Science.gov

Sample records for bacterium bacillus sp

  1. Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil.

    PubMed

    Ghosh, A; Bhardwaj, M; Satyanarayana, T; Khurana, M; Mayilraj, S; Jain, R K

    2007-02-01

    A Gram-positive, endospore-forming, alkalitolerant bacterial strain, designated MLB2T, was isolated from soil from Leh, India, and was subjected to a polyphasic taxonomic study. The strain exhibited phenotypic properties that included chemotaxonomic characteristics consistent with its classification in the genus Bacillus. Growth was observed at pH 7.0-11.0, but not at pH 6.0. The DNA G+C content was 41.4 mol%. The highest level of 16S rRNA gene sequence similarity was with Bacillus oshimensis JCM 12663T (98.8 %). However, DNA-DNA hybridization experiments indicated low levels of genomic relatedness with the type strains of B. oshimensis (62 %), Bacillus patagoniensis (55 %), Bacillus clausii (51 %) and Bacillus gibsonii (34 %), the species with which strain MLB2T formed a coherent cluster (based on the results of the phylogenetic analysis). On the basis of the phenotypic characteristics and genotypic distinctiveness of strain MLB2T, it should be classified within a novel species of Bacillus, for which the name Bacillus lehensis sp. nov. is proposed. The type strain is MLB2T (=MTCC 7633T=JCM 13820T). PMID:17267957

  2. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation

    PubMed Central

    Yin, Liang; Xue, Yanfen; Ma, Yanhe

    2015-01-01

    The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl) and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine), were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress. PMID:26030352

  3. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation.

    PubMed

    Yin, Liang; Xue, Yanfen; Ma, Yanhe

    2015-01-01

    The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl) and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine), were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress.

  4. Bacillus marcorestinctum sp. nov., a Novel Soil Acylhomoserine Lactone Quorum-Sensing Signal Quenching Bacterium

    PubMed Central

    Han, Yan; Chen, Fang; Li, Nuo; Zhu, Bo; Li, Xianzhen

    2010-01-01

    A Gram-positive, facultatively anaerobic, endospore-forming and rod-shaped bacterium was isolated from soil samples and designated strain LQQ. This organism strongly quenches the acylhomoserine lactone quorum-sensing signal. The LQQ strain exhibits phenotypic characteristics consistent with its classification in the genus Bacillus. It is positive in catalase and no special growth factor is needed. It uses glucose as sole carbon source. The DNA G + C content is 39.8 mol %. The closest relatives based on the 16S rRNA gene sequence are Bacillus anthracis, Bacillus thuringiensis, and Brevibacillus brevis (syn. Bacillus brevis) with the similarity of 96.5%. The DNA–DNA hybridization data indicates a low level of genomic relatedness with the relative type strains of Bacillus thuringiensis (6.1%), Bacillus anthracis (10.5%) and Brevibacillus brevis (8.7%). On the basis of the phenotypic and phylogenetic data together with the genomic distinctiveness, the LQQ strain represents a novel species of the genus Bacillus, for which the name Bacillus marcorestinctum sp. nov. is proposed. The type strain is LQQT. PMID:20386651

  5. Bacillus shacheensis sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil.

    PubMed

    Lei, Zuchao; Qiu, Peng; Ye, Renyuan; Tian, Jiewei; Liu, Yang; Wang, Lei; Tang, Shu-Kun; Li, Wen-Jun; Tian, Yongqiang

    2014-01-01

    A moderately halophilic bacterium, strain HNA-14(T), was isolated from a saline-alkali soil sample collected in Shache County, Xinjiang Province. On the basis of the polyphasic taxonomic data, the isolate was considered to be a member of the genus Bacillus. The organism grew optimally at 30 °C and pH 8.0. It was moderately halophilic and its optimum growth occurred at 5-10% NaCl. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid and the predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C15:0 and iso-C15:0 and the polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides and two unknown phospholipids. The G+C content of the genomic DNA was 48.6 mol%. Strain HNA-14(T) exhibited a low 16S rRNA gene sequence similarity of 96% with its nearest neighbors [Bacillus clausii KSM-K16 (96.5%), Bacillus xiaoxiensis DSM 21943(T)(96.2%), Bacillus clausii DSM 8716(T) (96.1%), Bacillus patagoniensis PAT05(T) (96.1%), Bacillus lehensis MLB-2(T) (96.0%), Bacillus oshimensis K11(T) (95.9%) and Bacillus hunanensis DSM 23008(T) (95.8%)] and the phenotypic characteristics indicate that strain HNA-14(T) can be distinguished from them. Therefore, a novel species of the genus Bacillus, Bacillus shacheensis sp. nov. (type strain, HNA-14(T) = KCTC 33145 = DSM 26902) is proposed. PMID:25008165

  6. Bacillus neizhouensis sp. nov., a halophilic marine bacterium isolated from a sea anemone.

    PubMed

    Chen, Yi-Guang; Zhang, Yu-Qin; Wang, Yong-Xia; Liu, Zhi-Xiong; Klenk, Hans-Peter; Xiao, Huai-Dong; Tang, Shu-Kun; Cui, Xiao-Long; Li, Wen-Jun

    2009-12-01

    A novel Gram-stain-positive, slightly halophilic, facultatively alkaliphilic, non-motile, catalase- and oxidase-positive, endospore-forming, rod-shaped, aerobic bacterium, strain JSM 071004(T), was isolated from a sea anemone collected from Neizhou Bay in the South China Sea. Growth occurred with 0.5-10 % (w/v) total salts (optimum 2-4 %) and at pH 6.5-10.0 (optimum pH 8.5) and 4-30 degrees C (optimum 25 degrees C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant respiratory quinone was menaquinone 7 (MK-7) and the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major cellular fatty acids were anteiso-C(15 : 0) and iso-C(15 : 0). The genomic DNA G+C content was 39.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 071004(T) belongs to the genus Bacillus, being related most closely to the type strain of Bacillus agaradhaerens (sequence similarity 97.3 %), followed by the type strains of Bacillus cellulosilyticus (96.2 %), Bacillus clarkii (96.1 %) and Bacillus polygoni (96.0 %). The combination of phylogenetic analysis, DNA-DNA hybridization, phenotypic characteristics and chemotaxonomic data support the proposal that strain JSM 071004(T) represents a novel species of the genus Bacillus, for which the name Bacillus neizhouensis sp. nov. is proposed, with JSM 071004(T) (=CCTCC AB 207161(T) =DSM 19794(T) =KCTC 13187(T)) as the type strain.

  7. Bacillus thermotolerans sp. nov., a thermophilic bacterium capable of reducing humus.

    PubMed

    Yang, Guiqin; Zhou, Xuemei; Zhou, Shungui; Yang, Dehui; Wang, Yueqiang; Wang, Dingmei

    2013-10-01

    A novel thermotolerant bacterium, designated SgZ-8(T), was isolated from a compost sample. Cells were non-motile, endospore-forming, Gram-staining positive, oxidase-negative and catalase-positive. The isolate was able to grow at 20-65 °C (optimum 50 °C) and pH 6.0-9.0 (optimum 6.5-7.0), and tolerate up to 9.0 % NaCl (w/v) under aerobic conditions. Anaerobic growth occurred with anthraquinone-2,6-disulphonate (AQDS), fumarate and NO3(-) as electron acceptors. Phylogenetic analysis based on the16S rRNA and gyrB genes grouped strain SgZ-8(T) into the genus Bacillus, with the highest similarity to Bacillus badius JCM 12228(T) (96.2 % for 16S rRNA gene sequence and 83.5 % for gyrB gene sequence) among all recognized species in the genus Bacillus. The G+C content of the genomic DNA was 49.3 mol%. The major isoprenoid quinone was menaquinone 7 (MK-7) and the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major cellular fatty acid was iso-C16 : 0. On the basis of its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-8(T) ( = CCTCC AB 2012108(T) = KACC 16706(T)) was designated the type strain of a novel species of the genus Bacillus, for which the name Bacillus thermotolerans sp. nov. is proposed.

  8. Bacillus daliensis sp. nov., an alkaliphilic, Gram-positive bacterium isolated from a soda lake.

    PubMed

    Zhai, Lei; Liao, Tingting; Xue, Yanfen; Ma, Yanhe

    2012-04-01

    A Gram-positive, alkaliphilic bacterium, designated strain DLS13T, was isolated from Dali Lake in Inner Mongolia Autonomous Region, China. The isolate was able to grow at pH 7.5-11.0 (optimum at pH 9), in 0-8 % (w/v) NaCl (optimum at 2 %, w/v) and at 10-45 °C (optimum at 30 °C). Cells of the isolate were facultatively anaerobic, spore-forming rods with peritrichous flagella. The predominant isoprenoid quinone was MK-7 and its cell wall peptidoglycan contained meso-diaminopimelic acid. The major polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The major cellular fatty acids were anteiso-C15:0, anteiso-C17:0 and iso-C15:0. The genomic DNA G+C content of the isolate was 43.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DLS13T was a member of the genus Bacillus and most closely related to Bacillus saliphilus DSM 15402T (96.9 % similarity). The DNA-DNA relatedness value between strain DLS13T and B. saliphilus DSM 15402T was 38.7±1.9 %. Comparative analysis of genotypic and phenotypic features indicated that strain DLS13T represents a novel species of the genus Bacillus, for which the name Bacillus daliensis sp. nov. is proposed; the type strain is DLS13T (=CGMCC 1.10369T=JCM 17097T=NBRC 107572T).

  9. A heavy metal tolerant novel bacterium, Bacillus malikii sp. nov., isolated from tannery effluent wastewater.

    PubMed

    Abbas, Saira; Ahmed, Iftikhar; Kudo, Takuji; Iqbal, Muhammad; Lee, Yong-Jae; Fujiwara, Toru; Ohkuma, Moriya

    2015-12-01

    The taxonomic position of a Gram-stain positive and heavy metal tolerant bacterium, designated strain NCCP-662(T), was investigated by polyphasic characterisation. Cells of strain NCCP-662(T) were observed to be rod to filamentous shaped, motile and strictly aerobic, and to grow at 10-50 °C (optimum 30-37 °C) and at pH range of 6-10 (optimum pH 7-8). The strain was found to be able to tolerate 0-12 % NaCl (w/v) and heavy metals (Cr 1200 ppm, Pb 1800 ppm and Cu 1200 ppm) in tryptic soya agar medium. The phylogenetic analysis based on the 16S rRNA gene sequence of strain NCCP-662(T) showed that it belongs to the genus Bacillus and showed high sequence similarity (98.2 and 98.0 %, respectively) with the type strains of Bacillus niabensis 4T19(T) and Bacillus halosaccharovorans E33(T). The chemotaxonomic data showed that the major quinone is MK-7; the predominant cellular fatty acids are anteiso-C15 :0, iso-C14:0, iso-C16:0 and C16:0 and iso-C15:0; the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol along with several unidentified glycolipids, phospholipids and polar lipids. The DNA G+C content was determined to be 36.9 mol%. These data also support the affiliation of strain NCCP-662(T) with the genus Bacillus. The level of DNA-DNA relatedness between strain NCCP-662(T) and B. niabensis JCM 16399(T) was 20.5 ± 0.5 %. On the basis of physiological and biochemical characteristics, phylogenetic analyses and DNA-DNA hybridization data, strain NCCP-662(T) can be clearly differentiated from the validly named Bacillus species and thus represents a new species, for which the name Bacillus malikii sp. nov. is proposed with the type strain NCCP-662(T) (= LMG 28369(T) = DSM 29005(T) = JCM 30192(T)). PMID:26362330

  10. Bacillus nitroreducens sp. nov., a humus-reducing bacterium isolated from a compost.

    PubMed

    Guo, Junhui; Wang, Yue Qiang; Yang, Guiqin; Chen, Yunqi; Zhou, Shungui; Zhao, Yong; Zhuang, Li

    2016-05-01

    A Gram-staining-positive, facultative anaerobic, motile and rod-shaped bacterium, designated GSS08(T), was isolated from a windrow compost pile and characterized by means of a polyphasic approach. Growth occurred with 0-4 % (w/v) NaCl (optimum 1 %), at pH 6.5-9.5 (optimum pH 7.5) and at 20-45 °C (optimum 37 °C). Anaerobic growth occurred with anthraquinone-2,6-disulphonate, fumarate and NO3 (-) as electron acceptor. The main respiratory quinone was MK-7. The predominant polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. The major fatty acids (>5 %) were iso-C15:0 (43.1 %), anteiso-C15:0 (27.4 %) and iso-C16:0 (8.3 %). The DNA G + C content was 39.6 mol%. The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GSS08(T) formed a phyletic lineage with the type strain of Bacillus humi DSM 16318(T) with a high sequence similarity of 97.5 %, but it displayed low sequence similarity with other valid species in the genus Bacillus (<96.0 %). The DNA-DNA relatedness between strains GSS08(T) and B. humi DSM 16318(T) was 50.8 %. The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain GSS08(T) represents a novel species, for which the name Bacillus nitroreducens sp. nov. is proposed. The type strain is GSS08(T) (=KCTC 33699(T) = MCCC 1K01091(T)).

  11. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS. PMID:26826831

  12. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  13. Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137.

    PubMed

    Powell, Ryan J; Hill, Russell T

    2013-10-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s.

  14. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10.

    PubMed

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-01-01

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10. PMID:26601700

  15. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10.

    PubMed

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-11-25

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10.

  16. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10

    PubMed Central

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-01-01

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10. PMID:26601700

  17. Genome sequence of the aerobic bacterium Bacillus sp. strain FJAT-13831.

    PubMed

    Liu, Guohong; Liu, Bo; Lin, Naiquan; Tang, Weiqi; Tang, Jianyang; Lin, Yingzhi

    2012-12-01

    Bacillus sp. strain FJAT-13831 was isolated from the no. 1 pit soil of Emperor Qin's Terracotta Warriors in Xi'an City, People's Republic of China. The isolate showed a close relationship to the Bacillus cereus group. The draft genome sequence of Bacillus sp. FJAT-13831 was 4,425,198 bp in size and consisted of 5,567 genes (protein-coding sequences [CDS]) with an average length of 782 bp and a G+C value of 36.36%.

  18. Genome Sequence of the Aerobic Bacterium Bacillus sp. Strain FJAT-13831

    PubMed Central

    Liu, Guohong; Lin, Naiquan; Tang, Weiqi; Tang, Jianyang; Lin, Yingzhi

    2012-01-01

    Bacillus sp. strain FJAT-13831 was isolated from the no. 1 pit soil of Emperor Qin's Terracotta Warriors in Xi'an City, People's Republic of China. The isolate showed a close relationship to the Bacillus cereus group. The draft genome sequence of Bacillus sp. FJAT-13831 was 4,425,198 bp in size and consisted of 5,567 genes (protein-coding sequences [CDS]) with an average length of 782 bp and a G+C value of 36.36%. PMID:23144388

  19. Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina.

    PubMed

    Olivera, Nelda; Siñeriz, Faustino; Breccia, Javier D

    2005-01-01

    A Gram-positive, rod-shaped, spore-forming bacterium (PAT 05T) was isolated from the rhizosphere of the perennial shrub Atriplex lampa in north-eastern Patagonia, Argentina. Its overall biochemical and physiological characteristics indicated that this strain should be placed in the alkaliphilic Bacillus group. Strain PAT 05T grew at pH 7-10 (optimum pH 8), but not at pH 6. Its DNA G+C content was 39.7 mol%. Sequence analysis of the 16S rRNA gene of PAT 05T revealed the closest match (99.6 % similarity) with Bacillus sp. DSM 8714. The highest level of DNA-DNA relatedness (88.6 %) was also found with this strain. On the basis of 16S rRNA gene sequence similarity and phylogenetic analysis, G+C content and DNA-DNA hybridization data, strain PAT 05T is related at the species level to Bacillus sp. DSM 8714, a member of a group referred as phenon 4a by Nielsen et al. [Nielsen, P., Fritze, D. & Priest, F. G. (1995). Microbiology 141, 1745-1761], which still lacks taxonomic standing. These results support the proposal of strain PAT 05T (=DSM 16117T=ATCC BAA-965T) as the type strain of Bacillus patagoniensis sp. nov. PMID:15653916

  20. Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina.

    PubMed

    Olivera, Nelda; Siñeriz, Faustino; Breccia, Javier D

    2005-01-01

    A Gram-positive, rod-shaped, spore-forming bacterium (PAT 05T) was isolated from the rhizosphere of the perennial shrub Atriplex lampa in north-eastern Patagonia, Argentina. Its overall biochemical and physiological characteristics indicated that this strain should be placed in the alkaliphilic Bacillus group. Strain PAT 05T grew at pH 7-10 (optimum pH 8), but not at pH 6. Its DNA G+C content was 39.7 mol%. Sequence analysis of the 16S rRNA gene of PAT 05T revealed the closest match (99.6 % similarity) with Bacillus sp. DSM 8714. The highest level of DNA-DNA relatedness (88.6 %) was also found with this strain. On the basis of 16S rRNA gene sequence similarity and phylogenetic analysis, G+C content and DNA-DNA hybridization data, strain PAT 05T is related at the species level to Bacillus sp. DSM 8714, a member of a group referred as phenon 4a by Nielsen et al. [Nielsen, P., Fritze, D. & Priest, F. G. (1995). Microbiology 141, 1745-1761], which still lacks taxonomic standing. These results support the proposal of strain PAT 05T (=DSM 16117T=ATCC BAA-965T) as the type strain of Bacillus patagoniensis sp. nov.

  1. Complete genome sequence of Bacillus sp. YP1, a polyethylene-degrading bacterium from waxworm's gut.

    PubMed

    Yang, Yu; Chen, Jianwei; Wu, Wei-Min; Zhao, Jiao; Yang, Jun

    2015-04-20

    Bacillus sp. strain YP1, isolated from the gut of waxworm (the larvae of Plodia interpunctella) which ate polyethylene (PE) plastic, is capable of degrading PE and utilizing PE as sole carbon source. Here we report the complete genome sequence of strain YP1, which is relevant to polyethylene depolymerization and biodegradation.

  2. Bacillus sp. strain DJ-1, potent arsenic hypertolerant bacterium isolated from the industrial effluent of India.

    PubMed

    Joshi, Dhaval N; Flora, S J S; Kalia, Kiran

    2009-07-30

    Arsenic hypertolerant bacterial cells were isolated from the common industrial effluent treatment plant, Vapi, India. Strain DJ-1 sustaining 400 mM, As (V) out of 16 bacterial strains was identified as Bacillus sp. strain DJ-1 through 16S rRNA ribotyping. The maximum arsenic accumulation of 9.8+/-0.5 mg g(-1) (dry weight) was observed during stationary phase of growth. Intracellular compartmentalization has shown 80% of arsenic accumulation in cytoplasm. The lack of arsC gene and arsenate reductase activity indicated that Bacillus sp. strain DJ-1 may lack classical ars operon and detoxification may be mediated through some novel mechanism. The arsenite binding protein was purified by affinity chromatography and characterized as DNA protection during starvation (DPS) protein by electrospray ionization mass spectrometry. The induction of DPS showed the adaptation of bacteria in arsenic stress condition and/or in detoxification mechanism, relies on its ability to bind with arsenic. These results indicate the hypertolerance with higher intracellular accumulation of arsenic by Bacillus sp. strain DJ-1, which could be mediated by DPS protein thus signifying this organism is a potential candidate for the removal of arsenic from industrial wastewater, which needs further study.

  3. Isolation and identification of chemical constituents from the bacterium Bacillus sp. and their nematicidal activities.

    PubMed

    Zeng, Liming; Jin, Hui; Lu, Dengxue; Yang, Xiaoyan; Pan, Le; Cui, Haiyan; He, Xiaofeng; Qiu, Hongdeng; Qin, Bo

    2015-10-01

    A strain SMrs28 was isolated from the rhizosphere soil of a toxic plant Stellera chamaejasme and identified as Bacillus sp. on the basis of morphological and partial 16S rRNA gene sequence analysis. The crude extract of SMrs28 fermentation broth showed strong nematocidal activities in preliminary test. To define the active nematocidal metabolites of SMrs28, a novel compound (1), 4-oxabicyclo[3.2.2]nona-1(7), 5,8-triene, along with five known compounds (2-6), were isolated from the strain by various column chromatographic techniques and characterized on the basis of spectroscopic analysis. Results of the in vitro nematicidal tests showed that the metabolites presented different levels of activity at certain exposure conditions. Compounds (1-3) displayed LC50 values of 904.12, 451.26, 232.98 µg/ml and 1594.0, 366.62, 206.38 µg/ml against Bursaphelenchus xylophilus and Ditylenchus destructor at 72 h, respectively. This is the first report of the nematicidal activity of the compounds as constituents of Bacillus sp.. Our findings help to find potential chemical structures to develop nematicides from microbial source for the management of nematode-infected plant diseases.

  4. Bacillus caseinilyticus sp. nov., an alkali- and thermotolerant bacterium isolated from a soda lake.

    PubMed

    Vishnuvardhan Reddy, Sultanpuram; Thirumala, Mothe; Farooq, Mohammed

    2015-08-01

    A novel Gram-stain-positive, rod-shaped, motile, endospore-forming and proteolytic bacterial strain, SPT, was isolated from Lonar soda lake, in India. On the basis of 16S rRNA gene sequence analysis it was identified as belonging to the class Firmibacteria and was most closely related to Bacillus cellulosilyticus DSM 2522T (96.7%) and other members of the genus Bacillus ( < 95.9%). Strain SPT was catalase- and oxidase-positive. The cell-wall peptidoglycan of strain SPT contained meso-diaminopimelic acid. Polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three phospholipids, two aminolipids and two unknown lipids. The predominant isoprenoid quinone was MK-7. Anteiso-C15 : 0 (26.8%) was the predominant fatty acid and significant proportions (>5%) of iso-C15 : 0 (20.9%), C16 : 1ω7c alcohol (6.3%), iso-C16 : 0 (6.3%) and anteiso-C17 : 0 (5.3  %) were also detected in strain SPT. The DNA G+C content of strain SPT was 38.9 mol%. The results of phylogenetic, chemotaxonomic and biochemical tests allowed a clear differentiation of strain SPT from all other members of the genus Bacillus. Strain SPT represents a novel member of the genus Bacillus, for which the name Bacilluscaseinilyticus sp. nov. is proposed. The type strain is SPT ( = MCC 2612T = JCM 30246T).

  5. Bacillus oceani sp. nov., a new slightly halophilic bacterium, isolated from a deep sea sediment environment.

    PubMed

    Liu, Yu-Juan; Long, Li-Juan; Huang, Xiao-Fang; You, Zhi-Qing; Wang, Fa-Zuo; Li, Jie; Kim, Chang-Jin; Tian, Xin-Peng; Zhang, Si

    2013-11-01

    A strictly aerobic, Gram-stain positive, slightly halophilic strain, designated SCSIO 04524(T), was isolated from a deep sea sediment sample collected from the northern South China Sea at a depth of 3415 m. The isolate slightly embedded into the medium after 72 h incubation at 30 °C. Growth was found to occur on media with 0-10 % NaCl but extremely weak growth occurred without supplying NaCl. The predominant menaquinone was determined to be MK-7. The major cellular fatty acid identified was iso-C15:0. The diagnostic polar lipids were determined to be diphosphatidylglycerol, phosphatidyl methylethanolamine, phosphatidylethanolamine and phosphatidylglycerol. The genomic DNA G+C content was determined to be 38 mol%. 16S rRNA gene sequences analysis showed that this strain had the highest similarities with Bacillus carboniphilus JCM 9731(T) (94.7 %) and Bacillus endophyticus 2DT(T) (94.3 %). Phylogenetic analysis revealed that strain SCSIO 04524(T) formed a distinct lineage with Bacillus chungangensis CAU 348(T) and B. carboniphilus JCM 9731(T). Physiological characteristics including utilization of sole nitrogen and carbon sources, and chemotaxonomic properties of cellular fatty acids and polar lipids could readily distinguish strain SCSIO 04524(T) from its most closely related species. Based on this polyphasic taxonomic data, a new species, Bacillus oceani sp. nov., is proposed, with the type strain SCSIO 04524(T) (=DSM 26213(T) = KCTC 33077(T)).

  6. Bacillus rhizosphaerae sp. nov., an novel diazotrophic bacterium isolated from sugarcane rhizosphere soil.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Lee, Jung-Sook; Lee, Keun-Chul; Hari, Kuppusamy

    2011-10-01

    A Gram-positive, non-pigmented, rod-shaped, diazotrophic bacterial strain, designated SC-N012(T), was isolated from rhizosphere soil of sugarcane and was subjected to a polyphasic taxonomic study. The strain exhibited phenotypic properties that included chemotaxonomic characteristics consistent with its classification in the genus Bacillus. Sequence analysis of the 16S rRNA gene of SC-N012(T) revealed the closest match (98.9% pair wise similarity) with Bacillus clausii DSM 8716(T). However, DNA-DNA hybridization experiments indicated low levels of genomic relatedness (32%) with this strain. The major components of the fatty acid profile are iso-C(15:0), anteiso-C(15:0), iso-C(17:0) and anteiso-C(17:0). The diagnostic cell-wall diamino acid was meso-diaminopimelic acid. The G+C content of the genomic DNA is 43.0 mol%. The lipids present in strain SC-N012(T) are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol and two unknown phospholipids. Their predominant respiratory quinone was MK-7. Studies of DNA-DNA relatedness, morphological, physiological and chemotaxonomic analyses and phylogenetic data based on 16S rRNA gene sequencing allowed strain SC-N012(T) to be described as members of novel species of the genus Bacillus, for which the name Bacillus rhizosphaerae sp. nov. is proposed. The type strain is SC-N012(T) (=DSM 21911(T) = NCCB 100267(T)). PMID:21671194

  7. Draft Genome Sequence of Bacillus sp. Strain NSP2.1, a Nonhalophilic Bacterium Isolated from the Salt Marsh of the Great Rann of Kutch, India

    PubMed Central

    Pal, Kamal Krishna; Sherathia, Dharmesh; Dalsania, Trupti; Savsani, Kinjal; Patel, Ilaxi; Sukhadiya, Bhoomika; Mandaliya, Mona; Thomas, Manesh; Ghorai, Sucheta; Vanpariya, Sejal; Rupapara, Rupal; Rawal, Priya; Saxena, Anil Kumar

    2013-01-01

    The 5.52-Mbp draft genome sequence of Bacillus sp. strain NSP2.1, a nonhalophilic bacterium isolated from the salt marsh of the Great Rann of Kutch, India, is reported here. An analysis of the genome of this organism will facilitate the understanding of its survival in the salt marsh. PMID:24158559

  8. Draft Genome Sequence of Bacillus sp. Strain NSP9.1, a Moderately Halophilic Bacterium Isolated from the Salt Marsh of the Great Rann of Kutch, India

    PubMed Central

    Pal, Kamal Krishna; Sherathia, Dharmesh; Dalsania, Trupti; Savsani, Kinjal; Patel, Ilaxi; Thomas, Manesh; Ghorai, Sucheta; Vanpariya, Sejal; Rupapara, Rupal; Rawal, Priya; Sukhadiya, Bhoomika; Mandaliya, Mona; Saxena, Anil Kumar

    2013-01-01

    We report the 4.52-Mbp draft genome sequence of Bacillus sp. strain NSP9.1, a moderately halophilic bacterium isolated from the salt marsh of the Great Rann of Kutch, India. Analysis of the genome of this organism will lead to a better understanding of the genes and metabolic pathways involved in imparting osmotolerance. PMID:24115550

  9. Bacillus ligniniphilus sp. nov., an alkaliphilic and halotolerant bacterium isolated from sediments of the South China Sea.

    PubMed

    Zhu, Daochen; Tanabe, Shoko-Hosoi; Xie, Changxiao; Honda, Daiske; Sun, Jianzhong; Ai, Lianzhong

    2014-05-01

    An alkaliphilic and halotolerant Gram-stain-positive bacterium, which was isolated from sediment samples from the South China Sea, was subjected to a taxonomic study. The isolate, strain L1T, grew well at a wide range of temperatures and pH values, 10.0-45.0 °C and pH 6-11, with optima at 30 °C and pH 9.0, respectively. The growth of strain L1T occurred at total salt concentrations of 0-10% (w/v) with an optimum at 2% (w/v). Phylogenetic analysis based on 16S rRNA sequence comparison indicated that the isolate represented a member of the genus Bacillus. The strains most closely related to strain L1T were Bacillus nanhaiisediminis JCM 16507T, Bacillus halodurans DSM 497T and Bacillus pseudofirmus DSM 8715T, with 16S rRNA similarities of 96.5%, 95.9% and 95.7%, respectively. DNA-DNA hybridization of strain L1T with the type strains of the most closely related species, B. nanhaiisediminis JCM 16507T, B. halodurans DSM 497T and B. pseudofirmus DSM 8715T, showed reassociation values of about 21.7%, 14.3% and 13.9%, respectively. The DNA G+C content of strain L1T was 40.76 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant cellular fatty acids of strain L1T were iso-C14 : 0 and anteiso-C15:0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Based on the phenotypic and phylogenetic characteristics, it is proposed that strain L1T (=JCM 18543T=DSM 26145T) should be classified as the type strain of Bacillus ligniniphilus sp. nov.

  10. Bacillus oleivorans sp. nov., a diesel oil-degrading and solvent-tolerant bacterium.

    PubMed

    Azmatunnisa, M; Rahul, K; Subhash, Y; Sasikala, Ch; Ramana, Ch V

    2015-04-01

    Two Gram-stain-positive, diesel oil-degrading, solvent-tolerant, aerobic, endospore-forming, rod-shaped bacteria were isolated from a contaminated laboratory plate. Based on 16S rRNA gene sequence analysis, strains JC228(T) and JC279 were identified as belonging to the genus Bacillus within the family Bacillaceae of the phylum Firmicutes and were found to be most closely related to Bacillus carboniphilus JCM 9731(T) (98.1% 16S rRNA gene sequence similarity) and shared <96.0% 16S rRNA gene sequence similarity with other members of the genus Bacillus . The DNA-DNA hybridization value between the two strains was 88±2%. Strain JC228(T) showed 23.4±1% reassociation (based on DNA-DNA hybridization) with B. carboniphilus LMG 18001(T). The DNA G+C content of strains JC228(T) and JC279 was 39 and 38.4 mol%, respectively. Both strains were positive for catalase and oxidase activities, and negative for hydrolysis of starch and Tween 80. Strains JC228(T) and JC279 grew chemoorganoheterotrophically with optimum growth at pH 7 (range pH 7-9.5) and 35 °C (range 25-40 °C). Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid (PL2) were the major polar lipids. Major cellular fatty acids were iso-C(15 : 0), anteiso-C(15 : 0), iso-C(17 : 0) and C(16 : 0). Whole-cell hydrolysates contained l-alanine, d-alanine, d-glutamic acid and meso-diaminopimelic acid. Both strains utilized diesel oil as sole carbon and energy source. The results of physiological, biochemical, chemotaxonomic and molecular analyses allowed clear differentiation of strains JC228(T) and JC279 from their closest phylogenetic neighbours. Therefore strains JC228(T) and JC279 represent a novel species of the genus Bacillus , for which the name Bacillus oleivorans sp. nov. is proposed. The type strain is JC228(T) ( = LMG 28084(T) = CCTCC AB 2013353(T)).

  11. Bacillus alkalicola sp. nov., an alkaliphilic, gram-positive bacterium isolated from Zhabuye Lake in Tibet, China.

    PubMed

    Zhai, Lei; Ma, Yiwei; Xue, Yanfen; Ma, Yanhe

    2014-09-01

    A Gram-positive, alkaliphilic bacterium, designated strain Zby6(T), was isolated from Zhabuye Lake in Tibet, China. The strain was able to grow at pH 8.0-11.0 (optimum at pH 10.0), in 0-8 % (w/v) NaCl (optimum at 3 %, w/v) and at 10-45 °C (optimum at 37 °C). Cells of the isolate were facultatively anaerobic and spore-forming rods with polar flagellum. The predominant isoprenoid quinone was MK-7, and its cell wall peptidoglycan contained meso-diaminopimelic acid. The major cellular fatty acids were iso-C(15:0), C(16:0) and anteiso-C(15:0). The major polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylethanolamine. The genomic DNA G+C content of the isolate was 38.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Zby6(T) was a member of the genus Bacillus and most closely related to Bacillus cellulosilyticus DSM 2522(T) (97.7 % similarity). The DNA-DNA relatedness value between strain Zby6(T) and B. cellulosilyticus DSM 2522(T) was 59.2 ± 1.8 %. Comparative analysis of genotypic and phenotypic features indicated that strain Zby6(T) represents a novel species of the genus Bacillus, for which the name Bacillus alkalicola sp. nov. is proposed; the type strain is Zby6(T) (=CGMCC 1.10368(T) = JCM 17098(T) = NBRC 107743(T)).

  12. Bacillus rigiliprofundi sp. nov., an endospore-forming, Mn-oxidizing, moderately halophilic bacterium isolated from deep subseafloor basaltic crust.

    PubMed

    Sylvan, Jason B; Hoffman, Colleen L; Momper, Lily M; Toner, Brandy M; Amend, Jan P; Edwards, Katrina J

    2015-06-01

    A facultatively anaerobic bacterium, designated strain 1MBB1T, was isolated from basaltic breccia collected from 341 m below the seafloor by seafloor drilling of Rigil Guyot during Integrated Ocean Drilling Program Expedition 330. The cells were straight rods, 0.5 μm wide and 1-3 μm long, that occurred singly and in chains. Strain 1MBB1T stained Gram-positive. Catalase and oxidase were produced. The isolate grew optimally at 30 °C and pH 7.5, and could grow with up to 12 % (w/v) NaCl. The DNA G+C content was 40.5 mol%. The major cellular fatty acids were C16:1ω11c (26.5 %), anteiso-C15:0 (19.5 %), C16:0 (18.7 %) and iso-C15:0 (10.4 %), and the cell-wall diamino acid was meso-diaminopimelic acid. Endospores of strain 1MBB1T oxidized Mn(II) to Mn(IV), and siderophore production by vegetative cells was positive. Phylogenetic analysis of the 16S rRNA gene indicated that strain 1MBB1T was a member of the family Bacillaceae, with Bacillus foraminis CV53T and Bacillus novalis LMG 21837T being the closest phylogenetic neighbours (96.5 and 96.2 % similarity, respectively). This is the first novel species described from deep subseafloor basaltic crust. On the basis of our polyphasic analysis, we conclude that strain 1MBB1T represents a novel species of the genus Bacillus, for which we propose the name Bacillus rigiliprofundi sp. nov. The type strain is 1MBB1T ( = NCMA B78T = LMG 28275T). PMID:25813363

  13. Bacillus daqingensis sp. nov., a halophilic, alkaliphilic bacterium isolated from saline-sodic soil in Daqing, China.

    PubMed

    Wang, Shuang; Sun, Lei; Wei, Dan; Zhou, Baoku; Zhang, Junzheng; Gu, Xuejia; Zhang, Lei; Liu, Ying; Li, Yidan; Guo, Wei; Jiang, Shuang; Pan, Yaqing; Wang, Yufeng

    2014-07-01

    An alkaliphilic, moderately halophilic, bacterium, designated strain X10-1(T), was isolated from saline-alkaline soil in Daqing, Heilongjiang Province, China. Strain X10-1(T) was determined to be a Gram-positive aerobe with rod-shaped cells. The isolate was catalase-positive, oxidase-negative, non-motile, and capable of growth at salinities of 0-16% (w/v) NaCl (optimum, 3%). The pH range for growth was 7.5-11.0 (optimum, pH 10.0). The genomic DNA G+C content was 47.7 mol%. Its major isoprenoid quinone was MK-7 and its cellular fatty acid profile mainly consisted of anteiso-C15:0, anteiso-C17:0, iso-C15:0, C16:0, and iso-C16:0. The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. Phylogenetic analysis based on 16S rRNA gene sequences showed that X10-1(T) is a member of the genus Bacillus, being most closely related to B. saliphilus DSM15402(T) (97.8% similarity) and B. agaradhaerens DSM 8721(T) (96.2%). DNA-DNA relatedness to the type strains of these species was less than 40%. On the basis of the phylogenetic, physiological, and biochemical data, strain X10-1(T) represents a novel species of the genus Bacillus, for which the name Bacillus daqingensis sp. nov. is proposed. The type strain is X10-1(T) (=NBRC 109404(T) = CGMCC 1.12295(T)). PMID:24879344

  14. Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

    PubMed Central

    Bao, Peng; Xiao, Ke-Qing; Wang, Hui-Jiao; Xu, Hao; Xu, Peng-Peng; Jia, Yan; Häggblom, Max M.; Zhu, Yong-Guan

    2016-01-01

    A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4–86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4–84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy. PMID:27677458

  15. Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

    NASA Astrophysics Data System (ADS)

    Bao, Peng; Xiao, Ke-Qing; Wang, Hui-Jiao; Xu, Hao; Xu, Peng-Peng; Jia, Yan; Häggblom, Max M.; Zhu, Yong-Guan

    2016-09-01

    A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4–86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4–84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy.

  16. Laboratory-scale continuous reactor for soluble selenium removal using selenate-reducing bacterium, Bacillus sp. SF-1.

    PubMed

    Fujita, Masanori; Ike, Michihiko; Kashiwa, Masami; Hashimoto, Ryoko; Soda, Satoshi

    2002-12-30

    A model continuous flow bioreactor (volume 0.5 L) was constructed for removing toxic soluble selenium (selenate/selenite) of high concentrations using a selenate-reducing bacterium, Bacillus sp. SF-1, which transforms selenate into elemental selenium via selenite for anaerobic respiration. Model wastewater contained 41.8 mg-Se/L selenate and excess lactate as the carbon and energy source; the bioreactor was operated as an anoxic, completely mixed chemostat with cell retention time between 2.2-95.2 h. At short cell retention times selenate was removed by the bioreactor, but accumulation of selenite was observed. At long cell retention times soluble selenium, both selenate and selenite, was successfully reduced into nontoxic elemental selenium. A simple mathematical model is proposed to evaluate Se reduction ability of strain SF-1. First-order kinetic constants for selenate and selenite reduction were estimated to be 2.9 x 10(-11) L/cells/h and 5.5 x 10(-13) L/cells/h, respectively. The yield of the bacterial cells by selenate reduction was estimated to be 2.2 x 10(9) cells/mg-Se.

  17. Bacillus radicibacter sp. nov., a new bacterium isolated from root nodule of Oxytropis ochrocephala Bunge.

    PubMed

    Wei, Xiu Li; Lin, Yan Bing; Xu, Lin; Han, Meng Sha; Dong, Dan Hong; Chen, Wei Min; Wang, Li; Wei, Ge Hong

    2015-10-01

    A Gram-positive, facultative anaerobic, rod-shaped, and endospore-forming strain, designated 53-2(T) was isolated from the root nodule of Oxytropis ochrocephala Bunge growing on Qilian mountain, China. The strain can grow at pH 7.0-8.0, 10-50 °C and tolerate up to 11% NaCl. Optimal growth occurred at pH 7.2 and 37 °C. The result of BLASTn search based on 16S rRNA gene sequence revealed that strain 53-2(T) , being closest related to Bacillus acidicola 105-2(T) , possessed remote similarity (less than 95.64%) to the species within genus Bacillus. The DNA G + C content was 37.8%. Chemotaxonomic data (major quinone is MK-7; major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, unknown phospholipid, and aminoglycophospholipid; fatty acids are anteiso-C15: 0 , iso-C15:0 and anteiso-C17: 0 ) supported the affiliation of the isolate to the genus Bacillus. On the basis of physiological, phylogenetic, and biochemical properties, strain 53-2(T) represents a novel species within genus Bacillus, for which the name Bacillus radicibacter is proposed. The type strain is 53-2(T) (=DSM27302(T) =ACCC06115(T) =CCNWQLS5(T) ).

  18. Bacillus beringensis sp. nov., a psychrotolerant bacterium isolated from the Bering Sea.

    PubMed

    Yu, Yong; Li, Hui-Rong; Zeng, Yin-Xin; Chen, Bo

    2011-03-01

    Psychrotolerant Bacillus-like strains BR035(T) and BR011 were isolated from seawater of the Bering Sea and were characterized by means of a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that these strains were related to the members of the genus Bacillus and had the highest 16S rRNA gene sequence similarity with Bacillus korlensis ZLC-26(T). DNA-DNA hybridization experiments confirmed that strains BR035(T) and BR011 belonged to the same species and were distinct from their closest relatives. The cells were Gram-positive, rods, motile, spore-forming and psychrotolerant. The temperature range for growth was 4-42°C. The main respiratory quinone was MK-7. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unknown aminolipid and two unknown phospholipids. The major cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C14:0 and C16:1ω7c alcohol. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The genomic DNA G + C content was 37.6-37.8 mol%. On the basis of the phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data, a novel species Bacillus beringensis is proposed and the type strain is BR035(T) (=CGMCC 1.9126(T)=DSM 22571(T)).

  19. Isolation and characterization of a furfural-degrading bacterium Bacillus cereus sp. strain DS1.

    PubMed

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Gao, Chunlei

    2015-02-01

    Furfural was found to be the main organic pollutant in the wastewater coming from the Diosgenin factory. This substance is derived from acidic pentosan in Dioscorea zingiberensis and is also found in a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust. It is regarded as a toxicant and an inhibitor to the growth of microorganism in both sewage disposal and biological fermentation. A furfural-degrading strain (DS1) was isolated from activated sludge of wastewater treatment plant in a diosgenin factory by continuous enrichment culture. The strain was identified as Bacillus cereus based on morphological, physiological tests, as well as on 16S rDNA sequence and Biolog analyses. The capacity of this strain to grow on a mineral salt medium, utilizing furfural as the sole carbon and energy source to degrade furfural, was investigated in this study. Under the condition of pH 9.0, temperature 35 °C, with rotating speed of 150 rpm, and an inoculum of 6 %, the strain showed that the furfural degradation capacity reaches 35 % in 7 days, as measured by high-performance liquid chromatography. The addition of inorganic carbon sources could bring down the biodegradation efficiency of the furfural. The strain DS1 showed better furfural removal capacity, as compared to other inorganic carbon sources in the media. Furthermore, a furfural concentration of as high as 4,000 mg L(-1) was tolerated by the culture. The capacity to degrade furfural was demonstrated for the first time by using the genus B. cereus. This study suggests the possible application in biodegradation strategies.

  20. Isolation and characterization of a furfural-degrading bacterium Bacillus cereus sp. strain DS1.

    PubMed

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Gao, Chunlei

    2015-02-01

    Furfural was found to be the main organic pollutant in the wastewater coming from the Diosgenin factory. This substance is derived from acidic pentosan in Dioscorea zingiberensis and is also found in a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust. It is regarded as a toxicant and an inhibitor to the growth of microorganism in both sewage disposal and biological fermentation. A furfural-degrading strain (DS1) was isolated from activated sludge of wastewater treatment plant in a diosgenin factory by continuous enrichment culture. The strain was identified as Bacillus cereus based on morphological, physiological tests, as well as on 16S rDNA sequence and Biolog analyses. The capacity of this strain to grow on a mineral salt medium, utilizing furfural as the sole carbon and energy source to degrade furfural, was investigated in this study. Under the condition of pH 9.0, temperature 35 °C, with rotating speed of 150 rpm, and an inoculum of 6 %, the strain showed that the furfural degradation capacity reaches 35 % in 7 days, as measured by high-performance liquid chromatography. The addition of inorganic carbon sources could bring down the biodegradation efficiency of the furfural. The strain DS1 showed better furfural removal capacity, as compared to other inorganic carbon sources in the media. Furthermore, a furfural concentration of as high as 4,000 mg L(-1) was tolerated by the culture. The capacity to degrade furfural was demonstrated for the first time by using the genus B. cereus. This study suggests the possible application in biodegradation strategies. PMID:25274411

  1. Bacillus mesophilus sp. nov., an alginate-degrading bacterium isolated from a soil sample collected from an abandoned marine solar saltern.

    PubMed

    Zhou, Yan-Xia; Liu, Guo-Hong; Liu, Bo; Chen, Guan-Jun; Du, Zong-Jun

    2016-07-01

    A novel Gram-stain positive, endospore-forming bacterium, designated SA4(T), was isolated from a soil sample collected from an abandoned marine solar saltern at Wendeng, Shandong Province, PR China. Cells were observed to be rod shaped, alginase positive, catalase positive and motile. The strain was found to grow at temperatures ranging from 15 to 40 °C (optimum 35 °C), and pH 5.0-11.0 (optimum pH 8.0) with 0-7.0 % (w/v) NaCl concentration (optimum NaCl 3.0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SA4(T) belongs to the genus Bacillus and exhibits 16S rRNA gene sequence similarities of 96.6, 96.5, 96.3 and 96.2 % with Bacillus horikoshii DSM 8719(T), Bacillus acidicola 105-2(T), Bacillus shackletonii LMG 18435(T) and Bacillus pocheonensis Gsoil 420(T), respectively. The menaquinone was identified as MK-7 and the major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids detected were anteiso-C15:0 (22.3 %), iso-C15:0 (22.6 %), iso-C16:0 (14.8 %) and iso-C14:0 (14.7 %). The DNA G+C content was determined to be 42.4 mol %. Phenotypic, chemotaxonomic and genotypic properties clearly indicated that isolate SA4(T) represents a novel species within the genus Bacillus, for which the name Bacillus mesophius sp. nov. is proposed. The type strain is SA4(T) (=DSM 101000(T)=CCTCC AB 2015209(T)).

  2. Genome sequence of the anaerobic bacterium Bacillus sp. strain ZYK, a selenite and nitrate reducer from paddy soil.

    PubMed

    Bao, Peng; Su, Jian-Qiang; Hu, Zheng-Yi; Häggblom, Max M; Zhu, Yong-Guan

    2014-06-15

    Bacillus sp. strain ZYK, a member of the phylum Firmicutes, is of interest for its ability to reduce nitrate and selenite and for its resistance to arsenic under anaerobic conditions. Here we describe some key features of this organism, together with the complete genome sequence and annotation. The 3,575,797 bp long chromosome with its 3,454 protein-coding and 70 RNA genes, and the information gained from its sequence will be relevant to the elucidation of microbially-mediated transformations of nitrogen, selenium and arsenic in paddy soil. PMID:25197451

  3. Characterization of a salt-tolerant bacterium Bacillus sp. from a membrane bioreactor for saline wastewater treatment.

    PubMed

    Zhang, Xiaohui; Gao, Jie; Zhao, Fangbo; Zhao, Yuanyuan; Li, Zhanshuang

    2014-06-01

    High salt concentrations can cause plasmolysis and loss of activity of cells, but the salt-tolerant bacterium can endure the high salt concentrations in wastewater. In this research 7 salt-tolerant bacteria, which could survive in dry powder products and could degrade organic contaminants in saline wastewater, were isolated from a membrane bioreactor. The strain NY6 which showed the fastest growth rate, best property for organic matter degradation and could survive in dry powder more than 3 months was selected and characterized. It was classified as Bacillus aerius based on the analysis of the morphological and physiological properties as well as the 16S rRNA sequence and Neigh borjoining tree. The strain NY6 could survive in the salinity up to 6% and the optimal growth salinity is 2%; it belongs to a slightly halophilic bacterium. The capability of its dry powder products for COD removal was 800 mg COD/(g·day) in synthesized saline wastewater with salinity of 2%. According to salt-tolerant mechanism research, when the salinity was below 2%, the stain NY6 absorbed K(+) and Na(+) to maintain osmotic equilibrium, and when the salinity was above 2%, the NY6 kept its life by producing a large amount of spores. PMID:25079850

  4. Reuse of red seaweed waste by a novel bacterium, Bacillus sp. SYR4 isolated from a sandbar.

    PubMed

    Kang, Soyeon; Kim, Joong Kyun

    2015-01-01

    A potent bacterial strain was isolated from a sandbar and identified as Bacillus sp. SYR4 for the reuse of red seaweed waste. The isolate possessed both agarase and carrageenase activities. The optimal pH and temperature for the degradation of both agar and carrageenan by the isolate were found to be pH 7.5 and 30 °C, respectively. The effects of cations on cell growth and degradation ability of the isolate were significant in comparison with controls. The isolate produced 0.27 and 0.29 g l(-1) of reducing sugars from 1 g l(-1) of agar and carrageenan, respectively. When the isolate was cultivated in red seaweed powder medium for 10 days, the yield of reducing sugars was 24 %. As a result, the eco-friendly reuse of red seaweed waste by this isolate appears to be feasible for the production of reducing sugars and could be a valuable resource. To the best of our knowledge, this is the first study to directly demonstrate the ability of Bacillus sp. SYR4 to degrade both agar and carrageenan.

  5. Bacillus lindianensis sp. nov., a novel alkaliphilic and moderately halotolerant bacterium isolated from saline and alkaline soils.

    PubMed

    Dou, Guiming; Liu, Hongcan; He, Wei; Ma, Yuchao

    2016-01-01

    Two alkaliphilic and halotolerant Gram-stain positive, rod-shaped and endospore-forming bacteria, designated strains 12-3(T) and 12-4, were isolated from saline and alkaline soils collected in Lindian county, Heilongjiang province, China. Both strains were observed to grow well at a wide range of temperature and pH values, 10-45 °C and pH 8-12, with optimal growth at 37 °C and pH 9.0, respectively. Growth of the two strains was found to occur at total salt concentrations of 0-12 % (w/v), with an optimum at 4 % (w/v). The G+C contents of the genomic DNA of strains 12-3(T) and 12-4 were determined to be 42.7 and 42.4 mol%, respectively, and the major cellular fatty acids were identified as anteiso-C15:0 and anteiso-C17:0. In isolate 12-3(T), meso-diaminopimelic acid was found to be the diagnostic diamino acid of the cell wall peptidoglycan; diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol were identified as the major cellular polar lipids; and menaquinone-7 was identified as the predominant isoprenoid quinone. Strains 12-3(T) and 12-4 share very close 16S rRNA gene sequence similarity (99.74 %) and their DNA-DNA relatedness was 95.3 ± 0.63 %, meaning that the two strains can be considered to belong to the same species. 16S rRNA gene sequence-based phylogenetic analysis revealed strains 12-3(T) and 12-4 exhibit high similarities to Bacillus pseudofirmus DSM 8715(T) (98.7 %), Bacillus marmarensis DSM 21297(T) (97.2 %) and Bacillus nanhaiisediminis CGMCC 1.10116(T) (97.1 and 97.0 %, respectively). DNA-DNA hybridization values between isolate 12-3(T) and the type strains of closely related Bacillus species were below 30 %. On the basis of the polyphasic evidence presented, strains 12-3(T) and 12-4 are considered to represent a novel species of the genus Bacillus, for which the name Bacillus lindianensis sp. nov. is proposed. The type strain is 12-3(T) (DSM 26864(T) = CGMCC 1.12717(T)). PMID:26604103

  6. A sequential statistical approach towards an optimized production of a broad spectrum bacteriocin substance from a soil bacterium Bacillus sp. YAS 1 strain.

    PubMed

    Embaby, Amira M; Heshmat, Yasmin; Hussein, Ahmed; Marey, Heba S

    2014-01-01

    Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken) was employed to optimize bacteriocin (BAC YAS 1) production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v), incubation time (62 hrs), and agitation speed (207 rpm)) in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora). BAC YAS 1 showed activity over a wide range of pH (1-13) and temperature (45-80 °C). A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium), the plant pathogen (E. amylovora), and the food spoiler (Listeria innocua) was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri). Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries. PMID:25614886

  7. A Sequential Statistical Approach towards an Optimized Production of a Broad Spectrum Bacteriocin Substance from a Soil Bacterium Bacillus sp. YAS 1 Strain

    PubMed Central

    Embaby, Amira M.; Heshmat, Yasmin; Hussein, Ahmed; Marey, Heba S.

    2014-01-01

    Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken) was employed to optimize bacteriocin (BAC YAS 1) production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v), incubation time (62 hrs), and agitation speed (207 rpm)) in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora). BAC YAS 1 showed activity over a wide range of pH (1–13) and temperature (45–80°C). A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium), the plant pathogen (E. amylovora), and the food spoiler (Listeria innocua) was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri). Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries. PMID:25614886

  8. A sequential statistical approach towards an optimized production of a broad spectrum bacteriocin substance from a soil bacterium Bacillus sp. YAS 1 strain.

    PubMed

    Embaby, Amira M; Heshmat, Yasmin; Hussein, Ahmed; Marey, Heba S

    2014-01-01

    Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken) was employed to optimize bacteriocin (BAC YAS 1) production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v), incubation time (62 hrs), and agitation speed (207 rpm)) in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora). BAC YAS 1 showed activity over a wide range of pH (1-13) and temperature (45-80 °C). A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium), the plant pathogen (E. amylovora), and the food spoiler (Listeria innocua) was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri). Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries.

  9. Indirect Oxidation of Co(II) in the Presence of the Marine Mn(II)-Oxidizing Bacterium Bacillus Sp. Strain SG-1

    SciTech Connect

    Murray, K.J.; Webb, S.M.; Bargar, J.R.; Tebo, B.M.; /Scripps Inst. Oceanography /SLAC, SSRL /Oregon Health Sci. U.

    2009-04-29

    Cobalt(II) oxidation in aquatic environments has been shown to be linked to Mn(II) oxidation, a process primarily mediated by bacteria. This work examines the oxidation of Co(II) by the spore-forming marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1, which enzymatically catalyzes the formation of reactive nanoparticulate Mn(IV) oxides. Preparations of these spores were incubated with radiotracers and various amounts of Co(II) and Mn(II), and the rates of Mn(II) and Co(II) oxidation were measured. Inhibition of Mn(II) oxidation by Co(II) and inhibition of Co(II) oxidation by Mn(II) were both found to be competitive. However, from both radiotracer experiments and X-ray spectroscopic measurements, no Co(II) oxidation occurred in the complete absence of Mn(II), suggesting that the Co(II) oxidation observed in these cultures is indirect and that a previous report of enzymatic Co(II) oxidation may have been due to very low levels of contaminating Mn. Our results indicate that the mechanism by which SG-1 oxidizes Co(II) is through the production of the reactive nanoparticulate Mn oxide.

  10. A native plant growth promoting bacterium, Bacillus sp. B55, rescues growth performance of an ethylene-insensitive plant genotype in nature

    PubMed Central

    Meldau, Dorothea G.; Long, Hoang H.; Baldwin, Ian T.

    2012-01-01

    Many plants have intimate relationships with soil microbes, which improve the plant’s growth and fitness through a variety of mechanisms. Bacillus sp. isolates are natural root-associated bacteria, isolated from Nicotiana attenuata plant roots growing in native soils. A particular isolate B55, was found to have dramatic plant growth promotion (PGP) effects on wild type (WT) and transgenic plants impaired in ethylene (ET) perception (35S-etr1), the genotype from which this bacterium was first isolated. B55 not only improves N. attenuata growth under in vitro, glasshouse, and field conditions, but it also “rescues” many of the deleterious phenotypes associated with ET insensitivity. Most notably, B55 dramatically increases the growth and survival of 35S-etr1 plants under field conditions. To our knowledge, this is the first demonstration of a PGP effect in a native plant–microbe association under natural conditions. Our study demonstrates that this facultative mutualistic plant–microbe interaction should be viewed as part of the plant’s extended phenotype. Possible modalities of recruitment and mechanisms of PGP are discussed. PMID:22701461

  11. Isolation of a halophilic bacterium, Bacillus sp. strain NY-6 for organic contaminants removal in saline wastewater on ship

    NASA Astrophysics Data System (ADS)

    Gao, Jie; Yu, Zhenjiang; Zhang, Xiaohui; Zhao, Dan; Zhao, Fangbo

    2013-06-01

    The objective of this research was to examine if certain strains of Bacillus bacteria, could survive in dry powder products and if so, could the bacteria degrade organic contaminants in saline wastewater on a ship. As part of the study, we isolated 7 domesticated strains named NY1, NY2,..., and NY7, the strain NY6 showed to have the best performance for organic matter degradation and could survive in dry powder more than 3 months. NY6 was identified as Bacillus aerius, based on the morphological and physic-chemical properties. Its optimal growth conditions were as follows: salinity was 2%; temperature was 37°C; pH was in 6.5-7.0; best ratio of C: N: P was 100:5:1. The capability of its dry powder for Chemical Oxygen Demand (COD) removal was 800mg COD/g in synthesized marine wastewater with 2% salinity. The spores in the dry powder were 1.972×108 g -1.

  12. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

    PubMed Central

    Chung, Eu Jin; Hossain, Mohammad Tofajjal; Khan, Ajmal; Kim, Kyung Hyun; Jeon, Che Ok; Chung, Young Ryun

    2015-01-01

    7007 and YC7010T represent novel species of the genus Bacillus, for which the name Bacillus oryzicola sp. nov. is proposed. The type strain is YC7010T (= KACC 18228T). Taken together, our findings suggest that novel endophytic Bacillus strains can be used for the biological control of rice diseases. PMID:26060434

  13. Thermophilic biofiltration of H2S and isolation of a thermophilic and heterotrophic H2S-degrading bacterium, Bacillus sp. TSO3.

    PubMed

    Ryu, Hee-Wook; Yoo, Sun-Kyung; Choi, Jung Min; Cho, Kyung-Suk; Cha, Daniel K

    2009-08-30

    Thermophilic biofiltration of H(2)S-containing gas was studied at 60 degrees C using polyurethane (PU) cubes and as a packing material and compost as a source of thermophilic microorganisms. The performance of biofilter was enhanced by pH control and addition of yeast extract (YE). With YE supplement and pH control, H(2)S removal efficiency remained above 95% up to an inlet concentration of 950 ppmv at a space velocity (SV) of 50h(-1) (residence time=1.2 min). H(2)S removal efficiency strongly correlated with the inverse of H(2)S inlet concentrations and gas flow rates. Thermophilic, sulfur-oxidizing bacteria, TSO3, were isolated from the biofilter and identified as Bacillus sp., which had high similarity value (99%) with Bacillus thermoleovorans. The isolate TSO3 was able to degrade H(2)S without a lag period at 60 degrees C in liquid cultures as well as in the biofilter. High H(2)S removal efficiencies were sustained with a periodic addition of YE. This study demonstrated that an application of thermophilic microorganism for a treatment of hot gases may be an economically attractive option since expensive pre-cooling of gases to accommodate mesophilic processes is not required.

  14. Gageopeptins A and B, new inhibitors of zoospore motility of the phytopathogen Phytophthora capsici from a marine-derived bacterium Bacillus sp. 109GGC020.

    PubMed

    Tareq, Fakir Shahidullah; Hasan, Choudhury M; Lee, Hyi-Seung; Lee, Yeon-Ju; Lee, Jong Seok; Surovy, Musrat Zahan; Islam, Md Tofazzal; Shin, Hee Jae

    2015-08-15

    The motility of zoospores is critical in the disease cycles of the peronosporomycetes that cause devastating diseases in plants, fishes, vertebrates, and microbes. In the course of screening for secondary metabolites regulating the motility of zoospores of Phytophthora capsici, we discovered two new inhibitors from the ethyl acetate extract of the fermentation broth of a marine-derived strain Bacillus sp. 109GGC020. The structures of these novel metabolites were elucidated as new cyclic lipopeptides and named gageopeptins A (1) and B (2) by spectroscopic analyses including high resolution MS and extensive 1D and 2D NMR. The stereoconfigurations of 1 and 2 were assigned based on the chemical derivatization studies and reviews of the literature data. Although compounds 1 and 2 impaired the motility of zoospores of P. capsici in dose- and time-dependent manners, compound 1 (IC50 = 1 μg/ml) was an approximately 400-fold stronger motility inhibitor than 2 (IC50 = 400 μg/ml). Interestingly, the zoospores halted by compound 1 were subsequently lysed at higher concentrations (IC50 = 50 μg/ml). Compounds 1 and 2 were also tested against some bacteria and fungi by broth dilution assay, and exhibited moderate antibacterial and good antifungal activities.

  15. Directed Evolution and Structural Analysis of Alkaline Pectate Lyase from the Alkaliphilic Bacterium Bacillus sp. Strain N16-5 To Improve Its Thermostability for Efficient Ramie Degumming

    PubMed Central

    Zhou, Cheng; Ye, Jintong; Xue, Yanfen

    2015-01-01

    Thermostable alkaline pectate lyases have potential applications in the textile industry as an alternative to chemical-based ramie degumming processes. In particular, the alkaline pectate lyase from Bacillus sp. strain N16-5 (BspPelA) has potential for enzymatic ramie degumming because of its high specific activity under extremely alkaline conditions without the requirement for additional Ca2+. However, BspPelA displays poor thermostability and is inactive after incubation at 50°C for only 30 min. Here, directed evolution was used to improve the thermostability of BspPelA for efficient and stable degumming. After two rounds of error-prone PCR and screening of >12,000 mutants, 10 mutants with improved thermostability were obtained. Sequence analysis and site-directed mutagenesis revealed that single E124I, T178A, and S271G substitutions were responsible for improving thermostability. Structural and molecular dynamic simulation analysis indicated that the formation of a hydrophobic cluster and new H-bond networks was the key factor contributing to the improvement in thermostability with these three substitutions. The most thermostable combined mutant, EAET, exhibited a 140-fold increase in the t50 (time at which the enzyme loses 50% of its initial activity) value at 50°C, accompanied by an 84.3% decrease in activity compared with that of wild-type BspPelA, while the most advantageous combined mutant, EA, exhibited a 24-fold increase in the t50 value at 50°C, with a 23.3% increase in activity. Ramie degumming with the EA mutant was more efficient than that with wild-type BspPelA. Collectively, our results suggest that the EA mutant, exhibiting remarkable improvements in thermostability and activity, has the potential for applications in ramie degumming in the textile industry. PMID:26070675

  16. Role of two amino acid residues' insertion on thermal stability of thermophilic α-amylase AMY121 from a deep sea bacterium Bacillus sp. SCSIO 15121.

    PubMed

    Li, Lizhen; Yang, Jian; Li, Jie; Long, Lijuan; Xiao, Yunzhu; Tian, Xinpeng; Wang, Fazuo; Zhang, Si

    2015-05-01

    α-Amylases from Bacillus licheniformis (BLA) and Bacillus amyloliquefaciens (BAA) are both important industrial enzymes with high similarity in structure but significant differences in thermostability. The mechanisms underlying this discrepancy are still poorly understood. Here, we investigated the role of two amino acids' insertion on the thermostability of these two group amylases. A newly obtained thermophilic amylase AMY121 was found much closer to BLA in both primary structure and enzymological properties. Two amino acids' insertion widespread among BAA group α-amylases was identified as one of the key factors leading to the thermostability differences, since thermostability of insertion mutants (AMY121-EG and AMY121-AA) from AMY121 significantly decreased, while that of deletion mutant from BAA increased. Moreover, we proposed that conformational disturbance caused by insertion mutation might weaken the calcium-binding affinity and consequently decrease the enzyme thermostability.

  17. Bacillus nanhaiensis sp. nov., isolated from an oyster.

    PubMed

    Chen, Yi-Guang; Zhang, Li; Zhang, Yu-Qin; He, Jian-Wu; Klenk, Hans-Peter; Tang, Shu-Kun; Zhang, You-Xiang; Li, Wen-Jun

    2011-04-01

    A novel Gram-stain-positive, slightly halophilic, facultatively alkaliphilic, catalase-positive, oxidase-negative, endospore-forming, motile, rod-shaped, aerobic bacterium, designated strain JSM 082006(T), was isolated from an oyster collected from Naozhou Island in the South China Sea. The isolate grew in 0-18 % (w/v) NaCl (optimum, 0.5-4.0 %), at pH 6.0-10.5 (optimum, pH 8.0) and at 15-45 °C (optimum, 30 °C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The major cellular fatty acids were anteiso-C(15 : 0), iso-C(15 : 0) and C(16 : 0). Strain JSM 082006(T) contained MK-7 as the predominant respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as the major polar lipids. The genomic DNA G+C content was 40.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 082006(T) should be assigned to the genus Bacillus and that it was most closely related to the type strains of Bacillus barbaricus (sequence similarity 99.1 %) and Bacillus arsenicus (97.5 %), followed by those of Bacillus rigui (96.6 %) and Bacillus solisalsi (96.1 %). Phylogenetic analysis, DNA-DNA relatedness values, phenotypic characteristics and chemotaxonomic data support the view that strain JSM 082006(T) represents a novel species of the genus Bacillus, for which the name Bacillus nanhaiensis sp. nov. is proposed; the type strain is JSM 082006(T) ( = DSM 23009(T)  = KCTC 13712(T)).

  18. Bacillus nakamurai sp. nov., a black-pigment-producing strain.

    PubMed

    Dunlap, Christopher A; Saunders, Lauren P; Schisler, David A; Leathers, Timothy D; Naeem, Naveed; Cohan, Frederick M; Rooney, Alejandro P

    2016-08-01

    Two isolates of a Gram-stain-positive, strictly aerobic, motile, rod-shaped, endospore-forming bacterium were identified during a survey of the Bacillus diversity of the Agriculture Research Service Culture Collection. These strains were originally isolated from soil and have a phenotype of producing a dark pigment on tryptic soy agar. Phylogenetic analysis of the 16S rRNA gene indicated that these strains were related most closely to Bacillus subtilis subsp. inaquosorum (99.7 % similarity) and Bacillus axarquiensis (99.7 %). In phenotypic characterization, the novel strains were found to grow between 17 and 50 °C and can tolerate up to 9 % (w/v) NaCl. Furthermore, the strains grew in media of pH 5.5-10 (optimal growth at pH 7.0-8.0). The predominant cellular fatty acids were anteiso-C15 : 0 (34.8 %) and iso-C15 : 0 (21.9 %). The cell-wall peptidoglycan contained meso-diaminopimelic acid. A draft genome of both strains was completed. The DNA G+C content was 43.8 mol%. A phylogenomic analysis on the core genome of these two new strains and all members of the Bacillus subtilis group revealed these two strains formed a distinct monophyletic clade with the nearest neighbour Bacillus amyloliquefaciens. DNA-DNA relatedness studies using in silico DNA-DNA hybridizations showed the two strains were conspecific (93.8 %), while values with all other species (<31.5 %) were well below the species threshold of 70 %. Based on the consensus of phylogenetic and phenotypic analyses, these strains are considered to represent a novel species within the genus Bacillus, for which the name Bacillus nakamurai sp. nov. is proposed, with type strain NRRL B-41091T (=CCUG 68786T). PMID:27150918

  19. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Satomi, Masataka; Venkateswaran, Kasthuri

    2004-01-01

    A round-spore-forming Bacillus species that produces an exosporium was isolated from the surface of the Mars Odyssey spacecraft. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and is a Gram-positive, aerobic, rod-shaped, endospore-forming eubacterium. Ultrathin sections of the spores showed the presence of an exosporium, spore coat, cortex and core. 16S rDNA sequence similarities between this strain, Bacillus fusiformis and Bacillus silvestris were approximately 96% and DNA-DNA reassociation values with these two bacilli were 23 and 17%, respectively. Spores of the novel species were resistant to desiccation, H2O2 and UV and gamma radiation. Of all strains tested, the spores of this strain were the most consistently resistant and survived all of the challenges posed, i.e. exposure to conditions of desiccation (100% survival), H2O2 (26% survival), UV radiation (10% survival at 660 J m(-2)) and gamma radiation (0.4% survival). The name proposed for this novel bacterium is Bacillus odysseyi sp. nov.; the type strain is 34hs-1T (=ATCC PTA-4993T=NRRL B-30641T=NBRC 100172T).

  20. Bacillus tianshenii sp. nov., isolated from a marine sediment sample.

    PubMed

    Jiang, Zhao; Zhang, Dao-Feng; Khieu, Thi-Nhan; Son, Chu Ky; Zhang, Xiao-Mei; Cheng, Juan; Tian, Xin-Peng; Zhang, Si; Li, Wen-Jun

    2014-06-01

    A novel Gram-stain-positive, motile, catalase- and oxidase-positive, aerobic, endospore-forming, peritrichous, rod-shaped bacterium, designated YIM M13235(T), was isolated from a marine sediment sample collected from the South China Sea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM M13235(T) belonged to the genus Bacillus. The strain grew optimally at 30 °C, pH 7.0 and in the presence of 2-4% (w/v) NaCl. meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. Strain YIM M13235(T) exhibited a menaquinone system with MK-7, and the major polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unknown phospholipids and one unknown glycolipid. The major fatty acids (>5%) were iso-C(15 : 0), anteiso-C(15 : 0), anteiso-C(17 : 0), iso-C(17 : 1)ω10c and summed feature 4 (anteiso-C(17 : 1) and/or iso-C(17 : 1)). The genomic DNA G+C content was 42.1 mol%. The DNA-DNA relatedness values between strain YIM M13235(T) and its close relatives (16S rRNA gene sequence similarities >97%) including Bacillus halmapalus DSM 8723(T), Bacillus horikoshii DSM 8719(T) and Bacillus zhanjiangensis JSM 099021(T) were 41%, 44% and 44%, respectively. On the basis of genotypic, phenotypic and DNA-DNA relatedness data, it is apparent that strain YIM M13235(T) represents a novel species of the genus Bacillus, for which the name Bacillus tianshenii sp. nov. is proposed. The type strain is YIM M13235(T) ( = DSM 25879(T) = KCTC 33044(T)).

  1. Bacillus vini sp. nov. isolated from alcohol fermentation pit mud.

    PubMed

    Ma, Kedong; Chen, Xiaorong; Guo, Xiang; Wang, Yanwei; Wang, Huimin; Zhou, Shan; Song, Jinlong; Kong, Delong; Zhu, Jie; Dong, Weiwei; He, Mingxiong; Hu, Guoquan; Zhao, Bingqiang; Ruan, Zhiyong

    2016-08-01

    A novel aerobic, Gram-stain-positive, sporogenous, rod-shaped bacterium, designated LAM0415(T), was isolated from an alcohol fermentation pit mud sample collected from Sichuan Luzhou-flavour liquor enterprise in China. The isolate was found to be able to grow at NaCl concentrations of 0-10 % (w/v) (optimum: 1.0 %), 10-50 °C (optimum: 30-35 °C) and pH 3.0-10.0 (optimum: 7.0-8.0). Phylogenetic analysis of 16S rRNA gene sequences indicated that the new isolate belonged to the genus Bacillus and was closely related to Bacillus sporothermodurans DSM 10599(T) and Bacillus oleronius DSM 9356(T), with 98.4 and 97.2 % sequence similarity, respectively. The DNA-DNA hybridization values between strain LAM0415(T) and the two reference strains were 33.3 ± 1.2 and 42.8 ± 0.8 %, respectively. The genomic DNA G+C content was 35.2 mol% as determined by the T m method. The major fatty acids were determined to be iso-C15:0, anteiso-C15:0 and anteiso-C17:0. The predominant menaquinones were identified as MK7 and MK8. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid and four unidentified glycolipids. The diagnostic amino acid of the cell wall peptidoglycan was determined to be meso-diaminopimelic acid. On the basis of its phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0415(T) (=ACCC 06413(T) = JCM 19841(T)) represents the type strain of a novel species of the genus Bacillus, for which the name Bacillus vini sp. nov. is proposed. PMID:27055557

  2. Bacillus panacisoli sp. nov., isolated from ginseng soil.

    PubMed

    Choi, Jung-Hye; Cha, Chang-Jun

    2014-03-01

    A Gram-staining-positive, motile, facultatively anaerobic, endospore-forming and rod-shaped bacterium, designated strain CJ32(T), was isolated from ginseng soil at Geumsan in Korea. The isolate grew optimally at 30 °C, 2% (w/v) NaCl and pH 7.0. Colonies of strain CJ32(T) were beige and circular with an entire margin on LB agar plates. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CJ32(T) was associated with the genus Bacillus and was most closely related to Bacillus graminis YC6957(T) (97.3% similarity) and Bacillus lentus IAM 12466(T) (97.1%). DNA-DNA hybridization with closely related strains was below 31.3%. The major respiratory isoprenoid quinone was MK-7. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The polar lipid profile of strain CJ32(T) consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several unidentified lipids, including phospholipids, aminolipids and aminophospholipids. The predominant fatty acids of strain CJ32(T) were iso-C15:0 and anteiso-C15:0. The G+C content of the genomic DNA was 35.1 mol%. Based on phenotypic, genotypic and phylogenetic data, strain CJ32(T) should be classified within a novel species of the genus Bacillus, for which the name Bacillus panacisoli sp. nov. is proposed. The type strain is strain CJ32(T) ( = KACC 17503(T) = JCM 19226(T)).

  3. Bacillus glycinifermentans sp. nov., isolated from fermented soybean paste.

    PubMed

    Kim, Soo-Jin; Dunlap, Christopher A; Kwon, Soon-Wo; Rooney, Alejandro P

    2015-10-01

    Two independent isolates of a Gram-stain-positive, facultatively anaerobic, motile, rod-shaped bacterium were recovered from cheonggukjang, a Korean fermented soybean paste food product. Preliminary sequencing analysis of the 16S rRNA gene indicated that these strains were related most closely to Bacillus sonorensis KCTC-13918T and Bacillus licheniformis DSM 13T. In phenotypic characterization, the novel strains were found to grow between 15 and 55 °C and to tolerate up to 8 % (w/v) NaCl. Furthermore, the strains grew in media of pH 5-10 (optimal growth at pH 7.0). The predominant cellular fatty acids were anteiso-C15 : 0 and iso-C15 : 0.The isoprenoid quinone was menaquinone 7 (MK-7). The cell-wall peptidoglycan contained meso-diaminopimelic acid. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown glycolipid. Draft genomes of the two strains were determined and in silico DNA-DNA hybridizations with their nearest neighbour (B. sonorensis KCTC-13918T) revealed 29.9 % relatedness for both strains. Phylogenomic analysis of the genomes was conducted with the core genome (799 genes) of all strains in the Bacillus subtilis group and the two strains formed a distinct monophyletic cluster. In addition, the strains differed from the two most closely related species in that they did not metabolize maltose, d-galactose, d-sorbitol or d-gluconic acid. The DNA G+C content was 45.9 mol%. Based upon the consensus of phylogenetic and phenotypic analyses, these strains represent a novel species of the genus Bacillus, for which the name Bacillus glycinifermentans sp. nov. is proposed. The type strain is GO-13T ( = KACC 18425T = NRRL B-65291T). PMID:26297378

  4. Bacillus oceanisediminis sp. nov., isolated from marine sediment.

    PubMed

    Zhang, Jianli; Wang, Jiewei; Fang, Caiyuan; Song, Fei; Xin, Yuhua; Qu, Lei; Ding, Kai

    2010-12-01

    A Gram-stain-positive, spore-forming, rod-shaped and aerobic bacterium was isolated from a sediment sample from the South Sea in China. The isolate, designated H2(T), grew at 4-45 °C (optimum 37 °C) and pH 6-10 (optimum pH 7.0). The cell-wall peptidoglycan contained meso-diaminopimelic acid. The major isoprenoid quinone was MK-7 and the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown aminophospholipid. The major fatty acid was iso-C(15 : 0). The genomic DNA G+C content of strain H2(T) was 44.8mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate formed a monophyletic clade with Bacillus firmus IAM 12464(T). DNA-DNA relatedness between the isolate and B. firmus ATCC 14575(T) was low (27.5 %). Strain H2(T) also had a phenotypic profile that readily distinguished it from its closest phylogenetic neighbours. It is evident from the combination of genotypic and phenotypic data that the organism should be classified in a novel species of the genus Bacillus, for which the name Bacillus oceanisediminis sp. nov. is proposed. The type strain is H2(T) (=CGMCC 1.10115(T) =JCM 16506(T)).

  5. Non contiguous-finished genome sequence and description of Bacillus massiliosenegalensis sp. nov.

    PubMed Central

    Ramasamy, Dhamodharan; Lagier, Jean-Christophe; Gorlas, Aurore; Raoult, Didier

    2013-01-01

    Bacillus massiliosenegalensis strain JC6T sp. nov. is the type strain of Bacillus massiliosenegalensis sp. nov., a new species within the genus Bacillus. This strain was isolated from the fecal flora of a healthy Senegalese patient. B. massiliosenegalensis is an aerobic Gram-positive rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,981,278-bp long genome comprises a 4,957,301-bp chromosome and a 23,977-bp plasmid. The chromosome contains 4,925 protein-coding and 72 RNA genes, including 4 rRNA genes. The plasmid contains 29 protein-coding genes. PMID:23991258

  6. Bacillus luteus sp. nov., isolated from soil.

    PubMed

    Subhash, Y; Sasikala, Ch; Ramana, Ch V

    2014-05-01

    Two bacterial strains (JC167T and JC168) were isolated from a soil sample collected from Mandpam, Tamilnadu, India. Colonies of both strains were orange and cells Gram-stain-positive. Cells were small rods, and formed terminal endospores of ellipsoidal to oval shape. Both strains were positive for catalase, oxidase and hydrolysis of starch/gelatin, and negative for chitin hydrolysis, H2S production, indole production and nitrate reduction activity. Major fatty acids of both strains (>5%) were anteiso-C15:0, iso-C16:0, iso-C15:0, anteiso-C17:0, iso-C14:0 and C16:0 with minor (<5 but >1%) amounts of iso-C17:0, anteiso-C17:0 B/iso-C17:0 I and C16:1ω11c. Diphosphatydilglycerol, phosphatidylethanolamine and phosphatidylglycerol were the major polar lipids of both strains. Cell wall amino acids were L-alanine, D-alanine, D-glutamic acid and meso-diaminopimelic acid. β-Carotene and five unidentified carotenoids were present in both strains. Mean genomic DNA G+C content was 53.4±1 mol% and the two strains were closely related (mean DNA-DNA hybridization>90%). 16S rRNA gene sequence comparisons of both strains indicated that they represent species of the genus Bacillus within the family Bacillaceae of the phylum Firmicutes. Both strains had a sequence similarity of 97.6% with Bacillus saliphilus 6AGT and <96.8% with other members of the genus Bacillus. Sequence similarity between strain JC167T and 168 was 100%. Strain JC167T showed 25.8±1% reassociation (based on DNA-DNA hybridization) with B. saliphilus DSM 15402T (=6AGT). Distinct morphological, physiological and genotypic differences from previously described taxa support the classification of strain JC167T as a representative of a novel species of the genus Bacillus, for which the name Bacillus luteus sp. nov. is proposed. The type strain is JC167T (=KCTC 33100T=LMG 27257T). PMID:24478212

  7. Bacillus vanillea sp. nov., Isolated from the Cured Vanilla Bean.

    PubMed

    Chen, Yong-gan; Gu, Feng-lin; Li, Ji-hua; Xu, Fei; He, Shu-zhen; Fang, Yi-ming

    2015-02-01

    A Gram-positive bacterium, designated strain XY18(T), was isolated from a cured vanilla bean in Hainan province, China. Cells were rod-shaped, endospore producing, and peritrichous flagella. Strain XY18(T) grew at salinities of 0-8 % (w/v) NaCl (optimally 1-4 %), pH 4.0-8.0 (optimally 5.0-7.0 %) and temperature range 20-45 °C (optimally 28-35 °C). The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, and iso-C17:0. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain XY18(T) was a member of the genus Bacillus, and closely related to B. amyloliquefaciens NBRC 15535(T) and B. siamensis PD-A10(T), with 99.1 and 99.2 % sequence similarity, respectively. However, the DNA-DNA hybridization value between strain XY18(T) and B. amyloliquefaciens NBRC 15535(T) was 35.7 %. The genomic DNA G+C content of strain XY18(T) was 46.4 mol%, significantly differed from B. siamensis PD-A10(T) (41.4 %), which was higher than the range of 4 % indicative of species. On the basis of polyphasic taxonomic study, including phenotypic features, chemotaxonomy, and phylogenetic analyses, strain XY18(T) represents a novel species within the genus Bacillus, for which the name Bacillus vanillea sp. nov. is proposed. The type strain is XY18(T) (=CGMCC 8629 = NCCB 100507). PMID:25292250

  8. Bacillus vanillea sp. nov., Isolated from the Cured Vanilla Bean.

    PubMed

    Chen, Yong-gan; Gu, Feng-lin; Li, Ji-hua; Xu, Fei; He, Shu-zhen; Fang, Yi-ming

    2015-02-01

    A Gram-positive bacterium, designated strain XY18(T), was isolated from a cured vanilla bean in Hainan province, China. Cells were rod-shaped, endospore producing, and peritrichous flagella. Strain XY18(T) grew at salinities of 0-8 % (w/v) NaCl (optimally 1-4 %), pH 4.0-8.0 (optimally 5.0-7.0 %) and temperature range 20-45 °C (optimally 28-35 °C). The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, and iso-C17:0. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain XY18(T) was a member of the genus Bacillus, and closely related to B. amyloliquefaciens NBRC 15535(T) and B. siamensis PD-A10(T), with 99.1 and 99.2 % sequence similarity, respectively. However, the DNA-DNA hybridization value between strain XY18(T) and B. amyloliquefaciens NBRC 15535(T) was 35.7 %. The genomic DNA G+C content of strain XY18(T) was 46.4 mol%, significantly differed from B. siamensis PD-A10(T) (41.4 %), which was higher than the range of 4 % indicative of species. On the basis of polyphasic taxonomic study, including phenotypic features, chemotaxonomy, and phylogenetic analyses, strain XY18(T) represents a novel species within the genus Bacillus, for which the name Bacillus vanillea sp. nov. is proposed. The type strain is XY18(T) (=CGMCC 8629 = NCCB 100507).

  9. Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste.

    PubMed

    Dunlap, Christopher A; Kwon, Soon-Wo; Rooney, Alejandro P; Kim, Soo-Jin

    2015-10-01

    An isolate of a Gram-stain-positive, facultatively anaerobic, motile, rod-shaped, endospore-forming bacterium was recovered from soybean-based fermented paste. Phylogenetic analysis of the 16S rRNA gene indicated that the strain was most closely related to Bacillus sonorensis KCTC-13918T (99.5 % similarity) and Bacillus licheniformis DSM 13T (99.4 %). In phenotypic characterization, the novel strain was found to grow at 15–60 °C and to tolerate up to 10 % (w/v) NaCl. Furthermore, the strain grew in media with pH 6–11 (optimal growth at pH 7.0–8.0). The predominant cellular fatty acids were anteiso-C15 : 0 (37.7 %) and iso-C15 : 0 (31.5 %). The predominant isoprenoid quinone was menaquinone 7 (MK-7). The cell-wall peptidoglycan contained meso-diaminopimelic acid. A draft genome sequence of the strain was completed and used for phylogenetic analysis. Phylogenomic analysis of all published genomes of species in the B. licheniformis group revealed that strains belonging to B. licheniformis clustered into two distinct groups, with group 1 consisting of B. licheniformis DSM 13T and 11 other strains and group 2 consisting of KJ-16T and four other strains. The DNA G+C content of strain KJ-16T was 45.9 % (determined from the genome sequence). Strain KJ-16T and another strain from group 2 were subsequently characterized using a polyphasic taxonomic approach and compared with strains from group 1 and another closely related species of the genus Bacillus. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that this strain represents a novel species within the genus Bacillus, for which the name Bacillus paralicheniformis sp. nov. is proposed, with type strain KJ-16T ( = KACC 18426T = NRRL B-65293T). PMID:26296568

  10. Draft genome sequencing of Bacillus sp. strain M2-6, isolated from the roots of Korean ginseng, Panax ginseng C. A. Meyer, after high-hydrostatic-pressure processing.

    PubMed

    Kim, Chong-Tai; Kim, Bong-Soo; Kim, Min-Ji; Park, Bang Heon; Kwon, Sujin; Maeng, Hack Young; Kwak, Jangyul; Chun, Jongsik; Cho, Yong-Jin; Kim, Namsoo; Kim, Chul-Jin; Maeng, Jin-Soo

    2012-12-01

    A bacterium, designated M2-6, was isolated from Korean ginseng, Panax ginseng C. A. Meyer, roots after high-hydrostatic-pressure processing. On the basis of 16 rRNA gene phylogeny, the isolate was presumptively identified as a Bacillus sp. Here we report the draft genome sequence of Bacillus sp. strain M2-6 (= KACC 16563).

  11. Bacillus nanhaiisediminis sp. nov., an alkalitolerant member of Bacillus rRNA group 6.

    PubMed

    Zhang, Jianli; Wang, Jiewei; Song, Fei; Fang, Caiyuan; Xin, Yuhua; Zhang, Yabo

    2011-05-01

    A Gram-stain-positive, rod-shaped bacterium, designated strain NH3(T), was isolated from a sediment sample from the South China Sea and was subjected to a polyphasic taxonomic study. The isolate grew optimally at 37 °C and pH 9. Strain NH3(T) had cell-wall peptidoglycan based on meso-diaminopimelic acid and MK-7 as the predominant menaquinone. The cellular fatty acid profile included significant amounts of iso-C(15 : 0) and iso-C(14 : 0). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content of strain NH3(T) was 40.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain NH3(T) was a member of rRNA group 6 of the genus Bacillus, which includes alkalitolerant, alkaliphilic and halotolerant species. The closest phylogenetic relatives were Bacillus akibai 1139(T) (96.82 % 16S rRNA gene sequence similarity), B. pseudofirmus DSM 8715(T) (96.76 %), B. okhensis Kh10-101(T) (96.76 %) and B. alkalidiazotrophicus MS 6(T) (96.47 %). Strain NH3(T) could be distinguished from these phylogenetically close neighbours based on a number of phenotypic properties. On the basis of phenotypic and chemotaxonomic characteristics and phylogenetic data, we conclude that strain NH3(T) ( = CGMCC 1.10116(T)  = JCM 16507(T)) merits classification as the type strain of a novel species, for which the name Bacillus nanhaiisediminis sp. nov. is proposed.

  12. Bacillus nakamurai sp. nov., a black pigment producing strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two isolates of a Gram-positive, strictly aerobic, motile, rod-shaped, endospore-forming bacterium were identified during a survey of the Bacillus diversity of the Agriculture Research Service Culture Collection. These strains were originally isolated from soil and have a phenotype of producing a da...

  13. Induced adaptation of Bacillus sp. to antimicrobial nanosilver.

    PubMed

    Gunawan, Cindy; Teoh, Wey Yang; Marquis, Christopher P; Amal, Rose

    2013-11-11

    The natural ability of Bacillus sp. to adapt to nanosilver cytotoxicity upon prolonged exposure is reported for the first time. The combined adaptive effects of nanosilver resistance and enhanced growth are induced under various intensities of nanosilver-stimulated cellular oxidative stress, ranging from only minimal cellular redox imbalance to the lethal levels of cellular ROS stimulation. An important implication of the present work is that such adaptive effects lead to the ultimate domination of nanosilver-resistant Bacillus sp. in the microbiota, to which nanosilver cytotoxicity is continuously applied.

  14. Antagonistic action of the bacterium Bacillus licheniformis M-4 toward the amoeba Naegleria fowleri.

    PubMed

    Cordovilla, P; Valdivia, E; Gonzalez-Segura, A; Galvez, A; Martinez-Bueno, M; Maqueda, M

    1993-01-01

    Free-living amoebae belonging to the species Naegleria fowleri are known to be the etiological agents for a form of fulminant meningoencephalitis that is generally fatal (primary amoebic meningoencephalitis). In a broad bacterial screening from soil and water we have isolated three strains (M-4, D-13 and A-12) belonging to the species Bacillus licheniformis that have remarkable amoebicidal activity against Naegleria sp. and also against different Gram-positive and Gram-negative bacteria. Physical-chemical characteristics, partial purification and biological activities of a substance produced by the M-4 strain have been investigated. This substance (m-4) is stable at high temperature (up to 100 degrees C) and extremes of pH (2.5-9.5) and also at -20 degrees C for months. Its production is greatly influenced by oxygenation of the cultures and is probably related to the sporulation process of the bacterium. Scanning electron microscope observations reveal that amoebae are lysed after a few minutes contact with m-4.

  15. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome

    PubMed Central

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E.; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert. PMID:26294639

  16. [Nitrogen removal by Bacillus sp. LY with heterotrophic nitrification ability].

    PubMed

    He, Xia; Zhao, Bin; Lü, Jian; He, Yi-Liang; Jin, Qiang; Zhang, Wen-Ying

    2007-06-01

    Bacillus sp. LY has the ability of nitrogen removal. Under the NH4(+) -N load of 40, 80 and 120 mg/L, after 120 hours culture, the NH4(-) -N removal rate finally was 100%, 85.7%, 73.7%, and the removal rate of TN finally was 76.6%, 53.4%, 64.8%. As the concentration of ammonium improved, the rate of nitrification and the nitrogen removal would decrease under the same concentration of Bacillus sp. LY at the beginning. The concentration of organic material played an important role in the nitrogen removal by Bacillus sp. LY. The low concentration of organic material inhibited the ability of nitrogen removal, and the middle concentration of organic material enhanced its ability of nitrogen removal and reached the optimum nitrogen removal condition, but the high concentration of organic material did not enhance its ability of nitrogen removal again. Organic nitrogen could be transformed to ammonium by Bacillus sp. LY, which was then transformed to N2 through two possible pathways. One pathway was a nitrification process followed by a denitrification process. The other pathway was that ammonium was first oxidized to hydroxylamine, then dehydrogenized to N2 O and finally transformed to N2. All these results may contribute to the establishment of new biology process to remove nitrogen with high efficiency.

  17. Draft Genome Sequence of the Extremely Halophilic Bacillus sp. Strain SB49, Isolated from a Salt Crystallizer Pond of the Little Rann of Kutch, India

    PubMed Central

    Dey, Rinku; Thomas, Manesh; Sherathia, Dharmesh; Dalsania, Trupti; Patel, Ilaxi; Savsani, Kinjal; Ghorai, Sucheta; Vanpariya, Sejal; Sukhadiya, Bhoomika; Mandaliya, Mona; Rupapara, Rupal; Rawal, Priya

    2013-01-01

    Here we report the draft whole-genome sequence (3.72 Mbp) of Bacillus sp. strain SB49, an extremely halophilic bacterium isolated from a salt crystallizer pond of the Little Rann of Kutch in India. Unraveling the genome of this organism will facilitate understanding and isolation of the genes involved in imparting extreme osmotolerance. PMID:24136852

  18. Biosurfactant production by a CO2 sequestering Bacillus sp. strain ISTS2.

    PubMed

    Sundaram, Smita; Thakur, Indu Shekhar

    2015-01-01

    A chemolithotrophic bacterium, Bacillus sp. strain ISTS2, produced biosurfactant when enriched in the chemostat in presence of sodium bicarbonate as carbon source was evaluated for carbon dioxide (CO2) sequestration and biosurfactant production. CO2 sequestration efficiency of the bacterium was determined by enzymatic activity of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Biosurfactant production ability at 100 mM NHCO3 and 5% CO2 was screened by surface and interfacial tension measurement, emulsification stability test, hydrophobicity test, contact angle measurement, bacterial adhesion to hydrocarbon and purified by silica gel column (60-120 mesh). Thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS) showed that the crude biosurfactant of ISTS2 were composed of lipopeptides and free fatty acids (FA) and its hydrophobic fraction contained five kinds of fatty acids (FA) with chain lengths of C14-C19. Thus Bacillus sp. strain IST2 can be used as a cleaner bioprocess for the utilization of industrial CO2 as alternate substrate.

  19. Bacillus abyssalis sp. nov., isolated from a sediment of the South China Sea.

    PubMed

    You, Zhi-Qing; Li, Jie; Qin, Sheng; Tian, Xin-Peng; Wang, Fa-Zuo; Zhang, Si; Li, Wen-Jun

    2013-05-01

    A Gram-positive bacterium, designated SCSIO 15042(T), was isolated from a sediment of the South China Sea and was subjected to a polyphasic taxonomic study. The isolate grew at 20-60 °C, pH 6.0-10.0 and it could grow with up to 10 % (w/v) NaCl. The cell-wall diamino acid was found to be meso-diaminopimelic acid. Polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine and an unknown polar lipid. The only menaquinone was determined to be MK-7. The major fatty acids were identified as C16:1 ω7c/C16:1 ω6c, C16:0, iso-C15:0, anteiso-C15:0, and iso-C16:0. The DNA G+C content of strain SCSIO 15042(T) was determined to be 43.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain SCSIO 15042(T) to the genus Bacillus. Levels of 16S rRNA gene sequence similarities between strain SCSIO 15042(T) and Bacillus herbersteinensis D-1-5a(T), Bacillus infantis SMC 4352-1(T), Bacillus novalis LMG 21837(T) and Bacillus drentensis LMG 21831(T) were 96.2, 96.2, 96.1 and 96.1 %, respectively. Based on the evidence of the present polyphasic study, strain SCSIO 15042(T) is considered to represent a novel species of the genus Bacillus, for which the name Bacillus abyssalis sp. nov. is proposed. The type strain is SCSIO 15042(T) (=DSM 25875(T) = CCTCC AB 2012074(T) = NBRC 109102(T)).

  20. Bacillus zhanjiangensis sp. nov., isolated from an oyster in South China Sea.

    PubMed

    Chen, Yi-Guang; Hu, Song-Ping; Tang, Shu-Kun; He, Jian-Wu; Xiao, Jian-Qing; Zhu, Hong-Yi; Li, Wen-Jun

    2011-03-01

    A novel Gram-stain-positive, motile, catalase- and oxidase-positive, endospore-forming, aerobic, rod-shaped bacterium, designated strain JSM 099021(T), was isolated from an oyster collected from Naozhou Island in the South China Sea. Growth occurred with 0-15% (w/v) NaCl (optimum 2-4%) and at pH 6.0-10.0 (optimum pH 7.5) and at 10-45°C (optimum 30-35°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant respiratory quinone was menaquinone 7 (MK-7) and the major polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The major cellular fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C15:0 and iso-C16:0. The genomic DNA G + C content was 39.5 mol%. A phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 099021(T) belongs to the genus Bacillus, and was most closely related to the type strains of Bacillus halmapalus (sequence similarity 99.0%), Bacillus horikoshii (98.4%) and Bacillus cohnii (98.0%). The combination of phylogenetic analysis, DNA-DNA hybridization, phenotypic characteristics and chemotaxonomic data supported the proposal that strain JSM 099021(T) represents a new species of the genus Bacillus, for which the name Bacillus zhanjiangensis sp. nov. is proposed. The type strain was JSM 099021(T) (=DSM 23010(T) = KCTC 13713(T)).

  1. Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India

    PubMed Central

    Panda, Mrunmaya Kumar; Sahu, Mahesh Kumar; Tayung, Kumananda

    2013-01-01

    Background and Objectives Thermophilic bacteria are less studied but important group of microorganisms due to their ability to produce industrial enzymes. Materials and Methods In this study, thermophilic bacteria were isolated from hot spring of Tarabalo, India. A bacterium that could tolerate high temperatures was characterized by morphology, biochemistry and sequencing of its 16S rRNA gene. The isolate was screened for protease and amylase activity. Phylogenetic affiliations and G+C content of the isolate was studied. Results The bacterium with the ability to tolerate high temperatures was identified as Bacillus sp. both by morphology, biochemistry and sequencing of its 16S rRNA gene. BLAST search analysis of the sequence showed maximum identity with Bacillus amyloliquefaciens (99% similarity). Strain exhibited considerable protease activity. Phylogenetic analysis of the isolate revealed close affiliation with thermophilic Bacillus species. The G+C content was found to be 54.7%. Conclusion The study confirmed that the isolated Bacillus sp. to be a true thermophile and could be a source of thermostable protease which can be exploited for pharmaceutical and industrials applications. PMID:23825735

  2. [Depolymerization of chitosan by chinolytic complex from Bacillus sp. 739].

    PubMed

    Il'ina, A V; Varlamov, V P; Melent'ev, A I; Aktuganov, G E

    2001-01-01

    Low-molecular-weight (3-6 kDa) water-soluble chitosan was obtained by enzymatic depolymerization. Hydrolysis of crab chitosan was induced by O-glycoside hydrolase (EC 3.2.1), an extracellular chitinolytic complex from Bacillus sp. 739. The optimum conditions for hydrolysis were found (sodium-acetate buffer, pH 5.2; 55 degrees C; an enzyme/substrate ratio 4 U/g chitosan; 1 h).

  3. Bacillus crassostreae sp. nov., isolated from an oyster (Crassostrea hongkongensis).

    PubMed

    Chen, Jin-Hua; Tian, Xiang-Rong; Ruan, Ying; Yang, Ling-Ling; He, Ze-Qiang; Tang, Shu-Kun; Li, Wen-Jun; Shi, Huazhong; Chen, Yi-Guang

    2015-05-01

    A novel Gram-stain-positive, motile, catalase- and oxidase-positive, endospore-forming, facultatively anaerobic rod, designated strain JSM 100118(T), was isolated from an oyster (Crassostrea hongkongensis) collected from the tidal flat of Naozhou Island in the South China Sea. Strain JSM 100118(T) was able to grow with 0-13% (w/v) NaCl (optimum 2-5%), at pH 5.5-10.0 (optimum pH 7.5) and at 5-50 °C (optimum 30-35 °C). The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant respiratory quinone was menaquinone-7 and the major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and C16 : 1ω11c. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unknown glycolipid and an unknown phospholipid. The genomic DNA G+C content was 35.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 100118(T) belonged to the genus Bacillus , and was most closely related to Bacillus litoralis SW-211(T) (98.9% 16S rRNA gene sequence similarity), Bacillus halosaccharovorans E33(T) (98.3%), Bacillus niabensis 4T19(T) (97.8%) and Bacillus herbersteinensis D-1,5a(T) (97.1%). The combination of results from the phylogenetic analysis, DNA-DNA hybridization, and phenotypic and chemotaxonomic characterization supported the conclusion that strain JSM 100118(T) represents a novel species of the genus Bacillus , for which the name Bacillus crassostreae sp. nov. is proposed. The type strain is JSM 100118(T) ( = CTCC AB 2010452(T) =DSM 24486(T) =JCM 17523(T)).

  4. Idiomarina maris sp. nov., a marine bacterium isolated from sediment.

    PubMed

    Zhang, Yan-Jiao; Zhang, Xi-Ying; Zhao, Hui-Lin; Zhou, Ming-Yang; Li, Hui-Juan; Gao, Zhao-Ming; Chen, Xiu-Lan; Dang, Hong-Yue; Zhang, Yu-Zhong

    2012-02-01

    A protease-producing marine bacterium, designated CF12-14(T), was isolated from sediment of the South China Sea. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain CF12-14(T) formed a separate lineage within the genus Idiomarina (Gammaproteobacteria). The isolate showed the highest 16S rRNA gene sequence similarity with Idiomarina salinarum ISL-52(T) (94.7 %), Idiomarina seosinensis CL-SP19(T) (94.6 %) and other members of the genus Idiomarina (91.9-94.6 %). Cells were gram-negative, aerobic, flagellated, straight or slightly curved, and often formed buds and prosthecae. Strain CF12-14(T) grew at 4-42 °C (optimum 30-35 °C) and with 0.1-15 % (w/v) NaCl (optimum 2-3 %). The isolate reduced nitrate to nitrite and hydrolysed DNA, but did not produce acids from sugars. The predominant cellular fatty acids were iso-C(15 : 0) (27.4 %), iso-C(17 : 0) (16.0 %) and iso-C(17 : 1)ω9c (15.8 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The major respiratory quinone was ubiquinone 8. The DNA G+C content was 50.4 mol%. The phylogenetic, phenotypic and chemotaxonomic data supported the conclusion that CF12-14(T) represents a novel species of the genus Idiomarina, for which the name Idiomarina maris sp. nov. is proposed. The type strain is CF12-14(T) ( = CCTCC AB 208166(T) = KACC 13974(T)).

  5. Draft Genome Sequence of Bacillus pseudalcaliphilus PN-137T (DSM 8725), an Alkaliphilic Halotolerant Bacterium Isolated from Garden Soils.

    PubMed

    Wang, Jie-Ping; Liu, Bo; Liu, Guo-Hong; Xiao, Rong-Feng; Zheng, Xue-Fang; Shi, Huai; Ge, Ci-Bin

    2015-01-01

    Bacillus pseudalcaliphilus PN-137(T) (DSM 8725) is a Gram-positive, spore-forming, alkaliphilic, and halotolerant bacterium. Here, we report the 4.49-Mb genome sequence of B. pseudalcaliphilus PN-137(T), which will accelerate the application of this alkaliphile and provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria.

  6. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    SciTech Connect

    Xie, Gary; Dalin, Eileen; Tice, Hope; Chertkov, Olga; Land, Miriam L

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  7. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    SciTech Connect

    Rhee, Mun Su; Moritz, Brelan E.; Xie, Gary; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Chertkov, Olga; Brettin, Thomas S; Han, Cliff; Detter, J. Chris; Pitluck, Sam; Land, Miriam L; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, Keelnathan T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  8. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    PubMed Central

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  9. Gracilibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi.

    PubMed

    Oh, Young Joon; Lee, Hae-Won; Lim, Seul Ki; Kwon, Min-Sung; Lee, Jieun; Jang, Ja-Young; Park, Hae Woong; Nam, Young-Do; Seo, Myung-Ji; Choi, Hak-Jong

    2016-09-01

    A novel halophilic bacterium, strain K7(T), was isolated from kimchi, a traditional Korean fermented food. The strain is Gram-positive, motile, and produces terminal endospores. The isolate is facultative aerobic and grows at salinities of 0.0-25.0% (w/v) NaCl (optimum 10-15% NaCl), pH 5.5-8.5 (optimum pH 7.0-7.5), and 15-42°C (optimum 37°C). The predominant isoprenoid quinone in the strain is menaquinone-7 and the peptidoglycan of the strain is meso-diaminopimelic acid. The major fatty acids of the strain are anteisio-C15:0, iso-C15:0, and, C16:0 (other components were < 10.0%), while the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and three unidentified lipids. A phylogenetic analysis of 16S rRNA gene sequence similarity showed that the isolated strain was a cluster of the genus Gracilibacillus. High levels of gene sequence similarity were observed between strain K7(T) and Gracilibacillus orientalis XH-63(T) (96.5%), and between the present strain and Gracilibacillus xinjiangensis (96.5%). The DNA G+C content of this strain is 37.7 mol%. Based on these findings, strain K7(T) is proposed as a novel species: Gracilibacillus kimchii sp. nov. The type strain is K7(T) (KACC 18669(T); JCM 31344(T)).

  10. Gracilibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi.

    PubMed

    Oh, Young Joon; Lee, Hae-Won; Lim, Seul Ki; Kwon, Min-Sung; Lee, Jieun; Jang, Ja-Young; Park, Hae Woong; Nam, Young-Do; Seo, Myung-Ji; Choi, Hak-Jong

    2016-09-01

    A novel halophilic bacterium, strain K7(T), was isolated from kimchi, a traditional Korean fermented food. The strain is Gram-positive, motile, and produces terminal endospores. The isolate is facultative aerobic and grows at salinities of 0.0-25.0% (w/v) NaCl (optimum 10-15% NaCl), pH 5.5-8.5 (optimum pH 7.0-7.5), and 15-42°C (optimum 37°C). The predominant isoprenoid quinone in the strain is menaquinone-7 and the peptidoglycan of the strain is meso-diaminopimelic acid. The major fatty acids of the strain are anteisio-C15:0, iso-C15:0, and, C16:0 (other components were < 10.0%), while the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and three unidentified lipids. A phylogenetic analysis of 16S rRNA gene sequence similarity showed that the isolated strain was a cluster of the genus Gracilibacillus. High levels of gene sequence similarity were observed between strain K7(T) and Gracilibacillus orientalis XH-63(T) (96.5%), and between the present strain and Gracilibacillus xinjiangensis (96.5%). The DNA G+C content of this strain is 37.7 mol%. Based on these findings, strain K7(T) is proposed as a novel species: Gracilibacillus kimchii sp. nov. The type strain is K7(T) (KACC 18669(T); JCM 31344(T)). PMID:27572507

  11. Bacillus iranensis sp. nov., a moderate halophile from a hypersaline lake.

    PubMed

    Bagheri, M; Didari, M; Amoozegar, M A; Schumann, P; Sánchez-Porro, C; Mehrshad, M; Ventosa, A

    2012-04-01

    A Gram-positive, moderately halophilic rod, designated X5BT, was isolated from saline mud of the hypersaline lake Aran-Bidgol in Iran. Strain X5BT was a strictly aerobic, motile bacterium that produced ellipsoidal endospores at a central-subterminal position in non-swollen sporangia. The isolate grew at pH 7.0-10.0 (optimum pH 7.5), at 25-45 °C (optimum 35 °C) and with 2.5-15 % (w/v) NaCl (optimum 5-7.5 %). On the basis of 16S rRNA gene sequences, strain X5BT belonged to the genus Bacillus and showed highest similarity with Bacillus persepolensis HS136T (95.6 % 16S rRNA gene sequence similarity) and Bacillus salarius BH169T (95.5 %). The DNA G+C content was 42.4 mol%. The major cellular fatty acids were anteiso-C15:0 and iso-C15:0 and the polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, three phospholipids and two glycolipids. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid and the isoprenoid quinones were MK-7 (92 %), MK-6 (6 %) and MK-5 (2 %). On the basis of phylogenetic, chemotaxonomic and phenotypic data, a novel species of the genus Bacillus is proposed, with the name Bacillus iranensis sp. nov. The type strain is X5BT (=IBRC 10446T=DSM 23995T).

  12. Draft Genome Sequence of the Versatile Alkane-Degrading Bacterium Aquabacterium sp. Strain NJ1

    PubMed Central

    Shiwa, Yuh; Yoshikawa, Hirofumi; Zylstra, Gerben J.

    2014-01-01

    The draft genome sequence of a soil bacterium, Aquabacterium sp. strain NJ1, capable of utilizing both liquid and solid alkanes, was deciphered. This is the first report of an Aquabacterium genome sequence. PMID:25477416

  13. Kinetics of Molybdenum Reduction to Molybdenum Blue by Bacillus sp. Strain A.rzi

    PubMed Central

    Othman, A. R.; Bakar, N. A.; Halmi, M. I. E.; Johari, W. L. W.; Ahmad, S. A.; Jirangon, H.; Syed, M. A.; Shukor, M. Y.

    2013-01-01

    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30°C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants pmax, Ks, Sm, and n was 5.88 μmole Mo-blue hr−1, 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution. PMID:24369531

  14. Surfactin, Iturin, and Fengycin Biosynthesis by Endophytic Bacillus sp. from Bacopa monnieri.

    PubMed

    Jasim, B; Sreelakshmi, K S; Mathew, Jyothis; Radhakrishnan, E K

    2016-07-01

    Endophytic microorganisms which are ubiquitously present in plants may colonize intracellularly or intercellularly without causing any diseases. By living within the unique chemical environment of a host plant, they produce a vast array of compounds with a wide range of biological activities. Because of this, natural products of endophytic origin have been exploited for antimicrobial, antiviral, anticancer, and antioxidant properties. Also, they can be considered to function as an efficient microbial barrier to protect plants from various pathogens. In the present study, endophytic bacterium BmB 9 with antifungal and antibacterial activity isolated from the stem tissue of Bacopa monnieri was studied for the molecular and chemical basis of its activity. PCR-based genome mining for various biosynthetic gene clusters proved the presence of surfactin, iturin, and type I polyketide synthase (PKS) genes in the isolate. The LC-MS/MS based analysis of the extract further confirmed the production of surfactin derivatives (M + H(+)-1008.6602, 1022.6755), iturin (M + H(+)-1043.5697), and fengycin (M + H(+)-1491.8195, 1477.8055) by the selected bacterial isolate. The 16S rDNA sequence similarity based analysis identified the isolate BmB 9 as Bacillus sp. with 100 % identity to Bacillus sp. LCF1 (KP257289).

  15. Biotransformation of various saccharides and production of exopolymeric substances by cloud-borne Bacillus sp. 3B6.

    PubMed

    Matulová, Mária; Husárová, Slavomíra; Capek, Peter; Sancelme, Martine; Delort, Anne-Marie

    2014-12-16

    The ability of Bacillus sp. 3B6, a bacterial strain isolated from cloudwaters, to biotransform saccharides present in the atmosphere was evaluated using in situ 1D and 2D NMR spectroscopy. Bacillus is one of the genera most frequently described in the air and in atmospheric waters. Sugars present in these environments have a biogenic origin; they include alditols, monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Bacillus sp. 3B6 was able to efficiently metabolize sugars, which could thus provide sources of energy for this bacterium and allow it to live and to be metabolically active in warm clouds. In addition, a number of these saccharides (L-arabitol, D-fructose, sucrose, D-glucose, cellotetraose, cellulose, and starch) were transformed to EPSs (exopolymeric substances). We have clearly identified the structure of two EPSs as 1,6-α-galactan and partially acetylated polyethylene glycol. 1,6-α-Galactan is a newly described polymer. The production of EPSs might protect this bacterium under hostile cloud environment conditions, including low nutrient availability, cold temperature and freeze-thaw processes, UV and radical exposure, and evaporation-condensation processes and thus desiccation and osmolarity changes. EPSs could also have a potential role in atmospheric processes because they can be considered as secondary organic aerosols and efficient cloud condensation nuclei.

  16. Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium.

    PubMed

    Bogdanova, Tat'yana I; Tsaplina, Iraida A; Kondrat'eva, Tamara F; Duda, Vitalii I; Suzina, Natalya E; Melamud, Vitalii S; Tourova, Tat'yana P; Karavaiko, Grigorii I

    2006-05-01

    A thermotolerant, Gram-positive, aerobic, endospore-forming, acidophilic bacterium (strain Kr1T) was isolated from the pulp of a gold-containing sulfide concentrate processed at 40 degrees C in a gold-recovery plant (Siberia). Cells of strain Kr1(T) were straight to slightly curved rods, 0.8-1.2 microm in diameter and 1.5-4.5 microm in length. Strain Kr1T formed spherical and oval, refractile, subterminally located endospores. The temperature range for growth was 20-60 degrees C, with an optimum at 40 degrees C. The pH range for growth on medium containing ferrous iron was 1.2-2.4, with an optimum at pH 2.0; the pH range for growth on medium containing S0 was 2.0-5.0, with an optimum at pH 2.5. Strain Kr1T was mixotrophic, oxidizing ferrous iron, S0, tetrathionate or sulfide minerals as energy sources in the presence of 0.02 % yeast extract or other organic substrates. The G+C content of the DNA of strain Kr1T was 48.2+/-0.5 mol%. Strain Kr1T showed a low level of DNA-DNA reassociation with the known Sulfobacillus species (11-44 %). 16S rRNA gene sequence analysis revealed that Kr1T formed a separate phylogenetic group with a high degree of similarity between the nucleotide sequences (98.3-99.6 %) and 100 % bootstrap support within the phylogenetic Sulfobacillus cluster. On the basis of its physiological properties and the results of phylogenetic analyses, strain Kr1T can be affiliated to a novel species of the genus Sulfobacillus, for which the name Sulfobacillus thermotolerans sp. nov. is proposed. The type strain is Kr1T (=VKM B-2339T=DSM 17362T).

  17. A Novel Hyaluronidase Produced by Bacillus sp. A50

    PubMed Central

    Guo, Xueping; Shi, Yanli; Sheng, Juzheng; Wang, Fengshan

    2014-01-01

    Hyaluronidases are a family of enzymes that degrade hyaluronic acid (hyaluronan, HA) and widely used in many fields. A hyaluronidase producing bacteria strain was screened from the air. 16S ribosomal DNA (16S rDNA) analysis indicated that the strain belonged to the genus Bacillus, and the strain was named as Bacillus sp. A50. This is the first report of a hyaluronidase from Bacillus, which yields unsaturated oligosaccharides as product like other microbial hyaluronate lyases. Under optimized conditions, the yield of hyaluronidase from Bacillus sp. A50 could reach up to 1.5×104 U/mL, suggesting that strain A50 is a good producer of hyaluronidase. The hyaluronidase (HAase-B) was isolated and purified from the bacterial culture, with a specific activity of 1.02×106 U/mg protein and a yield of 25.38%. The optimal temperature and pH of HAase-B were 44°C and pH 6.5, respectively. It was stable at pH 5–6 and at a temperature lower than 45°C. The enzymatic activity could be enhanced by Ca2+, Mg2+, or Ni2+, and inhibited by Zn2+, Cu2+, EDTA, ethylene glycol tetraacetic acid (EGTA), deferoxamine mesylate salt (DFO), triton X-100, Tween 80, or SDS at different levels. Kinetic measurements of HAase-B towards HA gave a Michaelis constant (Km) of 0.02 mg/mL, and a maximum velocity (Vmax) of 0.27 A232/min. HAase-B also showed activity towards chondroitin sulfate A (CSA) with the kinetic parameters, Km and Vmax, 12.30 mg/mL and 0.20 A232/min respectively. Meanwhile, according to the sequences of genomic DNA and HAase-B’s part peptides, a 3,324-bp gene encoding HAase-B was obtained. PMID:24736576

  18. Genome sequence of Citrobacter sp. strain A1, a dye-degrading bacterium.

    PubMed

    Chan, Giek Far; Gan, Han Ming; Rashid, Noor Aini Abdul

    2012-10-01

    Citrobacter sp. strain A1, isolated from a sewage oxidation pond, is a facultative aerobe and mesophilic dye-degrading bacterium. This organism degrades azo dyes efficiently via azo reduction and desulfonation, followed by the successive biotransformation of dye intermediates under an aerobic environment. Here we report the draft genome sequence of Citrobacter sp. A1.

  19. Genome sequence of Pedobacter arcticus sp. nov., a sea ice bacterium isolated from tundra soil.

    PubMed

    Yin, Ye; Yue, Guidong; Gao, Qiang; Wang, Zhiyong; Peng, Fang; Fang, Chengxiang; Yang, Xu; Pan, Li

    2012-12-01

    Pedobacter arcticus sp. nov. was originally isolated from tundra soil collected from Ny-Ålesund, in the Arctic region of Norway. It is a Gram-negative bacterium which shows bleb-shaped appendages on the cell surface. Here, we report the draft annotated genome sequence of Pedobacter arcticus sp. nov., which belongs to the genus Pedobacter.

  20. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607

    NASA Astrophysics Data System (ADS)

    Schiering, N.; Kabsch, W.; Moore, M. J.; Distefano, M. D.; Walsh, C. T.; Pai, E. F.

    1991-07-01

    SEVERAL hundred million tons of toxic mercurials are dispersed in the biosphere1. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase2 and mercuric ion reductase (MerA) 3-5. The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases6, catalyses the reaction NADPH + Hg(II) --> NADP+ + H+Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase7,8 serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure9 and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), pI258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved10,11. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn5Ol and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon11. These domains can be proteolytically cleaved off without changing the catalytic efficiency3. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.

  1. Identification and cloning of a gene encoding dichloromethane dehalogenase from a methylotrophic bacterium, Bacillus circulans WZ-12 CCTCC M 207006.

    PubMed

    Wu, Shijin; Zhang, Huaxing; Yu, Xiang; Chen, Jianmeng

    2009-10-01

    The gene dehalA encoding a novel dichloromethane dehalogenases (DehalA), has been cloned from Bacillus circulans WZ-12 CCTCC M 207006. The open reading frame of dehalA, spanning 864 bp, encoded a 288-amino acid protein that showed 85.76% identity to the dichloromethane dehalogenases of Hyphomicrobium sp. GJ21 with several commonly conserved sequences. These sequences could not be found in putative dichloromethane (DCM) dehalogenases reported from other bacteria and fungi. DehalA was expressed in Escherichia coli BL21 (DE3) from a pET28b(+) expression system and purified. The subunit molecular mass of the recombinant DehalA as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was approximately 33 kDa. Subsequent enzymatic characterization revealed that DehalA was most active in a acidic pH range at 30 degrees , which was quite different from that observed from a facultative bacterium dichloromethane dehalogenases of Methylophilus sp. strain DM11. The Michaelis-Menten constant of DCM dehalogenase was markedly lower than that of standard DCM dehalogenases. PMID:19277720

  2. Bacillus invictae sp. nov., isolated from a health product.

    PubMed

    Branquinho, Raquel; Sousa, Clara; Osório, Hugo; Meirinhos-Soares, Luís; Lopes, João; Carriço, João A; Busse, Hans-Jürgen; Abdulmawjood, Amir; Klein, Günter; Kämpfer, Peter; Pintado, Manuela E; Peixe, Luísa V

    2014-11-01

    A Gram-positive, rod-shaped, endospore-forming Bacillus isolate, Bi.(FFUP1) (T), recovered in Portugal from a health product was subjected to a polyphasic study and compared with the type strains of Bacillus pumilus, Bacillus safensis, Bacillus altitudinis and Bacillus xiamenensis, the phenotypically and genotypically most closely related species. Acid production from cellobiose, D-glucose and D-mannose and absence of acid production from D-arabinose, erythritol, inositol, maltose, mannitol, raffinose, rhamnose, sorbitol, starch and L-tryptophan discriminated this new isolate from the type strains of the most closely related species. Additionally, a significant different protein and carbohydrate signature was evidenced by spectroscopic techniques, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and Fourier transform IR spectroscopy with attenuated total reflectance. Using a chemometric approach, the score plot generated by principal component analysis clearly delineated the isolate as a separate cluster. The quinone system for strain Bi.(FFUP1) (T) comprised predominantly menaquinone MK-7 and major polar lipids were diphosphatidylglycerol, an unidentified phospholipid and an unidentified glycolipid. Strain Bi.(FFUP1) (T) showed ≥ 99% 16S rRNA gene sequence similarity to B. safensis FO-036b(T), B. pumilus (7061(T) and SAFR-032), B. altitudinis 41KF2b(T) and B. xiamenensis HYC-10(T). Differences in strain Bi.FFUP1 (T) gyrB and rpoB sequences in comparison with the most closely related species and DNA-DNA hybridization experiments with Bi.FFUP1 (T) and B. pumilus ATCC 7061(T), B. safensis FO-036b(T), B. altitudinis 41KF2b(T) and B. xiamenensis HYC-10(T) gave relatedness values of 39.6% (reciprocal 38.0%), 49.9% (reciprocal 42.9%), 61.9% (reciprocal 52.2%) and 61.7% (reciprocal 49.2%), respectively, supported the delineation of strain Bi.(FFUP1) (T) as a representative of a novel species of the genus Bacillus, for which the name Bacillus

  3. A comparative genomic analysis of the alkalitolerant soil bacterium Bacillus lehensis G1.

    PubMed

    Noor, Yusuf Muhammad; Samsulrizal, Nurul Hidayah; Jema'on, Noor Azah; Low, Kheng Oon; Ramli, Aizi Nor Mazila; Alias, Noor Izawati; Damis, Siti Intan Rosdianah; Fuzi, Siti Fatimah Zaharah Mohd; Isa, Mohd Noor Mat; Murad, Abdul Munir Abdul; Raih, Mohd Firdaus Mohd; Bakar, Farah Diba Abu; Najimudin, Nazalan; Mahadi, Nor Muhammad; Illias, Rosli Md

    2014-07-25

    Bacillus lehensis G1 is a Gram-positive, moderately alkalitolerant bacterium isolated from soil samples. B. lehensis produces cyclodextrin glucanotransferase (CGTase), an enzyme that has enabled the extensive use of cyclodextrin in foodstuffs, chemicals, and pharmaceuticals. The genome sequence of B. lehensis G1 consists of a single circular 3.99 Mb chromosome containing 4017 protein-coding sequences (CDSs), of which 2818 (70.15%) have assigned biological roles, 936 (23.30%) have conserved domains with unknown functions, and 263 (6.55%) have no match with any protein database. Bacillus clausii KSM-K16 was established as the closest relative to B. lehensis G1 based on gene content similarity and 16S rRNA phylogenetic analysis. A total of 2820 proteins from B. lehensis G1 were found to have orthologues in B. clausii, including sodium-proton antiporters, transport proteins, and proteins involved in ATP synthesis. A comparative analysis of these proteins and those in B. clausii and other alkaliphilic Bacillus species was carried out to investigate their contributions towards the alkalitolerance of the microorganism. The similarities and differences in alkalitolerance-related genes among alkalitolerant/alkaliphilic Bacillus species highlight the complex mechanism of pH homeostasis. The B. lehensis G1 genome was also mined for proteins and enzymes with potential viability for industrial and commercial purposes. PMID:24811681

  4. Genome Sequence of the Boron-Tolerant and -Requiring Bacterium Bacillus boroniphilus

    PubMed Central

    Çöl, Bekir; Özkeserli, Zeynep; Kumar, Dibyendu; Özdağ, Hilal

    2014-01-01

    Bacillus boroniphilus is a highly boron-tolerant bacterium that also requires this element for its growth. The complete genome sequence of B. boroniphilus was determined by a combination of shotgun sequencing and paired-end sequencing using 454 pyrosequencing technology. A total of 84,872,624 reads from shotgun sequencing and a total of 194,092,510 reads from paired-end sequencing were assembled using Newbler 2.3. The estimated size of the draft genome is 5.2 Mb. PMID:24385571

  5. Whole genome shotgun sequence of Bacillus amyloliquefaciens TF28, a biocontrol entophytic bacterium.

    PubMed

    Zhang, Shumei; Jiang, Wei; Li, Jing; Meng, Liqiang; Cao, Xu; Hu, Jihua; Liu, Yushuai; Chen, Jingyu; Sha, Changqing

    2016-01-01

    Bacillus amyloliquefaciens TF28 is a biocontrol endophytic bacterium that is capable of inhibition of a broad range of plant pathogenic fungi. The strain has the potential to be developed into a biocontrol agent for use in agriculture. Here we report the whole-genome shotgun sequence of the strain. The genome size of B. amyloliquefaciens TF28 is 3,987,635 bp which consists of 3754 protein-coding genes, 65 tandem repeat sequences, 47 minisatellite DNA, 2 microsatellite DNA, 63 tRNA, 7rRNA, 6 sRNA, 3 prophage and CRISPR domains. PMID:27688836

  6. Lead biotransformation potential of allochthonous Bacillus sp. SKK11 with sesame oil cake in mine soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was aimed at assessing the potential of allochthonous Bacillus sp. SKK11 and sesame oil cake extract for transformation of Pb in mine soil. The bacteria were isolated from a brackish environment and identified as Bacillus sp. based on partial 16S rDNA sequences. The isolate SKK11 exhibite...

  7. Draft Genome Sequence of Bacillus sp. GZT, a 2,4,6-Tribromophenol-Degrading Strain Isolated from the River Sludge of an Electronic Waste-Dismantling Region

    PubMed Central

    Liang, Zhishu; Li, Guiying; Das, Ranjit

    2016-01-01

    Here, we report the draft genome sequence of Bacillus sp. strain GZT, a 2,4,6-tribromophenol (TBP)-degrading bacterium previously isolated from an electronic waste-dismantling region. The draft genome sequence is 5.18 Mb and has a G+C content of 35.1%. This is the first genome report of a brominated flame retardant-degrading strain. PMID:27257197

  8. Bacillus plakortidis sp. nov. and Bacillus murimartini sp. nov., novel alkalitolerant members of rRNA group 6.

    PubMed

    Borchert, Martin S; Nielsen, Preben; Graeber, Ingeborg; Kaesler, Ines; Szewzyk, Ulrich; Pape, Thomas; Antranikian, Garabed; Schäfer, Thomas

    2007-12-01

    The Gram-positive, alkali- and salt-tolerant marine bacterium strain P203(T) is described together with its closest phylogenetic neighbour, terrestrial isolate LMG 21005(T). Strain P203(T) was isolated from material from the sponge Plakortis simplex that was obtained from the Sula-Ridge, Norwegian Sea. Strain LMG 21005(T) was an undescribed strain that was isolated from a church wall mural in Germany. Strains P203(T) and LMG 21005(T) were identified as novel alkalitolerant members of the Bacillus rRNA group 6 with a 16S rRNA gene sequence similarity of 99.5 %. The closest described neighbour, Bacillus gibsonii DSM 8722(T), showed 99.0 % gene sequence similarity with P203(T) and 98.8 % similarity with strain LMG 21005(T). Despite the high 16S rRNA gene sequence similarity, DNA-DNA cross-hybridization revealed only 25.8-34.1 % similarity amongst the three strains. The DNA G+C contents were 41.1 mol% for strain P203(T) and 39.6 mol% for strain LMG 21005(T). Both strains grew well between pH 7 and pH 11. Strain P203(T) showed growth at moderate temperatures (from 4 to 30 degrees C) and in the presence of up to 12 % (w/v) NaCl at pH 9.7, whereas strain LMG 21005(T) was not salt tolerant (up to 4 % NaCl) and no growth was observed at 4 degrees C. The major fatty acids of strains P203(T), LMG 21005(T) and the type strain of B. gibsonii were the saturated terminally methyl-branched compounds iso-C(15 : 0) (19.8, 15.6 and 28.0 %, respectively) and anteiso-C(15 : 0) (57.1, 48.6 and 45.2 %, respectively). Physiological and biochemical tests allowed genotypic and phenotypic differentiation of strains P203(T) and LMG 21005(T) from the six related Bacillus species with validly published names and supported the proposal of two novel species, Bacillus plakortidis [type strain P203(T) (=DSM 19153(T)=NCIMB 14288(T))] and Bacillus murimartini [type strain LMG 21005(T) (=NCIMB 14102(T))]. PMID:18048744

  9. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus

    PubMed Central

    Sunkar, Swetha; Nachiyar, C Valli

    2012-01-01

    Objective To synthesize the ecofriendly nanoparticles, which is viewed as an alternative to the chemical method which initiated the use of microbes like bacteria and fungi in their synthesis. Methods The current study uses the endophytic bacterium Bacillus cereus isolated from the Garcinia xanthochymus to synthesize the silver nanoparticles (AgNPs). The AgNPs were synthesized by reduction of silver nitrate solution by the endophytic bacterium after incubation for 3-5 d at room temperature. The synthesis was initially observed by colour change from pale white to brown which was confirmed by UV-Vis spectroscopy. The AgNPs were further characterized using FTIR, SEM-EDX and TEM analyses. Results The synthesized nanoparticles were found to be spherical with the size in the range of 20-40 nm which showed a slight aggregation. The energy-dispersive spectra of the nanoparticle dispersion confirmed the presence of elemental silver. The AgNPs were found to have antibacterial activity against a few pathogenic bacteria like Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Klebsiella pneumoniae. Conclusions The endophytic bacteria identified as Bacillus cereus was able to synthesize silver nanoparticles with potential antibacterial activity. PMID:23593575

  10. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium

    PubMed Central

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter

    2016-01-01

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. PMID:27340073

  11. Decolourization of 4-Chloro-2-Nitrophenol by a Soil Bacterium, Bacillus subtilis RKJ 700

    PubMed Central

    Arora, Pankaj Kumar

    2012-01-01

    A 4-Chloro-2-nitrophenol (4C2NP) decolourizing strain RKJ 700 was isolated from soil collected from a pesticide contaminated site of India and identified as Bacillus subtilis on the basis of the 16S rRNA gene sequence analysis. Bacillus subtilis RKJ 700 decolourized 4C2NP up to concentration of 1.5 mM in the presence of additional carbon source. The degradation pathway of 4C2NP was studied and 4-chloro-2-aminophenol, 4-chloro-2-acetaminophenol and 5-chloro-2-methylbenzoxazole (5C2MBZ) were identified as metabolites by high performance liquid chromatography and gas chromatography-mass spectrometry. Resting cell studies showed that Bacillus subtilis RKJ 700 depleted 4C2NP completely with stoichiometric formation of 5C2MBZ. This is the first report of (i) the degradation of 4C2NP at high concentration (1.5 mM) and, (ii) the formation of 5C2MBZ by a soil bacterium. PMID:23251673

  12. Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75.

    PubMed

    Shah, Ziaullah; Krumholz, Lee; Aktas, Deniz Fulya; Hasan, Fariha; Khattak, Mutiullah; Shah, Aamer Ali

    2013-11-01

    A polyurethane (PU) degrading bacterial strain MZA-75 was isolated from soil through enrichment technique. The bacterium was identified through 16S rRNA gene sequencing, the phylogenetic analysis indicated the strain MZA-75 belonged to genus Bacillus having maximum similarity with Bacillus subtilis strain JBE0016. The degradation of PU films by strain MZA-75 in mineral salt medium (MSM) was analyzed by scanning electron microscopy (SEM), fourier transform infra-red spectroscopy (FT-IR) and gel permeation chromatography (GPC). SEM revealed the appearance of widespread cracks on the surface. FTIR spectrum showed decrease in ester functional group. Increase in polydispersity index was observed in GPC, which indicates chain scission as a result of microbial treatment. CO2 evolution and cell growth increased when PU was used as carbon source in MSM in Sturm test. Increase in both cell associated and extracellular esterases was observed in the presence of PU indicated by p-Nitrophenyl acetate (pNPA) hydrolysis assay. Analysis of cell free supernatant by gas chromatography-mass spectrometry (GC-MS) revealed that 1,4-butanediol and adipic acid monomers were produced. Bacillus subtilis strain MZA-75 can degrade the soft segment of polyester polyurethane, unfortunately no information about the fate of hard segment could be obtained. Growth of strain MZA-75 in the presence of these metabolites indicated mineralization of ester hydrolysis products into CO2 and H2O. PMID:23536219

  13. Direct transesterification of Oedogonium sp. oil be using immobilized isolated novel Bacillus sp. lipase.

    PubMed

    Sivaramakrishnan, Ramachandran; Muthukumar, Karuppan

    2014-01-01

    This work emphasizes the potential of the isolated Bacillus sp. lipase for the production of fatty acid methyl ester by the direct transesterification of Oedogonium sp. of macroalgae. Dimethyl carbonate was used as the extraction solvent and also as the reactant. The effect of solvent/algae ratio, water addition, catalyst, temperature, stirring and time on the direct transesterification was studied. The highest fatty acid methyl ester yield obtained under optimum conditions (5 g Oedogonium sp. powder, 7.5 ml of solvent (dimethyl carbonate)/g of algae, 8% catalyst (%wt/wt of oil), distilled water 1% (wt/wt of algae), 36 h, 55°C and 180 rpm) was 82%. Final product was subjected to thermogravimetric analysis and (1)H NMR analysis. The results showed that the isolated enzyme has good potential in catalyzing the direct transesterification of algae, and the dimethyl carbonate did not affect the activity of the isolated lipase. PMID:23890544

  14. Direct transesterification of Oedogonium sp. oil be using immobilized isolated novel Bacillus sp. lipase.

    PubMed

    Sivaramakrishnan, Ramachandran; Muthukumar, Karuppan

    2014-01-01

    This work emphasizes the potential of the isolated Bacillus sp. lipase for the production of fatty acid methyl ester by the direct transesterification of Oedogonium sp. of macroalgae. Dimethyl carbonate was used as the extraction solvent and also as the reactant. The effect of solvent/algae ratio, water addition, catalyst, temperature, stirring and time on the direct transesterification was studied. The highest fatty acid methyl ester yield obtained under optimum conditions (5 g Oedogonium sp. powder, 7.5 ml of solvent (dimethyl carbonate)/g of algae, 8% catalyst (%wt/wt of oil), distilled water 1% (wt/wt of algae), 36 h, 55°C and 180 rpm) was 82%. Final product was subjected to thermogravimetric analysis and (1)H NMR analysis. The results showed that the isolated enzyme has good potential in catalyzing the direct transesterification of algae, and the dimethyl carbonate did not affect the activity of the isolated lipase.

  15. Permanent draft genome of acetaldehyde degradation bacterium, Shewanella sp. YQH10.

    PubMed

    Liu, Yang; Shang, Xiexie; Zeng, Runying

    2015-02-01

    Shewanella sp. YQH10 isolated from mangrove sediment, was a novel species of Shewanella, which has the ability to degrade acetaldehyde. Here, we present an annotated draft genome sequence of Shewanella sp. YQH10, which contains 4,215,794 bp with a G + C content of 48.1%. This information regarding the genetic basis of this bacterium can greatly advance our understanding of the physiology of this species.

  16. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    PubMed

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. PMID:26853478

  17. Complete Genome Sequence of Sphingomonas sp. Strain NIC1, an Efficient Nicotine-Degrading Bacterium

    PubMed Central

    Zhu, Xiongyu; Wang, Weiwei; Xu, Ping

    2016-01-01

    Sphingomonas sp. strain NIC1, an efficient nicotine-degrading bacterium, was isolated from tobacco leaves. Here, we present the complete genome sequence of strain NIC1, which contains one circular chromosome and two circular plasmids. The genomic information will provide insights into its molecular mechanism for nicotine degradation. PMID:27417841

  18. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    PubMed

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments.

  19. Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus.

    PubMed

    Wi, Ah Ram; Jeon, Sung-Jong; Kim, Sunghui; Park, Ha Ju; Kim, Dockyu; Han, Se Jong; Yim, Joung Han; Kim, Han-Woo

    2014-06-01

    A bacterium with lipolytic activity was isolated from the Chukchi Sea within the Arctic Ocean. The lipase BpL5 from the isolate, Bacillus pumilus ArcL5, belongs to subfamily 4 of lipase family I. The optimum pH and temperature of the recombinant enzyme BpL5, as expressed in Escherichia coli, were 9.0 and 20 °C, respectively. The enzyme retained 85 % of its activity at 5 °C. There was a significant difference between temperatures for maximal activity (20 °C) and for protein denaturation (approx. 45 °C). The enzyme preferred middle-chain (C8) p-nitrophenyl substrates. Two mutants, S139A and S139Y, were rationally designed based on the 3D-structure model, and their activities were compared with that of the wild type. The both mutants showed significantly improved activity against tricaprylin.

  20. Biodegradation of nitrobenzene in a lysogeny broth medium by a novel halophilic bacterium Bacillus licheniformis.

    PubMed

    Li, Tian; Deng, Xinping; Wang, Jinjun; Chen, Yucheng; He, Lin; Sun, Yuchuan; Song, Caixia; Zhou, Zhifeng

    2014-12-15

    The Bacillus licheniformis strain YX2, a novel nitrobenzene-degrading halophilic bacterium, was isolated from active sludge obtained from a pesticide factory. Strain YX2 can withstand highly acidic and alkaline conditions and high temperatures. Degradation of nitrobenzene (200mgL(-1)) by YX2 exceeded 70% after 72h in lysogeny broth medium (pH 4-9). Under optimal degradation conditions (33°C, pH 7 in LB medium) YX2 degraded 50, 100, 200, and 600mgL(-1) nitrobenzene within 36, 36, 72, and 156h, respectively. Even in the presence of benzene, phenol or aniline, strain YX2 efficiently degraded nitrobenzene. Furthermore, strain YX2 completely degraded 600mgL(-1) nitrobenzene in 7% NaCl (w/w). Thus, our data show that strain YX2 may have promise for removing nitrobenzene from complex wastewaters with high salinity and variable pH.

  1. Endophytic colonization of balloon flower by antifungal strain Bacillus sp. CY22.

    PubMed

    Cho, Soo Jeong; Lim, Woo Jin; Hong, Su Young; Park, Sang Ryeol; Yun, Han Dae

    2003-10-01

    Endophytic Bacillus sp. CY22 was previously isolated from the root interior of the balloon flower (Platycodon grandiflorum) (Cho et al., Biosci. Biotechnol. Biochem., 66, 1270-1275 (2002)). Three-month-old balloon flower seedlings were inoculated with 10(7) cfu/ml of strain CY22R3, a rifampicin-resistant strain of CY22, and external and internal root colonization was assessed 2 and 4 weeks later. After inoculation, large numbers of bacteria were observed on the root surface by scanning electron microscopy. More detailed studies using optical and transmission electron microscopy confirmed that Bacillus sp. CY22 was endophytically established within intercellular spaces, cortical cells, and aerenchymas of root. Also, Bacillus sp. CY22 showed antibiotic activities against several phytopathogens by producing the antibiotic iturin A. In the pot test, root rot of balloon flower seedlings caused by Rhizoctonia solani was suppressed when the Bacillus sp. CY22R3 was inoculated into the soil.

  2. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3.

    PubMed

    Liu, Min; Luo, Kun; Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity.

  3. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3.

    PubMed

    Liu, Min; Luo, Kun; Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity. PMID:25244184

  4. Isolation, Identification and Characteristics of an Endophytic Quinclorac Degrading Bacterium Bacillus megaterium Q3

    PubMed Central

    Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography–tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity. PMID:25244184

  5. Bacillus sp. mutant for improved biodegradation of Congo red: random mutagenesis approach.

    PubMed

    Gopinath, Kannappan Panchamoorthy; Murugesan, Shreela; Abraham, Joanna; Muthukumar, Karuppan

    2009-12-01

    This study presents the improved biodegradation of Congo red, a toxic azo dye, using mutant Bacillus sp. obtained by random mutagenesis of wild Bacillus sp. using UV and ethidium bromide. The mutants obtained were screened based on their decolorization performance and best mutants were selected for further studies. Better decolorization was observed in the initial Congo red concentration range 100-1000 mg/l for wild species whereas mutant strain was found to offer better decolorization up to 3000 mg/l. Mutant strain offered 12-30% reduction in time required for the complete decolorization by wild strain. The optimum pH and temperature were found to be 7.0 and 37 degrees C, respectively. Two efficient strains such as Bacillus sp. ACT 1 and Bacillus sp. ACT 2 were isolated from the various mutants obtained. Bacillus sp. ACT 2 showed improved enzymatic production and Bacillus sp. ACT 1 showed improved growth compared to wild strain. The enzyme responsible for the degradation was found to be azoreductase by SDS-PAGE and about 53% increased production of enzyme was achieved with mutant species. The experimental data were modeled using growth and substrate inhibition models.

  6. Properties of an amylase from thermophilic Bacillus SP

    PubMed Central

    de Carvalho, Raquel Vieira; Côrrea, Thamy Lívia Ribeiro; da Silva, Júlia Caroline Matos; de Oliveira Mansur, Luciana Ribeiro Coutinho; Martins, Meire Lelis Leal

    2008-01-01

    α-Amylase production by thermophilic Bacillus sp strain SMIA-2 cultivated in liquid cultures containing soluble starch as a carbon source and supplemented with 0.05% whey protein and 0.2% peptone reached a maximum activity at 32 h, with levels of 37 U/mL. Studies on the amylase characterization revealed that the optimum temperature of this enzyme was 90°C. The enzyme was stable for 1 h at temperatures ranging from 40-50°C while at 90°C, 66% of its maximum activity was lost. However, in the presence of 5 mM CaCl2, the enzyme was stable at 90°C for 30 min and retained about 58% residual activity after 1 h. The optimum pH of the enzyme was found to be 8.5. After incubation of enzyme for 2 h at pH 9.5 and 11.0 was observed a decrease of about 6.3% and 16.5% of its original activity. At pH 6.0 the enzyme lost about 36% of its original activity. The enzyme was strongly inhibited by Co2+, Cu2+ and Ba2+, but less affected by Mg2+, Na+ and K+. In the presence of 2.0 M NaCl, 63% of amylase activity was retained after 2 h incubation at 45°C. The amylase exhibited more than 70% activity when incubated for 1 h at 50°C with sodium dodecyl sulphate. However, very little residual activity was obtained with sodium hypochlorite and with hydrogen peroxide the enzyme was completely inhibited. The compatibility of Bacillus sp SMIA-2 amylase with certain commercial detergents was shown to be good as the enzyme retained 86%, 85% and 75% of its activity after 20 min incubation at 50°C in the presence of the detergent brands Omo®, Campeiro® and Tide®, respectively. PMID:24031188

  7. Gene identification and molecular characterization of solvent stable protease from a moderately haloalkaliphilic bacterium, Geomicrobium sp. EMB2.

    PubMed

    Karan, Ram; Singh, Raj Kumar Mohan; Kapoor, Sanjay; Khare, S K

    2011-02-01

    Cloning and characterization of the gene encoding a solvent-tolerant protease from the haloalkaliphilic bacterium Geomicrobium sp. EMB2 are described. Primers designed based on the N-terminal amino acid sequence of the purified EMB2 protease helped in the amplification of a 1,505-bp open reading frame that had a coding potential of a 42.7-kDa polypeptide. The deduced EMB2 protein contained a 35.4-kDa mature protein of 311 residues, with a high proportion of acidic amino acid residues. Phylogenetic analysis placed the EMB2 gene close to a known serine protease from Bacillus clausii KSM-K16. Primary sequence analysis indicated a hydrophobic inclination of the protein; and the 3D structure modeling elucidated a relatively higher percentage of small (glycine, alanine, and valine) and borderline (serine and threonine) hydrophobic residues on its surface. The structure analysis also highlighted enrichment of acidic residues at the cost of basic residues. The study indicated that solvent and salt stabilities in Geomicrobium sp. protease may be accorded to different structural features; that is, the presence of a number of small hydrophobic amino acid residues on the surface and a higher content of acidic amino acid residues, respectively. PMID:21364294

  8. A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms

    PubMed Central

    Seghal Kiran, George; Nishanth Lipton, Anuj; Kennedy, Jonathan; Dobson, Alan DW; Selvin, Joseph

    2014-01-01

    A halotolerant thermostable lipase was purified and characterized from the marine bacterium Oceanobacillus sp. PUMB02. This lipase displayed a high degree of stability over a wide range of conditions including pH, salinity, and temperature. It was optimally active at 30 °C and pH 8.0 respectively and was stable at higher temperatures (50–70 °C) and alkaline pH. The molecular mass of the lipase was approximately 31 kDa based on SDS-PAGE and MALDI-ToF fingerprint analysis. Conditions for enhanced production of lipase by Oceanobacillus sp. PUMB02 were attained in response surface method-guided optimization with factors such as olive oil, sucrose, potassium chromate, and NaCl being evaluated, resulting in levels of 58.84 U/ml being achieved. The biofilm disruption potential of the PUMB02 lipase was evaluated and compared with a marine sponge metagenome derived halotolerant lipase Lpc53E1. Good biofilm disruption activity was observed with both lipases against potential food pathogens such as Bacillus cereus MTCC1272, Listeria sp. MTCC1143, Serratia sp. MTCC4822, Escherichia coli MTCC443, Pseudomonas fluorescens MTCC1748, and Vibrio parahemolyticus MTCC459. Phase contrast microscopy, scanning electron microscopy, and confocal laser scanning microscopy showed very effective disruption of pathogenic biofilms. This study reveals that marine derived hydrolytic enzymes such as lipases may have potential utility in inhibiting biofilm formation in a food processing environment and is the first report of the potential application of lipases from the genus Oceanobacillus in biofilm disruption strategies. PMID:25482232

  9. [Characteristics study of extracellular active substance of Bacillus sp. B1 on Phaeocystis globosa].

    PubMed

    Li, Qiang; Zhao, Ling; Yin, Ping-He

    2012-03-01

    The algicidal bacterium named B1 which was identified as Bacillus sp. was isolated from red tide water in Xiangzhou shipside of Zhuhai. The algicidal mode of algae-lysis bacterium B1 and the microstructure of algal cells in the algae-lysing process were studied. In order to explore the properties of extracellular algicidal substances, the sterile condensed bacteria-free filtrate was dialysed, sedimentated by ethanol, extracted by organic solvents and exposed in different heat and pH variations. The results showed that the sterile condensed bacteria-free filtrate could effectively dissolve Phaeocystis globosa (P. globosa), the removal rate was 94.9%, B1 excreted algae-lysing substances to inhibit the growth of algae indirectly. Algicidal process under the visual field of microscope demonstrated that the alga cell rounded and the cell wall lost integrity after 16 h, the algae cell lysed and cellular substances released after 56 h. The molecular weight of the extracellular algae-lysing components of B1 are less than 3 500, the algicidal substances have strong polarity and heat-tolerant, which still had a strong algae-lysing effect after being treated at 121 degrees C, and the removal rate was 92.6%. The algae-lysing ability was stronger while the pH value was kept at 9.0, ethanol can separate extracellular algae-lysing components from other components efficiently. The algae-lysing components may be non-bioactive molecules which contain acidic or alkaline groups, and may not be protein, nuclear acid and polysaccharides.

  10. Mechanism of Algal Aggregation by Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2014-01-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting. PMID:24771029

  11. Anaerobic utilization of phosphite and hypophosphite by Bacillus sp.

    PubMed Central

    Foster, T L; Winans, L; Helms, S J

    1978-01-01

    A Bacillus sp. capable of utilizing phosphite and hypophosphite under anaerobic conditions was isolated from Cape Canerval soil samples. The organism was isolated on a glucose-mineral salts medium with phosphate deleted. Anaerobic cultivation of this isolate resulted in decreases in the hypophosphite or phosphite concentration, increases in turbidity, cell count, and dry-cell weight, and decreases in pH and glucose concentration. The optimum hypophosphite concentration for this isolate was 60 microgram/ml, whereas the optimum phosphate concentration was greater than 1,000 microgram/ml, suggesting that higher concentrations of hypophosphite may be toxic to this isolate. Hypophosphite or phosphite utilization was accompanied by little or no detectable accumulation of phosphate in the medium, and 32P-labeled hypophosphite was incorporated into the cell as organic phosphate. When phosphate was present in the medium, the isolate failed to metabolize phosphite. In the presence of phosphite and hypophosphite, the isolate first utilized phosphite and then hypophosphite. PMID:26310

  12. Biodegradation and metabolic pathway of β-chlorinated aliphatic acid in Bacillus sp. CGMCC no. 4196.

    PubMed

    Lin, Chunjiao; Yang, Lirong; Xu, Gang; Wu, Jianping

    2011-04-01

    In this study, a bacterial Bacillus sp. CGMCC no. 4196 was isolated from mud. This strain exhibited the ability to degrade high concentration of 3-chloropropionate (3-CPA, 120 mM) or 3-chlorobutyrate (30 mM), but not chloroacetate or 2-chloropropionate (2-CPA). The growing cells, resting cells, and cell-free extracts from this bacterium had the capability of 3-CPA degradation. The results indicated that the optimum biocatalyst for 3-CPA biodegradation was the resting cells. The 3-CPA biodegradation pathway was further studied through the metabolites and critical enzymes analysis by HPLC, LC-MS, and colorimetric method. The results demonstrated that the metabolites of 3-CPA were 3-hydroxypropionic acid (3-HP) and malonic acid semialdehyde, and the critical enzymes were 3-CPA dehalogenase and 3-HP dehydroxygenase. Thus, the mechanism of the dehalogenase-catalyzed reaction was inferred as hydrolytic dehalogenation which was coenzyme A-independent and oxygen-independent. Finally, the pathway of β-chlorinated aliphatic acid biodegradation could be concluded as follows: the β-chlorinated acid is first hydrolytically dehalogenated to the β-hydroxyl aliphatic acid, and the hydroxyl aliphatic acid is oxidized to β-carbonyl aliphatic acid by β-hydroxy aliphatic acid dehydroxygenase. It is the first report that 3-HP was produced from 3-CPA by β-chlorinated aliphatic acid dehalogenase.

  13. Yersinia ruckeri sp. nov., the redmouth (RM) bacterium

    USGS Publications Warehouse

    Ewing, W.H.; Ross, A.J.; Brenner, Don J.; Fanning, G. R.

    1978-01-01

    Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine (G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteriaceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed. Strain 2396-61 (= ATCC 29473) is designated the type strain of the species.

  14. Coarse grained simulation reveals antifreeze properties of hyperactive antifreeze protein from Antarctic bacterium Colwellia sp.

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung; Van, Thanh Dac; Le, Ly

    2015-10-01

    The novel hyperactive antifreeze protein (AFP) of Antarctic sea ice bacterium Colwellia sp. provides a target for studying the protection of psychrophilic microgoranisms against freezing environment. Interestingly, the Colwellia sp. hyperactive antifreeze protein (ColAFP) was crystallized without the structural dynamic characteristics. Here, the result indicated, through coarse grained simulation of ColAFP under various subfreezing temperature, that ColAFP remains active at temperature of equal and greater than 275 K (∼2 °C). Extensive simulation analyses also revealed the adaptive mechanism of ColAFP in subfreezing environment. Our result provides a structural dynamic understanding of the ColAFP.

  15. Draft genome sequence of algal polysaccharides degradation bacterium, Flammeovirga sp. OC4.

    PubMed

    Liu, Yang; Yi, Zhiwei; Cai, Yaping; Zeng, Runying

    2015-06-01

    Flammeovirga sp. OC4 was isolated from seawater sample of the South China Sea using the method of in-situ-enrichment, which has the ability to degrade algal polysaccharides. Colonies are reddish orange in the exponential growth phase and turn white in the late stationary growth phase, which is the indicator of the bacterial death. Here, we present an annotated draft genome sequence of Flammeovirga sp. OC4, which contains 8,069,312bp with a G+C content of 34.8%. This information regarding the genetic basis of this bacterium can greatly advance our understanding of algal polysaccharides-degrading mechanism and the physiology of this species.

  16. Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06.

    PubMed

    Liu, Yang; Wang, Runping; Zeng, Runying

    2014-12-01

    Rhizobium sp. MGL06, the first Rhizobium isolate from a marine environment, is a malachite-green-tolerant bacterium with a broader salinity tolerance (range: 0.5% to 9%) than other rhizobia. This study sequences and annotates the draft genome sequence of this strain. Genome sequence information provides a basis for analyzing the malachite green tolerance, broad salinity adaptation, nitrogen fixation properties, and taxonomic classification of the isolate.

  17. Biodegradation of exploded cotton stalk by Bacillus sp.

    PubMed

    Zheng, Lianshuang; Han, Xiaofang; Du, Yumin

    2003-10-01

    The exploded bast, branch and stem of cotton stalk were degraded by alkalophilic Bacillus NT-19, with weight losses of 24%, 20% and 14%, respectively, after 14 d. Compared with a white-rot fungus (Phanerochaete chrysosporium), Bacillus NT- 19 preferentially degraded the non-cellulose components of cotton stem. The relative degree of crystallinity of bast fibers decreased by 8% and the middle lamella was partially removed from the fiber bundle by the Bacillus. PMID:14626420

  18. Biodegradation of exploded cotton stalk by Bacillus sp.

    PubMed

    Zheng, Lianshuang; Han, Xiaofang; Du, Yumin

    2003-10-01

    The exploded bast, branch and stem of cotton stalk were degraded by alkalophilic Bacillus NT-19, with weight losses of 24%, 20% and 14%, respectively, after 14 d. Compared with a white-rot fungus (Phanerochaete chrysosporium), Bacillus NT- 19 preferentially degraded the non-cellulose components of cotton stem. The relative degree of crystallinity of bast fibers decreased by 8% and the middle lamella was partially removed from the fiber bundle by the Bacillus.

  19. Pseudomonas prosekii sp. nov., a novel psychrotrophic bacterium from Antarctica.

    PubMed

    Kosina, Marcel; Barták, Miloš; Mašlaňová, Ivana; Pascutti, Andrea Vávrová; Sedo, Ondrej; Lexa, Matej; Sedláček, Ivo

    2013-12-01

    During Czech expeditions at James Ross Island, Antarctica, in the years 2007-2009, the bacterial diversity of the genus Pseudomonas was studied. Twelve fluorescent Pseudomonas strains were isolated from various samples and were subjected to a detailed taxonomic study. A polyphasic approach included genotypic and phenotypic analyses. The genotypic analysis involved sequencing of rrs, rpoB and rpoD genes, DNA-DNA hybridization (DDH) studies as well as manual ribotyping using HindIII endonuclease. The phenotypic characterization included conventional tests as well as biotyping using the Biolog system, protein profiling by SDS-PAGE, and MALDI-TOF MS analysis. Our taxonomic study revealed that all isolates belonged to the same Pseudomonas species with psychrotrophic growth not exceeding 37 °C. The cultures showed a unique position among the phylogenetically related pseudomonads. DDH experiment between the proposed type strain of the antarctic isolates and the closest neighbour P. arsenicoxydans CCM 8423(T) showed only 40.9-50.1 % similarity, thus confirming that the characterized strains do not belong to the P. arsenicoxydans species. According to the results obtained we propose the name P. prosekii sp. nov. for this novel Pseudomonas taxon with type strain AN/28/1(T) (=CCM 7990(T) and LMG 26867(T)). PMID:23794042

  20. Draft Genome Sequence of Arthrobacter sp. Strain SPG23, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium

    PubMed Central

    Gkorezis, Panagiotis; Bottos, Eric M.; Van Hamme, Jonathan D.; Thijs, Sofie; Rineau, Francois; Balseiro-Romero, Maria; Weyens, Nele

    2015-01-01

    We report here the 4.7-Mb draft genome of Arthrobacter sp. SPG23, a hydrocarbonoclastic Gram-positive bacterium belonging to the Actinobacteria, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain SPG23 is a potent plant growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. PMID:26701084

  1. Analysis of N-acetylglucosamine metabolism in the marine bacterium Pirellula sp. strain 1 by a proteomic approach.

    PubMed

    Rabus, Ralf; Gade, Dörte; Helbig, Roger; Bauer, Margarete; Glöckner, Frank Oliver; Kube, Michael; Schlesner, Heinz; Reinhardt, Richard; Amann, Rudolf

    2002-06-01

    Pirellula sp. strain 1 is a marine bacterium that can grow with the chitin monomer N-acetylglucosamine as sole source of carbon and nitrogen under aerobic conditions, and that is a member of the bacterial phylum Planctomycetes. As a basis for the proteomic studies we quantified growth of strain 1 with N-acetylglucosamine and glucose, revealing doubling times of 14 and 10 h, respectively. Studies with dense cell suspensions indicated that the capacity to degrade N-acetylglucosamine and glucose may not be tightly regulated. Proteins from soluble extracts prepared from exponential cultures grown either with N-acetylglucosamine or glucose were separated by two-dimensional gel electrophoresis and visualized by fluorescence staining (Sypro Ruby). Analysis of the protein patterns revealed the presence of several protein spots only detectable in soluble extracts of N-acetylglucosamine grown cells. Determination of amino acid sequences and peptide mass fingerprints from tryptic fragments of the most abundant one of these spots allowed the identification of the coding gene on the genomic sequence of Pirellula sp. strain 1. This gene showed similarities to a dehydrogenase from Bacillus subtilis, and is closely located to a gene similar to glucosamine-6-phosphate isomerase from B. subtilis. Genes of two other proteins expressed during growth on N-acetylglucosamine as well as on glucose were also identified and found to be similar to a glyceraldehyde-3-phosphate-dehydrogenase and a NADH-dehydrogenase, respectively. Thus the coding genes of three proteins expressed during growth of Pirellula sp. strain 1 on carbohydrates were identified and related by sequence similarity to carbohydrate metabolism.

  2. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  3. Degradation of 3-Phenoxybenzoic Acid by a Bacillus sp

    PubMed Central

    Chen, Shaohua; Hu, Wei; Xiao, Ying; Deng, Yinyue; Jia, Jianwen; Hu, Meiying

    2012-01-01

    3-Phenoxybenzoic acid (3-PBA) is of great environmental concern with regards to endocrine disrupting activity and widespread occurrence in water and soil, yet little is known about microbial degradation in contaminated regions. We report here that a new bacterial strain isolated from soil, designated DG-02, was shown to degrade 95.6% of 50 mg·L−1 3-PBA within 72 h in mineral salt medium (MSM). Strain DG-02 was identified as Bacillus sp. based on the morphology, physio-biochemical tests and 16S rRNA sequence. The optimum conditions for 3-PBA degradation were determined to be 30.9°C and pH 7.7 using response surface methodology (RSM). The isolate converted 3-PBA to produce 3-(2-methoxyphenoxy) benzoic acid, protocatechuate, phenol, and 3,4-dihydroxy phenol, and subsequently transformed these compounds with a qmax, Ks and Ki of 0.8615 h−1, 626.7842 mg·L−1 and 6.7586 mg·L−1, respectively. A novel microbial metabolic pathway for 3-PBA was proposed on the basis of these metabolites. Inoculation of strain DG-02 resulted in a higher degradation rate on 3-PBA than that observed in the non-inoculated soil. Moreover, the degradation process followed the first-order kinetics, and the half-life (t1/2) for 3-PBA was greatly reduced as compared to the non-inoculated control. This study highlights an important potential application of strain DG-02 for the in situ bioremediation of 3-PBA contaminated environments. PMID:23226289

  4. Chitinophaga jiangningensis sp. nov., a mineral-weathering bacterium.

    PubMed

    Wang, Qi; Cheng, Cheng; He, Lin-Yan; Huang, Zhi; Sheng, Xia-Fang

    2014-01-01

    A Gram-stain-negative, rod-shaped bacterial strain, JN53(T), was isolated from the surfaces of weathered rock (potassic trachyte) from Nanjing, Jiangsu Province, PR China. Strain JN53(T) grew optimally at 30 °C, pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JN53(T) belonged to the genus Chitinophaga in the family Chitinophagaceae. It was most closely related to Chitinophaga terrae KP01(T) (97.3 % 16S rRNA gene sequence similarity), Chitinophaga eiseniae YC6729(T) (96.3 %). Strain JN53(T) contained MK-7 as the major menaquinone and homospermidine as the major polyamine. The main fatty acids of strain JN53(T) were iso-C15 : 0, C16 : 1ω5c, C16 : 1ω7c and/or C16 : 1ω6c (summed feature 3), iso-C17 : 0 3-OH, C16 : 0, iso-C15 : 0 3-OH and C16 : 0 3-OH. The polar lipid profile contained phosphatidylethanolamine, unknown aminolipids and unknown lipids. The total DNA G+C content of strain JN53(T) was 49.7 mol%. The low level of DNA-DNA relatedness to other species of the genus Chitinophaga and the many phenotypic properties that distinguished strain JN53(T) from recognized species of this genus demonstrated that isolate JN53(T) should be classified as representing a novel species of the genus Chitinophaga, for which the name Chitinophaga jiangningensis sp. nov. is proposed. The type strain is JN53(T) ( = CCTCC AB 2013166(T) = JCM 19354(T)).

  5. Chitinophaga jiangningensis sp. nov., a mineral-weathering bacterium.

    PubMed

    Wang, Qi; Cheng, Cheng; He, Lin-Yan; Huang, Zhi; Sheng, Xia-Fang

    2014-01-01

    A Gram-stain-negative, rod-shaped bacterial strain, JN53(T), was isolated from the surfaces of weathered rock (potassic trachyte) from Nanjing, Jiangsu Province, PR China. Strain JN53(T) grew optimally at 30 °C, pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JN53(T) belonged to the genus Chitinophaga in the family Chitinophagaceae. It was most closely related to Chitinophaga terrae KP01(T) (97.3 % 16S rRNA gene sequence similarity), Chitinophaga eiseniae YC6729(T) (96.3 %). Strain JN53(T) contained MK-7 as the major menaquinone and homospermidine as the major polyamine. The main fatty acids of strain JN53(T) were iso-C15 : 0, C16 : 1ω5c, C16 : 1ω7c and/or C16 : 1ω6c (summed feature 3), iso-C17 : 0 3-OH, C16 : 0, iso-C15 : 0 3-OH and C16 : 0 3-OH. The polar lipid profile contained phosphatidylethanolamine, unknown aminolipids and unknown lipids. The total DNA G+C content of strain JN53(T) was 49.7 mol%. The low level of DNA-DNA relatedness to other species of the genus Chitinophaga and the many phenotypic properties that distinguished strain JN53(T) from recognized species of this genus demonstrated that isolate JN53(T) should be classified as representing a novel species of the genus Chitinophaga, for which the name Chitinophaga jiangningensis sp. nov. is proposed. The type strain is JN53(T) ( = CCTCC AB 2013166(T) = JCM 19354(T)). PMID:24052630

  6. Flavobacterium tistrianum sp. nov., a gliding bacterium isolated from soil.

    PubMed

    Suwannachart, Chatrudee; Rueangyotchanthana, Kanjana; Srichuay, Suksan; Pheng, Sophea; Fungsin, Bundit; Phoonsiri, Chantara; Kim, Song-Gun

    2016-06-01

    A novel gliding bacterial strain, GB 56.1T, was obtained from soil at the Sakaerat Biosphere Reserve, in Nakhon Ratchasima province, Thailand; the strain was characterized using a polyphasic approach. Cells were Gram-stain-negative, yellow, rod shaped and devoid of flagella, but showed gliding motility. Phylogenetic analysis based on 16S rRNA gene sequences found that GB 56.1T was a member of the genus Flavobacterium and that the strain shared the highest sequence similarities with Flavobacterium nitrogenifigens (98.4 %), Flavobacterium anhuiense(98.3 %) and Flavobacterium ginsenosidimutans (97.9 %). The similarities of the sequences of all other species of the genus Flavobacterium were below 97.4 %. The major respiratory quinone of strain GB 56.1T was MK-6; fatty acids were iso-C15:0, C16:1ω6c/C16:1ω7c, C16:0 and C16:0 3-OH. The major polar lipids were phosphatidylethanolamine, phosphatidylserine, an unidentified amino lipid and four polar lipids. The DNA G+C content of this strain was 34.2 mol%. The DNA-DNA relatedness of GB 56.1T was highest against F.anhuiense, with a value of 37.6 %. On the basis of morphological, physiological and chemotaxonomic characteristics, DNA-DNA hybridization relatedness and 16S rRNA gene sequence analysis, we conclude that strain GB 56.1T represents a novel species, for which the name Flavobacterium tistrianum sp. nov. is proposed. The type strain is GB 56.1T (=TISTR 1612T =KCTC 42679T). PMID:26970735

  7. Lysobacter agri sp. nov., a bacterium isolated from soil.

    PubMed

    Singh, Hina; Won, KyungHwa; Du, Juan; Yang, Jung-Eun; Akter, Shahina; Kim, Ki-Young; Yi, Tae-Hoo

    2015-09-01

    A bacterial strain, designated as THG-SKA3(T), was isolated from field soil of Kyung Hee University, South Korea. Cells of the isolate were observed to be Gram-negative, aerobic, rod-shaped and motile by gliding. The strain was found to grow optimally at 28 °C, at pH 7 and in absence of NaCl. Based on 16S rRNA gene sequence comparisons, strain THG-SKA3(T) shared highest sequence similarity with Lysobacter niastensis KACC 11588(T) followed by Lysobacter panacisoli KACC 17502(T), Lysobacter enzymogenes LMG 8762(T) and Lysobacter oryzae KCTC 22249(T). The G+C content of THG-SKA3(T) was determined to be 68.9 mol%. The DNA-DNA relatedness values between strain THG-SKA3(T) and its closest phylogenetic neighbors were below 25.0 %.The major polar lipids of strain THG-SKA3(T) were determined to be diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was identified as ubiquinone 8 (Q-8). The major cellular fatty acids were identified as branched chain iso-C15:0, iso-C16:0 and unsaturated iso-C17:1 ω9c. On the basis of polyphasic data presented, it is evident that strain THG-SKA3(T) represents a novel species of the genus Lysobacter, for which the name Lysobacter agri sp. nov. (type strain THG-SKA3(T) = KACC 18283(T) = CSCTCC AB 2015126(T)) is proposed. PMID:26111851

  8. Thalassolituus marinus sp. nov., a hydrocarbon-utilizing marine bacterium.

    PubMed

    Choi, Ahyoung; Cho, Jang-Cheon

    2013-06-01

    Gram-negative strains, motile by a single polar flagellum, non-pigmented and with a curved rod-shaped morphology, designated IMCC1826(T) and IMCC1883, were isolated from a surface seawater sample from the Yellow Sea. The two strains shared 99.9% 16S rRNA gene sequence similarity and showed 92% DNA-DNA relatedness, suggesting that they belonged to the same genomic species. Phylogenetic analysis based on 16S rRNA gene sequences showed that the two isolates were related most closely to the type strain of Thalassolituus oleivorans with a sequence similarity of 96.4% and formed a robust phyletic lineage with T. oleivorans. DNA-DNA relatedness between the two strains and T. oleivorans DSM 14913(T) was 8.7-11.6%. A putative alkane hydroxylase (alkB) gene was detected in strain IMCC1826(T) by PCR, but the amino acid sequence of the gene was distantly related to that of the AlkB homologue of T. oleivorans DSM 14913(T). As expected from the presence of the alkB gene, the new strains utilized n-tetradecane and n-hexadecane as a carbon source. The DNA G+C content was 54.6-56.0 mol% and the main isoprenoid quinone detected was Q-9. Polar lipids of strain IMCC1826(T) included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and amino-group-containing lipids. On the basis of taxonomic data obtained in this study, strains IMCC1826(T) and IMCC1883 represent a novel species of the genus Thalassolituus, for which the name Thalassolituus marinus sp. nov. is proposed, with IMCC1826(T) (=KCTC 23084(T)=NBRC 107590(T)) as the type strain. PMID:23148102

  9. Hymenobacter terrae sp. nov., a bacterium isolated from soil.

    PubMed

    Srinivasan, Sathiyaraj; Lee, Jae-Jin; Park, Kyoung Ryun; Park, Se-Hee; Jung, Hee-Young; Kim, Myung Kyum

    2015-05-01

    A Gram-negative, UV tolerant bacterial strain, DG7A(T), was isolated from soil samples collected in Seoul city, South Korea. The cells were grown on R2A agar at 25 °C and were pink to red in color. The DNA G+C content of the novel strain DG7A was 63.5 mol%. Chemotaxonomic data revealed that the strains contain the major fatty acids iso-C15:0, anteiso-C15:0, and summed feature 3 (16:1 ω7c/16:1 ω6c), with phosphatidylethanolamine as the major polar lipid. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain DG7A(T) formed a distinct phylogenetic line along with Hymenobacter soli PB17(T), and they shared approximately 98.35 % 16S rRNA gene sequence similarity. However, these two strains shared only 5.3 % pairwise similarity (reciprocal analysis, 36.3 %) in their genomic DNA. The next highest degree of 16S rRNA gene sequence similarity after H. soli PB17(T) was found with H. glaciei VUG-A130(T) (96.78 %), H. antarcticus VUG-A42aa(T) (96.66 %), and H. saemangeumensis GSR0100(T) (96.57 %). Based on the phylogenetic analysis and analysis of the physiological and biochemical characteristics, this isolate was considered to represent a novel species, for which we propose the name Hymenobacter terrae sp. nov., with type strain DG7A(T) (= KCTC 32554(T) = KEMB 9004-164(T )= JCM 30007(T)). PMID:25572492

  10. Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3).

    PubMed

    Freitas, Mônica A; Medeiros, Flavio H V; Carvalho, Samuel P; Guilherme, Luiz R G; Teixeira, William D; Zhang, Huiming; Paré, Paul W

    2015-01-01

    Cassava (Manihot esculenta), a major staple food in the developing world, provides a basic carbohydrate diet for over half a billion people living in the tropics. Despite the iron abundance in most soils, cassava provides insufficient iron for humans as the edible roots contain 3-12 times less iron than other traditional food crops such as wheat, maize, and rice. With the recent identification that the beneficial soil bacterium Bacillus subtilis (strain GB03) activates iron acquisition machinery to increase metal ion assimilation in Arabidopsis, the question arises as to whether this plant-growth promoting rhizobacterium also augments iron assimilation to increase endogenous iron levels in cassava. Biochemical analyses reveal that shoot-propagated cassava with GB03-inoculation exhibit elevated iron accumulation after 140 days of plant growth as determined by X-ray microanalysis and total foliar iron analysis. Growth promotion and increased photosynthetic efficiency were also observed for greenhouse-grown plants with GB03-exposure. These results demonstrate the potential of microbes to increase iron accumulation in an important agricultural crop and is consistent with idea that microbial signaling can regulate plant photosynthesis. PMID:26300897

  11. Antioxidant and DNA Damage Protecting Activity of Exopolysaccharides from the Endophytic Bacterium Bacillus cereus SZ1.

    PubMed

    Zheng, Li Ping; Zou, Tin; Ma, Yan Jun; Wang, Jian Wen; Zhang, Yu Qing

    2016-01-01

    An endophytic bacterium was isolated from the Chinese medicinal plant Artemisia annua L. The phylogenetic and physiological characterization indicated that the isolate, strain SZ-1, was Bacillus cereus. The endophyte could produce an exopolysaccharide (EPS) at 46 mg/L. The 1,1-diphenyl-2-picrylhydracyl (DPPH) radical scavenging activity of the EPS reached more than 50% at 3-5 mg/mL. The EPS was also effective in scavenging superoxide radical in a concentration dependent fashion with an EC50 value of 2.6 mg/mL. The corresponding EC50 for scavenging hydroxyl radical was 3.1 mg/mL. Moreover, phenanthroline-copper complex-mediated chemiluminescent emission of DNA damage was both inhibited and delayed by EPS. The EPS at 0.7-1.7 mg/mL also protected supercoiled DNA strands in plasmid pBR322 against scission induced by Fenton-mediated hydroxyl radical. The preincubation of PC12 cells with the EPS prior to H₂O₂ exposure increased the cell survival and glutathione (GSH) level and catalase (CAT) activities, and decreased the level of malondialdehyde (MDA) and lactate dehydrogenase (LDH) activity in a dose-dependent manner, suggesting a pronounced protective effect against H₂O₂-induced cytotoxicity. Our study indicated that the EPS could be useful for preventing oxidative DNA damage and cellular oxidation in pharmaceutical and food industries. PMID:26861269

  12. Interrelationships between Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144 in the induced systemic resistance against Sclerotium rolfsii and symbiosis on peanut plants.

    PubMed

    Figueredo, Maria Soledad; Tonelli, Maria Laura; Taurian, Tania; Angelini, Jorge; Ibanez, Fernando; Valetti, Lucio; Munoz, Vanina; Anzuay, Maria Soledad; Luduena, Liliana; Fabra, Adriana

    2014-12-01

    Plant-growth-promoting bacteria are often used to enhance crop yield and for biological control of phytopathogens. Bacillus sp. CHEP5 is a biocontrol agent that induces systemic resistance (ISR) in Arachis hypogaea L. (peanut) against Sclerotium rolfsii, the causal agent of root and stem wilt. In this work, the effect of the co-inoculation of Bacillus sp. CHEP5 and the peanut nodulating strain Bradyrhizobium sp. SEMIA 6144 was studied on induction of both systemic resistance and nodulation processes. Bradyrhizobium sp. SEMIA 6144 did not affect the ability of Bacillus sp. CHEP5 to protect peanut plants from S. rolfsii by ISR and the priming in challenged-plants, as evidenced by an increment in phenylalanine ammonia-lyase enzyme activity. Additionally, the capacity of Bradyrhizobium sp. SEMIA 6144 to induce nodule formation in pathogen-challenged plants was improved by the presence of Bacillus sp. CHEP5. PMID:25431416

  13. Development of a gene cloning system for the hydrogen-producing marine photosynthetic bacterium Rhodopseudomonas sp

    SciTech Connect

    Matsunaga, T.; Matsunaga, N.; Tsubaki, K.; Tanaka, T.

    1986-10-01

    Seventy-six strains of marine photosynthetic bacteria were analyzed by agarose gel electrophoresis for plasmid DNA content. Among these strains, 12 carried two to four different plasmids with sizes ranging from 3.1 to 11.0 megadaltons. The marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 had two plasmids, pRD06S and pRD06L. The smaller plasmid, pRD06S, had a molecular weight of 3.8 megadaltons and was cut at a single site by restriction endonucleases SalI, SmaI, PstI, XhoI, and BglII. Moreover, the marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 containing plasmid pRD06 had a satisfactory growth rate (doubling time, 7.5 h), a hydrogen-producing rate of 0.96 ..mu..mol/mg (dry weight) of cells per h, and nitrogen fixation capability. Plasmid pRD06S, however, had neither drug resistance nor heavy-metal resistance, and its copy number was less than 10. Therefore, a recombinant plasmid consisting of pRD06S and Escherichia coli cloning vector pUC13 was constructed and cloned in E. coli. The recombinant plasmid was transformed into Rhodopseudomonas sp. NKPB002106. As a result, Rhodopseudomonas sp. NKPB002106 developed ampicillin resistance. Thus, a shuttle vector for gene transfer was constructed for marine photosynthetic bacteria.

  14. Development of a gene cloning system for the hydrogen-producing marine photosynthetic bacterium Rhodopseudomonas sp.

    PubMed Central

    Matsunaga, T; Matsunaga, N; Tsubaki, K; Tanaka, T

    1986-01-01

    Seventy-six strains of marine photosynthetic bacteria were analyzed by agarose gel electrophoresis for plasmid DNA content. Among these strains, 12 carried two to four different plasmids with sizes ranging from 3.1 to 11.0 megadaltons. The marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 had two plasmids, pRD06S and pRD06L. The smaller plasmid, pRD06S, had a molecular weight of 3.8 megadaltons and was cut at a single site by restriction endonucleases SalI, SmaI, PstI, XhoI, and BglII. Moreover, the marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 containing plasmid pRD06 had a satisfactory growth rate (doubling time, 7.5 h), a hydrogen-producing rate of 0.96 mumol/mg (dry weight) of cells per h, and nitrogen fixation capability. Plasmid pRD06S, however, had neither drug resistance nor heavy-metal resistance, and its copy number was less than 10. Therefore, a recombinant plasmid consisting of pRD06S and Escherichia coli cloning vector pUC13 was constructed and cloned in E. coli. The recombinant plasmid was transformed into Rhodopseudomonas sp. NKPB002106. As a result, Rhodopseudomonas sp. NKPB002106 developed ampicillin resistance. Thus, a shuttle vector for gene transfer was constructed for marine photosynthetic bacteria. PMID:3020006

  15. Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring

    SciTech Connect

    Slobodkin, A.; Wiegel, J.; Reysenbach, A.L.

    1997-04-01

    A strain of a thermophilic, anaerobic, dissimilatory, Fe(III)-reducing bacterium, Thermoterrabacterium ferrireducens gen. nov., sp. nov. (type strain JW/AS-Y7{sup T}; DSM 11255), was isolated from hot springs in Yellowstone National Park and New Zealand. The gram-positive-staining cells occurred singly or in pairs as straight to slightly curved rods, 0.3 to 0.4 by 1.6 to 2.7 {mu}m, with rounded ends and exhibited a tumbling motility. Spores were not observed. The temperature range for growth was 50 to 74{degrees}C with an optimum at 65{degrees}C. The pH range for growth at 65{degrees}C was from 5.5 to 7.6, with an optimum at 6.0 to 6.2. The organism coupled the oxidation of glycerol to reduction of amorphous Fe(III) oxide or Fe(III) citrate as an electron acceptor. In the presence as well as in the absence of Fe(III) and in the presence of CO{sub 2}, glycerol was metabolized by incomplete oxidation to acetate as the only organic metabolic product; no H{sub 2} was produced during growth. The organism utilized glycerol, lactate, 1,2-propanediol, glycerate, pyruvate, glucose, fructose, mannose, and yeast extract as substrates. In the presence of Fe(III) the bacterium utilized molecular hydrogen. The organism reduced 9,10-anthraquinone-2,6-disulfonic acid, fumarate (to succinate), and thiosulfate (to elemental sulfur) but did not reduce MnO{sub 2}, nitrate, sulfate, sulfite, or elemental sulfur. The G+C content of the DNA was 41 mol% (as determined by high-performance liquid chromatography). The 16S ribosomal DNA sequence analysis placed the isolated strain as a member of a new genus within the gram-type positive Bacillus-Clostridium subphylum.

  16. Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L.

    PubMed

    Camacho, M; Santamaría, C; Temprano, F; Rodriguez-Navarro, D N; Daza, A

    2001-11-01

    The strain Bacillus sp. CECT 450 increased nodulation on bean (Phaseolus vulgaris L.) when co-inoculated with Rhizobium tropici CIAT 899. This positive effect occured under controlled conditions on perlite-vermiculite, sand, or in a mixture of soil and sand. This increase was also observed in a field assay. Nodulation kinetic studies suggested that the synergistic effect is pronounced during the latter stages of cultivation. In contrast, the same bacteria co-inoculated with Bradyrhizobium japonicum USDA 110 reduced nodulation on soybean (Glycine max (L.) Merr.). Inoculation with Bacillus sp. CECT 450 alone had no effect on bean plants, but reduced root growth in soybean. The survival of Bacillus sp. CECT 450 on inoculated seeds was high, even when inoculated seeds were maintained for several months at room temperature. PMID:11766056

  17. Non-contiguous finished genome sequence and description of Bacillus massilioalgeriensis sp. nov.

    PubMed Central

    Bendjama, Esma; Loucif, Lotfi; Diene, Seydina M.; Michelle, Caroline; Gacemi-Kirane, Djamila; Rolain, Jean-Marc

    2014-01-01

    Strain EB01T sp. nov. is the type strain of Bacillus massilioalgeriensis, a new species within the genus Bacillus. This strain, whose genome is described here, was isolated from sediment sample of the hypersaline lake Ezzemoul sabkha in northeastern Algeria. B. massilioalgeriensis is a facultative anaerobic Gram-positive bacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,269,577 bp long genome contains 5,098 protein-coding and 95 RNA genes, including 12 rRNA genes. PMID:25197482

  18. Tetrodotoxin-producing Bacillus sp. from the ribbon worm (Nemertea) Cephalothrix simula (Iwata, 1952).

    PubMed

    Magarlamov, Timur Yu; Beleneva, Irina A; Chernyshev, Alexey V; Kuhlevsky, Andrey D

    2014-07-01

    Specimens of the toxic ribbon worm Cephalothrix simula from the Sea of Japan were screened for tetrodotoxin-producing bacteria. A single TTX-producing bacterial strain (No 1839) was isolated from tissues of C. simula and studied by immunohistochemical methods (including immunoelectron and immunofluorescent microscopies) with anti-TTX antibodies. Sequencing of 16S rRNA gene of the strain 1839 showed that it is most likely Bacillus sp. CU040510-015 and Bacillus asahii. Based on its morphological and biochemical properties, however we suppose that the isolated Bacillus sp. 1839 should be classified as representing a new species. Microdistribution of TTX in bacterial cell was investigated under electron microscope by immunoenzymatic methods. TTX was concentrated in the forespore and free spores, but it was not detected in the vegetative cells of Bacillus sp. 1839. We suggest that release of free mature spores from sporangium of Bacillus sp. 1839 leads to appearance of toxin in tissues of C. simula. Confocal laser-scanning microscopy (CLSM) method with anti-TTX antibodies can be recommended for preliminary detection of apparent TTX accumulation.

  19. Antifungal activity of Bacillus sp. isolated from compost.

    PubMed

    Czaczyk, K; Stachowiak, B; Trojanowska, K; Gulewicz, K

    2000-01-01

    Four strains of Bacillus isolated from lupine compost exhibited an antifungal activity against six plant fungal pathogens (Rhizoctonia solani, Bipolaris sorokiniana, Sclerotinia sclerotiorum, Trichothecium roseum, Fusarium solani, Fusarium oxysporum). It was significantly influenced by the composition of the cultivation media.

  20. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria

    PubMed Central

    da Silva, Fábio Daniel Florêncio; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Dall’Agnol, Leonardo Teixeira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Oliveira, Karol Guimarães; de Lima, Clayton Pereira Silva; Nunes, Márcio Roberto Teixeira; Vianez-Júnior, João Lídio Silva Gonçalves

    2016-01-01

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here. PMID:27198027

  1. Biomass yield efficiency of the marine anammox bacterium, "Candidatus Scalindua sp.," is affected by salinity.

    PubMed

    Awata, Takanori; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2015-01-01

    The growth rate and biomass yield efficiency of anaerobic ammonium oxidation (anammox) bacteria are markedly lower than those of most other autotrophic bacteria. Among the anammox bacterial genera, the growth rate and biomass yield of the marine anammox bacterium "Candidatus Scalindua sp." is still lower than those of other anammox bacteria enriched from freshwater environments. The activity and growth of marine anammox bacteria are generally considered to be affected by the presence of salinity and organic compounds. Therefore, in the present study, the effects of salinity and volatile fatty acids (VFAs) on the anammox activity, inorganic carbon uptake, and biomass yield efficiency of "Ca. Scalindua sp." enriched from the marine sediments of Hiroshima Bay, Japan, were investigated in batch experiments. Differences in VFA concentrations (0-10 mM) were observed under varying salinities (0.5%-4%). Anammox activity was high at 0.5%-3.5% salinity, but was 30% lower at 4% salinity. In addition, carbon uptake was higher at 1.5%-3.5% salinity. The results of the present study clearly demonstrated that the biomass yield efficiency of the marine anammox bacterium "Ca. Scalindua sp." was significantly affected by salinity. On the other hand, the presence of VFAs up to 10 mM did not affect anammox activity, carbon uptake, or biomass yield efficiency.

  2. Antibiofilm Activity of the Marine Bacterium Pseudoalteromonas sp. Strain 3J6▿

    PubMed Central

    Dheilly, Alexandra; Soum-Soutéra, Emmanuelle; Klein, Géraldine L.; Bazire, Alexis; Compère, Chantal; Haras, Dominique; Dufour, Alain

    2010-01-01

    Biofilm formation results in medical threats or economic losses and is therefore a major concern in a variety of domains. In two-species biofilms of marine bacteria grown under dynamic conditions, Pseudoalteromonas sp. strain 3J6 formed mixed biofilms with Bacillus sp. strain 4J6 but was largely predominant over Paracoccus sp. strain 4M6 and Vibrio sp. strain D01. The supernatant of Pseudoalteromonas sp. 3J6 liquid culture (SN3J6) was devoid of antibacterial activity against free-living Paracoccus sp. 4M6 and Vibrio sp. D01 cells, but it impaired their ability to grow as single-species biofilms and led to higher percentages of nonviable cells in 48-h biofilms. Antibiofilm molecules of SN3J6 were able to coat the glass surfaces used to grow biofilms and reduced bacterial attachment about 2-fold, which might partly explain the biofilm formation defect but not the loss of cell viability. SN3J6 had a wide spectrum of activity since it affected all Gram-negative marine strains tested except other Pseudoalteromonas strains. Biofilm biovolumes of the sensitive strains were reduced 3- to 530-fold, and the percentages of nonviable cells were increased 3- to 225-fold. Interestingly, SN3J6 also impaired biofilm formation by three strains belonging to the human-pathogenic species Pseudomonas aeruginosa, Salmonella enterica, and Escherichia coli. Such an antibiofilm activity is original and opens up a variety of applications for Pseudoalteromonas sp. 3J6 and/or its active exoproducts in biofilm prevention strategies. PMID:20363799

  3. Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

    PubMed Central

    2012-01-01

    Background Chloronitrophenols (CNPs) are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP) is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography–mass spectrometry identified 4-chloro-2-aminophenol (4C2AP) and 2-aminophenol (2AP) as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Conclusions Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i) the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii) the bioremediation of 4C2NP by any bacterium. PMID:23171039

  4. Draft genome sequence of Bacillus okhensis Kh10-101T, a halo-alkali tolerant bacterium from Indian saltpan.

    PubMed

    Krishna, Pilla Sankara; Sreenivas, Ara; Singh, Deepak Kumar; Shivaji, Sisinthy; Prakash, Jogadhenu S S

    2015-12-01

    We report the 4.86-Mb draft genome sequence of Bacillus okhensis strain Kh10-101T, a halo-alkali tolerant rod shaped bacterium isolated from a salt pan near port of Okha, India. This bacterium is a potential model to study the molecular response of bacteria to salt as well as alkaline stress, as it thrives under both high salt and high pH conditions. The draft genome consist of 4,865,284 bp with 38.2% G + C, 4952 predicted CDS, 157 tRNAs and 8 rRNAs. Sequence was deposited at DDBJ/EMBL/GenBank under the project accession JRJU00000000. PMID:26697400

  5. A new 24-membered lactone and a new polyene delta-lactone from the marine bacterium Bacillus marinus.

    PubMed

    Xue, Chunmei; Tian, Li; Xu, Minjuan; Deng, Zhiwei; Lin, Wenhan

    2008-11-01

    A new 24-membered macrolide macrolactin T (1), and a new polyene delta-lactone macrolactin U (2), along with macrolactins A, B, D, O, and S, were isolated from the cultured broth of the bacterium Bacillus marinus, which was isolated from Suaeda salsa collected in the coastline of Bohai Sea of China. The structures of 1 and 2 were elucidated on the basis of extensive spectroscopic data analyses. The inhibitory activity of macrolactins T, B and D against fungi Pyricularia oryzae and Alternaria solani, and bacteria Staphylococcus aureus is reported. PMID:19168981

  6. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    PubMed

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation. PMID:23186687

  7. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    PubMed

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation.

  8. Non-contiguous finished genome sequence and description of Bacillus massilioanorexius sp. nov.

    PubMed Central

    Mishra, Ajay Kumar; Pfleiderer, Anne; Lagier, Jean-Christophe; Robert, Catherine; Raoult, Didier; Fournier, Pierre-Edouard

    2013-01-01

    Bacillus massilioanorexius strain AP8T sp. nov. is the type strain of B. massilioanorexius sp. nov., a new species within the genus Bacillus. This strain, whose genome is described here, was isolated from the fecal flora of a 21-year-old Caucasian French female suffering from a severe form of anorexia nervosa since the age of 12 years. B. massilioanorexius is a Gram-positive aerobic bacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,616,135 bp long genome (one chromosome but no plasmid) contains 4,432 protein-coding and 87 RNA genes, including 8 rRNA genes. PMID:24501631

  9. Whole-Genome Sequence of Bacillus sp. SDLI1, Isolated from the Social Bee Scaptotrigona depilis

    PubMed Central

    Paludo, Camila R.; Silva-Junior, Eduardo A.; Pishchany, Gleb; Currie, Cameron R.; Nascimento, Fábio S.; Kolter, Roberto G.

    2016-01-01

    We announce the complete genome sequence of Bacillus sp. strain SDLI1, isolated from larval gut of the stingless bee Scaptotrigona depilis. The 4.13-Mb circular chromosome harbors biosynthetic gene clusters for the production of antimicrobial compounds. PMID:27013050

  10. Functional genomic approaches for understanding the mode of action of Bacillus sp biocontrol strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complete genome sequencing of several Bacillus sp. strains has shed new light on the mode of action of these antagonists of plant pathogens. The use of genomic data mining tools provided the ability to quickly determine the potential of these strains to produce bioactive secondary metabolites. Our B...

  11. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa×deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT–PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  12. Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An isolate of a Gram-positive, facultatively anaerobic, motile, rod-shaped, endospore forming bacterium was recovered from soybean-based fermented paste. It was isolated from cheonggukjang, a Korean fermented soybean food product. Phylogenetic analysis of the 16S rRNA gene indicated that the strain ...

  13. Bacillus glycinifermentans sp. nov., isolated from fermented soybean paste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two independent isolates of a Gram-positive, aerobic, motile rod-shaped bacterium were recovered from soybean-based fermented foodstuffs. Two were isolated from cheonggukjang, a Korean fermented soybean food product. Multilocus sequencing analysis of the 16S rRNA gene and 5 protein coding genes indi...

  14. Bacillus purgationiresistans sp. nov., isolated from a drinking-water treatment plant.

    PubMed

    Vaz-Moreira, Ivone; Figueira, Vânia; Lopes, Ana R; Lobo-da-Cunha, Alexandre; Spröer, Cathrin; Schumann, Peter; Nunes, Olga C; Manaia, Célia M

    2012-01-01

    A Gram-positive, aerobic, non-motile, endospore-forming rod, designated DS22(T), was isolated from a drinking-water treatment plant. Cells were catalase- and oxidase-positive. Growth occurred at 15-37 °C, at pH 7-10 and with <8% (w/v) NaCl (optimum growth: 30 °C, pH 7-8 and 1-3% NaCl). The major respiratory quinone was menaquinone 7, the G+C content of the genomic DNA was 36.5 mol% and the cell wall contained meso-diaminopimelic acid. On the basis of 16S rRNA gene sequence analysis, strain DS22(T) was a member of the genus Bacillus. Its closest phylogenetic neighbours were Bacillus horneckiae NRRL B-59162(T) (98.5% 16S rRNA gene sequence similarity), Bacillus oceanisediminis H2(T) (97.9%), Bacillus infantis SMC 4352-1(T) (97.4%), Bacillus firmus IAM 12464(T) (96.8%) and Bacillus muralis LMG 20238(T) (96.8%). DNA-DNA hybridization, and biochemical and physiological characterization allowed the differentiation of strain DS22(T) from its closest phylogenetic neighbours. The data supports the proposal of a novel species, Bacillus purgationiresistans sp. nov.; the type strain is DS22(T) (=DSM 23494(T)=NRRL B-59432(T)=LMG 25783(T)).

  15. Pseudomonas sp. strain 273, and aerobic {alpha},{omega}-dichloroalkane-degrading bacterium

    SciTech Connect

    Wischnak, C.; Mueller, R.; Loeffler, F.E. |; Li, J.; Urbance, J.W.

    1998-09-01

    A gram-negative, aerobic bacterium was isolated from soil; this bacterium grew in 50% (vol/vol) suspensions of 1,10-dichlorodecane (1,10-DCD) as the sole source of carbon and energy. Phenotypic and small-subunit ribosomal RNA characterizations identified the organism, designated strain 273, as a member of the genus Pseudomonas. After induction with 1,10-DCD, Pseudomonas sp. strain 273 released stoichiometric amounts of chloride from C{sub 5} to C{sub 12} {alpha},{omega}-dichloroalkanes in the presence of oxygen. No dehalogenation occurred under anaerobic conditions. The best substrates for dehalogenation and growth were C{sub 9} to C{sub 12} chloroalkanes. The isolate also grew with nonhalogenated aliphatic compounds, and decane-grown cells dechlorinated 1,10-DCD without a lag phase. In addition, cells grown on decane dechlorinated 1,10-DCD in the presence of chloramphenicol, indicating that the 1,10-DCD-dechlorinating enzyme system was also induced by decane. Other known alkane-degrading Pseudomonas species did not grow with 1,10-DCD as a carbon source. Dechlorination of 1,10-DCD was demonstrated in cell extracts of Pseudomonas sp. strain 273. Cell-free activity was strictly oxygen dependent, and NADH stimulated dechlorination, whereas EDTA had an inhibitory effect.

  16. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning.

    PubMed

    Guinebretière, Marie-Hélène; Auger, Sandrine; Galleron, Nathalie; Contzen, Matthias; De Sarrau, Benoit; De Buyser, Marie-Laure; Lamberet, Gilles; Fagerlund, Annette; Granum, Per Einar; Lereclus, Didier; De Vos, Paul; Nguyen-The, Christophe; Sorokin, Alexei

    2013-01-01

    An aerobic endospore-forming bacillus (NVH 391-98(T)) was isolated during a severe food poisoning outbreak in France in 1998, and four other similar strains have since been isolated, also mostly from food poisoning cases. Based on 16S rRNA gene sequence similarity, these strains were shown to belong to the Bacillus cereus Group (over 97% similarity with the current Group species) and phylogenetic distance from other validly described species of the genus Bacillus was less than 95%. Based on 16S rRNA gene sequence similarity and MLST data, these novel strains were shown to form a robust and well-separated cluster in the B. cereus Group, and constituted the most distant cluster from species of this Group. Major fatty acids (iso-C(15:0), C(16:0), iso-C(17:0), anteiso-C(15 : 0), iso-C(16:0), iso-C(13:0)) supported the affiliation of these strains to the genus Bacillus, and more specifically to the B. cereus Group. NVH 391-98(T) taxon was more specifically characterized by an abundance of iso-C(15:0) and low amounts of iso-C(13:0) compared with other members of the B. cereus Group. Genome similarity together with DNA-DNA hybridization values and physiological and biochemical tests made it possible to genotypically and phenotypically differentiate NVH 391-98(T) taxon from the six current B. cereus Group species. NVH 391-98(T) therefore represents a novel species, for which the name Bacillus cytotoxicus sp. nov. is proposed, with the type strain NVH 391-98(T) (= DSM 22905(T) = CIP 110041(T)).

  17. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    SciTech Connect

    Taghavi, S.; van der Lelie, D.; Hoffman, A.; Zhang, Y.-B.; Walla, M. D.; Vangronsveld, J.; Newman, L.; Monchy, S.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  18. Optimization of Chromium Removal by the Indigenous Bacterium Bacillus spp. REP02 Using the Response Surface Methodology

    PubMed Central

    Venil, C. K.; Mohan, V.; Lakshmanaperumalsamy, P.; Yerima, M. B.

    2011-01-01

    An indigenous bacterium, Bacillus REP02, was isolated from locally sourced chromium electroplating industrial effluents. Response surface methodology was employed to optimize the five critical medium parameters responsible for higher % Cr2+ removal by the bacterium Bacillus REP02. A three-level Box-Behnken factorial design was used to optimize K2HPO4, yeast extract, MgSO4, NH4NO3, and dextrose for Cr2+ removal. A coefficient of determination (R2) value (0.93), model F-value (3.92) and its low P-value (F < 0.0008) along with lower value of coefficient of variation (5.39) indicated the fitness of response surface quadratic model during the present study. At optimum parameters of K2HPO4 (0.6 g L−1), yeast extract (5.5 g L−1), MgSO4 (0.04 g L−1), NH4NO3 (0.20 g L−1), and dextrose (12.50 g L−1), the model predicted 98.86% Cr2+ removal, and experimentally, 99.08% Cr2+ removal was found. PMID:23724315

  19. Bacillus thermolactis sp. nov., isolated from dairy farms, and emended description of Bacillus thermoamylovorans.

    PubMed

    Coorevits, An; Logan, Niall A; Dinsdale, Anna E; Halket, Gillian; Scheldeman, Patsy; Heyndrickx, Marc; Schumann, Peter; Van Landschoot, Anita; De Vos, Paul

    2011-08-01

    A polyphasic taxonomic study was performed on 22 thermotolerant, aerobic, endospore-forming bacteria from dairy environments. Seventeen isolates were retrieved from raw milk, one from a filter cloth and four from grass, straw or milking equipment. These latter four isolates (R-6546, R-7499, R-7764 and R-7440) were identified as Bacillus thermoamylovorans based on DNA-DNA hybridizations (values above 70 % with Bacillus thermoamylovorans LMG 18084(T)) but showed discrepancies in characteristics with the original species description, so an emended description of this species is given. According to 16S rRNA gene sequence analysis and DNA-DNA hybridization experiments, the remaining 18 isolates (R-6488(T), R-28193, R-6491, R-6492, R-7336, R-33367, R-6486, R-6770, R-31288, R-28160, R-26358, R-7632, R-26955, R-26950, R-33520, R-6484, R-26954 and R-7165) represented one single species, most closely related to Bacillus thermoamylovorans (93.9 % 16S rRNA gene sequence similarity), for which the name Bacillus thermolactis is proposed. Cells were Gram-stain-positive, facultatively anaerobic, endospore-forming rods that grew optimally at 40-50 °C. The cell wall peptidoglycan type of strain R-6488(T), the proposed type strain, was A1γ based on meso-diaminopimelic acid. Major fatty acids of the strains were C(16 : 0) (28.0 %), iso-C(16 : 0) (12.1 %) and iso-C(15 : 0) (12.0 %). MK-7 was the predominant menaquinone, and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and some unidentified phospholipids. DNA G+C content was 35.0 mol%. Phenotypic properties allowed discrimination from other thermotolerant species of the genus Bacillus and supported the description of the novel species Bacillus thermolactis, with strain R-6488(T) ( = LMG 25569(T)  = DSM 23332(T)) as the proposed type strain.

  20. Pelagibacillus goriensis gen. nov., sp. nov., a moderately halotolerant bacterium isolated from coastal water off the east coast of Korea.

    PubMed

    Kim, Yoon-Gon; Hwang, Chung Yeon; Yoo, Kwang Woo; Moon, Hyung Tae; Yoon, Jung-Hoon; Cho, Byung Cheol

    2007-07-01

    A Gram-positive, moderately halotolerant bacterium, designated CL-GR16(T), was isolated from coastal water off the east coast of Korea. The strain was strictly aerobic, rod-shaped, motile by means of peritrichous flagella and produced ellipsoidal spores. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate represented an independent lineage within Bacillus rRNA group 1, showing 93.6-94.6 % similarity with respect to the genus Ornithinibacillus, 94.0 % with respect to Paucisalibacillus, 91.0-93.5 % with respect to Virgibacillus, 93.2-93.3 % with respect to Salinibacillus and 92.8-93.2 % with respect to Oceanobacillus. The optimum temperature and pH for growth were 30 degrees C and pH 7.5. Strain CL-GR16(T) was able to grow at NaCl concentrations from 0 to 14 %, with optimum growth occurring at 0-2 % NaCl. The strain lacked oxidase. The major fatty acids were anteiso-C(15 : 0) (65.6 %), anteiso-C(17 : 0) (11.0 %) and iso-C(15 : 0) (9.1 %). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. The predominant menaquinone was MK-7. The G+C content of the DNA was 43 mol%. On the basis of the results of the polyphasic analysis, strain CL-GR16(T) represents a novel genus and species, for which the name Pelagibacillus goriensis gen. nov., sp. nov. is proposed. The type strain is strain CL-GR16(T) (=KCCM 42329(T)=DSM 18252(T)). PMID:17625193

  1. Pyruvatibacter mobilis gen. nov., sp. nov., a marine bacterium from the culture broth of Picochlorum sp. 122.

    PubMed

    Wang, Guanghua; Tang, Mingxing; Wu, Hualian; Dai, Shikun; Li, Tao; Chen, Chenghao; He, Hui; Fan, Jiewei; Xiang, Wenzhou; Li, Xiang

    2016-01-01

    A Gram-stain-negative, aerobic bacterium, designated strain GYP-11T, was isolated from the culture broth of a marine microalga, Picochloruma sp. 122. Cells were dimorphic rods; free living cells were motile by means of a single polar flagellum, and star-shaped-aggregate-forming cells were attached with stalks and non-motile. Sodium pyruvate or Tween 20 was required for growth on marine agar 2216.16S rRNA gene sequence analysis revealed that this isolate shared 94.07 % similarity with its closest type strain, Parvibaculum hydrocarboniclasticum EPR92T. Phylogenetic analyses indicated that strain GYP-11T represents a distinct lineage in a robust clade consisting of strain GYP-11T, alphaproteobacterium GMD21A06 and Candidatus Phaeomarinobacter ectocarpi Ec32. This clade was close to the genera Parvibaculum and Tepidicaulis in the order Rhizobiales. Chemotaxonomic and physiological characteristics, including cellular fatty acids and carbon source profiles, also readily distinguished strain GYP-11T from all established genera and species. Thus, it is concluded that strain GYP-11T represents a novel species of a new genus in the order Rhizobiales, for which the name Pyruvatibacter mobilis gen. nov., sp. nov. is proposed. The type strain of Pyruvatibacter mobilis is GYP-11T ( = CGMCC 1.15125T = KCTC 42509T).

  2. Continuous Cultivation for Apparent Optimization of Defined Media for Cellulomonas sp. and Bacillus cereus

    PubMed Central

    Summers, R. J.; Boudreaux, D. P.; Srinivasan, V. R.

    1979-01-01

    Steady-state continuous culture was used to optimize lean chemically defined media for a Cellulomonas sp. and Bacillus cereus strain T. Both organisms were extremely sensitive to variations in trace-metal concentrations. However, medium optimization by this technique proved rapid, and multifactor screening was easily conducted by using a minimum of instrumentation. The optimized media supported critical dilution rates of 0.571 and 0.467 h−1 for Cellulomonas and Bacillus, respectively. These values approximated maximum growth rate values observed in batch culture. PMID:16345417

  3. Cloning and expression in Escherichia coli of chromosomal mercury resistance genes from a Bacillus sp

    SciTech Connect

    Wang, Y.; Mahler, I.; Levinson, H.S.; Halvorson, H.O.

    1987-10-01

    A 7.9-kilobase (kb) chromosomal fragment was cloned from a mercury-resistant Bacillus sp. In Escherichia coli, in the presence of a second plasmid carrying functional transport genes, resistance to HgCl/sub 2/ and to phenylmercury acetate (PMA) was expressed. Shortening the cloned fragment to 3.8 kb abolished resistance to PMA but not to HgCl/sub 2/. In Bacillus subtilis, the 3.8-kb fragment produced mercuric reductase constitutively but did not produce resistance to HgCl/sub 2/ or to PMA.

  4. Ferrovibrio denitrificans gen. nov., sp. nov., a novel neutrophilic facultative anaerobic Fe(II)-oxidizing bacterium.

    PubMed

    Sorokina, Anna Y; Chernousova, Elena Y; Dubinina, Galina A

    2012-10-01

    A neutrophilic Fe(II)-oxidizing bacterium was isolated from the redox zone of a low-salinity spring in Krasnodar krai (Russia), at the FeS-Fe(OH)(3) interface deposited at the sediment surface. The cells of strain Sp-1 were short, thin motile vibrioids with one polar flagellum dividing by binary fission. The optimal values and ranges for pH and temperature were pH 6.2 (5.5-8) and 35 °C (5-45 °C), respectively. The organism was a facultative anaerobe. Strain Sp-1 was capable of organotrophic, lithoheterotrophic and mixotrophic growth with Fe(II) as an electron donor. The denitrification chain was 'disrupted'. Oxidation of Fe(II) was coupled to reduction of NO3 - to NO2 - or of N(2) O to N(2) , as well as under microaerobic conditions, with O(2) as an electron acceptor. The DNA G+C content was 64.2 mol%. According to the results of phylogenetic analysis, the strain was 10.6-12% remote from the closest relatives, members of the genera Sneathiella, Inquilinus, Oceanibaculum and Phaeospirillum within the Alphaproteobacteria. Based on its morphological, physiological and taxonomic characteristics, together with the results of phylogenetic analysis, strain Sp-1 is described as a member of a new genus Ferrovibrio gen. nov., with the type species Ferrovibrio denitrificans sp. nov. and the type strain Sp-1(T) (= LMG 25817(T)  = VKM B-2673(T) ). PMID:22765162

  5. Selective inhibition of toxic cyanobacteria by β-carboline-containing bacterium Bacillus flexus isolated from Saudi freshwaters.

    PubMed

    Alamri, Saad A; Mohamed, Zakaria A

    2013-10-01

    A bacterial strain SSZ01 isolated from a eutrophic lake in Saudi Arabia dominated by cyanobacterial blooms, showed an antialgal activity against cyanobacteria species. Based on the analysis of the 16S rDNA gene sequence, the isolated strain (SSZ01) most likely belonged to the genus Bacillus with a 99% similarity to Bacillus flexus strain EMGA5. The thin layer chromatography (TLC) analysis of the ethyl acetate extract of this bacterium revealed that this strain can produce harmine and norharmane compared to different β-carboline analog standards. Harmine and norharmane were also detected in considerable amounts in bacterial growth medium, indicating a potential excretion of these compounds into the aquatic environment. The crude extract of Bacillus flexus as well as pure materials of harmine and norharmane inhibited the growth of tested species of cyanobacteria. However, the bacterial crude extract has a higher toxicity against tested species of cyanobacteria than harmine and norharmane. In addition, harmine was more toxic to cyanobacteria than norharmane. On the other hand, neither pure compounds of harmine and norharmane nor crude bacterial extract showed any antialgal activity against tested species of green algae. The results of the present study suggest that B. flexus SSZ01 or its crude extract containing harmine and norharmane could be a candidate for the selective control of cyanobacterial blooms without affecting other algal species. PMID:24235872

  6. Hydroxybutyrate prevents protein aggregation in the halotolerant bacterium Pseudomonas sp. CT13 under abiotic stress.

    PubMed

    Soto, Gabriela; Setten, Lorena; Lisi, Christian; Maurelis, Camila; Mozzicafreddo, Matteo; Cuccioloni, Massimiliano; Angeletti, Mauro; Ayub, Nicolás Daniel

    2012-05-01

    Polyhydroxybutyrate (PHB), a typical carbon and energy storage compound, is widely found in Bacteria and Archae domains. This polymer is produced in response to conditions of physiological stress. PHB is composed of repeating units of β-hydroxybutyrate (R-3HB). It has been previously shown that R-3HB functions as an osmolyte in extremophile strains. In this study, Pseudomonas sp. CT13, a halotolerant bacterium, and its PHB synthase-minus mutant (phaC) were used to analyze the chaperone role of R-3HB. The production of this compound was found to be essential to salt stress resistance and positively correlated with salt concentration, suggesting that PHB monomer acts as a compatible solute in Pseudomonas sp. CT13. R-3HB accumulation was also associated with the prevention of protein aggregation under combined salt and thermal stresses in Pseudomonas sp. CT13. Physiological concentrations of R-3HB efficiently reduced citrate synthase (CS) aggregation and stabilized the enzymatic activities of CS during thermal stress. Docking analysis of the CS/R-3HB interaction predicted the stability of this complex under physiological concentrations of R-3HB. Thus, in vivo, in vitro and in silico analyses suggest that R-3HB can act as a chemical chaperone. PMID:22527039

  7. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions

    PubMed Central

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Hosseini Salekdeh, Ghasem; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  8. Genome sequence of aerobic anoxygenic phototrophic bacterium Erythrobacter sp. JL475, isolated from the South China Sea.

    PubMed

    Zheng, Qiang; Liu, Yanting; Sun, Jia; Jiao, Nianzhi

    2015-06-01

    Erythrobacter sp. JL475 is a bacteriochlorophyll a-containing aerobic anoxygenic photo-heterotrophic bacterium. Here, we report the draft genome sequence of Erythrobacter sp. JL475 isolated from the South China Sea. It comprises ~3.26Mbp in 7 contigs with the G+C content of 61.7%. A total of 3042 protein-coding genes were obtained, and one complete photosynthetic gene cluster (~38Kbp) was found.

  9. Anaerobic utilization of phosphite and hypophosphite by Bacillus sp.

    NASA Technical Reports Server (NTRS)

    Foster, T. L.; Winans, L., Jr.; Helms, S. J. S.

    1978-01-01

    A Bacillus species capable of using phosphite and hypophosphite under anaerobic conditions was isolated from Cape Canaveral soil samples and grown on a glucose-mineral salts medium with phosphate omitted. The optimum hypophosphite concentration was 60 microg/ml, while the optimum phosphite concentration was greater than 1000 microg/ml. P-32-labeled hypophosphite was incorporated into the cell as organic phosphate, and little or no phosphate appeared in the medium when either hypophosphite or phosphite was the phosphorus source. When phosphate was present in the medium, phosphite was not metabolized. When both phosphite and hypophosphite were present, phosphite was used first and then hypophosphite.

  10. [Probiotic features of carotene producing strains Bacillus sp. 1.1 and B. amyloliquefaciens UCM B-5113].

    PubMed

    Avdeeva, L V; Nechypurenko, O O; Kharhota, M A

    2015-01-01

    Researched probiotic properties of carotinproducing strains Bacillus sp. 1.1 and B. amyloliquefaciens UCM B-5113. It was established that Bacillus sp. 1.1 characterized by high and middle antagonistic activity against museums and actual test cultures and B. amyloliquefaciens UCM B-5113 shown middle and low activity. They grew up and formed a pigment at pH 6.0 in the presence of 0.4% bile. Bacillus sp. 1.1 and B. amyloliquefaciens UCM B-5113 were avirulent, had low antagonistic activity and characterized by susceptibility to antimicrobial agents, excluding colistin. The results suggested the possibility to create based on Bacillus sp. 1.1 and B. amyloliquefaciens UCM B-5113 probiotic preparation. PMID:26036029

  11. [Extracellular hydrolases of strain Bacillus sp. 739 and their involvement in the lysis of micromycete cell walls].

    PubMed

    Aktuganov, G E; Galimzianova, N F; Melent'ev, A I; Kuz'mina, L Iu

    2007-01-01

    The mycolytic bacterial strain Bacillus sp. 739 produces extracellular enzymes which degrade in vitro the cell walls of a number of phytopathogenic and saprophytic fungi. When Bacillus sp. 739 was cultivated with Bipolaris sorokiniana, a cereal root-rot pathogen, the fungus degradation process correlated with the levels of the beta-1,3-glucanase and protease activity. The comparative characteristic of Bacillus sp. 739 enzymatic preparations showed that efficient hydrolysis of the fungus cell walls was the result of the action of the complex of enzymes produced by the strain when grown on chitin-containing media. Among the enzymes of this complex, chitinases and beta-1,3-glucanases hydrolyzed most actively the disintegrated cell walls of B. sorokiniana. However, only beta-1,3-glucanases were able to degrade the cell walls of native fungal mycelium in the absence of other hydrolases, which is indicative of their key role in the mycolytic activity of Bacillus sp. 739.

  12. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium.

    PubMed

    Derrien, Muriel; Vaughan, Elaine E; Plugge, Caroline M; de Vos, Willem M

    2004-09-01

    The diversity of mucin-degrading bacteria in the human intestine was investigated by combining culture and 16S rRNA-dependent approaches. A dominant bacterium, strain MucT, was isolated by dilution to extinction of faeces in anaerobic medium containing gastric mucin as the sole carbon and nitrogen source. A pure culture was obtained using the anaerobic soft agar technique. Strain MucT was a Gram-negative, strictly anaerobic, non-motile, non-spore-forming, oval-shaped bacterium that could grow singly and in pairs. When grown on mucin medium, cells produced a capsule and were found to aggregate. Strain MucT could grow on a limited number of sugars, including N-acetylglucosamine, N-acetylgalactosamine and glucose, but only when a protein source was provided and with a lower growth rate and final density than on mucin. The G + C content of DNA from strain MucT was 47.6 mol%. 16S rRNA gene sequence analysis revealed that the isolate was part of the division Verrucomicrobia. The closest described relative of strain MucT was Verrucomicrobium spinosum (92 % sequence similarity). Remarkably, the 16S rRNA gene sequence of strain MucT showed 99 % similarity to three uncultured colonic bacteria. According to the data obtained in this work, strain MucT represents a novel bacterium belonging to a new genus in subdivision 1 of the Verrucomicrobia; the name Akkermansia muciniphila gen. nov., sp. nov. is proposed; the type strain is MucT (= ATCC BAA-835T = CIP 107961T).

  13. Pontibacter diazotrophicus sp. nov., a Novel Nitrogen-Fixing Bacterium of the Family Cytophagaceae

    PubMed Central

    Xu, Linghua; Zeng, Xian-Chun; Nie, Yao; Luo, Xuesong; Zhou, Enmin; Zhou, Lingli; Pan, Yunfan; Li, Wenjun

    2014-01-01

    Few diazotrophs have been found to belong to the family Cytophagaceae so far. In the present study, a Gram-negative, rod-shaped bacterium that forms red colonies, was isolated from sands of the Takalamakan desert. It was designated H4XT. Phylogenetic and biochemical analysis indicated that the isolate is a new species of the genus Pontibacter. The 16S rRNA gene of H4XT displays 94.2–96.8% sequence similarities to those of other strains in Pontibacter. The major respiratory quinone is menaquinone-7 (MK-7). The DNA G+C content is 46.6 mol%. The major cellular fatty acids are iso-C15∶0, C16∶1ω5c, summed feature 3 (containing C16∶1ω6c and/or C16∶1ω7c) and summed feature 4 (comprising anteiso-C17∶1B and/or iso-C17∶1I). The major polar lipids are phosphatidylethanolamine (PE), one aminophospholipid (APL) and some unknown phospholipids (PLs). It is interesting to see that this bacterium can grow very well in a nitrogen-free medium. PCR amplification suggested that the bacterium possesses at least one type of nitrogenase gene. Acetylene reduction assay showed that H4XT actually possesses nitrogen-fixing activity. Therefore, it can be concluded that H4XT is a new diazotroph. We thus referred it to as Pontibacter diazotrophicus sp. nov. The type strain is H4XT ( = CCTCC AB 2013049T = NRRL B-59974T). PMID:24647674

  14. Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium. [Pseudomonas sp

    SciTech Connect

    Nozawa, T.; Maruyama, Y. )

    1988-12-01

    The anaerobic metabolism of phthalate and other aromatic compounds by the denitrifying bacterium Pseudomonas sp. strain P136 was studied. Benzoate, cyclohex-1-ene-carboxylate, 2-hydroxycyclohexanecarboxylate, and pimelate were detected as predominant metabolic intermediates during the metabolism of three isomers of phthalate, m-hydroxybenzoate, p-hydroxybenzoate, and cyclohex-3-ene-carboxylate. Inducible acyl-coeznyme A synthetase activities for phthalates, benzoate, cyclohex-1-ene-carboxylate, and cyclohex-3-ene-carboxylate were detected in the cells grown on aromatic compounds. Simultaneous adaptation to these aromatic compounds also occurred. A similar phenomenon was observed in the aerobic metabolism of aromatic compounds by this strain. A new pathway for the anaerobic metabolism of phthalate and a series of other aromatic compounds by this strain was proposed. Some properties of the regulation of this pathway were also discussed.

  15. Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree.

    PubMed

    Rivas, Raúl; Trujillo, Martha E; Mateos, P F; Martínez-Molina, E; Velázquez, Encarna

    2004-03-01

    A Gram-positive, aerobic, non-motile bacterium was isolated from a decayed elm tree. Phylogenetic analysis based on 16S rDNA sequences revealed 99.0 % similarity to Cellulomonas humilata. Chemotaxonomic data that were determined for this isolate included cell-wall composition, fatty acid profiles and polar lipids; the results supported the placement of strain XIL11(T) in the genus Cellulomonas. The DNA G+C content was 73 mol%. The results of DNA-DNA hybridization with C. humilata ATCC 25174(T), in combination with chemotaxonomic and physiological data, demonstrated that isolate XIL11(T) should be classified as a novel Cellulomonas species. The name Cellulomonas xylanilytica sp. nov. is proposed, with strain XIL11(T) (=LMG 21723(T)=CECT 5729(T)) as the type strain.

  16. Clostridium amazonense sp. nov. an obliqately anaerobic bacterium isolated from a remote Amazonian community in Peru

    PubMed Central

    O’Neal, Lindsey; Obregón-Tito, Alexandra J.; Tito, Raul Y.; Ozga, Andrew T.; Polo, Susan I.; Lewis, Cecil M.; Lawson, Paul A.

    2015-01-01

    A strictly anaerobic Gram-stain positive, spore-forming, rod-shaped bacterium designated NE08VT, was isolated from a fecal sample of an individual residing in a remote Amazonian community in Peru. Phylogenetic analysis based on the 16S rRNA gene sequence showed the organism belonged to the genus Clostridium and is most closely related to Clostridium vulturis (97.4% sequence similarity) and was further characterized using biochemical and chemotaxonomic methods. The major cellular fatty acids were anteiso C13:0 and C16:0 with a genomic DNA G + C content of 31.6 mol%. Fermentation products during growth on glucose were acetate and butyrate. Based on phylogenetic, phenotypic and chemotaxonomic information, strain NE08V was identified as representing a novel species of the genus Clostridium, for which the name Clostridium amazonense sp. nov. is proposed. The type strain is NE08VT (DSM 23598T = CCUG 59712T). PMID:26123611

  17. Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice.

    PubMed

    Auman, Ann J; Breezee, Jennifer L; Gosink, John J; Kämpfer, Peter; Staley, James T

    2006-05-01

    A gas vacuolate bacterium, designated strain 37T, was isolated from a sea ice core collected from Point Barrow, Alaska, USA. Cells of strain 37T were large (6-14 microm in length), rod-shaped, contained gas vacuoles of two distinct morphologies, and grew well at NaCl concentrations of 1-10 % and at temperatures of -12 to 10 degrees C. The DNA G+C content was 40 mol%. Whole-cell fatty acid analysis showed that 16 : 1omega7c comprised 67 % of the total fatty acid content. Phylogenetic analysis of 16S rRNA gene sequences indicated that this bacterium was closely related to members of the genus Psychromonas, with highest sequence similarity (96.8 %) to Psychromonas antarctica. Phenotypic analysis differentiated strain 37T from P. antarctica on the basis of several characteristics, including cell morphology, growth temperature range and the ability to hydrolyse polymers. DNA-DNA hybridization experiments revealed a level of relatedness of 37 % between strain 37T and P. antarctica, providing further support that it represents a distinct species. The name Psychromonas ingrahamii sp. nov. is proposed for this novel species. The type strain is 37T (=CCUG 51855T=CIP 108865T).

  18. Isolation and Characterization of an Anaerobic, Cellulolytic Bacterium, Clostridium cellulovorans sp. nov

    PubMed Central

    Sleat, Robert; Mah, Robert A.; Robinson, Ralph

    1984-01-01

    A new anaerobic, mesophilic, spore-forming cellulolytic bacterium is described. Cellulose is cleared within 24 to 48 h around colonies formed in cellulose agar roll tubes. Cells stain gram negative and are nonmotile rods which form oblong spores either centrally or subterminally in a clostridial swelling. Colonies are irregular with an opaque edge and a center devoid of both vegetative cells and spores. Cellulose, xylan, pectin, cellobiose, glucose, maltose, galactose, sucrose, lactose, and mannose serve as substrates for growth. H2, CO2, acetate, butyrate, formate, and lactate are produced during fermentation of cellulose or cellobiose. The temperature and pH for optimum growth are 37°C and 7.0, respectively. The DNA composition is 26 to 27 mol% guanine plus cytosine. This bacterium resembles “Clostridium lochheadii” in morphological and some biochemical characteristics but is not identical to it. The name Clostridium cellulovorans sp. nov. is proposed. The type strain is 743B (ATCC 35296). Images PMID:16346602

  19. Polaribacter butkevichii sp. nov., a novel marine mesophilic bacterium of the family Flavobacteriaceae.

    PubMed

    Nedashkovskaya, Olga I; Kim, Seung Bum; Lysenko, Anatoly M; Kalinovskaya, Nataliya I; Mikhailov, Valery V; Kim, In Seop; Bae, Kyung Sook

    2005-12-01

    A novel heterotrophic, yellow pigmented, aerobic, Gram-negative, nonmotile, oxidase- and catalase-positive bacterium KMM 3,938(T) was isolated from sea water collected in the Sea of Japan, Russia. The strain grew at mesophilic temperature range, and required the presence of NaCl for growth. 16S rRNA gene sequence analysis revealed that strain KMM 3,938(T) is a member of the family Flavobacteriaceae. The predominant fatty acids were C13:0 iso, C14:0 iso, C15:0 iso, C15:0, C15:1Delta6, 3OH-C15:0:3 iso, and 3OH-C15:0. The G + C content of the DNA of KMM 3938(T) was 32.4 mol%. On the basis of phenotypic, chemotaxonomic, genotypic, and phylogenetic characteristics, the novel bacterium was assigned to the genus Polaribacter as Polaribacter butkevichii sp. nov. The type strain is KMM 3938(T )(= KCTC 12100(T) = CCUG 48005(T)).

  20. Identification of strains Bacillus aerophilus MTCC 7304T as Bacillus altitudinis and Bacillus stratosphericus MTCC 7305T as a Proteus sp. and the status of the species Bacillus aeriusShivaji et al. 2006. Request for an Opinion.

    PubMed

    Liu, Yang; Ramesh Kumar, N; Lai, Qiliang; Du, Juan; Dobritsa, Anatoly P; Samadpour, Mansour; Shao, Zongze

    2015-09-01

    On the basis of 16S rRNA, rpoB, gyrB and pycA gene sequence analyses, characterization of biochemical features and other phenotypic traits and pulsed-field gel electrophoresis (PFGE) fingerprinting, it was ascertained that strains Bacillus aerius MTCC 7303T, Bacillus aerophilus MTCC 7304(T) and Bacillus stratosphericus MTCC 7305(T) do not conform to the descriptions of the type strains of the respective species. Strains MTCC 7303(T) and MTCC 7304(T) were indistinguishable from Bacillus altitudinis DSM 21631(T), while strain MTCC 7305(T) should be classified as a representative of a Proteus sp. Our attempts to find other deposits of the type strains of these species were unsuccessful. Therefore, the results support the Request for an Opinion on the status of the species Bacillus aerophilus and Bacillus stratosphericus by Branquinho et al. [Branquinho, R., Klein, G., Kämpfer, P. & Peixe, L. V. (2015). Int J Syst Evol Microbiol 65, 1101]. It is also proposed that the Judicial Commission should place the name Bacillus aerius on the list of rejected names if a suitable replacement type strain cannot be found or a neotype is not proposed within two years following the publication of this Request (Rule 18c).

  1. Complete Genome Sequence of Spiroplasma turonicum Tab4cT, a Bacterium Isolated from Horse Flies (Haematopota sp.).

    PubMed

    Lo, Wen-Sui; Gasparich, Gail E; Kuo, Chih-Horng

    2016-09-22

    Spiroplasma turonicum Tab4c(T) was isolated from a horse fly (Haematopota sp.; probably Haematopota pluvialis) collected at Champchevrier, Indre-et-Loire, Touraine, France, in 1991. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma spp.

  2. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment

    PubMed Central

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant’Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fábio Oliveira; Souza, Emanuel Maltempi; Brandelli, Adriano

    2015-01-01

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments. PMID:25838495

  3. Draft Genome Sequence of Anaeromyxobacter sp. Strain PSR-1, an Arsenate-Respiring Bacterium Isolated from Arsenic-Contaminated Soil.

    PubMed

    Tonomura, Mimori; Ehara, Ayaka; Suzuki, Haruo; Amachi, Seigo

    2015-01-01

    Here, we report a draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. It contained three distinct arsenic resistance gene clusters (ars operons), while no respiratory arsenate reductase gene (arr) was identified. PMID:25977440

  4. Draft Genome Sequence of Anaeromyxobacter sp. Strain PSR-1, an Arsenate-Respiring Bacterium Isolated from Arsenic-Contaminated Soil

    PubMed Central

    Tonomura, Mimori; Ehara, Ayaka; Suzuki, Haruo

    2015-01-01

    Here, we report a draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. It contained three distinct arsenic resistance gene clusters (ars operons), while no respiratory arsenate reductase gene (arr) was identified. PMID:25977440

  5. Draft Genome Sequence and Description of Janthinobacterium sp. Strain CG3, a Psychrotolerant Antarctic Supraglacial Stream Bacterium

    PubMed Central

    Smith, Heidi; Akiyama, Tatsuya; Franklin, Michael; Woyke, Tanja; Teshima, Hazuki; Davenport, Karen; Daligault, Hajnalka; Erkkila, Tracy; Goodwin, Lynne; Gu, Wei; Xu, Yan; Chain, Patrick

    2013-01-01

    Here we present the draft genome sequence of Janthinobacterium sp. strain CG3, a psychrotolerant non-violacein-producing bacterium that was isolated from the Cotton Glacier supraglacial stream. The genome sequence of this organism will provide insight as to the mechanisms necessary for bacteria to survive in UV-stressed icy environments. PMID:24265494

  6. Draft Genome Sequence of the Aromatic Hydrocarbon-Degrading Bacterium Sphingobium sp. Strain Ant17, Isolated from Antarctic Soil

    PubMed Central

    Guerrero, Leandro D.; Makhalanyane, Thulani P.; Aislabie, Jackie M.

    2014-01-01

    Here, we present the draft genome sequence of Sphingobium sp. strain Ant17, an aromatic hydrocarbon-degrading bacterium that was isolated from Antarctic oil-contaminated soil. An analysis of this genome can lead to insights into the mechanisms of xenobiotic degradation processes at low temperatures and potentially aid in bioremediation applications. PMID:24723703

  7. Draft Genome Sequence of Chryseobacterium sp. Strain GSE06, a Biocontrol Endophytic Bacterium Isolated from Cucumber (Cucumis sativus).

    PubMed

    Jeong, Jin-Ju; Park, Byeong Hyeok; Park, Hongjae; Choi, In-Geol; Kim, Ki Deok

    2016-06-16

    Chryseobacterium sp. strain GSE06 is a biocontrol endophytic bacterium against the destructive soilborne oomycete Phytophthora capsici, which causes Phytophthora blight of pepper. Here, we present its draft genome sequence, which contains genes related to biocontrol traits, such as colonization, antimicrobial activity, plant growth promotion, and abiotic or biotic stress adaptation.

  8. Draft Genome Sequence of Chryseobacterium sp. Strain GSE06, a Biocontrol Endophytic Bacterium Isolated from Cucumber (Cucumis sativus).

    PubMed

    Jeong, Jin-Ju; Park, Byeong Hyeok; Park, Hongjae; Choi, In-Geol; Kim, Ki Deok

    2016-01-01

    Chryseobacterium sp. strain GSE06 is a biocontrol endophytic bacterium against the destructive soilborne oomycete Phytophthora capsici, which causes Phytophthora blight of pepper. Here, we present its draft genome sequence, which contains genes related to biocontrol traits, such as colonization, antimicrobial activity, plant growth promotion, and abiotic or biotic stress adaptation. PMID:27313310

  9. Complete Genome Sequence of Spiroplasma turonicum Tab4cT, a Bacterium Isolated from Horse Flies (Haematopota sp.).

    PubMed

    Lo, Wen-Sui; Gasparich, Gail E; Kuo, Chih-Horng

    2016-01-01

    Spiroplasma turonicum Tab4c(T) was isolated from a horse fly (Haematopota sp.; probably Haematopota pluvialis) collected at Champchevrier, Indre-et-Loire, Touraine, France, in 1991. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma spp. PMID:27660788

  10. Draft Genome Sequence of Chryseobacterium sp. Strain GSE06, a Biocontrol Endophytic Bacterium Isolated from Cucumber (Cucumis sativus)

    PubMed Central

    Jeong, Jin-Ju; Park, Byeong Hyeok; Park, Hongjae

    2016-01-01

    Chryseobacterium sp. strain GSE06 is a biocontrol endophytic bacterium against the destructive soilborne oomycete Phytophthora capsici, which causes Phytophthora blight of pepper. Here, we present its draft genome sequence, which contains genes related to biocontrol traits, such as colonization, antimicrobial activity, plant growth promotion, and abiotic or biotic stress adaptation. PMID:27313310

  11. Complete Genome Sequence of Spiroplasma turonicum Tab4cT, a Bacterium Isolated from Horse Flies (Haematopota sp.)

    PubMed Central

    Lo, Wen-Sui; Gasparich, Gail E.

    2016-01-01

    Spiroplasma turonicum Tab4cT was isolated from a horse fly (Haematopota sp.; probably Haematopota pluvialis) collected at Champchevrier, Indre-et-Loire, Touraine, France, in 1991. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma spp. PMID:27660788

  12. Complete Genome Sequence of Bacillus pumilus PDSLzg-1, a Hydrocarbon-Degrading Bacterium Isolated from Oil-Contaminated Soil in China

    PubMed Central

    Hao, Kun; Li, Hongna; Li, Feng

    2016-01-01

    Bacillus pumilus strain PDSLzg-1, an efficient hydrocarbon-degrading bacterium, was isolated from oil-contaminated soil. Here, we present the complete sequence of its circular chromosome and circular plasmid. The genomic information is essential for the study of degradation of oil by B. pumilus PDSLzg-1.

  13. Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity.

    PubMed

    Ertuğrul, Sevgi; Dönmez, Gönül; Takaç, Serpil

    2007-11-19

    The bacteria that could grow on media containing olive mill wastewater (OMW) were isolated and their lipase production capacities were investigated. The strain possessing the highest lipase activity among 17 strains grown on tributyrin agar medium was identified as Bacillus sp. The effect of initial pH on the lipase activity was investigated in tributyrin medium and pH 6 was found to be the optimal. The liquid medium composition was improved by replacing tributyrin with various carbon sources. Among the media containing different compositions of triolein, trimyristin, trilaurin, tricaprin, tricaprylin, tributyrin, triacetin, Tween 80, OMW, glucose, and whey; the medium contained 20% whey +1% triolein was found to give the highest lipase activity. Cultivation of Bacillus sp. in the optimal medium at pH 6 and 30 degrees C for 64h resulted in the extracellular and intracellular lipase activities of 15 and 168U/ml, respectively.

  14. Bacillus rubiinfantis sp. nov. strain mt2T, a new bacterial species isolated from human gut

    PubMed Central

    Tidjiani Alou, M.; Rathored, J.; Khelaifia, S.; Michelle, C.; Brah, S.; Diallo, B.A.; Raoult, D.; Lagier, J.-C.

    2015-01-01

    Bacillus rubiinfantis sp. nov. strain mt2T is the type strain of B. rubiinfantis sp. nov., isolated from the fecal flora of a child with kwashiorkor in Niger. It is Gram-positive facultative anaerobic rod belonging to the Bacillaceae family. We describe the features of this organism alongside the complete genome sequence and annotation. The 4 311 083 bp long genome (one chromosome but no plasmid) contains 4028 protein-coding gene and 121 RNA genes including nine rRNA genes. PMID:27076912

  15. Bacillus niameyensis sp. nov., a new bacterial species isolated from human gut

    PubMed Central

    Tidjani Alou, M.; Rathored, J.; Traore, S.I.; Khelaifia, S.; Michelle, C.; Brah, S.; Diallo, B.A.; Raoult, D.; Lagier, J.-C.

    2015-01-01

    Bacillus niameyensis sp. nov. strain SIT3T (= CSUR P1266 = DSM 29725) is the type strain of B. niameyensis sp. nov. This Gram-positive strain was isolated from the digestive flora of a child with kwashiorkor and is a facultative anaerobic rod and a member of the Bacillaceae family. This organism is hereby described alongside its complete genome sequence and annotation. The 4  286  116 bp long genome (one chromosome but no plasmid) contains 4130 protein-coding and 66 RNA genes including five rRNA genes. PMID:27076913

  16. Determination of the kinetic parameters of the phenol-degrading thermophile Bacillus themoleovorans sp. A2.

    PubMed

    Feitkenhauer, H; Schnicke, S; Müller, R; Märkl, H

    2001-12-01

    Phenolic compounds are pollutants in many wastewaters, e.g. from crude oil refineries, coal gasification plants or olive oil mills. Phenol removal is a key process for the biodegradation of pollutants at high temperatures because even low concentrations of phenol can inhibit microorganisms severely. Bacillus thermoleovorans sp. A2, a recently isolated thermophilic strain (temperature optimum 65 degrees C), was investigated for its capacity to degrade phenol. The experiments revealed that growth rates were about four times higher than those of mesophilic microorganisms such as Pseudomonas putida. Very high specific growth rates of 2.8 h(-1) were measured at phenol concentrations of 15 mg/l, while at phenol concentrations of 100-500 mg/l growth rates were still in the range of 1 h(-1). The growth kinetics of the thermophilic Bacillus thermoleovorans sp. A2 on phenol as sole carbon and energy source can be described using a three-parameter model developed in enzyme kinetics. The yield coefficient Yx/s of 0.8-1 g cell dry weight/g phenol was considerably higher than cell yields of mesophilic bacteria (Yx/s 0.40-0.52 g cell dry weight/g phenol). The highest growth rate was found at pH 6. Bacillus thermoleovorans sp. A2 was found to be insensitive to hydrodynamic shear stress in stirred bioreactor experiments (despite possible membrane damage caused by phenol) and flourished at an ionic strength of the medium of 0.25(-1) mol/l (equivalent to about 15-60 g NaCl/l). These exceptional properties make Bacillus thermoleovorans sp. A2 an excellent candidate for technical applications.

  17. Filobacterium rodentium gen. nov., sp. nov., a member of Filobacteriaceae fam. nov. within the phylum Bacteroidetes; includes a microaerobic filamentous bacterium isolated from specimens from diseased rodent respiratory tracts.

    PubMed

    Ike, Fumio; Sakamoto, Mitsuo; Ohkuma, Moriya; Kajita, Ayako; Matsushita, Satoru; Kokubo, Toshiaki

    2016-01-01

    Strain SMR-CT, which was originally isolated from rats as the SMR strain, had been named 'cilia-associated respiratory bacillus' ('CAR bacillus'). 'CAR bacillus' was a Gram-stain-negative, filamentous argentophilic bacterium without flagella. SMR-CT grew at 37 °C under microaerobic conditions, showed gliding activity, hydrolysed urea and induced chronic respiratory diseases in rodents. The dominant cellular fatty acids detected were iso-C15 : 0 and anteiso-C15 : 0. The DNA G+C content was 47.7 mol%. 16S rRNA gene sequence analysis revealed SMR-CT and other strains of 'CAR bacillus' isolated from rodents all belonged to the phylum Bacteroidetes. The nearest known type strain, with 86 % 16S rRNA gene sequence similarity, was Chitinophaga pinensis DSM 2588T in the family Chitinophagaceae. Strain SMR-CT and closely related strains of 'CAR bacillus' rodent-isolates formed a novel family-level clade in the phylum Bacteroidetes with high bootstrap support (98-100 %). Based on these results, we propose a novel family, Filobacteriaceae fam. nov., in the order Sphingobacteriales as well as a novel genus and species, Filobacterium rodentium gen. nov., sp. nov., for strain SMR-CT. The type strain is SMR-CT ( = JCM 19453T = DSM 100392T).

  18. Filobacterium rodentium gen. nov., sp. nov., a member of Filobacteriaceae fam. nov. within the phylum Bacteroidetes; includes a microaerobic filamentous bacterium isolated from specimens from diseased rodent respiratory tracts.

    PubMed

    Ike, Fumio; Sakamoto, Mitsuo; Ohkuma, Moriya; Kajita, Ayako; Matsushita, Satoru; Kokubo, Toshiaki

    2016-01-01

    Strain SMR-CT, which was originally isolated from rats as the SMR strain, had been named 'cilia-associated respiratory bacillus' ('CAR bacillus'). 'CAR bacillus' was a Gram-stain-negative, filamentous argentophilic bacterium without flagella. SMR-CT grew at 37 °C under microaerobic conditions, showed gliding activity, hydrolysed urea and induced chronic respiratory diseases in rodents. The dominant cellular fatty acids detected were iso-C15 : 0 and anteiso-C15 : 0. The DNA G+C content was 47.7 mol%. 16S rRNA gene sequence analysis revealed SMR-CT and other strains of 'CAR bacillus' isolated from rodents all belonged to the phylum Bacteroidetes. The nearest known type strain, with 86 % 16S rRNA gene sequence similarity, was Chitinophaga pinensis DSM 2588T in the family Chitinophagaceae. Strain SMR-CT and closely related strains of 'CAR bacillus' rodent-isolates formed a novel family-level clade in the phylum Bacteroidetes with high bootstrap support (98-100 %). Based on these results, we propose a novel family, Filobacteriaceae fam. nov., in the order Sphingobacteriales as well as a novel genus and species, Filobacterium rodentium gen. nov., sp. nov., for strain SMR-CT. The type strain is SMR-CT ( = JCM 19453T = DSM 100392T). PMID:26476525

  19. Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913

    PubMed Central

    2014-01-01

    Background Pseudoalteromonas species are a group of marine gammaproteobacteria frequently found in deep-sea sediments, which may play important roles in deep-sea sediment ecosystem. Although genome sequence analysis of Pseudoalteromonas has revealed some specific features associated with adaptation to the extreme deep-sea environment, it is still difficult to study how Pseudoalteromonas adapt to the deep-sea environment due to the lack of a genetic manipulation system. The aim of this study is to develop a genetic system in the deep-sea sedimentary bacterium Pseudoalteromonas sp. SM9913, making it possible to perform gene mutation by homologous recombination. Results The sensitivity of Pseudoalteromonas sp. SM9913 to antibiotic was investigated and the erythromycin resistance gene was chosen as the selective marker. A shuttle vector pOriT-4Em was constructed and transferred into Pseudoalteromonas sp. SM9913 through intergeneric conjugation with an efficiency of 1.8 × 10-3, which is high enough to perform the gene knockout assay. A suicide vector pMT was constructed using pOriT-4Em as the bone vector and sacB gene as the counterselective marker. The epsT gene encoding the UDP-glucose lipid carrier transferase was selected as the target gene for inactivation by in-frame deletion. The epsT was in-frame deleted using a two-step integration–segregation strategy after transferring the suicide vector pMT into Pseudoalteromonas sp. SM9913. The ΔepsT mutant showed approximately 73% decrease in the yield of exopolysaccharides, indicating that epsT is an important gene involved in the EPS production of SM9913. Conclusions A conjugal transfer system was constructed in Pseudoalteromonas sp. SM9913 with a wide temperature range for selection and a high transfer efficiency, which will lay the foundation of genetic manipulation in this strain. The epsT gene of SM9913 was successfully deleted with no selective marker left in the chromosome of the host, which thus make it

  20. Cloning and nucleotide sequence of the gene coding for citrate synthase from a thermotolerant Bacillus sp.

    PubMed Central

    Schendel, F J; August, P R; Anderson, C R; Hanson, R S; Flickinger, M C

    1992-01-01

    The structural gene coding for citrate synthase from the gram-positive soil isolate Bacillus sp. strain C4 (ATCC 55182) capable of secreting acetic acid at pH 5.0 to 7.0 in the presence of dolime has been cloned from a genomic library by complementation of an Escherichia coli auxotrophic mutant lacking citrate synthase. The nucleotide sequence of the entire 3.1-kb HindIII fragment has been determined, and one major open reading frame was found coding for citrate synthase (ctsA). Citrate synthase from Bacillus sp. strain C4 was found to be a dimer (Mr, 84,500) with a subunit with an Mr of 42,000. The N-terminal sequence was found to be identical with that predicted from the gene sequence. The kinetics were best fit to a bisubstrate enzyme with an ordered mechanism. Bacillus sp. strain C4 citrate synthase was not activated by potassium chloride and was not inhibited by NADH, ATP, ADP, or AMP at levels up to 1 mM. The predicted amino acid sequence was compared with that of the E. coli, Acinetobacter anitratum, Pseudomonas aeruginosa, Rickettsia prowazekii, porcine heart, and Saccharomyces cerevisiae cytoplasmic and mitochondrial enzymes. PMID:1311544

  1. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    PubMed

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J; Glick, Bernard R

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  2. Anti-methicillin-resistant Staphylococcus aureus (MRSA) substance from the marine bacterium Pseudomonas sp. UJ-6.

    PubMed

    Lee, Dae-Sung; Eom, Sung-Hwan; Jeong, Seong-Yun; Shin, Hee Jae; Je, Jae-Young; Lee, Eun-Woo; Chung, Yong-Hyun; Kim, Young-Mog; Kang, Chang-Keun; Lee, Myung-Suk

    2013-03-01

    A multivalent approach to discover a novel antibiotic substance against methicillin-resistant Staphylococcus aureus (MRSA), a marine bacterium, UJ-6, exhibiting an antibacterial activity against MRSA was isolated from seawater. The isolated strain was identified to be Pseudomonas sp. by the morphology, biochemical, and genetical analyses. The ethyl acetate extract of Pseudomonas sp. UJ-6 culture showed significant ant-MRSA activity. Bioassay-guided isolation of the extract using a growth inhibitory assay led to the isolation and identification of an active compound exhibiting anti-MRSA activity. Based on the analyses of the physicochemical and spectroscopic data including nuclear magnetic resonance and mass, the compound was identified to be 1-acetyl-beta-carboline. The minimum inhibitory concentration (MIC) of the compound was determined to be in a range of 32-128 μg/ml against MRSA strains. The MIC values against MRSA were superior or equal to those of other natural compounds such as catechins, suggesting that 1-acetyl-beta-carboline would be a good candidate in applications of the treatment of MRSA infection.

  3. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    PubMed

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J; Glick, Bernard R

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.

  4. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    PubMed Central

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Glick, Bernard R.

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  5. Lysing activity of an indigenous algicidal bacterium Aeromonas sp. against Microcystis spp. isolated from Lake Taihu.

    PubMed

    Yang, Fei; Li, Xiaoqin; Li, Yunhui; Wei, Haiyan; Yu, Guang; Yin, Lihong; Liang, Geyu; Pu, Yuepu

    2013-01-01

    This study aimed to isolate and characterize an indigenous algicidal bacterium named LTH-1 and its algae-lysing compounds active against three Microcystis aeruginosa strains (toxic TH1, nontoxic TH2 and standard FACHB 905). The LTH-1 isolated from Lake Taihu, near Wuxi City in China, was identified as Aeromonas sp. based on its morphological characteristic features and phylogenetic analysis by sequencing of 16S rDNA. Extracellular compounds produced by LTH-1 showed strong algaelysing activity, and they were water-soluble and heat-tolerant, with a molecular mass lower than 2 kDa. Two algae-lysing compounds were isolated and purified from extracellular filtrate using silica gel column chromatography. One of these was identified as phenylalanine (C9H11NO2, m/z 166.0862) and the other (C8H16N2O3, m/z 189.1232) was unidentified by hybrid ion trap/time-of-flight mass spectrometry coupled with a high-performance liquid chromatography (LC/MS-IT-TOF) system. The half maximal effective concentration (EC50) of phenylalanine produced by LTH-1 against FACHB 905 was 68.2 +/- 8.2 microg mL(-1) in 48h. These results suggest that the algicidal Aeromonas sp. LTH-1 could play a role in controlling Microcystis blooms, and its extracellular compounds are also potentially useful for regulating blooms of the harmful M. aeruginosa. PMID:24191475

  6. Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials.

    PubMed

    Cervantes, Eric Reyes; Torres, Maykel González; Muñoz, Susana Vargas; Rosas, Efraín Rubio; Vázquez, Candelario; Talavera, Rogelio Rodríguez

    2016-01-01

    This study aimed to grow hydroxyapatite (HAp) crystals on the cellular wall of the Gram-positive bacterium Bacillus thuringiensis using a bio-mimetic method. Several strains were phenotypically and genotypically characterized using multilocus sequence typing (MLST) gene markers to differentiate the strains and confirm the identity of the isolated species to guarantee that the selected species was not harmful to human health or the environment. Three of the analyzed strains were selected because they exhibited the best nucleation and growth of HAp on the bacterial surface. This innovative method to grow HAp crystals on a cellular membrane helps to elucidate the mechanisms by which osseous tissue is formed in nature. The optimum concentration for the simulated physiological fluid (SPF) was 1.5×. The hybrid materials were characterized by optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). PMID:26478352

  7. A New Diketopiperazine, Cyclo(D-trans-Hyp-L-Leu) from a Kenyan Bacterium Bacillus licheniformis LB 8CT.

    PubMed

    Lee, Seoung Rak; Beemelmanns, Christine; Tsuma, Leah M M; Clardy, Jon; Cao, Shugeng; Kim, Ki Hyun

    2016-04-01

    Bacterially-produced small molecules demonstrate a wide range of structural and functional diversity. A new diketopiperazine, cyclo(D-trans-Hyp-L-Leu) (1), and five other known diketopiperazines (2-6), were isolated and purified from the fermented broth of a Kenyan bacterium Bacillus licheniformis LB 8CT. The structure of 1 was elucidated by a combination of extensive spectroscopic analyses, including 2D NMR and HR-MS, and the absolute configuration was determined by a combination of NOESY analysis and Marfey's method. The known compounds were identified as cyclo(D-cis-Hyp-L-Leu) (2), cyclo(D-cis-Hyp-L-Phe) (3), cyclo(D-Pro-L-Tyr) (4), cyclo-(D-Trp-L-Leu) (5), and cyclo(L-Tyr-Gly) (6) by comparison of their spectroscopic and physical data with reported values. Compounds 1-6 were tested for antifungal and antimicrobial properties.

  8. Enzymatic Properties of an Alkaline and Chelator Resistant alpha-amylase from the Alkaliphilic Bacillus sp. Isolate L1711

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    An alkaliphilic amylase producing bacterium, Bacillus sp. strain L 711, was selected among 13 soda lakes isolates. When grown at pH 10.5 and 37 C, strain L711 produced multiple forms of amylases in the culture broth. One of these, BAA, was purified from the culture supernatant by QAE column chromatography and preparative native gel electrophoresis. The molecular weight of BAA was determined to be 51 kDa by denaturing gel electrophoresis. The pH optima for activity below and above 40 C were 9.5 - 10.0 and 7.0 - 7.5 respectively. BAA was stable in the pH range 6-11 and was completely inactivated at 55 C. The thermostability was not increased in the presence of Ca(2+). The enzyme was strongly inhibited by Ca(2+), Zn(2+), Mg(2+), Mn(2+), Ba(2+) and Cu(2+), whereas the presence of Na(+), Co(2+) and EDTA (10 mM) enhanced enzymatic activity. The K(sub m), and specific activity of BAA on soluble starch were 1.9 mg/ml and 18.5 U/mg respectively. The main end products of hydrolysis were maltotetraose, maltose and glucose.

  9. Properties of a Newly Identified Esterase from Bacillus sp. K91 and Its Novel Function in Diisobutyl Phthalate Degradation

    PubMed Central

    Xie, Zhenrong; Li, Junjun; Yang, Yunjuan; Mu, Yuelin; Tang, Xianghua; Xu, Bo; Zhou, Junpei; Huang, Zunxi

    2015-01-01

    The widely used plasticizer phthalate esters (PAEs) have become a public concern because of their effects on environmental contamination and toxicity on mammals. However, the biodegradation of PAEs, especially diisobutyl phthalate (DiBP), remains poorly understood. In particular, genes involved in the hydrolysis of these compounds were not conclusively identified. In this study, the CarEW gene, which encodes an enzyme that is capable of hydrolyzing ρ-nitrophenyl esters of fatty acids, was cloned from a thermophilic bacterium Bacillus sp. K91 and heterologously expressed in Escherichia coli BL21 using the pEASY-E2 expression system. The enzyme showed a monomeric structure with a molecular mass of approximately 53.76 kDa and pI of 4.88. The enzyme exhibited maximal activity at pH 7.5 and 45°C, with ρ-NP butyrate as the best substrate. The enzyme was fairly stable within the pH range from 7.0 to 8.5. High-pressure liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS) were employed to detect the catabolic pathway of DiBP. Two intermediate products were identified, and a potential biodegradation pathway was proposed. Altogether, our findings present a novel DiBP degradation enzyme and indicate that the purified enzyme may be a promising candidate for DiBP detoxification and for environmental protection. PMID:25746227

  10. Humic analog AQDS and AQS as an electron mediator can enhance chromate reduction by Bacillus sp. strain 3C3.

    PubMed

    Hong, Yiguo; Wu, Peng; Li, Wenru; Gu, Jiguang; Duan, Shunshan

    2012-03-01

    Humus as an electron mediator is recognized as an effective strategy to improve the biological transformation and degradation of toxic substances, yet the action of humus in microbial detoxification of chromate is still unknown. In this study, a humus-reducing strain 3C(3) was isolated from mangrove sediment. Based on the analyses of morphology, physiobiochemical characteristics, and 16S rRNA gene sequence, this strain was identified Bacillus sp. Strain 3C(3) can effectively reduce humic analog anthraquinone-2,6-disulfonate (AQDS) and anthraquinone-2-sulfonate (AQS) with lactate, formate, or glucose as electron donors. When the cells were killed by incubation at 95°C for 30 min or an electron donor was absent, the humic reduction did not occur, showing that the humic reduction was a biochemical process. However, strain 3C(3) had low capability of chromate reduction under anaerobic conditions, despite of having strong tolerance of the toxic metal. But in the presence of humic substances AQDS or AQS, we found that chromate reduction by strain 3C(3) was enhanced greatly. Because strain 3C(3) is an effective humus-reducing bacterium, it is proposed that humic substances could serve as electron mediator to interact with chromate and accelerate chromate reduction. Our results suggest that chromate contaminations can be detoxified by adding humic analog (low to 0.1 mM) as an electron mediator in the microbial incubation.

  11. Short communication: In vitro evaluation of a Bacillus sp. for the biological control of the coffee phytopathogen Mycena citricolor.

    PubMed

    Quesada-Chanto, A; Jiménez-Ulate, F

    1996-01-01

    A cell-free supernatant and an ethanolic extract of a 3-day-old culture of Bacillus UCR-236 inhibited the growth of Mycena citricolor, as determined by the 'Oxford cylinder' method. A 3-day-old culture of the same bacterium also decreased leaf infection by the pathogen in a moisture-chamber test. PMID:24415098

  12. Integrated Bacillus sp. immobilized cell reactor and Synechocystis sp. algal reactor for the treatment of tannery wastewater.

    PubMed

    Sekaran, G; Karthikeyan, S; Nagalakshmi, C; Mandal, A B

    2013-01-01

    The wastewater discharged from leather industries lack biodegradability due to the presence of xenobiotic compounds. The primary clarification and aerobic treatment in Bacillus sp. immobilized Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor removed considerable amount of pollution parameters. The residual untreated organics in the wastewater was further treated in algal batch reactor inoculated with Synechocystis sp. Sodium nitrate, K(2)HPO(4), MgSO(4).7H(2)O, NH(4)Cl, CaCl(2)·2H(2)O, FeCl(3) (anhydrous), and thiamine hydrochloride, rice husk based activated carbon (RHAC), immobilization of Bacillus sp. in mesoporous activated carbon, sand filter of dimensions diameter, 6 cm and height, 30 cm; and the CAACO reactor of dimensions diameter, 5.5 cm and height, 30 cm with total volume 720 ml, and working volume of 356 ml. In the present investigation, the CAACO treated tannery wastewater was applied to Synechocystis sp. inoculated algal batch reactor of hydraulic residence time 24 h. The BOD(5), COD, and TOC of treated wastewater from algal batch reactor were 20 ± 7, 167 ± 29, and 78 ± 16 mg/l respectively. The integrated CAACO system and Algal batch reactor was operated for 30 days and they accomplished a cumulative removal of BOD(5),COD, TOC, VFA and sulphide as 98 %, 95 %, 93 %, 86 %, and 100 %, respectively. The biokinetic constants for the growth of algae in the batch reactor were specific growth rate, 0.095(day(-1)) and yield coefficient, 3.15 mg of algal biomass/mg of COD destructed. The degradation of xenobiotic compounds in the algal batch reactor was confirmed through HPLC and FT-IR techniques. The integrated CAACO-Algal reactor system established a credible reduction in pollution parameters in the tannery wastewater. The removal mechanism is mainly due to co-metabolism between algae and bacterial species and the organics were completely metabolized rather than by adsorption.

  13. Synergistic Effect of Simple Sugars and Carboxymethyl Cellulose on the Production of a Cellulolytic Cocktail from Bacillus sp. AR03 and Enzyme Activity Characterization.

    PubMed

    Manfredi, Adriana P; Pisa, José H; Valdeón, Daniel H; Perotti, Nora I; Martínez, María A

    2016-04-01

    A cellulase-producing bacterium isolated from pulp and paper feedstock, Bacillus sp. AR03, was evaluated by means of a factorial design showing that peptone and carbohydrates were the main variables affecting enzyme production. Simple sugars, individually and combined with carboxymethyl cellulose (CMC), were further examined for their influence on cellulase production by strain AR03. Most of the mono and disaccharides assayed presented a synergistic effect with CMC. As a result, a peptone-based broth supplemented with 10 g/L sucrose and 10 g/L CMC maximized enzyme production after 96 h of cultivation. This medium was used to produce endoglucanases in a 1-L stirred tank reactor in batch mode at 30 °C, which reduced the fermentation period to 48 h and reaching 3.12 ± 0.02 IU/mL of enzyme activity. Bacillus sp. AR03 endoglucanases showed an optimum temperature of 60 °C and a pH of 6.0 with a wide range of pH stability. Furthermore, presence of 10 mM Mn(2+) and 5 mM Co(2+) produced an increase of enzyme activity (246.7 and 183.7 %, respectively), and remarkable tolerance to NaCl, Tween 80, and EDTA was also observed. According to our results, the properties of the cellulolytic cocktail from Bacillus sp. AR03 offer promising features in view of potential biorefinery applications.

  14. Synergistic Effect of Simple Sugars and Carboxymethyl Cellulose on the Production of a Cellulolytic Cocktail from Bacillus sp. AR03 and Enzyme Activity Characterization.

    PubMed

    Manfredi, Adriana P; Pisa, José H; Valdeón, Daniel H; Perotti, Nora I; Martínez, María A

    2016-04-01

    A cellulase-producing bacterium isolated from pulp and paper feedstock, Bacillus sp. AR03, was evaluated by means of a factorial design showing that peptone and carbohydrates were the main variables affecting enzyme production. Simple sugars, individually and combined with carboxymethyl cellulose (CMC), were further examined for their influence on cellulase production by strain AR03. Most of the mono and disaccharides assayed presented a synergistic effect with CMC. As a result, a peptone-based broth supplemented with 10 g/L sucrose and 10 g/L CMC maximized enzyme production after 96 h of cultivation. This medium was used to produce endoglucanases in a 1-L stirred tank reactor in batch mode at 30 °C, which reduced the fermentation period to 48 h and reaching 3.12 ± 0.02 IU/mL of enzyme activity. Bacillus sp. AR03 endoglucanases showed an optimum temperature of 60 °C and a pH of 6.0 with a wide range of pH stability. Furthermore, presence of 10 mM Mn(2+) and 5 mM Co(2+) produced an increase of enzyme activity (246.7 and 183.7 %, respectively), and remarkable tolerance to NaCl, Tween 80, and EDTA was also observed. According to our results, the properties of the cellulolytic cocktail from Bacillus sp. AR03 offer promising features in view of potential biorefinery applications. PMID:26797928

  15. Alsobacter metallidurans gen. nov., sp. nov., a thallium-tolerant soil bacterium in the order Rhizobiales.

    PubMed

    Bao, Zhihua; Sato, Yoshinori; Fujimura, Reiko; Ohta, Hiroyuki

    2014-03-01

    A thallium-tolerant, aerobic bacterium, designated strain SK200a-9(T), isolated from a garden soil sample was characterized using a polyphasic approach. Comparative analysis of 16S rRNA gene sequences revealed that strain SK200a-9(T) was affiliated with an uncultivated lineage within the Alphaproteobacteria and the nearest cultivated neighbours were bacteria in genera in the family Methylocystaceae (93.3-94.4% 16S rRNA gene sequence similarity) and the family Beijerinckiaceae (92.3-93.1%) in the order Rhizobiales. Cells of strain SK200a-9(T) were Gram-stain-negative, non-motile, non-spore-forming, poly-β-hydroxybutyrate-accumulating rods. The strain was a chemo-organotrophic bacterium, which was incapable of growth on C1 substrates. Catalase and oxidase were positive. Atmospheric nitrogen fixation and nitrate reduction were negative. The strain contained ubiquinone Q-10 and cellular fatty acids C18 : 1ω7c, C18 : 0, C16 : 1ω7c and C16 : 0 as predominant components. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content was 64.8 mol%. On the basis of the information described above, strain SK200a-9(T) is considered to represent a novel species of a new genus in the order Rhizobiales, for which the name Alsobacter metallidurans gen. nov., sp. nov. is proposed. The type strain of Alsobacter metallidurans is SK200a-9(T) ( = NBRC 107718(T) = CGMCC 1.12214(T)).

  16. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress

    PubMed Central

    Chen, Yanmei; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong

    2016-01-01

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd2+ MIC, >250 mg liter−1) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion. PMID:26729719

  17. Virgibacillus salarius sp. nov., a halophilic bacterium isolated from a Saharan salt lake.

    PubMed

    Hua, Ngoc-Phuc; Hamza-Chaffai, Amel; Vreeland, Russell H; Isoda, Hiroko; Naganuma, Takeshi

    2008-10-01

    A Gram-positive, endospore-forming, rod-shaped and moderately halophilic bacterium was isolated from a salt-crust sample collected from Gharsa salt lake (Chott el Gharsa), Tunisia. The newly isolated bacterium, designated SA-Vb1(T), was identified based on polyphasic taxonomy including genotypic, phenotypic and chemotaxonomic characterization. Strain SA-Vb1(T) was closely related to the type strains of Virgibacillus marismortui and Virgibacillus olivae, with 16S rRNA gene sequence similarities of 99.7 and 99.4 %, respectively. However, strain SA-Vb1(T) was distinguished from these two type strains on the basis of phenotypic characteristics and DNA-DNA relatedness (29.4 and 5.1 %, respectively). The genetic relationship between strain SA-Vb1(T) and Virgibacillus pantothenticus IAM 11061(T) (the type strain of the type species) and other type strains of the genus was 96-98 % based on 16S rRNA gene sequence similarity and 18.3-22.3 % based on DNA-DNA hybridization. Biochemical analysis resulted in determination of major fatty acids iso-C(15 : 0), anteiso-C(15 : 0) and anteiso-C(17 : 0) (33.3, 29.2 and 9.8 %, respectively); phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine were the main polar lipids and MK-7 was the predominant menaquinone ( approximately 100 %). The distinct characteristics demonstrated by strain SA-Vb1(T) represent properties of a novel species of the genus Virgibacillus, for which the name Virgibacillus salarius sp. nov. is proposed. The type strain is SA-Vb1(T) (=JCM 12946(T) =DSM 18441(T)). PMID:18842865

  18. Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov.

    SciTech Connect

    Slobodkin, A.; Wiegel, J.; Reysenbach, A.L.

    1997-10-01

    A thermophilic, anaerobic, spore-forming bacterium (strain JW/AS-Y6) was isolated from a mixed sediment-water sample from a hot spring (Calcite Spring area) at Yellowstone National Park. The vegetative cells of this organism were straight rods, 0.5 to 0.6 by 3.0 to 6.5 {mu}m. Cells occurred singly and exhibited a slight tumbling motility. They formed round refractile endospores in terminal swollen sporangia. Cells stained gram positive. The temperature range for growth at pH 6.8 was 43 to 65{degrees}C, with optimum growth at 58{degrees}C. The range for growth at 60{degrees}C (pH{sup 60C}; with the pH meter calibrated at 60{degrees}C) was 5.9 to 7.8, with an optimum pH{sub 60C} of 6.3 to 6.5. The substrates utilized included glycerol, glucose, fructose, mannose, galactose, xylose, lactate, glycerate, pyruvate, and yeast extract. In the presence of CO{sub 2}, acetate was the only organic product from glyerol and carbohydrate fermentation. No H{sub 2} was produced during growth. The strain was not able to grow chemolithotrophically at the expense of H{sub 2}-CO{sub 2}; however, suspensions of cells in the exponential growth phase consumed H{sub 2}. The bacterium reduced fumarate to succinate and thiosulfate to elemental sulfur. Growth was exhibited by ampicillin, chloramphenicol, erythromycin, rifampin, and tetracycline, but not by streptomycin. The G+C content of the DNA was 54.5 mol% (as determined by high-performance liquid chromatography). The 16S ribosomal DNA sequence analysis placed the isolate in the Gram type-positive Bacillus-Clostridium subphylum. On the basis of physiological properties and phylogenetic analysis we propose that the isolated strain constitutes a new species, Moorella glycerini; the type strain is JW/AS-Y6 (= DSM 11254 = ATCC 700316).

  19. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis.

    PubMed

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S; Qian, Pei-Yuan

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning "plug-and-play" approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  20. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  1. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    PubMed Central

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-01-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning “plug-and-play” approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus. PMID:25807046

  2. Salisediminibacterium halotolerans gen. nov., sp. nov., a halophilic bacterium from soda lake sediment.

    PubMed

    Jiang, Feng; Cao, Shu-Juan; Li, Zhao-Hu; Fan, Hua; Li, Hai-Feng; Liu, Wei-Jie; Yuan, Hong-Li

    2012-09-01

    An orange-pigmented, Gram-reaction-positive, non-spore-forming, halophilic, alkali-tolerant rod, designated strain halo-2(T), was isolated from sediment of Xiarinaoer soda lake, in China's Inner Mongolia Autonomous Region. Strain halo-2(T) grew in a complex medium with 3-30 % (w/v) NaCl and at pH 5-10. The cell-wall peptidoglycan contained meso-diaminopimelic acid and the major respiratory isoprenoid quinone was MK-7. The predominant cellular fatty acids were anteiso-C(15 : 0) (43.6 %), anteiso-C(17 : 0) (14.8 %) and iso-C(15 : 0) (6.8 %) and the polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The genomic DNA G+C content of the novel strain was 48.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain halo-2(T) was most closely related to Bacillus agaradhaerens DSM 8721(T) (93.9 % sequence similarity). However, strain halo-2(T) could be clearly differentiated from its closest phylogenetic relatives on the basis of several phenotypic, genotypic and chemotaxonomic characteristics. Strain halo-2(T) therefore represents a novel species in a new genus for which the name Salisediminibacterium halotolerans gen. nov., sp. nov. is proposed. The type strain of the type species is halo-2(T) (= CGMCC 1.7654(T) = NBRC 104935(T)). PMID:22039006

  3. Desulfovibrio alkalitolerans sp. nov., a novel alkalitolerant, sulphate-reducing bacterium isolated from district heating water.

    PubMed

    Abildgaard, Lone; Nielsen, Marie Bank; Kjeldsen, Kasper Urup; Ingvorsen, Kjeld

    2006-05-01

    A novel alkalitolerant, sulphate-reducing bacterium (strain RT2T) was isolated from alkaline district heating water. Strain RT2T was a motile vibrio (0.5-0.8 microm wide and 1.4-1.9 microm long) and grew at pH 6.9-9.9 (optimum at pH 9.0-9.4) and at 16-47 degrees C (optimum at 43 degrees C). The genomic DNA G+C content was 64.7 mol%. A limited number of compounds were used as electron donors with sulphate as electron acceptor, including lactate, pyruvate, formate and hydrogen/acetate. Sulphite and thiosulphate also served as electron acceptors. Based on physiological and genotypic properties, the isolate was considered to represent a novel species of the genus Desulfovibrio, for which the name Desulfovibrio alkalitolerans sp. nov. is proposed. The type strain is RT2T (=DSM 16529T=JCM 12612T). The strain is the first alkali-tolerant member of the genus Desulfovibrio to be described.

  4. Luteimonas arsenica sp. nov., an arsenic-tolerant bacterium isolated from arsenic-contaminated soil.

    PubMed

    Mu, Yao; Pan, Yunfan; Shi, Wanxia; Liu, Lan; Jiang, Zhao; Luo, Xuesong; Zeng, Xian-Chun; Li, Wen-Jun

    2016-06-01

    A Gram-stain-negative, rod-shaped bacterium that formed yellow and viscous colonies was isolated from arsenic-contaminated soil of the Jianghan plain, Hubei Province, China, and it was designated 26-35T. This strain was capable of resisting arsenate and arsenite with MICs of 40 and 20 mM, respectively. The 16S rRNA gene of the novel isolate displayed 96.7-94.2 % sequence similarities to those of other known species of the genus Luteimonas. The respiratory quinone was ubiquinone-8 (Q-8). The DNA G+C content was 71.4 mol%. The predominant cellular fatty acids were iso-C15 : 0, iso-C16 : 0, iso-C17 : 0, iso-C11 : 0, iso-C11 : 0 3-OH and iso-C17 : 1ω9c. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Phylogenetic and physiological analysis indicated that the isolate represents a novel species of the genus Luteimonas, for which the name Luteimonas arsenica sp. nov. is proposed. The type strain is 26-35T (=KCTC 42824T=CCTCC AB 2014326T). PMID:26978245

  5. Cellulomonas composti sp. nov., a cellulolytic bacterium isolated from cattle farm compost.

    PubMed

    Kang, Myung-Suk; Im, Wan-Taek; Jung, Hae-Min; Kim, Myung Kyum; Goodfellow, Michael; Kim, Kwang Kyu; Yang, Hee-Chan; An, Dong-Shan; Lee, Sung-Taik

    2007-06-01

    A bacterial strain, TR7-06(T), which has cellulase and beta-glucosidase activities, was isolated from compost at a cattle farm near Daejeon, Republic of Korea. It was a Gram-positive, aerobic or facultatively anaerobic, non-motile, rod-shaped bacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belongs to the genus Cellulomonas, with highest sequence similarity to Cellulomonas uda DSM 20107(T) (98.5 %). Cell wall analysis revealed the presence of type A4beta, L-orn-D-Glu peptidoglycan. The cell-wall sugars detected were mannose and glucose. The predominant menaquinone was MK-9(H(4)); MK-8(H(4)) was detected in smaller quantities. The major fatty acids were anteiso-C(15 : 0), C(16 : 0), C(14 : 0) and C(18 : 0). The polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The results of DNA-DNA hybridization and physiological and biochemical tests clearly demonstrated that TR7-06(T) represents a novel species. The combined genotypic and phenotypic data show that strain TR7-06(T) (=KCTC 19030(T)=NBRC 100758(T)) merits description as the type strain of a novel Cellulomonas species, Cellulomonas composti sp. nov.

  6. Mechanism of biosynthesis of unsaturated fatty acids in Pseudomonas sp. strain E-3, a psychrotrophic bacterium

    SciTech Connect

    Wada, M.; Fukunaga, N.; Sasaki, S. )

    1989-08-01

    Biosynthesis of palmitic, palmitoleic, and cis-vaccenic acids in Pseudomonas sp. strain E-3 was investigated with in vitro and in vivo systems. (1-{sup 14}C)palmitic acid was aerobically converted to palmitoleate and cis-vaccenate, and the radioactivities on their carboxyl carbons were 100 and 43%, respectively, of the total radioactivity in the fatty acids. Palmitoyl coenzyme A desaturase activity was found in the membrane fraction. (1-{sup 14}C)stearic acid was converted to octadecenoate and C16 fatty acids. The octadecenoate contained oleate and cis-vaccenate, but only oleate was produced in the presence of cerulenin. (1-{sup 14}C)lauric acid was aerobically converted to palmitate, palmitoleate, and cis-vaccenate. Under anaerobic conditions, palmitate (62%), palmitoleate (4%), and cis-vaccenate (34%) were produced from (1-{sup 14}C)acetic acid, while they amounted to 48, 39, and 14%, respectively, under aerobic conditions. In these incorporation experiments, 3 to 19% of the added radioactivity was detected in released {sup 14}CO{sub 2}, indicating that part of the added fatty acids were oxidatively decomposed. Partially purified fatty acid synthetase produced saturated and unsaturated fatty acids with chain lengths of C10 to C18. These results indicated that both aerobic and anaerobic mechanisms for the synthesis of unsaturated fatty acid are operating in this bacterium.

  7. Genome shuffling of marine derived bacterium Nocardia sp. ALAA 2000 for improved ayamycin production.

    PubMed

    El-Gendy, Mervat M A; El-Bondkly, Ahmed M A

    2011-05-01

    Genome shuffling is a recent development in microbiology. The advantage of this technique is that genetic changes can be made in a microorganism without knowing its genetic background. Genome shuffling was applied to the marine derived bacterium Nocardia sp. ALAA 2000 to achieve rapid improvement of ayamycin production. The initial mutant population was generated by treatment with ethyl methane sulfonate (EMS) combined with UV irradiation of the spores, resulting in an improved population (AL/11, AL/136, AL/213 and AL/277) producing tenfold (150 μg/ml) more ayamycin than the original strain. These mutants were used as the starting strains for three rounds of genome shuffling and after each round improved strains were screened and selected based on their ayamycin productivity. The population after three rounds of genome shuffling exhibited an improved ayamycin yield. Strain F3/22 yielded 285 μg/ml of ayamycin, which was 19-fold higher than that of the initial strain and 1.9-fold higher than the mutants used as the starting point for genome shuffling. We evaluated the genetic effect of UV + EMS-mutagenesis and three rounds of genome shuffling on the nucleotide sequence by random amplified polymorphic DNA (RAPD) analysis. Many differences were noticed in mutant and recombinant strains compared to the wild type strain. These differences in RAPD profiles confirmed the presence of genetic variations in the Nocardia genome after mutagenesis and genome shuffling. PMID:21240675

  8. Purification and characterization of catalase from marine bacterium Acinetobacter sp. YS0810.

    PubMed

    Fu, Xinhua; Wang, Wei; Hao, Jianhua; Zhu, Xianglin; Sun, Mi

    2014-01-01

    The catalase from marine bacterium Acinetobacter sp. YS0810 (YS0810CAT) was purified and characterized. Consecutive steps were used to achieve the purified enzyme as follows: ethanol precipitation, DEAE Sepharose ion exchange, Superdex 200 gel filtration, and Resource Q ion exchange. The active enzyme consisted of four identical subunits of 57.256 kDa. It showed a Soret peak at 405 nm, indicating the presence of iron protoporphyrin IX. The catalase was not apparently reduced by sodium dithionite but was inhibited by 3-amino-1,2,4-triazole, hydroxylamine hydrochloride, and sodium azide. Peroxidase-like activity was not found with the substrate o-phenylenediamine. So the catalase was determined to be a monofunctional catalase. N-terminal amino acid of the catalase analysis gave the sequence SQDPKKCPVTHLTTE, which showed high degree of homology with those of known catalases from bacteria. The analysis of amino acid sequence of the purified catalase by matrix-assisted laser desorption ionization time-of-flight mass spectrometry showed that it was a new catalase, in spite of its high homology with those of known catalases from other bacteria. The catalase showed high alkali stability and thermostability.

  9. Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a.

    PubMed

    Ye, Rick W; Yao, Henry; Stead, Kristen; Wang, Tao; Tao, Luan; Cheng, Qiong; Sharpe, Pamela L; Suh, Wonchul; Nagel, Eva; Arcilla, Dennis; Dragotta, Dominic; Miller, Edward S

    2007-04-01

    Methylomonas sp. strain 16a is an obligate methanotrophic bacterium that uses methane or methanol as the sole carbon source. An effort was made to engineer this organism for astaxanthin production. Upon expressing the canthaxanthin gene cluster under the control of the native hps promoter in the chromosome, canthaxanthin was produced as the main carotenoid. Further conversion to astaxanthin was carried out by expressing different combinations of crtW and crtZ genes encoding the beta-carotenoid ketolase and hydroxylase. The carotenoid intermediate profile was influenced by the copy number of these two genes under the control of the hps promoter. Expression of two copies of crtZ and one copy of crtW led to the accumulation of a large amount of the mono-ketolated product adonixanthin. On the other hand, expression of two copies of crtW and one copy of crtZ resulted in the presence of non-hydroxylated carotenoid canthaxanthin and the mono-hydroxylated adonirubin. Production of astaxanthin as the predominant carotenoid was obtained in a strain containing two complete sets of carotenoid biosynthetic genes. This strain had an astaxanthin titer ranging from 1 to 2.4 mg g(-1) of dry cell biomass depending on the growth conditions. More than 90% of the total carotenoid was astaxanthin, of which the majority was in the form of E-isomer. This result indicates that it is possible to produce astaxanthin with desirable properties in methanotrophs through genetic engineering.

  10. Biodegradation of the neonicotinoid insecticide Acetamiprid by bacterium Pigmentiphaga sp. strain AAP-1 isolated from soil.

    PubMed

    Wang, Guangli; Yue, Wenlong; Liu, Yuan; Li, Feng; Xiong, Minhua; Zhang, Hui

    2013-06-01

    The Acetamiprid-degrading bacterium AAP-1 was isolated from contaminated soil, and identified as Pigmentiphaga sp. combined traditionary categorization method with modern molecule method. The strain could utilize Acetamiprid as the sole carbon, nitrogen and energy source for growth and metabolized 100 mgL(-1) Acetamiprid within 2.5h. During the degradation of Acetamiprid, one N-deacetylation metabolite, was characterized by FT-IR, GC-MS and NMR analysis. A novel microbial biodegradation pathway for Acetamiprid was proposed on the basis of the metabolite. Compared with uninoculated soils, the addition of the AAP-1 strain into soils treated with Acetamiprid gained a higher degradation rate, and the bacteria community analysis by T-RFLP in contaminated soil recovered after inoculation of the AAP-1 strain. On the basis of these results, strain AAP-1 has the potential to be used in the bioremediation of Acetamiprid-contaminated environments. This is the first report of Acetamiprid-degrading isolate from the genus of Pigmentiphaga. PMID:23624055

  11. A new κ-carrageenase CgkS from marine bacterium Shewanella sp. Kz7

    NASA Astrophysics Data System (ADS)

    Wang, Linna; Li, Shangyong; Zhang, Shilong; Li, Jiejing; Yu, Wengong; Gong, Qianhong

    2015-08-01

    A new κ-carrageenase gene cgkS was cloned from marine bacterium Shewanella sp. Kz7 by using degenerate and site-finding PCR. The gene was comprised of an open reading frame of 1224 bp, encoding 407 amino acid residues, with a signal peptide of 24 residues. Based on the deduced amino acid sequence, the κ-carrageenase CgkS was classified into the Glycoside Hydrolase family 16. The cgkS gene was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity with a specific activity of 716.8 U mg-1 and a yield of 69%. Recombinant CgkS was most active at 45°C and pH 8.0. It was stable at pH 6.0-9.0 and below 30°C. The enzyme did not require NaCl for activity, although its activity was enhanced by NaCl. CgkS degraded κ-carrageenan in an endo-fashion releasing tetrasaccharides and disaccharides as main hydrolysis products.

  12. Jeotgalibacillus soli sp. nov., a Gram-stain-positive bacterium isolated from soil.

    PubMed

    Cunha, Sofia; Tiago, Igor; Paiva, Gabriel; Nobre, Fernanda; da Costa, Milton S; Veríssimo, António

    2012-03-01

    A Gram-staining-positive, motile, rod-shaped, spore-forming bacterium, designated P9(T), was isolated from soil in Portugal. This organism was aerobic and catalase- and oxidase-positive. It had an optimum growth temperature of about 35 °C and an optimum growth pH of about 8.0-8.5, and grew in medium with 0-9% (w/v) NaCl. The cell-wall peptidoglycan was of the A1α type, with L-lysine as the diagnostic diamino acid. The major respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were anteiso-C(15:0) (45.4%), iso-C(15:0) (22.0%) and anteiso-C(17:0) (11.2%). The genomic DNA G+C content was about 39.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain P9(T) was most closely related to Jeotgalibacillus campisalis DSM 18983(T) (96.8%) and Jeotgalibacillus marinus DSM 1297(T) (96.5%). These two recognized species formed a coherent cluster with strain P9(T) that was supported by a bootstrap value of 99%. On the basis of the phylogenetic analysis and physiological and biochemical characteristics, strain P9(T) (=DSM 23228(T)=LMG 25523(T)) represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus soli sp. nov. is proposed.

  13. Pectinatus brassicae sp. nov., a Gram-negative, anaerobic bacterium isolated from salty wastewater.

    PubMed

    Zhang, Wen-wu; Fang, Ming-xu; Tan, Hai-qin; Zhang, Xin-qi; Wu, Min; Zhu, Xu-fen

    2012-09-01

    A novel Gram-negative, non-spore-forming, strictly anaerobic, heterotrophic bacterium, strain TY(T), was isolated from salty pickle wastewater. Cells were rod-shaped with comb-like flagella, slightly curved and very variable in length. Optimal growth occurred at 28 °C and pH 6.5. Cells were resistant to up to 50 g NaCl l(-1). Strain TY(T) produced acid from glycerol, sucrose, glucose, fructose and mannitol. The main fermentation products from glucose were acetic and propionic acids. Tests for acid phosphatase and naphthol-AS-BI-phosphohydrolase activities were positive. The major fatty acids were C(14 : 0) DMA (18.7 %), C(15 : 0) (15.4 %), anteiso-C(18 : 1) (15.2 %), C(11 : 0) (13.3 %) and summed feature 5 (C(17 : 1)ω7c and/or C(17 : 2)) (11.0 %). The DNA G+C content was 35.9 mol%. 16S rRNA gene sequence-based phylogenetic analysis indicated that strain TY(T) represented a novel species of the genus Pectinatus (sequence similarity to other members of the genus ranged from 93.2 to 94.8 %). Based on its phenotypic, genotypic and phylogenetic characteristics, strain TY(T) is proposed to represent a novel species, named Pectinatus brassicae sp. nov. (type strain TY(T) = JCM 17499(T) = DSM 24661(T)).

  14. Atomic Resolution Crystal Structure of NAD+-Dependent Formate Dehydrogenase from Bacterium Moraxella sp. C-1

    PubMed Central

    Shabalin, I.G.; Polyakov, K.M.; Tishkov, V.I.

    2009-01-01

    The crystal structure of the ternary complex of NAD+-dependent formate dehydrogenase from the methylotrophic bacterium Moraxella sp. C-1 with the cofactor (NAD+) and the inhibitor (azide ion) was established at 1.1 A resolution. The complex mimics the structure of the transition state of the enzymatic reaction. The structure was refined with anisotropic displacitalicents parameters for non-hydrogen atoms to a R factor of 13.4%. Most of the nitrogen, oxygen, and carbon atoms were distinguished based on the analysis of the titalicperature factors and electron density peaks, with the result that side-chain rotamers of histidine residues and most of asparagine and glutamine residues were unambiguously determined. A comparative analysis of the structure of the ternary complex determined at the atomic resolution and the structure of this complex at 1.95 A resolution was performed. In the atomic resolution structure, the covalent bonds in the nicotinamide group are somewhat changed in agreitalicent with the results of quantum mechanical calculations, providing evidence that the cofactor acquires a bipolar form in the transition state of the enzymatic reaction. PMID:22649619

  15. Exopolysaccharides Play a Role in the Swarming of the Benthic Bacterium Pseudoalteromonas sp. SM9913

    PubMed Central

    Liu, Ang; Mi, Zi-Hao; Zheng, Xiao-Yu; Yu, Yang; Su, Hai-Nan; Chen, Xiu-Lan; Xie, Bin-Bin; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Qin, Qi-Long

    2016-01-01

    Most marine bacteria secrete exopolysaccharide (EPS), which is important for bacterial survival in the marine environment. However, it is still unclear whether the self-secreted EPS is involved in marine bacterial motility. Here we studied the role of EPS in the lateral flagella-driven swarming motility of benthic bacterium Pseudoalteromonas sp. SM9913 (SM9913) by a comparison of wild SM9913 and ΔepsT, an EPS synthesis defective mutant. Reduction of EPS production in ΔepsT did not affect the growth rate or the swimming motility, but significantly decreased the swarming motility on a swarming plate, suggesting that the EPS may play a role in SM9913 swarming. However, the expression and assembly of lateral flagella in ΔepsT were not affected. Instead, ΔepsT had a different swarming behavior from wild SM9913. The swarming of ΔepsT did not have an obvious rapid swarming period, and its rate became much lower than that of wild SM9913 after 35 h incubation. An addition of surfactin or SM9913 EPS on the surface of the swarming plate could rescue the swarming level. These results indicate that the self-secreted EPS is required for the swarming of SM9913. This study widens our understanding of the function of the EPS of benthic bacteria. PMID:27092127

  16. Characterization of the N2O-producing soil bacterium Rhizobium azooxidifex sp. nov.

    PubMed

    Behrendt, Undine; Kämpfer, Peter; Glaeser, Stefanie P; Augustin, Jürgen; Ulrich, Andreas

    2016-06-01

    In the context of studying the bacterial community involved in nitrogen transformation processes in arable soils exposed to different extents of erosion and sedimentation in a long-term experiment (CarboZALF), a strain was isolated that reduced nitrate to nitrous oxide without formation of molecular nitrogen. The presence of the functional gene nirK, encoding the respiratory copper-containing nitrite reductase, and the absence of the nitrous oxide reductase gene nosZ indicated a truncated denitrification pathway and that this bacterium may contribute significantly to the formation of the important greenhouse gas N2O. Phylogenetic analysis based on the 16S rRNA gene sequence and the housekeeping genes recA and atpD demonstrated that the investigated soil isolate belongs to the genus Rhizobium. The closest phylogenetic neighbours were the type strains of Rhizobium. subbaraonis and Rhizobium. halophytocola. The close relationship with R. subbaraonis was reflected by similarity analysis of the recA and atpD genes and their amino acid positions. DNA-DNA hybridization studies revealed genetic differences at the species level, which were substantiated by analysis of the whole-cell fatty acid profile and several distinct physiological characteristics. Based on these results, it was concluded that the soil isolate represents a novel species of the genus Rhizobium, for which the name Rhizobium azooxidifex sp. nov. (type strain Po 20/26T=DSM 100211T=LMG 28788T) is proposed. PMID:27030972

  17. Deinococcus puniceus sp. nov., a bacterium isolated from soil-irradiated gamma radiation.

    PubMed

    Lee, Jae-Jin; Srinivasan, Sathiyaraj; Lim, Sangyong; Joe, Minho; Im, Seonghun; Kim, Myung Kyum

    2015-04-01

    A Gram-positive, coccus-shaped, crimson-color-pigmented bacterium was isolated from soil irradiated with 5 kGy gamma radiation and was designated strain DY1(T). Cells showed growth at 10-30 °C and pH 7-11 and were oxidase-negative and catalase-positive. Phylogenetic analyses of the 16S rRNA gene showed that the strain DY1(T) belonged to the genus Deinococcus with sequence similarities to Deinococcus aquatilis CCUG 53370(T) (96.2 %) and Deinococcus navajonensis KR-114(T) (94.1 %). Strain DY1(T) showed low level of DNA relatedness with D. aquatilis CCUG 53370(T) (41.3 ± 3.9 %). The DNA G + C content of DY1(T) was 58.7 mol%. Predominant fatty acids were summed feature 3 (C16:1 ω7c/ω6c), C16:0, and C17:0. The major amino acids were D-alanine, L-glutamic acid, glycine, and L-ornithine in the peptidoglycan. The major polar lipids were unknown phosphoglycolipids (PGL). Strain DY1(T) has resistance to gamma radiation and was found to be a novel species. Therefore, the strain was designated as DY1(T) (=KCTC 33027(T) = JCM 18576(T)), and the name Deinococcus puniceus sp. nov. is herein proposed.

  18. Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite.

    PubMed

    Margesin, Rosa; Schumann, Peter; Zhang, De-Chao; Redzic, Mersiha; Zhou, Yu-Guang; Liu, Hong-Can; Schinner, Franz

    2012-02-01

    A Gram-stain-positive, aerobic, non-motile, psychrophilic bacterium, designated strain Cr6-08(T), was isolated from alpine glacier cryoconite. Growth of strain Cr6-08(T) occurred at 1-25 °C. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain Cr6-08(T) is most closely related to members of the genus Arthrobacter. Strain Cr6-08(T) possessed chemotaxonomic properties consistent with those of the genus Arthrobacter, such as peptidoglycan type A3α (l-Lys-L-Ala(4)), MK-9(H(2)) as major menaquinone and anteiso- and iso-branched compounds (anteiso-C(15 : 0) and iso-C(15 : 0)) as major cellular fatty acids. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, one unknown glycolipid and three unknown polar lipids. The genomic DNA G+C content of strain Cr6-08(T) was 57.3 mol%. On the basis of phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA-DNA relatedness data, strain Cr6-08(T) is considered to represent a novel species of the genus Arthrobacter, for which the name Arthrobacter cryoconiti sp. nov. is proposed. The type strain is Cr6-08(T) ( = DSM 23324(T)  = LMG 26052(T)  = CGMCC 1.10698(T)).

  19. Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite.

    PubMed

    Zhang, De-Chao; Busse, Hans-Jürgen; Liu, Hong-Can; Zhou, Yu-Guang; Schinner, Franz; Margesin, Rosa

    2011-03-01

    A non-motile, rod-shaped, yellow bacterium, designated C16y(T), was isolated from alpine glacier cryoconite. Cells behaved Gram-positively, were aerobic and psychrophilic (good growth at 1-25 °C). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain C16y(T) was related to the genus Sphingomonas and had highest 16S rRNA gene sequence similarity with Sphingomonas oligophenolica JCM 12082(T) (97.6  %) and Sphingomonas echinoides DSM 1805(T) (97.2  %). DNA-DNA hybridization demonstrated that strain C16y(T) could not be considered as a member of either Sphingomonas oligophenolica or Sphingomonas echinoides. Strain C16y(T) contained Q-10 as the predominant ubiquinone and C₁₈:₁ and C₁₆:₀ were the dominant fatty acids. The polar lipid profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, five unidentified glycolipids, two unidentified aminophospholipids and two unidentified lipids. The major polyamines were the triamines sym-homospermidine and spermidine. The G+C content was 67.9 mol%. Combined data from phenotypic, phylogenetic and DNA-DNA relatedness studies demonstrated that strain C16y(T) is a representative of a novel species of the genus Sphingomonas, for which we propose the name Sphingomonas glacialis sp. nov. The type strain is C16y(T) (=DSM 22294(T) =CGMCC 1.8957(T) =CIP 110131(T) [corrected]).

  20. Pectinatus brassicae sp. nov., a Gram-negative, anaerobic bacterium isolated from salty wastewater.

    PubMed

    Zhang, Wen-wu; Fang, Ming-xu; Tan, Hai-qin; Zhang, Xin-qi; Wu, Min; Zhu, Xu-fen

    2012-09-01

    A novel Gram-negative, non-spore-forming, strictly anaerobic, heterotrophic bacterium, strain TY(T), was isolated from salty pickle wastewater. Cells were rod-shaped with comb-like flagella, slightly curved and very variable in length. Optimal growth occurred at 28 °C and pH 6.5. Cells were resistant to up to 50 g NaCl l(-1). Strain TY(T) produced acid from glycerol, sucrose, glucose, fructose and mannitol. The main fermentation products from glucose were acetic and propionic acids. Tests for acid phosphatase and naphthol-AS-BI-phosphohydrolase activities were positive. The major fatty acids were C(14 : 0) DMA (18.7 %), C(15 : 0) (15.4 %), anteiso-C(18 : 1) (15.2 %), C(11 : 0) (13.3 %) and summed feature 5 (C(17 : 1)ω7c and/or C(17 : 2)) (11.0 %). The DNA G+C content was 35.9 mol%. 16S rRNA gene sequence-based phylogenetic analysis indicated that strain TY(T) represented a novel species of the genus Pectinatus (sequence similarity to other members of the genus ranged from 93.2 to 94.8 %). Based on its phenotypic, genotypic and phylogenetic characteristics, strain TY(T) is proposed to represent a novel species, named Pectinatus brassicae sp. nov. (type strain TY(T) = JCM 17499(T) = DSM 24661(T)). PMID:22058316

  1. Shimia haliotis sp. nov., a bacterium isolated from the gut of an abalone, Haliotis discus hannai.

    PubMed

    Hyun, Dong-Wook; Kim, Min-Soo; Shin, Na-Ri; Kim, Joon Yong; Kim, Pil Soo; Whon, Tae Woong; Yun, Ji-Hyun; Bae, Jin-Woo

    2013-11-01

    A novel Gram-stain-negative, motile, rod-shaped bacterium, designated strain WM35(T), was isolated from the intestinal tract of an abalone, Haliotis discus hannai, which was collected from the northern coast of Jeju in Korea. The cells of the isolate grew optimally at 30 °C, pH 7, and with 3 % (w/v) NaCl. Based on 16S rRNA gene sequence similarity comparisons, strain WM35(T) was grouped in the genus Shimia and was closely related to the type strains of Shimia isoporae (98.7 % similarity) and Shimia marina (97.8 % similarity). The major cellular fatty acids were summed feature 8 and C16 : 0 2-OH. Ubiquinone Q-10 was the predominant respiratory quinone. The polar lipids of strain WM35(T) comprised phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminolipid and an unidentified lipid. The DNA G+C content of the isolate was 53.8 mol%. DNA-DNA hybridization values indicated <16 % genomic relatedness with members of the genus Shimia. The physiological, chemical and genotypic analyses indicated that strain WM35(T) represents a novel species of the genus Shimia, for which the name Shimia haliotis sp. nov. is proposed. The type strain is WM35(T) ( = KACC 17212(T) = JCM 18870(T)).

  2. Actinomyces haliotis sp. nov., a bacterium isolated from the gut of an abalone, Haliotis discus hannai.

    PubMed

    Hyun, Dong-Wook; Shin, Na-Ri; Kim, Min-Soo; Kim, Pil Soo; Kim, Joon Yong; Whon, Tae Woong; Bae, Jin-Woo

    2014-02-01

    A novel, Gram-staining-positive, facultatively anaerobic, non-motile and coccus-shaped bacterium, strain WL80(T), was isolated from the gut of an abalone, Haliotis discus hannai, collected from the northern coast of Jeju in Korea. Optimal growth occurred at 30 °C, pH 7-8 and with 1% (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain WL80(T) fell within the cluster of the genus Actinomyces, with highest sequence similarity to the type strains of Actinomyces radicidentis (98.8% similarity) and Actinomyces urogenitalis (97.0% similarity). The major cellular fatty acids were C18 : 1ω9c and C16 : 0. Menaquinone-10 (H4) was the major respiratory quinone. The genomic DNA G+C content of the isolate was 70.4 mol%. DNA-DNA hybridization values with closely related strains indicated less than 7.6% genomic relatedness. The results of physiological, biochemical, chemotaxonomic and genotypic analyses indicated that strain WL80(T) represents a novel species of the genus Actinomyces, for which the name Actinomyces haliotis sp. nov. is proposed. The type strain is WL80(T) ( = KACC 17211(T) = JCM 18848(T)).

  3. Sphingomonas alpina sp. nov., a psychrophilic bacterium isolated from alpine soil.

    PubMed

    Margesin, Rosa; Zhang, De-Chao; Busse, Hans-Jürgen

    2012-07-01

    An aerobic, Gram-negative-staining, motile, psychrophilic bacterium, designated strain S8-3(T), was isolated from alpine soil. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S8-3(T) was related to the genus Sphingomonas and had highest 16S rRNA gene sequence similarity with Sphingomonas oligophenolica S213(T) (98.0%). 16S RNA gene sequence similarity between strain S8-3(T) and Sphingomonas paucimobilis ATCC 29837(T) (the type species of the genus Sphingomonas) was 93.0%. Strain S8-3(T) contained Q-10 as the ubiquinone and C(18:1)ω7c (65.0%) and C(14:0) 2-OH (13.4%) as the dominant fatty acids (>10%). The major polyamines were the triamine sym-homospermidine and spermidine. The polar lipid profile contained sphingoglycolipid, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine. The DNA G+C content was 64.1 mol%. Combined data from phenotypic, phylogenetic and DNA-DNA relatedness studies demonstrated that strain S8-3(T) is a representative of a novel species of the genus Sphingomonas, for which the name Sphingomonas alpina sp. nov. is proposed. The type strain is S8-3(T) (=DSM 22537(T)=LMG 26055(T)).

  4. Melghiribacillus thermohalophilus gen. nov., sp. nov., a novel filamentous, endospore-forming, thermophilic and halophilic bacterium.

    PubMed

    Addou, Nariman Ammara; Schumann, Peter; Spröer, Cathrin; Ben Hania, Wajdi; Hacene, Hocine; Fauque, Guy; Cayol, Jean-Luc; Fardeau, Marie-Laure

    2015-04-01

    A novel filamentous, endospore-forming, thermophilic and moderately halophilic bacterium designated strain Nari2A(T) was isolated from soil collected from an Algerian salt lake, Chott Melghir. The novel isolate was Gram-staining-positive, aerobic, catalase-negative and oxidase-positive. Optimum growth occurred at 50-55 °C, 7-10% (w/v) NaCl and pH 7-8. The strain exhibited 95.4, 95.4 and 95.2% 16S rRNA gene sequence similarity to Thalassobacillus devorans G19.1(T), Sediminibacillus halophilus EN8d(T) and Virgibacillus kekensis YIM-kkny16(T), respectively. The major menaquinone was MK-7. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, three unknown phosphoglycolipids and two unknown phospholipids. The predominant cellular fatty acids were iso-C(15 : 0) and iso-C(17 : 0). The DNA G+C content was 41.9 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain Nari2A(T) is considered to represent a novel species of a new genus in the family Bacillaceae , order Bacillales , for which the name Melghiribacillus thermohalophilus gen. nov., sp. nov. is proposed. The type strain of Melghiribacillus thermohalophilus is Nari2A(T) ( = DSM 25894(T) = CCUG 62543(T)). PMID:25604343

  5. A novel multienzyme complex from a newly isolated facultative anaerobic bacterium, Paenibacillus sp. TW1.

    PubMed

    Tachaapaikoon, C; Kyu, K L; Pason, P; Ratanakhanockchai, K

    2012-06-01

    A multienzyme complex from newly isolated Paenibacillus sp. TW1 was purified from pellet-bound enzyme preparations by elution with 0.25% sucrose and 1.0% triethylamine (TEA), ultrafiltration and Sephacryl S-400 gel filtration chromatography. The purified multienzyme complex showed a single protein band on non-denaturing polyacrylamide gel electrophoresis (native-PAGE). The high molecular mass of the purified multienzyme complex was approximately 1,950 kDa. The complex consisted of xylanase and cellulase activities as the major and minor enzyme subunits, respectively. The complex appeared as at least 18 protein bands on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and as 15 xylanases and 6 cellulases on zymograms. The purified multienzyme complex contained xylanase, α-L-arabinofuranosidase, carboxymethyl cellulase (CMCase), avicelase and cellobiohydrolase. The complex could effectively hydrolyze corn hulls, corncobs and sugarcane bagasse. These results indicate that the multienzyme complex that is produced by this bacterium is a large, novel xylanolytic-cellulolytic enzyme complex.

  6. Oceanobacillus bengalensis sp. nov., a bacterium isolated from seawater of the Bay of Bengal.

    PubMed

    Yongchang, Ouyang; Xiang, Wenzhou; Wang, Guanghua

    2015-11-01

    A Gram-stain positive, motile, and subterminal endospore-forming rod-shaped bacterium, designated strain Ma-21(T), was isolated from seawater of the Bay of Bengal. Strain Ma-21(T) was found to grow optimally at 37 °C and pH 8.0 with 3% (w/v) NaCl. Phylogenetic analyses showed that strain Ma-21(T) forms a distinct phylogenetic lineage close to Oceanobacillus chungangensis CAU 1051(T), Oceanobacillus caeni S-11(T), Oceanobacillus arenosus CAU 1183(T), Oceanobacillus halophilum GD01(T) and Ornithinibacillus heyuanensis GIESS003(T) in the family Bacillaceae. The cell wall of strain Ma-21(T) was found to contain meso-diaminopimelic acid as the diagnostic diamino acid, which is in line with those of members of the genus Oceanobacillus. The genomic DNA G+C content was determined to be 35.9 mol%. The only respiratory quinone detected was MK-7. The major cellular fatty acids were identified as anteiso-C(15:0) and anteiso-C(17:0). The major polar lipids were found to be diphosphatidylglycerol and phosphatidylglycerol. On the basis of phylogenetic, chemotaxonomic and phenotypic properties, strain Ma-21(T) is suggested to represent a novel species in the genus Oceanobacillus, for which the name Oceanobacillus bengalensis sp. nov. is proposed. The type strain is Ma-21(T) (=CGMCC 1.12799(T) = KCTC 33416(T) = MCCC 1K00260(T)).

  7. Halomonas zhanjiangensis sp. nov., a halophilic bacterium isolated from a sea urchin.

    PubMed

    Chen, Yi-Guang; Zhang, Yu-Qin; Huang, Heng-Yu; Klenk, Hans-Peter; Tang, Shu-Kun; Huang, Ke; Chen, Qi-Hui; Cui, Xiao-Long; Li, Wen-Jun

    2009-11-01

    A novel Gram-negative, slightly halophilic, catalase-positive, oxidase-negative, obligately aerobic, non-sporulating rod-shaped bacterium, designated strain JSM 078169(T), was isolated from a sea urchin (Hemicentrotus pulcherrimus) collected from the South China Sea. Growth occurred with 1-20 % (w/v) total salts (optimum, 3-5 %), at pH 6.0-10.5 (optimum, pH 7.5) and at 4-40 degrees C (optimum, 25-30 degrees C). The major cellular fatty acids were C(18 : 1)omega7c, C(16 : 0) and C(12 : 0) 3-OH. The predominant respiratory quinone was Q-9 and the genomic DNA G+C content was 55.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 078169(T) should be assigned to the genus Halomonas. The sequence similarities between the isolate and the type strains of members of the genus Halomonas were in the range 92.4-97.0 %. The combination of phylogenetic analysis, DNA-DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 078169(T) represents a novel species of the genus Halomonas, for which the name Halomonas zhanjiangensis sp. nov. is proposed, with JSM 078169(T) (=CCTCC AB 208031(T)=DSM 21076(T)=KCTC 22279(T)) as the type strain.

  8. Genomic characterization of a temperate phage of the psychrotolerant deep-sea bacterium Aurantimonas sp.

    PubMed

    Yoshida, Mitsuhiro; Yoshida-Takashima, Yukari; Nunoura, Takuro; Takai, Ken

    2015-01-01

    A temperate phage (termed AmM-1) was identified from the psychrotolerant Rhizobiales bacterium Aurantimonas sp. C5-1, which was isolated from bathypelagic water (water depth = 1,500 m) in the northwest Pacific. The AmM-1 genome is 47,800 bp in length and contains 67 coding sequences. Although phage AmM-1 morphologically belongs to the family Myoviridae, its genomic structure, particularly modular genome organization, is similar to that of lambda-type phages of Siphoviridae. Genetic and phylogenetic analyses of the structural core genes also revealed that AmM-1 has a mosaic genomic structure that includes a lambda-like head (Siphoviridae) and P2-like tail (Myoviridae). The sequences of the structural core genes of AmM-1 are distinct from those of previously characterized phage groups but similar to those of recently identified one prophage element and one phage of marine Rhizobiales bacteria: a potential prophage element in the marine psychrotolerant Aureimonas ureilytica DSM 18598 genome and the temperate phage RR-1A infecting Rhizobium radiobacter P007 isolated from deep subseafloor sediment. The mosaic genome structure of AmM-1 suggests the occurrence of genetic exchange between distinct temperate phages in marine Rhizobiales populations.

  9. Complete genome sequence of Hymenobacter sp. strain PAMC26554, an ionizing radiation-resistant bacterium isolated from an Antarctic lichen.

    PubMed

    Oh, Tae-Jin; Han, So-Ra; Ahn, Do-Hwan; Park, Hyun; Kim, Augustine Yonghwi

    2016-06-10

    A Gram-negative, rod-shaped, red-pink in color, and UV radiation-resistant bacterium Hymenobacter sp. strain PAMC26554 was isolated from Usnea sp., an Antarctic lichen, and belongs to the class of Cytophagia and the phylum of Bacteroidetes. The complete genome of Hymenobacter sp. PAMC26554 consists of one chromosome (5,244,843bp) with two plasmids (199,990bp and 6421bp). The genomic sequence indicates that Hymenobacter sp. strain PAMC26554 possesses several genes involved in the nucleotide excision repair pathway that protects damaged DNA. This complete genome information will help us to understand its adaptation and novel survival strategy in the Antarctic extreme cold environment.

  10. Labrenzia sp. BM1: a quorum quenching bacterium that degrades N-acyl homoserine lactones via lactonase activity.

    PubMed

    Ghani, Norshazliza Ab; Norizan, Siti Nur Maisarah; Chan, Xin Yue; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    We report the degradation of quorum sensing N-acylhomoserine lactone molecules by a bacterium isolated from a Malaysian marine water sample. MALDI-TOF and phylogenetic analysis indicated this isolate BM1 clustered closely to Labrenzia sp. The quorum quenching activity of this isolate was confirmed by using a series of bioassays and rapid resolution liquid chromatography analysis. Labrenzia sp. degraded a wide range of N-acylhomoserine lactones namely N-(3-hexanoyl)-L-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-L-homoserine lactone (3-hydroxy-C6-HSL). Re-lactonisation bioassays confirmed Labrenzia sp. BM1 degraded these signalling molecules efficiently via lactonase activity. To the best of our knowledge, this is the first documentation of a Labrenzia sp. capable of degrading N-acylhomoserine lactones and confirmation of its lactonase-based mechanism of action.

  11. Labrenzia sp. BM1: A Quorum Quenching Bacterium That Degrades N-acyl Homoserine Lactones via Lactonase Activity

    PubMed Central

    Ghani, Norshazliza Ab; Norizan, Siti Nur Maisarah; Chan, Xin Yue; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    We report the degradation of quorum sensing N-acylhomoserine lactone molecules by a bacterium isolated from a Malaysian marine water sample. MALDI-TOF and phylogenetic analysis indicated this isolate BM1 clustered closely to Labrenzia sp. The quorum quenching activity of this isolate was confirmed by using a series of bioassays and rapid resolution liquid chromatography analysis. Labrenzia sp. degraded a wide range of N-acylhomoserine lactones namely N-(3-hexanoyl)-l-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-l-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-l-homoserine lactone (3-hydroxy-C6-HSL). Re-lactonisation bioassays confirmed Labrenzia sp. BM1 degraded these signalling molecules efficiently via lactonase activity. To the best of our knowledge, this is the first documentation of a Labrenzia sp. capable of degrading N-acylhomoserine lactones and confirmation of its lactonase-based mechanism of action. PMID:24995373

  12. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    SciTech Connect

    Bollmann, Annette; Sedlacek, Christopher J; Laanbroek, Hendrikus J; Suwa, Yuichi; Stein, Lisa Y; Klotz, Martin G; Arp, D J; Sayavedra-Soto, LA; Lu, Megan; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, James; Woyke, Tanja; Lucas, Susan; Pitluck, Sam; Pennacchio, Len; Nolan, Matt; Land, Miriam L; Huntemann, Marcel; Deshpande, Shweta; Han, Cliff; Chen, Amy; Kyrpides, Nikos C; Mavromatis, K; Markowitz, Victor; Szeto, Ernest; Ivanova, N; Mikhailova, Natalia; Pagani, Ioanna; Pati, Amrita; Peters, Lin; Ovchinnikova, Galina; Goodwin, Lynne A.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

  13. Draft Genome Sequence of a Sulfide-Oxidizing, Autotrophic Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus sp. Strain MS-G (Chloroflexi)

    PubMed Central

    Thiel, Vera; Hamilton, Trinity L.; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Schuster, Stephan C.; Ward, David M.

    2014-01-01

    The draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain MS-G (Chloroflexi), isolated from Mushroom Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 4,784,183 bp in 251 contigs. The draft genome is predicted to encode 4,059 protein coding genes, 49 tRNA encoding genes, and 3 rRNA operons. PMID:25189583

  14. Draft Genome Sequence of Geobacter sp. Strain OR-1, an Arsenate-Respiring Bacterium Isolated from Japanese Paddy Soil

    PubMed Central

    Ehara, Ayaka; Suzuki, Haruo

    2015-01-01

    Here, we report a draft genome sequence of Geobacter sp. strain OR-1, an arsenate-respiring bacterium isolated from Japanese paddy soil. It contained two distinct arsenic islands, one including genes for a respiratory arsenate reductase (Arr) as well as for arsenic resistance (arsD-arsA-acr3-arsR-arrA-arrB) and the second containing only genes for arsenic resistance. PMID:25635012

  15. Draft Genome Sequence of Geobacter sp. Strain OR-1, an Arsenate-Respiring Bacterium Isolated from Japanese Paddy Soil.

    PubMed

    Ehara, Ayaka; Suzuki, Haruo; Amachi, Seigo

    2015-01-01

    Here, we report a draft genome sequence of Geobacter sp. strain OR-1, an arsenate-respiring bacterium isolated from Japanese paddy soil. It contained two distinct arsenic islands, one including genes for a respiratory arsenate reductase (Arr) as well as for arsenic resistance (arsD-arsA-acr3-arsR-arrA-arrB) and the second containing only genes for arsenic resistance. PMID:25635012

  16. Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593

    SciTech Connect

    Arai, Shigeki; Yonezawa, Yasushi; Ishibashi, Matsujiro; Matsumoto, Fumiko; Adachi, Motoyasu; Tamada, Taro; Tokunaga, Hiroko; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2014-03-01

    In order to clarify the structural basis of the halophilic characteristics of an alkaline phosphatase derived from the moderate halophile Halomonas sp. 593 (HaAP), the tertiary structure of HaAP was determined to 2.1 Å resolution by X-ray crystallography. The structural properties of surface negative charge and core hydrophobicity were shown to be intermediate between those characteristic of halophiles and non-halophiles, and may explain the unique functional adaptation to a wide range of salt concentrations. Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). In order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (C{sup α} r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior

  17. Draft Genome Sequence of Burkholderia sp. Strain PML1(12), an Ectomycorrhizosphere-Inhabiting Bacterium with Effective Mineral-Weathering Ability.

    PubMed

    Uroz, Stéphane; Oger, Phil

    2015-01-01

    We report the draft genome sequence of Burkholderia sp. PML1(12), a soil bacterium isolated from the Oak-Scleroderma citrinum ectomycorrhizosphere in the experimental forest site of Breuil-Chenue (France). PMID:26205858

  18. Draft Genome Sequence of Burkholderia sp. Strain PML1(12), an Ectomycorrhizosphere-Inhabiting Bacterium with Effective Mineral-Weathering Ability

    PubMed Central

    Oger, Phil

    2015-01-01

    We report the draft genome sequence of Burkholderia sp. PML1(12), a soil bacterium isolated from the Oak-Scleroderma citrinum ectomycorrhizosphere in the experimental forest site of Breuil-Chenue (France). PMID:26205858

  19. Bacillus hemicentroti sp. nov., a moderate halophile isolated from a sea urchin.

    PubMed

    Chen, Yi-Guang; Zhang, Yu-Qin; He, Jian-Wu; Klenk, Hans-Peter; Xiao, Jian-Qing; Zhu, Hong-Yi; Tang, Shu-Kun; Li, Wen-Jun

    2011-12-01

    A novel Gram-staining-positive, moderately halophilic, facultatively alkaliphilic, non-motile, catalase-positive, oxidase-negative, endospore-forming, facultatively anaerobic rod, designated JSM 076093(T), was isolated from a sea urchin (Hemicentrotus pulcherrimus) collected from Naozhou Island in the South China Sea. Growth occurred with 0.5-25% (w/v) NaCl (optimum 5-8%) and at pH 6.0-10.5 (optimum pH 8.0) and 5-40 °C (optimum 30-35 °C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant respiratory quinone was menaquinone 7 and the polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and one unidentified phospholipid. The major cellular fatty acids (>10% of the total) were anteiso-C(15:0), anteiso-C(17:0), iso-C(16:0) and iso-C(14:0). The genomic DNA G+C content was 38.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 076093(T) belonged to the genus Bacillus and was related most closely to Bacillus hwajinpoensis SW-72(T) (99.1% 16S rRNA gene sequence similarity) and Bacillus algicola KMM 3737(T) (97.3%). The combination of results from the phylogenetic analysis, DNA-DNA hybridization and phenotypic and chemotaxonomic characterization supported the conclusion that strain JSM 076093(T) represents a novel species of the genus Bacillus, for which the name Bacillus hemicentroti sp. nov. is proposed, with JSM 076093(T) (=DSM 23007(T)=KCTC 13710(T)) as the type strain.

  20. Cloning and nucleotide sequence of the gene coding for citrate synthase from a thermotolerant Bacillus sp

    SciTech Connect

    Schendel, F.J.; August, P.R.; Anderson, C.R.; Flickinger, M.C. ); Hanson, R.S. )

    1992-01-01

    Acetate salts are emerging as potentially attractive bulk chemicals for a variety of environmental applications, for example, as catalysts to facilitate combustion of high-sulfur coal by electrical utilities and as the biodegradable noncorrosive highway deicing salt calcium magnesium acetate. The structural gene coding for citrate synthase from the gram-positive soil isolate Bacillus sp. strain C4 (ATCC 55182) capable of secreting acetic acid at pH 5.0 to 7.0 in the presence of dolime has been cloned from a genomic library by complementation of an Escherichia coli auxotrophic mutant lacking citrate synthase. The nucleotide sequence of the entire 3.1-kb HindIII fragment has been determined, and one major open reading frame was found coding for citrate synthase (ctsA). Citrate synthase from Bacillus sp. strain C4 was found to be a dimer (M{sub r}, 84,500) with a sub unit with an M{sub r} of 42,000. The N-terminal sequence was found to be identical with that predicted from the gene sequence. The kinetics were best fit to a bisubstrate enzyme with an ordered mechanism. Bacillus sp. strain C4 citrate synthase was not activated by potassium chloride and was not inhibited by NADH, ATP, ADP, or AMP at levels up to 1 mM. The predicted amino acid sequence was compared with that of the E. coli, Acinetobacter anitratum, Pseudomonas aeruginosa, Rickettsia prowazekii, porcine heart, and Saccharomyces cerevisiae cytoplasmic and mitochondrial enzymes.

  1. Characterization and site-directed mutagenesis of an α-galactosidase from the deep-sea bacterium Bacillus megaterium.

    PubMed

    Xu, Haibo; Qin, Yongjun; Huang, Zongqing; Liu, Ziduo

    2014-03-01

    A novel gene (BmelA) (1323bp) encoding an α-galactosidase of 440 amino acids was cloned from the deep-sea bacterium Bacillus megaterium and the protein was expressed in Escherichia coli BL21 (DE3) with an estimated molecular mass of about 45 kDa by SDS-PAGE. The enzyme belongs to glycoside hydrolase family 4, with the highest identity (74%) to α-galactosidase Mel4A from Bacillus halodurans among the characterized α-galactosidases. The recombinant BmelA displayed its maximum activity at 35 °C and pH 8.5-9.0 in 50 mM Tris-HCl buffer, and could hydrolyze different substrates with the Km values against p-nitrophenyl-α-D-galactopyranoside (pNP-α-Gal), raffinose and stachyose being 1.02±0.02, 2.24±0.11 and 3.42±0.17 mM, respectively. Besides, 4 mutants (I38 V, I38A, I38F and Q84A) were obtained by site-directed mutagenesis based on molecular modeling and sequence alignment. The kinetic analysis indicated that mutants I38 V and I38A exhibited a 1.7- and 1.4-fold increase over the wild type enzyme in catalytic efficiency (k(cat)/K(m)) against pNP-α-Gal, respectively, while mutant I38F showed a 3.5-fold decrease against pNP-α-Gal and mutant Q84A almost completely lost its activity. All the results suggest that I38 and Q84 sites play a vital role in enzyme activity probably due to their steric and polar effects on the predicted "tunnel" structure and NAD+ binding to the enzyme.

  2. Bacillus amyloliquefaciens G1: A Potential Antagonistic Bacterium against Eel-Pathogenic Aeromonas hydrophila

    PubMed Central

    Cao, Haipeng; He, Shan; Wei, Ruopeng; Diong, Marek; Lu, Liqun

    2011-01-01

    Recent studies have revealed that the use of probiotics is an alternative to control marine aeromonas. However, few probiotics are available against Aeromonas hydrophila infections in eels. In the present study, a potential antagonistic strain G1 against the eel-pathogenic A. hydrophila was isolated from sediment underlying brackish water. Its extracellular products with antibacterial activities were shown to be stable under wide range of pH, temperature, and proteinase K. It was initially identified as Bacillus amyloliquefaciens using API identification kits and confirmed to be B. amyloliquefaciens strain (GenBank accession number DQ422953) by phylogenetic analysis. In addition, it was shown to be safe for mammalians, had a wide anti-A. hydrophila spectrum, and exhibited significant effects on inhibiting the growth of the eel-pathogenic A. hydrophila both in vitro and in vivo. To the best of our knowledge, this is the first report on a promising antagonistic Bacillus amyloliquefaciens strain from brackish water sediment against eel-pathogenic A. hydrophila. PMID:21754944

  3. Ammoniibacillus agariperforans gen. nov., sp. nov., a thermophilic, agar-degrading bacterium isolated from compost.

    PubMed

    Sakai, Masao; Deguchi, Daigo; Hosoda, Akifumi; Kawauchi, Tomohiro; Ikenaga, Makoto

    2015-02-01

    A thermophilic, agar-degrading bacterium, strain FAB2(T), was isolated from sewage sludge compost. According to phylogenetic analysis based on 16S rRNA gene sequences, strain FAB2(T) belonged to the family Paenibacillaceae within the phylum Firmicutes. However, FAB2(T) was different enough at the genus level from closely related species. The percentages of 16S rRNA gene sequence similarity with related organisms were 90.4 % for Thermobacillus xylanilyticus, 91.8 % for Paenibacillus barengoltzii, 89.4 % for Cohnella lupini, 90.1 % for Fontibacillus aquaticus, and 89.0 % for Saccharibacillus sacchari. Morphological and physiological analyses revealed that the strain was motile, rod-shaped, Gram-stain-positive, aerobic and able to form oval endospores in swollen sporangia. Ammonium was required as a nitrogen source while nitrate, nitrite, urea and glutamate were not utilized. Catalase and oxidase activities were weakly positive and positive, respectively. The bacterium grew in the temperature range of 50-65 °C and in media with pH 7.5 to 9.0. Optimal growth occurred at 60 °C and pH 8.0-8.6. Growth was inhibited at pH≤7.0 and NaCl concentrations ≥2.5 % (w/v). In chemotaxonomic characterization, MK-7 was identified as the dominant menaquinone. Major fatty acids were iso-C16 : 0 and C16 : 0. Dominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phosphatidylcholine was present in a moderate amount. The diamino acid in the cell wall was meso-diaminopimelic acid. The G+C content of the genomic DNA was 49.5 mol% in a nucleic acid study. On the basis of genetic and phenotypic characteristics, strain FAB2(T) ( = NBRC 109510(T) = KCTC 33130(T)) showed characteristics suitable for classification as the type strain of a novel species of a new genus in the family Paenibacillaceae, for which the name Ammoniibacillus agariperforans gen. nov., sp. nov. is proposed.

  4. Draft Genome Sequence of Bacillus marisflavi TF-11T (JCM 11544), a Carotenoid-Producing Bacterium Isolated from Seawater from a Tidal Flat in the Yellow Sea

    PubMed Central

    Wang, Jie-ping; Liu, Guo-hong; Chen, De-ju; Chen, Qian-qian; Zhu, Yu-jing; Chen, Zheng; Che, Jian-mei

    2015-01-01

    Bacillus marisflavi TF-11T (JCM 11544) is a Gram-positive, spore-forming, and carotenoid-producing bacterium isolated from seawater from a tidal flat in the Yellow Sea. Here, we report the first draft genome sequence of B. marisflavi TF-11T, which comprises 4.31 Mb in 11 scaffolds with a G+C content of 48.57%. PMID:26659687

  5. Antioxidant Properties of Fish Protein Hydrolysates Prepared from Cod Protein Hydrolysate by Bacillus sp.

    PubMed

    Godinho, I; Pires, C; Pedro, S; Teixeira, B; Mendes, R; Nunes, M L; Batista, I

    2016-03-01

    Fermentative protein hydrolysates (FPH) were prepared with a proteolytic bacterium, Bacillus strain exhibiting high proteolytic activity. Three FPH with 1, 2, and 4 % of cod protein hydrolysate (CPH) and 0.5 % of yeast extract in the culture were prepared. The yields achieved varied between 30 and 58 % based on protein content. A general decrease of leucine, isoleucine, valine, alanine, arginine, threonine, proline, and glutamic acid was observed. All FPHs showed higher reducing power and DPPH radical scavenging activity than CPH, but similar ABTS radical scavenging activity. However, FPHs exhibited lower Cu(+2)-chelating activity than CPH. The ACE inhibitory activity of FPHs was not improved relatively to that recorded in CPH. The fermentative process seems to have potential to obtaining hydrolysates with improved biological activities or even to produce protein hydrolysates from native fish proteins. PMID:26590847

  6. Draft Genome Sequence of the Obligate Halophilic Bacillus sp. Strain NSP22.2, Isolated from a Seasonal Salt Marsh of the Great Rann of Kutch, India

    PubMed Central

    Pal, Kamal Krishna; Sherathia, Dharmesh; Vanpariya, Sejal; Patel, Ilaxi; Dalsania, Trupti; Savsani, Kinjal; Sukhadiya, Bhoomika; Mandaliya, Mona; Thomas, Manesh; Ghorai, Sucheta; Rupapara, Rupal; Rawal, Priya

    2013-01-01

    Here, we report the 4.0-Mbp draft genome of an obligate halophile, Bacillus sp. strain NSP22.2, isolated from a seasonal salt marsh of the Great Rann of Kutch, India. To understand the mechanism(s) of obligate halophilism and to isolate the relevant gene(s), the genome of Bacillus sp. NSP22.2 was sequenced. PMID:24356848

  7. Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile.

    PubMed

    Yumoto, Isao; Hirota, Kikue; Goto, Toshitaka; Nodasaka, Yoshinobu; Nakajima, Kenji

    2005-03-01

    A halophilic and halotolerant, facultatively alkaliphilic strain, K11(T), was isolated from soil obtained from Oshyamanbe, Oshima, Hokkaido, Japan. The isolate grew at pH 7-10. It was non-motile, Gram-positive and aerobic. Cells comprised straight rods and produced ellipsoidal spores. The isolate grew in 0-20 % NaCl, with optimum growth at 7 % NaCl, and hydrolysed casein, gelatin, starch, DNA and Tweens 20, 40, 60 and 80. The major isoprenoid quinone was menaquinone-7, and the cellular fatty acid profile consisted of significant amounts of C(15) branched-chain acids, iso C(15 : 0) and anteiso C(15 : 0). Phylogenetic analysis based on 16S rRNA gene sequencing indicated that strain K11(T) was a member of group 6 [Nielsen et al., FEMS Microbiol Lett 117 (1994), 61-66] (alkaliphiles) of the genus Bacillus. DNA-DNA hybridization revealed a low relatedness (14 %) of the isolate to its closest phylogenetic neighbour, Bacillus clausii. On the basis of phenotypic and chemotaxonomic characteristics, phylogenetic data and DNA-DNA relatedness data, it was concluded that K11(T) (=JCM 12663(T)=NCIMB 14023(T)) merits classification as the type strain of a novel species, for which the name Bacillus oshimensis sp. nov. is proposed. PMID:15774684

  8. Caloramator boliviensis sp. nov., a thermophilic, ethanol-producing bacterium isolated from a hot spring.

    PubMed

    Crespo, Carla; Pozzo, Tania; Karlsson, Eva Nordberg; Alvarez, Maria Teresa; Mattiasson, Bo

    2012-07-01

    A novel moderately thermophilic, anaerobic, ethanol-producing bacterial strain, 45B(T), was isolated from a mixed sediment water sample collected from a hot spring at Potosi, Bolivia. The cells were straight to slightly curved rods approximately 2.5 µm long and 0.5 µm wide. The strain was Gram-stain-variable, spore-forming and monotrichously flagellated. Growth of the strain was observed at 45-65 °C and pH 5.5-8.0, with optima of 60 °C and pH 6.5. The substrates utilized by strain 45B(T) were xylose, cellobiose, glucose, arabinose, sucrose, lactose, maltose, fructose, galactose, mannose, glycerol, xylan, carboxymethylcellulose and yeast extract. The main fermentation product from xylose and cellobiose was ethanol (0.70 and 0.45 g ethanol per gram of consumed sugar, respectively). Acetate, lactate, propionate, carbon dioxide and hydrogen were also produced in minor quantities. 1,3-Propanediol was produced when glycerol-containing medium was supplemented with yeast extract. The major cellular fatty acids were anteiso-C(15:0), C(16:0), iso-C(16:0), C(15:1), iso-C(14:0), C(13:0) and C(14:0). The polar lipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an aminoglycolipid and 15 other unidentified lipids were predominant. The DNA G+C content of strain 45B(T) was 32.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence similarity revealed that strain 45B(T) is located within the Gram-type positive Bacillus-Clostridium branch of the phylogenetic tree. On the basis of morphological and physiological properties and phylogenetic analysis, strain 45B(T) represents a novel species, for which the name Caloramator boliviensis sp. nov. is proposed; the type strain is 45B(T) (=DSM 22065(T)=CCUG 57396(T)).

  9. Aliidiomarina iranensis sp. nov., a haloalkaliphilic bacterium from a coastal-marine wetland.

    PubMed

    Ali Amoozegar, Mohammad; Shahinpei, Azadeh; Abolhassan Shahzadeh Fazeli, Seyed; Schumann, Peter; Spröer, Cathrin; Ventosa, Antonio

    2016-05-01

    A novel Gram-stain-negative, straight rod-shaped, non-pigmented, slightly halophilic and alkaliphilic bacterium, designated strain GBPy7T, was isolated from a sample of the coastal-marine wetland Gomishan in Iran. Cells of strain GBPy7T were motile. Growth occurred on media with 1-15 % (w/v) NaCl (optimum 3 %), at pH 7-10 (optimum pH 8.5) and at 4-45 °C (optimum 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison indicated that strain GBPy7T belonged to the family Idiomarinaceae. Its closest relatives were Aliidiomarina shirensis AIST (98.1 % 16S rRNA gene sequence similarity) and other Aliidiomarina species (95.9-94.2 %), together with Idiomarina seosinensis CL-SP19T (94.3 %) and Idiomarina fontislapidosi F23T (94.3 %). The major cellular fatty acids of the isolate were iso-C15 : 0, iso-C17 : 0, iso-C17 : 1ω9c and C18 : 1ω7c and its polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid and one unknown aminophospholipid. Cells of strain GBPy7T contained ubiquinone Q-8. The G+C content of the genomic DNA of this strain was 51.6 mol%. The level of DNA-DNA relatedness between strain GBPy7T and A. shirensis IBRC-M 10414T was 21 %. The physiological, biochemical, genotypic and phylogenetic differences between strain GBPy7T and other previously described taxa indicate that the strain represents a novel species of the genus Aliidiomarina within the family Idiomarinaceae, for which the name Aliidiomarina iranensis sp. nov. is proposed. The type strain is GBPy7T ( = IBRC-M 10763T = CECT 8339T). PMID:26928783

  10. Aliidiomarina iranensis sp. nov., a haloalkaliphilic bacterium from a coastal-marine wetland.

    PubMed

    Ali Amoozegar, Mohammad; Shahinpei, Azadeh; Abolhassan Shahzadeh Fazeli, Seyed; Schumann, Peter; Spröer, Cathrin; Ventosa, Antonio

    2016-05-01

    A novel Gram-stain-negative, straight rod-shaped, non-pigmented, slightly halophilic and alkaliphilic bacterium, designated strain GBPy7T, was isolated from a sample of the coastal-marine wetland Gomishan in Iran. Cells of strain GBPy7T were motile. Growth occurred on media with 1-15 % (w/v) NaCl (optimum 3 %), at pH 7-10 (optimum pH 8.5) and at 4-45 °C (optimum 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison indicated that strain GBPy7T belonged to the family Idiomarinaceae. Its closest relatives were Aliidiomarina shirensis AIST (98.1 % 16S rRNA gene sequence similarity) and other Aliidiomarina species (95.9-94.2 %), together with Idiomarina seosinensis CL-SP19T (94.3 %) and Idiomarina fontislapidosi F23T (94.3 %). The major cellular fatty acids of the isolate were iso-C15 : 0, iso-C17 : 0, iso-C17 : 1ω9c and C18 : 1ω7c and its polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid and one unknown aminophospholipid. Cells of strain GBPy7T contained ubiquinone Q-8. The G+C content of the genomic DNA of this strain was 51.6 mol%. The level of DNA-DNA relatedness between strain GBPy7T and A. shirensis IBRC-M 10414T was 21 %. The physiological, biochemical, genotypic and phylogenetic differences between strain GBPy7T and other previously described taxa indicate that the strain represents a novel species of the genus Aliidiomarina within the family Idiomarinaceae, for which the name Aliidiomarina iranensis sp. nov. is proposed. The type strain is GBPy7T ( = IBRC-M 10763T = CECT 8339T).

  11. Alicyclobacillus tengchongensis sp. nov., a thermo-acidophilic bacterium isolated from hot spring soil.

    PubMed

    Kim, Min Goo; Lee, Jae-Chan; Park, Dong-Jin; Li, Wen-Jun; Kim, Chang-Jin

    2014-10-01

    A thermo-acidophilic bacterium, designated strain ACK006(T), was isolated from the soil of a hot spring at Tengchong in China. Cells were Gram-staining-positive, motile, catalase-positive and oxidase-negative, spore-forming rods. The isolate grew aerobically at 30-50°C (optimum at 45°C), pH 2.0-6.0 (optimum pH 3.2) and 0-5.0% (w/v) NaCl (optimum 1% NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain ACK006(T) belongs to the genus Alicyclobacillus with the sequence similarity of 92.3, 92.4, 92.5, and 92.8% to Alicyclobacillus cycloheptanicus SCH(T), Alicyclobacillus ferrooxydans TC-34(T), Alicyclobacillus contaminans 3-A191(T) and Alicyclobacillus disulfidooxidans SD-11(T), respectively. Similarity to other species of the genus Alicyclobacillus was 90.3-92.8% and similarity to species of the genus Tumebacillus was 85.9-87.8%. The genomic DNA G+C content was 53.7 mol%. The predominant menaquinone was MK-7. Major fatty acids were ω-cycloheptane C18:0, iso-C17:0 and anteiso-C17:0. The cell-wall peptidoglycan was the A1γ type; containing meso-diaminopimelic acid as the diagnostic diamino acid. On the basis of polyphasic analysis from this study, strain ACK006(T) represents a novel species of the genus Alicyclobacillus for which the name Alicyclobacillus tengchongensis sp. nov. is proposed. The type strain is ACK006(T) (=KCTC 33022(T) =DSM 25924(T)).

  12. Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir.

    PubMed

    Grabowski, Agnès; Tindall, Brian J; Bardin, Véronique; Blanchet, Denis; Jeanthon, Christian

    2005-05-01

    A mesophilic, anaerobic, fermentative bacterium, strain BN3(T), was isolated from a producing well of a biodegraded oil reservoir in Canada. Cells were Gram-negative, non-motile rods that did not form spores. The temperature range for growth was 15-40 degrees C, with optimum growth at 37-40 degrees C. The strain grew with up 4 % NaCl, with optimum growth in the absence of NaCl. Tryptone was required for growth. Yeast extract and elemental sulfur stimulated growth. Growth was also enhanced during fermentation of glucose, arabinose, galactose, maltose, mannose, rhamnose, lactose, ribose, fructose, sucrose, cellobiose, lactate, mannitol and glycerol. Acetate, hydrogen and CO(2) were produced during glucose fermentation. Elemental sulfur and nitrate were used as electron acceptors and were reduced to sulfide and ammonium, respectively. The G + C content of the genomic DNA was 40.8 mol%. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the strain was a member of the phylum 'Bacteroidetes', distantly related to the genera Bacteroides and Tannerella (similarity values of less than 90 %). The chemotaxonomic data (fatty acids, polar lipids and quinones composition) also indicated that strain BN3(T) could be clearly distinguished from its closest cultivated relatives. This novel organism possesses phenotypic, chemotaxonomic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, it is proposed that this isolate should be described as a member of a novel species of a new genus, Petrimonas gen. nov., of which Petrimonas sulfuriphila sp. nov. is the type species. The type strain is BN3(T) (= DSM 16547(T) = JCM 12565(T)). PMID:15879242

  13. Lysobacter cavernae sp. nov., a novel bacterium isolated from a cave sample.

    PubMed

    Chen, Wei; Zhao, Ying-Liang; Cheng, Juan; Zhou, Xing-Kui; Salam, Nimaichand; Fang, Bao-Zhu; Li, Qing-Qing; Hozzein, Wael N; Li, Wen-Jun

    2016-07-01

    A Gram-staining negative, aerobic, rod-shaped bacterium, designated YIM C01544(T), was isolated from a soil sample collected from Sigangli Cave, Yunnan province, South-West China. The strain was able to grow over a range of temperatures (4-30 °C), pH (6.0-10.0) and NaCl concentration (0-2 %, w/v). Comparative 16S rRNA gene sequence analysis revealed that strain YIM C01544(T) should be a member of the genus Lysobacter. The strain is closely related to Lysobacter niastensis GH41-7(T) (97.6 %), Lysobacter soli DCY21(T) (97.5 %), Lysobacter enzymogenes DSM 2043(T) (97.3 %), Lysobacter antibioticus DSM 2044(T) (97.1 %) and Lysobacter panacisoli CJ29(T) (97.1 %). The genomic DNA relatedness values (<47 %) as indicated by DNA-DNA hybridization studies were below the threshold limit for characterization of new bacterial species. The chemotaxonomic features of the new isolate include diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and two unidentified polar lipids as its characteristic polar lipids and Q-8 as the only quinone. The major fatty acids detected were iso-C15:0 and iso-C17:1 ω9c. The DNA G + C content of the strain was determined to be 64.9 mol %. Based on the data from phenotypic, chemotaxonomic and molecular studies, strain YIM C01544(T) merits recognition as novel species in the genus Lysobacter for which the name Lysobacter cavernae sp. nov. is proposed. The type strain of Lysobacter cavernae is YIM C01544(T) (= KCTC 42875(T) = DSM 101561(T) = CPCC 100816(T)). PMID:27180096

  14. Paenibacillus puernese sp. nov., a β-glucosidase-producing bacterium isolated from Pu'er tea.

    PubMed

    Wang, Dan-Dan; Kim, Yeon-Ju; Hoang, Van-An; Nguyen, Ngoc-Lan; Singh, Priyanka; Wang, Chao; Chun-Yang, Deok

    2016-04-01

    A Gram-staining-positive, endospore-forming, aerobic, rod-shaped bacterium, designated as DCY97(T), was isolated from ripened Pu'er tea and was identified by using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain DCY97(T) was closely related to Paenibacillus dongdonensis KUDC0114(T) (98.0 %), Paenibacillus oceanisediminis L10(T) (97.7 %), and Paenibacillus barcinonensis BP-23(T) (97.2 %). The phenotypic and chemotaxonomic characteristics of strain DCY97(T) matched with the characteristics of members belonging to the genus Paenibacillus. The major identified polar lipids included phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol. The predominant quinone was MK-7. The major fatty acids were anteiso-C15:0 (35.1 %), anteiso-C16:0 (19.0 %), and iso-C16:0 (13.9 %). The peptidoglycan cell wall was composed of meso-diaminopimelic acids, alanine, and D-glutamic acid. The genomic DNA G + C content was determined to be 46.7 mol%. The DNA-DNA relatedness between strain DCY97(T) and Paenibacillus dongdonensis KCTC 33221(T), Paenibacillus oceanisediminis KACC 16023(T), Paenibacillus barcinonensis KCTC 13019(T) were 27, 19, and 10 %, respectively. Based on the genotypic, phenotypic, and chemotaxonomic characteristics, strain DCY97(T) is considered as a novel species of the genus Paenibacillus, for which the name Paenibacillus puernese sp. nov. is proposed. The type strain is DCY97(T) (=KCTC 33596(T) = JCM 140369(T)). PMID:26721586

  15. Thermosipho activus sp. nov., a thermophilic, anaerobic, hydrolytic bacterium isolated from a deep-sea sample.

    PubMed

    Podosokorskaya, Olga A; Bonch-Osmolovskaya, Elizaveta A; Godfroy, Anne; Gavrilov, Sergey N; Beskorovaynaya, Daria A; Sokolova, Tatyana G; Kolganova, Tatyana V; Toshchakov, Stepan V; Kublanov, Ilya V

    2014-09-01

    A novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain Rift-s3(T), was isolated from a deep-sea sample containing Riftia pachyptila sheath from Guaymas Basin, Gulf of California. Cells of the novel isolate were rods, 0.3-0.8 µm in width and 1.5-10 µm in length, surrounded by a sheath-like structure (toga). Strain Rift-s3(T) grew at temperatures ranging from 44 to 75 °C, at pH 5.5 to 8.0, and with NaCl concentrations of 3 to 60 g l(-1). Under optimum conditions (65 °C, pH 6.0, NaCl 25 g l(-1)), the doubling time was 30 min. The isolate was able to ferment mono-, oligo- and polysaccharides including cellulose, chitin, xylan and pectin, and proteins including β-keratins, casein and gelatin. Acetate, hydrogen and carbon dioxide were the main products of glucose fermentation. The G+C content of the DNA was 30 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed the affiliation of strain Rift-s3(T) with the genus Thermosipho, with Thermosipho atlanticus Ob7(T) as the closest relative (96.5 % 16S rRNA gene sequence similarity). Based on the phylogenetic analysis and physiological properties of the novel isolate we propose a novel species of the genus Thermosipho, Thermosipho activus sp. nov., with Rift-s3(T) ( = DSM 26467(T) = VKM B-2803(T)) as the type strain. PMID:24994778

  16. Desulfonatronum Thiodismutans sp. nov., a Novel Alkaliphilic, Sulfate-reducing Bacterium Capable of Lithoautotrophic Growth

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Cleland, David; Krader, Paul

    2003-01-01

    A novel alkaliphilic, sulfate-reducing bacterium, strain MLF1(sup T), was isolated from sediments of soda Mono Lake, California. Gram-negative vibrio-shaped cells were observed, which were 0.6-0.7 x 1.2-2.7 microns in size, motile by a single polar flagellum and occurred singly, in pairs or as short spirilla. Growth was observed at 15-48 C (optimum, 37 C), > 1-7 % NaCI, w/v (optimum, 3%) and pH 8.0-10.0 (optimum, 9.5). The novel isolate is strictly alkaliphilic, requires a high concentration of carbonate in the growth medium and is obligately anaerobic and catalase-negative. As electron donors, strain MLF1(sup T) uses hydrogen, formate and ethanol. Sulfate, sulfite and thiosulfate (but not sulfur or nitrate) can be used as electron acceptors. The novel isolate is a lithoheterotroph and a facultative lithoautotroph that is able to grow on hydrogen without an organic source of carbon. Strain MLF1(sup T) is resistant to kanamycin and gentamicin, but sensitive to chloramphenicol and tetracycline. The DNA G+C content is 63.0 mol% (HPLC). DNA-DNA hybridization with the most closely related species, Desulfonatronum lacustre Z-7951(sup T), exhibited 51 % homology. Also, the genome size (1.6 x 10(exp 9) Da) and T(sub m) value of the genomic DNA (71 +/- 2 C) for strain MLF1(sup T) were significantly different from the genome size (2.1 x 10(exp 9) Da) and T(sub m) value (63 +/- 2 C) for Desulfonatronum lacustre Z-7951(sup T). On the basis of physiological and molecular properties, the isolate was considered to be a novel species of the genus Desulfonatronum, for which the name Desulfonatronum thiodismutans sp. nov. is proposed (the type strain is MLF1(sup T) = ATCC BAA-395(sup T) = DSM 14708(sup T)).

  17. Gordonibacter urolithinfaciens sp. nov., a urolithin-producing bacterium isolated from the human gut.

    PubMed

    Selma, María V; Tomás-Barberán, Francisco A; Beltrán, David; García-Villalba, Rocio; Espín, Juan C

    2014-07-01

    Urolithins are dibenzopyranone metabolites that exert anti-inflammatory activity in vivo and are produced by the gut microbiota from the dietary polyphenols ellagic acid (EA) and ellagitannins. However, the bacteria involved in this process remain unknown. We report here a novel bacterium, strain CEBAS 1/15P(T), capable of metabolizing EA to urolithins, that was isolated from healthy human faeces and characterized by determining phenotypic, biochemical and molecular methods. The strain was related to Gordonibacter pamelaeae 7-10-1-b(T), the type and only reported strain of the only species of the genus Gordonibacter, with about 97% 16S rRNA gene sequence similarity; they were both obligately anaerobic, non-spore-forming, Gram-stain-positive, short-rods/coccobacilli and metabolized only small numbers of carbon sources. L-Fucose, D-fructose, turanose, D-galacturonic acid and α-ketobutyric acid were metabolized by strain CEBAS 1/15P(T), while G. pamelaeae was negative for metabolism of these compounds. The whole-cell fatty acids consisted predominantly of saturated fatty acids (70%); strain CEBAS 1/15P(T) differed significantly from G. pamelaeae in the major fatty acid, which was C18 : 1ω9c, while anteiso-C15 : 0 was the major component for G. pamelaeae. The presence of a number of different fatty acid peaks, especially C19 : 0 cyclo and C18 : 1ω6c, was also indicative of distinct species. Six glycolipids (GL1-6) were recognized, while, in G. pamelaeae, only four glycolipids were described. On the basis of these data, the novel species Gordonibacter urolithinfaciens sp. nov. is described, with strain CEBAS 1/15P(T) ( = DSM 27213(T) = CCUG 64261(T)) as the type strain.

  18. Paenibacillus lemnae sp. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis).

    PubMed

    Kittiwongwattana, Chokchai; Thawai, Chitti

    2015-01-01

    A Gram-stain-variable, rod-shaped and endospore-forming bacterium, designated strain L7-75, was isolated from duckweed (Lemna aequinoctialis). Cells were motile with a monopolar flagellum. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain L7-75(T) belonged to the genus Paenibacillus, and the closest phylogenetically related species were Paenibacillus uliginis N3/975(T) (98.5% 16S rRNA gene sequence similarity), Paenibacillus purispatii ES_M17(T) (98.5%), Paenibacillus lactis MB 1871(T) (98.2%), Paenibacillus campinasensis 324(T) (97.7%), Paenibacillus glucanolyticus S93(T) (97.7%) and Paenibacillus lautus ATCC 43898(T) (97.4%). Growth of strain L7-75(T) was observed at pH 7-10 and at 20-40 °C, and NaCl concentrations up to 5% (w/v) were tolerated. Major cellular fatty acids included anteiso-C15 : 0, C16 : 0 and anteiso-C17:0 that were present at 36.0%, 14.2 % and 10.0% of the total cellular fatty acid profile, respectively. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidyl-N-methylethanolamine. MK-7 was the predominant menaquinone. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. The DNA G+C content was 49.1 mol% (Tm). DNA-DNA relatedness values between strain L7-75(T) and its closest relatives ranged from 4.4 to 47.8%. These results indicate that strain L7-75(T) represents a novel species of the genus Paenibacillus, for which the name Paenibacillus lemnae sp. nov. is proposed. The type strain is L7-75(T) ( = BCC 67838(T) = NBRC 109972(T)).

  19. Sphingomonas yunnanensis sp. nov., a novel gram-negative bacterium from a contaminated plate.

    PubMed

    Zhang, Yu-Qin; Chen, Yi-Guang; Li, Wen-Jun; Tian, Xin-Peng; Xu, Li-Hua; Jiang, Cheng-Lin

    2005-11-01

    A Gram-negative bacterium, YIM 003T, which was isolated from a contaminated plate in the laboratory, was subjected to a polyphasic taxonomic study. The organism had short-rod-shaped, motile cells, formed yellow-pigmented colonies on ISP2 medium and its optimum growth pH was 7.0-7.5. The major respiratory lipoquinone was ubiquinone Q-10. The phosphate-containing lipids detected in strain YIM 003T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid and one unidentified phospholipid. The major fatty acids were C(18 : 1)omega7c (59.8 %), C(16 : 0) (9.9 %), ai-C(17 : 0) (5.3 %), i-C(17 : 0) (4.4 %) and C(14 : 0) 2-OH (15.8 %). The G+C content of the genomic DNA was 67.5 mol%. Strain YIM 003T exhibited levels of 16S rRNA gene sequence similarity of 98.2 % to Sphingomonas phyllosphaerae FA2T and 98.0 % to Sphingomonas adhaesiva DSM 7418T but showed less than 97.0 % similarity with respect to other species with validly published names. The DNA-DNA relatedness values of the isolate with S. phyllosphaerae FA2T and S. adhaesiva DSM 7418T were 59 and 26 %, respectively. The phenotypic characteristics and genotypic data indicate that strain YIM 003T should be distinguished from S. phyllosphaerae FA2T and S. adhaesiva DSM 7418T. Therefore, on the basis of the polyphasic taxonomic data presented, a novel species of the genus Sphingomonas, Sphingomonas yunnanensis sp. nov., is proposed, with the type strain YIM 003T (=CCTCC AB 204064T=KCTC 12346T).

  20. Xenophilus arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from soil.

    PubMed

    Li, Qin-Fen; Sun, Li-Na; Kwon, Soon-Wo; Chen, Qing; He, Jian; Li, Shun-Peng; Zhang, Jun

    2014-06-01

    A Gram-reaction-negative, aerobic, motile, rod-shaped, arsenite [As(III)]-resistant bacterium, designated strain YW8(T), was isolated from agricultural soil. 16S rRNA gene sequence analysis showed over 97% sequence similarity to strains of the environmental species Xenophilus azovorans, Xenophilus aerolatus, Simplicispira metamorpha, Variovorax soli, and Xylophilus ampelinus. However, the phylogenetic tree indicated that strain YW8(T) formed a separate clade from Xenophilus azovorans. DNA-DNA hybridization experiments showed that the DNA-DNA relatedness values between strain YW8(T) and its closest phylogenetic neighbours were below 24.2-35.5%, which clearly separated the strain from these closely related species. The major cellular fatty acids of strain YW8(T) were C(16 : 0), C(17 : 0) cyclo, C(18 : 1)ω7c, and summed feature 3(C(16 : 1)ω6c and/or C(16 : 1)ω7c). The genomic DNA G+C content was 69.3 mol%, and the major respiratory quinone was ubiquinone-8. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids, an unknown polar lipid and phosphatidylserine. The major polyamines were 2-hydroxyputrescine and putrescine. On the basis of morphological, physiological and biochemical characteristics, phylogenetic position, DNA-DNA hybridization and chemotaxonomic data, strain YW8(T) is considered to represent a novel species of the genus Xenophilus, for which the name Xenophilus arseniciresistens sp. nov. is proposed; the type strain is YW8(T) ( = CCTCC AB2012103(T) = KACC 16853(T)).

  1. Caldicoprobacter algeriensis sp. nov. a new thermophilic anaerobic, xylanolytic bacterium isolated from an Algerian hot spring.

    PubMed

    Bouanane-Darenfed, Amel; Fardeau, Marie-Laure; Grégoire, Patrick; Joseph, Manon; Kebbouche-Gana, Salima; Benayad, Tahar; Hacene, Hocine; Cayol, Jean-Luc; Ollivier, Bernard

    2011-03-01

    A thermophilic anaerobic bacterium (strain TH7C1(T)) was isolated from the hydrothermal hot spring of Guelma in the northeast of Algeria. Strain TH7C1(T) stained Gram-positive, was a non-motile rod appearing singly, in pairs, or as long chains (0.7-1 × 2-6 μm(2)). Spores were never observed. It grew at temperatures between 55 and 75°C (optimum 65°C) and at pH between 6.2 and 8.3 (optimum 6.9). It did not require NaCl for growth, but tolerated it up to 5 g l(-1). Strain TH7C1(T) is an obligatory heterotroph fermenting sugars including glucose, galactose, lactose, raffinose, fructose, ribose, xylose, arabinose, maltose, mannitol, cellobiose, mannose, melibiose, saccharose, but also xylan, and pyruvate. Fermentation of sugars only occurred in the presence of yeast extract (0.1%). The end-products from glucose fermentation were acetate, lactate, ethanol, CO(2), and H(2). Nitrate, nitrite, thiosulfate, elemental sulfur, sulfate, and sulfite were not used as electron acceptors. The G+C content of the genomic DNA was 44.7 mol% (HPLC techniques). Phylogenetic analysis of the small-subunit ribosomal RNA (rRNA) gene sequence indicated that strain TH7C1(T) was affiliated to Firmicutes, order Clostridiales, family Caldicoprobacteraceae, with Caldicoprobacter oshimai (98.5%) being its closest relative. Based on phenotypic, phylogenetic, and genetic characteristics, strain TH7C1(T) is proposed as a novel species of genus Caldicoprobacter, Caldicoprobacter algeriensis, sp. nov. (strain TH7C1(T) = DSM 22661(T) = JCM 16184(T)).

  2. Halomonas xinjiangensis sp. nov., a halotolerant bacterium isolated from a salt lake.

    PubMed

    Guan, Tong-Wei; Xiao, Jing; Zhao, Ke; Luo, Xiao-Xia; Zhang, Xiao-Ping; Zhang, Li-Li

    2010-02-01

    A novel bacterium, TRM 0175(T), belonging to the genus Halomonas, was isolated from a soil sample taken from a salt lake in Xinjiang Province, north-west China. The isolate was Gram-negative, aerobic, rod-shaped and motile by means of peritrichous flagella. It was catalase-positive and oxidase-negative. Growth occurred at NaCl concentrations of 0-20 % (optimum at 10-13 %), at 15-50 degrees C (optimum at 37 degrees C) and at pH 6.0-9.0 (optimum at pH 7.0). Metabolism was respiratory with oxygen as terminal electron acceptor. Acid was produced from D-ribose, D- and L-arabinose, D-xylose, D-galactose, D-mannose, L-rhamnose, cellobiose, maltose, trehalose and D- and L-fucose and was produced weakly from aesculin. The predominant ubiquinone was Q-9. The major fatty acids were C(18 : 1)omega7c and C(19 : 0) cyclo omega8c. The G+C content of the genomic DNA was 60.0 mol%. The affiliation of strain TRM 0175(T) with the genus Halomonas was confirmed by 16S rRNA gene sequence comparisons. The most closely related species was Halomonas anticariensis; 16S rRNA gene sequence similarity between H. anticariensis FP35(T) and strain TRM 0175(T) was 95.3 %. Phenotypically, some characteristics of TRM 0175(T) differed from those of H. anticariensis. On the basis of data from this polyphasic study, strain TRM 0175(T) represents a novel species of the genus Halomonas, for which the name Halomonas xinjiangensis sp. nov. is proposed; the type strain is TRM 0175(T) (=CCTCC AB 208329(T) =KCTC 22608(T)). PMID:19651733

  3. Lentibacillus amyloliquefaciens sp. nov., a halophilic bacterium isolated from saline sediment sample.

    PubMed

    Wang, Jing-Li; Ma, Ke-Dong; Wang, Yan-Wei; Wang, Hui-Min; Li, Yan-Bin; Zhou, Shan; Chen, Xiao-Rong; Kong, De-Long; Guo, Xiang; He, Ming-Xiong; Ruan, Zhi-Yong

    2016-02-01

    A Gram-stain positive, non-motile, non-sporogenous, aerobic, rod-shaped and halophilic bacterium, designated LAM0015(T), was isolated from a saline sediment sample collected from Yantai City in China. The isolate was found to be able to grow at NaCl concentrations of 5-25 % (w/v) (optimum: 7-12 %), 15-45 °C (optimum: 35 °C) and pH 5.0-9.0 (optimum: 7.0). The major fatty acids were determined to be anteiso-C15:0 and anteiso-C17:0. The predominant respiratory quinone was identified as MK-7. The cell wall peptidoglycan was determined to contain meso-diaminopimelic acid. The polar lipids were found to be diphosphatidyglycerol, phosphatidylglycerol, five phospholipids and one glycolipid. The DNA G+C content was 43.1 mol% as determined by the T m method. Analysis of the 16S rRNA gene sequence indicated that the isolate belongs within the genus Lentibacillus and is closely related to Lentibacillus persicus DSM 22530(T), Lentibacillus salicampi JCM 11462(T) and Lentibacillus jeotgali JCM 15795(T) with 97.3, 96.7 and 96.4 % sequence similarity, respectively. The DNA-DNA hybridization value between LAM0015(T) and L. persicus DSM 22530(T) was 51.2 ± 1.4 %. Based on its phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0015(T) is concluded to represent a novel species of the genus Lentibacillus, for which the name Lentibacillus amyloliquefaciens sp. nov. is proposed. The type strain is LAM0015(T) (=ACCC 06401(T) = JCM 19838(T)). PMID:26545789

  4. Burkholderia susongensis sp. nov., a mineral-weathering bacterium isolated from weathered rock surface.

    PubMed

    Gu, Jia-Yu; Zang, Sheng-Gang; Sheng, Xia-Fang; He, Lin-Yan; Huang, Zhi; Wang, Qi

    2015-03-01

    A novel type of mineral-weathering bacterium was isolated from the weathered surface of rock (mica schist) collected from Susong (Anhui, China). Cells of strain L226(T) were Gram-stain-negative. The strain grew optimally at 30 °C, with 1 % (w/v) NaCl and at pH 7.0 in trypticase soy broth. On the basis of 16S rRNA gene phylogeny, strain L226(T) was shown to belong to the genus Burkholderia and the closest phylogenetic relatives were Burkholderia sprentiae WSM5005(T) (98.3 %), Burkholderia acidipaludis NBRC 101816(T) (98.2 %), Burkholderia tuberum STM678(T) (97.2 %) and Burkholderia diazotrophica JPY461(T) (97.1 %). The DNA G+C content was 63.5 mol% and the respiratory quinone was Q-8. The major fatty acids were C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c. The polar lipid profile of strain L226(T) consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, unknown lipids and unidentified aminophospholipids. Based on the low level of DNA-DNA relatedness (ranging from 25.8 % to 34.4 %) to the tested type strains of species of the genus Burkholderia and unique phenotypic characteristics, it is suggested that strain L226(T) represents a novel species of the genus Burkholderia, for which the name Burkholderia susongensis sp. nov., is proposed. The type strain is L226(T) ( = CCTCC AB2014142(T) = JCM 30231(T)).

  5. Clostridium tepidiprofundi sp. nov., a moderately thermophilic bacterium from a deep-sea hydrothermal vent.

    PubMed

    Slobodkina, G B; Kolganova, T V; Tourova, T P; Kostrikina, N A; Jeanthon, C; Bonch-Osmolovskaya, E A; Slobodkin, A I

    2008-04-01

    A moderately thermophilic, anaerobic bacterium (strain SG 508T) was isolated from a hydrothermal vent chimney located at 1 degrees N on the East Pacific Rise at a depth of 2650 m. Cells of strain SG 508T were straight to slightly curved rods, 0.4-0.6 microm in diameter and 2.0-3.0 microm in length. Spore formation was observed only below pH 5.5. The temperature range for growth was 22-60 degrees C, with optimum growth at 50 degrees C. The pH range for growth was 4.0-8.5, with optimum growth at pH 6.0-6.8. Growth of strain SG 508T was observed at NaCl concentrations ranging from 1.0 to 6.0 % (w/v), with optimum growth at 2.5 % (w/v). Substrates utilized by strain SG 508T included casein, peptone, tryptone, yeast extract, beef extract, starch, maltose and glucose. The products of glucose fermentation were ethanol, acetate, H2, formate and CO2. Strain SG 508T was able to reduce elemental sulfur to hydrogen sulfide. The DNA G+C content of strain SG 508T was 30.9 mol%. 16S rRNA gene sequence analysis revealed that the isolated organism belonged to cluster I of the genus Clostridium. On the basis of its physiological properties and data from phylogenetic analyses, strain SG 508T is considered to represent a novel species of the genus Clostridium, for which the name Clostridium tepidiprofundi sp. nov. is proposed. The type strain is SG 508T (=DSM 19306T =VKM B-2459T).

  6. Dethiosulfovibrio salsuginis sp. nov., an anaerobic, slightly halophilic bacterium isolated from a saline spring.

    PubMed

    Díaz-Cárdenas, C; López, G; Patel, B K C; Baena, S

    2010-04-01

    A mesophilic, strictly anaerobic, slightly halophilic bacterium, designated strain USBA 82(T), was isolated from a terrestrial saline spring in the Colombian Andes. The non-spore-forming curved rods (5-7 x 1.3 microm) with pointed or rounded ends, stained Gram-negative and were motile by means of laterally inserted flagella. The strain grew optimally at 30 degrees C (growth range 20-40 degrees C), pH 7.3 (growth range pH 5.5-8.5) and 2 % (w/v) NaCl (growth range 0.1-7 % NaCl). The strain fermented peptides, amino acids and a few organic acids, but growth was not observed on carbohydrates, alcohols or fatty acids. The strain reduced thiosulfate and sulfur to sulfide. Sulfate, sulfite, nitrate and nitrite were not used as electron acceptors. On peptone alone, acetate, succinate, propionate and traces of ethanol were formed, but in the presence of thiosulfate, acetate and succinate were formed. The G+C content of the chromosomal DNA was 52 mol% (T(m)). 16S rRNA gene sequence analysis indicated that strain USBA 82(T) was affiliated to Dethiosulfovibrio peptidovorans within the phylum Synergistetes with a similarity value of approximately 93 %. Based on the differences between the new strain and the type species of the genus Dethiosulfovibrio, we suggest that strain USBA 82(T) represents a novel species of the genus for which the name Dethiosulfovibrio salsuginis sp. nov. is proposed. The type strain is USBA 82(T) (=DSM 21565(T)=KCTC 5659(T)). PMID:19661517

  7. Lentibacillus amyloliquefaciens sp. nov., a halophilic bacterium isolated from saline sediment sample.

    PubMed

    Wang, Jing-Li; Ma, Ke-Dong; Wang, Yan-Wei; Wang, Hui-Min; Li, Yan-Bin; Zhou, Shan; Chen, Xiao-Rong; Kong, De-Long; Guo, Xiang; He, Ming-Xiong; Ruan, Zhi-Yong

    2016-02-01

    A Gram-stain positive, non-motile, non-sporogenous, aerobic, rod-shaped and halophilic bacterium, designated LAM0015(T), was isolated from a saline sediment sample collected from Yantai City in China. The isolate was found to be able to grow at NaCl concentrations of 5-25 % (w/v) (optimum: 7-12 %), 15-45 °C (optimum: 35 °C) and pH 5.0-9.0 (optimum: 7.0). The major fatty acids were determined to be anteiso-C15:0 and anteiso-C17:0. The predominant respiratory quinone was identified as MK-7. The cell wall peptidoglycan was determined to contain meso-diaminopimelic acid. The polar lipids were found to be diphosphatidyglycerol, phosphatidylglycerol, five phospholipids and one glycolipid. The DNA G+C content was 43.1 mol% as determined by the T m method. Analysis of the 16S rRNA gene sequence indicated that the isolate belongs within the genus Lentibacillus and is closely related to Lentibacillus persicus DSM 22530(T), Lentibacillus salicampi JCM 11462(T) and Lentibacillus jeotgali JCM 15795(T) with 97.3, 96.7 and 96.4 % sequence similarity, respectively. The DNA-DNA hybridization value between LAM0015(T) and L. persicus DSM 22530(T) was 51.2 ± 1.4 %. Based on its phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0015(T) is concluded to represent a novel species of the genus Lentibacillus, for which the name Lentibacillus amyloliquefaciens sp. nov. is proposed. The type strain is LAM0015(T) (=ACCC 06401(T) = JCM 19838(T)).

  8. Intestinimonas butyriciproducens gen. nov., sp. nov., a butyrate-producing bacterium from the mouse intestine.

    PubMed

    Kläring, Karoline; Hanske, Laura; Bui, Nam; Charrier, Cédric; Blaut, Michael; Haller, Dirk; Plugge, Caroline M; Clavel, Thomas

    2013-12-01

    A Gram-positive, spore-forming, non-motile, strictly anaerobic rod-shaped bacterium was isolated from the caecal content of a TNF(deltaARE) mouse. The isolate, referred to as strain SRB-521-5-I(T), was originally cultured on a reduced agar medium containing yeast extract, rumen fluid and lactic acid as main energy and carbon sources. Phylogenetic analysis of partial 16S rRNA genes revealed that the species most closely related to strain SRB-521-5-I(T) were Flavonifractor plautii and Pseudoflavonifractor capillosus (<95 % sequence similarity; 1436 bp). In contrast to F. plautii and P. capillosus, strain SRB-521-5-I(T) contained a substantial amount of C18 : 0 dimethylacetal. Additional major fatty acids were C14 : 0 methyl ester, C16 : 0 dimethylacetal and C18 : 0 aldehyde. Strain SRB-521-5-I(T) differed in its enzyme profile from F. plautii and P. capillosus by being positive for dextrin, maltotriose, turanose, dl-lactic acid and d-lactic acid methyl ester but negative for d-fructose. In reduced Wilkins-Chalgren-Anaerobe broth, strain SRB-521-5-I(T) produced approximately 8 mM butyrate and 4 mM acetate. In contrast to F. plautii, the strain did not metabolize flavonoids. It showed intermediate resistance towards the antibiotics ciprofloxacin, colistin and tetracycline. Based on genotypic and phenotypic characteristics, we propose the name Intestinimonas butyriciproducens gen. nov., sp. nov. to accommodate strain SRB-521-5-I(T) ( = DSM 26588(T) = CCUG 63529(T)) as the type strain. PMID:23918795

  9. Paucisalibacillus globulus gen. nov., sp. nov., a Gram-positive bacterium isolated from potting soil.

    PubMed

    Nunes, Inês; Tiago, Igor; Pires, Ana Luísa; da Costa, Milton S; Veríssimo, António

    2006-08-01

    A Gram-positive bacterium, designated B22(T), was isolated from potting soil produced in Portugal. This organism is a catalase-positive, oxidase-negative, motile, spore-forming, aerobic rod that grows optimally at 37 degrees C and pH 8.0-8.5. Optimal growth occurs in media containing 1 % (w/v) NaCl, although the organism can grow in 0-8 % NaCl. The cell wall peptidoglycan is of the A4alpha type with a cross-linkage containing d-Asp. The major respiratory quinone is menaquinone 7 and the major fatty acids are anteiso-15 : 0, anteiso-17 : 0 and iso-15 : 0. The DNA G+C content is 37.9 mol%. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain B22(T) formed a new branch within the family Bacillaceae. The novel isolate is phylogenetically closely related to members of genera of moderately halophilic bacilli and formed a coherent cluster with species of the genera Salinibacillus, Virgibacillus, Oceanobacillus and Lentibacillus, supported by bootstrap analysis at a confidence level of 71 %. Strain B22(T) exhibited 16S rRNA gene pairwise sequence similarity values of 94.7-94.3 % with members of the genus Salinibacillus, 95.1-92.8 % with members of the genus Virgibacillus, 94.7-93.2 % with members of the genus Oceanobacillus and 93.1-92.3 % with members of the genus Lentibacillus. On the basis of phylogenetic analysis and physiological and biochemical characteristics, it is proposed that strain B22(T) represents a novel species in a new genus, Paucisalibacillus globulus gen. nov., sp. nov. Strain B22(T) (=LMG 23148(T)=CIP 108857(T)) is the type strain of Paucisalibacillus globulus.

  10. Cecembia rubra sp. nov., a thermophilic bacterium isolated from a hot spring sediment.

    PubMed

    Duan, Yan-Yan; Ming, Hong; Dong, Lei; Yin, Yi-Rui; Meng, Xiao-Lin; Zhou, En-Min; Zhang, Jian-Xin; Nie, Guo-Xing; Li, Wen-Jun

    2015-07-01

    A Gram-staining negative, rod-shaped bacterium, designated strain YIM 78110(T), was isolated from a sediment sample collected from Hehua hot spring in Tengchong, Yunnan province, south-west China. The taxonomic status of strain YIM 78110(T) was confirmed by a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain YIM 78110(T) belongs to the genus Cecembia, displaying 96.8% and 94.7% sequence similarity with the two most closely related type strains, Cecembia calidifontis RQ-33(T) and Cecembia lonarensis LW9T, respectively. The low value of DNA-DNA hybridization (52.3 ± 2.3%) between strain YIM 78110(T) and its closest neighbour, Cecembia calidifontis RQ-33(T), indicated that this new isolate represented a different genomic species in the genus Cecembia. The temperature for growth ranged from 30 to 50 °C. The pH for growth ranged from pH 4.0 to 10.0, with NaCl tolerance of 0.5-6.0% (w/v). The predominant menaquinone of strain YIM 78110(T) was MK-7 and the major polar lipid was phosphatidylethanolamine. The major fatty acids were iso-C15:0 and C15:0. The DNA G+C content was 47.1 mol%. On the basis of physiological, biochemical and phylogenetic analyses, it is proposed that strain YIM 78110(T) represents a novel species of the genus Cecembia, for which the name Cecembia rubra sp. nov. is proposed. The type strain is YIM 78110(T) ( = CCTCC AB2013287(T) = DSM 28057(T)).

  11. Brevundimonas denitrificans sp. nov., a denitrifying bacterium isolated from deep subseafloor sediment.

    PubMed

    Tsubouchi, Taishi; Koyama, Sumihiro; Mori, Kozue; Shimane, Yasuhiro; Usui, Keiko; Tokuda, Maki; Tame, Akihiro; Uematsu, Katsuyuki; Maruyama, Tadashi; Hatada, Yuji

    2014-11-01

    A novel Gram-stain-negative, aerobic, heterotrophic, stalked and capsulated bacterium with potential denitrification ability, designated strain TAR-002(T), was isolated from deep seafloor sediment in Japan. Colonies lacked lustre, and were viscous and translucent white. The ranges of temperature, pH and salt concentration for growth were 8-30 °C, pH 6.0-10.0 and 1-3% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain TAR-002(T) belongs to the genus Brevundimonas of the class Alphaproteobacteria. Levels of similarity between the 16S rRNA gene sequence of strain TAR-002(T) and those of the type strains of species of the genus Brevundimonas were 93.5-98.9%; the most closely related species was Brevundimonas basaltis. In DNA-DNA hybridization assays between strain TAR-002(T) and its phylogenetic neighbours, Brevundimonas lenta DS-18(T), B. basaltis J22(T), Brevundimonas subvibrioides ATCC 15264(T) and Brevundimonas alba DSM 4736(T), mean hybridization levels were 6.4-27.7%. The G+C content of strain TAR-002(T) was 70.3 mol%. Q-10 was the major respiratory isoprenoid quinone. The major fatty acids were C(18:1)ω7c and C(16:0), and the presence of 1,2-di-O-acyl-3-O-[D-glucopyranosyl-(1 → 4)-α-D-glucopyranuronosyl]glycerol (DGL) indicates the affiliation of strain TAR-002(T) with the genus Brevundimonas. On the basis of biological characteristics and 16S rRNA gene sequence comparisons, strain TAR-002(T) is considered to represent a novel species of the genus Brevundimonas, for which the name Brevundimonas denitrificans sp. nov. is proposed; the type strain is TAR-002(T) ( =NBRC 110107(T) =CECT 8537(T)).

  12. Deinococcus swuensis sp. nov., a gamma-radiation-resistant bacterium isolated from soil.

    PubMed

    Lee, Jae-Jin; Lee, Hyun Ji; Jang, Gi Seon; Yu, Ja Myoung; Cha, Ji Yoon; Kim, Su Jeong; Lee, Eun Bit; Kim, Myung Kyum

    2013-06-01

    Strain DY59(T), a Gram-positive non-motile bacterium, was isolated from soil in South Korea, and was characterized to determine its taxonomic position. Phylogenetic analysis based on the 16S rRNA gene sequence of strain DY59(T) revealed that the strain DY59(T) belonged to the family Deinococcaceae in the class Deinococci. The highest degree of sequence similarities of strain DY59(T) were found with Deinococcus radiopugnans KACC 11999(T) (99.0%), Deinococcus marmoris KACC 12218(T) (97.9%), Deinococcus saxicola KACC 12240(T) (97.0%), Deinococcus aerolatus KACC 12745(T) (96.2%), and Deinococcus frigens KACC 12220(T) (96.1%). Chemotaxonomic data revealed that the predominant fatty acids were iso-C15:0 (19.0%), C16:1 ω7c (17.7%), C15:1 ω6c (12.6%), iso-C17:0 (10.3%), and iso-C17:1 ω9c (10.3%). A complex polar lipid profile consisted of a major unknown phosphoglycolipid. The predominant respiratory quinone is MK-8. The cell wall peptidoglycan contained D-alanine, L-glutamic acid, glycine, and L-ornithine (di-amino acid). The novel strain showed resistance to gamma radiation, with a D10 value (i.e. the dose required to reduce the bacterial population by 10-fold) in excess of 5 kGy. Based on the phylogenetic, chemotaxonomic, and phenotypic data, strain DY59(T) (=KCTC 33033(T) =JCM 18581(T)) should be classified as a type strain of a novel species, for which the name Deinococcus swuensis sp. nov. is proposed.

  13. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    PubMed

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)).

  14. Halopeptonella vilamensis gen. nov, sp. nov., a halophilic strictly aerobic bacterium of the family Ectothiorhodospiraceae.

    PubMed

    Menes, Rodolfo Javier; Viera, Claudia Elizabeth; Farías, María Eugenia; Seufferheld, Manfredo J

    2016-01-01

    A Gram-negative, halophilic, heterotrophic, rod-shaped, non-spore-forming bacterium (SV525T) was isolated from the sediment of a hypersaline lake located at 4600 m above sea level (Laguna Vilama, Argentina). Strain SV525T was strictly aerobic and formed pink-to-magenta colonies. Growth occurred at 10–35 °C (optimum 25–30 °C), at pH levels 6.0–8.5 (optimum 7.0) and at NaCl concentrations of 7.5–25 % (w/v) with an optimum at 10–15 % (w/v). The strain required sodium and magnesium but not potassium ions for growth. Grows with tryptone, or Bacto Peptone as sole carbon and energy source and requires yeast extract for growth. It produced catalase and oxidase. The predominant ubiquinone was Q-8 and the major fatty acids comprised C18:1 ω7c, C16:0 and C18:0. The DNA G+C content was 60.4 mol% and its polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and a phosphoglycolipid. Phylogenetic analysis based on 16S rRNA gene indicated that strain SV525T belongs to the family Ectothiorhodospiraceae within the class Gammaproteobacteria. On the basis of phylogenetic and phenotypic data, SV525T represents a novel genus and species, for which the name Halopeptonella vilamensis gen. nov., sp. nov. is proposed. The type strain is SV525T (=DSM 21056T =JCM 16388T =NCIMB 14596T). PMID:26475627

  15. Hydrogenispora ethanolica gen. nov., sp. nov., an anaerobic carbohydrate-fermenting bacterium from anaerobic sludge.

    PubMed

    Liu, Yi; Qiao, Jiang-Tao; Yuan, Xian-Zheng; Guo, Rong-Bo; Qiu, Yan-Ling

    2014-05-01

    An anaerobic, spore-forming, ethanol-hydrogen-coproducing bacterium, designated LX-BT, was isolated from an anaerobic sludge treating herbicide wastewater. Cells of strain LX-BT were non-motile rods (0.3-0.5×3.0-18.0 µm). Spores were terminal with a bulged sporangium. Growth occurred at 20-50 °C (optimum 37-45 °C), pH 5.0-8.0 (optimum pH 6.0-7.7) and 0-2.5% (w/v) NaCl. The strain could grow fermentatively on glucose, maltose, arabinose, fructose, xylose, ribose, galactose, mannose, raffinose, sucrose, pectin, starch, glycerol, fumarate, tryptone and yeast extract. The major end-products of glucose fermentation were acetate, ethanol and hydrogen. Yeast extract was not required but stimulated growth. Nitrate, sulfate, thiosulfate, elemental sulfur, sulfite, anthraquinone-2,6-disulfonate, fumarate and Fe (III) nitrilotriacetate were not used as terminal electron acceptors. The G+C content of the genomic DNA was 56.1 mol%. The major cellular fatty acids were anteiso-C15:0, iso-C14:0 and C16:0. The most abundant polar lipids of strain LX-BT were diphosphatidylglycerol and phosphatidylglycerol. 16S rRNA gene sequence analysis revealed that it belongs to an as-yet-unidentified taxon at the order- or class-level (OPB54) within the phylum Firmicutes, showing 86.5% sequence similarity to previously described species of the Desulfotomaculum cluster. The name Hydrogenispora ethanolica gen. nov., sp. nov. is proposed to accommodate strain LX-BT (=DSM 25471T=JCM 18117T=CGMCC 1.5175T) as the type strain.

  16. Halomonas xinjiangensis sp. nov., a halotolerant bacterium isolated from a salt lake.

    PubMed

    Guan, Tong-Wei; Xiao, Jing; Zhao, Ke; Luo, Xiao-Xia; Zhang, Xiao-Ping; Zhang, Li-Li

    2010-02-01

    A novel bacterium, TRM 0175(T), belonging to the genus Halomonas, was isolated from a soil sample taken from a salt lake in Xinjiang Province, north-west China. The isolate was Gram-negative, aerobic, rod-shaped and motile by means of peritrichous flagella. It was catalase-positive and oxidase-negative. Growth occurred at NaCl concentrations of 0-20 % (optimum at 10-13 %), at 15-50 degrees C (optimum at 37 degrees C) and at pH 6.0-9.0 (optimum at pH 7.0). Metabolism was respiratory with oxygen as terminal electron acceptor. Acid was produced from D-ribose, D- and L-arabinose, D-xylose, D-galactose, D-mannose, L-rhamnose, cellobiose, maltose, trehalose and D- and L-fucose and was produced weakly from aesculin. The predominant ubiquinone was Q-9. The major fatty acids were C(18 : 1)omega7c and C(19 : 0) cyclo omega8c. The G+C content of the genomic DNA was 60.0 mol%. The affiliation of strain TRM 0175(T) with the genus Halomonas was confirmed by 16S rRNA gene sequence comparisons. The most closely related species was Halomonas anticariensis; 16S rRNA gene sequence similarity between H. anticariensis FP35(T) and strain TRM 0175(T) was 95.3 %. Phenotypically, some characteristics of TRM 0175(T) differed from those of H. anticariensis. On the basis of data from this polyphasic study, strain TRM 0175(T) represents a novel species of the genus Halomonas, for which the name Halomonas xinjiangensis sp. nov. is proposed; the type strain is TRM 0175(T) (=CCTCC AB 208329(T) =KCTC 22608(T)).

  17. Thermoactinomyces khenchelensis sp. nov., a filamentous bacterium isolated from soil sediment of a terrestrial hot spring.

    PubMed

    Mokrane, Salim; Bouras, Noureddine; Meklat, Atika; Lahoum, Abdelhadi; Zitouni, Abdelghani; Verheecke, Carol; Mathieu, Florence; Schumann, Peter; Spröer, Cathrin; Sabaou, Nasserdine; Klenk, Hans-Peter

    2016-02-01

    A novel thermophilic filamentous bacterium, designated strain T36(T), was isolated from soil sediment sample from a hot spring source collected in Khenchela province, Algeria. Strain T36(T) was identified as a member of the genus Thermoactinomyces by a polyphasic approach. Strain T36(T) was observed to form white aerial mycelium and non-coloured to pale yellow substrate mycelium, both producing endospores, sessile or borne by short sporophores. The optimum growth temperature and pH were found to be 37-55 °C and 7.0-9.0, respectively and the optimum NaCl concentration for growth was found to be 0-7 % (w/v). The diagnostic diamino acid in the cell wall peptidoglycan was identified as meso-diaminopimelic acid. The predominant menaquinone of strain T36(T) was identified as MK-7 (H0). The major fatty acids were found to be iso-C15:0 and iso-C17:0. The phospholipids detected were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphoglycolipid. The chemotaxonomic properties of strain T36(T) are consistent with those shared by members of the genus Thermoactinomyces. 16S rRNA gene sequence analysis indicated that the sequence similarities between strain T36(T) and Thermoactinomyces species with validly published names were less than 98 %. Based on the combined genotypic and phenotypic evidence, it is proposed that strain T36(T) should be classified as representative of a novel species, for which the name Thermoactinomyces khenchelensis sp. nov. is proposed. The type strain is T36(T) (=DSM 45951(T) = CECT 8579(T)). PMID:26678783

  18. Metabolism of 2-Methylpropene (Isobutylene) by the Aerobic Bacterium Mycobacterium sp. Strain ELW1

    PubMed Central

    Kottegoda, Samanthi; Waligora, Elizabeth

    2015-01-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h−1) with a yield of 0.38 mg (dry weight) mg 2-methylpropene−1. Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates. PMID:25576605

  19. Altererythrobacter gangjinensis sp. nov., a marine bacterium isolated from a tidal flat.

    PubMed

    Jeong, Sang Hyeon; Jin, Hyun Mi; Lee, Hyo Jung; Jeon, Che Ok

    2013-03-01

    A Gram-stain-negative, ochre-pigmented, strictly aerobic bacterium, designated strain KJ7(T), was isolated from a tidal flat of the Gangjin bay in South Korea. Cells were halotolerant, non-motile, catalase- and oxidase-positive rods. Growth of strain KJ7(T) was observed at 5-35 °C (optimum, 25 °C), at pH 6.0-9.5 (optimum, pH 6.5-7.0) and in the presence of 0-9 % (w/v) NaCl (optimum, 2 %). The major cellular fatty acids were C18 : 1ω7c, C17 : 1ω6c, summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The polar lipid pattern indicated the presence of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, a sphingoglycolipid, an unidentified phospholipid and two unidentified lipids. The G+C content of the genomic DNA was 60.2±0.9 mol% and the predominant respiratory quinone was Q-10. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain KJ7(T) formed a phyletic lineage distinct from other members of the genus Altererythrobacter and was most closely related to Altererythrobacter luteolus SW-109(T) and Altererythrobacter namhicola KYW48(T) (95.6 and 95.0 % 16S rRNA gene sequence similarity, respectively). On the basis of phenotypic, chemotaxonomic and molecular features, strain KJ7(T) represents a novel species of the genus Altererythrobacter, for which the name Altererythrobacter gangjinensis sp. nov. is proposed. The type strain is KJ7(T) ( = KACC 16190(T) = JCM 17802(T)). PMID:22685101

  20. Nocardioides caricicola sp. nov., an endophytic bacterium isolated from a halophyte, Carex scabrifolia Steud.

    PubMed

    Song, Geun Cheol; Yasir, Muhammad; Bibi, Fehmida; Chung, Eu Jin; Jeon, Che Ok; Chung, Young Ryun

    2011-01-01

    A Gram-staining-positive, coccoid to rod-shaped bacterium, designated strain YC6903(T), was isolated from a halophytic plant (Carex scabrifolia Steud.) collected from sand dunes at Namhae Island, Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain YC6903(T) grew optimally at 30 °C and at pH 8.0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YC6903(T) belongs to the genus Nocardioides in the family Nocardioidaceae. Strain YC6903(T) was related most closely to Nocardioides pyridinolyticus OS4(T) (97.0 % 16S rRNA gene sequence similarity), Nocardioides dokdonensis FR1436(T) (96.6 %), Nocardioides aquiterrae GW-9(T) (96.6 %) and Nocardioides hankookensis DS-30(T) (96.6 %). The cell-wall peptidoglycan contained LL-diaminopimelic acid and MK-8(H(4)) was the major respiratory quinone. The mean (±SD) level of DNA-DNA relatedness between strain YC6903(T) and N. pyridinolyticus OS4(T) was 53.5±5.5 %. The predominant cellular fatty acid of strain YC6903(T) was iso-C(16 : 0) (28.9 %). The DNA G+C content was 71.7 mol%. Phenotypic, phylogenetic and chemotaxonomic data indicated that strain YC6903(T) represents a novel species of the genus Nocardioides, for which the name Nocardioides caricicola sp. nov. is proposed. The type strain is YC6903(T) (=KACC 13778(T) =DSM 22177(T)).

  1. Virgibacillus subterraneus sp. nov., a moderately halophilic Gram-positive bacterium isolated from subsurface saline soil.

    PubMed

    Wang, Xiaowei; Xue, Yanfen; Ma, Yanhe

    2010-12-01

    A Gram reaction-positive, moderately halophilic bacterium, designated H57B72(T), was isolated from subsurface saline soil of Qaidam basin in the Qinghai province, China. Cells were rod-shaped, strictly aerobic, spore-forming and motile. The isolate grew optimally at 9 % (w/v) NaCl, pH7.5 and 30°C. The cell-wall peptidoglycan of strain H57B72(T) contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant isoprenoid quinone was MK-7. The major cellular fatty acids were anteiso-C(15 : 0) (59.97 %) and anteiso-C(17 : 0) (17.14 %). Phosphatidylglycerol, diphosphatidylglycerol and a glycolipid were found to be the predominant polar lipids. The genomic DNA G+C content of strain H57B72(T) was 37.1mol%. 16S rRNA gene sequence analysis showed that strain H57B72(T) was a member of the genus Virgibacillus and was most closely related to Virgibacillus salinus DSM 21756(T) (98.3 % gene sequence similarity). The level of DNA-DNA relatedness between strain H57B72(T) and V. salinus DSM 21756(T) was 8.5 %. Based on the phenotypic, genotypic and phylogenetic data presented, strain H57B72(T) represents a novel species, for which the name Virgibacillus subterraneus sp. nov. is proposed. The type strain is H57B72(T) (=DSM 22441(T) =CGMCC 1.7734(T)). PMID:20061492

  2. Virgibacillus sediminis sp. nov., a moderately halophilic bacterium isolated from a salt lake in China.

    PubMed

    Chen, Yi-Guang; Cui, Xiao-Long; Wang, Yong-Xia; Zhang, Yu-Qin; Tang, Shu-Kun; Li, Wen-Jun; Liu, Zhu-Xiang; Wen, Meng-Liang; Peng, Qian

    2009-08-01

    A Gram-positive, moderately halophilic, alkalitolerant, strictly aerobic, oxidase- and catalase-positive, rod-shaped bacterium, strain YIM kkny3T, was isolated from a sediment sample collected from a salt lake in the Qaidam Basin of north-west China. Cells were motile by means of peritrichous flagella and formed ellipsoidal endospores lying in subterminal swollen sporangia. Growth occurred with 1-20% (w/v) total salts (optimum, 5-10%) and at pH 6.0-10.5 (optimum, pH 7.5-8.0) and 10-55 degrees C (optimum, 35-40 degrees C). It was unable to grow with NaCl as the only salt. meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The strain contained menaquinone 7 (MK-7) as the predominant respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid as polar lipids. The major cellular fatty acids were anteiso-C15:0 and anteiso-C17:0. The DNA G+C content was 40.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YIM kkny3T belonged to the genus Virgibacillus, and was most closely related to the type strains of Virgibacillus olivae (97.1% similarity), Virgibacillus marismortui (97.0%) and Virgibacillus kekensis (96.8%). Levels of DNA-DNA relatedness between strain YIM kkny3T and the type strains of V. olivae, V. marismortui and V. kekensis were 12.4, 10.6 and 15.7%, respectively. The combination of phylogenetic analysis, genotypic data, phenotypic characteristics and chemotaxonomic differences indicated that strain YIM kkny3T represents a novel species of the genus Virgibacillus, for which the name Virgibacillus sediminis sp. nov. is proposed. The type strain is YIM kkny3T (=CCTCC AA 207023T=DSM 19797T=KCTC 13193T). PMID:19605714

  3. Virgibacillus kekensis sp. nov., a moderately halophilic bacterium isolated from a salt lake in China.

    PubMed

    Chen, Yi-Guang; Cui, Xiao-Long; Fritze, Dagmar; Chai, Li-Hong; Schumann, Peter; Wen, Meng-Liang; Wang, Yong-Xia; Xu, Li-Hua; Jiang, Cheng-Lin

    2008-03-01

    A Gram-positive, moderately halophilic, motile, strictly aerobic, endospore-forming, oxidase- and catalase-positive, rod-shaped bacterium, strain YIM kkny16(T), was isolated from a saline mud sample collected from the Keke salt lake in the Qaidam Basin, north-west China. This isolate grew in the presence of 0-25 % (w/v) NaCl and at pH 6.0-10.0 and 10-50 degrees C; optimum growth was observed with 10 % (w/v) NaCl and at pH 7.0 and 37 degrees C. Strain YIM kkny16(T) had meso-diaminopimelic acid as the diagnostic diamino acid, MK-7 as the predominant respiratory quinone, with a significant amount of MK-6, and anteiso-C(15 : 0), iso-C(14 : 0) and C(16 : 1)omega7c alcohol as major fatty acids. Major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The DNA G+C content was 41.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain YIM kkny16(T) was a member of the genus Virgibacillus, exhibiting sequence similarities of 94.9-97.3 % to the type strains of recognized Virgibacillus species. Strain YIM kkny16(T) could be differentiated from recognized Virgibacillus species based on phenotypic characteristics, chemotaxonomic differences, phylogenetic analysis and DNA-DNA hybridization data. On the basis of evidence from this polyphasic study, strain YIM kkny16(T) is considered to represent a novel species of the genus Virgibacillus, for which the name Virgibacillus kekensis sp. nov. is proposed. The type strain is YIM kkny16(T) (=DSM 17056(T)=CGMCC 1.6298(T)). PMID:18319472

  4. Virgibacillus litoralis sp. nov., a moderately halophilic bacterium isolated from saline soil.

    PubMed

    Chen, Yi-Guang; Liu, Zhu-Xiang; Peng, De-Jiao; Zhang, Yu-Qin; Wang, Yong-Xia; Tang, Shu-Kun; Li, Wen-Jun; Cui, Xiao-Long; Liu, Yan-Qi

    2009-10-01

    A Gram-positive, moderately halophilic, endospore-forming, catalase- and oxidase-positive, motile, rod-shaped, aerobic bacterium, designated strain JSM 089168(T), was isolated from saline soil collected from Naozhou Island, Leizhou Bay, South China Sea. The organism was able to grow with 2-25% (w/v) total salts (optimum, 5-10%), at pH 6.0-10.0 (optimum, pH 8.0) and 10-45 degrees C (optimum, 30 degrees C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The strain contained MK-7 as the predominant menaquinone, and diphosphatidylglycerol and phosphatidylglycerol as the major polar lipids. The major cellular fatty acids were anteiso-C(15:0), iso-C(15:0) and anteiso-C(17:0), and the DNA G + C content was 40.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 089168(T) should be assigned to the genus Virgibacillus, being related most closely to the type strains of Virgibacillus carmonensis (sequence similarity 97.6%), Virgibacillus necropolis (97.3%) and Virgibacillus halodenitrificans (97.1%). Levels of DNA-DNA relatedness between strain JSM 089168(T) and the type strains of V. carmonensis, V. necropolis and V. halodenitrificans were 20.4, 14.3 and 12.0%, respectively. The combination of phylogenetic analysis, DNA-DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 089168(T) represents a novel species of the genus Virgibacillus, for which the name Virgibacillus litoralis sp. nov. is proposed. The type strain is JSM 089168(T) (=DSM 21085(T) =KCTC 13228(T)). PMID:19459062

  5. Paucisalibacillus globulus gen. nov., sp. nov., a Gram-positive bacterium isolated from potting soil.

    PubMed

    Nunes, Inês; Tiago, Igor; Pires, Ana Luísa; da Costa, Milton S; Veríssimo, António

    2006-08-01

    A Gram-positive bacterium, designated B22(T), was isolated from potting soil produced in Portugal. This organism is a catalase-positive, oxidase-negative, motile, spore-forming, aerobic rod that grows optimally at 37 degrees C and pH 8.0-8.5. Optimal growth occurs in media containing 1 % (w/v) NaCl, although the organism can grow in 0-8 % NaCl. The cell wall peptidoglycan is of the A4alpha type with a cross-linkage containing d-Asp. The major respiratory quinone is menaquinone 7 and the major fatty acids are anteiso-15 : 0, anteiso-17 : 0 and iso-15 : 0. The DNA G+C content is 37.9 mol%. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain B22(T) formed a new branch within the family Bacillaceae. The novel isolate is phylogenetically closely related to members of genera of moderately halophilic bacilli and formed a coherent cluster with species of the genera Salinibacillus, Virgibacillus, Oceanobacillus and Lentibacillus, supported by bootstrap analysis at a confidence level of 71 %. Strain B22(T) exhibited 16S rRNA gene pairwise sequence similarity values of 94.7-94.3 % with members of the genus Salinibacillus, 95.1-92.8 % with members of the genus Virgibacillus, 94.7-93.2 % with members of the genus Oceanobacillus and 93.1-92.3 % with members of the genus Lentibacillus. On the basis of phylogenetic analysis and physiological and biochemical characteristics, it is proposed that strain B22(T) represents a novel species in a new genus, Paucisalibacillus globulus gen. nov., sp. nov. Strain B22(T) (=LMG 23148(T)=CIP 108857(T)) is the type strain of Paucisalibacillus globulus. PMID:16902018

  6. Virgibacillus zhanjiangensis sp. nov., a marine bacterium isolated from sea water.

    PubMed

    Peng, Qing-Zhong; Chen, Jun; Zhang, Yu-Qin; Chen, Qi-Hui; Peng, De-Jiao; Cui, Xiao-Long; Li, Wen-Jun; Chen, Yi-Guang

    2009-11-01

    A Gram-positive, endospore-forming, catalase- and oxidase-positive, motile, rod-shaped, aerobic bacterium, designated strain JSM 079157(T), was isolated from surface seawater off the coastline of Naozhou Island in South China Sea. The organism was able to grow with 1-15% (w/v) total salts (optimum, 4-7%), and at pH 6.0-10.0 (optimum, pH 7.5) and 10-45 degrees C (optimum, 30 degrees C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant menaquinone was MK-7, and the polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The major cellular fatty acids were anteiso-C(15:0) (45.1%) and anteiso-C(17:0) (16.2%), and the DNA G + C content was 39.5 mol%. A phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 079157(T) should be assigned to the genus Virgibacillus, being related most closely to the type strains of Virgibacillus litoralis (97.4% sequence similarity), Virgibacillus necropolis (97.3%) and Virgibacillus carmonensis (97.1%). These four strains formed a distinct subcluster in the phylogenetic tree. The levels of DNA-DNA relatedness between the new isolate and the type strains of V. litoralis, V. necropolis and V. carmonensis were 30.4, 19.3 and 12.6%, respectively. The results of the phylogenetic analysis, combined with DNA-DNA relatedness data, phenotypic characteristics and chemotaxonomic information, support the suggestion that strain JSM 079157(T) represents a new species of the genus Virgibacillus, for which the name Virgibacillus zhanjiangensis sp. nov. is proposed. The type strain is JSM 079157(T) (=DSM 21084(T) = KCTC 13227(T)). PMID:19774482

  7. Virgibacillus salinus sp. nov., a moderately halophilic bacterium from sediment of a saline lake.

    PubMed

    Carrasco, I J; Márquez, M C; Ventosa, A

    2009-12-01

    A novel, moderately halophilic, Gram-positive bacterium, designated strain XH-22(T), was isolated from sediment of a saline lake located near Xilinhot, Inner Mongolia Autonomous Region, China. Cells were rod-shaped, endospore-forming and motile. The isolate was able to grow in the presence of 3-20 % (w/v) total salts (optimum, 10 %, w/v), and at 15-40 degrees C (optimum, 37 degrees C) and pH 6.0-10.0 (optimum, pH 7.5). Strain XH-22(T) had diaminopimelic acid in the cell-wall peptidoglycan, MK-7 as the predominant menaquinone, and anteiso-C(15 : 0), C(16 : 0) and iso-C(14 : 0) as major fatty acids. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, a glycolipid and two unidentified phospholipids. The DNA G+C content of strain XH-22(T) was 38.8 mol%. 16S rRNA gene sequence analysis revealed that the novel strain was affiliated with the genus Virgibacillus. Levels of 16S rRNA gene sequence similarity between strain XH-22(T) and the type strains of recognized Virgibacillus species ranged from 97.6 % (with Virgibacillus carmonensis) to 94.9 % (with Virgibacillus koreensis). Levels of DNA-DNA relatedness between strain XH-22(T) and V. carmonensis DSM 14868(T) and Virgibacillus necropolis DSM 14866(T) were 32 and 28 %, respectively. Strain XH-22(T) could be differentiated from recognized Virgibacillus species based on phenotypic characteristics, chemotaxonomic differences, phylogenetic analysis and genotypic features. On the basis of these results, strain XH-22(T) is considered to represent a novel species of the genus Virgibacillus, for which the name Virgibacillus salinus sp. nov. is proposed. The type strain is XH-22(T) (=CCM 7562(T)=CECT 7439(T)=DSM 21756(T)). PMID:19643886

  8. Methylopila musalis sp. nov., an aerobic, facultatively methylotrophic bacterium isolated from banana fruit.

    PubMed

    Doronina, Nina V; Kaparullina, Elena N; Bykova, Tatjana V; Trotsenko, Yuri A

    2013-05-01

    A newly isolated, facultatively methylotrophic bacterium (strain MUSA(T)) was investigated. The isolate was strictly aerobic, Gram-stain-negative, asporogenous, motile, rod-shaped and multiplied by binary fission. The strain utilized methanol, methylamine and an apparently narrow range of multi-carbon compounds, but not methane, dichloromethane or CO2/H2, as the carbon and energy sources. Growth occurred at pH 5.5-9.5 (optimum, pH 7.0) and 16-40 °C (optimum, 28-30 °C). The major fatty acids of methanol-grown cells were C18 : 1ω7c, C18 : 0 and 11-methyl-C18 : 1ω7c . The predominant phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol and phosphatidylmonomethylethanolamine. The major ubiquinone was Q-10. The strain had methanol and methylamine dehydrogenases as well as the enzymes of the N-methylglutamate pathway (lyases of γ-glutamylmethylamide and N-methylglutamate). C1 assimilation occurs via the isocitrate lyase-negative serine pathway. Ammonium was assimilated by glutamate dehydrogenase and the glutamate cycle (glutamate synthase/glutamine synthetase). The DNA G+C content of the strain was 64.5 mol% (determined from the melting temperature). Based on 16S rRNA gene sequence similarity (97.0-98.9 %) and DNA-DNA relatedness (36-38 %) with representatives of the genus Methylopila (Methylopila capsulata IM1(T) and Methylopila jiangsuensis JZL-4(T)) the isolate was classified as a novel species of the genus Methylopila, for which the name Methylopila musalis sp. nov. is proposed. The type strain is MUSA(T) ( = VKM B-2646(T) = DSM 24986(T) = CCUG 61696(T)). PMID:22984139

  9. Shewanella algicola sp. nov., a marine bacterium isolated from brown algae.

    PubMed

    Kim, Ji-Young; Yoo, Han-Su; Lee, Dong-Heon; Park, So-Hyun; Kim, Young-Ju; Oh, Duck-Chul

    2016-06-01

    A Gram-stain-negative, aerobic, rod-shaped bacterium motile by means of a single polar flagella, strain ST-6T, was isolated from a brown alga (Sargassum thunbergii) collected in Jeju, Republic of Korea. Strain ST-6T was psychrotolerant, growing at 4-30 °C (optimum 20 °C). Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that strain ST-6T belonged to a distinct lineage in the genus Shewanella. Strain ST-6T was related most closely to Shewanella basaltis J83T, S. gaetbuli TF-27T, S. arctica IT12T, S. vesiculosa M7T and S. aestuarii SC18T, showing 96-97 % and 85-70 % 16S rRNA and gyrB gene sequences similarities, respectively. DNA-DNA relatedness values between strain ST-6T and the type strains of two species of the genus Shewanella were <22.6 %. The major cellular fatty acids (>5 %) were summed feature 3 (comprising C16:1ω7c and/ or iso-C15:0 2-OH), C16:0, iso-C13:0 and C17:1ω8c. The DNA G+C content of strain ST-6Twas 42.4 mol%, and the predominant isoprenoid quinones were menaquinone MK-7 and ubiquinones Q-7 and Q-8. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain ST-6T is considered to represent a novel species of the genus Shewanella, for which the name Shewanella algicola sp. nov. is proposed. The type strain is ST-6T (= KCTC 23253T = JCM 31091T). PMID:26962005

  10. Tindallia texcoconensis sp. nov., a new haloalkaliphilic bacterium isolated from lake Texcoco, Mexico.

    PubMed

    Alazard, Didier; Badillo, Claudia; Fardeau, Marie-Laure; Cayol, Jean-Luc; Thomas, Pierre; Roldan, Teresa; Tholozan, Jean-Luc; Ollivier, Bernard

    2007-01-01

    A new alkaliphilic and moderately halophilic, strictly anaerobic, fermentative bacterium (strain IMP-300(T)) was isolated from a groundwater sample in the zone of the former soda lake Texcoco in Mexico. Strain IMP-300(T) was Gram-positive, non-sporulated, motile and rod-shaped. It grew within a pH range from 7.5 to 10.5, and an optimum at 9.5. The organism was obligately dependent on the presence of sodium salts. Growth showed an optimum at 35 degrees C with absence of growth above 45 degrees C. It fermented peptone and a few amino acids, preferentially arginine and ornithine, with production of acetate, propionate, and ammonium. Its fatty acid pattern was mainly composed of straight chain saturated, unsaturated, and cyclopropane fatty acids. The G + C content of genomic DNA was 40.0 mol%. Analysis of the 16S rRNA gene sequence indicated that the new isolate belongs to the genus Tindallia, in the low G + C Gram-positive phylum. Phylogenetically, strain IMP-300(T) has Tindallia californiensis, as closest relative with a 97.5% similarity level between their 16S rDNA gene sequences, but the DNA-DNA re-association value between the two DNAs was only 42.2%. On the basis of differences in genotypic, phenotypic, and phylogenetic characteristics, strain IMP-300(T) is proposed as a new species of the genus Tindallia, T. texcoconensis sp. nov. (type strain IMP-300(T ) = DSM 18041(T) = JCM 13990(T)).

  11. Halobacillus naozhouensis sp. nov., a moderately halophilic bacterium isolated from a sea anemone.

    PubMed

    Chen, Yi-Guang; Liu, Zhi-Xiong; Zhang, Yu-Qin; Zhang, You-Xiang; Tang, Shu-Kun; Borrathybay, Entomack; Li, Wen-Jun; Cui, Xiao-Long

    2009-06-01

    A moderately halophilic, Gram-positive, catalase- and oxidase-positive, rod-shaped, aerobic bacterium, designated strain JSM 071068(T), was isolated from a sea anemone (Anthopleura xanthogrammica) collected from the Naozhou Island on the Leizhou Bay in the South China Sea. Cells were motile by means of peritrichous flagella and formed ellipsoidal endospores lying in subterminal swollen sporangia. Strain JSM 071068(T) was able to grow with 1-20% (w/v) total salts (optimum, 6-9%), at pH values of 6.0-10.0 (optimum, pH 7.5) and a temperature range of 10-35 degrees C (optimum, 25 degrees C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant menaquinone was MK-7 and the major cellular fatty acids were anteiso-C(15:0), anteiso-C(17:0) and iso-C(15:0). The genomic DNA G + C content was 42.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 071068(T) belonged to the genus Halobacillus. The 16S rRNA gene sequence similarities between strain JSM 071068(T) and the type strains of the recognized Halobacillus species ranged from 97.9% (with Halobacillus alkaliphilus) to 95.3% (with Halobacillus kuroshimensis). The levels of DNA-DNA relatedness between the new isolate and the type strains of H. alkaliphilus, Halobacillus campisalis, Halobacillus halophilus and Halobacillus seohaensis were 25.6, 22.1, 10.8 and 13.2%, respectively. The combination of phylogenetic analysis, DNA-DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 071068(T) represents a new species of the genus Halobacillus, for which the name Halobacillus naozhouensis sp. nov. is proposed, with JSM 071068(T) (=DSM 21183(T) =KCTC 13234(T)) as the type strain.

  12. Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone.

    PubMed

    Chen, Yi-Guang; Xiao, Huai-Dong; Tang, Shu-Kun; Zhang, Yu-Qin; Borrathybay, Entomack; Cui, Xiao-Long; Li, Wen-Jun; Liu, Yan-Qi

    2009-10-01

    A pale yellow-colored, moderately halophilic, Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped, motile, aerobic bacterium, designated strain JSM 073008(T), was isolated from a sea anemone (Anthopleura xanthogrammica) collected from Naozhou Island, Leizhou Bay, South China Sea. The organism was able to grow with 1-20% (w/v) total salts (optimum, 5-10%), at pH 6.0-10.0 (optimum, pH 7.5) and 10-40 degrees C (optimum, 25-30 degrees C). The major cellular fatty acids were C(16:0), C(16:1) omega7c/iso-C(15:0) 2-OH and C(18:1) omega7c. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid. The predominant respiratory quinone was Q-8 and the genomic DNA G + C content was 47.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 073008(T) should be assigned to the genus Alteromonas, being most closely related to Alteromonas hispanica F-32(T) (sequence similarity 96.9%), followed by Alteromonas genovensis LMG 24078(T) (96.6%) and Alteromonas litorea TF-22(T) (96.4%). The sequence similarities between the novel isolate and the type strains of other recognized Alteromonas species ranged from 95.9% (with Alteromonas stellipolaris ANT 69a(T)) to 94.5% (with Alteromonas simiduii BCRC 17572(T)). The combination of phylogenetic analysis, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 073008(T) represents a new species of the genus Alteromonas, for which the name Alteromonas halophila sp. nov. is proposed. The type strain is JSM 073008(T) (=CCTCC AA 207035(T) = KCTC 22164(T)).

  13. Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water.

    PubMed

    Chen, Yi-Guang; Tang, Shu-Kun; Zhang, Yu-Qin; Li, Zhao-Yang; Yi, Lang-Bo; Wang, Yong-Xia; Li, Wen-Jun; Cui, Xiao-Long

    2009-06-01

    A novel Gram-positive, halotolerant, non-sporulating, non-motile, catalase-positive, oxidase-negative and aerobic bacterium, designated strain JSM 078085(T), was isolated from sea water collected from the South China Sea. Strain JSM 078085(T) exhibited a rod-coccus growth cycle and produced a yellow pigment. The strain was able to grow in the presence of 0-12% (w/v) NaCl and at pH 6.0-9.5 and 4-35 degrees C; optimum growth was observed at pH 7.0 and 25-30 degrees C in the absence of NaCl. The peptidoglycan type was A4alpha (L: -Lys-L: -Ala-L: -Glu). Cell-wall sugars contained galactose and glucose. Strain JSM 078085(T) contained menaquinone MK-9(H(2)) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the major polar lipids. The major cellular fatty acids were anteiso-C(15:0), iso-C(15:0) and anteiso-C(17:0) and the DNA G + C content was 63.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 078085(T) should be assigned to the genus Arthrobacter, being most closely related to the type strain of Arthrobacter rhombi (sequence similarity 97.1%), and the two strains formed a distinct lineage in the phylogenetic tree. The level of DNA-DNA relatedness between strain JSM 078085(T) and the type strain of Arthrobacter rhombi was 10.6%. The combination of phylogenetic analysis, DNA-DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 078085(T) represents a novel species of the genus Arthrobacter, for which the name Arthrobacter halodurans sp. nov. is proposed. The type strain is JSM 078085(T) (=DSM 21081(T)=KCTC 19430(T)).

  14. Defluviimonas indica sp. nov., a marine bacterium isolated from a deep-sea hydrothermal vent environment.

    PubMed

    Jiang, Lijing; Xu, Hongxiu; Shao, Zongze; Long, Minnan

    2014-06-01

    A Gram-stain-negative, strictly aerobic, chemoheterotrophic marine bacterium, designated 20V17(T), was isolated from a deep-sea hydrothermal vent chimney collected from the South-west Indian Ridge. Cells of strain 20V17(T) were motile, short rods, 1.2-1.8 µm in length and 0.5-0.7 µm in width. Growth was observed at between 20 and 37 °C (optimum 25 °C-28 °C), pH 5.0 and 8.0 (optimum pH 7.0) and 0.5 and 8% (w/v) NaCl (optimum 1.5-2.0% NaCl). The major fatty acids were C(18 : 1)ω7c (74.4%), C(19 : 0) cyclo ω8c (11%), C(18 : 0) (5.1%) and C(18 : 0) 3-OH (2.8%), and the polar lipid profile comprised diphosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid and four unidentified phospholipids. Ubiquinone 10 was the major quinone. The G+C content of genomic DNA was 66.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain 20V17(T) belonged to the genus Defluviimonas and shared 96.5 and 96.1% sequence similarity with Defluviimonas denitrificans D9-3(T) and Defluviimonas aestuarii BS14(T), respectively. On the basis of the taxonomic data obtained in this study, strain 20V17(T) represents a novel species of the genus Defluviimonas, for which the name Defluviimonas indica sp. nov. is proposed. The type strain is 20V17(T) (CGMCC 1.10859(T) = JCM 17871(T) = MCCC 1A01802(T)).

  15. Virgibacillus zhanjiangensis sp. nov., a marine bacterium isolated from sea water.

    PubMed

    Peng, Qing-Zhong; Chen, Jun; Zhang, Yu-Qin; Chen, Qi-Hui; Peng, De-Jiao; Cui, Xiao-Long; Li, Wen-Jun; Chen, Yi-Guang

    2009-11-01

    A Gram-positive, endospore-forming, catalase- and oxidase-positive, motile, rod-shaped, aerobic bacterium, designated strain JSM 079157(T), was isolated from surface seawater off the coastline of Naozhou Island in South China Sea. The organism was able to grow with 1-15% (w/v) total salts (optimum, 4-7%), and at pH 6.0-10.0 (optimum, pH 7.5) and 10-45 degrees C (optimum, 30 degrees C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant menaquinone was MK-7, and the polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The major cellular fatty acids were anteiso-C(15:0) (45.1%) and anteiso-C(17:0) (16.2%), and the DNA G + C content was 39.5 mol%. A phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 079157(T) should be assigned to the genus Virgibacillus, being related most closely to the type strains of Virgibacillus litoralis (97.4% sequence similarity), Virgibacillus necropolis (97.3%) and Virgibacillus carmonensis (97.1%). These four strains formed a distinct subcluster in the phylogenetic tree. The levels of DNA-DNA relatedness between the new isolate and the type strains of V. litoralis, V. necropolis and V. carmonensis were 30.4, 19.3 and 12.6%, respectively. The results of the phylogenetic analysis, combined with DNA-DNA relatedness data, phenotypic characteristics and chemotaxonomic information, support the suggestion that strain JSM 079157(T) represents a new species of the genus Virgibacillus, for which the name Virgibacillus zhanjiangensis sp. nov. is proposed. The type strain is JSM 079157(T) (=DSM 21084(T) = KCTC 13227(T)).

  16. Virgibacillus litoralis sp. nov., a moderately halophilic bacterium isolated from saline soil.

    PubMed

    Chen, Yi-Guang; Liu, Zhu-Xiang; Peng, De-Jiao; Zhang, Yu-Qin; Wang, Yong-Xia; Tang, Shu-Kun; Li, Wen-Jun; Cui, Xiao-Long; Liu, Yan-Qi

    2009-10-01

    A Gram-positive, moderately halophilic, endospore-forming, catalase- and oxidase-positive, motile, rod-shaped, aerobic bacterium, designated strain JSM 089168(T), was isolated from saline soil collected from Naozhou Island, Leizhou Bay, South China Sea. The organism was able to grow with 2-25% (w/v) total salts (optimum, 5-10%), at pH 6.0-10.0 (optimum, pH 8.0) and 10-45 degrees C (optimum, 30 degrees C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The strain contained MK-7 as the predominant menaquinone, and diphosphatidylglycerol and phosphatidylglycerol as the major polar lipids. The major cellular fatty acids were anteiso-C(15:0), iso-C(15:0) and anteiso-C(17:0), and the DNA G + C content was 40.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 089168(T) should be assigned to the genus Virgibacillus, being related most closely to the type strains of Virgibacillus carmonensis (sequence similarity 97.6%), Virgibacillus necropolis (97.3%) and Virgibacillus halodenitrificans (97.1%). Levels of DNA-DNA relatedness between strain JSM 089168(T) and the type strains of V. carmonensis, V. necropolis and V. halodenitrificans were 20.4, 14.3 and 12.0%, respectively. The combination of phylogenetic analysis, DNA-DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 089168(T) represents a novel species of the genus Virgibacillus, for which the name Virgibacillus litoralis sp. nov. is proposed. The type strain is JSM 089168(T) (=DSM 21085(T) =KCTC 13228(T)).

  17. Pontibacillus halophilus sp. nov., a moderately halophilic bacterium isolated from a sea urchin.

    PubMed

    Chen, Yi-Guang; Zhang, Yu-Qin; Xiao, Huai-Dong; Liu, Zhu-Xiang; Yi, Lang-Bo; Shi, Jin-Xiao; Zhi, Xiao-Yang; Cui, Xiao-Long; Li, Wen-Jun

    2009-07-01

    A Gram-positive-staining, moderately halophilic, strictly aerobic, catalase- and oxidase-positive, rod-shaped bacterium, designated strain JSM 076056(T), was isolated from a sea urchin collected from the South China Sea. Cells were motile by means of peritrichous flagella and formed ellipsoidal endospores lying in subterminal swollen sporangia. Strain JSM 076056(T) was able to grow at salinities of 2-25 % (w/v) total salts and at pH 6.0-10.0 and 15-40 degrees C; optimum growth was observed with 5-10 % (w/v) total salts and at pH 7.0-8.0 and 25-30 degrees C. It was incapable of growing with NaCl as the sole salt. meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The major cellular fatty acids were iso-C(15 : 0), iso-C(16 : 0), iso-C(14 : 0,) anteiso-C(15 : 0) and C(16 : 1)omega7c alcohol. The predominant respiratory quinone was MK-7 and the genomic DNA G+C content was 45.5 mol%. A phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 076056(T) belonged to the family Bacillaceae and was related most closely to the type strains of the two recognized species of the genus Pontibacillus, namely Pontibacillus chungwhensis BH030062(T) (96.4 % sequence similarity) and Pontibacillus marinus BH030004(T) (96.2 %); these three strains formed a robust cluster in the phylogenetic tree. In combination, the phylogenetic, phenotypic and chemotaxonomic data indicate that strain JSM 076056(T) represents a novel species of the genus Pontibacillus, for which the name Pontibacillus halophilus sp. nov. is proposed. The type strain is JSM 076056(T) (=CCTCC AA 207029(T) =DSM 19796(T) =KCTC 13190(T)).

  18. Pigmentiphaga litoralis sp. nov., a facultatively anaerobic bacterium isolated from a tidal flat sediment.

    PubMed

    Chen, Yi-Guang; Zhang, Yu-Qin; Huang, Ke; Tang, Shu-Kun; Cao, Yao; Shi, Jin-Xiao; Xiao, Huai-Dong; Cui, Xiao-Long; Li, Wen-Jun

    2009-03-01

    A novel Gram-negative, facultatively anaerobic, non-sporulating, non-motile, catalase- and oxidase-positive, rod-shaped bacterium (strain JSM 061001(T)) was isolated from a tidal flat in the South China Sea, China. Growth occurred with 0-5 % (w/v) NaCl [optimum, 0.5-1 % (w/v) NaCl], at pH 5.0-10.0 (optimum, pH 7.0) and at 4-35 degrees C (optimum, 25-30 degrees C). The major cellular fatty acids were C(16 : 0), cyclo C(17 : 0), C(18 : 1)omega7c and C(16 : 1). Strain JSM 061001(T) contained ubiquinone Q-8 as the predominant respiratory quinone, and phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid as the polar lipids. The genomic DNA G+C content was 65.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 061001(T) belongs to the family Alcaligenaceae and was related most closely to the type strains of the two recognized species of the genus Pigmentiphaga. The three strains formed a robust cluster in the neighbour-joining, maximum-parsimony and maximum-likelihood phylogenetic trees. Levels of DNA-DNA relatedness between strain JSM 061001(T) and the type strains of Pigmentiphaga daeguensis and Pigmentiphaga kullae were 15.8 and 10.5 %, respectively. The combination of phylogenetic analysis, DNA-DNA hybridization data, phenotypic characteristics and chemotaxonomic differences supported the view that strain JSM 061001(T) represents a novel species of the genus Pigmentiphaga, for which the name Pigmentiphaga litoralis sp. nov. is proposed. The type strain is JSM 061001(T) (=CCTCC AA207034(T)=KCTC 22165(T)).

  19. Dethiosulfovibrio salsuginis sp. nov., an anaerobic, slightly halophilic bacterium isolated from a saline spring.

    PubMed

    Díaz-Cárdenas, C; López, G; Patel, B K C; Baena, S

    2010-04-01

    A mesophilic, strictly anaerobic, slightly halophilic bacterium, designated strain USBA 82(T), was isolated from a terrestrial saline spring in the Colombian Andes. The non-spore-forming curved rods (5-7 x 1.3 microm) with pointed or rounded ends, stained Gram-negative and were motile by means of laterally inserted flagella. The strain grew optimally at 30 degrees C (growth range 20-40 degrees C), pH 7.3 (growth range pH 5.5-8.5) and 2 % (w/v) NaCl (growth range 0.1-7 % NaCl). The strain fermented peptides, amino acids and a few organic acids, but growth was not observed on carbohydrates, alcohols or fatty acids. The strain reduced thiosulfate and sulfur to sulfide. Sulfate, sulfite, nitrate and nitrite were not used as electron acceptors. On peptone alone, acetate, succinate, propionate and traces of ethanol were formed, but in the presence of thiosulfate, acetate and succinate were formed. The G+C content of the chromosomal DNA was 52 mol% (T(m)). 16S rRNA gene sequence analysis indicated that strain USBA 82(T) was affiliated to Dethiosulfovibrio peptidovorans within the phylum Synergistetes with a similarity value of approximately 93 %. Based on the differences between the new strain and the type species of the genus Dethiosulfovibrio, we suggest that strain USBA 82(T) represents a novel species of the genus for which the name Dethiosulfovibrio salsuginis sp. nov. is proposed. The type strain is USBA 82(T) (=DSM 21565(T)=KCTC 5659(T)).

  20. Zooshikella marina sp. nov. a cycloprodigiosin- and prodigiosin-producing marine bacterium isolated from beach sand.

    PubMed

    Ramaprasad, E V V; Bharti, Dave; Sasikala, Ch; Ramana, Ch V

    2015-12-01

    A red-pigmented bacterium producing a metallic green sheen, designated strain JC333T, was isolated from a sand sample collected from Shivrajpur-Kachigad beach, Gujarat, India. Phylogenetic analyses based on the 16S rRNA gene sequence of strain JC333T showed highest sequence similarity to Zooshikella ganghwensis JC2044T (99.24 %) and less than 91.94 % similarity with other members of the class Gammaproteobacteria. DNA-DNA hybridizations between JC333T and Z. ganghwensis JC2044T showed low relatedness values of 19 ± 1.3 % (reciprocal 21 ± 2.2 %). The major respiratory quinone was ubiquinone-9 (Q9) and the polar lipid profile was composed of the major components diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminophospholipid and an unidentified lipid. The presence of C16 : 1ω7c/C16 : 1ω6c, C16 : 0, C18 : 1ω7c and C12 : 0 as major fatty acids supported the affiliation of strain JC333T to the genus Zooshikella. Prodigiosin, cycloprodigiosin and eight other prodigiosin analogues were the pigments of JC333T. Characterization based on 16S rRNA gene sequence analysis, physiological parameters, pigment analysis, ubiquinone, and polar lipid and fatty acid compositions revealed that JC333T represents a novel species of the genus Zooshikella, for which the name Zooshikella marina sp. nov. is proposed. The type strain is JC333T ( = KCTC 42659T = LMG 28823T).

  1. Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.

    PubMed

    Liu, Yunpeng; Chen, Lin; Zhang, Nan; Li, Zunfeng; Zhang, Guishan; Xu, Yu; Shen, Qirong; Zhang, Ruifu

    2016-04-01

    Mechanisms by which beneficial rhizobacteria promote plant growth include tryptophan-dependent indole-3-acetic acid (IAA) synthesis. The abundance of tryptophan in the rhizosphere, however, may influence the level of benefit provided by IAA-producing rhizobacteria. This study examined the cucumber-Bacillus amyloliquefaciens SQR9 system and found that SQR9, a bacterium previously shown to enhance the growth of cucumber, increased root secretion of tryptophan by three- to fourfold. Using a split-root system, SQR9 colonization of roots in one chamber not only increased tryptophan secretion from the noninoculated roots but also increased the expression of the cucumber tryptophan transport gene but not the anthranilate synthesis gene in those roots. The increased tryptophan in isolated rhizosphere exudates was sufficient to support increased IAA production by SQR9. Moreover, SQR9 colonization of roots in one chamber in the split-root system resulted in sufficient tryptophan production by the other roots to upregulate SQR9 IAA biosynthesis genes, including a 27-fold increase in the indole-3-acetonitrilase gene yhcX during subsequent colonization of those roots. Deletion of yhcX eliminated SQR9-mediated increases in root surface area, likely by reducing IAA-stimulated lateral root growth. This study demonstrates a chemical dialogue between B. amyloliquefaciens and cucumber in which this communication contributes to bacteria-mediated plant-growth enhancement.

  2. Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.

    PubMed

    Liu, Yunpeng; Chen, Lin; Zhang, Nan; Li, Zunfeng; Zhang, Guishan; Xu, Yu; Shen, Qirong; Zhang, Ruifu

    2016-04-01

    Mechanisms by which beneficial rhizobacteria promote plant growth include tryptophan-dependent indole-3-acetic acid (IAA) synthesis. The abundance of tryptophan in the rhizosphere, however, may influence the level of benefit provided by IAA-producing rhizobacteria. This study examined the cucumber-Bacillus amyloliquefaciens SQR9 system and found that SQR9, a bacterium previously shown to enhance the growth of cucumber, increased root secretion of tryptophan by three- to fourfold. Using a split-root system, SQR9 colonization of roots in one chamber not only increased tryptophan secretion from the noninoculated roots but also increased the expression of the cucumber tryptophan transport gene but not the anthranilate synthesis gene in those roots. The increased tryptophan in isolated rhizosphere exudates was sufficient to support increased IAA production by SQR9. Moreover, SQR9 colonization of roots in one chamber in the split-root system resulted in sufficient tryptophan production by the other roots to upregulate SQR9 IAA biosynthesis genes, including a 27-fold increase in the indole-3-acetonitrilase gene yhcX during subsequent colonization of those roots. Deletion of yhcX eliminated SQR9-mediated increases in root surface area, likely by reducing IAA-stimulated lateral root growth. This study demonstrates a chemical dialogue between B. amyloliquefaciens and cucumber in which this communication contributes to bacteria-mediated plant-growth enhancement. PMID:26808445

  3. Production of Optically Pure D-Lactic Acid by the Combined use of Weissella sp. S26 and Bacillus sp. ADS3.

    PubMed

    Li, Qingxin; Hudari, Mohammad Sufian Bin; Wu, Jin Chuan

    2016-01-01

    Optically pure D-lactic acid was produced from glucose, xylose, or starch by the combined use of Weissella sp. S26 and Bacillus sp. ADS3, two native bacterial strains isolated from Singapore environment. Weissella sp. S26 was used to ferment various sugars to lactic acid rich in D-isomer followed by sterilization of the broth and inoculation of Bacillus sp. ADS3 cells to selectively degrade acetic acid (if any) and L-lactic acid. In a simultaneous saccharification and fermentation of starch by Weissella sp. S26 in 1 L of modified MRS medium containing 50 g/L starch at 30 °C, lactic acid reached 24.2 g/L (23.6 g/L of D-isomers and 0.6 g/L of L-isomers), and acetic acid was 11.8 g/L at 37 h. The fermentation broth was sterilized at 100 °C for 20 min and cooled down to 30 °C followed by inoculation of Bacillus sp. ADS3 (10 %, v/v), and the mixture was kept at 30 °C for 115 h. Acetic acid was completely removed, and L-lactic acid was largely removed giving an optical purity of D-lactic acid as high as 99.5 %.

  4. Metal ion activated lipase from halotolerant Bacillus sp. VITL8 displays broader operational range.

    PubMed

    Balaji, Lavanya; Jayaraman, Gurunathan

    2014-06-01

    Lipase producing halo tolerant Bacillus sp. VITL8 was isolated from oil contaminated areas of Vellore. The identity of the organism was established by 16S rDNA sequence, in addition to the morphological and biochemical characterization. The purified enzyme (22kDa, 8680U/mg) exhibited optimal activity at pH 7.0 and 40°C and retained more than 50% of its activity in the NaCl concentration range of 0-3.0M, pH 6.0-10.0 and 10-60°C. Secondary structure analysis, using circular dichroism, revealed that the enzyme is composed of 38% α-helix and 29% β-turns. The lipase activity significantly increased in the presence of (1mM) Mn(2+) (139%), Ca(2+) (134%) and Mg(2+) (130%). Organic solvents such as butanol and acetonitrile (25%, v/v) enhanced the activity whereas DMSO (25% v/v) retained the activity. The Km of enzyme-p-Nitrophenyl palmitate complex was determined to be 191μM with a Vmax of 68μM/mg/min. Though halotolerant Bacillus sp. has been explored for hydrocarbon degradation, to our knowledge this is the first report on the lipase activity of the isolate. The characteristics of the enzyme presented in this report, imply broader operational range of the enzyme and therefore could be suitable for many of the industrial chemical processes. PMID:24704541

  5. An effective method for the detoxification of cyanide-rich wastewater by Bacillus sp. CN-22.

    PubMed

    Wu, Chou-Fei; Xu, Xiao-Ming; Zhu, Qing; Deng, Mao-Cheng; Feng, Lei; Peng, Juan; Yuan, Jian-Ping; Wang, Jiang-Hai

    2014-04-01

    The biodetoxification of cyanide-rich wastewater has become increasingly popular because of its cost-effectiveness and environmental friendliness. Therefore, we have developed an effective method, optimised by response surface methodology, for detoxifying cyanide-rich wastewater using Bacillus sp. CN-22, which was newly isolated from a cyanide-contaminated electroplating sludge and could tolerate a CN⁻ concentration of 700 mg L⁻¹. The concentration of CN⁻ in the treated wastewater decreased from 200 to 6.62 mg L⁻¹ after cultivation with 2.38 % inocula for 72 h on the medium, consisting of 0.05 % KH₂PO₄, 0.15 % K₂HPO₄, 1.0 mM MgCl₂, 1.0 mM FeCl₃, 0.1 % NH₄Cl, and 0.1 % glycerol. The CN⁻ degradability of 96.69 % is similar to the predicted value of 96.82 %. The optimal cultivation conditions were controlled as follows: initial pH, 10.3; temperature, 31 °C; and rotary speed, 193 rpm. The maintenance of higher pH in the overall treatment procedures may avoid the production of volatile HCN and the risk associated with cyanide detoxification. Additionally, the bacterial strain Bacillus sp. CN-22, with its potent cyanide-degrading activity at the initial CN⁻ concentration of 200 mg L⁻¹, may be employed to effectively treat cyanide-rich wastewater, especially electroplating effluent.

  6. An effective method for the detoxification of cyanide-rich wastewater by Bacillus sp. CN-22.

    PubMed

    Wu, Chou-Fei; Xu, Xiao-Ming; Zhu, Qing; Deng, Mao-Cheng; Feng, Lei; Peng, Juan; Yuan, Jian-Ping; Wang, Jiang-Hai

    2014-04-01

    The biodetoxification of cyanide-rich wastewater has become increasingly popular because of its cost-effectiveness and environmental friendliness. Therefore, we have developed an effective method, optimised by response surface methodology, for detoxifying cyanide-rich wastewater using Bacillus sp. CN-22, which was newly isolated from a cyanide-contaminated electroplating sludge and could tolerate a CN⁻ concentration of 700 mg L⁻¹. The concentration of CN⁻ in the treated wastewater decreased from 200 to 6.62 mg L⁻¹ after cultivation with 2.38 % inocula for 72 h on the medium, consisting of 0.05 % KH₂PO₄, 0.15 % K₂HPO₄, 1.0 mM MgCl₂, 1.0 mM FeCl₃, 0.1 % NH₄Cl, and 0.1 % glycerol. The CN⁻ degradability of 96.69 % is similar to the predicted value of 96.82 %. The optimal cultivation conditions were controlled as follows: initial pH, 10.3; temperature, 31 °C; and rotary speed, 193 rpm. The maintenance of higher pH in the overall treatment procedures may avoid the production of volatile HCN and the risk associated with cyanide detoxification. Additionally, the bacterial strain Bacillus sp. CN-22, with its potent cyanide-degrading activity at the initial CN⁻ concentration of 200 mg L⁻¹, may be employed to effectively treat cyanide-rich wastewater, especially electroplating effluent. PMID:24337345

  7. Protease with collagenolytic activity produced by Bacillus sp. DPUA 1728 from Amazonian soil

    PubMed Central

    Lima, Lorena A.; Cruz, Raimundo F.; dos Santos, Januário G.; Silva, Wilson C.

    2015-01-01

    Qualitative analyses were carried out on solid medium with insoluble collagen 0.25% (w/v) to detect proteases with collagenolytic activity produced by Bacillus sp. In cultures incubated for 24 h, a 23 full factorial design with four repetitions at the center point was developed to analyze the effects and interactions between initial pH, temperature and the concentration of gelatin. Based on the results of the first 23 full factorial design, a successive 23 full factorial design was performed. The most favorable production conditions were found to be 1.5% (w/v) gelatin, pH 9.0 and 37 °C with enzymatic activity of 86.27 U/mL. The enzyme showed optimal activity at 50 °C and pH 9.0, and it was stable over wide pH (7.2-10.0) and temperature (45 °C-60 °C) ranges. These results indicate that Bacillus sp DPUA 1728 is a potential source for producing collagenolytic protease with possible biotechnological applications, such as in the food, cosmetics and leather industries. PMID:26691484

  8. Transcriptional and posttranscriptional regulation of Bacillus sp. CDB3 arsenic-resistance operon ars1

    PubMed Central

    Yu, Xuefei; Zheng, Wei; Bhat, Somanath; Aquilina, J. Andrew

    2015-01-01

    Bacillus sp. CDB3 possesses a novel eight-gene ars cluster (ars1, arsRYCDATorf7orf8) with some unusual features in regard to expression regulation. This study demonstrated that the cluster is a single operon but can also produce a short three-gene arsRYC transcript. A hairpin structure formed by internal inverted repeats between arsC and arsD was shown to diminish the expression of the full operon, thereby probably acting as a transcription attenuator. A degradation product of the arsRYC transcript was also identified. Electrophoretic mobility shift analysis demonstrated that ArsR interacts with the ars1 promoter forming a protein-DNA complex that could be impaired by arsenite. However, no interaction was detected between ArsD and the ars1 promoter, suggesting that the CDB3 ArsD protein may not play a regulatory role. Compared to other ars gene clusters, regulation of the Bacillus sp. CDB3 ars1 operon is more complex. It represents another example of specific mRNA degradation in the transporter gene region and possibly the first case of attenuator-mediated regulation of ars operons. PMID:26355338

  9. Purification and characterization of a liquefying α-amylase from alkalophilic thermophilic Bacillus sp. AAH-31.

    PubMed

    Kim, Dae Hoon; Morimoto, Naoki; Saburi, Wataru; Mukai, Atsushi; Imoto, Koji; Takehana, Toshihiko; Koike, Seiji; Mori, Haruhide; Matsui, Hirokazu

    2012-01-01

    α-Amylase (EC 3.2.1.1) hydrolyzes an internal α-1,4-glucosidic linkage of starch and related glucans. Alkalophilic liquefying enzymes from Bacillus species are utilized as additives in dishwashing and laundry detergents. In this study, we found that Bacillus sp. AAH-31, isolated from soil, produced an alkalophilic liquefying α-amylase with high thermostability. Extracellular α-amylase from Bacillus sp. AAH-31 (AmyL) was purified in seven steps. The purified enzyme showed a single band of 91 kDa on SDS-PAGE. Its specific activity of hydrolysis of 0.5% soluble starch was 16.7 U/mg. Its optimum pH and temperature were 8.5 and 70 °C respectively. It was stable in a pH range of 6.4-10.3 and below 60 °C. The calcium ion did not affect its thermostability, unlike typical α-amylases. It showed 84.9% of residual activity after incubation in the presence of 0.1% w/v of EDTA at 60 °C for 1 h. Other chelating reagents (nitrilotriacetic acid and tripolyphosphate) did not affect the activity at all. AmyL was fully stable in 1% w/v of Tween 20, Tween 80, and Triton X-100, and 0.1% w/v of SDS and commercial detergents. It showed higher activity towards amylose than towards amylopectin or glycogen. Its hydrolytic activity towards γ-cyclodextin was as high as towards short-chain amylose. Maltotriose was its minimum substrate, and maltose and maltotriose accumulated in the hydrolysis of maltooligosaccharides longer than maltotriose and soluble starch.

  10. The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7.

    PubMed

    Zhang, Qing-Ling; Liu, Ying; Ai, Guo-Min; Miao, Li-Li; Zheng, Hai-Yan; Liu, Zhi-Pei

    2012-03-01

    Bacillus methylotrophicus strain L7, exhibited efficient heterotrophic nitrification-aerobic denitrification ability, with maximum NH(4)(+)-N and NO(2)(-)-N removal rate of 51.58 mg/L/d and 5.81 mg/L/d, respectively. Strain L7 showed different gaseous emitting patterns from those strains ever described. When (15)NH(4)Cl, or Na(15)NO(2), or K(15)NO(3) was used, results of GC-MS indicated that N(2)O was emitted as the intermediate of heterotrophic nitrification or aerobic denitrification, while GC-IRMS results showed that N(2) was produced as end product when nitrite was used. Single factor experiments suggested that the optimal conditions for heterotrophic nitrification were sodium succinate as carbon source, C/N 6, pH 7-8, 0 g/L NaCl, 37 °C and a wide range of NH(4)(+)-N from 80 to 1000 mg/L. Orthogonal tests showed that the optimal conditions for aerobic denitrification were C/N 20, pH 7-8, 10 g/L NaCl and DO 4.82 mg/L (shaking speed 50 r/min) when nitrite was served as substrate.

  11. Characteristics of recombinant α-carbonic anhydrase of polyextremophilic bacterium Bacillus halodurans TSLV1.

    PubMed

    Faridi, Shazia; Satyanarayana, T

    2016-08-01

    Carbonic anhydrase (CA) is a biocatalyst that catalyzes the hydration of CO2 to bicarbonate and protons, thus useful in mitigating green house effect by sequestering CO2 from various point sources. An alkalistable and moderately thermostable α- carbonic anhydrase encoding gene (BhCA) from Bacillus halodurans TSLV1 has been cloned and expressed in Escherichia coli. A 31.4-fold enhancement in CA production was achieved due to cloning and expression in E. coli. About 50% of the CA produced was secreted when recombinant E. coli with BhCA-pET22b was cultivated in a medium with EDTA and lysozyme because of the efficient pelB leader sequence. rBhCA is a ∼75kDa homodimeric protein with a Tm of 72°C and T1/2 values of 66 and 24min at 50 and 60°C, respectively. SDM analysis revealed that H137, H139, H156 and H110 present in the active site play an important role in catalysis. Mineralization of CO2 using rBhCA led to the accelerated precipitation of CaCO3 in calcite form. rBhCA also functions as an efficient virtual peroxidase when Zn(2+) is substituted with Mn(2+). PMID:27174908

  12. Respiratory chain of the alkalophilic bacterium Bacillus firmus RAB and its non-alkalophilic mutant derivative.

    PubMed

    Kitada, M; Lewis, R J; Krulwich, T A

    1983-04-01

    The membrane-bound respiratory chain components of alkalophilic Bacillus firmus RAB were studied by difference spectroscopy and oxidation-reduction potentiometric titrations. Cytochromes with the following midpoint potentials were identified at pH 9.0: a-type cytochromes, +110 and +210 mV; b-type cytochromes, +20, -120, -280, and -400 mV; and cytochrome c, +60 mV. Only the higher-potential cytochrome a showed an upward shift in midpoint potential when titrated at pH 7.0. Parallel studies of a non-alkalophilic mutant derivative of B. firmus RAB, strain RABN, revealed the presence of only one species each of a-, b-, and c-type cytochromes which exhibited midpoint potentials of +110, -150, and +160 mV, respectively, at pH 7.0. Membranes of both strains were found to contain menaquinone. At pH 9.0, NADH caused the reduction of essentially all of the cytochromes that were seen in fully reduced preparations of wild-type B. firmus RAB membranes. By contrast, at pH 7.0, NADH failed to appreciably reduce the b-type cytochromes. These findings may relate to our recent proposal that an inadequacy in energy transduction (production of a proton motive force) by the alkalophilic respiratory chain at pH 7.0 is what precludes the growth of B. firmus RAB at a neutral pH.

  13. Respiratory chain of the alkalophilic bacterium Bacillus firmus RAB and its non-alkalophilic mutant derivative

    SciTech Connect

    Kitada, M.; Lewis, R.J.; Krulwich, T.A.

    1983-04-01

    The membrane-bound respiratory chain components of alkalophilic Bacillus firmus RAB were studied by difference spectroscopy and oxidation-reduction potentiometric titrations. Cytochromes with the following midpoint potentials were identified at pH 9.0: a-type cytochromes, +110 and +210 mV; b-type cytochromes, +20, -120, -280, and -400 mV; and cytochrome c, +60 mV. Only the higher-potential cytochrome a showed an upward shift in midpoint potential when titrated at pH 7.0. Parallel studies of a non-alkalophilic mutant derivate of B. firmus RAB, strain RABN, revealed the presence of only one species each of a-, b-, and c-type cytochromes which exhibited midpoint potentials of +110, -150, and +160 mV, respectively, at pH 7.0. Membranes of both strains were found to contain menaquinone. At pH 9.0, NADH caused the reduction of essentially all of the cytochromes that were seen in fully reduced preparations of wild-type B. firmus RAB membranes. By contrast, at pH 7.0, NADH failed to appreciably reduce the b-type cytochromes. These findings may relate to our recent proposal that an inadequacy in energy transduction (production of a proton motive force) by the alkalophilic respiratory chain at pH 7.0 is what precludes the growth of B. firmus RAB at a neutral pH. 13 references, 7 figures.

  14. Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil.

    PubMed

    Fan, Jieyu; Yang, Guoxia; Zhao, Haoyu; Shi, Guanying; Geng, Yucong; Hou, Taiping; Tao, Ke

    2012-01-01

    A bacterial strain named CB4, with highly effective glyphosate degradation capability, was isolated from soil after enrichment. On the basis of the Biolog omniLog identification system (Biolog) and 16S ribosomal RNA (rRNA) gene sequencing methods, strain CB4 was identified as Bacillus cereus. Further experiments were carried out to optimize the growth of strain CB4 and the glyphosate degradation activity by high performance liquid chromatography (HPLC). The optimal conditions were found as follows: initial pH 6.0, incubation temperature 35°C, glyphosate concentration 6 g L(-1), inoculation amount 5% and incubation time 5 days. Under the optimal conditions, stain CB4 utilized 94.47% of glyphosate. This is the first report on B. cereus with a capacity to utilize herbicide glyphosate, and it can degrade glyphosate concentrations up to 12 g L(-1). Metabolization of glyphosate by strain B. cereus CB4 was studied. Results indicated that two concurrent pathways were capable of degrading glyphosate to AMPA, glyoxylate, sarcosine, glycine and formaldehyde as products. Glyphosate breakdown in B. cereus CB4 was achieved by the C-P lyase activity and the glyphosate oxidoreductase activity. PMID:22990486

  15. Genome sequence of Desulfovibrio sp. A2, a highly copper resistant, sulfate-reducing bacterium isolated from effluents of a zinc smelter at the Urals.

    PubMed

    Mancini, Stefano; Abicht, Helge K; Karnachuk, Olga V; Solioz, Marc

    2011-12-01

    Desulfovibrio sp. A2 is an anaerobic gram-negative sulfate-reducing bacterium with remarkable tolerance to copper. It was isolated from wastewater effluents of a zinc smelter at the Urals. Here, we report the 4.2-Mb draft genome sequence of Desulfovibrio sp. A2 and identify potential copper resistance mechanisms.

  16. Draft Genome Sequence of Pantoea sp. Strain A4, a Rafflesia-Associated Bacterium That Produces N-Acylhomoserine Lactones as Quorum-Sensing Molecules

    PubMed Central

    Hong, Kar-Wai; Gan, Han Ming; Low, Siew-Moon; Lee, Patrick Kok Yuen; Chong, Yee-Meng; Yin, Wai-Fong

    2012-01-01

    Pantoea sp. strain A4 is a Gram-negative bacterium isolated from the Rafflesia flower. We present here, for the first time, the genome sequence of Rafflesia-associated Pantoea sp. strain A4, which exhibited quorum-sensing activity. PMID:23144374

  17. Revision of the taxonomic position of the xylanolytic Bacillus sp. MIR32 reidentified as Bacillus halodurans and plasmid-mediated transformation of B. halodurans.

    PubMed

    Martínez, M Alejandra; Delgado, Osvaldo D; Breccia, Javier D; Baigorí, Mario D; Siñeriz, Faustino

    2002-10-01

    Bacillus sp. MIR32 has been isolated using xylan as the only carbon source, and one of its xylanolytic enzymes has been extensively studied. Biochemical analysis first related this strain to Bacillus amyloliquefaciens, but further studies based on a comparison of 16S rDNA sequences, G+C content, and DNA-DNA hybridization showed that strain MIR32 should be classified as a member of the species Bacillus halodurans. This change is also supported by the typical phenotype observed and by the results of PCR amplification directed toward spacers in rDNA and tDNA genes, which were assayed and compared with those of B. halodurans DSM 497(T). Although among alkaliphilic bacilli competence development has not been experimentally demonstrated, in this work both B. halodurans MIR32 and DSM 497(T) were transformed according to a simple procedure developed in our laboratory, reaching 10(2)-10(3) stable transformants per microgram of plasmid DNA. PMID:12382115

  18. Enhancement of DNaseI Salt Tolerance by Mimicking the Domain Structure of DNase from an Extremely Halotolerant Bacterium Thioalkalivibrio sp. K90mix.

    PubMed

    Alzbutas, Gediminas; Kaniusaite, Milda; Lagunavicius, Arunas

    2016-01-01

    In our previous work we showed that DNaseI-like protein from an extremely halotolerant bacterium Thioalkalivibrio sp. K90mix retained its activity at salt concentrations as high as 4 M NaCl and the key factor allowing this was the C-terminal DNA-binding domain, which comprised two HhH (helix-hairpin-helix) motifs. The further investigations revealed that this domain originated from proteins related to bacterial competence ComEA/ComE proteins. It is likely that in the course of evolution the DNA-binding domain from these proteins was fused to a metallo-β-lactamase superfamily domain. Very likely such domain organization having proteins subsequently "donated" the DNA-binding domain to bacterial DNases. In this study we have mimicked this evolutionary step by fusing bovine DNaseI and DNA-binding domains. We have created two fusions: one harboring the DNA-binding domain of DNaseI-like protein from Thioalkalivibrio sp. K90mix and the second one harboring the DNA-binding domain of bacterial competence protein ComEA from Bacillus subtilis. Both domains enhanced salt tolerance of DNaseI, albeit to different extent. Molecular modeling revealed the essential differences between their interaction with DNA shedding some light on the differences in salt tolerance. In this study we have enhanced salt tolerance of bovine DNaseI; thus, we successfully mimicked the Nature's evolutionary engineering that created the extremely halotolerant bacterial DNase. We have demonstrated that the newly engineered DNaseI variants can be successfully used in applications where activity of the wild type bovine DNaseI is impeded by buffers used. PMID:26939122

  19. Enhancement of DNaseI Salt Tolerance by Mimicking the Domain Structure of DNase from an Extremely Halotolerant Bacterium Thioalkalivibrio sp. K90mix

    PubMed Central

    Alzbutas, Gediminas; Kaniusaite, Milda; Lagunavicius, Arunas

    2016-01-01

    In our previous work we showed that DNaseI-like protein from an extremely halotolerant bacterium Thioalkalivibrio sp. K90mix retained its activity at salt concentrations as high as 4 M NaCl and the key factor allowing this was the C-terminal DNA-binding domain, which comprised two HhH (helix-hairpin-helix) motifs. The further investigations revealed that this domain originated from proteins related to bacterial competence ComEA/ComE proteins. It is likely that in the course of evolution the DNA-binding domain from these proteins was fused to a metallo-β-lactamase superfamily domain. Very likely such domain organization having proteins subsequently “donated” the DNA-binding domain to bacterial DNases. In this study we have mimicked this evolutionary step by fusing bovine DNaseI and DNA-binding domains. We have created two fusions: one harboring the DNA-binding domain of DNaseI-like protein from Thioalkalivibrio sp. K90mix and the second one harboring the DNA-binding domain of bacterial competence protein ComEA from Bacillus subtilis. Both domains enhanced salt tolerance of DNaseI, albeit to different extent. Molecular modeling revealed the essential differences between their interaction with DNA shedding some light on the differences in salt tolerance. In this study we have enhanced salt tolerance of bovine DNaseI; thus, we successfully mimicked the Nature’s evolutionary engineering that created the extremely halotolerant bacterial DNase. We have demonstrated that the newly engineered DNaseI variants can be successfully used in applications where activity of the wild type bovine DNaseI is impeded by buffers used. PMID:26939122

  20. Biomass Yield Efficiency of the Marine Anammox Bacterium, “Candidatus Scalindua sp.,” is Affected by Salinity

    PubMed Central

    Awata, Takanori; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2015-01-01

    The growth rate and biomass yield efficiency of anaerobic ammonium oxidation (anammox) bacteria are markedly lower than those of most other autotrophic bacteria. Among the anammox bacterial genera, the growth rate and biomass yield of the marine anammox bacterium “Candidatus Scalindua sp.” is still lower than those of other anammox bacteria enriched from freshwater environments. The activity and growth of marine anammox bacteria are generally considered to be affected by the presence of salinity and organic compounds. Therefore, in the present study, the effects of salinity and volatile fatty acids (VFAs) on the anammox activity, inorganic carbon uptake, and biomass yield efficiency of “Ca. Scalindua sp.” enriched from the marine sediments of Hiroshima Bay, Japan, were investigated in batch experiments. Differences in VFA concentrations (0–10 mM) were observed under varying salinities (0.5%–4%). Anammox activity was high at 0.5%–3.5% salinity, but was 30% lower at 4% salinity. In addition, carbon uptake was higher at 1.5%–3.5% salinity. The results of the present study clearly demonstrated that the biomass yield efficiency of the marine anammox bacterium “Ca. Scalindua sp.” was significantly affected by salinity. On the other hand, the presence of VFAs up to 10 mM did not affect anammox activity, carbon uptake, or biomass yield efficiency. PMID:25740428

  1. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil.

    PubMed

    Liu, Xu-Yun; Li, Chun-Xiu; Luo, Xiao-Jing; Lai, Qi-Liang; Xu, Jian-He

    2014-09-01

    A methyl parathion (MP) degrading bacterial strain, designated MP-1(T), was isolated from a waste land where pesticides were formerly manufactured in Jiangsu province, China. Polyphasic taxonomic studies showed that MP-1(T) is a Gram-stain-negative, non-spore-forming, rod-shaped and motile bacterium. The bacterium could grow at salinities of 0-1 % (w/v) and temperatures of 15-40 °C. Strain MP-1(T) could reduce nitrate to nitrite, utilize d-glucose and l-arabinose, but not produce indole, or hydrolyse gelatin. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that MP-1(T) belongs to the genus Burkholderia, showing highest sequence similarity to Burkholderia grimmiae DSM 25160(T) (98.5 %), and similar strains including Burkholderia zhejiangensis OP-1(T) (98.2 %), Burkholderia choica LMG 22940(T) (97.5 %), Burkholderia glathei DSM 50014(T) (97.4 %), Burkholderia terrestris LMG 22937(T) (97.2 %) and Burkholderia telluris LMG 22936(T) (97.0 %). In addition, the gyrB and recA gene segments of strain MP-1(T) exhibited less than 89.0 % and 95.1 % similarities with the most highly-related type strains indicated above. The G+C content of strain MP-1(T) was 62.6 mol%. The major isoprenoid quinone was ubiquinone Q-8. The predominant polar lipids comprised phosphatidyl ethanolamine, phosphatidyl glycerol, aminolipid and phospholipid. The principal fatty acids in strain MP-1(T) were C18 : 1ω7c/C18 : 1ω6c (23.3 %), C16 : 0 (16.8 %), cyclo-C17 : 0 (15.0 %), C16 : 1ω7c/C16 : 1ω6 (8.5 %), cyclo-C19 : 0ω8c (8.1 %), C16 : 1 iso I/C14 : 0 3-OH (5.7 %), C16 : 0 3-OH (5.6 %) and C16 : 02-OH (5.1 %). The DNA-DNA relatedness values between strain MP-1(T) and the three type strains (B. grimmiae DSM 25160(T), B. zhejiangensis OP-1(T) and B. glathei DSM 50014(T)) ranged from 24.6 % to 37.4 %. In accordance with phenotypic and genotypic characteristics, strain MP-1(T) represents a novel

  2. Fractionation of Natural Organic Matter Upon Adsorption to the Bacterium, Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Manecki, M.; Maurice, P. A.; Fein, J. B.

    2001-12-01

    High pressure size exclusion chromatography (HPSEC) was used to measure changes in molecular weight distribution and average molecular weight upon adsorption of fulvic acid onto Bacillus subtilis at pH 3-7. The FA was an XAD-8 extract from a stream in the New Jersey Pine Barrens (USA), and had a weight average molecular weight of 1890 Da. Adsorption of aqueous FA onto B.subtilis was relatively fast, with steady state attained within 2 hours. An adsorption isotherm at pH 4.5 revealed a strong affinity of FA for the B.subtilis surface. The maximum adsorption capacity of a 20g bacteria/L suspension was greater than 9 mg C/L of FA at pH 4.5. Adsorption of FA onto B.subtilis was strongly pH dependent, increasing markedly with decreasing pH over the pH range 3-7. Comparison of HPSEC analysis of control (FA not reacted with bacteria) versus reacted samples showed that in all experiments, the weight average molecular weight (Mw) of FA remaining in solution decreased by several hundred Da. The observed decrease in solution Mw upon adsorption indicated that the higher molecular weight FA components adsorbed preferentially to the bacterial surfaces, at all studied pH values (3-7). Additionally, there was a low molecular weight FA fraction that did not adsorb, even at low pH. Our results suggest that hydrophobic interactions may be important for FA sorption to B.subtilis and that low molecular weight, more hydrophilic components may thus be less likely to adsorb than higher molecular weight, more hydrophobic components.

  3. Spectral characterization of a pteridine derivative from cyanide-utilizing bacterium Bacillus subtilis - JN989651.

    PubMed

    Durairaju Nisshanthini, S; Teresa Infanta S, Antony K; Raja, Duraisamy Senthil; Natarajan, Karuppannan; Palaniswamy, M; Angayarkanni, Jayaraman

    2015-04-01

    Soil and water samples were collected from various regions of SIPCOT and nearby Vanappadi Lake, Ranipet, Tamilnadu, India. Based on their colony morphology and their stability during subculturing, 72 bacteria were isolated, of which 14 isolates were actinomycetes. Preliminary selection was carried out to exploit the ability of the microorganisms to utilize sodium cyanate as nitrogen source. Those organisms that were able to utilize cyanate were subjected to secondary screening viz., utilization of sodium cyanide as the nitrogen source. The oxygenolytic cleavage of cyanide is dependent on cyanide monooxygenase which obligately requires pterin cofactor for its activity. Based on this, the organisms capable of utilizing sodium cyanide were tested for the presence of pterin. Thin layer chromatography (TLC) of the cell extracts using n-butanol: 5 N glacial acetic acid (4:1) revealed that 10 out of 12 organisms that were able to utilize cyanide had the pterin-related blue fluorescent compound in the cell extract. The cell extracts of these 10 organisms were subjected to high performance thin layer chromatography (HPTLC) for further confirmation using a pterin standard. Based on the incubation period, cell biomass yield, peak height and area, strain VPW3 was selected and was identified as Bacillus subtilis. The Rf value of the cell extract was 0.73 which was consistent with the 0.74 Rf value of the pterin standard when scanned at 254 nm. The compound was extracted and purified by preparative High Performance Liquid Chromatography (HPLC). Characterization of the compound was performed by ultraviolet spectrum, fluorescence spectrum, Electrospray Ionization-Mass Spectrometry (ESI-MS), and Nuclear Magnetic Resonance spectroscopy (NMR). The compound is proposed to be 6-propionyl pterin (2-amino-6-propionyl-3H-pteridin-4-one).

  4. Genome Sequence of Bacillus sp. Strain UMTAT18 Isolated from the Dinoflagellate Alexandrium tamiyavanichii Found in the Straits of Malacca

    PubMed Central

    Ming, Gan Han; Mohd Noor, Mohd Ezhar; Sung, Yeong Yik; Usup, Gires

    2016-01-01

    Bacillus sp. strain UMTAT18 was isolated from the harmful dinoflagellate Alexandrium tamiyavanichii. Its genome consists of 5,479,367 bp with 5,546 open reading frames, 102 tRNAs, and 29 rRNAs. Gene clusters for biosynthesis of nonribosomal peptides, bacteriocin, and lantipeptide were identified. It also contains siderophore and genes related to stress tolerance. PMID:27795265

  5. Draft Genome Sequence of Bacillus sp. Strain BSC154, Isolated from Biological Soil Crust of Moab, Utah.

    PubMed

    Bailey, Alexis C; Kellom, Matthew; Poret-Peterson, Amisha T; Noonan, Kathryn; Hartnett, Hilairy E; Raymond, Jason

    2014-01-01

    Bacillus sp. BSC154 was isolated from a biological soil crust near Moab, Utah. The strain appears to be capable of chemotaxis and biofilm production. The BSC154 genome contains iron siderophore production, nitrate reduction, mixed acid-butanediol fermentation, and assimilatory and dissimilatory sulfate metabolism pathways. PMID:25395651

  6. Draft Genome Sequence of Bacillus sp. Strain BSC154, Isolated from Biological Soil Crust of Moab, Utah

    PubMed Central

    Bailey, Alexis C.; Kellom, Matthew; Poret-Peterson, Amisha T.; Noonan, Kathryn; Hartnett, Hilairy E.

    2014-01-01

    Bacillus sp. BSC154 was isolated from a biological soil crust near Moab, Utah. The strain appears to be capable of chemotaxis and biofilm production. The BSC154 genome contains iron siderophore production, nitrate reduction, mixed acid-butanediol fermentation, and assimilatory and dissimilatory sulfate metabolism pathways. PMID:25395651

  7. Streptomyces olivicoloratus sp. nov., an antibiotic-producing bacterium isolated from soil.

    PubMed

    Nguyen, Tuan Manh; Kim, Jaisoo

    2015-10-01

    Strain T13T, isolated from forest soil in Jeollabuk-do, South Korea, exhibited antibiotic production on yeast extract-malt extract-glucose (YMG) medium containing magnesium chloride as a trace mineral, and inhibited the growth of Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, Paenibacillus larvae, Escherichia coli, Candida albicans and Aspergillus niger. Growth occurred at 15-45 °C, pH 4-11 and in the presence of up to 2 % (w/v) NaCl. Biochemical analyses indicated that the predominant menaquinones produced by this strain were MK-9(H6) and MK-9(H8); small amounts of MK-10(H2) and MK-10(H4) were also detected. The polar lipid profile comprised diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine, and the cell-wall peptidoglycan contained ll-diaminopimelic acid, glutamic acid, alanine and glycine. Whole-cell hydrolysates contained glucose, galactose, ribose and rhamnose. The fatty-acid profile of strain T13T was made up predominantly of iso- and anteiso-branched fatty acids. Genetic analyses demonstrated that strain T13T is closely related to Streptomyces gramineus JR-43T (98.29 % 16S rRNA gene sequence similarity), S. graminisoli JR-19T (97.99 %), S. rhizophilus JR-41T (97.86 %), S. longwoodensis LMG 20096T (97.84 %), S. graminifolii JL-22T (97.79 %) and S. yaanensis Z4T (97.56 %), and DNA-DNA hybridization yielded relatedness values of 35.27-43.42 % when T13T was compared to related strains. The results of morphological, chemotaxonomic, phylogenetic and phenotypic analyses confirm that this strain represents a novel species of the genus Streptomyces, for which the name Streptomyces olivicoloratus sp. nov. is proposed. The type strain is T13T ( = KEMB 9005-210T = KACC 18227T = NBRC 110901T).

  8. Streptomyces olivicoloratus sp. nov., an antibiotic-producing bacterium isolated from soil.

    PubMed

    Nguyen, Tuan Manh; Kim, Jaisoo

    2015-10-01

    Strain T13T, isolated from forest soil in Jeollabuk-do, South Korea, exhibited antibiotic production on yeast extract-malt extract-glucose (YMG) medium containing magnesium chloride as a trace mineral, and inhibited the growth of Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, Paenibacillus larvae, Escherichia coli, Candida albicans and Aspergillus niger. Growth occurred at 15-45 °C, pH 4-11 and in the presence of up to 2 % (w/v) NaCl. Biochemical analyses indicated that the predominant menaquinones produced by this strain were MK-9(H6) and MK-9(H8); small amounts of MK-10(H2) and MK-10(H4) were also detected. The polar lipid profile comprised diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine, and the cell-wall peptidoglycan contained ll-diaminopimelic acid, glutamic acid, alanine and glycine. Whole-cell hydrolysates contained glucose, galactose, ribose and rhamnose. The fatty-acid profile of strain T13T was made up predominantly of iso- and anteiso-branched fatty acids. Genetic analyses demonstrated that strain T13T is closely related to Streptomyces gramineus JR-43T (98.29 % 16S rRNA gene sequence similarity), S. graminisoli JR-19T (97.99 %), S. rhizophilus JR-41T (97.86 %), S. longwoodensis LMG 20096T (97.84 %), S. graminifolii JL-22T (97.79 %) and S. yaanensis Z4T (97.56 %), and DNA-DNA hybridization yielded relatedness values of 35.27-43.42 % when T13T was compared to related strains. The results of morphological, chemotaxonomic, phylogenetic and phenotypic analyses confirm that this strain represents a novel species of the genus Streptomyces, for which the name Streptomyces olivicoloratus sp. nov. is proposed. The type strain is T13T ( = KEMB 9005-210T = KACC 18227T = NBRC 110901T). PMID:26296874

  9. Rheinheimera aestuari sp. nov., a marine bacterium isolated from coastal sediment.

    PubMed

    Baek, Kyunghwa; Jeon, Che Ok

    2015-08-01

    A Gram-stain-negative, strictly aerobic, non-pigmented, motile bacterium with a single polar flagellum, designated H29T, was isolated from coastal sediment of Jeju Island, South Korea. Cells were non-spore-forming rods showing catalase- and oxidase-positive reactions. Growth of strain H29T was observed at 10-40 °C (optimum, 20-25 °C) and pH 6.0-9.0 (optimum, pH 7.0-8.0), and in the presence of 1-4% (w/v) NaCl (optimum, 2-3%). Strain H29T contained C16 : 0, iso-C15 : 0 3-OH and summed feature 3 (comprising C16 : 1ω7c/C16 : 1ω6c) as the major fatty acids and ubiquinone-8 (Q-8) as the sole isoprenoid quinone. Phosphatidylethanolamine and phosphatidylglycerol were identified as the major polar lipids. The G+C content of the genomic DNA was 46.5 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain H29T formed a phyletic lineage with Rheinheimera hassiensis E48T within the genus Rheinheimera of the family Chromatiaceae. Strain H29T was most closely related to Rheinheimera pacifica KMM 1406T, Rheinheimera muenzenbergensis E49T, Rheinheimera hassiensis E48T and Rheinheimera baltica OSBAC1T with 97.8%, 97.6%, 97.4% and 97.2% 16S rRNA gene sequence similarities, respectively. However, DNA-DNA hybridization values of strain H29T with type strains of these species were lower than 70%. On the basis of the phenotypic, chemotaxonomic and molecular properties, strain H29T represents a novel species of the genus Rheinheimera, for which the name Rheinheimeraaestuarii sp. nov. is proposed. The type strain is H29T ( = KACC 18251T = JCM 30404T). PMID:25957052

  10. Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring.

    PubMed

    Rubiano-Labrador, Carolina; Baena, Sandra; Díaz-Cárdenas, Carolina; Patel, Bharat K C

    2013-04-01

    An anaerobic, moderately thermophilic, terminal-spore-forming bacterium, designated strain USBA A(T), was isolated from a terrestrial hot spring located at an altitude of 2683 m in the Andean region of Colombia (04° 50' 14.0″ N 75° 32' 53.4″ W). Cells of strain USBA A(T) were Gram-stain-positive, straight to slightly curved rods (0.9×2.5 µm), that were arranged singly or in pairs, and were motile by means of flagella. Growth occurred at 37-55 °C and pH 6.0-8.0, with a doubling time of 2 h under the optimal conditions (50 °C and pH 7.0). Glucose fermentation in strain USBA A(T) required yeast extract or peptone (each at 0.2 %, w/v). The novel strain fermented sugars, amino acids, Casamino acids, propanol, propionate, starch and dextrin, but no growth was observed on galactose, lactose, xylose, histidine, serine, threonine, benzoate, butyrate, lactate, pyruvate, succinate, methanol, ethanol, glycerol, casein, gelatin or xylan. The end products of glucose fermentation were formate, acetate, ethanol and lactate. Strain USBA A(T) did not grow autotrophically (with CO2 as carbon source and H2 as electron donor) and did not reduce thiosulfate, sulfate, elemental sulfur, sulfite, vanadium (V) or Fe (III) citrate. Growth of strain USBA A(T) was inhibited by ampicillin, chloramphenicol, kanamycin, penicillin and streptomycin (each at 10 µg ml(-1)). The predominant fatty acids were iso-C15 : 0, C16 : 0 and iso-C17 : 0 and the genomic DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis indicated that strain USBA A(T) belonged in the phylum Firmicutes and that its closest relative was Caloramator viterbiensis JW/MS-VS5(T) (95.0 % sequence similarity). A DNA-DNA relatedness value of only 30 % was recorded in hybridization experiments between strain USBA A(T) and Caloramator viterbiensis DSM 13723(T). Based on the phenotypic, chemotaxonomic and phylogenetic evidence and the results of the DNA-DNA hybridization experiments, strain USBA A

  11. Anoxybacillus calidus sp. nov., a thermophilic bacterium isolated from soil near a thermal power plant.

    PubMed

    Cihan, Arzu Coleri; Cokmus, Cumhur; Koc, Melih; Ozcan, Birgul

    2014-01-01

    A novel thermophilic, Gram-stain-positive, facultatively anaerobic, endospore-forming, motile, rod-shaped bacterium, strain C161ab(T), was isolated from a soil sample collected near Kizildere, Saraykoy-Buharkent power plant in Denizli. The isolate could grow at temperatures between 35 and 70 °C (optimum 55 °C), at pH 6.5-9.0 (optimum pH 8.0-8.5) and with 0-2.5 % NaCl (optimum 0.5 %, w/v). The strain formed cream-coloured, circular colonies and tolerated up to 70 mM boron. Its DNA G+C content was 37.8 mol%. The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. Strain C161ab(T) contained menaquinones MK-7 (96 %) and MK-6 (4 %). The major cellular fatty acids were iso-branched fatty acids: iso-C15 : 0 (52.2 %) and iso-C17 : 0 (28.0 %,) with small amounts of C16 : 0 (7.4 %). Phylogenetic analysis based on the 16S rRNA gene revealed 94.6-96.8 % sequence similarity with all recognized species of the genus Anoxybacillus. Strain C161ab(T) showed the greatest sequence similarity to Anoxybacillus rupiensis DSM 17127(T) and Anoxybacillus voinovskiensis DSM 17075(T), both had 96.8 % similarity to strain C161ab(T), as well as to Anoxybacillus caldiproteolyticus DSM 15730(T) (96.6 %). DNA-DNA hybridization revealed low levels of relatedness with the closest relatives of strain C161ab(T), A. rupiensis (21.2 %) and A. voinovskiensis (16.5 %). On the basis of the results obtained from phenotypic, chemotaxonomic, genomic fingerprinting, phylogenetic and hybridization analyses, the isolate is proposed to represent a novel species, Anoxybacillus calidus sp. nov. (type strain C161ab(T) = DSM 25520(T) = NCIMB 14851(T)). PMID:24052627

  12. Fervidicella metallireducens gen. nov., sp. nov., a thermophilic, anaerobic bacterium from geothermal waters.

    PubMed

    Ogg, Christopher D; Patel, Bharat K C

    2010-06-01

    A strictly anaerobic, thermophilic bacterium, designated strain AeB(T), was isolated from microbial mats colonizing a run-off channel formed by free-flowing thermal water from a bore well (registered number 17263) of the Great Artesian Basin, Australia. Cells of strain AeB(T) were slightly curved rods (2.5-6.0x1.0 mum) that stained Gram-negative and formed spherical terminal to subterminal spores. The strain grew optimally in tryptone-yeast extract-Casamino acids medium at 50 degrees C (range 37-55 degrees C) and pH 7 (range pH 5-9). Strain AeB(T) grew poorly on yeast extract (0.2 %) and tryptone (0.2 %) as sole carbon sources, which were obligately required for growth on other energy sources. Growth of strain AeB(T) increased in the presence of various carbohydrates and amino acids, but not organic acids. End products detected from glucose fermentation were ethanol, acetate, CO2 and H2. In the presence of 0.2 % yeast extract, iron(III), manganese(IV), vanadium(V) and cobalt(III) were reduced, but not sulfate, thiosulfate, sulfite, elemental sulfur, nitrate or nitrite. Iron(III) was also reduced in the presence of tryptone, peptone, Casamino acids and amyl media (Research Achievement), but not starch, xylan, chitin, glycerol, ethanol, pyruvate, benzoate, lactate, acetate, propionate, succinate, glycine, serine, lysine, threonine, arginine, glutamate, valine, leucine, histidine, alanine, aspartate, isoleucine or methionine. Growth was inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin and NaCl concentrations >2 %. The DNA G+C content was 35.4+/-1 mol%, as determined by the thermal denaturation method. 16S rRNA gene sequence analysis indicated that strain AeB(T) is a member of the family Clostridiaceae, class Clostridia, phylum 'Firmicutes', and is positioned approximately equidistantly between the genera Sarcina, Anaerobacter, Caloramator and Clostridium (16S rRNA gene similarity values of 87.8-90.9 %). On the basis of 16S rRNA gene

  13. Novosphingobium chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge.

    PubMed

    Chen, Qing; Zhang, Jun; Wang, Cheng-Hong; Jiang, Jin; Kwon, Soon-Wo; Sun, Li-Na; Shen, Wen-Biao; He, Jian

    2014-08-01

    Strain BUT-14(T), a Gram-reaction-negative, non-spore-forming, ellipse-shaped bacterium, was isolated from activated sludge of a chloroacetamide-herbicides-manufacturing wastewater treatment facility. The strain was able to degrade more than 90% of butachlor, acetochlor and alachlor (100 mg l(-1)) within 5 days of incubation. The taxonomic position was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BUT-14(T) was a member of the genus Novosphingobium and showed the highest sequence similarities to Novosphingobium soli DSM 22821(T) (97.9%), N. naphthalenivorans KACC 15258(T) (97.4%), N. pentaromativorans JCM 12182(T) (97.4%) and N. barchaimii DSM 25411(T) (97.1%) and lower (<97%) sequence similarities to all other species of the genus Novosphingobium. Chemotaxonomic analysis revealed that strain BUT-14(T) possessed Q-10 as the predominant ubiquinone, spermidine as the major polyamine and C(18 : 1)ω7c (46.9%), C(17 : 1)ω6c (17.9%), summed feature 3, C(14 : 0) 2-OH (4.4%), C(15 : 0) 2-OH (3.1%) and C(16 : 0) (5.51%) as the major fatty acids. The polar lipids included lipid, glycolipid, phosphatidylglycerol, phospholipid, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid and phospatidyldimethylethanolamine. Strain BUT-14(T) showed low DNA-DNA relatedness with N. soli DSM 22821(T) (41.5±2.9%), N. naphthalenivorans JCM 12182(T) (49.2±4.2%), N. pentaromativorans KACC 12295(T) (53.2±1.9%) and N. barchaimii DSM 25411 (51.2±4.5%). The DNA G+C content was 66±0.3 mol%. The combination of phylogenetic analysis, phenotypic characteristics, chemotaxonomic data and DNA-DNA hybridization supports the suggestion that strain BUT-14(T) represents a novel species of the genus Novosphingobium, for which the name Novosphingobium chloroacetimidivorans sp. nov. is proposed. The type strain is BUT-14(T) ( = CCTCC AB 2013086(T) = KACC 17147(T) = JCM 19923(T)).

  14. Shewanella aestuarii sp. nov., a marine bacterium isolated from a tidal flat.

    PubMed

    Park, Hye Yoon; Jeon, Che Ok

    2013-12-01

    A Gram-stain-negative, non-spore-forming, facultatively anaerobic bacterium, designated strain SC18(T), was isolated from a tidal flat of Suncheon bay in South Korea. Cells were rod-shaped and motile by means of a polar flagellum. Cells were catalase-, oxidase- and β-haemolysis-positive. Growth was observed at 4-37 °C (optimum, 25-30 °C), at pH 5.0-9.0 (optimum, pH 7.0) and in the presence of 0-5.0 % (w/v) NaCl (optimum, 0-2 %). The major cellular fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), iso-C15 : 0 and C16 : 0. The polar lipid pattern indicated the presence of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmethylethanolamine, an unidentified aminolipid and three unidentified lipids. Strain SC18(T) contained Q-7, Q-8, MK-7 and MMK-7 as the dominant respiratory quinones and the G+C content of the genomic DNA was 41.3 mol%. Phylogenetic analysis based on 16S rRNA and gyrase B (gyrB) gene sequences showed that strain SC18(T) formed a tight phyletic lineage with members of the genus Shewanella. Strain SC18(T) was related most closely to Shewanella denitrificans OS217(T) (97.3 % 16S rRNA gene sequence similarity) and Shewanella gaetbuli TF-27(T) (97.1 %), but the DNA-DNA relatedness levels between strain SC18(T) and the type strains of S. denitrificans and S. gaetbuli were 18.3±2.8 and 22.5±1.6 % (mean±sd), respectively. On the basis of phenotypic, chemotaxonomic and molecular features, strain SC18(T) represents a novel species of the genus Shewanella, for which the name Shewanella aestuarii sp. nov. is proposed. The type strain is SC18(T) ( = KACC 16187(T) = JCM 17801(T)).

  15. Halobacillus salicampi sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment.

    PubMed

    Kim, Su-Jin; Lee, Jae-Chan; Han, Song-Ih; Whang, Kyung-Sook

    2016-05-01

    A Gram-positive, moderately halophilic bacterium, designated strain TGS-15(T), was isolated from the sediment of a solar saltern pond located in Shinan, Korea. Strain TGS-15(T) was found to be a strictly aerobic, non-motile rod which can grow at pH 6.0-10.0 (optimum, pH 9.0), at 20-35 °C (optimum, 28 °C) and at salinities of 1-20 % (w/v) NaCl (optimum, 9 % NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain TGS-15(T) belongs to the genus Halobacillus, with sequence similarity of 98.5-96.0 % to known type strains, showing high sequence similarity to Halobacillus locisalis MSS-155(T) (98.5 %), Halobacillus faecis IGA7-4(T) (98.2 %) and Halobacillus alkaliphilus FP5(T) (98.0 %), and less than 98.0 % sequence similarity to other currently recognised type strains of the genus. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid and an unidentified lipid. The cell wall peptidoglycan was found to be based on L-Orn-D-Asp, the predominant isoprenoid quinone was identified as menaquinone-7 (MK-7) and the major fatty acids were identified as anteiso-C15:0, iso-C15:0, anteiso-C17:0 and C16:1 ω7c alcohol. The DNA G+C content of this novel isolate was determined to be 45.3 mol %. Levels of DNA:DNA relatedness between strain TGS-15(T) and the type strains of 13 other species of the genus ranged from 52 to 9 %. On the basis of the polyphasic analysis conducted in this study, strain TGS-15(T) is concluded to represent a novel species of the genus Halobacillus, for which the name Halobacillus salicampi sp. nov. is proposed. The type strain is TGS-15(T) (=KACC 18264(T) = NBRC 110640(T)).

  16. Thalassobacillus pellis sp. nov., a moderately halophilic, Gram-positive bacterium isolated from salted hides.

    PubMed

    Sánchez-Porro, Cristina; Yilmaz, Pinar; de la Haba, Rafael R; Birbir, Meral; Ventosa, Antonio

    2011-05-01

    A Gram-positive, moderately halophilic and endospore-forming bacterium, designated strain 18OM(T), was isolated from salted animal hides. The cells were rods and produced ellipsoidal endospores at a terminal position. Strain 18OM(T) was motile, strictly aerobic and grew at 0.5-25 % (w/v) NaCl [optimal growth at 10 % (w/v) NaCl], at between pH 5.0 and 9.0 (optimal growth at pH 7.5) and at temperatures between 15 and 45 °C (optimal growth at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that strain 18OM(T) was closely related to species of the genus Thalassobacillus within the phylum Firmicutes. The closest phylogenetic similarity was with Thalassobacillus devorans G-19.1(T) (98.4 %), Thalassobacillus cyri HS286(T) (97.9 %) and Thalassobacillus hwangdonensis AD-1(T) (97.4 %). The major cellular fatty acids were anteiso-C(15 : 0) (57.9 %), anteiso-C(17 : 0) (14.0 %), iso-C(15 : 0) (10.8 %) and iso-C(16 : 0) (8.1 %). The respiratory isoprenoid quinones were MK-7 (98.5 %) and MK-6 (1.5 %). The DNA G+C content was 42.9 mol%. These features confirmed the placement of strain 18OM(T) within the genus Thalassobacillus. The DNA-DNA hybridization values between strain 18OM(T) and T. devorans G-19.1(T), T. cyri HS286(T) and T. hwangdonensis AD-1(T) were 49 %, 9 % and 15 %, respectively, showing unequivocally that strain 18OM(T) constituted a novel genospecies. On the basis of phylogenetic analysis and phenotypic, genotypic and chemotaxonomic characteristics, strain 18OM(T) is considered to represent a novel species of the genus Thalassobacillus, for which the name Thalassobacillus pellis sp. nov. is proposed. The type strain is 18OM(T) ( = CECT 7566(T) = DSM 22784(T) = JCM 16412(T)).

  17. Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome.

    PubMed

    Hahn, Martin W; Schmidt, Johanna; Taipale, Sami J; Doolittle, W Ford; Koll, Ulrike

    2014-09-01

    A pure culture of an actinobacterium previously described as 'Candidatus Rhodoluna lacicola' strain MWH-Ta8 was established and deposited in two public culture collections. Strain MWH-Ta8(T) represents a free-living planktonic freshwater bacterium obtained from hypertrophic Meiliang Bay, Lake Taihu, PR China. The strain was characterized by phylogenetic and taxonomic investigations, as well as by determination of its complete genome sequence. Strain MWH-Ta8(T) is noticeable due to its unusually low values of cell size (0.05 µm(3)), genome size (1.43 Mbp), and DNA G+C content (51.5 mol%). Phylogenetic analyses based on 16S rRNA gene and RpoB sequences suggested that strain MWH-Ta8(T) is affiliated with the family Microbacteriaceae with Pontimonas salivibrio being its closest relative among the currently described species within this family. Strain MWH-Ta8(T) and the type strain of Pontimonas salivibrio shared a 16S rRNA gene sequence similarity of 94.3 %. The cell-wall peptidoglycan of strain MWH-Ta8(T) was of type B2β (B10), containing 2,4-diaminobutyric acid as the diamino acid. The predominant cellular fatty acids were anteiso-C15 : 0 (36.5 %), iso-C16 : 0 (16.5 %), iso-C15 : 0 (15.6 %) and iso-C14 : 0 (8.9 %), and the major (>10 %) menaquinones were MK-11 and MK-12. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and two unknown glycolipids. The combined phylogenetic, phenotypic and chemotaxonomic data clearly suggest that strain MWH-Ta8(T) represents a novel species of a new genus in the family Microbacteriaceae, for which the name Rhodoluna lacicola gen. nov., sp. nov. is proposed. The type strain of the type species is MWH-Ta8(T) ( = DSM 23834(T) = LMG 26932(T)).

  18. Halomonas heilongjiangensis sp. nov., a novel moderately halophilic bacterium isolated from saline and alkaline soil.

    PubMed

    Dou, Guiming; He, Wei; Liu, Hongcan; Ma, Yuchao

    2015-08-01

    A moderately halophilic bacterium, designated strain 9-2(T), was isolated from saline and alkaline soil collected in Lindian county, Heilongjiang province, China. The strain was observed to be strictly aerobic, Gram-negative, rod-shaped, oxidase-positive, catalase-positive and motile. It was found to require NaCl for growth and to grow at NaCl concentrations of 0.5-14 % (w/v) (optimum, 7-10 %, w/v), at temperatures of 10-45 °C (optimum 25-30 °C) and at pH 5.0-10.0 (optimum pH 8.0). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 9-2(T) is a member of the genus Halomonas and is closely related to Halomonas desiderata DSM 9502(T) (96.68 %), Halomonas campaniensis DSM 1293(T) (96.46 %), Halomonas ventosae DSM 15911(T) (96.27 %) and Halomonas kenyensis DSM 17331(T) (96.27 %). The DNA-DNA hybridization value was 38.9 ± 0.66 % between the novel isolate 9-2(T) and H. desiderata DSM 9502(T). The predominant ubiquinones were identified as Q9 (75.1 %) and Q8 (24.9 %). The major fatty acids were identified as C16:0 (22.0 %), Summed feature 8 (C18:1 ω6c/C18:1 ω7c, 19.6 %), Summed feature 3 (C16:1 ω6c/C16:1 ω7c, 12.6 %), C12:0 3-OH (12.0 %) and C10:0 (11.7 %). The DNA G+C content was determined to be 69.7 mol%. On the basis of the evidence presented in this study, strain 9-2(T) is considered to represent a novel species of the genus Halomonas, for which the name Halomonas heilongjiangensis sp. nov. is proposed. The type strain is 9-2(T) (=DSM 26881(T) = CGMCC 1.12467(T)). PMID:26036672

  19. Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring.

    PubMed

    Rubiano-Labrador, Carolina; Baena, Sandra; Díaz-Cárdenas, Carolina; Patel, Bharat K C

    2013-04-01

    An anaerobic, moderately thermophilic, terminal-spore-forming bacterium, designated strain USBA A(T), was isolated from a terrestrial hot spring located at an altitude of 2683 m in the Andean region of Colombia (04° 50' 14.0″ N 75° 32' 53.4″ W). Cells of strain USBA A(T) were Gram-stain-positive, straight to slightly curved rods (0.9×2.5 µm), that were arranged singly or in pairs, and were motile by means of flagella. Growth occurred at 37-55 °C and pH 6.0-8.0, with a doubling time of 2 h under the optimal conditions (50 °C and pH 7.0). Glucose fermentation in strain USBA A(T) required yeast extract or peptone (each at 0.2 %, w/v). The novel strain fermented sugars, amino acids, Casamino acids, propanol, propionate, starch and dextrin, but no growth was observed on galactose, lactose, xylose, histidine, serine, threonine, benzoate, butyrate, lactate, pyruvate, succinate, methanol, ethanol, glycerol, casein, gelatin or xylan. The end products of glucose fermentation were formate, acetate, ethanol and lactate. Strain USBA A(T) did not grow autotrophically (with CO2 as carbon source and H2 as electron donor) and did not reduce thiosulfate, sulfate, elemental sulfur, sulfite, vanadium (V) or Fe (III) citrate. Growth of strain USBA A(T) was inhibited by ampicillin, chloramphenicol, kanamycin, penicillin and streptomycin (each at 10 µg ml(-1)). The predominant fatty acids were iso-C15 : 0, C16 : 0 and iso-C17 : 0 and the genomic DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis indicated that strain USBA A(T) belonged in the phylum Firmicutes and that its closest relative was Caloramator viterbiensis JW/MS-VS5(T) (95.0 % sequence similarity). A DNA-DNA relatedness value of only 30 % was recorded in hybridization experiments between strain USBA A(T) and Caloramator viterbiensis DSM 13723(T). Based on the phenotypic, chemotaxonomic and phylogenetic evidence and the results of the DNA-DNA hybridization experiments, strain USBA A

  20. Salipiger nanhaiensis sp. nov., a bacterium isolated from deep sea water.

    PubMed

    Dai, Xiaofeng; Shi, Xiaochong; Gao, Xin; Liang, Jing; Zhang, Xiao-Hua

    2015-04-01

    A Gram-stain-negative, facultatively anaerobic, chemoheterotrophic, moderately halophilic, exopolysaccharide (EPS)-producing, cream, non-motile and rod-shaped bacterium, designated strain ZH114(T), was isolated from deep water of the South China Sea, and was subjected to a polyphasic taxonomic study. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that this strain belongs to the genus Salipiger with the highest sequence similarity to Salipiger mucescens LMG 22090(T) (96.83%), followed by Pseudodonghicola xiamenensis LMG 24574(T) (96.12%). Growth occurred at 4-37 °C (optimum 32 °C), pH 6.0-10.0 (optimum pH 9.0-10.0) and in the presence of 0-19% NaCl (w/v) (optimum 6%, w/v). It did not produce poly-β-hydroxyalkanoate granules or bacteriochlorophyll a. Acid was produced from glycerol, erythrose, ribose, D-xylose, galactose, glucose, fructose, mannitol, cellobiose, maltose, lactose, melibiose, turanose, D-lyxose, D-tagatose, D-fucose, D-arabitol and L-arabitol after inoculating for 24 h and weakly positive results were also detected after 48 h in API 50CH strips with D-arabinose, L-arabinose, L-xylose, adonitol, mannose, aesculin, salicin, sucrose, mycose and L-fucose. The predominant fatty acids were C(18 : 1)ω7c and/or C(18 : 1)ω6c, C(16 : 0), C(18 : 0) and 11-methyl C(18 : 1)ω7c. The major polar lipids of ZH114(T) were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and two unidentified lipids. The major respiratory quinone was ubiquinone Q-10. The genomic DNA G+C content of strain ZH114(T) was 63.8 mol%. Based on this phenotypic, chemotaxonomic and phylogenetic analysis, strain ZH114(T) should be classified as a representative of a novel species of the genus Salipiger , for which the name Salipiger nanhaiensis sp. nov. is proposed. The type strain is ZH114(T) ( = JCM 19383(T) = KCTC 32468(T)). PMID:25589735

  1. Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments.

    PubMed

    Florentino, Anna P; Brienza, Claudio; Stams, Alfons J M; Sánchez-Andrea, Irene

    2016-03-01

    A novel acidotolerant and moderately thermophilic sulfur-reducing bacterium was isolated from sediments of the Tinto River (Spain), an extremely acidic environment. Strain TR1T stained Gram-negative, and was obligately anaerobic, non-spore-forming and motile. Cells were short rods (1.5-2 × 0.5-0.7 μm), appearing singly or in pairs. Strain TR1T was catalase-negative and slightly oxidase-positive. Urease activity and indole formation were absent, but gelatin hydrolysis was present. Growth was observed at 20-52 °C with an optimum close to 50 °C, and a pH range of 3-7 with optimum between pH 6 and 6.5. Yeast extract was essential for growth, but extra vitamins were not required. In the presence of sulfur, strain TR1T grew with acetate, formate, lactate, pyruvate, stearate, arginine and H2/CO2. All substrates were completely oxidized and H2S and CO2 were the only metabolic products detected. Besides elemental sulfur, thiosulfate was used as an electron acceptor. The isolate also grew by disproportionation of elemental sulfur. The predominant cellular fatty acids were saturated components: C16 : 0, anteiso-C17 : 0 and C18 : 0. The only quinone component detected was menaquinone MK-7(H2). The G+C content of the genomic DNA was 34 mol%. The isolate is affiliated to the genus Desulfurella of the class Deltaproteobacteria, sharing 97 % 16S rRNA gene sequence similarity with the four species described in the genus Desulfurella. Considering the distinct physiological and phylogenetic characteristics, strain TR1T represents a novel species within the genus Desulfurella, for which the name Desulfurella amilsii sp. nov. is proposed. The type strain is TR1T ( = DSM 29984T = JCM 30680T). PMID:26704766

  2. Caulobacter flavus sp. nov., a stalked bacterium isolated from rhizosphere soil.

    PubMed

    Sun, Le-Ni; Yang, En-Dong; Wei, Jie-Chao; Tang, Xin-Yun; Cao, Yuan-Yuan; Han, Guo-Min

    2015-12-01

    A Gram-stain-negative, aerobic, yellow-pigmented and rod-shaped bacterium with a single polar flagellum or a stalk, designated strain RHGG3T, was isolated from rhizosphere soil of cultivated watermelon (Citrullus lanatus) collected from Hefei, China. Optimal growth of strain RHGG3T was observed at pH 7.0 and 28-30 °C. Cells were catalase-positive and oxidase-negative. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain RHGG3T belonged to the genus Caulobacter and showed the highest 16S rRNA gene sequence similarities to Caulobacter segnis ATCC 21756T (98.6 %), Caulobacter vibrioides CB51T (98.3 %) and Caulobacter henricii ATCC 15253T (97.2 %). The G+C content of the genomic DNA was 70 mol%. Strain RHGG3T contained Q-10 as the sole ubiquinone and the major fatty acids (>8 %) were 11-methyl C18 : 1ω7c, C18 : 1ω7c, C16 : 0, C15 : 0 and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The polar lipids were various unknown glycolipids, phosphatidylglycerol and phosphoglycolipids. DNA-DNA relatedness of strain RHGG3T to type strains of the most closely related species (Caulobacter segnis ATCC 21756T, Caulobacter vibrioides DSM 4738 and Caulobacter henricii ATCC 15253T) was 32.4-40.9 %. Based on polyphasic taxonomy analysis (phylogenetic, unique phenotypic traits, chemotaxonomic and DNA-DNA hybridizations), strain RHGG3T represents a novel species of the genus Caulobacter, for which the name Caulobacter flavus sp. nov. is proposed. The type strain is RHGG3T ( = CGMCC 1.15093T = KCTC 42581T = JCM 30763T). PMID:26354335

  3. Tumebacillus flagellatus sp. nov., an α-amylase/pullulanase-producing bacterium isolated from cassava wastewater.

    PubMed

    Wang, Qingyan; Xie, Nengzhong; Qin, Yan; Shen, Naikun; Zhu, Jing; Mi, Huizhi; Huang, Ribo

    2013-09-01

    A novel α-amylase/pullulanase-producing bacterium, designated strain GST4(T), was isolated from samples collected from the wastewater of a cassava starch factory in Nanning, Guangxi Autonomous Region, southern China. Cells of strain GST4(T) were rod-shaped bacilli containing ellipsoidal terminal spores and found to be Gram-reaction-positive, aerobic, motile, oxidase-positive, catalase-negative and formed light yellow colonies on agar plates. Strain GST4(T) was able to grow at pH 4.5-8.5 (optimum at pH 5.5), temperatures ranging from 20 to 42 °C (optimum at 37 °C) and salt concentrations of 0-1% (w/v) NaCl (optimum at 0.5%, w/v) on R2A medium. Strain GST4(T) grew heterotrophically on complex carbon substrates and chemolithoautotrophically on inorganic sulfur compounds, as demonstrated by growth on sodium thiosulfate and sulfite as sole electron donors. It can reduce nitrate and nitrite. Strain GST4(T) contained iso-C(15:0) and anteiso-C(15:0) as the major cellular fatty acids and menaquinone 7 (MK-7) as the major respiratory quinone. The cell-wall peptidoglycan was of type A1γ. The genomic DNA G+C content of strain GST4(T) was 53.7 mol%. Physiological and chemotaxonomic characteristics combined with phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GST4(T) was a member of the genus Tumebacillus and most closely related to Tumebacillus permanentifrigoris DSM 18773(T) and Tumebacillus ginsengisoli DSM 18389(T) with 97.3 and 94.5% sequence similarity, respectively. The DNA-DNA relatedness values between strain GST4(T) and T. permanentifrigoris DSM 18773(T), and strain GST4(T) and T. ginsengisoli DSM 18389(T) were 44.0 and 60.4%, respectively. The new isolate differed from those species of the genus Tumebacillus in that it has peritrichous flagella for motility. Based on the evidence obtained from this study, strain GST4(T) represents a novel species of the genus Tumebacillus, for which the name Tumebacillus flagellatus sp. nov. is proposed

  4. Rheinheimera gaetbuli sp. nov., a Marine Bacterium Isolated from a Tidal Flat.

    PubMed

    Baek, Kyunghwa; Jeon, Che Ok

    2016-03-01

    A gram-staining-negative, strictly aerobic, rod-shaped, and motile bacterium with a single polar flagellum, designated H26(T), was isolated from tidal flat sediment in Jeju Island, South Korea. Growth of strain H26(T) was observed at 4-35 °C (optimum, 20-25 °C), pH 6.0-9.0 (optimum, pH 7.0-8.0), and 1-4 % NaCl (optimum, 2-3 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain H26(T) formed a phyletic lineage within the genus Rheinheimera, family Chromatiaceae. Strain H26(T) was most closely related to Rheinheimera baltica OSBAC1(T), Rheinheimera aestuarii H29(T), Rheinheimera muenzenbergensis E49(T), and Rheinheimera aquimaris SW-353(T) with 98.5, 98.1, 97.8, and 97.5 % of 16S rRNA gene sequence similarities, respectively. The DNA-DNA relatedness levels between strain H26(T) and the type strains of R. baltica, R. aestuarii, R. muenzenbergensis, and R. aquimaris were 35.5 ± 3.2, 33.4 ± 1.5, 31.2 ± 2.2, and 28.7 ± 0.9 %, respectively. The major fatty acids of strain H26(T) were iso-C15:0 3-OH, summed feature 3 (comprising C16:1 ω7c/C16:1 ω6c), C16:0, summed feature 8 (comprising C18:1 ω7c/C18:1 ω6c), iso-C17:0 3-OH, and C12:0 3-OH and the strain contained ubiquinone (Q-8) as the sole isoprenoid quinone. Phosphatidylethanolamine, phosphatidylglycerol, and an aminolipid were identified as the major polar lipids and the G + C content of the genomic DNA was 52.0 mol%. Based on the phenotypic, chemotaxonomic, and molecular properties, strain H26(T) represents a novel species of the genus Rheinheimera, for which the name Rheinheimera gaetbuli sp. nov. is proposed. The type strain was H26(T) (=KACC 18254(T) = JCM 30403(T)). PMID:26660082

  5. Marinobacter aromaticivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from sea sediment.

    PubMed

    Cui, Zhisong; Gao, Wei; Xu, Guangfei; Luan, Xiao; Li, Qian; Yin, Xiaofei; Huang, Deming; Zheng, Li

    2016-01-01

    A rod-shaped, Gram-stain-negative, slightly halotolerant bacterium, designated strain D15-8PT, was isolated from a sediment sample from the South China Sea. The strain could grow in NaCl concentrations ranging from 0.5 % to 10 % (w/v) (optimum 0.5-1.5 %), and could be cultivated at 10-40 °C (optimum 25 °C) and pH 5.5-9.5 (optimum pH 7.0-8.0). The strain was positive for catalase, oxidase, and hydrolysis of Tween 80, but negative for hydrolysis of DNA and gelatin, nitrite reduction, indole production, Voges-Proskauer reaction, and methyl red test. Strain D15-8PT could biodegrade naphthalene, phenanthrene, and anthracene. The major respiratory quinone was Q-9. The main cellular fatty acids were C12 : 0 (11.5 %), C14 : 0 3-methyl (22.0 %), C16 : 0 (19.2 %), C16 : 1ω9c (22.9 %), and C18 : 1ω9c (6.7 %). The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid and an unidentified phospholipid. The DNA G+C content was 56.8 mol%. Phylogenetic analyses based on 16S rRNA genes showed that strain D15-8PT was most closely related to Marinobacter maritimus JCM 12521T (98.5 % 16S rRNA gene sequence similarity), Marinobacter antarcticus CGMCC 1.10835T (98.1 %), Marinobacter lipolyticus DSM 15157T (97.1 %), and Marinobacter guineae CECT 7243T (97.0 %). Results of the gyrB gene analysis and DNA-DNA hybridization were both less than the cut-off values (90 % for gyrB gene sequence similarity and 70 % for DNA-DNA hybridization). On the basis of this taxonomic study using a polyphasic approach, strain D15-8PT represents a novel species of the genus Marinobacter, for which the name Marinobacter aromaticivorans sp. nov. is proposed. The type strain is D15-8PT ( = CGMCC 1.11015T = KCTC 23781T).

  6. Erythrobacter atlanticus sp. nov., a bacterium from ocean sediment able to degrade polycyclic aromatic hydrocarbons.

    PubMed

    Zhuang, Lingping; Liu, Yang; Wang, Lin; Wang, Wanpeng; Shao, Zongze

    2015-10-01

    A Gram-stain-negative, motile, rod-shaped, orange-pigmented bacterium able to degrade polycyclic aromatic hydrocarbons was isolated from deep-sea sediment of the Atlantic Ocean and subjected to a polyphasic taxonomic study. The strain, designated s21-N3T, could grow at 4–37 °C (optimum 28 °C), at pH 5–10 (optimum pH 7–8) and with 1–7 % (w/v) NaCl (optimum 2–3 %). Strain s21-N3T was positive for nitrate reduction, denitrification, aesculin hydrolysis, oxidase and catalase, but negative for indole production and urease. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain s21-N3T formed a distinct branch within the genus Erythrobacter, sharing high similarities with three closely related strains, Erythrobacter marinus HWDM-33T (98.67 %), ‘Erythrobacter luteus’ KA37 (97.80 %) and Erythrobacter gangjinensis K7-2T (97.59 %). The similarities between strain s21-N3T and other type strains of recognized species within the genus Erythrobacter ranged from 95.00 to 96.47 %. The digital DNA–DNA hybridization values and average nucleotide identity (ANI) values between strain s21-N3T and the three closely related strains Erythrobacter marinus HWDM-33T, ‘Erythrobacter luteus’ KA37 and Erythrobacter gangjinensis K7-2T were 18.60, 18.00 and 18.50 % and 74.24, 72.49 and 72.54 %, respectively. The principal fatty acids were summed feature 8 (C18 : 1ω7c/ω6c) and summed feature 3 (C16 : 1ω7c/ω6c). The respiratory lipoquinone was identified as Q-10. The major polar lipids comprised sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and diphosphatidylglycerol. The G+C content of the chromosomal DNA was determined to be 58.18 mol%. The combined genotypic and phenotypic distinctiveness demonstrated that strain s21-N3T represents a novel species of the genus Erythrobacter, for which the name Erythrobacter atlanticus sp. nov. is proposed, with the type strain s21-N3T (

  7. Salipiger nanhaiensis sp. nov., a bacterium isolated from deep sea water.

    PubMed

    Dai, Xiaofeng; Shi, Xiaochong; Gao, Xin; Liang, Jing; Zhang, Xiao-Hua

    2015-04-01

    A Gram-stain-negative, facultatively anaerobic, chemoheterotrophic, moderately halophilic, exopolysaccharide (EPS)-producing, cream, non-motile and rod-shaped bacterium, designated strain ZH114(T), was isolated from deep water of the South China Sea, and was subjected to a polyphasic taxonomic study. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that this strain belongs to the genus Salipiger with the highest sequence similarity to Salipiger mucescens LMG 22090(T) (96.83%), followed by Pseudodonghicola xiamenensis LMG 24574(T) (96.12%). Growth occurred at 4-37 °C (optimum 32 °C), pH 6.0-10.0 (optimum pH 9.0-10.0) and in the presence of 0-19% NaCl (w/v) (optimum 6%, w/v). It did not produce poly-β-hydroxyalkanoate granules or bacteriochlorophyll a. Acid was produced from glycerol, erythrose, ribose, D-xylose, galactose, glucose, fructose, mannitol, cellobiose, maltose, lactose, melibiose, turanose, D-lyxose, D-tagatose, D-fucose, D-arabitol and L-arabitol after inoculating for 24 h and weakly positive results were also detected after 48 h in API 50CH strips with D-arabinose, L-arabinose, L-xylose, adonitol, mannose, aesculin, salicin, sucrose, mycose and L-fucose. The predominant fatty acids were C(18 : 1)ω7c and/or C(18 : 1)ω6c, C(16 : 0), C(18 : 0) and 11-methyl C(18 : 1)ω7c. The major polar lipids of ZH114(T) were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and two unidentified lipids. The major respiratory quinone was ubiquinone Q-10. The genomic DNA G+C content of strain ZH114(T) was 63.8 mol%. Based on this phenotypic, chemotaxonomic and phylogenetic analysis, strain ZH114(T) should be classified as a representative of a novel species of the genus Salipiger , for which the name Salipiger nanhaiensis sp. nov. is proposed. The type strain is ZH114(T) ( = JCM 19383(T) = KCTC 32468(T)).

  8. Oceanirhabdus sediminicola gen. nov., sp. nov., an anaerobic bacterium isolated from sea sediment.

    PubMed

    Pi, Ruo-Xi; Zhang, Wen-Wu; Fang, Ming-Xu; Zhang, Yan-Zhou; Li, Tian-Tian; Wu, Min; Zhu, Xu-Fen

    2013-11-01

    A novel anaerobic bacterium, designated NH-JN4(T) was isolated from a sediment sample collected in the South China Sea. Cells were Gram-stain-positive, spore-forming, peritrichous and rod-shaped (0.5-1.2×2.2-7 µm). The temperature and pH ranges for growth were 22-42 °C and pH 6.0-8.5. Optimal growth occurred at 34-38 °C and pH 6.5-7.0. The NaCl concentration range for growth was 0.5-6 % (w/v) with an optimum of 2.5 %. Catalase and oxidase were not produced. Substrates which could be utilized were peptone, tryptone, yeast extract, beef extract and glycine. Main fermentation products from PYG medium were formate, acetate, butyrate and ethanol. Strain NH-JN4(T) could utilize sodium sulfite as an electron acceptor. No respiratory quinone was detected. The predominant fatty acids were anteiso-C15 : 0, C16 : 0, iso-C15 : 0, anteiso-C17 : 0 and C16 : 0 DMA. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and glycolipids. The DNA G+C content was 35.8 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain NH-JN4(T) was a member of family Clostridiaceae, and was most closely related to Clostridium limosum ATCC 25620(T), Clostridium proteolyticum DSM 3090(T), Clostridium histolyticum ATCC 19401(T) and Clostridium tepidiprofundi SG 508(T), showing 94.0, 93.0, 92.9 and 92.3 % sequence similarity, respectively. On the basis of phenotypic, genotypic and chemotaxonomic properties, strain NH-JN4(T) represents a novel species of a new genus in the family Clostridiaceae, for which the name Oceanirhabdus sediminicola gen. nov., sp. nov. is proposed. The type strain of the type species is NH-JN4(T) ( = JCM 18501(T) = CCTCC AB 2013103(T) = KCTC 15322(T)).

  9. Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell.

    PubMed

    Yang, Gui-Qin; Zhang, Jun; Kwon, Soon-Wo; Zhou, Shun-Gui; Han, Lu-Chao; Chen, Ming; Ma, Chen; Zhuang, Li

    2013-03-01

    A Gram-negative, rod-shaped, non-spore-forming bacterium, designated SgZ-1(T), was isolated from the anode biofilm of a microbial fuel cell. The strain had the ability to grow under anaerobic condition via the oxidation of various organic compounds coupled to the reduction of anthraquione-2,6-disulfonate (AQDS) to anthrahydroquinone-2,6-disulfonate (AHQDS). Growth occurred in TSB in the presence of 0-5.5 % (w/v) NaCl (optimum 0-1 %), at 10-45 °C (optimum 25-37 °C) and at pH 6.0-10.0 (optimum 8.0-8.5). Based on 16S rRNA gene sequence similarity, strain SgZ-1(T) belonged to the genus Thauera. The highest level of 16S rRNA gene sequences similarity (96.7 %) was found to be with Thauera aminoaromatica S2(T) and Thauera selenatis AX(T), and lower values were obtained when compared with other recognized Thauera species. Chemotaxonomic analysis revealed that strain SgZ-1(T) contained Q-8 as the predominant quinone, and putrescine and 2-hydroxyputrescine as the major polyamines. The major cellular fatty acids (>5 %) were C16 : 1ω6c and/or C16 : 1ω7c (44.6 %), C16 : 0 (18.8 %), and C18 : 1ω6c and/or C18 : 1ω7c (12.7 %). Based on its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-1(T) ( = KACC 16524(T) = CCTCC M 2011497(T)) was designated the type strain of a novel species of the genus Thauera, for which the name Thauera humireducens sp. nov. was proposed.

  10. Draft genome sequence of a Sphingomonas sp., an endosymbiotic bacterium isolated from an arctic lichen Umbilicaria sp.

    PubMed

    Lee, Jungeun; Shin, Seung Chul; Kim, Su Jin; Kim, Bum-Keun; Hong, Soon Gyu; Kim, Eun Hye; Park, Hyun; Lee, Hyoungseok

    2012-06-01

    Sphingomonas sp. strain PAMC 26617 has been isolated from an Arctic lichen Umbilicaria sp. on the Svalbard Islands. Here we present the draft genome sequence of this strain, which represents a valuable resource for understanding the symbiotic mechanisms between endosymbiotic bacteria and lichens surviving in extreme environments.

  11. Induction of defense response against Rhizoctonia solani in cucumber plants by endophytic bacterium Bacillus thuringiensis GS1.

    PubMed

    Seo, Dong-Jun; Nguyen, Dang-Minh-Chanh; Song, Yong-Su; Jung, Woo-Jin

    2012-03-01

    An endophytic bacterium, Bacillus thuringiensis GS1, was isolated from bracken (Pteridium aquilinum) and found to have maximal production of chitinase (4.3 units/ml) at 5 days after culture. This study investigated the ability of B. thuringiensis GS1 to induce resistance to Rhizoctonia solani KACC 40111 (RS) in cucumber plants. Chitinase activity was greatest in RS-treated plants at 4 days. beta-1,3- Glucanase activity was highest in GS1-treated plants at 5 days. Guaiacol peroxidase (GPOD) activity increased continuously in all treated plants for 5 days. Ascorbate peroxidase (APX) activity in RS-treated plants was increased 1.5-fold compared with the control at 4 days. Polyphenol oxidase (PPO) activity in RS-treated plants was increased 1.5-fold compared with the control at 3 days. At 5 days after treatment, activity staining revealed three bands with chitinase activity (Ch1, Ch2, and Ch3) on SDSPAGE of cucumber plants treated with GS1+RS, whereas only one band was observed for RS-treated plants (Ch2). One GPOD isozyme (Gp1) was also observed in response to treatment with RS and GS1+RS at 4 days. One APX band (Ap2) was present on the native-PAGE gel of the control, and GS1- and GS1+RS-treated plants at 1 day. PPO bands (Po1 and Po2) from RS- and GS1+RS-treated plants were stronger than in the control and GS1-treated plants upon native-PAGE at 5 days. Taken together, these results indicate that the induction of PR proteins and defense-related enzymes by B. thuringiensis GS1 might have suppressed the damping-off caused by R. solani KACC 40111 in cucumber plants.

  12. A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14.

    PubMed

    Zhou, Junpei; Wu, Qian; Zhang, Rui; Mo, Minghe; Tang, Xianghua; Li, Junjun; Xu, Bo; Ding, Junmei; Lu, Qian; Huang, Zunxi

    2014-09-01

    A glycosyl hydrolase family 10 endoxylanase from Bacillus sp. HJ14 was grouped in a separated cluster with another six Bacillus endoxylanases which have not been characterized. These Bacillus endoxylanases showed less than 52% amino acid sequence identity with other endoxylanases and far distance with endoxylanases from most microorganisms. Signal peptide was not detected in the endoxylanase. The endoxylanase was expressed in Escherichia coli BL21 (DE3), and the purified recombinant enzyme (rXynAHJ14) was characterized. rXynAHJ14 was apparent optimal at 62.5 °C and pH 6.5 and retained more than 55% of the maximum activity when assayed at 40-75 °C, 23% at 20 °C, 16% at 85 °C, and even 8% at 0 °C. Half-lives of the enzyme were more than 60 min, approximately 25 and 4 min at 70, 75, and 80 °C, respectively. The enzyme exhibited more than 62% xylanase activity and stability at the concentration of 3-30% (w/v) NaCl. No xylanase activity was lost after incubation of the purified rXynAHJ14 with trypsin and proteinase K at 37 °C for 60 min. Different components of oligosaccharides were detected in the time-course hydrolysis of beechwood xylan by the enzyme. During the simulated intestinal digestion phase in vitro, 11.5-19.0, 15.3-19.0, 21.9-27.7, and 28.2-31.2 μmol/mL reducing sugar were released by the purified rXynAHJ14 from soybean meal, wheat bran, beechwood xylan, and rapeseed meal, respectively. The endoxylanase might be an alternative for potential applications in the processing of sea food and saline food and in aquaculture as agastric fish feed additive. PMID:24728834

  13. A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14.

    PubMed

    Zhou, Junpei; Wu, Qian; Zhang, Rui; Mo, Minghe; Tang, Xianghua; Li, Junjun; Xu, Bo; Ding, Junmei; Lu, Qian; Huang, Zunxi

    2014-09-01

    A glycosyl hydrolase family 10 endoxylanase from Bacillus sp. HJ14 was grouped in a separated cluster with another six Bacillus endoxylanases which have not been characterized. These Bacillus endoxylanases showed less than 52% amino acid sequence identity with other endoxylanases and far distance with endoxylanases from most microorganisms. Signal peptide was not detected in the endoxylanase. The endoxylanase was expressed in Escherichia coli BL21 (DE3), and the purified recombinant enzyme (rXynAHJ14) was characterized. rXynAHJ14 was apparent optimal at 62.5 °C and pH 6.5 and retained more than 55% of the maximum activity when assayed at 40-75 °C, 23% at 20 °C, 16% at 85 °C, and even 8% at 0 °C. Half-lives of the enzyme were more than 60 min, approximately 25 and 4 min at 70, 75, and 80 °C, respectively. The enzyme exhibited more than 62% xylanase activity and stability at the concentration of 3-30% (w/v) NaCl. No xylanase activity was lost after incubation of the purified rXynAHJ14 with trypsin and proteinase K at 37 °C for 60 min. Different components of oligosaccharides were detected in the time-course hydrolysis of beechwood xylan by the enzyme. During the simulated intestinal digestion phase in vitro, 11.5-19.0, 15.3-19.0, 21.9-27.7, and 28.2-31.2 μmol/mL reducing sugar were released by the purified rXynAHJ14 from soybean meal, wheat bran, beechwood xylan, and rapeseed meal, respectively. The endoxylanase might be an alternative for potential applications in the processing of sea food and saline food and in aquaculture as agastric fish feed additive.

  14. Studies on cultivation kinetics for elastase production by Bacillus sp. EL31410.

    PubMed

    Chen, Qi-He; He, Guo-Qing; Schwarz, Paul

    2004-06-01

    It was the first time to study elastase batch cultivation kinetics. This paper discusses the growth kinetics, elastase production, and substrate consumption kinetics model of Bacillus sp. EL31410 in batch cultivation. A simple model was proposed using a logistic equation for growth, the Luedeking-Piret equation for elastase production, and the Luedeking-Piret-like equation for glucose consumption. The model appeared to provide a reasonable description for each parameter during the growth phase. This study could provide some support for studying elastase fermentation kinetics, especially for studying its singular growth phenomenon. However, the model for elastase production is not good for explaining the real process and is still up to research. PMID:15161197

  15. Genomic and functional features of the biosurfactant producing Bacillus sp. AM13.

    PubMed

    Shaligram, Shraddha; Kumbhare, Shreyas V; Dhotre, Dhiraj P; Muddeshwar, Manohar G; Kapley, Atya; Joseph, Neetha; Purohit, Hemant P; Shouche, Yogesh S; Pawar, Shrikant P

    2016-09-01

    Genomic studies provide deeper insights into secondary metabolites produced by diverse bacterial communities, residing in various environmental niches. This study aims to understand the potential of a biosurfactant producing Bacillus sp. AM13, isolated from soil. An integrated approach of genomic and chemical analysis was employed to characterize the antibacterial lipopeptide produced by the strain AM13. Genome analysis revealed that strain AM13 harbors a nonribosomal peptide synthetase (NRPS) cluster; highly similar with known biosynthetic gene clusters from surfactin family: lichenysin (85 %) and surfactin (78 %). These findings were substantiated with supplementary experiments of oil displacement assay and surface tension measurements, confirming the biosurfactant production. Further investigation using LCMS approach exhibited similarity of the biomolecule with biosurfactants of the surfactin family. Our consolidated effort of functional genomics provided chemical as well as genetic leads for understanding the biochemical characteristics of the bioactive compound. PMID:27492417

  16. Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry.

    PubMed

    Anjum, Farhan; Gautam, Gunjan; Edgard, Gnansounou; Negi, Sangeeta

    2016-08-01

    In this study Bacillus sp. MTCC5877 was explored for the production of biosurfactant (BSs) and various carbon sources 1% (w/v), 0.5% (w/v) nitrogen sources were tested at different pH, and temperature. Yield was measured in terms of Emulsification index (EI), Oil Displacement Area (ODA) and Drop Collapse Area (DCA) and maximum emulsification activities of BSs were found (E24) 50%, 76% and 46%, respectively, and maximum ODA of 5.0, 6.2 and 4.7cm, were shown respectively. The BS was able to reduce the surface tension of water from 72 to 30mN/m and 72 to 32mN/m. Structural compositions of BS were confirmed by FTIR, GC-MS and NMR. Anti-adhesive property of BS was determined and found effective against biofilm formation. It could remove 73% Cd from vegetable which confirms its application in food industry.

  17. Isolation, purification and spectrometric analysis of PSP toxins from moraxella sp., a bacterium associated with a toxic dinoflagellate

    SciTech Connect

    Boyce, S.D.; Doucette, G.J.

    1994-12-31

    Paralytic shellfish poisoning (PSP) is a seafood intoxication syndrome caused by the injestion of shellfish contaminated with toxins produced by algae known as dinoflagellates. The PSP toxins, saxitoxin and its derivatives, act to block voltage-dependent sodium channels and can cause paralysis and even death at higher doses. It is well documented that bacteria coexist with many harmful or toxic algal species, though the exact nature of the association in relation to toxin production is unknown. Recently, the bacterium Moraxella sp. was isolated from the PSP toxin producing dinoflagellate Alexandrium tamarense. Through HPLC analysis and saxitoxin receptor binding assays performed on crude bacterial extracts, it appears that Moraxella sp. is capable of producing saxitoxin and several of its derivatives. However, physical confirmation (e.g. mass spectrometry) of these results is still needed.

  18. Directed evolution of a maltogenic alpha-amylase from Bacillus sp. TS-25.

    PubMed

    Jones, Aubrey; Lamsa, Michael; Frandsen, Torben P; Spendler, Tina; Harris, Paul; Sloma, Alan; Xu, Feng; Nielsen, Jack Bech; Cherry, Joel R

    2008-04-30

    Directed evolution coupled with a high-throughput robotic screen was employed to broaden the industrial use of the maltogenic alpha-amylase Novamyl from Bacillus sp. TS-25. Wild-type Novamyl is currently used in the baking industry as an anti-staling agent in breads baked at neutral or near neutral pH. However, the enzyme is rapidly inactivated during the baking process of bread made with low pH recipes and Novamyl thus has very limited beneficial effect for this particular application. In an effort to improve the performance of Novamyl for low pH bread applications such as sourdough and rye, two error-prone PCR libraries were generated, expressed in Bacillus subtilis and screened for variants with improved thermal stability and activity under low pH conditions. Variants exhibiting improved performance were iteratively recombined using DNA shuffling to create two generations of libraries. Relative to wild-type Novamyl, a number of the resulting variants exhibited more than 10 degrees C increase in thermal stability at pH 4.5, one of which demonstrated substantial anti-staling properties in low pH breads.

  19. Characterization of a Bioflocculant (MBF-UFH) Produced by Bacillus sp. AEMREG7

    PubMed Central

    Okaiyeto, Kunle; Nwodo, Uchechukwu U.; Mabinya, Leonard V.; Okoli, Arinze S.; Okoh, Anthony I.

    2015-01-01

    A bioflocculant named MBF-UFH produced by a Bacillus species isolated from sediment samples of Algoa Bay of the Eastern Cape Province of South Africa was characterized. The bacterial identification was through 16S rDNA sequencing; nucleotide sequences were deposited in GenBank as Bacillus sp. AEMREG7 with Accession Number KP659187. The production of the bioflocculant was observed to be closely associated with cell growth. The bioflocculant had the highest flocculating activity of 83.2% after 72 h of cultivation, and approximately 1.6 g of purified MBF-UFH was recovered from 1 L of fermentation broth. Its chemical analyses indicated that it is a glycoprotein composed of polysaccharide (76%) and protein (14%). Fourier transform infrared spectroscopy (FTIR) revealed that it consisted of hydroxyl, amide, carboxyl and methoxyl as the functional moieties. Scanning electron microscopy (SEM) revealed the amorphous structure of MBF-UFH and flocculated kaolin clay particles. The maximum flocculating activity of 92.6% against kaolin clay suspension was achieved at 0.3 mg/mL over pH ranges of 3–11 with the peak flocculating rate at pH 8 in the presence of MgCl2. The bioflocculant retained high flocculating activity of 90% after heating at 100 °C for 1 h. MBF-UFH appears to have immense potential as an alternative to conventional chemical flocculants. PMID:26062133

  20. Root Associated Bacillus sp. Improves Growth, Yield and Zinc Translocation for Basmati Rice (Oryza sativa) Varieties

    PubMed Central

    Shakeel, Muhammad; Rais, Afroz; Hassan, Muhammad Nadeem; Hafeez, Fauzia Yusuf

    2015-01-01

    Plant associated rhizobacteria prevailing in different agro-ecosystems exhibit multiple traits which could be utilized in various aspect of sustainable agriculture. Two hundred thirty four isolates were obtained from the roots of basmati-385 and basmati super rice varieties growing in clay loam and saline soil at different locations of Punjab (Pakistan). Out of 234 isolates, 27 were able to solubilize zinc (Zn) from different Zn ores like zinc phosphate [Zn3 (PO4)2], zinc carbonate (ZnCO3) and zinc oxide (ZnO). The strain SH-10 with maximum Zn solubilization zone of 24 mm on Zn3 (PO4)2ore and strain SH-17 with maximum Zn solubilization zone of 14–15 mm on ZnO and ZnCO3ores were selected for further studies. These two strains solubilized phosphorous (P) and potassium (K) in vitro with a solubilization zone of 38–46 mm and 47–55 mm respectively. The strains also suppressed economically important rice pathogens Pyricularia oryzae and Fusarium moniliforme by 22–29% and produced various biocontrol determinants in vitro. The strains enhanced Zn translocation toward grains and increased yield of basmati-385 and super basmati rice varieties by 22–49% and 18–47% respectively. The Zn solubilizing strains were identified as Bacillus sp. and Bacillus cereus by 16S rRNA gene analysis. PMID:26635754

  1. Bioflocculant production by Bacillus sp. Gilbert isolated from a marine environment in South Africa.

    PubMed

    Ugbenyen, A M; Cosa, S; Mabinya, L V; Okoh, A I

    2014-01-01

    In our previous study we reported on the bioflocculant production by a Bacillus species isolated from sediment samples of Algoa Bay in the Eastern Cape Province of South Africa. In current study we carried out further evaluation on the effect of different culture conditions on the bioflocculant production, as well as characterised the bioflocculant produced in detail. The bacteria produced bioflocculant optimally under the following conditions: using sodium carbonate (95.2% flocculating activity) and potassium nitrate (76.6% flocculating activity) as carbon and nitrogen sources, respectively; inoculum size of 3% (v/v); initial pH 9.0; and Al3+ as coagulant aid. The crude bioflocculant retained 44.2% residual flocculating activity after heating at 100 degrees C for 15 min. Chemical analysis of the Bacillus sp. Gilbert purified bioflocculant demonstrated that it was composed mainly of polysaccharide. Fourier transform infrared spectroscopy analysis revealed the presence of hydroxyl, carboxyl and methylene groups in the bioflocculant and energy-dispersive X-ray analysis detected the elemental composition in mass proportion (% w/w) of C, N, O, S and P as 4.12 : 7.40: 39.92: 3.00: 13.91. Scanning electron micrograph image of the bioflocculant revealed an amorphous compound. PMID:25272753

  2. Root Associated Bacillus sp. Improves Growth, Yield and Zinc Translocation for Basmati Rice (Oryza sativa) Varieties.

    PubMed

    Shakeel, Muhammad; Rais, Afroz; Hassan, Muhammad Nadeem; Hafeez, Fauzia Yusuf

    2015-01-01

    Plant associated rhizobacteria prevailing in different agro-ecosystems exhibit multiple traits which could be utilized in various aspect of sustainable agriculture. Two hundred thirty four isolates were obtained from the roots of basmati-385 and basmati super rice varieties growing in clay loam and saline soil at different locations of Punjab (Pakistan). Out of 234 isolates, 27 were able to solubilize zinc (Zn) from different Zn ores like zinc phosphate [Zn3 (PO4)2], zinc carbonate (ZnCO3) and zinc oxide (ZnO). The strain SH-10 with maximum Zn solubilization zone of 24 mm on Zn3 (PO4)2ore and strain SH-17 with maximum Zn solubilization zone of 14-15 mm on ZnO and ZnCO3ores were selected for further studies. These two strains solubilized phosphorous (P) and potassium (K) in vitro with a solubilization zone of 38-46 mm and 47-55 mm respectively. The strains also suppressed economically important rice pathogens Pyricularia oryzae and Fusarium moniliforme by 22-29% and produced various biocontrol determinants in vitro. The strains enhanced Zn translocation toward grains and increased yield of basmati-385 and super basmati rice varieties by 22-49% and 18-47% respectively. The Zn solubilizing strains were identified as Bacillus sp. and Bacillus cereus by 16S rRNA gene analysis. PMID:26635754

  3. Chromium reduction, plant growth-promoting potentials, and metal solubilizatrion by Bacillus sp. isolated from alluvial soil.

    PubMed

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir; Zaidi, Almas

    2007-03-01

    The plant growth-promoting potentials, production of siderophore and solubilization of insoluble phosphorus (P) and zinc and lead by the chromium (vi) -reducing Bacillus species, PSB 1, PSB 7, and PSB 10, was assessed both in the presence and absence of chromium under in vitro conditions. The Bacillus strains tolerated chromium up to the concentration of 500 (PSB1), 400 (PSB7), and 550 microg ml(-1) (PSB10), respectively, on nutrient agar plates. Bacillus sp. PSB 10 reduced Cr (vi) by 87% at pH 7, which was followed by Bacillus sp. PSB 1 (83%) and PSB 7 (74%) in nutrient broth after 120 h of incubation. A concentration of 50 microg ml(-1) of Cr (vi) was completely reduced by Bacillus sp. PSB 1 and PSB 10 (after 100 h) and PSB 7 (after 120 h). The Bacillus strains PSB 1, PSB 7, and PSB 10 produced 19.3, 17.7, and 17.4 microg ml(-1) of indole acetic acid, respectively, in luria bertani broth at 100 microg ml(-1) of tryptophan, which consistently decreased with an increase in chromium concentration. The Bacillus strains were positive for siderophore, HCN, and ammonia both in the absence and presence of chromium. The Bacillus strains solubilized 375 (PSB 1), 340 (PSB 7), and 379 (PSB 10) microg ml(-1) P, respectively, in Pikovskaya broth devoid of chromium. In contrast, chromium at 150 microg ml(-1) reduced the amount of P solubilized by 17 (PSB 1), 15 (PSB 7), and 9% (PSB 10) compared to control. The tested bacterial strains solubilized a considerable amount of zinc and lead in nutrient broth both in the absence and presence of chromium. Generally, the chromium reduction and the plant growth-promoting potentials of chromium-reducing Bacillus were strongly correlated at the tested concentration of chromium. The present observations demonstrated that the chromium-reducing, metal-solubilizing, and plant growth-promoting potentials of the Bacillus strains PSB1, PSB 7, and PSB10 were not adversely affected by the chromium application and, hence, may be applied for raising

  4. Inhibitory activity of an extract from a marine bacterium Halomonas sp. HSB07 against the red-tide microalga Gymnodinium sp. (Pyrrophyta)

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Li, Fuchao; Liu, Ling; Jiang, Peng; Liu, Zhaopu

    2013-11-01

    In recent years, red tides occurred frequently in coastal areas worldwide. Various methods based on the use of clay, copper sulfate, and bacteria have been successful in controlling red tides to some extent. As a new defensive agent, marine microorganisms are important sources of compounds with potent inhibitory bioactivities against red-tide microalgae, such as Gymnodinium sp. (Pyrrophyta). In this study, we isolated a marine bacterium, HSB07, from seawater collected from Hongsha Bay, Sanya, South China Sea. Based on its 16S rRNA gene sequence and biochemical characteristics, the isolated strain HSB07 was identified as a member of the genus Halomonas. A crude ethyl acetate extract of strain HSB07 showed moderate inhibition activity against Gymnodinium sp. in a bioactive prescreening experiment. The extract was further separated into fractions A, B, and C by silica gel column chromatography. Fractions B and C showed strong inhibition activities against Gymnodinium. This is the first report of inhibitory activity of secondary metabolites of a Halomonas bacterium against a red-tide-causing microalga.

  5. Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwater lake sediment.

    PubMed

    Müller, Nicolai; Scherag, Frank D; Pester, Michael; Schink, Bernhard

    2015-09-01

    A novel type of anaerobic bacteria was previously isolated from profundal lake sediment by direct dilution of the sediment in mineral agar medium containing glucose and a background lawn of Methanospirillum hungatei as a syntrophic partner. The isolated bacteria grouped with aerobic Bacillus spp. according to their 16S rRNA gene sequence, and the most closely related species is Bacillus thioparans. Fermentative growth of the novel strain with glucose was possible only in the presence of syntrophic partners, and cocultures produced acetate and methane, in some cases also lactate and traces of succinate as fermentation products. In contrast, the closely related strains Bacillus jeotgali and Bacillus sp. strain PeC11 are able to grow with glucose axenically by mixed acid fermentation yielding lactate, acetate, formate, succinate, and ethanol as fermentation products. Alternatively, the isolated strain grew anaerobically in pure culture if pyruvate was added to glucose-containing media, and lactate, acetate and formate were the major fermentation products, but the strain never produced ethanol. Aerobic growth was found with a variety of organic substrates in the presence of partly reduced sulfur compounds. In the absence of sulfide and oxygen, nitrate served as an electron acceptor. Strain BoGlc83 was characterized as the type strain of a new species for which the name Bacillus stamsii sp. nov. (DSM 19598=JCM 30025) is proposed.

  6. Expression of Bacillus protease (Protease BYA) from Bacillus sp. Y in Bacillus subtilis and enhancement of its specific activity by site-directed mutagenesis-improvement in productivity of detergent enzyme-.

    PubMed

    Tobe, Seiichi; Shimogaki, Hisao; Ohdera, Motoyasu; Asai, Yoshio; Oba, Kenkichi; Iwama, Masanori; Irie, Masachika

    2006-01-01

    An attempt was made to express protease BYA produced by an alkalophilic Bacillus sp. Y in Bacillus subtilis by gene engineering methods. The gene encoding protease BYA was cloned from Bacillus sp. Y, and expression vector pTA71 was constructed from the amylase promoter of Bacillus licheniformis, DNA fragments encoding the open reading frame of protease BYA, and pUB110. Protease BYA was secreted at an activity level of 5100 APU/ml in the common industrial culture medium of Bacillus subtilis transformed with pTA71. We then attempted to increase the specific activity of protease BYA by site-directed mutagenesis. Amino acid residue Ala29 next to catalytic Asp30 was replaced by one of three uncharged amino acid residues (Val29, Leu29, Ile29), and each mutant enzyme was expressed and isolated from the culture medium. Val29 mutant enzyme was secreted at an activity level of greater than 7000 APU/ml in culture medium, and its specific activity was 1.5-fold higher than that of the wild-type enzyme. Other mutant enzymes had specific activity similar to that of the original one and were less stabile than the wild-type enzyme. It can be thought that the substitution at amino acid residue 29 affects the level of activity and stability of protease BYA.

  7. Expression of Bacillus protease (Protease BYA) from Bacillus sp. Y in Bacillus subtilis and enhancement of its specific activity by site-directed mutagenesis-improvement in productivity of detergent enzyme-.

    PubMed

    Tobe, Seiichi; Shimogaki, Hisao; Ohdera, Motoyasu; Asai, Yoshio; Oba, Kenkichi; Iwama, Masanori; Irie, Masachika

    2006-01-01

    An attempt was made to express protease BYA produced by an alkalophilic Bacillus sp. Y in Bacillus subtilis by gene engineering methods. The gene encoding protease BYA was cloned from Bacillus sp. Y, and expression vector pTA71 was constructed from the amylase promoter of Bacillus licheniformis, DNA fragments encoding the open reading frame of protease BYA, and pUB110. Protease BYA was secreted at an activity level of 5100 APU/ml in the common industrial culture medium of Bacillus subtilis transformed with pTA71. We then attempted to increase the specific activity of protease BYA by site-directed mutagenesis. Amino acid residue Ala29 next to catalytic Asp30 was replaced by one of three uncharged amino acid residues (Val29, Leu29, Ile29), and each mutant enzyme was expressed and isolated from the culture medium. Val29 mutant enzyme was secreted at an activity level of greater than 7000 APU/ml in culture medium, and its specific activity was 1.5-fold higher than that of the wild-type enzyme. Other mutant enzymes had specific activity similar to that of the original one and were less stabile than the wild-type enzyme. It can be thought that the substitution at amino acid residue 29 affects the level of activity and stability of protease BYA. PMID:16394504

  8. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    PubMed

    Lee, Sang-Yeop; Kim, Gun-Hwa; Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  9. Identification and catalytic residues of the arsenite methyltransferase from a sulfate-reducing bacterium, Clostridium sp. BXM.

    PubMed

    Wang, Pei-Pei; Bao, Peng; Sun, Guo-Xin

    2015-01-01

    Arsenic methylation is an important process frequently occurring in anaerobic environments. Anaerobic microorganisms have been implicated as the major contributors for As methylation. However, very little information is available regarding the enzymatic mechanism of As methylation by anaerobes. In this study, one novel sulfate-reducing bacterium isolate, Clostridium sp. BXM, which was isolated from a paddy soil in our laboratory, was demonstrated to have the ability of methylating As. One putative arsenite S-Adenosyl-Methionine methyltransferase (ArsM) gene, CsarsM was cloned from Clostridium sp. BXM. Heterologous expression of CsarsM conferred As resistance and the ability of methylating As to an As-sensitive strain of Escherichia coli. Purified methyltransferase CsArsM catalyzed the formation of methylated products from arsenite, further confirming its function of As methylation. Site-directed mutagenesis studies demonstrated that three conserved cysteine residues at positions 65, 153 and 203 in CsArsM are necessary for arsenite methylation, but only Cysteine 153 and Cysteine 203 are required for the methylation of monomethylarsenic to dimethylarsenic. These results provided the characterization of arsenic methyltransferase from anaerobic sulfate-reducing bacterium. Given that sulfate-reducing bacteria are ubiquitous in various wetlands including paddy soils, enzymatic methylation mediated by these anaerobes is proposed to contribute to the arsenic biogeochemical cycling. PMID:25790486

  10. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    PubMed Central

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  11. Activation of RAW 264.7 cells by a polysaccharide isolated from Antarctic bacterium Pseudoaltermonas sp. S-5.

    PubMed

    Li, Jing; Qian, Wen; Xu, Yanghui; Chen, Guochuang; Wang, Guodong; Nie, Songliu; Shen, Bingxiang; Zhao, Zhigang; Liu, Chunyan; Chen, Kaoshan

    2015-10-01

    The aim of this study was to examine the effect of extracellular polysaccharide (PEP) from Antarctic bacterium Pseudoaltermonas sp. S-5 on RAW 264.7 cells together with the underlying signaling pathways. Our results illustrated that PEP induced dendritic-like morphological change in RAW 264.7 cells, and increased the productions of nitric oxide (NO) and tumor necrosis factor-α (TNF-α). PEP could also enhance phagocytic activity of RAW 264.7 cells. Results of immunofluorescence staining and immunoblotting indicated that PEP caused the nuclear translocation of nuclear factor (NF)-κB subunit p65, the degradation of IκB-α and up-expression of phosphorylated p38 mitogen-activated protein kinase (MAPK) in RAW 264.7 cells. According to pharmacological evaluation with specific enzyme inhibitors, both NF-κB and p38 MAPK signaling pathways were involved in the generation of NO and TNF-α induced by PEP. All these results indicated that PEP from Antarctic bacterium Pseudoaltermonas sp. S-5 activated RAW 264.7 cells through NF-κB and p38 MAPK signaling pathways.

  12. Draft Genome Sequence of Chloroflexus sp. Strain isl-2, a Thermophilic Filamentous Anoxygenic Phototrophic Bacterium Isolated from the Strokkur Geyser, Iceland.

    PubMed

    Gaisin, Vasil A; Ivanov, Timophey M; Kuznetsov, Boris B; Gorlenko, Vladimir M; Grouzdev, Denis S

    2016-07-21

    We report here the draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain isl-2, which was isolated from the Strokkur geyser, Iceland, and contains 5,222,563 bp with a G+C content of 59.65%. The annotated genome sequence offers the genetic basis for understanding the strain's ecological role as a phototrophic bacterium within the bacterial community.

  13. Draft Genome Sequence of Chloroflexus sp. Strain isl-2, a Thermophilic Filamentous Anoxygenic Phototrophic Bacterium Isolated from the Strokkur Geyser, Iceland

    PubMed Central

    Gaisin, Vasil A.; Ivanov, Timophey M.; Kuznetsov, Boris B.; Gorlenko, Vladimir M.

    2016-01-01

    We report here the draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain isl-2, which was isolated from the Strokkur geyser, Iceland, and contains 5,222,563 bp with a G+C content of 59.65%. The annotated genome sequence offers the genetic basis for understanding the strain’s ecological role as a phototrophic bacterium within the bacterial community. PMID:27445390

  14. Draft Genome Sequence of Chloroflexus sp. Strain isl-2, a Thermophilic Filamentous Anoxygenic Phototrophic Bacterium Isolated from the Strokkur Geyser, Iceland.

    PubMed

    Gaisin, Vasil A; Ivanov, Timophey M; Kuznetsov, Boris B; Gorlenko, Vladimir M; Grouzdev, Denis S

    2016-01-01

    We report here the draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain isl-2, which was isolated from the Strokkur geyser, Iceland, and contains 5,222,563 bp with a G+C content of 59.65%. The annotated genome sequence offers the genetic basis for understanding the strain's ecological role as a phototrophic bacterium within the bacterial community. PMID:27445390

  15. Draft Genome Sequence of Triclosan-Degrading Bacterium Sphingomonas sp. Strain YL-JM2C, Isolated from a Wastewater Treatment Plant in China

    PubMed Central

    Mulla, Sikandar I.; Xu, Haili

    2015-01-01

    Sphingomonas sp. strain YL-JM2C was isolated from a wastewater treatment plant in Xiamen, China, by enrichment on triclosan. The bacterium is of special interest because of its ability to degrade triclosan. Here, we present a draft genome sequence of the microorganism and its functional annotation. To our best knowledge, this is the first report of a draft genome sequence of a triclosan-degrading bacterium PMID:26044437

  16. Studies on the toxicity of an aqueous suspension of C60 nanoparticles using a bacterium (gen. Bacillus) and an aquatic plant (Lemna gibba) as in vitro model systems.

    PubMed

    Santos, Sandra M A; Dinis, Augusto M; Rodrigues, David M F; Peixoto, Francisco; Videira, Romeu A; Jurado, Amália S

    2013-10-15

    The increasing use of C60 nanoparticles and the diversity of their applications in industry and medicine has led to their production in a large scale. C60 release into wastewaters and the possible accumulation in the environment has raised concerns about their ecotoxicological impact. In the present study, an aqueous suspension of C60 nanoparticles was prepared and its potential toxicity studied in laboratory, using a bacterium (Bacillus stearothermophilus) and an aquatic plant (Lemna gibba) as model systems. C60 nanoparticles inhibited the growth of L. gibba, in contrast to that of the bacterium. Consistently, the ultrastructure and respiratory activity of bacterial cells were not affected by C60, but the contents of chlorophylls a and b and chloroplast oxygen production decreased considerably in L. gibba. Altogether, our results suggest that C60 aqueous dispersions must be viewed as an environmental pollutant, potentially endangering the equilibrium of aquatic ecosystems. PMID:24084257

  17. Bacillus coagulans

    MedlinePlus

    ... and infection due to the ulcer-causing bacterium Helicobacter pylori. Some people use Bacillus coagulans to prevent respiratory ... with of potentially harmful bacteria in the intestine. Helicobacter pylori infection. Which causes stomach ulcers. Inflammatory bowel disease ( ...

  18. A Novel Erythromycin Resistance Plasmid from Bacillus Sp. Strain HS24, Isolated from the Marine Sponge Haliclona Simulans

    PubMed Central

    Leong, Dara; Morrissey, John P.; Adams, Claire; Dobson, Alan D. W.; O’Gara, Fergal

    2014-01-01

    A better understanding of the origin and natural reservoirs of resistance determinants is fundamental to efficiently tackle antibiotic resistance. This paper reports the identification of a novel 5.8 kb erythromycin resistance plasmid, from Bacillus sp. HS24 isolated from the marine sponge Haliclona simulans. pBHS24B has a mosaic structure and carries the erythromycin resistance gene erm(T). This is the first report of an erythromycin resistance plasmid from a sponge associated bacteria and of the Erm(T) determinant in the genus Bacillus. PMID:25548909

  19. Effects of nitrogen and carbon sources on the production of inulinase from strain Bacillus sp. SG113

    NASA Astrophysics Data System (ADS)

    Gavrailov, Simeon; Ivanova, Viara

    2016-03-01

    The effects of the carbon and nitrogen substrates on the growth of Bacillus sp. SG113 strain were studied. The use of organic nitrogen sources (peptone, beef extract, yeast extract, casein) leads to rapid cellular growth and the best results for the Bacillus strain were obtained with casein hydrolysate. From the inorganic nitrogen sources studied, the (NH4) 2SO4 proved to be the best nitrogen source. Casein hydrolysate and (NH4) 2SO4 stimulated the invertase synthesis. In the presence of Jerusalem artichoke, onion and garlic extracts as carbon sources the strain synthesized from 6 to 10 times more inulinase.

  20. Draft Genome Sequence of Rhodovulum sp. Strain NI22, a Naphthalene-Degrading Marine Bacterium

    PubMed Central

    Brown, Lisa M.; Gunasekera, Thusitha S.; Bowen, Loryn L.

    2015-01-01

    Rhodovulum sp. strain NI22 is a hydrocarbon-degrading member of the genus Rhodovulum. The draft genome of Rhodovulum sp. NI22 is 3.8 Mb in size, with 3,756 coding sequences and 64.4% G+C content. The catechol and gentisate pathways for naphthalene degradation are predicted to be present in Rhodovulum sp. NI22. PMID:25614575

  1. Complete genome sequence of Chelatococcus sp. CO-6, a crude-oil-degrading bacterium.

    PubMed

    Wang, Yingning; Cui, Di; Li, Ang; Yang, Jixian; Ma, Fang

    2016-02-10

    Chelatococcus sp. CO-6 is a crude-oil-degrading strain, which was isolated from Shengli Oilfield. However, little genetic information is known about this species. We present the complete genome sequence analysis of Chelatococcus sp. CO-6 in this study. It could provide further insight into its genetic basis for membrane transport and immune system against bacteriophage in strain CO-6. PMID:26712476

  2. Complete genome sequence of Chelatococcus sp. CO-6, a crude-oil-degrading bacterium.

    PubMed

    Wang, Yingning; Cui, Di; Li, Ang; Yang, Jixian; Ma, Fang

    2016-02-10

    Chelatococcus sp. CO-6 is a crude-oil-degrading strain, which was isolated from Shengli Oilfield. However, little genetic information is known about this species. We present the complete genome sequence analysis of Chelatococcus sp. CO-6 in this study. It could provide further insight into its genetic basis for membrane transport and immune system against bacteriophage in strain CO-6.

  3. Cloning and characterization of a novel oligoalginate lyase from a newly isolated bacterium Sphingomonas sp. MJ-3.

    PubMed

    Park, Hwan Hee; Kam, Natania; Lee, Eun Yeol; Kim, Hee Sook

    2012-04-01

    A bacterium possessing alginate-degrading activity was isolated from marine brown seaweed soup liquefied by salted and fermented anchovy. The isolated strain was designated as Sphingomonas sp. MJ-3 based on the analyses of 16S ribosomal DNA sequences, 16S-23S internal transcribed spacer region sequences, biochemical characteristics, and cellular fatty acid composition. A novel alginate lyase gene was cloned from genomic DNA library and then expressed in Escherichia coli. When the deduced amino acid sequence was compared with the sequences on the databases, interestingly, the cloned gene product was predicted to consist of AlgL (alginate lyase L)-like and heparinase-like protein domain. The MJ-3 alginate lyase gene shared below 27.0% sequence identity with exolytic alginate lyase of Sphingomonas sp. A1. The optimal pH and temperature for the recombinant MJ-3 alginate lyase were 6.5 and 50°C, respectively. The final degradation products of alginate oligosaccharides were analyzed by electrospray ionization mass spectrometry and proved to be alginate monosaccharides. Based on the results, the recombinant alginate lyase from Sphingomonas sp. MJ-3 is regarded as an oligoalginate lyase that can degrade oligoalginate and alginate into alginate monosaccharides.

  4. Helicobacter hepaticus sp. nov., a microaerophilic bacterium isolated from livers and intestinal mucosal scrapings from mice.

    PubMed Central

    Fox, J G; Dewhirst, F E; Tully, J G; Paster, B J; Yan, L; Taylor, N S; Collins, M J; Gorelick, P L; Ward, J M

    1994-01-01

    A bacterium with a spiral shape and bipolar, single, sheathed flagella was isolated from the livers of mice with active, chronic hepatitis. The bacteria also colonized the cecal and colonic mucosae of mice. The bacterium grew at 37 degrees C under microaerophilic and anaerobic conditions, rapidly hydrolyzed urea, was catalase and oxidase positive, reduced nitrate to nitrite, and was resistant to cephalothin metronidazole. On the basis of 16S rRNA gene sequence analysis, the organism was classified as a novel helicobacter, Helicobacter hepaticus. This new helicobacter, like two other murine Helicobacter species, H. muridarum and "H. rappini," is an efficient colonizer of the gastrointestinal tract, but in addition, it has the pathogenic potential to elicit persistent hepatitis in mice. Images PMID:8051250

  5. Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Hochstein, L. I.

    1976-01-01

    The previously described extremely halophilic bacterium, strain M6, metabolizes a variety of carbohydrates with the production of acid. In addition, the organism produces nitrite (but no gas) from nitrate, is motile, and grows most rapidly at about 50 C. These characteristics distinguish it from all previously described halophilic bacteria in the genus Halobacterium. It is suggested that it be designated as a new species, Halobacterium saccharovorum.

  6. Genome Sequence of Vibrio sp. Strain EJY3, an Agarolytic Marine Bacterium Metabolizing 3,6-Anhydro-l-Galactose as a Sole Carbon Source

    PubMed Central

    Roh, Hanseong; Yun, Eun Ju; Lee, Saeyoung; Ko, Hyeok-Jin; Kim, Sujin; Kim, Byung-Yong; Song, Heesang; Lim, Kwang-il

    2012-01-01

    The metabolic fate of 3,6-anhydro-l-galactose (l-AHG) is unknown in the global marine carbon cycle. Vibrio sp. strain EJY3 is an agarolytic marine bacterium that can utilize l-AHG as a sole carbon source. To elucidate the metabolic pathways of l-AHG, we have sequenced the complete genome of Vibrio sp. strain EJY3. PMID:22535948

  7. Use of Bacillus pumilus CBMAI 0008 and Paenibacillus sp. CBMAI 868 for colour removal from paper mill effluent

    PubMed Central

    de Oliveira, Patrícia Lopes; Duarte, Marta Cristina Teixeira; Ponezi, Alexandre Nunes; Durrant, Lúcia Regina

    2009-01-01

    Bacillus pumilus and Paenibacillus sp. were applied on the paper mill effluent to investigate the colour remotion. Inocula were individually applied in effluent at pH 7.0, 9.0 and 11.0. The real colour and COD remotion after 48h at pH 9.0 were, respectively, 41.87% and 22.08% for B. pumilus treatment and 42.30% and 22.89% for Paenibacillus sp. Gel permeation chromatography was used to verify the molar masses of compounds in the non-treated and treated effluent, showing a decrease in the compounds responsible for the paper mill effluent colour. PMID:24031372

  8. Draft Genome Sequence of an Industrially Important Bacillus sp. from Mandarmani Coastal Waters in Midnapur District, West Bengal, India.

    PubMed

    Ray Chaudhuri, Shaon

    2016-01-01

    Reported here is the draft genome sequence of an amylase-, protease-, DNase-, oxidase-, gelatinase-, and catalase-producing, Gram-positive diplobacillus (Bacillus sp. SM1 strain MCC2138), which was isolated from marine coastal waters and has the ability to degum raw silk fabric as well as Ramie fiber. The genome comprises 1.76 Mb with a GC content of 34.5%. PMID:27540077

  9. Draft Genome Sequence of an Industrially Important Bacillus sp. from Mandarmani Coastal Waters in Midnapur District, West Bengal, India

    PubMed Central

    2016-01-01

    Reported here is the draft genome sequence of an amylase-, protease-, DNase-, oxidase-, gelatinase-, and catalase-producing, Gram-positive diplobacillus (Bacillus sp. SM1 strain MCC2138), which was isolated from marine coastal waters and has the ability to degum raw silk fabric as well as Ramie fiber. The genome comprises 1.76 Mb with a GC content of 34.5%. PMID:27540077

  10. Crystal structures of complexes of NAD+-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    NASA Astrophysics Data System (ADS)

    Filippova, E. V.; Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-07-01

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI2 with the coupled reduction of nicotinamide adenine dinucleotide (NAD+). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD+-azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 Å resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state.

  11. Crystal structures of complexes of NAD{sup +}-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    SciTech Connect

    Filippova, E. V. Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-07-15

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI{sub 2} with the coupled reduction of nicotinamide adenine dinucleotide (NAD{sup +}). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD{sup +}-azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state.

  12. Noncontiguous finished genome sequence and description of Virgibacillus massiliensis sp. nov., a moderately halophilic bacterium isolated from human gut

    PubMed Central

    Khelaifia, S.; Croce, O.; Lagier, J.-C.; Robert, C.; Couderc, C.; Di Pinto, F.; Davoust, B.; Djossou, F.; Raoult, D.; Fournier, P.-E.

    2015-01-01

    Strain Vm-5T was isolated from the stool specimen of a 10-year-old Amazonian boy. This bacterium is a Gram-positive, strictly aerobic rod, motile by a polar flagellum. Here we describe its phenotypic characteristics and complete genome sequence. The 4 353 177 bp long genome exhibits a G + C content of 36.87% and contains 4394 protein-coding and 125 predicted RNA genes. Phylogenetically and genetically, strain Vm-c is a member of the genus Virgibacillus but is distinct enough to be classified as a new species. We propose the creation of V. massiliensis sp. nov., whose type strain is strain Vm-5T (CSUR P971 = DSM 28587). PMID:26649181

  13. Further characterization of o-nitrobenzaldehyde degrading bacterium Pseudomonas sp. ONBA-17 and deduction on its metabolic pathway

    PubMed Central

    Yu, Fang-Bo; Li, Xiao-Dan; Ali, Shinawar Waseem; Shan, Sheng-Dao; Luo, Lin-Ping; Guan, Li-Bo

    2014-01-01

    A previously reported o-nitrobenzaldehyde (ONBA) degrading bacterium Pseudomonas sp. ONBA-17 was further identified and characterized. Based on results of DNA base composition and DNA-DNA hybridization, the strain was identified as P. putida. Its degradation effect enhanced with increase of inoculum amount and no lag phase was observed. Higher removal rate was achieved under shaking conditions. All tested ONBA with different initial concentrations could be completely degraded within 5 d. In addition, degradative enzyme(s) involved was confirmed as intra-cellular distributed and constitutively expressed. Effects of different compounds on relative activity of degradative enzyme(s) within cell-free extract were also evaluated. Finally, 2-nitrobenzoic acid and 2, 3-dihydroxybenzoic acid were detected as metabolites of ONBA degradation by P. putida ONBA-17, and relevant metabolic pathway was preliminary proposed. This study might help with future research in better understanding of nitroaromatics biodegradation. PMID:25763034

  14. Fourier transform Raman spectroscopic characterisation of cells of the plant-associated soil bacterium Azospirillum brasilense Sp7

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Tarantilis, P. A.; Antonyuk, L. P.; Bespalova, L. A.; Polissiou, M. G.; Colina, M.; Gardiner, P. H. E.; Ignatov, V. V.

    2001-05-01

    Structural and compositional features of bacterial cell samples and of lipopolysaccharide-protein complex isolated from the cell surface of the plant-growth-promoting rhizobacterium Azospirillum brasilense (wild-type strain Sp7) were characterised using Fourier transform (FT) Raman spectroscopy. The structural spectroscopic information obtained is analysed and considered together with analytical data on the content of metal cations (Co 2+, Cu 2+ and Zn 2+) in the bacterial cells grown in a standard medium as well as in the presence of each of the cations (0.2 mM). The latter, being taken up by bacterial cells from the culture medium in significant amounts, were shown to induce certain metabolic changes in the bacterium revealed in FT-Raman spectra, which is discussed from the viewpoint of bacterial response to environmental stresses.

  15. Larkinella insperata gen. nov., sp. nov., a bacterium of the phylum 'Bacteroidetes' isolated from water of a steam generator.

    PubMed

    Vancanneyt, Marc; Nedashkovskaya, Olga I; Snauwaert, Cindy; Mortier, Stefanie; Vandemeulebroecke, Katrien; Hoste, Bart; Dawyndt, Peter; Frolova, Galina M; Janssens, Danielle; Swings, Jean

    2006-01-01

    A Gram-negative bacterium, designated strain LMG 22510T, was isolated from water of a pharmaceutical company steam generator. The cells had a ring-like and horseshoe-shaped morphology and possessed gliding motility. Phylogenetic analysis of the 16S rRNA gene sequence showed that the strain was a member of the Flexibacter group within the phylum 'Bacteroidetes'; its nearest neighbour was Spirosoma linguale (88.8 % sequence similarity). DNA base content, fatty acid composition and biochemical characteristics were determined. Genotypic and phenotypic data indicated that strain LMG 22510T could not be assigned to any recognized genus; therefore, a novel genus and species is proposed, Larkinella insperata gen. nov., sp. nov., with LMG 22510T (= NCIMB 14103T) as the type strain. PMID:16403892

  16. Noncontiguous finished genome sequence and description of Virgibacillus massiliensis sp. nov., a moderately halophilic bacterium isolated from human gut.

    PubMed

    Khelaifia, S; Croce, O; Lagier, J-C; Robert, C; Couderc, C; Di Pinto, F; Davoust, B; Djossou, F; Raoult, D; Fournier, P-E

    2015-11-01

    Strain Vm-5(T) was isolated from the stool specimen of a 10-year-old Amazonian boy. This bacterium is a Gram-positive, strictly aerobic rod, motile by a polar flagellum. Here we describe its phenotypic characteristics and complete genome sequence. The 4 353 177 bp long genome exhibits a G + C content of 36.87% and contains 4394 protein-coding and 125 predicted RNA genes. Phylogenetically and genetically, strain Vm-c is a member of the genus Virgibacillus but is distinct enough to be classified as a new species. We propose the creation of V. massiliensis sp. nov., whose type strain is strain Vm-5(T) (CSUR P971 = DSM 28587). PMID:26649181

  17. Fabivirga thermotolerans gen. nov., sp. nov., a novel marine bacterium isolated from culture broth of a marine cyanobacterium.

    PubMed

    Tang, M; Chen, C; Li, J; Xiang, W; Wu, H; Wu, J; Dai, S; Wu, H; Li, T; Wang, G

    2016-02-01

    A Gram-stain-negative, red, non-spore-forming, strictly aerobic bacterium, designated strain A4T, was isolated from culture broth of a marine cyanobacterium. Cells were flexible rods with gliding motility. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain A4T formed a coherent cluster with members of the genera Roseivirga and Fabibacter, and represents a distinct lineage in the family Flammeovirgaceae. Thermotolerance and a distinctive cellular fatty acid profile could readily distinguish this isolate from any bacteria of the genera Roseivirga and Fabibacter with a validly published name. On the basis of the phenotypic, chemotaxonomic and phylogenetic characteristics, strain A4T is suggested to represent a novel species in a novel genus, for which the name Fabivirga thermotolerans gen. nov., sp. nov. is proposed. The type strain is A4T ( = KCTC 42507T = CGMCC 1.15111T).

  18. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    PubMed Central

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  19. Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris.

    PubMed

    Valverde, Angel; Velázquez, Encarna; Gutiérrez, Carmen; Cervantes, Emilio; Ventosa, Antonio; Igual, José-Mariano

    2003-11-01

    Several bacterial strains were isolated from root nodules of Phaseolus vulgaris plants grown in a soil from Portugal. The strains were Gram-negative, aerobic, curved rod-shaped and motile. The isolates were catalase- and oxidase-positive. The TP-RAPD (two-primer randomly amplified polymorphic DNA) patterns of all strains were identical, suggesting that they belong to the same species. The complete 16S rDNA sequence of a representative strain was obtained and phylogenetic analysis based on the neighbour-joining method indicated that this bacterium belongs to the beta-Proteobacteria and that the closest related genus is Herbaspirillum. The DNA G+C content ranged from 57.9 to 61.9 mol%. Growth was observed with many different carbohydrates and organic acids including caprate, malate, citrate and phenylacetate. No growth was observed with maltose, meso-inositol, meso-erythritol or adipate as sole carbon source. According to the phenotypic and genotypic data obtained in this work, the bacterium represents a novel species of the genus Herbaspirillum, and the name Herbaspirillum lusitanum sp. nov. is proposed. The type strain is P6-12(T) (=LMG 21710(T)=CECT 5661(T)).

  20. Study on human intestinal bacterium Blautia sp. AUH-JLD56 for the conversion of arctigenin to (-)-3'-desmethylarctigenin.

    PubMed

    Liu, Ming-Yue; Li, Meng; Wang, Xiu-Ling; Liu, Peng; Hao, Qing-Hong; Yu, Xiu-Mei

    2013-12-11

    Arctium lappa L. (A. lappa) is a popularly used vegetable as well as herbal medicine. Human intestinal microflora was reported to convert arctiin, the lignan compound with highest content in the dried fruits of Arctium lappa, to a series of metabolites. However, the specific bacterium responsible for the formation of 3'-desmethylarctigenin (3'-DMAG), the most predominant metabolite of arctiin by rat or human intestinal microflora, has not been isolated yet. In the present study, we isolated one single bacterium, which we named Blautia sp. AUH-JLD56, capable of solely biotransforming arctiin or arctigenin to (-)-3'-DMAG. The structure of the metabolite 3'-DMAG was elucidated by electrospray ionization mass spectrometry (ESI-MS) and (1)H and (13)C nuclear magnetic resonance spectroscopy. The biotransforming kinetics and maximum biotransforming capacity of strain AUH-JLD56 was investigated. In addition, the metabolite 3'-DMAG showed significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity than that of the substrate arctigenin at the concentrations tested.

  1. Study on human intestinal bacterium Blautia sp. AUH-JLD56 for the conversion of arctigenin to (-)-3'-desmethylarctigenin.

    PubMed

    Liu, Ming-Yue; Li, Meng; Wang, Xiu-Ling; Liu, Peng; Hao, Qing-Hong; Yu, Xiu-Mei

    2013-12-11

    Arctium lappa L. (A. lappa) is a popularly used vegetable as well as herbal medicine. Human intestinal microflora was reported to convert arctiin, the lignan compound with highest content in the dried fruits of Arctium lappa, to a series of metabolites. However, the specific bacterium responsible for the formation of 3'-desmethylarctigenin (3'-DMAG), the most predominant metabolite of arctiin by rat or human intestinal microflora, has not been isolated yet. In the present study, we isolated one single bacterium, which we named Blautia sp. AUH-JLD56, capable of solely biotransforming arctiin or arctigenin to (-)-3'-DMAG. The structure of the metabolite 3'-DMAG was elucidated by electrospray ionization mass spectrometry (ESI-MS) and (1)H and (13)C nuclear magnetic resonance spectroscopy. The biotransforming kinetics and maximum biotransforming capacity of strain AUH-JLD56 was investigated. In addition, the metabolite 3'-DMAG showed significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity than that of the substrate arctigenin at the concentrations tested. PMID:24236649

  2. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35.

    PubMed

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  3. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir.

    PubMed

    Greene, A C; Patel, B K; Sheehy, A J

    1997-04-01

    A thermophilic anaerobic bacterium, designated strain BMAT (T = type strain), was isolated from the production water of Beatrice oil field in the North Sea (United Kingdom). The cells were straight to bent rods (1 to 5 by 0.3 to 0.5 microns) which stained gram negative. Strain BMAT obtained energy from the reduction of manganese (IV), iron(III), and nitrate in the presence of yeast extract, peptone, Casamino Acids, tryptone, hydrogen, malate, acetate, citrate, pyruvate, lactate, succinate, and valerate. The isolate grew optimally at 60 degrees C (temperature range for growth, 50 to 65 degrees C) and in the presence of 2% (wt/vol) NaCl (NaCl range for growth, 0 to 5% [wt/vol]). The DNA base composition was 34 mol% G + C. Phylogenetic analyses of the 16S rRNA gene indicated that strain BMAT is a member of the domain Bacteria. The closest known bacterium is the moderate thermophile Flexistipes sinusarabici (similarity value, 88%). Strain BMAT possesses phenotypic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, we propose that this isolate should be described as a member of a novel species of a new genus, Deferribacter thermophilus gen. nov., sp. nov.

  4. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35.

    PubMed

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control.

  5. Metal Reduction and Iron Biomineralization by a Psychrotolerant Fe(III)-Reducing Bacterium, Shewanella sp. Strain PV-4

    SciTech Connect

    Roh, Yul; Gao, Haichun; Vali, Hojatollah; Kennedy, David W.; Yang, Zamin; Gao, Weimin; Dohnalkova, Alice; Stapleton, Raymond D.; Moon, Ji-Won; Phelps, T. J.; Fredrickson, Jim K.; Zhou, Jizhong

    2006-05-01

    A marine psychrotolerant, dissimilatory Fe(III)-reducing bacterium, Shewanella sp. strain PV-4, from the microbial mat at a hydrothermal vent of Loihi Seamount in the Pacific Ocean has been further characterized, with emphases on metal reduction and iron biomineralization. The strain is able to reduce metals such as Fe(III), Co(III), Cr(VI), Mn(IV), and U(VI) as electron acceptors while using lactate, formate, pyruvate, or hydrogen as an electron donor. Growth during iron reduction occurred over the pH range of 7.0 to 8.9, a sodium chloride range of 0.05 to 5%, and a temperature range of 0 to 37°C, with an optimum growth temperature of 18°C. Unlike mesophilic dissimilatory Fe(III)-reducing bacteria, which produce mostly superparamagnetic magnetite (<35 nm), this psychrotolerant bacterium produces well-formed single-domain magnetite (>35 nm) at temperatures from 18 to 37°C. The genome size of this strain is about 4.5 Mb. Strain PV-4 is sensitive to a variety of commonly used antibiotics except ampicillin and can acquire exogenous DNA (plasmid pCM157) through conjugation.

  6. Endophytic Colonization of Vitis vinifera L. by Plant Growth-Promoting Bacterium Burkholderia sp. Strain PsJN

    PubMed Central

    Compant, Stéphane; Reiter, Birgit; Sessitsch, Angela; Nowak, Jerzy; Clément, Christophe; Ait Barka, Essaïd

    2005-01-01

    Patterns of colonization of Vitis vinifera L. cv. Chardonnay plantlets by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN, were studied under gnotobiotic conditions. Wild-type strain PsJN and genetically engineered derivatives of this strain tagged with gfp (PsJN::gfp2x) or gusA (PsJN::gusA11) genes were used to enumerate and visualize tissue colonization. The rhizospheres of 4- to 5-week-old plantlets with five developed leaves were inoculated with bacterial suspensions. Epiphytic and endophytic colonization patterns were then monitored by dilution plating assays and microscopic observation of organ sections. Bacteria were chronologically detected first on root surfaces, then in root internal tissues, and finally in the fifth internode and the tissues of the fifth leaf. Analysis of the PsJN colonization patterns showed that this strain colonizes grapevine root surfaces, as well as cell walls and the whole surface of some rhizodermal cells. Cells were also abundant at lateral root emergence sites and root tips. Furthermore, cell wall-degrading endoglucanase and endopolygalacturonase secreted by PsJN explained how the bacterium gains entry into root internal tissues. Host defense reactions were observed in the exodermis and in several cortical cell layers. Bacteria were not observed on stem and leaf surfaces but were found in xylem vessels of the fifth internode and the fifth leaf of plantlets. Moreover, bacteria were more abundant in the fifth leaf than in the fifth internode and were found in substomatal chambers. Thus, it seems that Burkholderia sp. strain PsJN induces a local host defense reaction and systemically spreads to aerial parts through the transpiration stream. PMID:15811990

  7. Antarctic marine bacterium Pseudoalteromonas sp. 22b as a source of cold-adapted beta-galactosidase.

    PubMed

    Turkiewicz, Marianna; Kur, Józef; Białkowska, Aneta; Cieśliński, Hubert; Kalinowska, Halina; Bielecki, Stanisław

    2003-07-01

    The marine, psychrotolerant, rod-shaped and Gram-negative bacterium 22b (the best of 41 beta-galactosidase producers out of 107 Antarctic strains subjected to screening), classified as Pseudoalteromonas sp. based on 16S rRNA gene sequence, isolated from the alimentary tract of Antarctic krill Thyssanoessa macrura, synthesizes an intracellular cold-adapted beta-galactosidase, which efficiently hydrolyzes lactose at 0-20 degrees C, as indicated by its specific activity of 21-67 U mg(-1) of protein (11-35% of maximum activity) in this temperature range, as well as k(cat) of 157 s(-1), and k(cat)/K(m) of 47.5 mM(-1) s(-1) at 20 degrees C. The maximum enzyme synthesis (lactose as a sufficient inducer) was observed at 6 degrees C, thus below the optimum growth temperature of the bacterium (15 degrees C). The enzyme extracted from cells was purified to homogeneity (25% recovery) by using the fast, three-step procedure, including affinity chromatography on PABTG-Sepharose. The enzyme is a tetramer composed of roughly 115 kDa subunits. It is maximally active at 40 degrees C (190 U mg(-1) of protein) and pH 6.0-8.0. PNPG is its preferred substrate (50% higher activity than against ONPG). The Pseudoalteromonas sp. 22b beta-galactosidase is activated by thiol compounds (70% rise in activity in the presence of 10 mM dithiotreitol), some metal ions (K(+), Na(+), Mn(2+)-40% increase, Mg(2+)-15% enhancement), and markedly inactivated by pCMB and heavy metal ions, particularly Cu(2+). Noteworthy, Ca(2+) ions do not affect the enzyme activity, and the homogeneous protein is stable at 4 degrees C for at least 30 days without any stabilizers.

  8. Genome sequence of Novosphingobium sp. strain Rr 2-17, a nopaline crown gall-associated bacterium isolated from Vitis vinifera L. grapevine.

    PubMed

    Gan, Han Ming; Chew, Teong Han; Hudson, André O; Savka, Michael A

    2012-09-01

    Novosphingobium sp. strain Rr 2-17 is an N-acyl homoserine lactone (AHL)-producing bacterium isolated from the crown gall tumor of a grapevine. To our knowledge, this is the first draft genome announcement of a plant-associated strain from the genus Novosphingobium. PMID:22933764

  9. Draft Genome Sequence of High-Temperature-Adapted Protochlamydia sp. HS-T3, an Amoebal Endosymbiotic Bacterium Found in Acanthamoeba Isolated from a Hot Spring in Japan.

    PubMed

    Yamaguchi, Hiroyuki; Matsuo, Junji; Yamazaki, Tomohiro; Ishida, Kasumi; Yagita, Kenji

    2015-02-05

    Here, we report the draft genome sequence of high-temperature-adapted Protochlamydia sp. strain HS-T3, an environmental chlamydia. This bacterium is an amoebal endosymbiont, found in Acanthamoeba isolated from a hot spring in Japan. Strain HS-T3 readily grew in mammalian cells at 37°C, a characteristic not previously reported for environmental chlamydiae.

  10. Draft Genome Sequence of Algoriphagus sp. Strain NH1, a Multidrug-Resistant Bacterium Isolated from Coastal Sediments of the Northern Yellow Sea in China

    PubMed Central

    Mu, Dashuai; Zhao, Jinxin; Wang, Zongjie; Chen, Guanjun

    2016-01-01

    Algoriphagus sp. NH1 is a multidrug-resistant bacterium isolated from coastal sediments of the northern Yellow Sea in China. Here, we report the draft genome sequence of NH1, with a size of 6,131,579 bp, average G+C content of 42.68%, and 5,746 predicted protein-coding sequences. PMID:26769940

  11. Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine

    SciTech Connect

    Bhupathiraju, V.K.; Sharma, P.K.; Tanner, R.S.; McInerney, M.J.; Oren, A.; Woese, C.R.

    1994-07-01

    A strictly anaerobic, moderately halophilic, gram-negative bacterium was isolated from a highly saline oil field brine. The bacterium was a non-spore-forming, nonmotile rod, appearing singly, in pairs, or occasionally as long chains, and measured 0.3 to 0.4 by 2.6 to 4 {micro}m. The bacterium had a specific requirement for NaCl and grew at NaCl concentrations of between 6 and 24%, with optimal growth at 9% NaCl. The isolate grew at temperatures of between 22 and 51 C and pH values of between 5.6 and 8.0. The doubling time in a complex medium containing 10% NaCl was 9 h. Growth was inhibited by chloramphenicol, tetracycline, and penicillin but not by cycloheximide or azide. Fermentable substrates were predominantly carbohydrates. The end products of glucose fermentation were acetate, ethanol, CO{sub 2}, and H{sub 2}. The major components of the cellular fatty acids were C{sub 14:0}, C{sub 16:0}, C{sub 16:1}, and C{sub 17:0 cyc} acids. The DNA base composition of the isolate was 34 mol% G+C. Oligonucleotide catalog and sequence analyses of the 16S rRNA showed that strain VS-752{sup T} was most closely related to Haloanaerobium praevalens GSL{sup T} (ATCC 33744), the sole member of the genus Haloanaerobium. The authors propose that strain VS-752 (ATCC 51327) by established as the type strain of a new species, Haloanaerobium salsugo, in the genus Haloanaerobium. 40 refs., 3 figs, 5 tabs.

  12. Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2.

    PubMed

    Achal, Varenyam; Pan, Xiangliang

    2014-05-01

    Stimulation of microbially induced calcium carbonate precipitation (MICCP) is likely to be influenced by calcium sources. In order to study such influences, we performed MICCP using Bacillus sp. CR2 in nutrient broth containing urea, supplemented with different calcium sources (calcium chloride, calcium oxide, calcium acetate and calcium nitrate). The experiment lasted 7 days, during which bacterial growth, urease activity, calcite production and pH were measured. Our results showed that calcium chloride is the better calcium source for MICCP process, since it provides higher urease activity and more calcite production. The influences of calcium sources on MICCP were further studied using Fourier transform-infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. These analyses confirmed that the precipitate formed was CaCO3 and composed of predominantly calcite crystals with a little amount of aragonite and vaterite crystals. The maximum yield of calcite precipitation was achievable with calcium chloride followed by calcium nitrate as a calcium source. The results of present study may be applicable to media preparation during efficient MICCP process.

  13. Cloning, expression and characterization of a novel salt-tolerant xylanase from Bacillus sp. SN5.

    PubMed

    Bai, Wenqin; Xue, Yanfen; Zhou, Cheng; Ma, Yanhe

    2012-11-01

    A xylanase gene (xyn10A) was cloned from Bacillus sp. SN5 and expressed in Escherichia coli. It encoded a 348-residue polypeptide of ~45 kDa. The deduced amino acid sequence had 68 % identity with the endo-1,4-beta-xylanase from Paenibacillus lactis 154 that belonged to family 10 of the glycoside hydrolases. Purified recombinant Xyn10A had maximum activity at 40 °C and pH 7.0, with the specific activity of 105 U/mg and a Km of 0.6 mg/ml for beechwood xylan. Xyn10A retained more than 80 % activity between 25 and 45 °C and 29 % activity at 5 °C. It exhibited the highest activity (134 %) in 0.5 M NaCl and still retained 90 % activity in 2.5 M NaCl. It retained about 87 % activity after incubation in 2 M NaCl for 24 h. The cold-active and halo-tolerant properties of Xyn10A make it promising for application in the food industry, especially in the processing of saline food and sea food. PMID:22864505

  14. Antiviral activity of a Bacillus sp. P34 peptide against pathogenic viruses of domestic animals

    PubMed Central

    Silva, Débora Scopel e; de Castro, Clarissa Caetano; Silva, Fábio da Silva e; Sant’anna, Voltaire; Vargas, Gilberto D’Avila; de Lima, Marcelo; Fischer, Geferson; Brandelli, Adriano; da Motta, Amanda de Souza; Hübner, Silvia de Oliveira

    2014-01-01

    P34 is an antimicrobial peptide produced by a Bacillus sp. strain isolated from the intestinal contents of a fish in the Brazilian Amazon basin with reported antibacterial activity. The aim of this work was to evaluate the peptide P34 for its in vitro antiviral properties against canine adenovirus type 2 (CAV-2), canine coronavirus (CCoV), canine distemper virus (CDV), canine parvovirus type 2 (CPV-2), equine arteritis virus (EAV), equine influenza virus (EIV), feline calicivirus (FCV) and feline herpesvirus type 1 (FHV-1). The results showed that the peptide P34 exhibited antiviral activity against EAV and FHV-1. The peptide P34 inhibited the replication of EAV by 99.9% and FHV-1 by 94.4%. Virucidal activity was detected only against EAV. When P34 and EAV were incubated for 6 h at 37 °C the viral titer reduced from 104.5 TCID50 to 102.75 TCID50, showing a percent of inhibition of 98.6%. In conclusion, our results demonstrated that P34 inhibited EAV and FHV-1 replication in infected cell cultures and it showed virucidal activity against EAV. Since there is documented resistance to the current drugs used against herpesviruses and there is no treatment for equine viral arteritis, it is advisable to search for new antiviral compounds to overcome these infections. PMID:25477947

  15. Novel degradation pathway and kinetic analysis for buprofezin removal by newly isolated Bacillus sp.

    PubMed

    Wang, Guangli; Xu, Dayong; Xiong, Minghua; Zhang, Hui; Li, Feng; Liu, Yuan

    2016-09-15

    Given the intensive and widespread application of the pesticide, buprofezin, its environmental residues potentially pose a problem; yet little is known about buprofezin's kinetic and metabolic behaviors. In this study, a novel gram-positive strain, designated BF-5, isolated from aerobic activated sludge, was found to be capable of metabolizing buprofezin as its sole energy, carbon, and nitrogen source. Based on its physiological and biochemical characteristics, other aspects of its phenotype, and a phylogenetic analysis, strain BF-5 was identified as Bacillus sp. This study investigated the effect of culture conditions on bacterial growth and substrate degradation, such as pH, temperature, initial concentration, different nitrogen source, and additional nitrogen sources as co-substrates. The degradation rate parameters, qmax, Ks, Ki and Sm were determined to be 0.6918 h(-1), 105.4 mg L(-1), 210.5 mg L(-1), and 148.95 mg L(-1) respectively. The capture of unpublished potential metabolites by gas chromatography-mass spectrometry (GC-MS) analysis has led to the proposal of a novel degradation pathway. Taken together, our results clarify buprofezin's biodegradation pathway(s) and highlight the promising potential of strain BF-5 in bioremediation of buprofezin-contaminated environments.

  16. Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin.

    PubMed

    Shimoni, E; Ravid, U; Shoham, Y

    2000-02-28

    Natural aroma compounds are of major interest to the flavor and fragrance industry. Due to the limited sources for natural aromas, there is a growing interest in developing alternative sources for natural aroma compounds, and in particular aromatic aldehydes. In several microbial species aromatic aldehydes are detected as intermediates in the degradation pathway of phenylpropanoids. Thus, bioconversion of phenylpropanoids is one possible route for the production of these aroma compounds. The present work describes the isolation of microbial strains, capable of producing vanillin from isoeugenol. Bacterial strains isolated from soil, were screened for their ability to transform isoeugenol to vanillin. One of these strains, strain B2, was found to produce high amounts of vanillin when grown in the presence of isoeugenol, and was also capable of growing on isoeugenol as the sole carbon source. Based on its fatty acids profile, strain B2 was identified as a Bacillus subtilis sp. The bioconversion capabilities of strain B2 were tested in growing cultures and cell free extracts. In the presence of isoeugenol, a growing cultures of B. subtilis B2 produced 0.61 g l-1 vanillin (molar yield of 12.4%), whereas cell free extracts resulted in 0.9 g l-1 vanillin (molar yield of 14%).

  17. Microwave Accelerated Transglycosylation of Rutin by Cyclodextrin Glucanotransferase from Bacillus sp. SK13.002

    PubMed Central

    Sun, Tao; Jiang, Bo; Pan, Beilei

    2011-01-01

    Rutin was subjected to intermolecular transglycosylation assisted with microwave irradiation using cyclodextrin glucanotransferase (CGTase) produced from Bacillus sp. SK13.002. Compared with the conventional enzymatic method for rutin transglycosylation (without microwave irradiation), microwave-assisted reaction (MAR) was much faster and thus more efficient. While the conventional reaction took dozens of hours to reach the highest conversion rate of rutin and yield of transglycosylated rutin, MAR of rutin transglycosylation completed within only 6 min providing almost the same conversion rate of rutin and yield of products consisting of mono-, di-, tri-, tetra-, penta-glucosylated rutins. The optimum transglycosylation conditions for microwave irradiation were 40 °C and 60 W with the reaction system consisting mainly of the mixture of 0.3 g rutin (0.49 mmol) pre-dissolved in 15 mL methanol, 1.8 g maltodextrin in 15 mL of 0.2 M sodium acetate buffer (pH 5.5) and CGTase (900 U). Results from this study indicated that MAR could be a potentially useful and economical technique for a faster and more efficient transglycosylation of rutin. PMID:21747706

  18. Algicidal metabolites produced by Bacillus sp. strain B1 against Phaeocystis globosa.

    PubMed

    Zhao, Ling; Chen, Lina; Yin, Pinghe

    2014-03-01

    The bloom of Phaeocystis globosa has broken out frequently in the coastal areas of China in recent years, which has led to substantial economic losses. This study shows that Bacillus sp. strain B1, which was previously identified by our group, is effective in regulating P. globosa by excreting active metabolites. Heat stability, pH stability and molecular weight range of the algicidal compounds from strain B1 were measured and the results demonstrated that the algicidal activities of these compounds were not affected by pH or temperature variation. The algicidal compounds extracted with methanol were isolated and purified by ODS-A column chromatography and HPLC. The algicidal compounds corresponding to peaks 2-5 eluted from HPLC were further analysed by quadrupole time-of-flight mass spectrometry (Q-TOF-MS). PeakView™ Software determined the compounds corresponding to peaks 2-5 to be L-histidine, o-tyrosine, N-acetylhistamine and urocanic acid on the basis of the accurate mass information, the isotopic pattern and MS-MS spectra. Furthermore, these compounds were also able to eliminate Skeletonema costatum, Prorocentrum donghaiense and Heterosigma akashiwo. This is the first report of bacteria-derived algicidal compounds being identified only by Q-TOF-MS and PeakView™ Software, and these compounds may be used as the constituents of algicides in the future. PMID:24370882

  19. Highly thermostable and alkaline α-amylase from a halotolerant-alkaliphilic Bacillus sp. AB68

    PubMed Central

    Aygan, Ashabil; Arikan, Burhan; Korkmaz, Hatice; Dinçer, Sadik; Çolak, Ömer

    2008-01-01

    An alkaliphilic and highly thermostable α-amylase producing Bacillus sp. was isolated from Van soda lake. Enzyme synthesis occurred at temperatures between 25°C and 40°C. Analysis of the enzyme by SDS-PAGE revealed a single band which was estimated to be 66 kDa. The enzyme was active in a broad temperature range, between 20°C and 90°C, with an optimum at 50°C; and maximum activity was at pH 10.5. The enzyme was almost completely stable up to 80°C with a remaining activity over 90% after 30 min pre-incubation. Thermostability was not increased in the presence of Ca2+. An average of 75% and 60°C of remaining activity was observed when the enzyme was incubated between pH 5 and 9 for 1 h and for 2 h, respectively. The activity of the enzyme was inhibited by SDS and EDTA by 38% and 34%, respectively. PMID:24031264

  20. Production of cyclodextrin glycosyltransferase by immobilized Bacillus sp. on chitosan matrix.

    PubMed

    Eş, Ismail; Ribeiro, Maycon Carvalho; Dos Santos Júnior, Samuel Rodrigues; Khaneghah, Amin Mousavi; Rodriguez, Armando Garcia; Amaral, André Corrêa

    2016-10-01

    The whole-cell immobilization on chitosan matrix was evaluated. Bacillus sp., as producer of CGTase, was grown in solid-state and batch cultivation using three types of starches (cassava, potato and cornstarch). Biomass growth and substrate consumption were assessed by flow cytometry and modified phenol-sulfuric acid assays, respectively. Qualitative analysis of CGTase production was determined by colorless area formation on solid culture containing phenolphthalein. Scanning electron microscopy (SEM) analysis demonstrated that bacterial cells were immobilized on chitosan matrix efficiently. Free cells reached very high numbers during batch culture while immobilized cells maintained initial inoculum concentration. The maximum enzyme activity achieved by free cells was 58.15 U ml(-1) (36 h), 47.50 U ml(-1) (36 h) and 68.36 U ml(-1) (36 h) on cassava, potato and cornstarch, respectively. CGTase activities for immobilized cells were 82.15 U ml(-1) (18 h) on cassava, 79.17 U ml(-1) (12 h) on potato and 55.37 U ml(-1) (in 6 h and max 77.75 U ml(-1) in 36 h) on cornstarch. Application of immobilization technique increased CGTase activity significantly. The immobilized cells produced CGTase with higher activity in a shorter fermentation time comparing to free cells. PMID:27194141

  1. Extracellular overexpression of chitosanase from Bacillus sp. TS in Escherichia coli.

    PubMed

    Zhou, Zhanping; Zhao, Shuangzhi; Wang, Shouquan; Li, Xiaoman; Su, Li; Ma, Yanhe; Li, Jian; Song, Jiangning

    2015-04-01

    The chitosanase gene from a Bacillus sp. strain isolated from soil in East China was cloned and expressed in Escherichia coli. The gene had 1224 nucleotides and encoded a mature protein of 407 amino acid residues. The optimum pH and temperature of the purified recombinant chitosanase were 5.0 and 60 °C, respectively, and the enzyme was stable below 40 °C. The K m, V max, and specific activity of the enzyme were 1.19 mg mL(-1), 674.71 μmol min(-1) at 50 °C, and 555.3 U mg(-1), respectively. Mn(2+) was an activator of the recombinant chitosanase, while Co(2+) was an inhibitor. Hg(2+) and Cu(2+) inhibited the enzyme at 1 mM. The highest level of enzyme activity (186 U mL(-1)) was achieved in culture medium using high cell-density cultivation in a 7-L fermenter. The main products of chitosan hydrolyzed by recombinant chitosanase were (GlcN)3-6. The chitosanases was successfully secreted to the culture media through the widely used SecB-dependent type II pathway in E. coli. The high yield of the extracellular overexpression, relevant thermostability, and effective hydrolysis of commercial grade chitosan showed that this recombinant enzyme had a great potential for industrial applications.

  2. Effective extraction of elastase from Bacillus sp. fermentation broth using aqueous two-phase system*

    PubMed Central

    Xu, Ying; He, Guo-qing; Li, Jing-jun

    2005-01-01

    This paper presents the evaluation of an aqueous two-phase system (ATPS) for extracting elastase produced by Bacillus sp. EL31410. The elastase and cell partition behavio r in polyethylene glycol (PEG)/salt systems was investigated. The suitable system for elastase extraction was PEG/KH2PO4-K2HPO4, in which elastase is mainly partitioned into the PEG-rich phase, while the cells remained in the other phase. The influence of defined system parameters (e.g. PEG molecular mass, pH, NaCl addition) on the partitioning behavior of elastase is described. The concentration of phase forming components, PEG and KH2PO4-K2HPO4, was optimized for elastase recovery by means of response surface methodology, and it was found that they greatly influenced extraction recovery. The optimal ATPS was 23.1% (w/w) PEG 2 000 and 11.7% (w/w) KH2PO4-K2HPO4. The predicted recovery was about 89.5%, so this process is suggested to be a rapid and convenient method for elastase extraction. PMID:16252343

  3. Enzymatic Properties of an Alkaline and Chelator Resistant Proportional to alpha-Amylase from the Alkaliphilic Bacillus sp. Isolate L1711

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    An alkaliphilic amylase producing bacterium, Bacillus sp. strain L1711, was selected among 13 soda lakes isolates. When grown at pH 10.5 and 370 C, strain L1711 produced multiple forms of amylases in the culture broth. One of these, BAA, was purified from the culture supernatant by QAE column chromatography and preparative native gel electrophoresis. The molecular weight of BAA was determined to be 51 kDa by denaturing gel electrophoresis. The pH optima for activity below and above 40 C were 9.5-10.0 and 7.0-7.5 respectively. BAA was stable in the pH range 6-11 and was completely inactivated at 55?C. The thermostability was not increased in the presence of Ca(2+). The enzyme was strongly inhibited by Ca(2+), Zn(2+), Mg(2+), Mn(2+), Ba(2+) and Cu(2+), whereas the presence of Na(+), Co2+ and EDTA (10 mM) enhanced enzymatic activity. The K(sub m) and specific activity of BAA on soluble starch were 1.9 mg/ml and 18.5 U/mg respectively. The main end products of hydrolysis were maltotetraose, maltose and glucose .

  4. The bifunctional enzyme chitosanase-cellulase produced by the gram-negative microorganism Myxobacter sp. AL-1 is highly similar to Bacillus subtilis endoglucanases.

    PubMed

    Pedraza-Reyes, M; Gutiérrez-Corona, F

    1997-10-01

    The gram-negative bacterium Myxobacter sp. AL-1 produces chitosanase-cellulase activity that is maximally excreted during the stationary phase of growth. Carboxymethylcellulase zymogram analysis revealed that the enzymatic activity was correlated with two bands of 32 and 35 kDa. Ion-exchange-chromatography-enriched preparations of the 32-kDa enzyme were capable of degrading the cellulose fluorescent derivatives 4-methylumbelliferyl-beta-D-cellobioside and 4-methylumbelliferyl-beta-D-cellotrioside. These enzymatic preparations also showed a greater capacity at 70 degrees C than at 42 degrees C to degrade chitosan oligomers of a minimum size of six units. Conversely, the beta-1,4 glucanolytic activity was more efficient at attacking carboxymethylcellulose and methylumbelliferyl-cellotrioside at 42 degrees C than at 70 degrees C. The 32-kDa enzyme was purified more than 800-fold to apparent homogeneity by a combination of ion-exchange and molecular-exclusion chromatography. Amino-terminal sequencing indicated that mature chitosanase-cellulase shares more than 70% identity with endocellulases produced by strains DLG, PAP115, and 168 of the gram-positive microorganism Bacillus subtilis.

  5. The Pore-Forming Protein Cry5B Elicits the Pathogenicity of Bacillus sp. against Caenorhabditis elegans

    PubMed Central

    Kho, Melanie F.; Hu, Yan; Hsu, Wayne; Nielsen-LeRoux, Christina; McGillivray, Shauna M.; Nizet, Victor; Aroian, Raffi V.

    2011-01-01

    The soil bacterium Bacillus thuringiensis is a pathogen of insects and nematodes and is very closely related to, if not the same species as, Bacillus cereus and Bacillus anthracis. The defining characteristic of B. thuringiensis that sets it apart from B. cereus and B. anthracis is the production of crystal (Cry) proteins, which are pore-forming toxins or pore-forming proteins (PFPs). Although it is known that PFPs are important virulence factors since their elimination results in reduced virulence of many pathogenic bacteria, the functions by which PFPs promote virulence are incompletely understood. Here we study the effect of Cry proteins in B. thuringiensis pathogenesis of the nematode Caenorhabditis elegans. We find that whereas B. thuringiensis on its own is not able to infect C. elegans, the addition of the PFP Cry protein, Cry5B, results in a robust lethal infection that consumes the nematode host in 1–2 days, leading to a “Bob” or bag-of-bacteria phenotype. Unlike other infections of C. elegans characterized to date, the infection by B. thuringiensis shows dose-dependency based on bacterial inoculum size and based on PFP concentration. Although the infection process takes 1–2 days, the PFP-instigated infection process is irreversibly established within 15 minutes of initial exposure. Remarkably, treatment of C. elegans with Cry5B PFP is able to instigate many other Bacillus species, including B. anthracis and even “non-pathogenic” Bacillus subtilis, to become lethal and infectious agents to C. elegans. Co-culturing of Cry5B-expressing B. thuringiensis with B. anthracis can result in lethal infection of C. elegans by B. anthracis. Our data demonstrate that one potential property of PFPs is to sensitize the host to bacterial infection and further that C. elegans and probably other roundworms can be common hosts for B. cereus-group bacteria, findings with important ecological and research implications. PMID:22216181

  6. Aliikangiella marina gen. nov., sp. nov., a marine bacterium from the culture broth of Picochlorum sp. 122, and proposal of Kangiellaceae fam. nov. in the order Oceanospirillales.

    PubMed

    Wang, Guanghua; Tang, Mingxing; Wu, Huanlian; Dai, Shikun; Li, Tao; Chen, Chenghao; He, Hui; Fan, Jiewei; Xiang, Wenzhou; Li, Xiang

    2015-12-01

    A Gram-stain-negative, non-motile, non-spore-forming, long rod-shaped bacterium, designated strain GYP-15T, was isolated from the culture broth of a marine microalga, Picochloruma sp. 122. Phylogenetic analyses revealed that strain GYP-15T shared 90.6 % 16S rRNA gene sequence similarity with its closest relative, Kangiella aquimarina KCTC 12183T, and represents a distinct phylogenetic lineage in a robust clade consisting of GYP-15T and members of the genera Kangiella and Pleionea in the order Oceanospirillales. Chemotaxonomic and physiological characteristics, including major cellular fatty acids, NaCl tolerance and pattern of carbon source utilization, could also readily distinguish strain GYP-15T from all established genera and species. Thus, it is concluded that strain GYP-15T represents a novel species of a new genus, for which the name Aliikangiella marina gen. nov., sp. nov. is proposed. The type strain of Aliikangiella marina is GYP-15T ( = MCCC 1K01163T = KCTC 42667T). Based on phylogenetic results, 16S rRNA gene signature nucleotide pattern and some physiological characteristics, the three genera Kangiella, Pleionea and Aliikangiella are proposed to make up a novel family, Kangiellaceae fam. nov., in the order Oceanospirillales.

  7. Wenzhouxiangella marina gen. nov, sp. nov, a marine bacterium from the culture broth of Picochlorum sp. 122, and proposal of Wenzhouxiangellaceae fam. nov. in the order Chromatiales.

    PubMed

    Wang, Guanghua; Tang, Mingxing; Li, Tao; Dai, Shikun; Wu, Huanlian; Chen, Chenghao; He, Hui; Fan, Jiewei; Xiang, Wenzhou; Li, Xiang

    2015-06-01

    A Gram-stain negative, non-motile, non-phototrophic, non-alkaliphilic, obligately aerobic, chemoheterotrophic, and rod-shaped bacterium, designated strain Ma-11(T), was isolated from the culture broth of a marine microalga, Picochloruma sp. 122. Phylogenetic analyses showed that strain Ma-11(T) has less than 91 % similarity to its closest relative, Thioalkalivibrio sulfidiphilus HL-EbGR7(T), represents a distinct phylogenetic lineage in the order Chromatiales, and could not be assigned to any defined families in this order. Chemotaxonomic, genetic and physiological characteristics, including major fatty acids, genomic G+C content, lack of motility, aerophilicity and chemoheterotrophicity, could readily distinguish strain Ma-11(T) from any established members of the order Chromatiales. Based on the 16S rRNA gene sequence analysis and its signature nucleotide pattern, a new family Wenzhouxiangellaceae fam. nov. comprising the genus Wenzhouxiangella gen. nov. and species Wenzhouxiangella marina sp. nov. is proposed. The type strain is Ma-11(T) (=CGMCC 1.14936(T) = KCTC 42284(T) = MCCC 1K00261(T)).

  8. Immobilization of Bioactive Protein A from Staphylococcus aureus (SpA) on the Surface of Bacillus subtilis Spores.

    PubMed

    Ghaedmohammadi, Samira; Rigi, Garshasb; Zadmard, Reza; Ricca, Ezio; Ahmadian, Gholamreza

    2015-08-01

    Protein A from Staphylococcus aureus (SpA) is a 40-60 kDa cell-wall component, composed of five homologous immunoglobulin (Ig)-binding domains folded into a three-helix bundle. Each of these five domains is able to bind Igs from many different mammalian species. Recombinant SpA is widely used as a component of diagnostic kits for the detection and purification of IgGs from serum or other biological fluids. In this study, purified SpA was adsorbed and covalently linked to Bacillus subtilis spores. Spores are extremely stable cell forms and are considered as an attractive platform to display heterologous proteins. A sample containing about 36 μg of SpA was covalently immobilized on the surface of 4 × 10(10) spores. Spore-bound SpA retained its IgG-binding activity, even after seven consecutive binding and washing steps, suggesting that it can be recycled and utilized several times. FACS analysis revealed that spores with covalently attached SpA had significantly improved fluorescence intensities when compared to those of spores with adsorbed SpA, suggesting that the covalent approach is more efficient than sole adsorption regarding protein attachment to the spore surface.

  9. [Isolation and characterization of new species hydrogen producing bacterium Ethanologenbacterium sp. strain X-1 and its capability of hydrogen production].

    PubMed

    Xing, De-Feng; Ren, Nan-Qi; Li, Qiu-Bo

    2004-12-01

    To obtain hydrogen-producing bacterium of high efficiency, a strain X-1 of hydrogen-producing bacteria was isolated from the continuous stirred-tank reactor (CSTR) by anaerobic Hungate technique. The Comparative sequence analysis of 16S rDNA showed that homology of strain X-1 with Clostridium cellulose and Acetanaerobacterium elongatum is less than 94%. All sequence alignment of 16S-23S rDNA intergenic spacer regions (ISR) indicated displayed that consensus region is tRNA(Ala), and tRNA(Ile), variable region is not homologous. Morphological, physic-biochemical character, and comparative sequence analysis of 16S rDNA and 16S-23S rDNA ISR indicated that strain X-1 belong to new genus named Ethanologenbacterium gen. nov.. Strain X-1 is facultative anaerobe bacillus; its main fermentative products are acetic acid, ethanol, H2 and CO2. The metabolic character of strain X-1 is typical ethanol type fermentation. Its capability of hydrogen production was measured in the batch culture experiment. X-1's maximum specific hydrogen producing rate is 28.3 mmol H2/( g dry cell x h) at pH 4.0 and 36 degrees C. Result of identify and analysis of hydrogen production ability demonstrated strain X-1 belong to new genus of high hydrogen-producing bacteria.

  10. Application of DNA adductomics to soil bacterium Sphingobium sp. strain KK22.

    PubMed

    Kanaly, Robert A; Micheletto, Ruggero; Matsuda, Tomonari; Utsuno, Youko; Ozeki, Yasuhiro; Hamamura, Natsuko

    2015-10-01

    Toward the development of ecotoxicology methods to investigate microbial markers of impacts of hydrocarbon processing activities, DNA adductomic analyses were conducted on a sphingomonad soil bacterium. From growing cells that were exposed or unexposed to acrolein, a commonly used biocide in hydraulic fracturing processes, DNA was extracted, digested to 2'-deoxynucleosides and analyzed by liquid chromatography-positive ionization electrospray-tandem mass spectrometry in selected reaction monitoring mode transmitting the [M + H](+) > [M + H - 116](+) transition over 100 transitions. Overall data shown as DNA adductome maps revealed numerous putative DNA adducts under both conditions with some occurring specifically for each condition. Adductomic analyses of triplicate samples indicated that elevated levels of some targeted putative adducts occurred in exposed cells. Two exposure-specific adducts were identified in exposed cells as 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro-6-hydroxy-(and 8-hydroxy-)pyrimido[1,2-a]- purine-(3H)-one (6- and 8-hydroxy-PdG) following synthesis of authentic standards of these compounds and subsequent analyses. A time course experiment showed that 6- and 8-hydroxy-PdG were detected in bacterial DNA within 30 min of acrolein exposure but were not detected in unexposed cells. This work demonstrated the first application of DNA adductomics to examine DNA damage in a bacterium and sets a foundation for future work. PMID:26305056

  11. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    PubMed Central

    Mehboob, Farrakh; van Gelder, Antonie H.; Rijpstra, W. Irene C.; Damsté, Jaap S. Sinninghe; Stams, Alfons J. M.

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 μm in diameter, and 2–8 μm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO2. The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts. PMID:20680263

  12. Application of DNA adductomics to soil bacterium Sphingobium sp. strain KK22

    PubMed Central

    Kanaly, Robert A; Micheletto, Ruggero; Matsuda, Tomonari; Utsuno, Youko; Ozeki, Yasuhiro; Hamamura, Natsuko

    2015-01-01

    Toward the development of ecotoxicology methods to investigate microbial markers of impacts of hydrocarbon processing activities, DNA adductomic analyses were conducted on a sphingomonad soil bacterium. From growing cells that were exposed or unexposed to acrolein, a commonly used biocide in hydraulic fracturing processes, DNA was extracted, digested to 2′-deoxynucleosides and analyzed by liquid chromatography-positive ionization electrospray-tandem mass spectrometry in selected reaction monitoring mode transmitting the [M + H]+ > [M + H − 116]+ transition over 100 transitions. Overall data shown as DNA adductome maps revealed numerous putative DNA adducts under both conditions with some occurring specifically for each condition. Adductomic analyses of triplicate samples indicated that elevated levels of some targeted putative adducts occurred in exposed cells. Two exposure-specific adducts were identified in exposed cells as 3-(2′-deoxyribosyl)-5,6,7,8-tetrahydro-6-hydroxy-(and 8-hydroxy-)pyrimido[1,2-a]- purine-(3H)-one (6- and 8-hydroxy-PdG) following synthesis of authentic standards of these compounds and subsequent analyses. A time course experiment showed that 6- and 8-hydroxy-PdG were detected in bacterial DNA within 30 min of acrolein exposure but were not detected in unexposed cells. This work demonstrated the first application of DNA adductomics to examine DNA damage in a bacterium and sets a foundation for future work. PMID:26305056

  13. Genome Sequence of the Mycorrhiza Helper Bacterium Streptomyces sp. Strain AcH 505.

    PubMed

    Tarkka, M T; Feldhahn, L; Buscot, F; Wubet, T

    2015-04-02

    A draft genome sequence of Streptomyces sp. strain AcH 505 is presented here. The genome encodes 22 secondary metabolite gene clusters and a large arsenal of secreted proteins, and their comparative and functional analyses will help to advance our knowledge of symbiotic interactions and fungal and plant biomass degradation.

  14. Genome Sequence of the Mycorrhiza Helper Bacterium Streptomyces sp. Strain AcH 505

    PubMed Central

    Feldhahn, L.; Buscot, F.; Wubet, T.

    2015-01-01

    A draft genome sequence of Streptomyces sp. strain AcH 505 is presented here. The genome encodes 22 secondary metabolite gene clusters and a large arsenal of secreted proteins, and their comparative and functional analyses will help to advance our knowledge of symbiotic interactions and fungal and plant biomass degradation. PMID:25838498

  15. Complete Genome Sequence of the Proteorhodopsin-Containing Marine Bacterium Sediminicola sp. YIK13

    PubMed Central

    Kwon, Yong Min

    2016-01-01

    Sediminicola sp. YIK13 is a marine flavobacterium, isolated from tidal flat sediment. Here, we present the first complete genome sequence of this genus, which consists of 3,569,807 bp with 39.4% GC content. This strain contains proteorhodopsin, as well as retinal biosynthesis genes, allowing it to utilize sunlight as an energy source. PMID:26823585

  16. Complete Genome Sequence of the Proteorhodopsin-Containing Marine Bacterium Sediminicola sp. YIK13.

    PubMed

    Kwon, Yong Min; Kim, Sang-Jin

    2016-01-01

    Sediminicola sp. YIK13 is a marine flavobacterium, isolated from tidal flat sediment. Here, we present the first complete genome sequence of this genus, which consists of 3,569,807 bp with 39.4% GC content. This strain contains proteorhodopsin, as well as retinal biosynthesis genes, allowing it to utilize sunlight as an energy source. PMID:26823585

  17. Expression and enzymatic characterization of a cold-adapted β-agarase from Antarctic bacterium Pseudoalteromonas sp. NJ21

    NASA Astrophysics Data System (ADS)

    Li, Jiang; Sha, Yujie

    2015-03-01

    An agar-degrading bacterium, designated as Pseudoalteromonas sp. NJ21, was isolated from an Antarctic sediment sample. The agarase gene aga1161 from Pseudoalteromonas sp. NJ21 consisting of a 2 382-bp coding region was cloned. The gene encodes a 793-amino acids protein and was found to possess characteristic features of the Glyco_hydro_42 family. The recombinant agarase (rAga1161) was overexpressed in Escherichia coli and purified as a fusion protein. Enzyme activity analysis revealed that the optimum temperature and pH for the purified recombinant agarase were 30-40°C and 8.0, respectively. rAga1161 was found to maintain as much as 80% of its maximum activity at 10°C, which is typical of a coldadapted enzyme. The pattern of agar hydrolysis demonstrated that the enzyme is an β-agarase, producing neoagarobiose (NA2) as the final main product. Furthermore, this work is the first proof of an agarolytic activity in Antarctic bacteria and these results indicate the potential for the Antarctic agarase as a catalyst in medicine, food and cosmetic industries.

  18. Thermostable hemicellulases of a bacterium, Geobacillus sp. DC3, isolated from the former Homestake gold mine in Lead, South Dakota.

    PubMed

    Bergdale, Terran E; Hughes, Stephen R; Bang, Sookie S

    2014-04-01

    A thermophilic strain, Geobacillus sp. DC3, capable of producing hemicellulolytic enzymes was isolated from the 1.5-km depth of the former Homestake gold mine in Lead, South Dakota. The DC3 strain expressed a high level of extracellular endoxylanase at 39.5 U/mg protein with additional hemicellulases including β-xylosidase (0.209 U/mg) and arabinofuranosidase (0.230 U/mg), after the bacterium was grown in xylan for 24 h. Partially purified DC3 endoxylanase exhibited a molecular mass of approximately 43 kDa according to zymography with an optimal pH of 7 and optimal temperature of 70 °C. The kinetic constants, K m and V max, were 13.8 mg/mL and 77.5 μmol xylose/min·mg xylan, respectively. The endoxylanase was highly stable and maintained 70 % of its original activity after 16 h incubation at 70 °C. The thermostable properties and presence of three different hemicellulases of Geobacillus sp. DC3 strain support its potential application for industrial hydrolysis of renewable biomass such as lignocelluloses.

  19. Characterization of a fluoride-resistant bacterium Acinetobacter sp. RH5 towards assessment of its water defluoridation capability

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shraboni; Yadav, Vaibhav; Mondal, Madhumanti; Banerjee, Soumya; Halder, Gopinath

    2015-12-01

    The present study investigates the defluoridation capability of fluoride-resistant bacteria from contaminated groundwater collected from Asanjola and Madhabpur, West Bengal, India. Seven strains of fluoride-resistant bacteria were isolated employing culture media containing 10-250 mg/L of fluoride to evaluate their ability in reducing fluoride concentration in water. Five isolates exhibited significant amount of reduction in fluoride. Isolate RH5 achieved a maximum fluoride removal of 25.7 % from the media at 30 °C and pH 7 after 8 days of incubation. Based on morphological, physiological characteristics and analysis of 16S rDNA gene sequence, isolate RH5 was identified as Acinetobacter sp. RH5. Growth of RH5 was analysed at a diverse pH range, and it could thrive at pH 5-10. The present investigation revealed that the selective pressure of fluoride results in growth of fluoride-resistant bacteria capable of secreting high-affinity anion-binding compounds. This bacterium played a dominant bioremediative role by concentrating the anions so that they become less available. Hence, the fluoride-resistant bacteria, Acinetobacter sp. RH5, could be used as a promising strain for application in water defluoridation from contaminated sites.

  20. Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene.

    PubMed

    Li, Xiaohui; He, Jian; Li, Shunpeng

    2007-03-01

    A highly effective chlorpyrifos-degrading bacterium strain Dsp-2 was isolated from the polluted treatment system of a chlorpyrifos manufacturer. This strain was preliminarily identified as Sphingomonas sp. based on its morphological, physiological and biochemical tests as well as 16S rDNA analysis. It utilized chlorpyrifos as its sole source of carbon for growth, by hydrolyzing chlorpyrifos to 3,5,6-trichloro-2-pyridinol (TCP). It could also utilize parathion, parathion-methyl, fenitrothion and profenofos, but not phoxin and triazophos. Bioremediation of chlorpyrifos-contaminated soil was examined using Dsp-2. Dsp-2 addition to soil treated with 100mgkg(-1) chlorpyrifos resulted in a higher degradation rate than control soils without inoculation. The moderate pH, moisture and inoculum density could have promoted degradation. The gene encoding the chlorpyrifos hydrolytic enzyme was cloned by PCR. Although BLAST sequence search results indicated that this gene has 99% similarity to mpd (a gene encoding the parathion-methyl hydrolyzing enzyme in Plesiomonas sp. M6), its hydrolytic efficiency for chlorpyrifos was significantly greater than the wild-type mpd from strain M6. PMID:17306510

  1. Spongiibacter marinus gen. nov., sp. nov., a halophilic marine bacterium isolated from the boreal sponge Haliclona sp. 1.

    PubMed

    Graeber, Ingeborg; Kaesler, Ines; Borchert, Martin S; Dieckmann, Ralf; Pape, Thomas; Lurz, Rudi; Nielsen, Preben; von Döhren, Hans; Michaelis, Walter; Szewzyk, Ulrich

    2008-03-01

    Strain HAL40b(T) was isolated from the marine sponge Haliclona sp. 1 collected at the Sula Ridge off the Norwegian coast and characterized by physiological, biochemical and phylogenetic analyses. The isolate was a small rod with a polar flagellum. It was aerobic, Gram-negative and oxidase- and catalase-positive. Optimal growth was observed at 20-30 degrees C, pH 7-9 and in 3 % NaCl. Substrate utilization tests were positive for arabinose, Tween 40 and Tween 80. Enzyme tests were positive for alkaline phosphatase, esterase lipase (C8), leucine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase and N-acetyl-beta-glucosaminidase. The predominant cellular fatty acid was C(17 : 1) omega8, followed by C(17 : 0) and C(18 : 1) omega7. Analysis by matrix-assisted laser desorption/ionization time-of-flight MS was used to characterize the strain, producing a characteristic low-molecular-mass protein pattern that could be used as a fingerprint for identification of members of this species. The DNA G+C content was 69.1 mol%. Phylogenetic analysis supported by 16S rRNA gene sequence comparison classified the strain as a member of the class Gammaproteobacteria. Strain HAL40b(T) was only distantly related to other marine bacteria including Neptunomonas naphthovorans and Marinobacter daepoensis (type strain sequence similarity >90 %). Based on its phenotypic, physiological and phylogenetic characteristics, it is proposed that the strain should be placed into a new genus as a representative of a novel species, Spongiibacter marinus gen. nov., sp. nov.; the type strain of Spongiibacter marinus is HAL40b(T) (=DSM 17750(T) =CCUG 54896(T)).

  2. Genome Sequence of the Agar-Degrading Marine Bacterium Alteromonadaceae sp. Strain G7

    PubMed Central

    Kwak, Min-Jung; Song, Ju Yeon; Kim, Byung Kwon; Chi, Won-Jae; Kwon, Soon-Kyeong; Choi, Soobeom; Chang, Yong-Keun

    2012-01-01

    Here, we present the high-quality draft genome sequence of the agar-degrading marine gammaproteobacterium Alteromonadaceae sp. strain G7, which was isolated from coastal seawater to be utilized as a bioresource for production of agar-derived biofuels. The 3.91-Mb genome contains a number of genes encoding algal polysaccharide-degrading enzymes such as agarases and sulfatases. PMID:23209220

  3. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea

    NASA Technical Reports Server (NTRS)

    Oren, A.; Ginzburg, M.; Ginzburg, B. Z.; Hochstein, L. I.; Volcani, B. E.

    1990-01-01

    An extremely halophilic red archaebacterium isolated from the Dead Sea (Ginzburg et al., J. Gen. Physiol. 55: 187-207, 1970) belongs to the genus Haloarcula and differs sufficiently from the previously described species of the genus to be designated a new species; we propose the name Haloarcula marismortui (Volcani) sp. nov., nom. rev. because of the close resemblance of this organism to "Halobacterium marismortui," which was first described by Volcani in 1940. The type strain is strain ATCC 43049.

  4. Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gene encoding a GH10 endo-xylanase from Geobacillus sp. WSUCF1 was cloned and expressed in Escherichia coli. Recombinant endo-xylanase (37 kDa) exhibited high specific activity of 461.0 U/ mg of protein. Endo-xylanase was optimally active on birchwood xylan at 70°C and pH 6.5. Zn2+ and Ca2+ ions i...

  5. Draft Genome Sequence of Thermoanaerobacter sp. Strain YS13, a Novel Thermophilic Bacterium.

    PubMed

    Peng, Tingting; Pan, Siyi; Christopher, Lew; Sparling, Richard; Levin, David B

    2015-06-04

    Here, we report the draft genome sequence of Thermoanerobacter sp. YS13, isolated from a geothermal hot spring in Yellowstone National Park, which consists of 2,713,030 bp with a mean G+C content of 34.05%. A total of 2,779 genes, including 2,707 protein-coding genes, 12 rRNAs, and 59 tRNAs were identified.

  6. Draft Genome Sequence of Thermoanaerobacter sp. Strain YS13, a Novel Thermophilic Bacterium

    PubMed Central

    Peng, Tingting; Pan, Siyi; Christopher, Lew; Sparling, Richard

    2015-01-01

    Here, we report the draft genome sequence of Thermoanerobacter sp. YS13, isolated from a geothermal hot spring in Yellowstone National Park, which consists of 2,713,030 bp with a mean G+C content of 34.05%. A total of 2,779 genes, including 2,707 protein-coding genes, 12 rRNAs, and 59 tRNAs were identified. PMID:26044430

  7. Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food.

    PubMed

    Lee, Mi-Hwa; Lee, Jiyeon; Nam, Young-Do; Lee, Jong Suk; Seo, Myung-Ji; Yi, Sung-Hun

    2016-03-16

    A wild-type microorganism exhibiting antimicrobial activities was isolated from the Korean traditional fermented soybean food Chungkookjang and identified as Bacillus sp. LM7. During its stationary growth phase, the microorganism secreted an antimicrobial substance, which we partially purified using a simple two-step procedure involving ammonium sulfate precipitation and heat treatment. The partially purified antimicrobial substance, Anti-LM7, was stable over a broad pH range (4.0-9.0) and at temperatures up to 80 °C for 30 min, and was resistant to most proteolytic enzymes and maintained its activity in 30% (v/v) organic solvents. Anti-LM7 inhibited the growth of a broad range of Gram-positive bacteria, including Bacillus cereus and Listeria monocytogenes, but it did not inhibit lactic acid bacteria such as Lactobacillus plantarum and Lactococcus lactis subsp. Lactis. Moreover, unlike commercially available nisin and polymyxin B, Anti-LM7 inhibited certain fungal strains. Lastly, liquid chromatography-mass spectrometry analysis of Anti-LM7 revealed that it contained eight lipopeptides belonging to two families: four bacillomycin D and four surfactin analogs. These Bacillus sp. LM7-produced heterogeneous lipopeptides exhibiting extremely high stability and a broad antimicrobial spectrum are likely to be closely related to the antimicrobial activity of Chungkookjang, and their identification presents an opportunity for application of the peptides in environmental bioremediation, pharmaceutical, cosmetic, and food industries.

  8. Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food.

    PubMed

    Lee, Mi-Hwa; Lee, Jiyeon; Nam, Young-Do; Lee, Jong Suk; Seo, Myung-Ji; Yi, Sung-Hun

    2016-03-16

    A wild-type microorganism exhibiting antimicrobial activities was isolated from the Korean traditional fermented soybean food Chungkookjang and identified as Bacillus sp. LM7. During its stationary growth phase, the microorganism secreted an antimicrobial substance, which we partially purified using a simple two-step procedure involving ammonium sulfate precipitation and heat treatment. The partially purified antimicrobial substance, Anti-LM7, was stable over a broad pH range (4.0-9.0) and at temperatures up to 80 °C for 30 min, and was resistant to most proteolytic enzymes and maintained its activity in 30% (v/v) organic solvents. Anti-LM7 inhibited the growth of a broad range of Gram-positive bacteria, including Bacillus cereus and Listeria monocytogenes, but it did not inhibit lactic acid bacteria such as Lactobacillus plantarum and Lactococcus lactis subsp. Lactis. Moreover, unlike commercially available nisin and polymyxin B, Anti-LM7 inhibited certain fungal strains. Lastly, liquid chromatography-mass spectrometry analysis of Anti-LM7 revealed that it contained eight lipopeptides belonging to two families: four bacillomycin D and four surfactin analogs. These Bacillus sp. LM7-produced heterogeneous lipopeptides exhibiting extremely high stability and a broad antimicrobial spectrum are likely to be closely related to the antimicrobial activity of Chungkookjang, and their identification presents an opportunity for application of the peptides in environmental bioremediation, pharmaceutical, cosmetic, and food industries. PMID:26803269

  9. Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury resistance. [Mercury reductase

    SciTech Connect

    Wang, Y.; Levinson, H.S.; Mahler, I. ); Moore, M.; Walsh, C. ); Silver, S. )

    1989-01-01

    A 13.5-kilobase HindIII fragment, bearing an intact mercury resistance (mer) operon, was isolated from chromosomal DNA of broad-spectrum mercury-resistant Bacillus sp. strain RC607 by using as a probe a clone containing the mercury reductase (merA) gene. The new clone, pYW33, expressed broad-spectrum mercury resistance both in Escherichia coli and in Bacillus subtilis, but only in B. subtilis was the mercuric reductase activity inducible. Sequencing of a 1.8-kilobase mercury hypersensitivity-producing fragment revealed four open reading frames (ORFs). ORF1 may code for a regulatory protein (MerR). ORF2 and ORF4 were associated with cellular transport function and the hypersensitivity phenotype. DNA fragments encompassing the merA and the merB genes were sequenced. The predicted Bacillus sp. strain RC607 MerA (mercuric reductase) and MerB (organomercurial lyase) were similar to those predicted from Staphylococcus aureus plasmid pI258 (67 and 73% amino acid identities, respectively); however, only 40% of the amino acid residues of RC607 MerA were identical to those of the mercuric reductase from gram-negative bacteria. A 69-kilodalton polypeptide was isolated and identified as the merA gene product by examination of its amino-terminal sequence.

  10. A new cellulose-producing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditions.

    PubMed

    Tanskul, Somporn; Amornthatree, Korntip; Jaturonlak, Nathakan

    2013-01-30

    A total of 59 bacterial strains were isolated from ripe fruits and vegetables and tested for their ability to produce cellulose. Only one identified as Rhodococcus sp. MI 2 based on its taxonomic characteristics and 16S rDNA sequence analysis. The glucose was the only product of digestion by cellulase confirmed by TLC and reversed phase HPLC. Rhodococcus sp. MI 2 produced significantly more cellulose with the SH medium containing glucose than with the coconut juice medium. Rhodococcus sp. MI 2 initially produced 3.91 ± 0.091, 2.20 ± 0.090 and 0.19 ± 0.051 g/L/6 days cellulose under static, agitated and stirred conditions, respectively, whereas A. xylinum 998 produced 1.17 ± 0.065, 1.34 ± 0.115 and 0.12 ± 0.046 g/L/6 days cellulose under the same conditions, respectively. The optimum culture conditions for cellulose production in SH medium were room temperature (25 °C), a 5% (v/v) inoculum, peptone 0.7%, yeast extract 0.9%, and sucrose 1.5%, at a pH of 3.5. The cellulose yield was increased by adding 0.5% CaCO(3) to the SH medium with sucrose but added agar had no effect. The cellulose yield under optimum and static conditions was increased about twice, from 3.7 to 7.4 g/L/14 days.

  11. Complete genome sequence of the lignin-degrading bacterium Klebsiella sp. strain BRL6-2

    PubMed Central

    2014-01-01

    In an effort to discover anaerobic bacteria capable of lignin degradation, we isolated Klebsiella sp. strain BRL6-2 on minimal media with alkali lignin as the sole carbon source. This organism was isolated anaerobically from tropical forest soils collected from the Bisley watershed at the Ridge site in the El Yunque National Forest in Puerto Rico, USA, part of the Luquillo Long-Term Ecological Research Station. At this site, the soils experience strong fluctuations in redox potential and are characterized by cycles of iron oxidation and reduction. Genome sequencing was targeted because of its ability to grow on lignin anaerobically and lignocellulolytic activity via in vitro enzyme assays. The genome of Klebsiella sp. strain BRL6-2 is 5.80 Mbp with no detected plasmids, and includes a relatively small arsenal of genes encoding lignocellulolytic carbohydrate active enzymes. The genome revealed four putative peroxidases including glutathione and DyP-type peroxidases, and a complete protocatechuate pathway encoded in a single gene cluster. Physiological studies revealed Klebsiella sp. strain BRL6-2 to be relatively stress tolerant to high ionic strength conditions. It grows in increasing concentrations of ionic liquid (1-ethyl-3-methyl-imidazolium acetate) up to 73.44 mM and NaCl up to 1.5 M. PMID:25566348

  12. Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Kempf, Michael; Chen, Fei; Satomi, Masataka; Nicholson, Wayne; Kern, Roger

    2003-01-01

    One of the spore-formers isolated from a spacecraft-assembly facility, belonging to the genus Bacillus, is described on the basis of phenotypic characterization, 16S rDNA sequence analysis and DNA-DNA hybridization studies. It is a Gram-positive, facultatively anaerobic, rod-shaped eubacterium that produces endospores. The spores of this novel bacterial species exhibited resistance to UV, gamma-radiation, H2O2 and desiccation. The 18S rDNA sequence analysis revealed a clear affiliation between this strain and members of the low G+C Firmicutes. High 16S rDNA sequence similarity values were found with members of the genus Bacillus and this was supported by fatty acid profiles. The 16S rDNA sequence similarity between strain FO-92T and Bacillus benzoevorans DSM 5391T was very high. However, molecular characterizations employing small-subunit 16S rDNA sequences were at the limits of resolution for the differentiation of species in this genus, but DNA-DNA hybridization data support the proposal of FO-92T as Bacillus nealsonii sp. nov. (type strain is FO-92T =ATCC BAAM-519T =DSM 15077T).

  13. Preparative isolation and purification of macrolactin antibiotics from marine bacterium Bacillus amyloliquefaciens using high-speed counter-current chromatography in stepwise elution mode.

    PubMed

    He, Shan; Wang, Hongqiang; Yan, Xiaojun; Zhu, Peng; Chen, Juanjuan; Yang, Rui

    2013-01-11

    Preparative high-speed counter-current chromatography (HSCCC) was successfully applied to the isolation and purification of two macrolactin antibiotics from marine bacterium Bacillus amyloliquefaciens for the first time using stepwise elution with a pair of two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water at (1:4:1:4, v/v) and (3:4:3:4, v/v). The preparative HSCCC separation was performed on 300 mg of crude sample yielding macrolactin B (22.7 mg) and macrolactin A (40.4 mg) in a one-step separation, with purities over 95% as determined by HPLC. The structures of these compounds were identified by MS, (1)H NMR and (13)C NMR. Our results demonstrated that HSCCC was an efficient technique to separate marine antibiotics, which provide an approach to solve the problem of their sample availability for drug development.

  14. Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: statistical modeling and process optimization.

    PubMed

    Motaghed, M; Mousavi, S M; Rastegar, S O; Shojaosadati, S A

    2014-11-01

    The present study evaluated the potential of Bacillus megaterium as a cyanogenic bacterium to produce cyanide for solubilization of platinum and rhenium from a spent refinery catalyst. Response surface methodology was applied to study the effects and interaction between two main effective parameters including initial glycine concentration and pulp density. Maximum Pt and Re recovery was obtained 15.7% and 98%, respectively, under optimum conditions of 12.8 g/l initial glycine concentration and 4% (w/v) pulp density after 7 days. Increasing the free cyanide concentration to 3.6 mg/l, varying the pH from 6.7 to 9, and increasing the dissolved oxygen from 2 to 5mg/l demonstrated the growth characteristics of B. megaterium during bioleaching process. The modified shrinking core model was used to determine the rate limiting step of the process. It was found that diffusion through the product layer is the rate controlling step.

  15. Alicyclobacillus dauci sp. nov., a slightly thermophilic, acidophilic bacterium isolated from a spoiled mixed vegetable and fruit juice product.

    PubMed

    Nakano, Chisa; Takahashi, Naoto; Tanaka, Naoto; Okada, Sanae

    2015-02-01

    A novel, moderately thermophilic, acidophilic, Gram-variable, rod-shaped, endospore-forming bacterium was isolated from a spoiled mixed vegetable and fruit juice product that had the off-flavour of guaiacol. The bacterium, strain 4F(T), grew aerobically at 20-50 °C (optimum 40 °C) and pH 3.0-6.0 (optimum pH 4.0) and produced acid from glycerol, d-galactose and d-glucose. It contained menaquinone-7 (MK-7) as the major isoprenoid quinone and the DNA G+C content was 49.6 mol%. The predominant cellular fatty acids of strain 4F(T) were ω-alicyclic (ω-cyclohexane fatty acids), which are characteristic of the genus Alicyclobacillus. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain belongs to the Alicyclobacillus cluster, and is related most closely to the type strains of Alicyclobacillus acidoterrestris (97.4 % similarity) and Alicyclobacillus fastidiosus (97.3 %). Strain 4F(T) produced guaiacol from vanillic acid. It can be distinguished from related species by its acid production type and guaiacol production. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness values, it can be concluded that the strain represents a novel species of the genus Alicyclobacillus, for which the name Alicyclobacillus dauci sp. nov. is proposed; the type strain is 4F(T) ( = DSM 28700(T) = NBRC 108949(T) = NRIC 0938(T)).

  16. Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring.

    PubMed

    Slepova, Tatiana V; Sokolova, Tatyana G; Kolganova, Tatyana V; Tourova, Tatyana P; Bonch-Osmolovskaya, Elizaveta A

    2009-02-01

    A novel anaerobic, thermophilic, Fe(III)-reducing, CO-utilizing bacterium, strain 1315(T), was isolated from a hot spring of Geyser Valley on the Kamchatka Peninsula. Cells of the new isolate were Gram-positive, short rods. Growth was observed at 52-70 degrees C, with an optimum at 65 degrees C, and at pH 5.5-8.5, with an optimum at pH 6.5-7.2. In the presence of Fe(III) or 9,10-anthraquinone 2,6-disulfonate (AQDS), the bacterium was capable of growth with CO and yeast extract (0.2 g l(-1)); during growth under these conditions, strain 1315(T) produced H(2) and CO(2) and Fe(II) or AQDSH(2), respectively. Strain 1315(T) also grew by oxidation of yeast extract, glucose, xylose or lactate under a N(2) atmosphere, reducing Fe(III) or AQDS. Yeast extract (0.2 g l(-1)) was required for growth. Isolate 1315(T) grew exclusively with Fe(III) or AQDS as an electron acceptor. The generation time under optimal conditions with CO as growth substrate was 9.3 h. The G+C content of the DNA was 41.5+/-0.5 mol%. 16S rRNA gene sequence analysis placed the organism in the genus Carboxydothermus (97.8 % similarity with the closest relative). On the basis of physiological features and phylogenetic analysis, it is proposed that strain 1315(T) should be assigned to a novel species, Carboxydothermus siderophilus sp. nov., with the type strain 1315(T) (=VKPM 9905B(T) =VKM B-2474(T) =DSM 21278(T)).

  17. From Metagenomics to Pure Culture: Isolation and Characterization of the Moderately Halophilic Bacterium Spiribacter salinus gen. nov., sp. nov.

    PubMed Central

    León, María José; Fernández, Ana B.; Ghai, Rohit; Sánchez-Porro, Cristina; Rodriguez-Valera, Francisco

    2014-01-01

    Recent metagenomic studies on saltern ponds with intermediate salinities have determined that their microbial communities are dominated by both Euryarchaeota and halophilic bacteria, with a gammaproteobacterium closely related to the genera Alkalilimnicola and Arhodomonas being one of the most predominant microorganisms, making up to 15% of the total prokaryotic population. Here we used several strategies and culture media in order to isolate this organism in pure culture. We report the isolation and taxonomic characterization of this new, never before cultured microorganism, designated M19-40T, isolated from a saltern located in Isla Cristina, Spain, using a medium with a mixture of 15% salts, yeast extract, and pyruvic acid as the carbon source. Morphologically small curved cells (young cultures) with a tendency to form long spiral cells in older cultures were observed in pure cultures. The organism is a Gram-negative, nonmotile bacterium that is strictly aerobic, non-endospore forming, heterotrophic, and moderately halophilic, and it is able to grow at 10 to 25% (wt/vol) NaCl, with optimal growth occurring at 15% (wt/vol) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that strain M19-40T has a low similarity with other previously described bacteria and shows the closest phylogenetic similarity with species of the genera Alkalilimnicola (94.9 to 94.5%), Alkalispirillum (94.3%), and Arhodomonas (93.9%) within the family Ectothiorhodospiraceae. The phenotypic, genotypic, and chemotaxonomic features of this new bacterium showed that it constitutes a new genus and species, for which the name Spiribacter salinus gen. nov., sp. nov., is proposed, with strain M19-40T (= CECT 8282T = IBRC-M 10768T = LMG 27464T) being the type strain. PMID:24747894

  18. Psychromonas boydii sp. nov., a gas-vacuolate, psychrophilic bacterium isolated from an Arctic sea-ice core.

    PubMed

    Auman, Ann J; Breezee, Jennifer L; Gosink, John J; Schumann, Peter; Barnes, Carmen R; Kämpfer, Peter; Staley, James T

    2010-01-01

    A gas-vacuolate bacterium, strain 174(T), was isolated from a sea-ice core collected from Point Barrow, Alaska, USA. Comparative analysis of 16S rRNA gene sequences showed that this bacterium was most closely related to Psychromonas ingrahamii 37(T), with a similarity of >99 %. However, strain 174(T) could be clearly distinguished from closely related species by DNA-DNA hybridization; relatedness values determined by two different methods between strain 174(T) and P. ingrahamii 37(T) were 58.4 and 55.7 % and those between strain 174(T) and Psychromonas antarctica DSM 10704(T) were 46.1 and 33.1 %, which are well below the 70 % level used to define a distinct species. Phenotypic analysis, including cell size (strain 174(T) is the largest member of the genus Psychromonas, with rod-shaped cells, 8-18 microm long), further differentiated strain 174(T) from other members of the genus Psychromonas. Strain 174(T) could be distinguished from its closest relative, P. ingrahamii, by its utilization of D-mannose and D-xylose as sole carbon sources, its ability to ferment myo-inositol and its inability to use fumarate and glycerol as sole carbon sources. In addition, strain 174(T) contained gas vacuoles of two distinct morphologies and grew at temperatures ranging from below 0 to 10 degrees C and its optimal NaCl concentration for growth was 3.5 %. The DNA G+C content was 40 mol%. Whole-cell fatty acid analysis showed that 16 : 1omega7c and 16 : 0 comprised 44.9 and 26.4 % of the total fatty acid content, respectively. The name Psychromonas boydii sp. nov. is proposed for this novel species, with strain 174(T) (=DSM 17665(T) =CCM 7498(T)) as the type strain.

  19. Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring.

    PubMed

    Slepova, Tatiana V; Sokolova, Tatyana G; Kolganova, Tatyana V; Tourova, Tatyana P; Bonch-Osmolovskaya, Elizaveta A

    2009-02-01

    A novel anaerobic, thermophilic, Fe(III)-reducing, CO-utilizing bacterium, strain 1315(T), was isolated from a hot spring of Geyser Valley on the Kamchatka Peninsula. Cells of the new isolate were Gram-positive, short rods. Growth was observed at 52-70 degrees C, with an optimum at 65 degrees C, and at pH 5.5-8.5, with an optimum at pH 6.5-7.2. In the presence of Fe(III) or 9,10-anthraquinone 2,6-disulfonate (AQDS), the bacterium was capable of growth with CO and yeast extract (0.2 g l(-1)); during growth under these conditions, strain 1315(T) produced H(2) and CO(2) and Fe(II) or AQDSH(2), respectively. Strain 1315(T) also grew by oxidation of yeast extract, glucose, xylose or lactate under a N(2) atmosphere, reducing Fe(III) or AQDS. Yeast extract (0.2 g l(-1)) was required for growth. Isolate 1315(T) grew exclusively with Fe(III) or AQDS as an electron acceptor. The generation time under optimal conditions with CO as growth substrate was 9.3 h. The G+C content of the DNA was 41.5+/-0.5 mol%. 16S rRNA gene sequence analysis placed the organism in the genus Carboxydothermus (97.8 % similarity with the closest relative). On the basis of physiological features and phylogenetic analysis, it is proposed that strain 1315(T) should be assigned to a novel species, Carboxydothermus siderophilus sp. nov., with the type strain 1315(T) (=VKPM 9905B(T) =VKM B-2474(T) =DSM 21278(T)). PMID:19196756

  20. Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913.

    PubMed

    Qin, Guokui; Zhu, Lizhi; Chen, Xiulan; Wang, Peng George; Zhang, Yuzhong

    2007-05-01

    Pseudoalteromonas sp. SM9913 is a psychrotolerant bacterium isolated from deep-sea sediment. The structural characterization and ecological roles of the exopolysaccharide (EPS) secreted by this strain were studied in this work. The yield of the EPS increased as the culture temperature decreased in the range 30-10 degrees C, and it reached 5.25 g l(-1) (dry weight) under optimal growth conditions (15 degrees C, 52 h). EPS fraction was purified and its structure was identified by the combination of NMR spectra, high-resolution mass spectrometry (HRMS) analysis and methylation analysis. The ratio of the sugar units, the acetyl group and the ethoxyl group was close to 4 : 5 : 1. The major sugar unit of the EPS was 6-linked glucose (61.8 %); other sugar units present included terminal arabinofuranosyl (11.0 %) and glucopyranosyl (11.2 %) residues and a small amount of other sugar derivatives. Its structure was different from EPSs reported for other marine bacteria. Besides the structural elucidation of the EPS, its ecological roles were studied. This EPS could enhance the stability of the cold-adapted protease MCP-01 secreted by the same strain through preventing its autolysis. It could bind many metal ions, including Fe(2+), Zn(2+), Cu(2+), Co(2+). It was also a very good flocculating agent and could conglomerate colloidal and suspended particles. These results indicated that the EPS secreted by strain SM9913 might help this strain enrich the proteinaceous particles and the trace metals in the deep-sea environment, stabilize the secreted cold-adapted proteases and avoid its diffusion. This is believed to be the first report on the structure of the EPS secreted by a deep-sea psychrotolerant bacterium and its ecological roles. According to these results and other studies, a schematic diagram of the lifestyle of the deep-sea psychrotolerant strain SM9913 is suggested.