.

  15. Physiological traits of the symbiotic bacterium Teredinibacter turnerae isolated from the mangrove shipworm Neoteredo reynei

    PubMed Central

    2009-01-01

    Nutrition in the Teredinidae family of wood-boring mollusks is sustained by cellulolytic/nitrogen fixing symbiotic bacteria of the Teredinibacter clade. The mangrove Teredinidae Neoteredo reynei is popularly used in the treatment of infectious diseases in the north of Brazil. In the present work, the symbionts of N. reynei, which are strictly confined to the host's gills, were conclusively identified as Teredinibacter turnerae. Symbiont variants obtained in vitro were able to grow using casein as the sole carbon/nitrogen source and under reduced concentrations of NaCl. Furthermore, cellulose consumption in T. turnerae was clearly reduced under low salt concentrations. As a point of interest, we hereby report first hand that T. turnerae in fact exerts antibiotic activity. Furthermore, this activity was also affected by NaCl concentration. Finally, T. turnerae was able to inhibit the growth of Gram-negative and Gram-positive bacteria, this including strains of Sphingomonas sp., Stenotrophomonas maltophilia, Bacillus cereus and Staphylococcus sciuri. Our findings introduce new points of view on the ecology of T. turnerae, and suggest new biotechnological applications for this marine bacterium. PMID:21637522

  16. Effect of garlic solution to Bacillus sp. removal

    NASA Astrophysics Data System (ADS)

    Zainol, N.; Rahim, S. R.

    2018-04-01

    Biofilm is a microbial derived sessile community characterized by cells that are irreversibly attached to a substratum or interface to each other, embedded in a matrix of extracellular polymeric substances that they have produced. Bacillus sp. was used as biofilm model in this study. The purpose of this study is to determine the effect of Garlic solution in term of ratio of water and Garlic solution (W/G) and ratio of Garlic solution to Bacillus sp. (GS/B) on Bacillus sp removal. Garlic solution was used to remove Bacillus sp. In this study, Garlic solution was prepared by crushing the garlic and mixed it with water. the Garlic solution was added into Bacillus sp. mixture and mixed well. The mixture then was spread on nutrient agar. The Bacillus sp. weight on agar plate was measured by using dry weight measurement method. In this study, initially Garlic solution volume and Garlic solution concentration were studied using one factor at time (OFAT). Later two-level-factorial analysis was done to determine the most contributing factor in Bacillus sp. removal. Design Expert software (Version 7) was used to construct experimental table where all the factors were randomized. Bacilus sp removal was ranging between 42.13% to 99.6%. The analysis of the results showed that at W/G of 1:1, Bacillus sp. removal increased when more Garlic solution was added to Bacillus sp. Effect of Garlic solution to Bacillus sp. will be understood which in turn may be beneficial for the industrial purpose.

  17. DNA Repair and Genome Maintenance in Bacillus subtilis

    PubMed Central

    Lenhart, Justin S.; Schroeder, Jeremy W.; Walsh, Brian W.

    2012-01-01

    Summary: From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis. PMID:22933559

  18. Genetic map of the Bacillus stearothermophilus NUB36 chromosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallier, H.; Welker, N.E.

    1990-02-01

    A circular genetic map of Bacillus stearothermophilus NUB36 was constructed by transduction with bacteriophage TP-42C and protoplast fusion. Sixty-four genes were tentatively assigned a cognate Bacillus subtilis gene based on growth response to intermediates or end products of metabolism, cross-feeding, accumulation of intermediates, or their relative order in a linkage group. Although the relative position of many genes on the Bacillus subtilis genetic map appears to be similar, some differences were detected. The tentative order of the genes in the Bacillus stearothermophilus aro region is aspB-aroBAFEC-tyra-hisH-(trp), whereas it is aspB-aroE-tyrA-hisH-(trp)-aroHBF in Bacillus subtilis. The aroA, aroC, and aroG genes inmore » Bacillus subtilis are located in another region. The tentative order of genes in the trp operon of Bacillus stearothermophilus is trpFCDABE, whereas it is trpABFCDE in Bacillus subtilis.« less

  19. 76 FR 27303 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ..., derived from the bacterium Bacillus subtilis, appears to help maintain plant cellular functions and is... in any plant or plant product: A protozoan, a nonhuman animal, a parasitic plant, a bacterium, a...

  20. Disinfection of Vegetative Cells of Bacillus anthracis

    DTIC Science & Technology

    2016-03-01

    1. INTRODUCTION Disinfection of Bacillus anthracis spores in drinking water is well documented in peer-reviewed literature (Adcock et al., 2004... Disinfection kinetics of vegetative cells of Bacillus anthracis in water with free available chlorine ([FAC] 2 mg/L) and monochloramine ([MC] 2 mg/L) were...anthracis. Bacillus anthracis cells Drinking water Chlorine demand-free (CDF

  1. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    NASA Astrophysics Data System (ADS)

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  2. Next-Generation Bacillus anthracis Live Attenuated Spore Vaccine Based on the htrA- (High Temperature Requirement A) Sterne Strain

    PubMed Central

    Chitlaru, Theodor; Israeli, Ma’ayan; Bar-Haim, Erez; Elia, Uri; Rotem, Shahar; Ehrlich, Sharon; Cohen, Ofer; Shafferman, Avigdor

    2016-01-01

    Anthrax is a lethal disease caused by the gram-positive spore-producing bacterium Bacillus anthracis. Live attenuated vaccines, such as the nonencapsulated Sterne strain, do not meet the safety standards mandated for human use in the Western world and are approved for veterinary purposes only. Here we demonstrate that disrupting the htrA gene, encoding the chaperone/protease HtrA (High Temperature Requirement A), in the virulent Bacillus anthracis Vollum strain results in significant virulence attenuation in guinea pigs, rabbits and mice, underlying the universality of the attenuated phenotype associated with htrA knockout. Accordingly, htrA disruption was implemented for the development of a Sterne-derived safe live vaccine compatible with human use. The novel B. anthracis SterneΔhtrA strain secretes functional anthrax toxins but is 10–104-fold less virulent than the Sterne vaccine strain depending on animal model (mice, guinea pigs, or rabbits). In spite of this attenuation, double or even single immunization with SterneΔhtrA spores elicits immune responses which target toxaemia and bacteremia resulting in protection from subcutaneous or respiratory lethal challenge with a virulent strain in guinea pigs and rabbits. The efficacy of the immune-protective response in guinea pigs was maintained for at least 50 weeks after a single immunization. PMID:26732659

  3. In Vitro Ovicidal and Cestocidal Effects of Toxins from Bacillus thuringiensis on the Canine and Human Parasite Dipylidium caninum

    PubMed Central

    Peña, Guadalupe; Aguilar Jiménez, Fortino Agustín; Hallal-Calleros, Claudia; Morales-Montor, Jorge; Hernández-Velázquez, Víctor Manuel; Flores-Pérez, Fernando Iván

    2013-01-01

    Bacillus thuringiensis is a gram-positive soil-dwelling bacterium that is commonly used as a biological pesticide. This bacterium may also be used for biological control of helminth parasites in domestic animals. In this study, we evaluated the possible ovicidal and cestocidal effects of a total protein extract of B. thuringiensis native strains on the zoonotic cestode parasite of dogs, Dipylidium caninum (D. caninum). Dose and time response curves were determined by coincubating B. thuringiensis proteins at concentration ranging from 100 to 1000 μg/mL along with 4000 egg capsules of D. caninum. Egg viability was evaluated using the trypan blue exclusion test. The lethal concentration of toxins on eggs was 600 μg/ml, and the best incubation time to produce this effect was 3 h. In the adult stage, the motility and the thickness of the tegument were used as indicators of damage. The motility was inhibited by 100% after 8 hours of culture compared to the control group, while the thickness of the cestode was reduced by 34%. Conclusively, proteins of the strain GP526 of B. thuringiensis directly act upon D. caninum showing ovicidal and cestocidal effects. Thus, B. thuringiensis is proposed as a potential biological control agent against this zoonosis. PMID:23484087

  4. In vitro ovicidal and cestocidal effects of toxins from Bacillus thuringiensis on the canine and human parasite Dipylidium caninum.

    PubMed

    Peña, Guadalupe; Aguilar Jiménez, Fortino Agustín; Hallal-Calleros, Claudia; Morales-Montor, Jorge; Hernández-Velázquez, Víctor Manuel; Flores-Pérez, Fernando Iván

    2013-01-01

    Bacillus thuringiensis is a gram-positive soil-dwelling bacterium that is commonly used as a biological pesticide. This bacterium may also be used for biological control of helminth parasites in domestic animals. In this study, we evaluated the possible ovicidal and cestocidal effects of a total protein extract of B. thuringiensis native strains on the zoonotic cestode parasite of dogs, Dipylidium caninum (D. caninum). Dose and time response curves were determined by coincubating B. thuringiensis proteins at concentration ranging from 100 to 1000 μ g/mL along with 4000 egg capsules of D. caninum. Egg viability was evaluated using the trypan blue exclusion test. The lethal concentration of toxins on eggs was 600 μ g/ml, and the best incubation time to produce this effect was 3 h. In the adult stage, the motility and the thickness of the tegument were used as indicators of damage. The motility was inhibited by 100% after 8 hours of culture compared to the control group, while the thickness of the cestode was reduced by 34%. Conclusively, proteins of the strain GP526 of B. thuringiensis directly act upon D. caninum showing ovicidal and cestocidal effects. Thus, B. thuringiensis is proposed as a potential biological control agent against this zoonosis.

  5. [Identification, colonization and disease prevention capacity of an antagonistic bacterium against Ralstonia Solanacearum].

    PubMed

    Li, Zhikun; Zhu, Honghui

    2010-03-01

    To isolate a bacterial strain YPP-9, dominantly colonizing the rhizosphere of tomato using root exudate medium. In this study, we investigated the antagnism and disease-controling effect against Ralstonia solanacearum, evaluated the ability to colonize the rhizosphere of tomato, and further analyzed the phylogeny of YPP-9. To evaluate the antagnism against R. solanacearum and the biocontrol on tomato bacterial wilt by YPP-9 respectively employing plate culture method and pot experiment in green house. We analyzed the rhizosphere colonization of YPP-9 by PCR-denaturing gradient gel electrophoresis, and also identified the taxonomic position of YPP-9 using morphological and chemotaxonomic characteristics together with 16S rRNA gene phylogenetic analysis. YPP-9 suppressed the growth of R. solanacearum (strains SSF-4) in vitro with the inhibition zone of 5 mm. The disease-control efficiency against tomato bacterial wilt in pot was 63.4%. YPP-9 also colonized the rhizosphere of tomato well. The colonies were cream in colour after 24 h culture. Cells were gram-positive, rods (1.8 -4.1 microm x 0.9 - 1.1 microm) and formed endospores. Endospores were mainly ellipsoidal to cylindrical and lied in subterminal, and occasionally paracentral, positions in no swollen sporangia. No crystal protein. The pH range for YPP-9 growth was 5.5 - 8.5 with the optimum at pH 6.0, and the temperature for YPP-9 growth was 20 to 45 degrees with the optimum at 30 degrees. The results of BIOLOG GP2 showed that YPP-9 was Bacillus. Phylogenetic analysis of the 16S rRNA gene sequence revealed that YPP-9 was the most closely related to Bacillus fumarioli, with the sequence similarity of 97.7%. The sequence number was FJ231500. The DNA G + C content was 41.9%. The major menaquinone was MK-7. The dominant fatty acids in cell wall were C14 : 0 iso, C15 : 0 iso, C16 : 0 iso and C16 : 1omega 7c alcohol, with the contents of 28.27%, 19.59%, 12.93% and 10.88%, respectively. Bacterium YPP-9 strongly

  6. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.

  7. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    EPA Science Inventory

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  8. Purification and characterization of gamma poly glutamic acid from newly Bacillus licheniformis NRC20.

    PubMed

    Tork, Sanaa E; Aly, Magda M; Alakilli, Saleha Y; Al-Seeni, Madeha N

    2015-03-01

    γ-poly glutamic acid (γ-PGA) has received considerable attention for pharmaceutical and biomedical applications. γ-PGA from the newly isolate Bacillus licheniformis NRC20 was purified and characterized using diffusion distance agar plate, mass spectrometry and thin layer chromatography. All analysis indicated that γ-PGA is a homopolymer composed of glutamic acid. Its molecular weight was determined to be 1266 kDa. It was composed of L- and D-glutamic acid residues. An amplicon of 3050 represents the γ-PGA-coding genes was obtained, sequenced and submitted in genbank database. Its amino acid sequence showed high similarity with that obtained from B. licheniformis strains. The bacterium NRC 20 was independent of L-glutamic acid but the polymer production enhanced when cultivated in medium containing L-glutamic acid as the sole nitrogen source. Finally we can conclude that γ-PGA production from B. licheniformis NRC20 has many promised applications in medicine, industry and nanotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, C.; Ringleberg, D.; Scott, T.C.

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescensmore » with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.« less

  10. Purification and molecular characterization of subtilisin-like alkaline protease BPP-A from Bacillus pumilus strain MS-1.

    PubMed

    Miyaji, T; Otta, Y; Nakagawa, T; Watanabe, T; Niimura, Y; Tomizuka, N

    2006-03-01

    The present study was conducted by screening zein-degrading bacteria in an attempt to obtain zein-degrading protease. Soil bacteria were screened by formation of a clear zone on zein plates. Characterization of a zein-degrading bacterium indicated a taxonomic affiliation to Bacillus pumilus, and was named MS-1 strain. The strain produced two different types of extracellular proteases, BPP-A and BPP-B. In this study, we purified and characterized BPP-A because it exhibited a higher ability to hydrolyze zein than BPP-B. When casein was used as the substrate, the optimal pH for BPP-A was 11.0. In BPP-A, zein was better substrate than casein at pH 13.0, whereas casein was better one than zein at pH 11.0. The bppA gene encoded a 383-amino acid pre-pro form of BPP-A, and mature BPP-A contained 275 amino acid residues. It was concluded that BPP-A belonged to the subtilisin family. A zein-degrading bacterium assigned to B. pumilus produced two different types of extracellular proteases, BPP-A and BPP-B. BPP-A exhibited an ability to hydrolyze zein in an extreme alkaline condition. This is a first report on screening for zein-degrading micro-organisms. The subtilisin-like protease BPP-A is possible to utilize as an industrial enzyme for the production of zein hydrolysates.

  11. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    PubMed

    Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L

    2015-03-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.

  12. [Antagonism against Beauveria bassiana by lipopeptide metabolites produced by entophyte Bacillus amyloliquefaciens strain SWB16].

    PubMed

    Wang, Jingjie; Zhao, Dongyang; Liu, Yonggui; Ao, Xiang; Fan, Rui; Duan, Zhengqiao; Liu, Yanping; Chen, Qianqian; Jin, Zhixiong; Wan, Yongji

    2014-07-04

    We screened bacterial strains that have strong antagonism against Beauveria bassiana, an important pathogen of silkworm industry, and detected the antagonistic activity of lipopeptide metabolites. We identified bacterium SWB16 by morphological observation, physiological and biochemical experiments, 16SrRNA, and gyrA gene sequence analysis, tested antagonistic activity of strain SWB16 against Beauveria bassiana by measuring the inhibition zone diameter using filter paper diffusion method (Kirby-Bauer method), obtained lipopeptide metabolites of the strain using methanol extraction and observed the antagonism of strain SWB16 lipopeptide extracts against the conidia and hyphae of Beauveria bassiana, detected main ingredients and genes of lipopeptide metabolites by high-performance liquid chromatography-mass spectrometry and PCR amplification. SWB16 isolated from tissue of plant Dioscorea zingiberensis C. H. Wright belongs to Bacillus amyloliquefaciens and showed high antagonistic activity to Beauveria bassiana, and the lipopeptide extracts of isolate SWB16 exhibited significant inhibition to conidial germination and mycelial growth of Beauveria bassiana. The result of mass spectrometric detection indicated main component of the lipopeptide metabolites were fengcin and iturin, and genes fenB, ituA involved in the synthesis of them were amplified in the genome. Bacillus amyloliquefaciens strain SWB16 could produce lipopeptide antibiotics with strong antagonism to the entomopathogenic fungus Beauveria bassiana, and the results suggested that strain SWB16 has potential application value for controlling white muscardine of economic insects including silkworm.

  13. Damxungmacin A and B, Two New Amicoumacins with Rare Heterocyclic Cores Isolated from Bacillus subtilis XZ-7.

    PubMed

    Tang, Hui-Ling; Sun, Cheng-Hang; Hu, Xin-Xin; You, Xue-Fu; Wang, Min; Liu, Shao-Wei

    2016-11-23

    Two new amicoumacins, named Damxungmacin A ( 1 ) and B ( 2 ), were isolated from the culture broth of a soil-derived bacterium Bacillus subtilis XZ-7. Their chemical structures were elucidated by spectroscopic studies (UV, IR, NMR and HR-ESI-MS). Compound 1 possessed a 1,4-diazabicyclo[2.2.1]heptane-2-one ring system in its structure, which was reported for the first time, while 2 had a 1-acetylmorpholine-3-one moiety, which was naturally rare. Compound 1 exhibited moderate to weak cytotoxic activities against three human tumor cell lines (A549, HCT116 and HepG2) with IC 50 values of 13.33, 14.34 and 13.64 μM, respectively. Meanwhile, compound 1 showed weak antibacterial activities against some strains of Staphylococcus epidermidis , while compound 2 at 16 μg/mL did not show antibacterial activity.

  14. Antifungal activity of the lipopeptides produced by Bacillus amyloliquefaciens anti-CA against Candida albicans isolated from clinic.

    PubMed

    Song, Bo; Rong, Yan-Jun; Zhao, Ming-Xin; Chi, Zhen-Ming

    2013-08-01

    The bacterium Bacillus amyloliquefaciens anti-CA isolated from mangrove system was found to be able to actively kill Candida albicans isolated from clinic. The bacterial strain anti-CA could produce high level of bioactive substance, amylase and protease in the cheap medium containing 2.0 % soybean meal, 2.0 % wheat flour, pH 6.5 within 26 h. After purification, the main bioactive substance was confirmed to be a cyclic lipopeptide containing a heptapeptide, L-Asp→L-Leu→L-Leu→L-Val→L-Val→L-Glu→L-Leu and a 3-OH fatty acid (15 carbons). In addition to C. albicans, the purified lipopeptide can also kill many yeast strains including Metschnikowia bicuspidata, Candida tropicalis, Yarrowia lipolytica and Saccharomyces cerevisiae. After treated by the purified lipopeptide, both the whole cells and protoplasts of C. albicans were destroyed.

  15. Mycolic acids: deciphering and targeting the Achilles' heel of the tubercle bacillus

    PubMed Central

    Nataraj, Vijayashankar; Varela, Cristian; Javid, Asma; Singh, Albel; Besra, Gurdyal S.

    2015-01-01

    Summary Mycolic acids are unique long chain fatty acids found in the lipid‐rich cell walls of mycobacteria including the tubercle bacillus M ycobacterium tuberculosis. Essential for viability and virulence, enzymes involved in the biosynthesis of mycolic acids represent novel targets for drug development. This is particularly relevant to the impact on global health given the rise of multidrug resistant and extensively drug resistant strains of M . tuberculosis. In this review, we discuss recent advances in our understanding of how mycolic acid are synthesised, especially the potential role of specialised fatty acid synthase complexes. Also, we examine the role of a recently reported mycolic acid transporter MmpL3 with reference to several reports of the targeting of this transporter by diverse compounds with anti‐M . tuberculosis activity. Additionally, we consider recent findings that place mycolic acid biosynthesis in the context of the cell biology of the bacterium, viz its localisation and co‐ordination with the bacterial cytoskeleton, and its role beyond maintaining cell envelope integrity. PMID:26135034

  16. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis.

    PubMed

    López, Daniel; Kolter, Roberto

    2010-03-01

    The soil-dwelling bacterium Bacillus subtilis differentiates into distinct subpopulations of specialized cells that coexist within highly structured communities. The coordination and interplay between these cell types requires extensive extracellular communication driven mostly by sensing self-generated secreted signals. These extracellular signals activate a set of sensor kinases, which respond by phosphorylating three major regulatory proteins, Spo0A, DegU and ComA. Each phosphorylated regulator triggers a specific differentiation program while at the same time repressing other differentiation programs. This allows a cell to differentiate in response to a specific cue, even in the presence of other, possibly conflicting, signals. The sensor kinases involved respond to an eclectic group of extracellular signals, such as quorum-sensing molecules, natural products, temperature, pH or scarcity of nutrients. This article reviews the cascades of cell differentiation pathways that are triggered by sensing extracellular signals. We also present a tentative developmental model in which the diverse cell types sequentially differentiate to achieve the proper development of the bacterial community.

  17. Antibacterial polyketides from Bacillus amyloliquefaciens associated with edible red seaweed Laurenciae papillosa.

    PubMed

    Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna; Joy, Minju

    2017-03-01

    Heterotrophic Bacillus amyloliquefaciens associated with edible red seaweed, Laurenciae papillosa was used to isolate antibacterial polyketide compounds. Antibacterial activity studies integrated with the outcome obtained by polyketide synthetase (pks) coding genes established that seaweed-affiliated bacterial flora had a wide-ranging antibacterial activities and potential natural product diversity, which proved that the bacterium is valuable reservoir of novel bioactive metabolites. Bioactivity-guided isolation of 3-(octahydro-9-isopropyl-2H-benzo[h]chromen-4-yl)-2-methylpropyl benzoate and methyl 8-(2-(benzoyloxy)-ethyl)-hexahydro-4-((E)-pent-2-enyl)-2H-chromene-6-carboxylate of polyketide origin, with activity against human opportunistic food pathogenic microbes, have been isolated from the ethyl acetate extract of B. amyloliquefaciens. Structure-activity relationship analysis revealed that hydrophobic descriptor of the polyketide compounds significantly contribute towards its antibacterial activity. Seaweed-associated microorganisms were shown to represent a potential source of antimicrobial compounds for food and health benefits. The antibacterial polyketide compounds described in the present study may find potential applications in the food industry to reduce food-borne pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass.

    PubMed

    Meng, F; Ma, L; Ji, S; Yang, W; Cao, B

    2014-09-01

    Bioconversion of biomass, particularly crop wastes, into biofuels is being developed as an alternative approach in meeting the high energy demand. In this study, a thermophilic bacterial strain BY-3 that exhibits cellulolytic potential was isolated from faecal samples of Tibetan pigs; this strain was identified as Bacillus subtilis. The strain can produce cellulase when grown on various substrates, including carboxymethyl cellulose, rice straw, corn stover, soluble starch and wheat bran. The maximum cellulase activity of the strain was up to 4·323 ± 0·065 U ml(-1) when cultivated in the medium containing corn stover (30 g l(-1) ) for 24 h. The results demonstrated that corn stover is the most suitable substrate for cellulase production by the strain BY-3. The crude cellulase of strain BY-3 was most active at pH 5·5 and 60°C, and the enzyme in acetate buffer (50 mmol l(-1) ) demonstrated a good stability at 60°C for at least 1 h. The crude cellulase exhibited a strong antibacterial activity against Staphylococcus aureus. The strain can be used in cost-efficient cellulase production for bioconversion of agricultural residual biomass into biofuels. The increased consumption of fossil fuels has caused serious energy crisis and environmental problem. Thus, an alternative energy source is necessary. Bioconversion of biomass, particularly agricultural residuals, into value-added bioproducts, such as biofuels and chemical solvents, has received considerable attention. In this study, the newly isolated thermophilic Bacillus subtilis strain BY-3 produces cellulase efficiently with the use of untreated corn stover as a sole carbon source. This strain possesses the thermostable cellulase that is active with diverse crop wastes with a broad pH range and is a highly promising candidate for agricultural waste management. © 2014 The Society for Applied Microbiology.

  19. Optimization of Levan Production by Cold-Active Bacillus licheniformis ANT 179 and Fructooligosaccharide Synthesis by Its Levansucrase.

    PubMed

    Xavier, Janifer Raj; Ramana, Karna Venkata

    2017-03-01

    Fructooligosaccharides (FOS) and levan attract much attention due to a wide range of applications in food technology and pharmaceutical and cosmetic industry. Bacillus licheniformis ANT 179, isolated from Antarctica soil, produced levansucrase and levan in a medium containing sucrose as carbon substrate. In this study, characterization of levansucrase and production of short-chain FOS and levan were investigated. Temperature and pH optimum of the enzyme were found to be 60 °C and pH 6.0, respectively. The optimization of fermentation conditions for levan production using sugarcane juice by response surface methodology (RSM) was carried out. Central composite rotatable design was used to study the main and the interactive effects of medium components: sugarcane juice and casein peptone concentration on levan production by the bacterium. The optimized medium with sugarcane juice at 20 % (v/v) and casein peptone at 2 % (w/v) was found to be optimal at an initial pH of 7.0 and incubation temperature of 35 °C for 48 h. Under these conditions, the maximum levan concentration was 50.25 g/L on wet weight basis and 16.35 g/L on dry weight basis. The produced inulin type FOS (kestose and neokestose) and levan were characterized by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis. The study revealed that the levansucrase could form FOS from sucrose. The locally available low-cost substrate such as sugarcane juice in the form of a renewable substrate is proposed to be suitable even for scale-up production of enzyme and FOS for industrial applications. The levan and FOS synthesized by the bacterium are suitable for food applications and biomedical uses as the bacterium has GRAS status and devoid of endotoxin as compared to other Gram-negative bacteria.

  20. Non-HACEK gram-negative bacillus endocarditis.

    PubMed

    Morpeth, Susan; Murdoch, David; Cabell, Christopher H; Karchmer, Adolf W; Pappas, Paul; Levine, Donald; Nacinovich, Francisco; Tattevin, Pierre; Fernández-Hidalgo, Núria; Dickerman, Stuart; Bouza, Emilio; del Río, Ana; Lejko-Zupanc, Tatjana; de Oliveira Ramos, Auristela; Iarussi, Diana; Klein, John; Chirouze, Catherine; Bedimo, Roger; Corey, G Ralph; Fowler, Vance G

    2007-12-18

    Infective endocarditis caused by non-HACEK (species other than Haemophilus species, Actinobacillus actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, or Kingella species) gram-negative bacilli is rare, is poorly characterized, and is commonly considered to be primarily a disease of injection drug users. To describe the clinical characteristics and outcomes of patients with non-HACEK gram-negative bacillus endocarditis in a large, international, contemporary cohort of patients. Observations from the International Collaboration on Infective Endocarditis Prospective Cohort Study (ICE-PCS) database. 61 hospitals in 28 countries. Hospitalized patients with definite endocarditis. Characteristics of non-HACEK gram-negative bacillus endocarditis cases were described and compared with those due to other pathogens. Among the 2761 case-patients with definite endocarditis enrolled in ICE-PCS, 49 (1.8%) had endocarditis (20 native valve, 29 prosthetic valve or device) due to non-HACEK, gram-negative bacilli. Escherichia coli (14 patients [29%]) and Pseudomonas aeruginosa (11 patients [22%]) were the most common pathogens. Most patients (57%) with non-HACEK gram-negative bacillus endocarditis had health care-associated infection, whereas injection drug use was rare (4%). Implanted endovascular devices were frequently associated with non-HACEK gram-negative bacillus endocarditis compared with other causes of endocarditis (29% vs. 11%; P < 0.001). The in-hospital mortality rate of patients with endocarditis due to non-HACEK gram-negative bacilli was high (24%) despite high rates of cardiac surgery (51%). Because of the small number of patients with non-HACEK gram-negative bacillus endocarditis in each treatment group and the lack of long-term follow-up, strong treatment recommendations are difficult to make. In this large, prospective, multinational cohort, more than one half of all cases of non-HACEK gram-negative bacillus endocarditis were associated with

  1. Bacillus Coagulans

    MedlinePlus

    ... It is used similarly to lactobacillus and other probiotics as "beneficial" bacteria. People take Bacillus coagulans for ... intestine. Early evidence shows that using a specific probiotic product (Lactol, Bioplus Life Sciences Pvt. Ltd., India) ...

  2. Microbiological efficacy of superheated steam. I. Communication: results with spores of Bacillus subtilis and Bacillus stearothermophilus and with spore earth.

    PubMed

    Spicher, G; Peters, J; Borchers, U

    1999-02-01

    For the spores of Bacillus subtilis and Bacillus stearothermophilus as well as for spore earth (acc. DIN 58,946 Part 4 of August 1982), the dependence of resistance on the superheating of the steam used to kill germs was determined. A material (glass fibre fleece) was used as the germ carrier which does not superheat on contact with steam. The temperature of the saturated steam was 100 degrees C (B. subtilis) and 120 degrees C (B. stearothermophilus and spore earth). The yardstick for the resistance of the spores or bioindicators was the exposure period of the saturated or superheated steam at which 50% of the treated test objects no longer showed any viable test germs. The spores of Bacillus subtilis were far more sensitive to superheating of steam and reacted far more than the spores of Bacillus stearothermophilus and the germs in the spore earth. When superheating by 4 Kelvin the spores of Bacillus subtilis were approximately 2.5 times more resistant than they were to saturated steam. The resistance of Bacillus stearothermophilus and spore earth was only slightly higher up to superheating by 10 Kelvin. The spores of Bacillus subtilis had the highest resistance during superheating by 29 Kelvin; they were 119 times more resistant than they were to saturated steam. The resistance maximum of the spores of Bacillus stearothermophilus was at an superheating by around 22 Kelvin. However, the spores were only 4.1 times more resistant than they were to saturated steam. When using steam to kill germs, we must expect superheated steam. This raises the question whether the spores of Bacillus stearothermophilus, with their weaker reaction to the superheating of steam, are suitable as test germs for sterilisation with steam in all cases.

  3. Mode of Action and Specificity of Bacillus thuringiensis Toxins in the Control of Caterpillars and Stink Bugs in Soybean Culture

    PubMed Central

    Fiuza, Lidia Mariana

    2014-01-01

    The bacterium Bacillus thuringiensis (Bt) produces delta-endotoxins that possess toxic properties and can be used as biopesticides, as well as a source of genes for the construction of transgenic plants resistant to insects. In Brazil, the introduction of Bt soybean with insecticidal properties to the velvetbean caterpillar, the main insect pest of soybean, has been seen a promising tool in the management of these agroecosystems. However, the increase in stink bug populations in this culture, in various regions of the country, which are not susceptible to the existing genetically modified plants, requires application of chemicals that damage the environment. Little is known about the actual toxicity of Bt to Hemiptera, since these insects present sucking mouthparts, which hamper toxicity assays with artificial diets containing toxins of this bacterium. In recent studies of cytotoxicity with the gut of different hemipterans, susceptibility in the mechanism of action of delta-endotoxins has been demonstrated, which can generate promising subsidies for the control of these insect pests in soybean. This paper aims to review the studies related to the selection, application and mode of action of Bt in the biological control of the major pest of soybean, Anticarsia gemmatalis, and an analysis of advances in research on the use of Bt for control hemipterans. PMID:24575310

  4. Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat.

    PubMed

    Pan, D; Mionetto, A; Tiscornia, S; Bettucci, L

    2015-08-01

    In Uruguay, Fusarium graminearum is the most common species that infects wheat and is responsible for Fusarium head blight (FHB) and contamination of grain with deoxynivalenol (DON). The aim of this work was to select bacterial endophytes isolated from wheat grain to evaluate their antagonistic ability against F. graminearum and DON production in vitro and under field conditions. Four strains identified as Bacillus megaterium (BM1) and Bacillus subtilis (BS43, BSM0 y BSM2) significantly reduced fungal growth and spore germination of F. graminearum. This antagonist activity remained unchanged after the bacterial cultures were heat treated. Under field conditions, treatments with antagonist BM1 was the most effective, reducing the FHB incidence and severity by 93 and 54 %, respectively, and the production of DON by 89.3 %.

  5. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis

    DTIC Science & Technology

    2004-12-01

    13061 Neisseria lactamica .............................................................. 23970 Bacillus coagulans ...NEG Bacillus coagulane 7050 NEG NEG Bacillus cereus 13472 NEG NEG Bacillus licheniforms 12759 NEG NEG Bacillus cereus 13824 NEG NEG Bacillus ...Assay for a Unique Chromosomal Sequence of Bacillus anthracis Elizabeth Bode,1 William Hurtle,2† and David Norwood1* United States Army Medical

  6. Spectral characterization of a pteridine derivative from cyanide-utilizing bacterium Bacillus subtilis - JN989651.

    PubMed

    Durairaju Nisshanthini, S; Teresa Infanta S, Antony K; Raja, Duraisamy Senthil; Natarajan, Karuppannan; Palaniswamy, M; Angayarkanni, Jayaraman

    2015-04-01

    Soil and water samples were collected from various regions of SIPCOT and nearby Vanappadi Lake, Ranipet, Tamilnadu, India. Based on their colony morphology and their stability during subculturing, 72 bacteria were isolated, of which 14 isolates were actinomycetes. Preliminary selection was carried out to exploit the ability of the microorganisms to utilize sodium cyanate as nitrogen source. Those organisms that were able to utilize cyanate were subjected to secondary screening viz., utilization of sodium cyanide as the nitrogen source. The oxygenolytic cleavage of cyanide is dependent on cyanide monooxygenase which obligately requires pterin cofactor for its activity. Based on this, the organisms capable of utilizing sodium cyanide were tested for the presence of pterin. Thin layer chromatography (TLC) of the cell extracts using n-butanol: 5 N glacial acetic acid (4:1) revealed that 10 out of 12 organisms that were able to utilize cyanide had the pterin-related blue fluorescent compound in the cell extract. The cell extracts of these 10 organisms were subjected to high performance thin layer chromatography (HPTLC) for further confirmation using a pterin standard. Based on the incubation period, cell biomass yield, peak height and area, strain VPW3 was selected and was identified as Bacillus subtilis. The Rf value of the cell extract was 0.73 which was consistent with the 0.74 Rf value of the pterin standard when scanned at 254 nm. The compound was extracted and purified by preparative High Performance Liquid Chromatography (HPLC). Characterization of the compound was performed by ultraviolet spectrum, fluorescence spectrum, Electrospray Ionization-Mass Spectrometry (ESI-MS), and Nuclear Magnetic Resonance spectroscopy (NMR). The compound is proposed to be 6-propionyl pterin (2-amino-6-propionyl-3H-pteridin-4-one).

  7. Synergistic Effect of Simple Sugars and Carboxymethyl Cellulose on the Production of a Cellulolytic Cocktail from Bacillus sp. AR03 and Enzyme Activity Characterization.

    PubMed

    Manfredi, Adriana P; Pisa, José H; Valdeón, Daniel H; Perotti, Nora I; Martínez, María A

    2016-04-01

    A cellulase-producing bacterium isolated from pulp and paper feedstock, Bacillus sp. AR03, was evaluated by means of a factorial design showing that peptone and carbohydrates were the main variables affecting enzyme production. Simple sugars, individually and combined with carboxymethyl cellulose (CMC), were further examined for their influence on cellulase production by strain AR03. Most of the mono and disaccharides assayed presented a synergistic effect with CMC. As a result, a peptone-based broth supplemented with 10 g/L sucrose and 10 g/L CMC maximized enzyme production after 96 h of cultivation. This medium was used to produce endoglucanases in a 1-L stirred tank reactor in batch mode at 30 °C, which reduced the fermentation period to 48 h and reaching 3.12 ± 0.02 IU/mL of enzyme activity. Bacillus sp. AR03 endoglucanases showed an optimum temperature of 60 °C and a pH of 6.0 with a wide range of pH stability. Furthermore, presence of 10 mM Mn(2+) and 5 mM Co(2+) produced an increase of enzyme activity (246.7 and 183.7 %, respectively), and remarkable tolerance to NaCl, Tween 80, and EDTA was also observed. According to our results, the properties of the cellulolytic cocktail from Bacillus sp. AR03 offer promising features in view of potential biorefinery applications.

  8. Bacillus beijingensis sp. nov. and Bacillus ginsengi sp. nov., isolated from ginseng root.

    PubMed

    Qiu, Fubin; Zhang, Xiaoxia; Liu, Lin; Sun, Lei; Schumann, Peter; Song, Wei

    2009-04-01

    Four alkaligenous, moderately halotolerant strains, designated ge09, ge10(T), ge14(T) and ge15, were isolated from the internal tissue of ginseng root and their taxonomic positions were investigated by using a polyphasic approach. Cells of the four strains were Gram-positive-staining, non-motile, short rods. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains ge09 and ge10(T) formed one cluster and strains ge14(T) and ge15 formed another separate cluster within the genus Bacillus. 16S rRNA gene sequence similarities with type strains of other Bacillus species were less than 97 %. Levels of DNA-DNA relatedness among the four strains showed that strains ge09 and ge10(T) and strains ge14(T) and ge15 belonged to two separate species; the mean level of DNA-DNA relatedness between ge10(T) and ge14(T) was only 28.7 %. Their phenotypic and physiological properties supported the view that the two strains represent two different novel species of the genus Bacillus. The DNA G+C contents of strains ge10(T) and ge14(T) were 49.9 and 49.6 mol%, respectively. Strains ge10(T) and ge14(T) showed the peptidoglycan type A4alpha l-Lys-d-Glu. The lipids present in strains ge10(T) and ge14(T) were diphosphatidylglycerol, phosphatidylglycerol, a minor amount of phosphatidylcholine and two unknown phospholipids. Their predominant respiratory quinone was MK-7. The fatty acid profiles of the four novel strains contained large quantities of branched and saturated fatty acids. The predominant cellular fatty acids were iso-C(15 : 0) (42.5 %), anteiso-C(15 : 0) (22.2 %), anteiso-C(17 : 0) (7.3 %) and C(16 : 1)omega7c alcohol (5.7 %) in ge10(T) and iso-C(15 : 0) (50.7 %) and anteiso-C(15 : 0) (20.1 %) in ge14(T). On the basis of their phenotypic properties and phylogenetic distinctiveness, two novel species of the genus Bacillus are proposed, Bacillus beijingensis sp. nov. (type strain ge10(T) =DSM 19037(T) =CGMCC 1.6762(T)) and Bacillus ginsengi sp. nov. (type strain ge14

  9. Fungal Competitors Affect Production of Antimicrobial Lipopeptides in Bacillus subtilis Strain B9-5.

    PubMed

    DeFilippi, Stefanie; Groulx, Emma; Megalla, Merna; Mohamed, Rowida; Avis, Tyler J

    2018-04-01

    Bacillus subtilis has shown success in antagonizing plant pathogens where strains of the bacterium produce antimicrobial cyclic lipopeptides (CLPs) in response to microbial competitors in their ecological niche. To gain insight into the inhibitory role of these CLPs, B. subtilis strain B9-5 was co-cultured with three pathogenic fungi. Inhibition of mycelial growth and spore germination was assessed and CLPs produced by B. subtilis B9-5 were quantified over the entire period of microbial interaction. B. subtilis B9-5 significantly inhibited mycelial growth and spore germination of Fusarium sambucinum and Verticillium dahliae, but not Rhizopus stolonifer. LC-MS analysis revealed that B. subtilis differentially produced fengycin and surfactin homologs depending on the competitor. CLP quantification suggested that the presence of Verticillium dahliae, a fungus highly sensitive to the compounds, caused an increase followed by a decrease in CLP production by the bacterium. In co-cultures with Fusarium sambucinum, a moderately sensitive fungus, CLP production increased more gradually, possibly because of its slower rate of spore germination. With co-cultures of the tolerant fungus Rhizopus stolonifer, B. subtilis produced high amounts of CLPs (per bacterial cell) for the duration of the interaction. Variations in CLP production could be explained, in part, by the pathogens' overall sensitivities to the bacterial lipopeptides and/or the relative growth rates between the plant pathogen and B. subtilis. CLP production varied substantially temporally depending on the targeted fungus, which provides valuable insight concerning the effectiveness of B. subtilis B9-5 protecting its ecological niche against the ingress of these pathogens.

  10. Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity

    PubMed Central

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Caballero, Primitivo

    2014-01-01

    Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities. PMID:25514092

  11. Identification of antimicrobial compound, diketopiperazines, from a Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode against major plant pathogenic fungi.

    PubMed

    Nishanth Kumar, S; Mohandas, C; Siji, J V; Rajasekharan, K N; Nambisan, Bala

    2012-10-01

    To purify and characterize antimicrobial compounds from Bacillus sp. strain N associated with rhabditid entomopathogenic nematode (EPN). The cell-free culture filtrate of a bacterium associated with an EPN, Rhabditis (Oscheius) sp., exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain three diketopiperazines (DKPs). The structure and absolute stereochemistry of this compound were determined based on extensive spectroscopic analyses (FABMS, (1) H NMR, (13) C NMR, (1) H-(1) H COSY, (1) H-(13) C HMBC) and Marfey's method. The compounds were identified as cyclo(l-Pro-l-Leu), cyclo(d-Pro-l-Leu) and cyclo(d-Pro-l-Tyr), respectively. Three DKPs were active against all the five fungi tested (Aspergillus flavus, Candida albicans, Fusarium oxysporum, Rhizoctonia solani and Penicillium expansum) and are more effective than the standard fungicide bavistin. The highest activity of 4 μg ml(-1) by cyclo(l-Pro-l-Leu) and cyclo(d-Pro-l-Tyr) was recorded against P. expansum, a plant pathogen responsible for causing postharvest decay of stored apples and oranges. Cyclo(d-Pro-l-Leu) recorded good antibacterial activity against all the four bacteria tested (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa), and cyclo(l-Pro-l-Leu) and cyclo(d-Pro-l-Tyr) recorded good activity only against Gram-positive bacteria. To our knowledge, this is the first report of antifungal activity of the DKPs against the plant pathogenic fungi F. oxysporum, R. solani and P. expansum. The production of cyclo(l-Pro-l-Leu), cyclo(d-Pro-l-Leu) and cyclo-(d-Pro-l-Tyr) by a bacterium associated with EPN is also reported here for the first time. Isolated DKPs demonstrated high antimicrobial activity against bacteria and fungi, especially against plant pathogenic fungi. We conclude that the bacterium associated with EPN is a promising source of natural bioactive

  12. Soil contamination by petroleum products. Southern Algerian case

    NASA Astrophysics Data System (ADS)

    Belabbas, Amina; Boutoutaou, Djamel; Segaï, Sofiane; Segni, Ladjel

    2016-07-01

    Contamination of soil by petroleum products is a current problem in several countries in the world. In Algeria, this negative phenomenon is highly remarked in Saharan region. Numerous studies at the University of Ouargla that we will review in this paper, have tried to find an effective solution to eliminate the hydrocarbons from the soil by the technique of "biodegradation" which is a natural process based on microorganisms such as Bacillus megaterium and Pseudomonas aeruginosa. Presence of aboriginal strain Bacillus megaterium in the soil samples with different ages of contamination has shown a strong degradation of pollutants. This strain chosen for its short time of generation which is performing as seen the best yields of elimination of hydrocarbons assessed at 98 % biostimule by biosurfactant, also 98% on a sample wich bioaugmente by urea, and 86 % of the sample which biostimule by nutrient solution. The rate of biodegradation of the contaminated soil by crude oil using the strain Pseudomonas aeruginosa is higher in the presence of biosurfactant 53 % that in his absence 35 %. Another elimination technique wich is washing the contaminated soil's sample by centrifugation in the presence of biosurfactant where The rate of hydrocarbons mobilized after washing soil by centrifugation is of 50 % and 76 % but without centrifugation it was of 46% to 79%. Those processes have great capacity in the remobilization of hydrocarbons and acceleration of their biodegradation; thus, they deserve to be further developed in order to prevent environmental degradation in the region of Ouargla.

  13. Microbial Growth under Supercritical CO2

    PubMed Central

    Peet, Kyle C.; Freedman, Adam J. E.; Hernandez, Hector H.; Britto, Vanya; Boreham, Chris; Ajo-Franklin, Jonathan B.

    2015-01-01

    Growth of microorganisms in environments containing CO2 above its critical point is unexpected due to a combination of deleterious effects, including cytoplasmic acidification and membrane destabilization. Thus, supercritical CO2 (scCO2) is generally regarded as a sterilizing agent. We report isolation of bacteria from three sites targeted for geologic carbon dioxide sequestration (GCS) that are capable of growth in pressurized bioreactors containing scCO2. Analysis of 16S rRNA genes from scCO2 enrichment cultures revealed microbial assemblages of varied complexity, including representatives of the genus Bacillus. Propagation of enrichment cultures under scCO2 headspace led to isolation of six strains corresponding to Bacillus cereus, Bacillus subterraneus, Bacillus amyloliquefaciens, Bacillus safensis, and Bacillus megaterium. Isolates are spore-forming, facultative anaerobes and capable of germination and growth under an scCO2 headspace. In addition to these isolates, several Bacillus type strains grew under scCO2, suggesting that this may be a shared feature of spore-forming Bacillus spp. Our results provide direct evidence of microbial activity at the interface between scCO2 and an aqueous phase. Since microbial activity can influence the key mechanisms for permanent storage of sequestered CO2 (i.e., structural, residual, solubility, and mineral trapping), our work suggests that during GCS microorganisms may grow and catalyze biological reactions that influence the fate and transport of CO2 in the deep subsurface. PMID:25681188

  14. Improved pulp bleaching potential of Bacillus subtilis WB800 through overexpression of three lignolytic enzymes from various bacteria.

    PubMed

    Ozer, Aysegul; Uzuner, Ugur; Guler, Halil Ibrahim; Ay Sal, Fulya; Belduz, Ali Osman; Deniz, Ilhan; Canakci, Sabriye

    2017-12-29

    A chemical bleaching process of paper pulps gives off excessive amount of chlorinated organic wastes mostly released to environment without exposing complete bioremediaton. Recent alternative and eco-friendly approaches toward pulp bleaching appear more responsive to environmental awareness. Here we report, direct use of a recombinant Bacillus subtilis bacterium for pulp bleaching, endowed with three ligninolytic enzymes from various bacteria. In addition, efficient bleaching performance from glutathione-S-transferase (GST) biocatalyst tested for the first time in pulp bleaching applications was also achieved. Simultaneous and extracellular overproduction of highly active GST, laccase, and lignin peroxidase catalysts were also performed by Bacillus cells. Both enhanced bleaching success and improved delignification rates were identified when enzyme combinations tested on both pine kraft and waste paper pulps, ranging from 69.75% to 79.18% and 60.89% to 74.65%, respectively. Furthermore, when triple enzyme combination applied onto the papers from pine kraft and waste pulps, the best ISO brightness values were identified as 66.45% and 64.67%, respectively. The delignification rates of pulp fibers exposed to various enzymatic bleaching sequences were comparatively examined under SEM. In conclusion, the current study points out that in near future, a more fined-tuned engineering of pulp-colonizing bacteria may become a cost-effective and environmentally friendly alternative to chemical bleaching. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  15. Capsule Depolymerase Overexpression Reduces Bacillus anthracis Virulence

    DTIC Science & Technology

    2010-01-01

    protein that autocatalytically forms a heterodimer consisting of 35 kDa and 15 kDa subunits. CapD shares 32 % identity with the Bacillus subtilis GGT and 35...Immun 49, 291–297. Kimura, K., Tran, L. S., Uchida, I. & Itoh, Y. (2004). Characterization of Bacillus subtilis gamma-glutamyltransferase and its...Capsule depolymerase overexpression reduces Bacillus anthracis virulence Angelo Scorpio,3 Donald J. Chabot, William A. Day,4 Timothy A. Hoover and

  16. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Benjdia, Alhosna; Guillot, Alain; Ruffié, Pauline; Leprince, Jérôme; Berteau, Olivier

    2017-07-01

    Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.

  17. Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05.

    PubMed

    Dash, Hirak R; Mangwani, Neelam; Das, Surajit

    2014-02-01

    Bacillus thuringiensis PW-05 was isolated from the Odisha coast and was found to resist 50 ppm of Hg as HgCl2 as well as higher concentrations of CdCl2, ZnSO4, PbNO3 and Na2HAsO4. Resistance towards several antibiotics, viz amoxycillin, ampicillin, methicillin, azithromycin and cephradine (CV) was also observed. The mer operon possessed by most of the mercury-resistant bacteria was also found in this isolate. Atomic absorption spectroscopy revealed that the isolate can volatilize >90 % of inorganic mercury. It showed biofilm formation in the presence of 50 ppm HgCl2 and can produce exopolysaccharide under same conditions. The isolate was found to volatilize mercury efficiently under a wide range of environmental parameters, i.e. pH (7 to 8), temperature (25 °C to 40 °C) and salinity (5 to 25 ppt). merA gene expression has been confirmed by real-time reverse transcriptase PCR study. Fourier transform infrared study revealed that -SH and -COOH groups play a major role in the process of adaptation to Hg. Hence, this isolate B. thuringiensis PW-05 shows an interesting potential for bioremediation of mercury.

  18. Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish.

    PubMed

    Banerjee, Goutam; Nandi, Ankita; Ray, Arun Kumar

    2017-01-01

    In the present investigation, probiotic potential (antagonistic activity, enzyme production, hemolytic activity, biosafety, antibiotic sensitivity and bile tolerance level) of Bacillus subtilis LR1 was evaluated. Bacteriocin produced by the bacterial strain B. subtilis LR1 isolated from the gastrointestinal tract of Labeo rohita was purified and characterized. The molecular weight of the purified bacteriocin was ~50 kDa in 12 % Native PAGE and showed inhibitory activity against four fish pathogens such as Bacillus mycoides, Aeromonas salmonicida, Pseudomonas fluorescens and Aeromonas hydrophila. The purified bacteriocin was maximally active at temperature 40 °C and pH 7.0, while none of the tested surfactants affect the bacteriocin activity. Extracellular enzyme activity of the selected bacterial strain was also evaluated. Amylase activity was estimated to be highest (38.23 ± 1.15 µg of maltose liberated mg -1  protein ml -1 of culture filtrate) followed by cellulase and protease activity. The selected bacterium was sensitive to most of the antibiotics used in this experiment, can tolerate 0.25 % bile salt and non-hemolytic in nature. Finally, the efficiency of the proposed probiotic candidate was evaluated in in vivo condition. It was detected that the bacterial strain can effectively reduce bacterial pathogenicity in Indian major carps.

  19. Structural Analysis of a Putative Aminoglycoside N-Acetyltransferase from Bacillus anthracis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimecka, Maria M.; Chruszcz, Maksymilian; Font, Jose

    2012-02-15

    For the last decade, worldwide efforts for the treatment of anthrax infection have focused on developing effective vaccines. Patients that are already infected are still treated traditionally using different types of standard antimicrobial agents. The most popular are antibiotics such as tetracyclines and fluoroquinolones. While aminoglycosides appear to be less effective antimicrobial agents than other antibiotics, synthetic aminoglycosides have been shown to act as potent inhibitors of anthrax lethal factor and may have potential application as antitoxins. Here, we present a structural analysis of the BA2930 protein, a putative aminoglycoside acetyltransferase, which may be a component of the bacterium's aminoglycosidemore » resistance mechanism. The determined structures revealed details of a fold characteristic only for one other protein structure in the Protein Data Bank, namely, YokD from Bacillus subtilis. Both BA2930 and YokD are members of the Antibiotic-NAT superfamily (PF02522). Sequential and structural analyses showed that residues conserved throughout the Antibiotic-NAT superfamily are responsible for the binding of the cofactor acetyl coenzyme A. The interaction of BA2930 with cofactors was characterized by both crystallographic and binding studies.« less

  20. Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete.

    PubMed

    Wang, Jianyun; Jonkers, Henk M; Boon, Nico; De Belie, Nele

    2017-06-01

    The suitability of using a spore-forming ureolytic strain, Bacillus sphaericus, was evaluated for self-healing of concrete cracks. The main focus was on alkaline tolerance, calcium tolerance, oxygen dependence, and low-temperature adaptability. Experimental results show that B. sphaericus had a good tolerance. It can grow and germinate in a broad range of alkaline pH. The optimal pH range is 7 ∼ 9. High alkaline conditions (pH 10 ∼ 11) slow down but not stop the growth and germination. Oxygen was strictly needed during bacterial growth and germination, but not an essential factor during bacterial urea decomposition. B. sphaericus also had a good Ca tolerance, especially at a high bacterial concentration of 10 8  cells/mL; no significant influence was observed on bacterial ureolytic activity of the presence of 0.9M Ca 2+ . Furthermore, at a low temperature (10 °C), bacterial spores germinated and revived ureolytic activity with some retardation. However, this retardation can be counteracted by using a higher bacterial concentration and by supplementing yeast extract. It can be concluded that B. sphaericus is a suitable bacterium for application in bacteria-based self-healing concrete.

  1. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones.

    PubMed

    Kayumov, Airat R; Khakimullina, Elvina N; Sharafutdinov, Irshad S; Trizna, Elena Y; Latypova, Lilia Z; Thi Lien, Hoang; Margulis, Anna B; Bogachev, Mikhail I; Kurbangalieva, Almira R

    2015-05-01

    Gram-positive bacteria can cause various infections including hospital-acquired infections. While in the biofilm, the resistance of bacteria to both antibiotics and the human immune system is increased causing difficulties in the treatment. Bacillus subtilis, a non-pathogenic Gram-positive bacterium, is widely used as a model organism for studying biofilm formation. Here we investigated the effect of novel synthesized chloro- and bromo-containing 2(5H)-furanones on biofilm formation by B. subtilis. Mucobromic acid (3,4-dibromo-5-hydroxy-2(5H)-furanone) and the two derivatives of mucochloric acid (3,4-dichloro-5-hydroxy-2(5H)-furanone)-F8 and F12-were found to inhibit the growth and to efficiently prevent biofilm formation by B. subtilis. Along with the low production of polysaccharide matrix and repression of the eps operon, strong repression of biofilm-related yqxM also occurred in the presence of furanones. Therefore, our data confirm that furanones affect significantly the regulatory pathway(s) leading to biofilm formation. We propose that the global regulator, Spo0A, is one of the potential putative cellular targets for these compounds.

  2. Quantitative metabolomics of the thermophilic methylotroph Bacillus methanolicus.

    PubMed

    Carnicer, Marc; Vieira, Gilles; Brautaset, Trygve; Portais, Jean-Charles; Heux, Stephanie

    2016-06-01

    The gram-positive bacterium Bacillus methanolicus MGA3 is a promising candidate for methanol-based biotechnologies. Accurate determination of intracellular metabolites is crucial for engineering this bacteria into an efficient microbial cell factory. Due to the diversity of chemical and cell properties, an experimental protocol validated on B. methanolicus is needed. Here a systematic evaluation of different techniques for establishing a reliable basis for metabolome investigations is presented. Metabolome analysis was focused on metabolites closely linked with B. methanolicus central methanol metabolism. As an alternative to cold solvent based procedures, a solvent-free quenching strategy using stainless steel beads cooled to -20 °C was assessed. The precision, the consistency of the measurements, and the extent of metabolite leakage from quenched cells were evaluated in procedures with and without cell separation. The most accurate and reliable performance was provided by the method without cell separation, as significant metabolite leakage occurred in the procedures based on fast filtration. As a biological test case, the best protocol was used to assess the metabolome of B. methanolicus grown in chemostat on methanol at two different growth rates and its validity was demonstrated. The presented protocol is a first and helpful step towards developing reliable metabolomics data for thermophilic methylotroph B. methanolicus. This will definitely help for designing an efficient methylotrophic cell factory.

  3. Identification of an entomopathogenic bacterium, Serratia sp. ANU101, and its hemolytic activity.

    PubMed

    Kim, Yonggyun; Kim, Keunseob; Seo, Jiae; Shrestha, Sony; Kim, Hosanna H; Nalini, Madanagopal; Yi, Youngkeun

    2009-03-01

    Four different bacterial colonies were isolated from an old stock of an entomopathogenic nematode, Steinernema monticolum. They all showed entomopathogenicity to final instar larvae of beet armyworm, Spodoptera exigua, by hemocoelic injection. However, they varied in colony form, susceptibility to antibiotics, and postmortem change of the infected host insects. Biolog microbial identification and 16S rDNA sequence analyses indicate that these are four different species classified into different bacterial genera. owing to high entomopathogenicity and a cadaver color of infected insect host, Serratia sp. was selected as a main symbiotic bacterial species and analyzed for its pathogenicity. Although no virulence of Serratia sp. was detected at oral administration, the bacteria gave significant synergistic pathogenicity to fifth instar S. exigua when it was treated along with a spore-forming entomopathogenic bacterium, Bacillus thuringiensis. The synergistic effect was explained by an immunosuppressive effect of Serratia sp. by its high cytotoxic effect on hemocytes of S. exigua, because Serratia sp. caused septicemia of S. exigua when the bacterial cells were injected into S. exigua hemocoel. The cytotoxic factor(s) was present in the culture medium because the sterilized culture broth possessed high potency in the cytotoxicity, which was specific to granular cells and plasmatocytes, two main immune-associated hemocytes in insects.

  4. Photosynthetic inhibition and oxidative stress to the toxic Phaeocystis globosa caused by a diketopiperazine isolated from products of algicidal bacterium metabolism.

    PubMed

    Tan, Shuo; Hu, Xiaoli; Yin, Pinghe; Zhao, Ling

    2016-05-01

    Algicidal bacteria have been turned out to be available for inhibiting Phaeocystis globosa which frequently caused harmful algal blooms and threatened to economic development and ecological balance. A marine bacterium Bacillus sp. Ts-12 exhibited significant algicidal activity against P. globosa by indirect attack. In present study, an algicidal compound was isolated by silica gel column, Sephadex G-15 column and HPLC, further identified as hexahydropyrrolo[1,2-a]pyrazine-1,4-dione, cyclo-(Pro-Gly), by GC-MS and (1)H-NMR. Cyclo-(Pro-Gly) significantly increased the level of reactive oxygen species (ROS) within P. globosa cells, further activating the enzymatic and non-enzymatic antioxidant systems, including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and ascorbic acid (AsA). The increase in methane dicarboxylic aldehyde (MDA) content showed that the surplus ROS induced lipid peroxidation on membrane system. Transmission electron microscope (TEM) and flow cytometry (FCM) analysis revealed that cyclo-(Pro-Gly) caused reduction of Chl-a content, destruction of cell membrane integrity, chloroplasts and nuclear structure. Real-time PCR assay showed that the transcriptions of photosynthesis related genes (psbA, psbD, rbcL) were significantly inhibited. This study indicated that cyclo-(Pro-Gly) from marine Bacillus sp. Ts-12 exerted photosynthetic inhibition and oxidative stress to P. globosa and eventually led to the algal cells lysis. This algicidal compound might be potential bio-agent for controlling P. globosa red tide.

  5. Enhanced production and purification of recombinant surface array protein (Sap) for use in detection of Bacillus anthracis.

    PubMed

    Puranik, Nidhi; Tripathi, N K; Pal, V; Goel, Ajay Kumar

    2018-05-01

    Surface array protein (Sap) can be an important biomarker for specific detection of Bacillus anthracis , which is released by the bacterium during its growth in culture broth. In the present work, we have cloned and expressed Sap in Escherichia coli . The culture conditions and cultivation media were optimized and used in batch fermentation process for scale up of Sap in soluble form. The recombinant Sap was purified employing affinity chromatography followed by diafiltration. The final yield of purified protein was 20 and 46 mg/l of culture during shake flasks and batch fermentation, respectively. The protein purity and its reactivity were confirmed employing SDS-PAGE and Western blot, respectively. The antibodies raised against purified Sap were evaluated by Western blotting for detection of Sap released by B. anthracis . Our results showed that the Sap could be a novel marker for detection and confirmation of B. anthracis .

  6. Morphological characterization of several strains of the rice-pathogenic bacterium Burkholderia glumae in North Sumatra

    NASA Astrophysics Data System (ADS)

    Hasibuan, M.; Safni, I.; Lisnawita; Lubis, K.

    2018-02-01

    Burkholderia glumae is a quarantine seed-borne bacterial pathogen causing panicle blight disease on rice. This pathogen has been detected in some locations in Java, and recently, farmers in North Sumatra have reported rice yield loss with symptoms similar with those on rice infeced by the rice-pathogenic bacterium B. glumae. This research was aimed to isolate several bacterial strains from several rice varieties in various locations in North Sumatra and characterize the morphology of the strains to detect and identify the unknown bacterial strains presumably B. glumae. Several rice seed varieties were collected from Medan and Deli Serdang Districts. The seed samples were extracted, isolated and purified, then grown in semi-selective media PPGA. The morphological characteristics of the bacterial strains were determined including Gram staining, bacterial colony’s and bacterial cell’s morphology. The results showed that of eleven strains isolated, two strains were Gram negative and nine strains were Gram positive. On the basis of colony morphology, all strains had circular form, flat elevation and cream colour while the colony margin varied, i.e. entire and undulate. Most strains had bacillus/rod shape (8 strains) and only 3 strains were coccus.

  7. Bacillus thaonhiensis sp. nov., a new species, was isolated from the forest soil of Kyonggi University by using a modified culture method.

    PubMed

    Van Pham, H T; Kim, Jaisoo

    2014-01-01

    Using a new culture method for unculturable soil bacteria, we discovered a novel species, NHI-38(T), from the forest soil of Kyonggi University campus, South Korea. It was a Gram-positive, rod-shaped, and endospore-forming bacterial strain. It grew over a wide pH range (6.5-9.5), with an optimum range of pH 7-9, and in a wide range of temperatures (15-60 °C), with an optimum range of 35-45 °C. Growth was possible at 0-2 % NaCl concentration, and the optimal range was between 0.5 and 1.5 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that this new species clustered within the genus Bacillus; it was closely related to "Bacillus abyssalis" SCSIO 15042(T) (98.86 %), B. methanolicus NCIMB 13113(T) (95.97 %), B. vietnamensis 15-1(T) (95.8 %), B. seohaeanensis BH724(T) (95.5 %), B. timonensis MM10403188(T) (95.33 %), and B. subtilis subsp. subtilis NCIB 3610(T) (94.87 %). The main fatty acid components of this bacterium were iso-C15:0 (35.92 %), summed feature 3 (C16:1ω7c/C16:1ω6c; 16.92 %), and anteiso-C15:0 (14.19 %). The predominant quinone in this bacterial strain was MK-7. The polar lipid profile primarily comprised phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The genomic DNA G+C composition of the isolate was 40.7 mol%. The DNA-DNA hybridization results indicated that this strain was distinct from other Bacillus species, the degree of similarity being 50 % with "B. abyssalis", 56 % with B. methanolicus, 47 % with B. vietnamensis, 43 % with B. seohaeanensis, 46 % with B. timonensis, and 32 % with B. subtilis. Based on our results, we regard strain NHI-38(T) as a novel member of the Bacillus genus, and we propose the name Bacillus thaonhiensis (=KACC 17216(T) = KEMB 9005-019(T) = JCM 18863(T)).

  8. l-lysine production by Bacillus methanolicus: Genome-based mutational analysis and l-lysine secretion engineering.

    PubMed

    Nærdal, Ingemar; Netzer, Roman; Irla, Marta; Krog, Anne; Heggeset, Tonje Marita Bjerkan; Wendisch, Volker F; Brautaset, Trygve

    2017-02-20

    Bacillus methanolicus is a methylotrophic bacterium with an increasing interest in academic research and for biotechnological applications. This bacterium was previously applied for methanol-based production of l-glutamate, l-lysine and the five-carbon diamine cadaverine by wild type, classical mutant and recombinant strains. The genomes of two different l-lysine secreting B. methanolicus classical mutant strains, NOA2#13A52-8A66 and M168-20, were sequenced. We focused on mutational mapping in genes present in l-lysine and other relevant amino acid biosynthetic pathways, as well as in the primary cell metabolism important for precursor supply. In addition to mutations in the aspartate pathway genes dapG, lysA and hom-1, new mutational target genes like alr, proA, proB1, leuC, odhA and pdhD were identified. Surprisingly, no mutations were found in the putative l-lysine transporter gene lysE MGA3 . Inspection of the wild type B. methanolicus strain PB1 genome sequence identified two homologous putative l-lysine transporter genes, lysE PB1 and lysE2 PB1 . The biological role of these putative l-lysine transporter genes, together with the heterologous l-lysine exporter gene lysE Cg from Corynebacterium glutamicum, were therefore investigated. Our results demonstrated that the titer of secreted l-lysine in B. methanolicus was significantly increased by overexpression of lysE Cg while overexpression of lysE MGA3 , lysE PB1 and lysE2 PB1 had no measurable effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Production and Characterization of Organic Solvent-Tolerant Cellulase from Bacillus amyloliquefaciens AK9 Isolated from Hot Spring.

    PubMed

    Irfan, Muhammad; Tayyab, Ammara; Hasan, Fariha; Khan, Samiullah; Badshah, Malik; Shah, Aamer Ali

    2017-08-01

    A cellulase-producing bacterium, designated as strain AK9, was isolated from a hot spring of Tatta Pani, Azad Kashmir, Pakistan. The bacterium was identified as Bacillus amyloliquefaciens through 16S rRNA sequencing. Cellulase from strain AK9 was able to liberate glucose from soluble cellulose and carboxymethyl cellulose (CMC). Enzyme was purified through size exclusion chromatography and a single band of ∼47 kDa was observed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was purified with recovery of 35.5%, 3.6-fold purity with specific activity of 31 U mg -1 . The purified cellulase retained its activity over a wide range of temperature (50-70 °C) and pH (3-7) with maximum stability at 60 °C and pH 5.0. The activity inhibited by ethylenediaminetetraacetic acid (EDTA), suggested that it was metalloenzyme. Diethyl pyrocarbonate (DEPC) and β-mercaptoethanol significantly inhibited cellulase activity that revealed the essentiality of histidine residues and disulfide bonds for its catalytic function. It was stable in non-ionic surfactants, in the presence of various metal ions, and in water-insoluble organic solvents. Approximately 9.1% of reducing sugar was released after enzymatic saccharification of DAP-pretreated agro-residue, compared to a very low percentage by autohydrolysis treatment. Hence, it is concluded that cellulase from B. amyloliquefaciens AK9 can potentially be used in bioconversion of lignocellulosic biomass to fermentable sugars.

  10. Bacillus thuringiensis Is an Environmental Pathogen and Host-Specificity Has Developed as an Adaptation to Human-Generated Ecological Niches

    PubMed Central

    Argôlo-Filho, Ronaldo Costa; Loguercio, Leandro Lopes

    2013-01-01

    Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt’s pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains. PMID:26462580

  11. Steroid conversion with CYP106A2 – production of pharmaceutically interesting DHEA metabolites

    PubMed Central

    2014-01-01

    Background Steroids are lipophilic compounds with a gonane skeleton and play an important role in higher organisms. Due to different functionalizations - mainly hydroxylations - at the steroid molecule, they vary highly in their mode of action. The pharmaceutical industry is, therefore, interested in hydroxysteroids as therapeutic agents. The insertion of hydroxyl groups into a steroid core, however, is hardly accomplishable by classical chemical means; that is because microbial steroid hydroxylations are investigated and applied since decades. CYP106A2 is a cytochrome P450 monooxygenase from Bacillus megaterium ATCC 13368, which was first described in the late 1970s and which is capable to hydroxylate a variety of 3-oxo-delta4 steroids at position 15beta. CYP106A2 is a soluble protein, easy to express and to purify in high amounts, which makes this enzyme an interesting target for biotechnological purposes. Results In this work a focused steroid library was screened in vitro for new CYP106A2 substrates using a reconstituted enzyme assay. Five new substrates were identified, including dehydroepiandrosterone and pregnenolone. NMR-spectroscopy revealed that both steroids are mainly hydroxylated at position 7beta. In order to establish a biotechnological system for the preparative scale production of 7beta-hydroxylated dehydroepiandrosterone, whole-cell conversions with growing and resting cells of B. megaterium ATCC1336 the native host of CYP1062 and also with resting cells of a recombinant B. megaterium MS941 strain overexpressing CYP106A2 have been conducted and conversion rates of 400 muM/h (115 mg/l/h) were obtained. Using the B. megaterium MS941 overexpression strain, the selectivity of the reaction was improved from 0.7 to 0.9 for 7beta-OH-DHEA. Conclusions In this work we describe CYP106A2 for the first time as a regio-selective hydroxylase for 3-hydroxy-delta5 steroids. DHEA was shown to be converted to 7beta-OH-DHEA which is a highly interesting human

  12. Steroid conversion with CYP106A2 - production of pharmaceutically interesting DHEA metabolites.

    PubMed

    Schmitz, Daniela; Zapp, Josef; Bernhardt, Rita

    2014-06-05

    Steroids are lipophilic compounds with a gonane skeleton and play an important role in higher organisms. Due to different functionalizations - mainly hydroxylations - at the steroid molecule, they vary highly in their mode of action. The pharmaceutical industry is, therefore, interested in hydroxysteroids as therapeutic agents. The insertion of hydroxyl groups into a steroid core, however, is hardly accomplishable by classical chemical means; that is because microbial steroid hydroxylations are investigated and applied since decades. CYP106A2 is a cytochrome P450 monooxygenase from Bacillus megaterium ATCC 13368, which was first described in the late 1970s and which is capable to hydroxylate a variety of 3-oxo-delta4 steroids at position 15beta. CYP106A2 is a soluble protein, easy to express and to purify in high amounts, which makes this enzyme an interesting target for biotechnological purposes. In this work a focused steroid library was screened in vitro for new CYP106A2 substrates using a reconstituted enzyme assay. Five new substrates were identified, including dehydroepiandrosterone and pregnenolone. NMR-spectroscopy revealed that both steroids are mainly hydroxylated at position 7beta. In order to establish a biotechnological system for the preparative scale production of 7beta-hydroxylated dehydroepiandrosterone, whole-cell conversions with growing and resting cells of B. megaterium ATCC1336 the native host of CYP1062 and also with resting cells of a recombinant B. megaterium MS941 strain overexpressing CYP106A2 have been conducted and conversion rates of 400 muM/h (115 mg/l/h) were obtained. Using the B. megaterium MS941 overexpression strain, the selectivity of the reaction was improved from 0.7 to 0.9 for 7beta-OH-DHEA. In this work we describe CYP106A2 for the first time as a regio-selective hydroxylase for 3-hydroxy-delta5 steroids. DHEA was shown to be converted to 7beta-OH-DHEA which is a highly interesting human metabolite, supposed to act as

  13. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model

    PubMed Central

    Haldar, Lopamudra; Gandhi, D. N.

    2016-01-01

    Aim: To investigate the effect of oral administration of two Bacillus strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. Materials and Methods: An in vivo experiment was conducted for 49-day period on 36 adult male albino Wister rats divided equally into to four groups. After 7-day adaptation period, one group (T1) was fed on sterile skim milk along with basal diet for the next 28 days. Second (T2) and (T3) groups received spore biomass of Bacillus coagulans B37 and Bacillus pumilus B9, respectively, suspended in sterilized skim milk at 8-9 log colony-forming units/ml plus basal diet for 28 days, while control group (T4) was supplied with clean water along with basal diet. There was a 14-day post-treatment period. A total of 288 fecal samples (8 fecal collections per rat) were collected at every 7-day interval starting from 0 to 49 days and subjected to the enumeration of the counts of coliforms and lactobacilli and Bacillus spores using respective agar media. In vitro acid and bile tolerance tests on both the strains were performed. Results: The rats those (T2 and T3) received either B. coagulans B37 or B. pumilus B9 spore along with non-fermented skim milk showed decrease (p<0.01) in fecal coliform counts and increase (p<0.05) in both fecal lactobacilli and Bacillus spore counts as compared to the control group (T4) and the group fed only skim milk (T1). In vitro study indicated that both the strains were found to survive at pH 2.0 and 3.0 even up to 3 h and tolerate bile up to 2.0% concentration even after 12 h of exposure. Conclusions: This study revealed that oral administration of either B. coagulans B37 or B. pumilus B9 strains might be useful in reducing coliform counts accompanied by concurrent increase in lactobacilli counts in the intestinal flora in rats. PMID:27536040

  14. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model.

    PubMed

    Haldar, Lopamudra; Gandhi, D N

    2016-07-01

    To investigate the effect of oral administration of two Bacillus strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. An in vivo experiment was conducted for 49-day period on 36 adult male albino Wister rats divided equally into to four groups. After 7-day adaptation period, one group (T1) was fed on sterile skim milk along with basal diet for the next 28 days. Second (T2) and (T3) groups received spore biomass of Bacillus coagulans B37 and Bacillus pumilus B9, respectively, suspended in sterilized skim milk at 8-9 log colony-forming units/ml plus basal diet for 28 days, while control group (T4) was supplied with clean water along with basal diet. There was a 14-day post-treatment period. A total of 288 fecal samples (8 fecal collections per rat) were collected at every 7-day interval starting from 0 to 49 days and subjected to the enumeration of the counts of coliforms and lactobacilli and Bacillus spores using respective agar media. In vitro acid and bile tolerance tests on both the strains were performed. The rats those (T2 and T3) received either B. coagulans B37 or B. pumilus B9 spore along with non-fermented skim milk showed decrease (p<0.01) in fecal coliform counts and increase (p<0.05) in both fecal lactobacilli and Bacillus spore counts as compared to the control group (T4) and the group fed only skim milk (T1). In vitro study indicated that both the strains were found to survive at pH 2.0 and 3.0 even up to 3 h and tolerate bile up to 2.0% concentration even after 12 h of exposure. This study revealed that oral administration of either B. coagulans B37 or B. pumilus B9 strains might be useful in reducing coliform counts accompanied by concurrent increase in lactobacilli counts in the intestinal flora in rats.

  15. Oxidation of Ethylene Glycol by a Salt-Requiring Bacterium

    PubMed Central

    Caskey, William H.; Taber, Willard A.

    1981-01-01

    Bacterium T-52, cultured on ethylene glycol, readily oxidized glycolate and glyoxylate and exhibited elevated activities of ethylene glycol dehydrogenase and glycolate oxidase. Labeled glyoxylate was identified in reaction mixtures containing [14C]-ethylene glycol, but no glycolate was detected. The most likely pathway of ethylene glycol catabolism by bacterium T-52 is sequential oxidation to glycolate and glyoxylate. PMID:16345810

  16. Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059.

    PubMed

    Białkowska, Aneta M; Gromek, Ewa; Krysiak, Joanna; Sikora, Barbara; Kalinowska, Halina; Jędrzejczak-Krzepkowska, Marzena; Kubik, Celina; Lang, Siegmund; Schütt, Fokko; Turkiewicz, Marianna

    2015-12-01

    2,3-Butanediol (2,3-BD) synthesis by a nonpathogenic bacterium Bacillus licheniformis NCIMB 8059 from enzymatic hydrolysate of depectinized apple pomace and its blend with glucose was studied. In shake flasks, the maximum diol concentration in fed-batch fermentations was 113 g/L (in 163 h, from the hydrolysate, feedings with glucose) while in batch processes it was around 27 g/L (in 32 h, from the hydrolysate and glucose blend). Fed-batch fermentations in the 0.75 and 30 L fermenters yielded 87.71 g/L 2,3-BD in 160 h, and 72.39 g/L 2,3-BD in 94 h, respectively (from the hydrolysate and glucose blend, feedings with glucose). The hydrolysate of apple pomace, which was for the first time used for microbial 2,3-BD production is not only a source of sugars but also essential minerals.

  17. Lessons learnt from a birthday party: a Bacillus cereus outbreak, Bari, Italy, January 2012.

    PubMed

    Martinelli, Domenico; Fortunato, Francesca; Tafuri, Silvio; Cozza, Vanessa; Chironna, Maria; Germinario, Cinzia; Pedalino, Biagio; Prato, Rosa

    2013-01-01

    Bacillus cereus, a ubiquitous bacterium, can be isolated in various starchy food items, causing both emetic and diarrhoeal disease. The real burden of B. cereus outbreaks is actually poorly known in Italy. We report a B. cereus foodborne outbreak that occurred in a pub in Bari (Italy) on January 22nd 2012 during a birthday party, promptly reported by the pub owner. Between January 22nd and 24th 2012, we performed a retrospective cohort study among the guests of the party to identify risk factors associated with illness. Leftovers of different meals were available for microbiological analysis. Faecal specimens were collected from cases. A total of 12 cases among the 13 customers (attack rate: 92%) were reported. All cases had consumed basmati rice and sweet and sour vegetables (aetiological fraction: 100%). B. cereus was isolated from both basmati rice served during the party and faecal specimens. The close collaboration between the pub owner and the public health officers and the possibility to test food leftovers and stool samples contributed to prevent further cases.

  18. Impact of Serine/Threonine Protein Kinases on the Regulation of Sporulation in Bacillus subtilis.

    PubMed

    Pompeo, Frédérique; Foulquier, Elodie; Galinier, Anne

    2016-01-01

    Bacteria possess many kinases that catalyze phosphorylation of proteins on diverse amino acids including arginine, cysteine, histidine, aspartate, serine, threonine, and tyrosine. These protein kinases regulate different physiological processes in response to environmental modifications. For example, in response to nutritional stresses, the Gram-positive bacterium Bacillus subtilis can differentiate into an endospore; the initiation of sporulation is controlled by the master regulator Spo0A, which is activated by phosphorylation. Spo0A phosphorylation is carried out by a multi-component phosphorelay system. These phosphorylation events on histidine and aspartate residues are labile, highly dynamic and permit a temporal control of the sporulation initiation decision. More recently, another kind of phosphorylation, more stable yet still dynamic, on serine or threonine residues, was proposed to play a role in spore maintenance and spore revival. Kinases that perform these phosphorylation events mainly belong to the Hanks family and could regulate spore dormancy and spore germination. The aim of this mini review is to focus on the regulation of sporulation in B. subtilis by these serine and threonine phosphorylation events and the kinases catalyzing them.

  19. Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements.

    PubMed

    Kelwick, Richard; Webb, Alexander J; MacDonald, James T; Freemont, Paul S

    2016-11-01

    Cell-free transcription-translation systems were originally applied towards in vitro protein production. More recently, synthetic biology is enabling these systems to be used within a systematic design context for prototyping DNA regulatory elements, genetic logic circuits and biosynthetic pathways. The Gram-positive soil bacterium, Bacillus subtilis, is an established model organism of industrial importance. To this end, we developed several B. subtilis-based cell-free systems. Our improved B. subtilis WB800N-based system was capable of producing 0.8µM GFP, which gave a ~72x fold-improvement when compared with a B. subtilis 168 cell-free system. Our improved system was applied towards the prototyping of a B. subtilis promoter library in which we engineered several promoters, derived from the wild-type P grac (σA) promoter, that display a range of comparable in vitro and in vivo transcriptional activities. Additionally, we demonstrate the cell-free characterisation of an inducible expression system, and the activity of a model enzyme - renilla luciferase. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The actin-like MreB proteins in Bacillus subtilis: a new turn.

    PubMed

    Chastanet, Arnaud; Carballido-Lopez, Rut

    2012-06-01

    A decade ago, two breakthrough descriptions were reported: 1) the first helix-like protein localization pattern of MreB and its paralog Mbl in Bacillus subtilis and 2) the crystal structure of Thermotoga maritima MreB1, which was remarkably similar to that of actin. These discoveries strongly stimulated the field of bacterial development, leading to the identification of many new cytoskeletal proteins (1) and the publication of many studies describing the helical patterns of protein, DNA and even lipid domains. However, today, new breakthroughs are shaking up what had become a dogma. Instead of helical structures, MreBs appear to form discrete patches that move circumferentially around the cell, questioning the idea of MreB cables forming an actin-like cytoskeleton. Furthermore, increasing evidence of biochemical properties that are unlike the properties of actin suggest that the molecular behavior of MreB proteins may be different. The aim of this review is to summarize the current knowledge of the so-called "actin-like" MreB cytoskeleton through a discussion of the model Gram-positive bacterium B. subtilis and the most recent findings in this rapidly evolving research field.

  1. Iron regulates expression of Bacillus cereus hemolysin II via global regulator Fur.

    PubMed

    Sineva, Elena; Shadrin, Andrey; Rodikova, Ekaterina A; Andreeva-Kovalevskaya, Zhanna I; Protsenko, Alexey S; Mayorov, Sergey G; Galaktionova, Darya Yu; Magelky, Erica; Solonin, Alexander S

    2012-07-01

    The capacity of pathogens to respond to environmental signals, such as iron concentration, is key to bacterial survival and establishment of a successful infection. Bacillus cereus is a widely distributed bacterium with distinct pathogenic properties. Hemolysin II (HlyII) is one of its pore-forming cytotoxins and has been shown to be involved in bacterial pathogenicity in a number of cell and animal models. Unlike many other B. cereus pathogenicity factors, HlyII is not regulated by pleiotropic transcriptional regulator PlcR but is controlled by its own regulator, HlyIIR. Using a combination of in vivo and in vitro techniques, we show that hlyII expression is also negatively regulated by iron by the global regulator Fur via direct interaction with the hlyII promoter. DNase I footprinting and in vitro transcription experiments indicate that Fur prevents RNA polymerase binding to the hlyII promoter. HlyII expression profiles demonstrate that both HlyIIR and Fur regulate HlyII expression in a concerted fashion, with the effect of Fur being maximal in the early stages of bacterial growth. In sum, these results show that Fur serves as a transcriptional repressor for hlyII expression.

  2. [Screening and antibacterial function of Bacillus amyloliquefaciens X030].

    PubMed

    He, Hao; Zhu, Yingling; Chi, Liqing; Zhao, Zizhao; Wang, Ting; Zuo, Mingxing; Zhang, Tong; Zhou, Fengjuan; Xia, Liqiu; Ding, Xuezhi

    2015-09-04

    We isolated 339 bacillus strains from 72 soil samples all over the country, then purified their antimicrobial compounds and studied the antibacterial activity, to enrich bacillus resources and explore their second metabolites. A bacillus strain with strong antibacterial activity was selected by dilution plate and water bath heating from a soil sample from a peanut plantation in Henan Province; this strain was identified according to morphological observation, physiological and biochemical characteristics, and consequences of 16S rRNA homologous analysis. Antibacterial compound from the identified strain, Bacillus amyloliquefaciens X030, was separated and purified by acetone precipitation, Sephadex chromatography, C18 reverse phase column chromatography. Its molecular weight was analyzed by LC-MS/MS. The antibacterial activity was characterized by disc diffusion and plate two-way cultivation. Bacillus amyloliquefaciens was isolated that not only has antibacterial activity against Staphylococcus aureus, Candida albican and Saccharomycetes; but also against Pyriculariaoryzae, Chili pointed cell anthrax, Gloeosporium eriobotryae speg and Phytophthora parasitica. The compound was confirmed as polypeptide. Bacillus amyloliquefaciens X030 can produce a polypeptide that inhibits pathogenic bacteria and plant pathogenic fungi.

  3. Matrix Assisted Laser Desorption Ionization Mass Spectrometric Analysis of Bacillus anthracis: From Fingerprint Analysis of the Bacterium to Quantification of its Toxins in Clinical Samples

    NASA Astrophysics Data System (ADS)

    Woolfitt, Adrian R.; Boyer, Anne E.; Quinn, Conrad P.; Hoffmaster, Alex R.; Kozel, Thomas R.; de, Barun K.; Gallegos, Maribel; Moura, Hercules; Pirkle, James L.; Barr, John R.

    A range of mass spectrometry-based techniques have been used to identify, characterize and differentiate Bacillus anthracis, both in culture for forensic applications and for diagnosis during infection. This range of techniques could usefully be considered to exist as a continuum, based on the degrees of specificity involved. We show two examples here, a whole-organism fingerprinting method and a high-specificity assay for one unique protein, anthrax lethal factor.

  4. Expression of Bacillus protease (Protease BYA) from Bacillus sp. Y in Bacillus subtilis and enhancement of its specific activity by site-directed mutagenesis-improvement in productivity of detergent enzyme-.

    PubMed

    Tobe, Seiichi; Shimogaki, Hisao; Ohdera, Motoyasu; Asai, Yoshio; Oba, Kenkichi; Iwama, Masanori; Irie, Masachika

    2006-01-01

    An attempt was made to express protease BYA produced by an alkalophilic Bacillus sp. Y in Bacillus subtilis by gene engineering methods. The gene encoding protease BYA was cloned from Bacillus sp. Y, and expression vector pTA71 was constructed from the amylase promoter of Bacillus licheniformis, DNA fragments encoding the open reading frame of protease BYA, and pUB110. Protease BYA was secreted at an activity level of 5100 APU/ml in the common industrial culture medium of Bacillus subtilis transformed with pTA71. We then attempted to increase the specific activity of protease BYA by site-directed mutagenesis. Amino acid residue Ala29 next to catalytic Asp30 was replaced by one of three uncharged amino acid residues (Val29, Leu29, Ile29), and each mutant enzyme was expressed and isolated from the culture medium. Val29 mutant enzyme was secreted at an activity level of greater than 7000 APU/ml in culture medium, and its specific activity was 1.5-fold higher than that of the wild-type enzyme. Other mutant enzymes had specific activity similar to that of the original one and were less stabile than the wild-type enzyme. It can be thought that the substitution at amino acid residue 29 affects the level of activity and stability of protease BYA.

  5. Transport of Bacillus thuringiensis var. kurstaki from an outdoor release into buildings: pathways of infiltration and a rapid method to identify contaminated buildings.

    PubMed

    Van Cuyk, Sheila; Deshpande, Alina; Hollander, Attelia; Franco, David O; Teclemariam, Nerayo P; Layshock, Julie A; Ticknor, Lawrence O; Brown, Michael J; Omberg, Kristin M

    2012-06-01

    Understanding the fate and transport of biological agents into buildings will be critical to recovery and restoration efforts after a biological attack in an urban area. As part of the Interagency Biological Restoration Demonstration (IBRD), experiments were conducted in Fairfax County, VA, to study whether a biological agent can be expected to infiltrate into buildings following a wide-area release. Bacillus thuringiensis var. kurstaki is a common organic pesticide that has been sprayed in Fairfax County for a number of years to control the gypsy moth. Because the bacterium shares many physical and biological properties with Bacillus anthracis, the results from these studies can be extrapolated to a bioterrorist release. In 2009, samples were collected from inside buildings located immediately adjacent to a spray block. A combined probabilistic and targeted sampling strategy and modeling were conducted to provide insight into likely methods of infiltration. Both the simulations and the experimental results indicate sampling entryways and heating, ventilation, and air conditioning (HVAC) filters are reasonable methods for "ruling in" a building as contaminated. Following a biological attack, this method is likely to provide significant savings in time and labor compared to more rigorous, statistically based characterization. However, this method should never be used to "rule out," or clear, a building.

  6. Potential of Bacillus spp produces siderophores insuppressing thewilt disease of banana plants

    NASA Astrophysics Data System (ADS)

    Kesaulya, H.; Hasinu, J. V.; Tuhumury, G. NC

    2018-01-01

    In nature, different types of siderophore such as hydroxymate, catecholets and carboxylate, are produced by different bacteria. Bacillus spp were isolated from potato rhizospheric soil can produce siderophore of both catecholets and salicylate type with different concentrations. Various strains of Bacillus spp were tested for pathogen inhibition capability in a dual culture manner. The test results showed the ability of inhibition of pathogen isolated from banana wilt disease. From the result tested were found Bacillus niabensis Strain PT-32-1, Bacillus subtilis Strain SWI16b, Bacillus subtilis Strain HPC21, Bacillus mojavensis Strain JCEN3, and Bacillus subtilis Strain HPC24 showed different capabilities in suppressing pathogen.

  7. Alcoholytic Cleavage of Polyhydroxyalkanoate Chains by Class IV Synthases Induced by Endogenous and Exogenous Ethanol

    PubMed Central

    Hyakutake, Manami; Tomizawa, Satoshi; Mizuno, Kouhei; Abe, Hideki

    2014-01-01

    Polyhydroxyalkanoate (PHA)-producing Bacillus strains express class IV PHA synthase, which is composed of the subunits PhaR and PhaC. Recombinant Escherichia coli expressing PHA synthase from Bacillus cereus strain YB-4 (PhaRCYB-4) showed an unusual reduction of the molecular weight of PHA produced during the stationary phase of growth. Nuclear magnetic resonance analysis of the low-molecular-weight PHA revealed that its carboxy end structure was capped by ethanol, suggesting that the molecular weight reduction was the result of alcoholytic cleavage of PHA chains by PhaRCYB-4 induced by endogenous ethanol. This scission reaction was also induced by exogenous ethanol in both in vivo and in vitro assays. In addition, PhaRCYB-4 was observed to have alcoholysis activity for PHA chains synthesized by other synthases. The PHA synthase from Bacillus megaterium (PhaRCBm) from another subgroup of class IV synthases was also assayed and was shown to have weak alcoholysis activity for PHA chains. These results suggest that class IV synthases may commonly share alcoholysis activity as an inherent feature. PMID:24334666

  8. In Vitro Anti-Oxidant and Anti-Microbial Potentiality Investigation of Different Fractions of Caryota urens Leaves

    PubMed Central

    Azam, Shofiul; Mahmud, Md. Kayes; Naquib, Md. Hamza; Hossain, Saad Mosharraf; Alam, Mohammad Nazmul; Uddin, Md. Josim; Sajid, Irfan; Hossain, Muhammad Sazzad; Karim, Md. Salimul; Hasan, Md. Ali

    2016-01-01

    Background: Caryota urens is a member of the Arecaceae family and a common plant in the Southeast Asian region. This plant has been reported as an anti-microbial agent in recent years. Thus, we aimed to find out the MIC (minimum inhibitory concentration) against different pathogenic microorganism. Methods: The leaves of C. urens were extracted and fractioned using different reagents (chloroform, n-hexane and carbon tetrachloride). Disc diffusion method was implemented for the assessment of in vitro anti-microbial potency (500 and 250 µg/disc). Result: The entire fraction showed good effect (with the zone of inhibition 19–25 mm) against both gram positive (Bacillus subtilis, Bacillus megaterium, Bacillus cereus, Sarina lutea) and gram negative (Vibrio mimicus, Shigella boydii, Escherichia coli, Pseudomonas aeruginosa) bacterial pathogens and fungal strains (Aspergillus niger, Saccharomyces cerevisiae). The plants also possess effective free radical scavenging potency with an IC50 of 130.32 µg/mL. Conclusion: This finding reflects a link between the presence of anti-oxidative material and a substantial anti-microbial activity, and substantiates all previous claims against C. urens. PMID:28536384

  9. In Vitro Anti-Oxidant and Anti-Microbial Potentiality Investigation of Different Fractions of Caryota urens Leaves.

    PubMed

    Azam, Shofiul; Mahmud, Md Kayes; Naquib, Md Hamza; Hossain, Saad Mosharraf; Alam, Mohammad Nazmul; Uddin, Md Josim; Sajid, Irfan; Hossain, Muhammad Sazzad; Karim, Md Salimul; Hasan, Md Ali

    2016-07-27

    Caryota urens is a member of the Arecaceae family and a common plant in the Southeast Asian region. This plant has been reported as an anti-microbial agent in recent years. Thus, we aimed to find out the MIC (minimum inhibitory concentration) against different pathogenic microorganism. The leaves of C. urens were extracted and fractioned using different reagents (chloroform, n -hexane and carbon tetrachloride). Disc diffusion method was implemented for the assessment of in vitro anti-microbial potency (500 and 250 µg/disc). The entire fraction showed good effect (with the zone of inhibition 19-25 mm) against both gram positive ( Bacillus subtilis , Bacillus megaterium , Bacillus cereus , Sarina lutea ) and gram negative ( Vibrio mimicus , Shigella boydii , Escherichia coli , Pseudomonas aeruginosa ) bacterial pathogens and fungal strains ( Aspergillus niger , Saccharomyces cerevisiae ). The plants also possess effective free radical scavenging potency with an IC 50 of 130.32 µg/mL. This finding reflects a link between the presence of anti-oxidative material and a substantial anti-microbial activity, and substantiates all previous claims against C. urens .

  10. Bottleneck in secretion of α-amylase in Bacillus subtilis.

    PubMed

    Yan, Shaomin; Wu, Guang

    2017-07-19

    Amylase plays an important role in biotechnology industries, and Gram-positive bacterium Bacillus subtilis is a major host to produce heterogeneous α-amylases. However, the secretion stress limits the high yield of α-amylase in B. subtilis although huge efforts have been made to address this secretion bottleneck. In this question-oriented review, every effort is made to answer the following questions, which look simple but are long-standing, through reviewing of literature: (1) Does α-amylase need a specific and dedicated chaperone? (2) What signal sequence does CsaA recognize? (3) Does CsaA require ATP for its operation? (4) Does an unfolded α-amylase is less soluble than a folded one? (5) Does α-amylase aggregate before transporting through Sec secretion system? (6) Is α-amylase sufficient stable to prevent itself from misfolding? (7) Does α-amylase need more disulfide bonds to be stabilized? (8) Which secretion system does PrsA pass through? (9) Is PrsA ATP-dependent? (10) Is PrsA reused after folding of α-amylase? (11) What is the fate of PrsA? (12) Is trigger factor (TF) ATP-dependent? The literature review suggests that not only the most of those questions are still open to answers but also it is necessary to calculate ATP budget in order to better understand how B. subtilis uses its energy for production and secretion.

  11. Identification of Isopentenol Biosynthetic Genes from Bacillus subtilis by a Screening Method Based on Isoprenoid Precursor Toxicity▿

    PubMed Central

    Withers, Sydnor T.; Gottlieb, Shayin S.; Lieu, Bonny; Newman, Jack D.; Keasling, Jay D.

    2007-01-01

    We have developed a novel method to clone terpene synthase genes. This method relies on the inherent toxicity of the prenyl diphosphate precursors to terpenes, which resulted in a reduced-growth phenotype. When these precursors were consumed by a terpene synthase, normal growth was restored. We have demonstrated that this method is capable of enriching a population of engineered Escherichia coli for those clones that express the sesquiterpene-producing amorphadiene synthase. In addition, we enriched a library of genomic DNA from the isoprene-producing bacterium Bacillus subtilis strain 6051 in E. coli engineered to produce elevated levels of isopentenyl diphosphate and dimethylallyl diphosphate. The selection resulted in the discovery of two genes (yhfR and nudF) whose protein products acted directly on the prenyl diphosphate precursors and produced isopentenol. Expression of nudF in E. coli engineered with the mevalonate-based isopentenyl pyrophosphate biosynthetic pathway resulted in the production of isopentenol. PMID:17693564

  12. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    EPA Science Inventory

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  13. Laser-induced speckle scatter patterns in Bacillus colonies

    PubMed Central

    Kim, Huisung; Singh, Atul K.; Bhunia, Arun K.; Bae, Euiwon

    2014-01-01

    Label-free bacterial colony phenotyping technology called BARDOT (Bacterial Rapid Detection using Optical scattering Technology) provided successful classification of several different bacteria at the genus, species, and serovar level. Recent experiments with colonies of Bacillus species provided strikingly different characteristics of elastic light scatter (ELS) patterns, which were comprised of random speckles compared to other bacteria, which are dominated by concentric rings and spokes. Since this laser-based optical sensor interrogates the whole volume of the colony, 3-D information of micro- and macro-structures are all encoded in the far-field scatter patterns. Here, we present a theoretical model explaining the underlying mechanism of the speckle formation by the colonies from Bacillus species. Except for Bacillus polymyxa, all Bacillus spp. produced random bright spots on the imaging plane, which presumably dependent on the cellular and molecular organization and content within the colony. Our scatter model-based analysis revealed that colony spread resulting in variable surface roughness can modify the wavefront of the scatter field. As the center diameter of the Bacillus spp. colony grew from 500 to 900 μm, average speckles area decreased two-fold and the number of small speckles increased seven-fold. In conclusion, as Bacillus colony grows, the average speckle size in the scatter pattern decreases and the number of smaller speckle increases due to the swarming growth characteristics of bacteria within the colony. PMID:25352840

  14. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia

    PubMed Central

    Rahman, Raja Noor Zaliha Raja Abd; Leow, Thean Chor; Salleh, Abu Bakar; Basri, Mahiran

    2007-01-01

    Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0) as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%). Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T) and Geobacillus kaustophilus (DSM 7263T). Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T). Conclusion Strain T1T was able to secrete extracellular thermostable lipase into

  15. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia.

    PubMed

    Abd Rahman, Raja Noor Zaliha Raja; Leow, Thean Chor; Salleh, Abu Bakar; Basri, Mahiran

    2007-08-10

    Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78 degrees C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0) as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5-99.2%). Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70 degrees C and was also stable up to 60 degrees C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T) and Geobacillus kaustophilus (DSM 7263T). Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T). Strain T1T was able to secrete extracellular thermostable lipase into culture

  16. Bacterial Respiration and Growth Rates Affect the Feeding Preferences, Brood Size and Lifespan of Caenorhabditis elegans

    PubMed Central

    Yu, Li; Yan, Xiaomei; Ye, Chenglong; Zhao, Haiyan; Chen, Xiaoyun; Hu, Feng; Li, Huixin

    2015-01-01

    Bacteria serve as live food and nutrients for bacterial-feeding nematodes (BFNs) in soils, and influence nematodes behavior and physiology through their metabolism. Five bacterial taxa (Bacillus amyloliquefaciens JX1, Variovorax sp. JX14, Bacillus megaterium JX15, Pseudomonas fluorescens Y1 and Escherichia coli OP50) and the typical BFN Caenorhabditis elegans were selected to study the effects of bacterial respiration and growth rates on the feeding preferences, brood size and lifespan of nematodes. P. fluorescens Y1 and E. coli OP50 were found to be more active, with high respiration and rapid growth, whereas B. amyloliquefaciens JX1 and B. megaterium JX15 were inactive. The nematode C. elegans preferred active P. fluorescens Y1 and E. coli OP50 obviously. Furthermore, worms that fed on these two active bacteria produced more offspring but had shorter lifespan, while inactive and less preferred bacteria had increased nematodes lifespan and decreased the brood size. Based on these results, we propose that the bacterial activity may influence the behavior and life traits of C. elegans in the following ways: (1) active bacteria reproduce rapidly and emit high levels of CO2 attracting C. elegans; (2) these active bacteria use more resources in the nematodes’ gut to sustain their survival and reproduction, thereby reducing the worm's lifespan; (3) inactive bacteria may provide less food for worms than active bacteria, thus increasing nematodes lifespan but decreasing their fertility. Nematodes generally require a balance between their preferred foods and beneficial foods, only preferred food may not be beneficial for nematodes. PMID:26222828

  17. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives

    PubMed Central

    Elshaghabee, Fouad M. F.; Rokana, Namita; Gulhane, Rohini D.; Sharma, Chetan; Panwar, Harsh

    2017-01-01

    Spore-forming bacilli are being explored for the production and preservation of food for many centuries. The inherent ability of production of large number of secretory proteins, enzymes, antimicrobial compounds, vitamins, and carotenoids specifies the importance of bacilli in food chain. Additionally, Bacillus spp. are gaining interest in human health related functional food research coupled with their enhanced tolerance and survivability under hostile environment of gastrointestinal tract. Besides, bacilli are more stable during processing and storage of food and pharmaceutical preparations, making them more suitable candidate for health promoting formulations. Further, Bacillus strains also possess biotherapeutic potential which is connected with their ability to interact with the internal milieu of the host by producing variety of antimicrobial peptides and small extracellular effector molecules. Nonetheless, with proposed scientific evidences, commercial probiotic supplements, and functional foods comprising of Bacillus spp. had not gained much credential in general population, since the debate over probiotic vs pathogen tag of Bacillus in the research and production terrains is confusing consumers. Hence, it’s important to clearly understand the phenotypic and genotypic characteristics of selective beneficial Bacillus spp. and their substantiation with those having GRAS status, to reach a consensus over the same. This review highlights the probiotic candidature of spore forming Bacillus spp. and presents an overview of the proposed health benefits, including application in food and pharmaceutical industry. Moreover, the growing need to evaluate the safety of individual Bacillus strains as well as species on a case by case basis and necessity of more profound analysis for the selection and identification of Bacillus probiotic candidates are also taken into consideration. PMID:28848511

  18. Biomolecular Architectures Molecular Biology

    DTIC Science & Technology

    2013-08-31

    when the Salmonella beacon (13 nM) was tested in the presence of 800 ng bacterial genomic DNA in chicken broth (33%) (data not shown). Since it was...bacterium, Bacillus thuringiensis, transgenic tobacco containing the transgene, Bt cry1Ac, the Gram-negative bacterium, Salmonella Typhimurium, and the Gram... Salmonella Typhimurium, and the Gram-positive bacterium, Listeria monocytogenes, were monitored for detection by coupling molecular beacon (MB

  19. Discrimination of Bacillus anthracis from closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microchips

    DOEpatents

    Bavykin, Sergei G.; Mirzabekov, Andrei D.

    2007-10-30

    The present invention is directed to a novel method of discriminating a highly infectious bacterium Bacillus anthracis from a group of closely related microorganisms. Sequence variations in the 16S and 23S rRNA of the B. cereus subgroup including B. anthracis are utilized to construct an array that can detect these sequence variations through selective hybridizations. The identification and analysis of these sequence variations enables positive discrimination of isolates of the B. cereus group that includes B. anthracis. Discrimination of single base differences in rRNA was achieved with a microchip during analysis of B. cereus group isolates from both single and in mixed probes, as well as identification of polymorphic sites. Successful use of a microchip to determine the appropriate subgroup classification using eight reference microorganisms from the B. cereus group as a study set, was demonstrated.

  20. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments.

    PubMed

    Ouoba, Labia Irene I; Thorsen, Line; Varnam, Alan H

    2008-06-10

    The ability of various species of Bacillus from fermented seeds of Parkia biglobosa known as African locust bean (Soumbala) and fermented seeds of Hibiscus sabdariffa (Bikalga) was investigated. The study included screening of the isolates by haemolysis on blood agar, detection of toxins in broth and during the fermentation of African locust bean using the Bacillus cereus Enterotoxin Reverse Passive Latex Agglutination test kit (BCET-RPLA) and the Bacillus Diarrhoeal Enterotoxin Visual Immunoassay (BDEVIA). Detection of genes encoding cytotoxin K (CytK), haemolysin BL (Hbl A, Hbl C, Hbl D), non-hemolytic enterotoxin (NheA, NheB, NheC) and EM1 specific of emetic toxin producers was also investigated using PCR with single pair and multiplex primers. Of 41 isolates, 29 Bacillus belonging to the species of B. cereus, Bacillus subtilis, Bacillus licheniformis and Bacillus pumilus showed haemolysis on blood agar. Using RPLA, enterotoxin production was detected for three isolates of B. cereus in broth and all B. cereus (9) in fermented seeds. Using BDEVIA, enterotoxin production was detected in broth as well as in fermented seeds for all B. cereus isolates. None of the isolates belonging to the other Bacillus species was able to produce enterotoxins either by RPLA or BDEVIA. Nhe genes were detected in all B. cereus while Hbl and CytK genes were detected respectively in five and six B. cereus strains. A weak presence of Hbl (A, D) and CytK genes was detected in two isolates of B. subtilis and one of B. licheniformis but results were inconsistent, especially for Hbl genes. The emetic specific gene fragment EM1 was not detected in any of the isolates studied.

  1. The efficacy and safety of nine South African medicinal plants in controlling Bacillus anthracis Sterne vaccine strain.

    PubMed

    Elisha, Ishaku Leo; Dzoyem, Jean-Paul; Botha, Francien S; Eloff, Jacobus Nicolaas

    2016-01-08

    Anthrax is a zoonotic disease caused by Bacillus anthracis, a Gram-positive spore-forming bacterium. The presence of the bacteria and the toxins in the blood of infected hosts trigger a cascade of pathological events leading to death. Nine medicinal plants with good activities against other bacteria were selected to determine their in vitro antibacterial activity against Bacillus anthracis Sterne strain. The cytotoxicity of the extracts on Vero kidney cells was also determined. The minimum inhibitory concentration (MIC) values of the extracts against Bacillus anthracis Sterne strain ranged from 0.02 to 0.31 mg/ml. Excellent MIC values were observed for the following plant species: Maesa lanceolata (0.02 mg/ml), Bolusanthus speciosus, Hypericum roeperianum, Morus mesozygia (0.04 mg/ml) and Pittosporum viridiflorum (0.08 mg/ml). The total antibacterial activity of the extracts ranged from 92 to 5562 ml/g. Total activity presents the volume to which the extract from 1 g of plant material can be diluted and still inhibit microbial growth. Maesa lanceolata and Hypericum roeperianum had the highest total activity with values of 5562 and 2999 ml/g respectively. The extracts of Calpurnia aurea had the lowest total activity (92 ml/g). The cytotoxicity determined on Vero cells indicated that most of the extracts were relatively non-toxic compared to doxorubicin (LC50 8.3 ± 1.76 μg/ml), except for the extracts of Maesa lanceolata, Elaeodendron croceum and Calpurnia aurea with LC50 values at 2.38 ± 0.25, 5.20 ± 0.24 and 13 ± 2.26 μg/ml respectively. The selectivity index (SI) ranged from 0.02 to 1.66. Hypericum roeperianum had the best selectivity index, (SI = 1.66) and Elaeodendron croceum had lowest value (SI = 0.02). The crude acetone extracts of the selected plant species had promising antibacterial activity against Bacillus anthracis. Maesa lanceolata extracts could be useful as a disinfectant and Hypericum roeperianum could be

  2. Bacillus subtilis Fur represses one of two paralogous haem-degrading monooxygenases

    PubMed Central

    Gaballa, Ahmed

    2011-01-01

    Identification of genes regulated by the ferric uptake regulator (Fur) protein has provided insights into the diverse mechanisms of adaptation to iron limitation. In the soil bacterium Bacillus subtilis, Fur senses iron sufficiency and represses genes that enable iron uptake, including biosynthetic and transport genes for the siderophore bacillibactin and uptake systems for siderophores produced by other organisms. We here demonstrate that Fur regulates hmoA (formerly yetG), which encodes a haem monooxygenase. HmoA is the first characterized member of a divergent group of putative monooxygenases that cluster separately from the well-characterized IsdG family. B. subtilis also encodes an IsdG family protein designated HmoB (formerly YhgC). Unlike hmoA, hmoB is constitutively expressed and not under Fur control. HmoA and HmoB both bind haemin in vitro with approximately 1 : 1 stoichiometry and degrade haemin in the presence of an electron donor. Mutational and spectroscopic analyses indicate that HmoA and HmoB have distinct active site architectures and interact differently with haem. We further show that B. subtilis can use haem as an iron source, but that this ability is independent of HmoA and HmoB. PMID:21873409

  3. Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4 A resolution.

    PubMed

    Betzel, C; Klupsch, S; Papendorf, G; Hastrup, S; Branner, S; Wilson, K S

    1992-01-20

    Savinase (EC3.4.21.14) is secreted by the alkalophilic bacterium Bacillus lentus and is a representative of that subgroup of subtilisin enzymes with maximum stability in the pH range 7 to 10 and high activity in the range 8 to 12. It is therefore of major industrial importance for use in detergents. The crystal structure of the native form of Savinase has been refined using X-ray diffraction data to 1.4 A resolution. The starting model was that of subtilisin Carlsberg. A comparison to the structures of the closely related subtilisins Carlsberg and BPN' and to the more distant thermitase and proteinase K is presented. The structure of Savinase is very similar to those of homologous Bacillus subtilisins. There are two calcium ions in the structure, equivalent to the strong and the weak calcium-binding sites in subtilisin Carlsberg and subtilisin BPN', well known for their stabilizing effect on the subtilisins. The structure of Savinase shows novel features that can be related to its stability and activity. The relatively high number of salt bridges in Savinase is likely to contribute to its high thermal stability. The non-conservative substitutions and deletions in the hydrophobic binding pocket S1 result in the most significant structural differences from the other subtilisins. The different composition of the S1 binding loop as well as the more hydrophobic character of the substrate-binding region probably contribute to the alkaline activity profile of the enzyme. The model of Savinase contains 1880 protein atoms, 159 water molecules and two calcium ions. The crystallographic R-factor [formula; see text].

  4. Molecular and Biochemical Analyses of CbCel9A/Cel48A, a Highly Secreted Multi-Modular Cellulase by Caldicellulosiruptor bescii during Growth on Crystalline Cellulose

    PubMed Central

    Yi, Zhuolin; Su, Xiaoyun; Revindran, Vanessa; Mackie, Roderick I.; Cann, Isaac

    2013-01-01

    During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A), which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9) module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c) and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c) and TM2 (GH48 with three CBM3 modules) synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other endoglucanases

  5. Biodegradation of naphthalene and phenanthren by Bacillus subtilis 3KP

    NASA Astrophysics Data System (ADS)

    Ni'matuzahroh, Trikurniadewi, N.; Pramadita, A. R. A.; Pratiwi, I. A.; Salamun, Fatimah, Sumarsih, Sri

    2017-06-01

    The purposes of this research were to know growth response, degradation ability, and uptake mechanism of naphthalene and phenanthrene by Bacillus subtilis 3KP. Bacillus subtilis 3KP was grown on Mineral Synthetic (MS) medium with addition of 1% yeast extract and naphthalene and phenanthrene respectively 200 ppm in different cultures. Bacillus subtilis 3KP growth response was monitored by Total Plate Count (TPC) method, the degradation ability was monitored by UV-Vis spectrophotometer, and the uptake mechanism of hydrocarbon was monitored by emulsification activity, decrease of surface tension, and activity of Bacterial Adherence to Hydrocarbon (BATH). Bacillus subtilis 3KP was able to grow and show biphasic growth pattern on both of substrates. Naphthalene and phenanthrene were used as a carbon source for Bacillus subtilis 3KP growth that indicated by the reduction of substrate concomitant with the growth. At room temperature conditions (± 30°C) and 90 rpm of agitation for 7 days, Bacillus subtilis 3KP could degrade naphthalene in the amount of 70.5% and phenanthrene in the amount of 24.8%. Based on the analysis of UV-Vis spectrophotometer, three metabolites, 1-hydroxy-2-naphthoic acid, salicylic acid, and pyrocatechol were found in both cultures. The metabolite identification became basis of propose degradation pathway of naphthalene and phenanthrene by Bacillus subtilis 3KP. The results of hydrocarbon uptake mechanism test show that Bacillus subtilis 3KP used all of the mechanism to degrade naphthalene and phenanthrene.

  6. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants.

    PubMed

    Guo, Shengye; Li, Xingyu; He, Pengfei; Ho, Honhing; Wu, Yixin; He, Yueqiu

    2015-06-01

    Bacillus subtilis XF-1 is a gram-positive, plant-associated bacterium that stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. In particular, it is especially highly efficient at controlling the clubroot disease of cruciferous crops. Its 4,061,186-bp genome contains an estimated 3853 protein-coding sequences and the 1155 genes of XF-1 are present in most genome-sequenced Bacillus strains: 3757 genes in B. subtilis 168, and 1164 in B. amyloliquefaciens FZB42. Analysis using the Cluster of Orthologous Groups database of proteins shows that 60 genes control bacterial mobility, 221 genes are related to cell wall and membrane biosynthesis, and more than 112 are genes associated with secondary metabolites. In addition, the genes contributed to the strain's plant colonization, bio-control and stimulation of plant growth. Sequencing of the genome is a fundamental step for developing a desired strain to serve as an efficient biological control agent and plant growth stimulator. Similar to other members of the taxon, XF-1 has a genome that contains giant gene clusters for the non-ribosomal synthesis of antifungal lipopeptides (surfactin and fengycin), the polyketides (macrolactin and bacillaene), the siderophore bacillibactin, and the dipeptide bacilysin. There are two synthesis pathways for volatile growth-promoting compounds. The expression of biosynthesized antibiotic peptides in XF-1 was revealed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

  7. Study on the Effect of cellulolytic strain MYB3 for Corn Stover Fermentation

    NASA Astrophysics Data System (ADS)

    Yan, Han; Bai, Bing; Cheng, Xiao-Xiao; Li, Guang-Chun; Huang, Shi-Chen; Piao, Chun-Xiang

    2018-03-01

    The effects of corn stover fermentation with the Bacillus megaterium MYB3 was studied in this paper. The results showed that the decomposition rates of cellulose and hemicellulose were 49.6%, 43.46% after 20 days respectively, after fermentation, pH was changed to 5.68, and adjusted to corn stover initial pH 3 to achieve the purpose of sterilization. The decomposition rate was significantly increased by adding corn flour. After adjusting fermentation composes with the ratio of the corn stove to corn flour was 15 : 1, the decomposition rate of cellulose would be 52.37% for 10 days.

  8. ASSAY OF POLY-β-HYDROXYBUTYRIC ACID

    PubMed Central

    Law, John H.; Slepecky, Ralph A.

    1961-01-01

    Law, John H. (Harvard University, Cambridge, Mass.) and Ralph A. Splepecky. Assay of poly-β-hydroxybutyric acid. J. Bacteriol. 82:33–36. 1961—A convenient spectrophotometric assay of bacterial poly-β-hydroxybutyric acid has been devised. Quantitative conversion of poly-β-hydroxybutyric acid to crotonic acid by heating in concentrated sulfuric acid and determination of the ultraviolet absorption of the produce permits an accurate determination of this material in quantities down to 5 μg. This method has been used to follow the production of poly-β-hydroxybutyric acid by Bacillus megaterium strain KM. PMID:13759651

  9. Genetic characterization, nickel tolerance, biosorption, kinetics, and uptake mechanism of a bacterium isolated from electroplating industrial effluent.

    PubMed

    Nagarajan, N; Gunasekaran, P; Rajendran, P

    2015-04-01

    Electroplating industries in Madurai city produce approximately 49,000 L of wastewater and 1200 L of sludge every day revealing 687-5569 ppm of nickel (Ni) with other contaminants. Seventeen Ni-tolerant bacterial strains were isolated from nutrient-enriched effluents. Among them one hyper Ni accumulating strain was scored and identified as Bacillus cereus VP17 on the basis of morphology, biochemical tests, 16S rDNA gene sequencing, and phylogenetic analysis. Equilibrium data of Ni(II) ions using the bacterium as sorbent at isothermal conditions (37 °C) and pH 6 were best adjusted by Langmuir (R(2) = 0.6268) and Freundlich models (R(2) = 0.9505). Experimental validation reveals Ni sorption takes place on a heterogeneous surface of the biosorbent, and predicted metal sorption capacity is 434 ppm. The pseudo-second-order kinetic model fitted the biosorption kinetic data better than the pseudo-first-order kinetic model (R(2) = 0.9963 and 0.3625). Scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy studies of the bacterial strain with and without Ni(II) ion reveals the biosorption mechanism. The results conclude possibilities of using B. cereus VP17 for Ni bioremediation.

  10. Isolation and properties of an endo-β-mannanase-producing Bacillus sp. LX114 capable of degrading guar gum.

    PubMed

    Jiang, Baohang; Sun, Zhen; Hou, Yingmin; Yang, Lan; Yang, Fan; Chen, Xiaoyi; Li, Xianzhen

    2016-07-03

    Endo-β-mannanase, catalyzing the random hydrolysis of β-1,4-mannosidic linkage in the backbone of (hetero) mannan, can increase feed conversion efficiency of animal feed or form functional mannanooligosaccharides. In this study, a gram-positive, straight-rod, facultative anaeorobic bacterium producing endo-β-mannanase was isolated from soil sample. The isolate only fermented glucose, galactose, sorbose, and raffinose to acid. The test in hydrogen sulfide production was positive. Combining the data acquired from phenotypic analysis and phylogenetic analysis based on 16S rRNA gene sequences, this strain presumably represented a novel species of the genus Bacillus and was designated as LX114. The strain LX114 could break down guar gum molecules, leading to a rapid decrease of the viscosity of guar gum solutions. Endo-β-mannanase activity was also detected in the culture supernatant. The isolate LX114 would be useful for potential application in degrading plant cell walls for increasing feed conversion efficiency and formation of functional oligosaccharides.

  11. Biotechnological potential of Bacillus salmalaya 139SI: a novel strain for remediating water polluted with crude oil waste.

    PubMed

    Ismail, Salmah; Dadrasnia, Arezoo

    2015-01-01

    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.

  12. Biotechnological Potential of Bacillus salmalaya 139SI: A Novel Strain for Remediating Water Polluted with Crude Oil Waste

    PubMed Central

    2015-01-01

    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater. PMID:25875763

  13. Capsule-Transmitted Gut Symbiotic Bacterium of the Japanese Common Plataspid Stinkbug, Megacopta punctatissima

    PubMed Central

    Fukatsu, Takema; Hosokawa, Takahiro

    2002-01-01

    The Japanese common plataspid stinkbug, Megacopta punctatissima, deposits small brown particles, or symbiont capsules, on the underside of the egg mass for the purpose of transmission of symbiotic bacteria to the offspring. We investigated the microbiological aspects of the bacteria contained in the capsule, such as microbial diversity, phylogenetic placement, localization in vivo, and fitness effects on the host insect. Restriction fragment length polymorphism analysis of 16S ribosomal DNA clones revealed that a single bacterial species dominates the microbiota in the capsule. The bacterium was not detected in the eggs but in the capsules, which unequivocally demonstrated that the bacterium is transmitted to the offspring of the insect orally rather than transovarially, through probing of the capsule content. Molecular phylogenetic analysis showed that the bacterium belongs to the γ-subdivision of the Proteobacteria. In adult insects the bacterium was localized in the posterior section of the midgut. Deprivation of the bacterium from the nymphs resulted in retarded development, arrested growth, abnormal body coloration, and other symptoms, suggesting that the bacterium is essential for normal development and growth of the host insect. PMID:11772649

  14. Swimming efficiency of bacterium Escherichia coli

    PubMed Central

    Chattopadhyay, Suddhashil; Moldovan, Radu; Yeung, Chuck; Wu, X. L.

    2006-01-01

    We use measurements of swimming bacteria in an optical trap to determine fundamental properties of bacterial propulsion. In particular, we directly measure the force required to hold the bacterium in the optical trap and determine the propulsion matrix, which relates the translational and angular velocity of the flagellum to the torques and forces propelling the bacterium. From the propulsion matrix, dynamical properties such as torques, swimming speed, and power can be obtained by measuring the angular velocity of the motor. We find significant heterogeneities among different individuals even though all bacteria started from a single colony. The propulsive efficiency, defined as the ratio of the propulsive power output to the rotary power input provided by the motors, is found to be ≈2%, which is consistent with the efficiency predicted theoretically for a rigid helical coil. PMID:16954194

  15. Isolation and characterization of a novel analyte from Bacillus subtilis SC-8 antagonistic to Bacillus cereus.

    PubMed

    Lee, Nam Keun; Yeo, In-Cheol; Park, Joung Whan; Kang, Byung-Sun; Hahm, Young Tae

    2010-09-01

    In this study, an effective substance was isolated from Bacillus subtilis SC-8, which was obtained from traditionally fermented soybean paste, cheonggukjang. The substance was purified by HPLC, and its properties were analyzed. It had an adequate antagonistic effect on Bacilluscereus, and its spectrum of activity was narrow. When tested on several gram-negative and gram-positive foodborne pathogenic bacteria such as Salmonella enterica, Salmonella enteritidis, Staphylococcus aureus, and Listeria monocytogenes, no antagonistic effect was observed. Applying the derivative from B. subtilis SC-8 within the same genus did not inhibit the growth of major soybean-fermenting bacteria such as Bacillus subtilis, Bacillus licheniformis, and Bacillus amyloquefaciens. The range of pH stability of the purified antagonistic substance was wide (from 4.0 to >10.0), and the substance was thermally stable up to 60 degrees C. In the various enzyme treatments, the antagonistic activity of the purified substance was reduced with proteinase K, protease, and lipase; its activity was partially destroyed with esterase. Spores of B. cereus did not grow at all in the presence of 5mug/mL of the purified antagonistic substance. The isolated antagonistic substance was thought to be an antibiotic-like lipopeptidal compound and was tentatively named BSAP-254 because it absorbed to UV radiation at 254nm. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. In Vitro Assessment of Marine Bacillus for Use as Livestock Probiotics

    PubMed Central

    Prieto, Maria Luz; O’Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; Gutierrez, Montserrat; Lane, Jonathan A.; Hickey, Rita M.; Lawlor, Peadar G.; Gardiner, Gillian E.

    2014-01-01

    Six antimicrobial-producing seaweed-derived Bacillus strains were evaluated in vitro as animal probiotics, in comparison to two Bacillus from an EU-authorized animal probiotic product. Antimicrobial activity was demonstrated on solid media against porcine Salmonella and E. coli. The marine isolates were most active against the latter, had better activity than the commercial probiotics and Bacillus pumilus WIT 588 also reduced E. coli counts in broth. All of the marine Bacillus tolerated physiological concentrations of bile, with some as tolerant as one of the probiotics. Spore counts for all isolates remained almost constant during incubation in simulated gastric and ileum juices. All of the marine Bacillus grew anaerobically and the spores of all except one isolate germinated under anaerobic conditions. All were sensitive to a panel of antibiotics and none harbored Bacillus enterotoxin genes but all, except B. pumilus WIT 588, showed some degree of β-hemolysis. However, trypan blue dye exclusion and xCELLigence assays demonstrated a lack of toxicity in comparison to two pathogens; in fact, the commercial probiotics appeared more cytotoxic than the majority of the marine Bacillus. Overall, some of the marine-derived Bacillus, in particular B. pumilus WIT 588, demonstrate potential for use as livestock probiotics. PMID:24796302

  17. A report on extensive lateral genetic reciprocation between arsenic resistant Bacillus subtilis and Bacillus pumilus strains analyzed using RAPD-PCR.

    PubMed

    Khowal, Sapna; Siddiqui, Md Zulquarnain; Ali, Shadab; Khan, Mohd Taha; Khan, Mather Ali; Naqvi, Samar Husain; Wajid, Saima

    2017-02-01

    The study involves isolation of arsenic resistant bacteria from soil samples. The characterization of bacteria isolates was based on 16S rRNA gene sequences. The phylogenetic consanguinity among isolates was studied employing rpoB and gltX gene sequence. RAPD-PCR technique was used to analyze genetic similarity between arsenic resistant isolates. In accordance with the results Bacillus subtilis and Bacillus pumilus strains may exhibit extensive horizontal gene transfer. Arsenic resistant potency in Bacillus sonorensis and high arsenite tolerance in Bacillus pumilus strains was identified. The RAPD-PCR primer OPO-02 amplified a 0.5kb DNA band specific to B. pumilus 3ZZZ strain and 0.75kb DNA band specific to B. subtilis 3PP. These unique DNA bands may have potential use as SCAR (Sequenced Characterized Amplified Region) molecular markers for identification of arsenic resistant B. pumilus and B. subtilis strains. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; ur Rahman, Aziz; Tajuddin; Husen, Azamal

    2018-05-01

    Zinc oxide is an essential ingredient of many enzymes, sun screens, and ointments for pain and itch relief. Its microcrystals are very efficient light absorbers in the UVA and UVB region of spectra due to wide bandgap. Impact of zinc oxide on biological functions depends on its morphology, particle size, exposure time, concentration, pH, and biocompatibility. They are more effective against microorganisms such as Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida albicans, and Aspergillus niger. Mechanism of action has been ascribed to the activation of zinc oxide nanoparticles by light, which penetrate the bacterial cell wall via diffusion. It has been confirmed from SEM and TEM images of the bacterial cells that zinc oxide nanoparticles disintegrate the cell membrane and accumulate in the cytoplasm where they interact with biomolecules causing cell apoptosis leading to cell death.

  19. Degradation of organophosphate esters in sewage sludge: Effects of aerobic/anaerobic treatments and bacterial community compositions.

    PubMed

    Pang, Long; Ge, Liming; Yang, Peijie; He, Han; Zhang, Hongzhong

    2018-05-01

    In this study, the degradation of organophosphate esters (OPEs) in sewage sludge with aerobic composting and anaerobic digestion was investigated. The total concentrations of six OPEs (ΣOPEs) in the whole treatment process reduced in the order of anaerobic digestion combined with pig manure (T3) > aerobic composting combined with pig manure (T1) > aerobic composting (T2) > anaerobic digestion (T4). The addition of pig manure significantly enhanced the removal rate of OPEs in both aerobic and anaerobic treatments. The abundance and diversity of bacterial community reduced after the treatment process. Shannon index, principal component analysis, network analysis, and heat map further confirmed the variation of bacterial community compositions among different treatments. Five genera (i.e., Flavobacterium, Bacillus, Alcaligene, Pseudomonas, and Bacillus megaterium) might be responsible for the degradation of OPE compounds in sewage sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes.

    PubMed

    Siddiqi, Khwaja Salahuddin; Ur Rahman, Aziz; Tajuddin; Husen, Azamal

    2018-05-08

    Zinc oxide is an essential ingredient of many enzymes, sun screens, and ointments for pain and itch relief. Its microcrystals are very efficient light absorbers in the UVA and UVB region of spectra due to wide bandgap. Impact of zinc oxide on biological functions depends on its morphology, particle size, exposure time, concentration, pH, and biocompatibility. They are more effective against microorganisms such as Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida albicans, and Aspergillus niger. Mechanism of action has been ascribed to the activation of zinc oxide nanoparticles by light, which penetrate the bacterial cell wall via diffusion. It has been confirmed from SEM and TEM images of the bacterial cells that zinc oxide nanoparticles disintegrate the cell membrane and accumulate in the cytoplasm where they interact with biomolecules causing cell apoptosis leading to cell death.

  1. Coiled to diffuse: Brownian motion of a helical bacterium.

    PubMed

    Butenko, Alexander V; Mogilko, Emma; Amitai, Lee; Pokroy, Boaz; Sloutskin, Eli

    2012-09-11

    We employ real-time three-dimensional confocal microscopy to follow the Brownian motion of a fixed helically shaped Leptospira interrogans (LI) bacterium. We extract from our measurements the translational and the rotational diffusion coefficients of this bacterium. A simple theoretical model is suggested, perfectly reproducing the experimental diffusion coefficients, with no tunable parameters. An older theoretical model, where edge effects are neglected, dramatically underestimates the observed rates of translation. Interestingly, the coiling of LI increases its rotational diffusion coefficient by a factor of 5, compared to a (hypothetical) rectified bacterium of the same contour length. Moreover, the translational diffusion coefficients would have decreased by a factor of ~1.5, if LI were rectified. This suggests that the spiral shape of the spirochaete bacteria, in addition to being employed for their active twisting motion, may also increase the ability of these bacteria to explore the surrounding fluid by passive Brownian diffusion.

  2. Purification and partial elucidation of the structure of an antioxidant carbohydrate biopolymer from the probiotic bacterium Bacillus coagulans RK-02.

    PubMed

    Kodali, Vidya P; Perali, Ramu S; Sen, R

    2011-08-26

    An exopolysaccharide (EPS) was isolated from Bacillus coagulans RK-02 and purified by size exclusion chromatography. The purified, homogeneous EPS had an average molecular weight of ∼3 × 10⁴ Da by comparison with FITC-labeled dextran standards. In vivo evaluations showed that, like other reported polysaccharides, this EPS displayed significant antioxidant activity. FTIR spectroscopy analysis showed the presence of hydroxy, carboxy, and α-glycosidic linkages and a mannose residue. GC analysis indicated that the EPS was a heteropolymer composed of glucose, mannose, galactose, glucosamine, and fucose as monomeric constituent units. Partial elucidation of the structure of the carbohydrate biopolymer based on GC-MS and NMR analysis showed the presence of two unique sets of tetrasaccharide repeating units that have 1→3 and 1→6 glycosidic linkages. This is also the first report of a Gram-positive bacterial polysaccharide with both fucose as a sugar monomer and 1→3 and 1→6 glycosidic linkages in the molecular backbone.

  3. Identification of Bacillus Strains for Biological Control of Catfish Pathogens

    PubMed Central

    Ran, Chao; Carrias, Abel; Williams, Malachi A.; Capps, Nancy; Dan, Bui C. T.; Newton, Joseph C.; Kloepper, Joseph W.; Ooi, Ei L.; Browdy, Craig L.; Terhune, Jeffery S.; Liles, Mark R.

    2012-01-01

    Bacillus strains isolated from soil or channel catfish intestine were screened for their antagonism against Edwardsiella ictaluri and Aeromonas hydrophila, the causative agents of enteric septicemia of catfish (ESC) and motile aeromonad septicaemia (MAS), respectively. Twenty one strains were selected and their antagonistic activity against other aquatic pathogens was also tested. Each of the top 21 strains expressed antagonistic activity against multiple aquatic bacterial pathogens including Edwardsiella tarda, Streptococcus iniae, Yersinia ruckeri, Flavobacterium columnare, and/or the oomycete Saprolegnia ferax. Survival of the 21 Bacillus strains in the intestine of catfish was determined as Bacillus CFU/g of intestinal tissue of catfish after feeding Bacillus spore-supplemented feed for seven days followed by normal feed for three days. Five Bacillus strains that showed good antimicrobial activity and intestinal survival were incorporated into feed in spore form at a dose of 8×107 CFU/g and fed to channel catfish for 14 days before they were challenged by E. ictaluri in replicate. Two Bacillus subtilis strains conferred significant benefit in reducing catfish mortality (P<0.05). A similar challenge experiment conducted in Vietnam with four of the five Bacillus strains also showed protective effects against E. ictaluri in striped catfish. Safety of the four strains exhibiting the strongest biological control in vivo was also investigated in terms of whether the strains contain plasmids or express resistance to clinically important antibiotics. The Bacillus strains identified from this study have good potential to mediate disease control as probiotic feed additives for catfish aquaculture. PMID:23029244

  4. [Partial biological characteristics and algicidal activity of an algicidal bacterium].

    PubMed

    Li, San-Hua; Zhang, Qi-Ya

    2013-02-01

    An algicidal bacterium was isolated from freshwater (Lake Donghu in Wuhan) and coded as A01. The morphology of the algicidal bacterium was observed using optical microscope and electron microscopes, the results showed that A01 was rod-shaped, approximately 1.5 microm in length and 0.45 microm in width and with no flagella structure. A01 was Gram-negative and belongs to the family Acinetobacter sp. though identification by Gram's staining and 16S rDNA gene analysis. A01 exhibited strong algicidal activity on the bloom-forming cyanobacterium Anabaena eucompacta under laboratory conditions. The removal rate of chlorophyll a after 7-day incubation with the culture supernatant of A01 and thalli were 77% and 61%, respectively. Microscopic observation showed that almost all cyanobacterial cells were destroyed within 3 d of co-incubation with the supernatant of algicidal bacterium, but a mass of the cyanobacterial cell lysis was observed only after 5 d of co-incubation with the thalli of algicidal bacterium. These results indicated that the main algicidal component of A01 was in its culture supernatant. In other words, the strain A01 could secrete algicidal component against Anabaena eucompacta.

  5. Evaluation of short-chain-length polyhydroxyalkanoate accumulation in Bacillus aryabhattai.

    PubMed

    Balakrishna Pillai, Aneesh; Jaya Kumar, Arjun; Thulasi, Kavitha; Kumarapillai, Harikrishnan

    This study was focused on the polyhydroxybutyrate (PHB) accumulation property of Bacillus aryabhattai isolated from environment. Twenty-four polyhydroxyalkanoate (PHA) producers were screened out from sixty-two environmental bacterial isolates based on Sudan Black B colony staining. Based on their PHA accumulation property, six promising isolates were further screened out. The most productive isolate PHB10 was identified as B. aryabhattai PHB10. The polymer production maxima were 3.264g/L, 2.181g/L, 1.47g/L, 1.742g/L and 1.786g/L in glucose, fructose, maltose, starch and glycerol respectively. The bacterial culture reached its stationary and declining phases at 18h and 21h respectively and indicated growth-associated PHB production. Nuclear Magnetic Resonance (NMR) spectra confirmed the material as PHB. The material has thermal stability between 30 and 140°C, melting point at 170°C and maximum thermal degradation at 287°C. The molecular weight and poly dispersion index of the polymer were found as 199.7kDa and 2.67 respectively. The bacterium B. aryabhattai accumulating PHB up to 75% of cell dry mass utilizing various carbon sources is a potential candidate for large scale production of bacterial polyhydroxybutyrate. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. A part toolbox to tune genetic expression in Bacillus subtilis

    PubMed Central

    Guiziou, Sarah; Sauveplane, Vincent; Chang, Hung-Ju; Clerté, Caroline; Declerck, Nathalie; Jules, Matthieu; Bonnet, Jerome

    2016-01-01

    Libraries of well-characterised components regulating gene expression levels are essential to many synthetic biology applications. While widely available for the Gram-negative model bacterium Escherichia coli, such libraries are lacking for the Gram-positive model Bacillus subtilis, a key organism for basic research and biotechnological applications. Here, we engineered a genetic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein degradation tags to precisely tune gene expression in B. subtilis. We first designed a modular Expression Operating Unit (EOU) facilitating parts assembly and modifications and providing a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of B. subtilis and efficient RBS sequences from which we engineered three promoters and three RBS sequence libraries exhibiting ∼14 000-fold dynamic range in gene expression levels. We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library. Our complete promoters and RBS sequences library comprising over 135 constructs enables tuning of GFP concentration over five orders of magnitude, from 0.05 to 700 μM. This toolbox of regulatory components will support many research and engineering applications in B. subtilis. PMID:27402159

  7. Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains

    PubMed Central

    Nærdal, Ingemar; Pfeifenschneider, Johannes; Brautaset, Trygve; Wendisch, Volker F

    2015-01-01

    Methanol is regarded as an attractive substrate for biotechnological production of value-added bulk products, such as amino acids and polyamines. In the present study, the methylotrophic and thermophilic bacterium Bacillus methanolicus was engineered into a microbial cell factory for the production of the platform chemical 1,5-diaminopentane (cadaverine) from methanol. This was achieved by the heterologous expression of the Escherichia coli genes cadA and ldcC encoding two different lysine decarboxylase enzymes, and by increasing the overall L-lysine production levels in this host. Both CadA and LdcC were functional in B. methanolicus cultivated at 50°C and expression of cadA resulted in cadaverine production levels up to 500 mg l−1 during shake flask conditions. A volume-corrected concentration of 11.3 g l−1 of cadaverine was obtained by high-cell density fed-batch methanol fermentation. Our results demonstrated that efficient conversion of L-lysine into cadaverine presumably has severe effects on feedback regulation of the L-lysine biosynthetic pathway in B. methanolicus. By also investigating the cadaverine tolerance level, B. methanolicus proved to be an exciting alternative host and comparable to the well-known bacterial hosts E. coli and Corynebacterium glutamicum. This study represents the first demonstration of microbial production of cadaverine from methanol. PMID:25644214

  8. Enhanced Raman scattering of biological molecules

    NASA Astrophysics Data System (ADS)

    Montoya, Joseph R.

    The results presented in this thesis, originate from the aspiration to develop an identification algorithm for Salmonella enterica Serovar Enteritidis (S. enterica), Escherichia coli (E. coli), Bacillus globigii ( B. globigii), and Bacillus megaterium ( B. megaterium) using "enhanced" Raman scattering. We realized our goal, with a method utilizing an immunoassay process in a spectroscopic technique, and the direct use of the enhanced spectral response due to bacterial surface elements. The enhanced Raman signal originates from Surface Enhanced Raman Scattering (SERS) and/or Morphological Dependent Resonances (MDR's). We utilized a modified Lee-Meisel colloidal production method to produce a SERS active substrate, which was applied to a SERS application for the amino acid Glycine. The comparison indicates that the SERS/FRACTAL/MDR process can produce an increase of 107 times more signal than the bulk Raman signal from Glycine. In the extension of the Glycine results, we studied the use of SERS related to S. enterica, where we have shown that the aromatic amino acid contribution from Phenylalanine, Tyrosine, and Tryptophan produces a SERS response that can be used to identify the associated SERS vibrational modes of a S. enterica one or two antibody complexes. The "fingerprint" associated with the spectral signature in conjunction with an enhanced Raman signal allows conclusions to be made: (1) about the orientation of the secondary structure on the metal; (2) whether bound/unbound antibody can be neglected; (3) whether we can lower the detection limit. We have lowered the detection limit of S. enterica to 106 bacteria/ml. We also show a profound difference between S. enterica and E. coli SERS spectra even when there exists non-specific binding on E. coli indicating a protein conformation change induced by the addition of the antigen S. enterica. We confirm TEM imagery data, indicating that the source of the aromatic amino acid SERS response is originating from

  9. Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera helix L.)

    USGS Publications Warehouse

    Soares, Marcos Antonio; Li, Jai-Yan; Bergen, Marshall; da Silva, Joaquim Manoel; Kowalski, Kurt P.; White, James Francis

    2015-01-01

    BackgroundWe hypothesize that invasive English ivy (Hedera helix) harbors endophytic microbes that promote plant growth and survival. To evaluate this hypothesis, we examined endophytic bacteria in English ivy and evaluated effects on the host plant.MethodsEndophytic bacteria were isolated from multiple populations of English ivy in New Brunswick, NJ. Bacteria were identified as a single species Bacillus amyloliquefaciens. One strain of B. amyloliquefaciens, strain C6c, was characterized for indoleacetic acid (IAA) production, secretion of hydrolytic enzymes, phosphate solubilization, and antibiosis against pathogens. PCR was used to amplify lipopeptide genes and their secretion into culture media was detected by MALDI-TOF mass spectrometry. Capability to promote growth of English ivy was evaluated in greenhouse experiments. The capacity of C6c to protect plants from disease was evaluated by exposing B+ (bacterium inoculated) and B− (non-inoculated) plants to the necrotrophic pathogen Alternaria tenuissima.ResultsB. amyloliquefaciens C6c systemically colonized leaves, petioles, and seeds of English ivy. C6c synthesized IAA and inhibited plant pathogens. MALDI-TOF mass spectrometry analysis revealed secretion of antifungal lipopeptides surfactin, iturin, bacillomycin, and fengycin. C6c promoted the growth of English ivy in low and high soil nitrogen conditions. This endophytic bacterium efficiently controlled disease caused by Alternaria tenuissima.ConclusionsThis study suggests that B. amyloliquefaciens plays an important role in enhancing growth and disease protection of English ivy.

  10. A Bacillus subtilis Sensor Kinase Involved in Triggering Biofilm Formation on the Roots of Tomato Plants

    PubMed Central

    Chen, Yun; Cao, Shugeng; Chai, Yunrong; Clardy, Jon; Kolter, Roberto; Guo, Jian-hua; Losick, Richard

    2012-01-01

    SUMMARY The soil bacterium Bacillus subtilis is widely used in agriculture as a biocontrol agent able to protect plants from a variety of pathogens. Protection is thought to involve the formation of bacterial communities - biofilms - on the roots of the plants. Here we used confocal microscopy to visualize biofilms on the surface of the roots of tomato seedlings and demonstrated that biofilm formation requires genes governing the production of the extracellular matrix that holds cells together. We further show that biofilm formation was dependent on the sensor histidine kinase KinD and in particular on an extracellular CACHE domain implicated in small molecule sensing. Finally, we report that exudates of tomato roots strongly stimulated biofilm formation ex planta and that an abundant small molecule in the exudates, l-malic acid, was able to stimulate biofilm formation at high concentrations in a manner that depended on the KinD CACHE domain. We propose that small signaling molecules released by the roots of tomato plants are directly or indirectly recognized by KinD, triggering biofilm formation. PMID:22716461

  11. Gangrenous mastitis caused by Bacillus species in six goats.

    PubMed

    Mavangira, Vengai; Angelos, John A; Samitz, Eileen M; Rowe, Joan D; Byrne, Barbara A

    2013-03-15

    6 lactating dairy goats were examined because of acute mastitis. Goats were considered to have endotoxemia on the basis of physical examination and clinicopathologic findings. The affected udder halves had gangrenous discolored distal portions with sharp demarcations from grossly normal tissue proximally. Udder secretions from the affected sides were serosanguineous in all cases. A Bacillus sp was isolated in pure cultures in all cases. In 1 case, the Bacillus sp was identified as Bacillus cereus. Goats were treated for mastitis and endotoxemia with polyionic IV fluid therapy, systemic and intramammary antimicrobial administration, anti-inflammatory drug administration, and other supportive treatment. All goats survived to discharge. All except 1 goat had follow-up information available. The affected udder halves sloughed in 1 to 2 months following discharge. In subsequent lactations after the mastitis episodes, milk production in 2 of 5 goats was above the mean, as determined on the basis of Dairy Herd Improvement records, and 3 of 5 goats were voluntarily withdrawn from lactation. All 5 goats had successful kiddings after the Bacillus mastitis episode. Bacillus sp should be considered as a causative agent in goats with gangrenous mastitis, especially when the Bacillus sp is isolated in a pure culture. Antimicrobial sensitivity testing is recommended for selection of an appropriate antimicrobial for treatment. Prognosis for survival appears to be good, although milk production may be decreased.

  12. Production and characterization of a novel protease from Bacillus sp. RRM1 under solid state fermentation.

    PubMed

    Rajkumar, Renganathan; Kothilmozhian, Jayappriyan; Ramasamy, Rengasamy

    2011-06-01

    A commercially important alkaline protease, produced by Bacillus sp. RRM1 isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex Silva, was first recognized and characterized in the present study. Identification of the isolated bacterium was done using both biochemical characterization as well as 16S rRNA gene sequencing. The bacterial strain, Bacillus sp. RRM1, produced a high level of protease using easily available, inexpensive agricultural residues solid-state fermentation (SSF). Among them, wheat bran was found to be the best substrate. Influences of process parameters such as moistening agents, moisture level, temperature, inoculum concentration, and co-carbon and co-nitrogen sources on the fermentation were also evaluated. Under optimized conditions, maximum protease production (i.e., 2081 U/g) was obtained from wheat bran, which is about 2-fold greater than the initial conditions. The protease enzyme was stable over a temperature range of 30-60 degrees C and pH 6-12, with maximum activity at 50 degrees C and pH 9.0. Whereas the metal ions Na+, Ca2+, and K+ enhanced the activity of the enzyme, others such as Hg2+, Cu2+, Fe2+, Co2+, and Zn2+ had rendered negative effects. The activity of the enzyme was inhibited by EDTA and enhanced by Cu2+ ions, thus indicating the nature of the enzyme as a metalloprotease. The enzyme showed extreme stability and activity even in the presence of detergents, surfactants, and organic solvents. Moreover, the present findings opened new vistas in the utilization of wheat bran, a cheap, abundantly available, and effective waste as a substrate for SSF.

  13. Termination factor Rho: From the control of pervasive transcription to cell fate determination in Bacillus subtilis

    PubMed Central

    Nicolas, Pierre; Repoila, Francis; Bardowski, Jacek; Aymerich, Stéphane

    2017-01-01

    In eukaryotes, RNA species originating from pervasive transcription are regulators of various cellular processes, from the expression of individual genes to the control of cellular development and oncogenesis. In prokaryotes, the function of pervasive transcription and its output on cell physiology is still unknown. Most bacteria possess termination factor Rho, which represses pervasive, mostly antisense, transcription. Here, we investigate the biological significance of Rho-controlled transcription in the Gram-positive model bacterium Bacillus subtilis. Rho inactivation strongly affected gene expression in B. subtilis, as assessed by transcriptome and proteome analysis of a rho–null mutant during exponential growth in rich medium. Subsequent physiological analyses demonstrated that a considerable part of Rho-controlled transcription is connected to balanced regulation of three mutually exclusive differentiation programs: cell motility, biofilm formation, and sporulation. In the absence of Rho, several up-regulated sense and antisense transcripts affect key structural and regulatory elements of these differentiation programs, thereby suppressing motility and biofilm formation and stimulating sporulation. We dissected how Rho is involved in the activity of the cell fate decision-making network, centered on the master regulator Spo0A. We also revealed a novel regulatory mechanism of Spo0A activation through Rho-dependent intragenic transcription termination of the protein kinase kinB gene. Altogether, our findings indicate that distinct Rho-controlled transcripts are functional and constitute a previously unknown built-in module for the control of cell differentiation in B. subtilis. In a broader context, our results highlight the recruitment of the termination factor Rho, for which the conserved biological role is probably to repress pervasive transcription, in highly integrated, bacterium-specific, regulatory networks. PMID:28723971

  14. Isolation of the Paenibacillus phoenicis, a Spore-Forming Bacterium

    NASA Technical Reports Server (NTRS)

    Benardini, James N.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Osman, Shariff; Satomi, Masataka

    2010-01-01

    A microorganism was isolated from the surfaces of the cleanroom facility in which the Phoenix lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Paenibacillus and represents a novel species. Bacillus spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Spores of Bacillus species are of particular concern to planetary protection due to the extreme resistance of some members of the genus to space environmental conditions such as UV and gamma radiation, vacuum, oxidation, and temperature fluctuation. These resistive spore phenotypes have enhanced potential for transfer, and subsequent proliferation, of terrestrial microbes on another solar body. Due to decreased nutrient conditions within spacecraft assembly facility clean rooms, the vegetative cells of Bacillus species and other spore-forming Paenibacillus species are induced to sporulate, thereby enhancing their survivability of bioreduction

  15. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms

    PubMed Central

    Rosenberg, Gili; Steinberg, Nitai; Oppenheimer-Shaanan, Yaara; Olender, Tsvia; Doron, Shany; Ben-Ari, Julius; Sirota-Madi, Alexandra; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2016-01-01

    Bacillus subtilis biofilms have a fundamental role in shaping the soil ecosystem. During this process, they unavoidably interact with neighbour bacterial species. We studied the interspecies interactions between biofilms of the soil-residing bacteria B. subtilis and related Bacillus species. We found that proximity between the biofilms triggered recruitment of motile B. subtilis cells, which engulfed the competing Bacillus simplex colony. Upon interaction, B. subtilis secreted surfactin and cannibalism toxins, at concentrations that were inert to B. subtilis itself, which eliminated the B. simplex colony, as well as colonies of Bacillus toyonensis. Surfactin toxicity was correlated with the presence of short carbon-tail length isomers, and synergistic with the cannibalism toxins. Importantly, during biofilm development and interspecies interactions a subpopulation in B. subtilis biofilm lost its native plasmid, leading to increased virulence against the competing Bacillus species. Overall, these findings indicate that genetic programs and traits that have little effect on biofilm development when each species is grown in isolation have a dramatic impact when different bacterial species interact. PMID:28721238

  16. In vivo metabolism of 2,2 prime -diaminopimelic acid from gram-positive and gram-negative bacterial cells by ruminal microorganisms and ruminants and its use as a marker of bacterial biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masson, H.A.; Denholm, A.M.; Ling, J.R.

    1991-06-01

    Cells of Bacillus megaterium GW1 and Escherichia coli W7-M5 were specifically radiolabeled with 2,2{prime}-diamino (G-{sup 3}H) pimelic acid (({sup 3}H)DAP) as models of gram-positive and gram-negative bacteria, respectively. Two experiments were conducted to study the in vivo metabolism of 2,2{prime}-diaminopimelic acid (DAP) in sheep. In experiment 1, cells of ({sup 3}H)DAP-labeled B. megaterium GW1 were infused into the rumen of one sheep and the radiolabel was traced within microbial samples, digesta, and the whole animal. Bacterially bound ({sup 3}H)DAP was extensively metabolized, primarily (up to 70% after 8 h) via decarboxylation to ({sup 3}H)lysine by both ruminal protozoa and ruminalmore » bacteria. Recovery of infused radiolabel in urine and feces was low (42% after 96 h) and perhaps indicative of further metabolism by the host animal. In experiment 2, ({sup 3}H)DAP-labeled B. megaterium GW1 was infused into the rumens of three sheep and ({sup 3}H)DAP-labeled E. coli W7-W5 was infused into the rumen of another sheep. The radioactivity contents of these mutant bacteria were insufficient to use as tracers, but the metabolism of DAP was monitored in the total, free, and peptidyl forms. Free DAP, as a proportion of total DPA in duodenal digesta, varied from 0 to 9.5%, whereas peptidyl DAP accounted for 8.3 to 99.2%.« less

  17. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity.

    PubMed

    Kim, Min-Ji; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Jeong, Eun-Ju; Kim, Jong-Guk; Lee, In-Jung

    2017-07-01

    This study was aimed to identify plant growth-promoting bacterial isolates from soil samples and to investigate their ability to improve plant growth and salt tolerance by analysing phytohormones production and phosphate solubilisation. Among the four tested bacterial isolates (I-2-1, H-1-4, H-2-3, and H-2-5), H-2-5 was able to enhance the growth of Chinese cabbage, radish, tomato, and mustard plants. The isolated bacterium H-2-5 was identified as Bacillus amyloliquefaciens H-2-5 based on 16S rDNA sequence and phylogenetic analysis. The secretion of gibberellins (GA 4 , GA 8 , GA 9 , GA 19 , and GA 20 ) from B. amyloliquefaciens H-2-5 and their phosphate solubilisation ability may contribute to enhance plant growth. In addition, the H-2-5-mediated mitigation of short term salt stress was tested on soybean plants that were affected by sodium chloride. Abscisic acid (ABA) produced by the H-2-5 bacterium suppressed the NaCl-induced stress effects in soybean by enhancing plant growth and GA 4 content, and by lowering the concentration of ABA, salicylic acid, jasmonic acid, and proline. These results suggest that GAs, ABA production, and the phosphate solubilisation capacity of B. amyloliquefaciens H-2-5 are important stimulators that promote plant growth through their interaction and also to improve plant growth by physiological changes in soybean at saline soil.

  18. Effects of lunar soil, Zagami meteorite, and ocean ridge basalt on the excretion of itoic acid, a siderophore, and coproporphyrin by Bacillus subtilis

    NASA Technical Reports Server (NTRS)

    Ito, T.

    1986-01-01

    Samples of lunar soil (10084,151), Zagami meteorite, postulated to be ejected from Mars, and ocean ridge basalt, the most abundant volcanic rock on earth, all completely inhibited the excretion of itoic acid and of coproporphyrin by Bacillus subtilis, a common airborne bacterium. Since such inhibition has been known to occur only under iron rich growth conditions(the excretion of these compounds occurs under iron deficient growth conditions), the result indicated that the organism was capable of extracting iron quite readily from these materials. A sample of synthetic ilmenite completely failed to inhibit the excretion of coproporphyrin, and inhibited the excretion of itoic acid only slightly. The result suggested that much of the iron extracted by the organism must have come from iron sources other than ilmenite,such as pyroxenes and olivines,in these natural materials tested.

  19. Molecular Approaches to Improve the Insecticidal Activity of Bacillus thuringiensis Cry Toxins

    PubMed Central

    Lucena, Wagner A.; Pelegrini, Patrícia B.; Martins-de-Sa, Diogo; Fonseca, Fernando C. A.; Gomes, Jose E.; de Macedo, Leonardo L. P.; da Silva, Maria Cristina M.; Oliveira, Raquel S.; Grossi-de-Sa, Maria F.

    2014-01-01

    Bacillus thuringiensis (Bt) is a gram-positive spore-forming soil bacterium that is distributed worldwide. Originally recognized as a pathogen of the silkworm, several strains were found on epizootic events in insect pests. In the 1960s, Bt began to be successfully used to control insect pests in agriculture, particularly because of its specificity, which reflects directly on their lack of cytotoxicity to human health, non-target organisms and the environment. Since the introduction of transgenic plants expressing Bt genes in the mid-1980s, numerous methodologies have been used to search for and improve toxins derived from native Bt strains. These improvements directly influence the increase in productivity and the decreased use of chemical insecticides on Bt-crops. Recently, DNA shuffling and in silico evaluations are emerging as promising tools for the development and exploration of mutant Bt toxins with enhanced activity against target insect pests. In this report, we describe natural and in vitro evolution of Cry toxins, as well as their relevance in the mechanism of action for insect control. Moreover, the use of DNA shuffling to improve two Bt toxins will be discussed together with in silico analyses of the generated mutations to evaluate their potential effect on protein structure and cytotoxicity. PMID:25123558

  20. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins

    PubMed Central

    Tabashnik, Bruce E.; Liu, Yong-Biao; Finson, Naomi; Masson, Luke; Heckel, David G.

    1997-01-01

    Environmentally benign insecticides derived from the soil bacterium Bacillus thuringiensis (Bt) are the most widely used biopesticides, but their success will be short-lived if pests quickly adapt to them. The risk of evolution of resistance by pests has increased, because transgenic crops producing insecticidal proteins from Bt are being grown commercially. Efforts to delay resistance with two or more Bt toxins assume that independent mutations are required to counter each toxin. Moreover, it generally is assumed that resistance alleles are rare in susceptible populations. We tested these assumptions by conducting single-pair crosses with diamondback moth (Plutella xylostella), the first insect known to have evolved resistance to Bt in open field populations. An autosomal recessive gene conferred extremely high resistance to four Bt toxins (Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F). The finding that 21% of the individuals from a susceptible strain were heterozygous for the multiple-toxin resistance gene implies that the resistance allele frequency was 10 times higher than the most widely cited estimate of the upper limit for the initial frequency of resistance alleles in susceptible populations. These findings suggest that pests may evolve resistance to some groups of toxins much faster than previously expected. PMID:9050831