Sample records for bacterium bacteroides thetaiotaomicron

  1. Multiple Signals Govern Utilization of a Polysaccharide in the Gut Bacterium Bacteroides thetaiotaomicron.

    PubMed

    Schwalm, Nathan D; Townsend, Guy E; Groisman, Eduardo A

    2016-10-11

    The utilization of simple sugars is widespread across all domains of life. In contrast, the breakdown of complex carbohydrates is restricted to a subset of organisms. A regulatory paradigm for integration of complex polysaccharide breakdown with simple sugar utilization was established in the mammalian gut symbiont Bacteroides thetaiotaomicron, whereby sensing of monomeric fructose regulates catabolism of both fructose and polymeric fructans. We now report that a different regulatory paradigm governs utilization of monomeric arabinose and the arabinose polymer arabinan. We establish that (i) arabinan utilization genes are controlled by a transcriptional activator that responds to arabinan and by a transcriptional repressor that responds to arabinose, (ii) arabinose utilization genes are regulated directly by the arabinose-responding repressor but indirectly by the arabinan-responding activator, and (iii) activation of both arabinan and arabinose utilization genes requires a pleiotropic transcriptional regulator necessary for survival in the mammalian gut. Genomic analysis predicts that this paradigm is broadly applicable to the breakdown of other polysaccharides in both B. thetaiotaomicron and other gut Bacteroides spp. The uncovered mechanism enables regulation of polysaccharide utilization genes in response to both the polysaccharide and its breakdown products. Breakdown of complex polysaccharides derived from "dietary fiber" is achieved by the mammalian gut microbiota. This breakdown creates a critical nutrient source for both the microbiota and its mammalian host. Because the availability of individual polysaccharides fluctuates with variations in the host diet, members of the microbiota strictly control expression of polysaccharide utilization genes. Our findings define a regulatory architecture that controls the breakdown of a polysaccharide by a gut bacterium in response to three distinct signals. This architecture integrates perception of a complex

  2. [The first metronidazole-resistant Bacteroides species isolated at Marmara University Hospital: Bacteroides thetaiotaomicron].

    PubMed

    Toprak Ülger, Nurver; Sayın, Elvan; Soyad, Ad; Dane, Faysal; Söyletir, Güner

    2013-10-01

    Bacteroides species, the predominant constituents of the human intestinal microbiota can cause serious intraabdominal and postoperative wound infections and bacteremia. Moreover, these bacteria are more resistant to antimicrobial agents than the other anaerobes. The limited number of the antimicrobials, such as carbapenems, beta-lactam/beta-lactamase inhibitors and nitroimidazoles are highly effective in eliminating Bacteroides. However, a few metronidazole-resistant isolates have been reported from several countries recently. The nim genes (nim A-G) are suggested to be responsible for the majority of the metronidazole resistance. Here, we describe a metronidazole-resistant Bacteroides thetaiotaomicron isolated from a blood culture. A gram-negative obligate anaerobic rod was isolated from the postoperative 5th day blood culture of a 62-year-old male patient with adenocarcinoma of the pancreas head. The strain was identified as B.thetaiotaomicron by using a combination of conventional tests and commercially available biochemical kits. Antimicrobial susceptibility testing was performed by agar dilution method. The resistance genes were investigated by means of PCR using specific primer pairs for nim gene. The purified PCR product was sequenced and analyzed by comparison of the consensus sequences with GenBank sequences. The MIC for metronidazole was 16 mg/L. Although the strain was intermediate according the CLSI criteria, it was resistant (> 4 mg/L) according to EUCAST criteria. The isolate was nim gene positive, and nucleotide sequencing of the PCR product shared 100% similarity with nimE gene (emb |AM042593.1 |). On the other hand the isolate was susceptible to carbapenems and sulbactam-ampicillin. Following administration of ampicillin-sulbactam, the patient's fever disappeared after 24 hours. The clinical condition improved considerably and he was discharged at day 8. The patient was followed up at the medical oncology clinic; however he died due to disease

  3. Bacteroides thetaiotaomicron VPI-5482 glycoside hydrolase family 66 homolog catalyzes dextranolytic and cyclization reactions.

    PubMed

    Kim, Young-Min; Yamamoto, Eiji; Kang, Min-Sun; Nakai, Hiroyuki; Saburi, Wataru; Okuyama, Masayuki; Mori, Haruhide; Funane, Kazumi; Momma, Mitsuru; Fujimoto, Zui; Kobayashi, Mikihiko; Kim, Doman; Kimura, Atsuo

    2012-09-01

    Bacteroides thetaiotaomicron VPI-5482 harbors a gene encoding a putative cycloisomaltooligosaccharide glucanotransferase (BT3087) belonging to glycoside hydrolase family 66. The goal of the present study was to characterize the catalytic properties of this enzyme. Therefore, we expressed BT3087 (recombinant endo-dextranase from Bacteroides thetaiotaomicron VPI-5482) in Escherichia coli and determined that recombinant endo-dextranase from Bacteroides thetaiotaomicron VPI-5482 preferentially synthesized isomaltotetraose and isomaltooligosaccharides (degree of polymerization > 4) from dextran. The enzyme also generated large cyclic isomaltooligosaccharides early in the reaction. We conclude that members of the glycoside hydrolase 66 family may be classified into three types: (a) endo-dextranases, (b) dextranases possessing weak cycloisomaltooligosaccharide glucanotransferase activity, and (c) cycloisomaltooligosaccharide glucanotransferases. © 2012 The Authors Journal compilation © 2012 FEBS.

  4. Characterization of Glycosaminoglycan (GAG) Sulfatases from the Human Gut Symbiont Bacteroides thetaiotaomicron Reveals the First GAG-specific Bacterial Endosulfatase*

    PubMed Central

    Ulmer, Jonathan E.; Vilén, Eric Morssing; Namburi, Ramesh Babu; Benjdia, Alhosna; Beneteau, Julie; Malleron, Annie; Bonnaffé, David; Driguez, Pierre-Alexandre; Descroix, Karine; Lassalle, Gilbert; Le Narvor, Christine; Sandström, Corine; Spillmann, Dorothe; Berteau, Olivier

    2014-01-01

    Despite the importance of the microbiota in human physiology, the molecular bases that govern the interactions between these commensal bacteria and their host remain poorly understood. We recently reported that sulfatases play a key role in the adaptation of a major human commensal bacterium, Bacteroides thetaiotaomicron, to its host (Benjdia, A., Martens, E. C., Gordon, J. I., and Berteau, O. (2011) J. Biol. Chem. 286, 25973–25982). We hypothesized that sulfatases are instrumental for this bacterium, and related Bacteroides species, to metabolize highly sulfated glycans (i.e. mucins and glycosaminoglycans (GAGs)) and to colonize the intestinal mucosal layer. Based on our previous study, we investigated 10 sulfatase genes induced in the presence of host glycans. Biochemical characterization of these potential sulfatases allowed the identification of GAG-specific sulfatases selective for the type of saccharide residue and the attachment position of the sulfate group. Although some GAG-specific bacterial sulfatase activities have been described in the literature, we report here for the first time the identity and the biochemical characterization of four GAG-specific sulfatases. Furthermore, contrary to the current paradigm, we discovered that B. thetaiotaomicron possesses an authentic GAG endosulfatase that is active at the polymer level. This type of sulfatase is the first one to be identified in a bacterium. Our study thus demonstrates that bacteria have evolved more sophisticated and diverse GAG sulfatases than anticipated and establishes how B. thetaiotaomicron, and other major human commensal bacteria, can metabolize and potentially tailor complex host glycans. PMID:25002587

  5. Specificity of a Bacteroides thetaiotaomicron marker for human feces

    USGS Publications Warehouse

    Carson, C.A.; Christiansen, J.M.; Yampara-Iquise, H.; Benson, V.W.; Baffaut, C.; Davis, J.V.; Broz, R.R.; Kurtz, W.B.; Rogers, W.M.; Fales, W.H.

    2005-01-01

    A bacterial primer set, known to produce a 542-bp amplicon specific for Bacteroides thetaiotaomicron, generated this product in PCR with 1 ng of extracted DNA from 92% of 25 human fecal samples, 100% of 20 sewage samples, and 16% of 31 dog fecal samples. The marker was not detected in 1 ng of fecal DNA from 61 cows, 35 horses, 44 pigs, 24 chickens, 29 turkeys, and 17 geese. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  6. Regulated expression of polysaccharide utilization and capsular biosynthesis loci in biofilm and planktonic Bacteroides thetaiotaomicron during growth in chemostats

    USDA-ARS?s Scientific Manuscript database

    Bacteroides thetaiotaomicron is a prominent member of the human distal gut microbiota that specializes in breaking down diet and host-derived polysaccharides. While polysaccharide utilization has been well studied in B. thetaiotaomicron, other aspects of its behavior are less well characterized, in...

  7. Incorporation of leucine into phospholipids of Bacteroides thetaiotaomicron.

    PubMed Central

    Smith, R D; Salyers, A A

    1981-01-01

    L-[4,5-3H]- or L-[U-14C]leucine was incorporated by Bacteroides thetaiotaomicron into acid-precipitable material even when the bacteria were treated with concentrations of tetracycline high enough to prevent growth. Similar results were obtained when L-[2,3,4-3H]valine or L-[4,5-3H]isoleucine was used instead of leucine. In bacteria which had been treated with tetracycline, the acid-precipitable label was not solubilized by treatment with protease, lysozyme, or deoxyribonuclease. However, virtually all of the label was extractable with chloroform-methanol, indicating that the label had been incorporated into membrane lipids. Since L-[1-14C]leucine was not incorporated into lipids, leucine was probably decarboxylated before incorporation. When a chloroform extract from bacteria which had been labeled with both [32P]phosphate and [3H]leucine was resolved into component phospholipids by two-dimensional thin-layer chromatography, 3H was incorporated into all of the phospholipids. When these phospholipids were deacylated, the 3H from leucine was associated with released fatty acids rather than with the head groups. Thus, it appears that B. thetaiotaomicron can utilize leucine and similar amino acids not only by incorporating them into protein but also by incorporating portions of these amino acids into membrane phospholipids. PMID:7462155

  8. A Novel Tightly Regulated Gene Expression System for the Human Intestinal Symbiont Bacteroides thetaiotaomicron.

    PubMed

    Horn, Nikki; Carvalho, Ana L; Overweg, Karin; Wegmann, Udo; Carding, Simon R; Stentz, Régis

    2016-01-01

    There is considerable interest in studying the function of Bacteroides species resident in the human gastrointestinal (GI)-tract and the contribution they make to host health. Reverse genetics and protein expression techniques, such as those developed for well-characterized Escherichia coli cannot be applied to Bacteroides species as they and other members of the Bacteriodetes phylum have unique promoter structures. The availability of useful Bacteroides-specific genetic tools is therefore limited. Here we describe the development of an effective mannan-controlled gene expression system for Bacteroides thetaiotaomicron containing the mannan-inducible promoter-region of an α-1,2-mannosidase gene (BT_3784), a ribosomal binding site designed to modulate expression, a multiple cloning site to facilitate the cloning of genes of interest, and a transcriptional terminator. Using the Lactobacillus pepI as a reporter gene, mannan induction resulted in an increase of reporter activity in a time- and concentration-dependent manner with a wide range of activity. The endogenous BtcepA cephalosporinase gene was used to demonstrate the suitability of this novel expression system, enabling the isolation of a His-tagged version of BtCepA. We have also shown with experiments performed in mice that the system can be induced in vivo in the presence of an exogenous source of mannan. By enabling the controlled expression of endogenous and exogenous genes in B. thetaiotaomicron this novel inducer-dependent expression system will aid in defining the physiological role of individual genes and the functional analyses of their products.

  9. A Novel Tightly Regulated Gene Expression System for the Human Intestinal Symbiont Bacteroides thetaiotaomicron

    PubMed Central

    Horn, Nikki; Carvalho, Ana L.; Overweg, Karin; Wegmann, Udo; Carding, Simon R.; Stentz, Régis

    2016-01-01

    There is considerable interest in studying the function of Bacteroides species resident in the human gastrointestinal (GI)-tract and the contribution they make to host health. Reverse genetics and protein expression techniques, such as those developed for well-characterized Escherichia coli cannot be applied to Bacteroides species as they and other members of the Bacteriodetes phylum have unique promoter structures. The availability of useful Bacteroides-specific genetic tools is therefore limited. Here we describe the development of an effective mannan-controlled gene expression system for Bacteroides thetaiotaomicron containing the mannan-inducible promoter–region of an α-1,2-mannosidase gene (BT_3784), a ribosomal binding site designed to modulate expression, a multiple cloning site to facilitate the cloning of genes of interest, and a transcriptional terminator. Using the Lactobacillus pepI as a reporter gene, mannan induction resulted in an increase of reporter activity in a time- and concentration-dependent manner with a wide range of activity. The endogenous BtcepA cephalosporinase gene was used to demonstrate the suitability of this novel expression system, enabling the isolation of a His-tagged version of BtCepA. We have also shown with experiments performed in mice that the system can be induced in vivo in the presence of an exogenous source of mannan. By enabling the controlled expression of endogenous and exogenous genes in B. thetaiotaomicron this novel inducer-dependent expression system will aid in defining the physiological role of individual genes and the functional analyses of their products. PMID:27468280

  10. Characterizing the Interactions between a Naturally Primed Immunoglobulin A and Its Conserved Bacteroides thetaiotaomicron Species-specific Epitope in Gnotobiotic Mice*

    PubMed Central

    Peterson, Daniel A.; Planer, Joseph D.; Guruge, Janaki L.; Xue, Lai; Downey-Virgin, Whitt; Goodman, Andrew L.; Seedorf, Henning; Gordon, Jeffrey I.

    2015-01-01

    The adaptive immune response to the human gut microbiota consists of a complex repertoire of antibodies interacting with a broad range of taxa. Fusing intestinal lamina propria lymphocytes from mice monocolonized with Bacteroides thetaiotaomicron to a myeloma fusion partner allowed us to recover hybridomas that captured naturally primed, antigen-specific antibody responses representing multiple isotypes, including IgA. One of these hybridomas, 260.8, produced a monoclonal antibody that recognizes an epitope specific for B. thetaiotaomicron isolates in a large panel of hospital- and community-acquired Bacteroides. Whole genome transposon mutagenesis revealed a 19-gene locus, involved in LPS O-antigen polysaccharide synthesis and conserved among multiple B. thetaiotaomicron isolates, that is required for 260.8 epitope expression. Mutants in this locus exhibited marked fitness defects in vitro during growth in rich medium and in gnotobiotic mice colonized with defined communities of human gut symbionts. Expression of the 260.8 epitope was sustained during 10 months of daily passage in vitro and during 14 months of monocolonization of gnotobiotic wild-type, Rag1−/−, or Myd88−/− mice. Comparison of gnotobiotic Rag1−/− mice with and without subcutaneous 260.8 hybridomas disclosed that this IgA did not affect B. thetaiotaomicron population density or suppress 260.8 epitope production but did affect bacterial gene expression in ways emblematic of a diminished host innate immune response. Our study illustrates an approach for (i) generating diagnostic antibodies, (ii) characterizing IgA responses along a continuum of specificity/degeneracy that defines the IgA repertoire to gut symbionts, and (iii) identifying immunogenic epitopes that affect competitiveness and help maintain host-microbe mutualism. PMID:25795776

  11. Characterizing the interactions between a naturally primed immunoglobulin A and its conserved Bacteroides thetaiotaomicron species-specific epitope in gnotobiotic mice.

    PubMed

    Peterson, Daniel A; Planer, Joseph D; Guruge, Janaki L; Xue, Lai; Downey-Virgin, Whitt; Goodman, Andrew L; Seedorf, Henning; Gordon, Jeffrey I

    2015-05-15

    The adaptive immune response to the human gut microbiota consists of a complex repertoire of antibodies interacting with a broad range of taxa. Fusing intestinal lamina propria lymphocytes from mice monocolonized with Bacteroides thetaiotaomicron to a myeloma fusion partner allowed us to recover hybridomas that captured naturally primed, antigen-specific antibody responses representing multiple isotypes, including IgA. One of these hybridomas, 260.8, produced a monoclonal antibody that recognizes an epitope specific for B. thetaiotaomicron isolates in a large panel of hospital- and community-acquired Bacteroides. Whole genome transposon mutagenesis revealed a 19-gene locus, involved in LPS O-antigen polysaccharide synthesis and conserved among multiple B. thetaiotaomicron isolates, that is required for 260.8 epitope expression. Mutants in this locus exhibited marked fitness defects in vitro during growth in rich medium and in gnotobiotic mice colonized with defined communities of human gut symbionts. Expression of the 260.8 epitope was sustained during 10 months of daily passage in vitro and during 14 months of monocolonization of gnotobiotic wild-type, Rag1-/-, or Myd88-/- mice. Comparison of gnotobiotic Rag1-/- mice with and without subcutaneous 260.8 hybridomas disclosed that this IgA did not affect B. thetaiotaomicron population density or suppress 260.8 epitope production but did affect bacterial gene expression in ways emblematic of a diminished host innate immune response. Our study illustrates an approach for (i) generating diagnostic antibodies, (ii) characterizing IgA responses along a continuum of specificity/degeneracy that defines the IgA repertoire to gut symbionts, and (iii) identifying immunogenic epitopes that affect competitiveness and help maintain host-microbe mutualism. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. A Highly Active Endo-Levanase BT1760 of a Dominant Mammalian Gut Commensal Bacteroides thetaiotaomicron Cleaves Not Only Various Bacterial Levans, but Also Levan of Timothy Grass

    PubMed Central

    Vija, Heiki; Aasamets, Anneli; Viigand, Katrin

    2017-01-01

    Bacteroides thetaiotaomicron, an abundant commensal of the human gut, degrades numerous complex carbohydrates. Recently, it was reported to grow on a β-2,6-linked polyfructan levan produced by Zymomonas mobilis degrading the polymer into fructooligosaccharides (FOS) with a cell surface bound endo-levanase BT1760. The FOS are consumed by B. thetaiotaomicron, but also by other gut bacteria, including health-promoting bifidobacteria and lactobacilli. Here we characterize biochemical properties of BT1760, including the activity of BT1760 on six bacterial levans synthesized by the levansucrase Lsc3 of Pseudomonas syringae pv. tomato, its mutant Asp300Asn, levansucrases of Zymomonas mobilis, Erwinia herbicola, Halomonas smyrnensis as well as on levan isolated from timothy grass. For the first time a plant levan is shown as a perfect substrate for an endo-fructanase of a human gut bacterium. BT1760 degraded levans to FOS with degree of polymerization from 2 to 13. At optimal reaction conditions up to 1 g of FOS were produced per 1 mg of BT1760 protein. Low molecular weight (<60 kDa) levans, including timothy grass levan and levan synthesized from sucrose by the Lsc3Asp300Asn, were degraded most rapidly whilst levan produced by Lsc3 from raffinose least rapidly. BT1760 catalyzed finely at human body temperature (37°C) and in moderately acidic environment (pH 5–6) that is typical for the gut lumen. According to differential scanning fluorimetry, the Tm of the endo-levanase was 51.5°C. All tested levans were sufficiently stable in acidic conditions (pH 2.0) simulating the gastric environment. Therefore, levans of both bacterial and plant origin may serve as a prebiotic fiber for B. thetaiotaomicron and contribute to short-chain fatty acids synthesis by gut microbiota. In the genome of Bacteroides xylanisolvens of human origin a putative levan degradation locus was disclosed. PMID:28103254

  13. A Highly Active Endo-Levanase BT1760 of a Dominant Mammalian Gut Commensal Bacteroides thetaiotaomicron Cleaves Not Only Various Bacterial Levans, but Also Levan of Timothy Grass.

    PubMed

    Mardo, Karin; Visnapuu, Triinu; Vija, Heiki; Aasamets, Anneli; Viigand, Katrin; Alamäe, Tiina

    2017-01-01

    Bacteroides thetaiotaomicron, an abundant commensal of the human gut, degrades numerous complex carbohydrates. Recently, it was reported to grow on a β-2,6-linked polyfructan levan produced by Zymomonas mobilis degrading the polymer into fructooligosaccharides (FOS) with a cell surface bound endo-levanase BT1760. The FOS are consumed by B. thetaiotaomicron, but also by other gut bacteria, including health-promoting bifidobacteria and lactobacilli. Here we characterize biochemical properties of BT1760, including the activity of BT1760 on six bacterial levans synthesized by the levansucrase Lsc3 of Pseudomonas syringae pv. tomato, its mutant Asp300Asn, levansucrases of Zymomonas mobilis, Erwinia herbicola, Halomonas smyrnensis as well as on levan isolated from timothy grass. For the first time a plant levan is shown as a perfect substrate for an endo-fructanase of a human gut bacterium. BT1760 degraded levans to FOS with degree of polymerization from 2 to 13. At optimal reaction conditions up to 1 g of FOS were produced per 1 mg of BT1760 protein. Low molecular weight (<60 kDa) levans, including timothy grass levan and levan synthesized from sucrose by the Lsc3Asp300Asn, were degraded most rapidly whilst levan produced by Lsc3 from raffinose least rapidly. BT1760 catalyzed finely at human body temperature (37°C) and in moderately acidic environment (pH 5-6) that is typical for the gut lumen. According to differential scanning fluorimetry, the Tm of the endo-levanase was 51.5°C. All tested levans were sufficiently stable in acidic conditions (pH 2.0) simulating the gastric environment. Therefore, levans of both bacterial and plant origin may serve as a prebiotic fiber for B. thetaiotaomicron and contribute to short-chain fatty acids synthesis by gut microbiota. In the genome of Bacteroides xylanisolvens of human origin a putative levan degradation locus was disclosed.

  14. Structure of the GH76 α-mannanase homolog, BT2949, from the gut symbiont Bacteroides thetaiotaomicron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Andrew J.; Cuskin, Fiona; Spears, Richard J.

    A high-resolution structure of a noncanonical α-mannanase relevant to human health and nutrition has been solved via heavy-atom phasing of a selenomethionine derivative. The large bowel microbiota, a complex ecosystem resident within the gastrointestinal tract of all human beings and large mammals, functions as an essential, nonsomatic metabolic organ, hydrolysing complex dietary polysaccharides and modulating the host immune system to adequately tolerate ingested antigens. A significant member of this community, Bacteroides thetaiotaomicron, has evolved a complex system for sensing and processing a wide variety of natural glycoproducts in such a way as to provide maximum benefit to itself, the widermore » microbial community and the host. The immense ability of B. thetaiotaomicron as a ‘glycan specialist’ resides in its enormous array of carbohydrate-active enzymes, many of which are arranged into polysaccharide-utilization loci (PULs) that are able to degrade sugar polymers that are often inaccessible to other gut residents, notably α-mannan. The B. thetaiotaomicron genome encodes ten putative α-mannanases spread across various PULs; however, little is known about the activity of these enzymes or the wider implications of α-mannan metabolism for the health of both the microbiota and the host. In this study, SAD phasing of a selenomethionine derivative has been used to investigate the structure of one such B. thetaiotaomicron enzyme, BT2949, which belongs to the GH76 family of α-mannanases. BT2949 presents a classical (α/α){sub 6}-barrel structure comprising a large extended surface cleft common to other GH76 family members. Analysis of the structure in conjunction with sequence alignments reveals the likely location of the catalytic active site of this noncanonical GH76.« less

  15. Multidomain Carbohydrate-binding Proteins Involved in Bacteroides thetaiotaomicron Starch Metabolism*

    PubMed Central

    Cameron, Elizabeth A.; Maynard, Mallory A.; Smith, Christopher J.; Smith, Thomas J.; Koropatkin, Nicole M.; Martens, Eric C.

    2012-01-01

    Human colonic bacteria are necessary for the digestion of many dietary polysaccharides. The intestinal symbiont Bacteroides thetaiotaomicron uses five outer membrane proteins to bind and degrade starch. Here, we report the x-ray crystallographic structures of SusE and SusF, two outer membrane proteins composed of tandem starch specific carbohydrate-binding modules (CBMs) with no enzymatic activity. Examination of the two CBMs in SusE and three CBMs in SusF reveals subtle differences in the way each binds starch and is reflected in their Kd values for both high molecular weight starch and small maltooligosaccharides. Thus, each site seems to have a unique starch preference that may enable these proteins to interact with different regions of starch or its breakdown products. Proteins similar to SusE and SusF are encoded in many other polysaccharide utilization loci that are possessed by human gut bacteria in the phylum Bacteroidetes. Thus, these proteins are likely to play an important role in carbohydrate metabolism in these abundant symbiotic species. Understanding structural changes that diversify and adapt related proteins in the human gut microbial community will be critical to understanding the detailed mechanistic roles that they perform in the complex digestive ecosystem. PMID:22910908

  16. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent

    PubMed Central

    2013-01-01

    Background The intestinal mucus layer plays a key role in the maintenance of host-microbiota homeostasis. To document the crosstalk between the host and microbiota, we used gnotobiotic models to study the influence of two major commensal bacteria, Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii, on this intestinal mucus layer. B. thetaiotaomicron is known to use polysaccharides from mucus, but its effect on goblet cells has not been addressed so far. F. prausnitzii is of particular physiological importance because it can be considered as a sensor and a marker of human health. We determined whether B. thetaiotaomicron affected goblet cell differentiation, mucin synthesis and glycosylation in the colonic epithelium. We then investigated how F. prausnitzii influenced the colonic epithelial responses to B. thetaiotaomicron. Results B. thetaiotaomicron, an acetate producer, increased goblet cell differentiation, expression of mucus-related genes and the ratio of sialylated to sulfated mucins in mono-associated rats. B. thetaiotaomicron, therefore, stimulates the secretory lineage, favoring mucus production. When B. thetaiotaomicron was associated with F. prausnitzii, an acetate consumer and a butyrate producer, the effects on goblet cells and mucin glycosylation were diminished. F. prausnitzii, by attenuating the effects of B. thetaiotaomicron on mucus, may help the epithelium to maintain appropriate proportions of different cell types of the secretory lineage. Using a mucus-producing cell line, we showed that acetate up-regulated KLF4, a transcription factor involved in goblet cell differentiation. Conclusions B. thetaiotaomicron and F. prausnitzii, which are metabolically complementary, modulate, in vivo, the intestinal mucus barrier by modifying goblet cells and mucin glycosylation. Our study reveals the importance of the balance between two main commensal bacteria in maintaining colonic epithelial homeostasis via their respective effects on mucus. PMID

  17. Identification of feces by detection of Bacteroides genes.

    PubMed

    Nakanishi, Hiroaki; Shojo, Hideki; Ohmori, Takeshi; Hara, Masaaki; Takada, Aya; Adachi, Noboru; Saito, Kazuyuki

    2013-01-01

    In forensic science, the identification of feces is very important in a variety of crime investigations. However, no sensitive and simple fecal identification method using molecular biological techniques has been reported. Here, we focused on the fecal bacteria, Bacteroides uniformis, Bacteroides vulgatus and Bacteroides thetaiotaomicron, and developed a novel fecal identification method by detection of the gene sequences specific to these bacteria in various body (feces, blood, saliva, semen, urine, vaginal fluids and skin surfaces) and forensic (anal adhesions) specimens. Bacterial gene detection was performed by real-time PCR using a minor groove binding probe to amplify the RNA polymerase β-subunit gene of B. uniformis and B. vulgatus, and the α-1-6 mannanase gene of B. thetaiotaomicron. At least one of these bacteria was detected in the feces of 20 donors; the proportions of B. uniformis, B. vulgatus and B. thetaiotaomicron were 95, 85 and 60%, respectively. Bacteroides vulgatus was also detected in one of six vaginal fluid samples, but B. thetaiotaomicron and B. uniformis were not detected in body samples other than feces. Further, we applied this method to forensic specimens from 18 donors. Eighteen anal adhesions also contained at least one of three bacteria; B. uniformis, B. vulgatus and B. thetaiotaomicron were detected in 89, 78 and 56%, respectively, of the specimens. Thus, these bacteria were present at a high frequency in the fecal and forensic specimens, while either B. uniformis or B. vulgatus was detected in all samples. Therefore, B. uniformis and B. vulgatus represent more appropriate target species than B. thetaiotaomicron for the identification of fecal material. If B. vulgatus and/or B. uniformis are detected, it is likely that the sample contains feces. Taken together, our results suggest that the use of molecular biological techniques will aid the detection of feces in forensic practice, although it is possible that the samples contained

  18. Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against β-lactam antibiotics.

    PubMed

    Stentz, Régis; Horn, Nikki; Cross, Kathryn; Salt, Louise; Brearley, Charles; Livermore, David M; Carding, Simon R

    2015-03-01

    To identify β-lactamase genes in gut commensal Bacteroides species and to assess the impact of these enzymes, when carried by outer membrane vesicles (OMVs), in protecting enteric pathogens and commensals. A deletion mutant of the putative class A β-lactamase gene (locus tag BT_4507) found in the genome of the human commensal Bacteroides thetaiotaomicron was constructed and a phenotypic analysis performed. A phylogenetic tree was built from an alignment of nine Bacteroides cephalosporinase protein sequences, using the maximum likelihood method. The rate of cefotaxime degradation after incubation with OMVs produced by different Bacteroides species was quantified using a disc susceptibility test. The resistance of Salmonella Typhimurium and Bifidobacterium breve to cefotaxime in liquid culture in the presence of B. thetaiotaomicron OMVs was evaluated by measuring bacterial growth. The B. thetaiotaomicron BT_4507 gene encodes a β-lactamase related to the CepA cephalosporinase of Bacteroides fragilis. OMVs produced by B. thetaiotaomicron and several other Bacteroides species, except Bacteroides ovatus, carried surface-associated β-lactamases that could degrade cefotaxime. β-Lactamase-harbouring OMVs from B. thetaiotaomicron protected Salmonella Typhimurium and B. breve from an otherwise lethal dose of cefotaxime. The production of membrane vesicles carrying surface-associated β-lactamases by Bacteroides species, which constitute a major part of the human colonic microbiota, may protect commensal bacteria and enteric pathogens, such as Salmonella Typhimurium, against β-lactam antibiotics. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  19. In Silico Analysis of the Small Molecule Content of Outer Membrane Vesicles Produced by Bacteroides thetaiotaomicron Indicates an Extensive Metabolic Link between Microbe and Host

    PubMed Central

    Bryant, William A.; Stentz, Régis; Le Gall, Gwenaelle; Sternberg, Michael J. E.; Carding, Simon R.; Wilhelm, Thomas

    2017-01-01

    The interactions between the gut microbiota and its host are of central importance to the health of the host. Outer membrane vesicles (OMVs) are produced ubiquitously by Gram-negative bacteria including the gut commensal Bacteroides thetaiotaomicron. These vesicles can interact with the host in various ways but until now their complement of small molecules has not been investigated in this context. Using an untargeted high-coverage metabolomic approach we have measured the small molecule content of these vesicles in contrasting in vitro conditions to establish what role these metabolites could perform when packed into these vesicles. B. thetaiotaomicron packs OMVs with a highly conserved core set of small molecules which are strikingly enriched with mouse-digestible metabolites and with metabolites previously shown to be associated with colonization of the murine GIT. By use of an expanded genome-scale metabolic model of B. thetaiotaomicron and a potential host (the mouse) we have established many possible metabolic pathways between the two organisms that were previously unknown, and have found several putative novel metabolic functions for mouse that are supported by gene annotations, but that do not currently appear in existing mouse metabolic networks. The lipidome of these OMVs bears no relation to the mouse lipidome, so the purpose of this particular composition of lipids remains unclear. We conclude from this analysis that through intimate symbiotic evolution OMVs produced by B. thetaiotaomicron are likely to have been adopted as a conduit for small molecules bound for the mammalian host in vivo. PMID:29276507

  20. In Silico Analysis of the Small Molecule Content of Outer Membrane Vesicles Produced by Bacteroides thetaiotaomicron Indicates an Extensive Metabolic Link between Microbe and Host.

    PubMed

    Bryant, William A; Stentz, Régis; Le Gall, Gwenaelle; Sternberg, Michael J E; Carding, Simon R; Wilhelm, Thomas

    2017-01-01

    The interactions between the gut microbiota and its host are of central importance to the health of the host. Outer membrane vesicles (OMVs) are produced ubiquitously by Gram-negative bacteria including the gut commensal Bacteroides thetaiotaomicron . These vesicles can interact with the host in various ways but until now their complement of small molecules has not been investigated in this context. Using an untargeted high-coverage metabolomic approach we have measured the small molecule content of these vesicles in contrasting in vitro conditions to establish what role these metabolites could perform when packed into these vesicles. B. thetaiotaomicron packs OMVs with a highly conserved core set of small molecules which are strikingly enriched with mouse-digestible metabolites and with metabolites previously shown to be associated with colonization of the murine GIT. By use of an expanded genome-scale metabolic model of B. thetaiotaomicron and a potential host (the mouse) we have established many possible metabolic pathways between the two organisms that were previously unknown, and have found several putative novel metabolic functions for mouse that are supported by gene annotations, but that do not currently appear in existing mouse metabolic networks. The lipidome of these OMVs bears no relation to the mouse lipidome, so the purpose of this particular composition of lipids remains unclear. We conclude from this analysis that through intimate symbiotic evolution OMVs produced by B. thetaiotaomicron are likely to have been adopted as a conduit for small molecules bound for the mammalian host in vivo .

  1. Genetic Variation of the SusC/SusD Homologs from a Polysaccharide Utilization Locus Underlies Divergent Fructan Specificities and Functional Adaptation in Bacteroides thetaiotaomicron Strains.

    PubMed

    Joglekar, Payal; Sonnenburg, Erica D; Higginbottom, Steven K; Earle, Kristen A; Morland, Carl; Shapiro-Ward, Sarah; Bolam, David N; Sonnenburg, Justin L

    2018-01-01

    Genomic differences between gut-resident bacterial strains likely underlie significant interindividual variation in microbiome function. Traditional methods of determining community composition, such as 16S rRNA gene amplicon sequencing, fail to capture this functional diversity. Metagenomic approaches are a significant step forward in identifying strain-level sequence variants; however, given the current paucity of biochemical information, they too are limited to mainly low-resolution and incomplete functional predictions. Using genomic, biochemical, and molecular approaches, we identified differences in the fructan utilization profiles of two closely related Bacteroides thetaiotaomicron strains. B. thetaiotaomicron 8736 ( Bt-8736 ) contains a fructan polysaccharide utilization locus (PUL) with a divergent susC / susD homolog gene pair that enables it to utilize inulin, differentiating this strain from other characterized Bt strains. Transfer of the distinct pair of susC / susD genes from Bt-8736 into the noninulin using type strain B. thetaiotaomicron VPI-5482 resulted in inulin use by the recipient strain, Bt ( 8736-2 ). The presence of the divergent susC / susD gene pair alone enabled the hybrid Bt ( 8736-2 ) strain to outcompete the wild-type strain in vivo in mice fed an inulin diet. Further, we discovered that the susC / susD homolog gene pair facilitated import of inulin into the periplasm without surface predigestion by an endo-acting enzyme, possibly due to the short average chain length of inulin compared to many other polysaccharides. Our data builds upon recent reports of dietary polysaccharide utilization mechanisms found in members of the Bacteroides genus and demonstrates how the acquisition of two genes can alter the functionality and success of a strain within the gut. IMPORTANCE Dietary polysaccharides play a dominant role in shaping the composition and functionality of our gut microbiota. Dietary interventions using these m icrobiota- a

  2. Genetic Variation of the SusC/SusD Homologs from a Polysaccharide Utilization Locus Underlies Divergent Fructan Specificities and Functional Adaptation in Bacteroides thetaiotaomicron Strains

    PubMed Central

    Joglekar, Payal; Sonnenburg, Erica D.; Higginbottom, Steven K.; Earle, Kristen A.; Morland, Carl; Shapiro-Ward, Sarah; Bolam, David N.

    2018-01-01

    ABSTRACT Genomic differences between gut-resident bacterial strains likely underlie significant interindividual variation in microbiome function. Traditional methods of determining community composition, such as 16S rRNA gene amplicon sequencing, fail to capture this functional diversity. Metagenomic approaches are a significant step forward in identifying strain-level sequence variants; however, given the current paucity of biochemical information, they too are limited to mainly low-resolution and incomplete functional predictions. Using genomic, biochemical, and molecular approaches, we identified differences in the fructan utilization profiles of two closely related Bacteroides thetaiotaomicron strains. B. thetaiotaomicron 8736 (Bt-8736) contains a fructan polysaccharide utilization locus (PUL) with a divergent susC/susD homolog gene pair that enables it to utilize inulin, differentiating this strain from other characterized Bt strains. Transfer of the distinct pair of susC/susD genes from Bt-8736 into the noninulin using type strain B. thetaiotaomicron VPI-5482 resulted in inulin use by the recipient strain, Bt(8736-2). The presence of the divergent susC/susD gene pair alone enabled the hybrid Bt(8736-2) strain to outcompete the wild-type strain in vivo in mice fed an inulin diet. Further, we discovered that the susC/susD homolog gene pair facilitated import of inulin into the periplasm without surface predigestion by an endo-acting enzyme, possibly due to the short average chain length of inulin compared to many other polysaccharides. Our data builds upon recent reports of dietary polysaccharide utilization mechanisms found in members of the Bacteroides genus and demonstrates how the acquisition of two genes can alter the functionality and success of a strain within the gut. IMPORTANCE Dietary polysaccharides play a dominant role in shaping the composition and functionality of our gut microbiota. Dietary interventions using these microbiota

  3. The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species

    PubMed Central

    Lu, Zheng

    2017-01-01

    ABSTRACT The impact of oxidative stress upon organismal fitness is most apparent in the phenomenon of obligate anaerobiosis. The root cause may be multifaceted, but the intracellular generation of reactive oxygen species (ROS) likely plays a key role. ROS are formed when redox enzymes accidentally transfer electrons to oxygen rather than to their physiological substrates. In this study, we confirm that the predominant intestinal anaerobe Bacteroides thetaiotaomicron generates intracellular ROS at a very high rate when it is aerated. Fumarate reductase (Frd) is a prominent enzyme in the anaerobic metabolism of many bacteria, including B. thetaiotaomicron, and prior studies of Escherichia coli Frd showed that the enzyme is unusually prone to ROS generation. Surprisingly, in this study biochemical analysis demonstrated that the B. thetaiotaomicron Frd does not react with oxygen at all: neither superoxide nor hydrogen peroxide is formed. Subunit-swapping experiments indicated that this difference does not derive from the flavoprotein subunit at which ROS normally arise. Experiments with the related enzyme succinate dehydrogenase discouraged the hypothesis that heme moieties are responsible. Thus, resistance to oxidation may reflect a shift of electron density away from the flavin moiety toward the iron-sulfur clusters. This study shows that the autoxidizability of a redox enzyme can be suppressed by subtle modifications that do not compromise its physiological function. One implication is that selective pressures might enhance the oxygen tolerance of an organism by manipulating the electronic properties of its redox enzymes so they do not generate ROS. PMID:28049145

  4. Isolation and reconstitution of iron- and manganese-containing superoxide dismutases from Bacteroides thetaiotaomicron.

    PubMed Central

    Pennington, C D; Gregory, E M

    1986-01-01

    Superoxide dismutase (SOD) from extracts of anaerobically maintained Bacteroides thetaiotaomicron was a dimer of equally sized 23,000-molecular-weight monomers joined noncovalently. A preparation with a specific activity of 1,200 U/mg contained 1.1 g-atom of Fe, 0.6 g-atom of Zn, and less than 0.05 g-atom of Mn per mol of dimer. The apoprotein, prepared by dialysis of iron-SOD in 5 M guanidinium chloride-20 mM 8-hydroxyquinoline, had no superoxide-scavenging activity when renatured without exogenous metal. Enzymatic activity was restored to the denatured apoprotein by dialysis against either 1 mM Fe(NH4)2 or 1 mM MnCl2 in 20 mM Tris (pH 7.0). The Fe-reconstituted enzyme and the native enzyme were inhibited approximately 50% by 0.2 mM NaN3, whereas the Mn-reconstituted enzyme was inhibited 60% by 10 mM NaN3. Aeration of the anaerobic cells resulted in a fourfold induction of an azide-resistant SOD. The enzyme (43,000 molecular weight) isolated from aerated cells was a dimer of equally sized subunits. The metal content was 1.0 g-atom of Mn, 0.55 g-atom of Fe, and 0.3 g-atom of Zn per mol of dimer. Enzymatic activity of the denatured apoprotein from this enzyme was also restored on addition of either iron or manganese. The constitutive Fe-SOD and the O2-induced Mn-SOD, tested alone and in combination, migrated identically on acrylamide gels, had similar amino acid compositions, and had alanine as the sole N-terminal amino acid. These data are consistent with the synthesis of a single apoprotein in either anaerobically maintained or oxygenated cells. We have observed a similar phenomenon with SOD from Bacteroides fragilis (E. M. Gregory, Arch. Biochem. Biophys. 238:83-89, 1985). PMID:3700336

  5. Near-complete genome sequence of the cellulolytic Bacterium Bacteroides ( Pseudobacteroides) cellulosolvens ATCC 35603

    DOE PAGES

    Dassa, Bareket; Utturkar, Sagar M.; Hurt, Richard A.; ...

    2015-09-24

    We report the single-contig genome sequence of the anaerobic, mesophilic, cellulolytic bacterium, Bacteroides cellulosolvens. The bacterium produces a particularly elaborate cellulosome system, whereas the types of cohesin-dockerin interactions are opposite of other known cellulosome systems: cell-surface attachment is thus mediated via type-I interactions whereas enzymes are integrated via type-II interactions.

  6. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides.

    PubMed

    Luis, Ana S; Briggs, Jonathon; Zhang, Xiaoyang; Farnell, Benjamin; Ndeh, Didier; Labourel, Aurore; Baslé, Arnaud; Cartmell, Alan; Terrapon, Nicolas; Stott, Katherine; Lowe, Elisabeth C; McLean, Richard; Shearer, Kaitlyn; Schückel, Julia; Venditto, Immacolata; Ralet, Marie-Christine; Henrissat, Bernard; Martens, Eric C; Mosimann, Steven C; Abbott, D Wade; Gilbert, Harry J

    2018-02-01

    The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show that each PUL orchestrates the metabolism of specific pectin molecules, recruiting enzymes from two previously unknown glycoside hydrolase families. The apparatus that depolymerizes the backbone of rhamnogalacturonan-I is particularly complex. This system contains several glycoside hydrolases that trim the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms.

  7. Patient-Specific Bacteroides Genome Variants in Pouchitis

    DOE PAGES

    Vineis, Joseph H.; Ringus, Daina L.; Morrison, Hilary G.; ...

    2016-11-15

    Here, a 2-year longitudinal microbiome study of 22 patients who underwent colectomy with an ileal pouch anal anastomosis detected significant increases in distinct populations of Bacteroides during 9 of 11 patient visits that coincided with inflammation (pouchitis). Oligotyping and metagenomic short-read annotation identified Bacteroides populations that occurred in early samples, bloomed during inflammation, and reappeared after antibiotic treatment. Targeted cultivation of Bacteroides isolates from the same individual at multiple time points and from several patients detected subtle genomic changes, including the identification of rapidly evolving genomic elements that differentiate isogenic strains of Bacteroides fragilis from the mucosa versus lumen. Eachmore » patient harbored Bacteroides spp. that are closely related to commonly occurring clinical isolates, including Bacteroides ovatus, B. thetaiotaomicron, B. vulgatus, and B. fragilis, which contained unique loci in different patients for synthesis of capsular polysaccharides. The presence of unique Bacteroides capsular polysaccharide loci within different hosts and between the lumen and mucosa may represent adaptations to stimulate, suppress, and evade host-specific immune responses at different microsites of the ileal pouch.« less

  8. Patient-Specific Bacteroides Genome Variants in Pouchitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vineis, Joseph H.; Ringus, Daina L.; Morrison, Hilary G.

    Here, a 2-year longitudinal microbiome study of 22 patients who underwent colectomy with an ileal pouch anal anastomosis detected significant increases in distinct populations of Bacteroides during 9 of 11 patient visits that coincided with inflammation (pouchitis). Oligotyping and metagenomic short-read annotation identified Bacteroides populations that occurred in early samples, bloomed during inflammation, and reappeared after antibiotic treatment. Targeted cultivation of Bacteroides isolates from the same individual at multiple time points and from several patients detected subtle genomic changes, including the identification of rapidly evolving genomic elements that differentiate isogenic strains of Bacteroides fragilis from the mucosa versus lumen. Eachmore » patient harbored Bacteroides spp. that are closely related to commonly occurring clinical isolates, including Bacteroides ovatus, B. thetaiotaomicron, B. vulgatus, and B. fragilis, which contained unique loci in different patients for synthesis of capsular polysaccharides. The presence of unique Bacteroides capsular polysaccharide loci within different hosts and between the lumen and mucosa may represent adaptations to stimulate, suppress, and evade host-specific immune responses at different microsites of the ileal pouch.« less

  9. A deletion in the chromosome of Bacteroides thetaiotaomicron that abolishes production of chondroitinase II does not affect survival of the organism in gastrointestinal tracts of exgermfree mice.

    PubMed Central

    Salyers, A A; Guthrie, E P

    1988-01-01

    Bacteroides thetaiotaomicron, an obligate anaerobe normally found in high concentrations in the human colon, is one of the few colon bacteria that can ferment host mucopolysaccharides such as chondroitin sulfate. Previously, we found that a directed insertional mutation in the gene that codes for the chondroitinase II gene of B. thetaiotaomicron did not affect growth on chondroitin sulfate despite the fact that chondroitinase II accounts for 70% of the total cellular chondroitinase activity. Thus, the chondroitinase II gene did not seem to contribute significantly to growth on chondroitin sulfate when the bacteria were grown in laboratory medium. To determine whether this enzyme is important for bacteria growing in the intestinal tract, we tested the ability of a strain that does not produce chondroitinase II to colonize the intestinal tracts of germfree mice and to compete with wild-type B. thetaiotaomicron. The mutant used in these experiments carried a 0.5-kilobase deletion in the chondroitinase II gene and was constructed so that, unlike the original insertion mutant, it contained no exogenous DNA. The deletion mutant colonized the intestinal tracts of germfree mice at the same levels as the wild type. When a mixture of the deletion mutant and wild type was used to colonize germfree mice, the percent wild type, measured by colony hybridization with the deleted 0.5-kilobase fragment as the hybridization probe, did not rise to 100% even after periods as long as 9 weeks. In most experiments, the percent wild type did not rise significantly above the percent in the original mixture.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:3140726

  10. Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community.

    PubMed

    Robert, Céline; Chassard, Christophe; Lawson, Paul A; Bernalier-Donadille, Annick

    2007-07-01

    A strictly anaerobic cellulolytic bacterium, strain CRE21(T), was isolated from a human faecal sample. Cells were Gram-negative non-motile rods that were about 1.7 microm in length and 0.9 microm in width. Strain CRE21(T) degraded different types of cellulose and was able to grow on a variety of carbohydrates. Cellulose and sugars were mainly converted to acetate, propionate and succinate. The G+C content of the DNA was 41.1 mol%. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Bacteroides with highest sequence similarity to the type strain of Bacteroides intestinalis (98 %). DNA-DNA hybridization results revealed that strain CRE21(T) was distinct from B. intestinalis (40 % DNA-DNA relatedness). Strain CRE21(T) also showed several characteristics distinct from B. intestinalis. In particular, it exhibited different capacity to degrade polysaccharides such as cellulose. On the basis of phylogenetic analysis and the morphological, physiological and biochemical data presented in this study, strain CRE21(T) can be readily differentiated from recognized species of the genus Bacteroides. The name Bacteroides cellulosilyticus sp. nov. is proposed to accommodate this organism. The type strain is CRE21(T) (=DSM 14838(T)=CCUG 44979(T)).

  11. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways.

    PubMed

    Marcobal, Angela; Barboza, Mariana; Sonnenburg, Erica D; Pudlo, Nicholas; Martens, Eric C; Desai, Prerak; Lebrilla, Carlito B; Weimer, Bart C; Mills, David A; German, J Bruce; Sonnenburg, Justin L

    2011-11-17

    Newborns are colonized with an intestinal microbiota shortly after birth, but the factors governing the retention and abundance of specific microbial lineages are unknown. Nursing infants consume human milk oligosaccharides (HMOs) that pass undigested to the distal gut, where they may be digested by microbes. We determined that the prominent neonate gut residents, Bacteroides thetaiotaomicron and Bacteroides fragilis, induce the same genes during HMO consumption that are used to harvest host mucus glycans, which are structurally similar to HMOs. Lacto-N-neotetraose, a specific HMO component, selects for HMO-adapted species such as Bifidobacterium infantis, which cannot use mucus, and provides a selective advantage to B. infantis in vivo when biassociated with B. thetaiotaomicron in the gnotobiotic mouse gut. This indicates that the complex oligosaccharide mixture within HMOs attracts both mutualistic mucus-adapted species and HMO-adapted bifidobacteria to the infant intestine that likely facilitate both milk and future solid food digestion. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Bacteroides in the Infant Gut Consume Milk Oligosaccharides via Mucus-Utilization Pathways

    PubMed Central

    Marcobal, A.; Barboza, M.; Sonnenburg, E.D.; Pudlo, N.; Martens, E.C.; Desai, P.; Lebrilla, C.B.; Weimer, B.C.; Mills, D.A.; German, J.B.; Sonnenburg, J.L.

    2011-01-01

    Summary Newborns are colonized with an intestinal microbiota shortly after birth but the factors governing the retention and abundance of specific microbial lineages are unknown. Nursing infants consume human milk oligosaccharides (HMOs) that pass undigested to the distal gut where they may be digested by microbes. We determined that the prominent neonate gut residents, Bacteroides thetaiotaomicron and Bacteroides fragilis, induce the same genes during HMO consumption that are used to harvest host mucus glycans, which are structurally similar to HMOs. Lacto-N-neotetraose, a specific HMO component, selects for HMO-adapted species such as Bifidobacterium infantis, which cannot use mucus, and provides a selective advantage to B. infantis in vivo when bi-associated with B. thetaiotaomicron in the gnotobiotic mouse gut. This indicates that the complex oligosaccharide mixture within HMOs attracts both mutualistic mucus-adapted species and HMO-adapted bifidobacteria to the infant intestine that likely facilitate both milk and future solid food digestion. PMID:22036470

  13. The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species.

    PubMed

    Lu, Zheng; Imlay, James A

    2017-01-03

    The impact of oxidative stress upon organismal fitness is most apparent in the phenomenon of obligate anaerobiosis. The root cause may be multifaceted, but the intracellular generation of reactive oxygen species (ROS) likely plays a key role. ROS are formed when redox enzymes accidentally transfer electrons to oxygen rather than to their physiological substrates. In this study, we confirm that the predominant intestinal anaerobe Bacteroides thetaiotaomicron generates intracellular ROS at a very high rate when it is aerated. Fumarate reductase (Frd) is a prominent enzyme in the anaerobic metabolism of many bacteria, including B. thetaiotaomicron, and prior studies of Escherichia coli Frd showed that the enzyme is unusually prone to ROS generation. Surprisingly, in this study biochemical analysis demonstrated that the B. thetaiotaomicron Frd does not react with oxygen at all: neither superoxide nor hydrogen peroxide is formed. Subunit-swapping experiments indicated that this difference does not derive from the flavoprotein subunit at which ROS normally arise. Experiments with the related enzyme succinate dehydrogenase discouraged the hypothesis that heme moieties are responsible. Thus, resistance to oxidation may reflect a shift of electron density away from the flavin moiety toward the iron-sulfur clusters. This study shows that the autoxidizability of a redox enzyme can be suppressed by subtle modifications that do not compromise its physiological function. One implication is that selective pressures might enhance the oxygen tolerance of an organism by manipulating the electronic properties of its redox enzymes so they do not generate ROS. Whether in sediments or pathogenic biofilms, the structures of microbial communities are configured around the sensitivities of their members to oxygen. Oxygen triggers the intracellular formation of reactive oxygen species (ROS), and the sensitivity of a microbe to oxygen likely depends upon the rates at which ROS are formed

  14. RNA polymerase beta-subunit gene (rpoB) sequence analysis for the identification of Bacteroides spp.

    PubMed

    Ko, K S; Kuwahara, T; Haehwa, L; Yoon, Y-J; Kim, B-J; Lee, K-H; Ohnishi, Y; Kook, Y-H

    2007-01-01

    Partial rpoB sequences (317 bp) of 11 species of Bacteroides, two Porphyromonas spp. and two Prevotella spp. were compared to delineate the genetic relationships among Bacteroides and closely related anaerobic species. The high level of inter-species sequence dissimilarities (7.6-20.8%) allowed the various Bacteroides spp. to be distinguished. The position of the Bacteroides distasonis and Bacteriodes merdae cluster in the rpoB tree was different from the position in the 16S rRNA gene tree. Based on rpoB sequence similarity and clustering in the rpoB tree, it was possible to correctly re-identify 80 clinical isolates of Bacteroides. In addition to two subgroups, cfiA-negative (division I) and cfiA-positive (division II), of Bacteroides fragilis isolates, two distinct subgroups were also found among Bacteroides ovatus and Bacteroides thetaiotaomicron isolates. Bacteroides genus-specific rpoB PCR and B. fragilis species-specific rpoB PCR allowed Bacteroides spp. to be differentiated from Porphyromonas and Prevotella spp., and also allowed B. fragilis to be differentiated from other non-fragilisBacteroides spp. included in the present study.

  15. Activity of semisynthetic penicillins and synergism with mecillinam against Bacteroides species.

    PubMed Central

    Trestman, I; Kaye, D; Levison, M E

    1979-01-01

    The minimal inhibitory concentrations (MIC) of six penicillins (ampicillin, carbenicillin, ticarcillin, piperacillin, mezlocillin, and Bay k 4999) against 29 clinical isolates of Bacteriodes spp. (including Bacteroides fragilis, Bacteroides thetaiotaomicron, and Bacteroides vulgatus) were determined by an agar dilution method. Bay k 4999 was most active, followed in descending order by ampicillin, piperacillin, mezlocillin, ticarcillin, and carbenicillin. Mecillinam, a 6 beta-amidino-penicillanic acid, inhibited no strains at 50 micrograms/ml, but when compared with ampicillin, a fourfold or greater increase in MIC for ampicillin (antagonism) was noted in 3 of 29 strains, with no effect on MIC for 26 strains, whereas when combined with carbenicillin, a fourfold or greater decrease in MIC for both antibiotics (synergism) was noted in 12 strains, 4 of which had an MIC of greater than or equal to 250 micrograms/ml for carbenicillin alone. These studies demonstrate the increased activity of some newer semisynthetic penicillins and the potential synergy obtained with mecillinam and carbenicillin against Bacteroides sp. PMID:228593

  16. Development of a human-specific B. thetaiotaomicron IMS ...

    EPA Pesticide Factsheets

    Immunomagnetic separation/adenosine triphosphate (IMS/ATP) assays utilize paramagnetic beads and target-specific antibodies to isolate target organisms. Following isolation, adenosine tri-phosphate (ATP) is extracted from the target population and quantified. An inversely-coupled (Inv-IMS/ATP)assay for detection of Bacteroides thetaiotaomicron was developed and applied for rapid detection of human-associated fecal contamination in surface waters in Baja California. Specificity of the assay was tested against challenge solutions of varying concentrations of dog, gull, horse and chicken feces, and a field validation survey of coastal and WWTP effluent water quality in Rosarito and Enseneda, Baja California was conducted. Inv IMS/ATP measurements made shown to be specific and sensitive to human fecal contamination. At test concentrations of less than 1000 MPN ENT/100 mL, sensitivity and specificity of the assay both exceeded 80%. Moreover, the Inv-IMS/ATP assay yielded measurements of viable B. thetaiotaomicron that were comparable to the HF183 human marker in complex surface waters impacted with both wastewater and runoff, and the Inv-IMS/ATP assay was able to effectively differentiate between surface waters impacted with adequately and inadequately treated wastewater. The Inv-IMS/ATP assays shows promise for rapid evaluation of recreational water quality in areas where access to more expensive methods is limited and in areas where water quality in unpredicta

  17. Developing a Bacteroides System for Function-Based Screening of DNA from the Human Gut Microbiome.

    PubMed

    Lam, Kathy N; Martens, Eric C; Charles, Trevor C

    2018-01-01

    Functional metagenomics is a powerful method that allows the isolation of genes whose role may not have been predicted from DNA sequence. In this approach, first, environmental DNA is cloned to generate metagenomic libraries that are maintained in Escherichia coli, and second, the cloned DNA is screened for activities of interest. Typically, functional screens are carried out using E. coli as a surrogate host, although there likely exist barriers to gene expression, such as lack of recognition of native promoters. Here, we describe efforts to develop Bacteroides thetaiotaomicron as a surrogate host for screening metagenomic DNA from the human gut. We construct a B. thetaiotaomicron-compatible fosmid cloning vector, generate a fosmid clone library using DNA from the human gut, and show successful functional complementation of a B. thetaiotaomicron glycan utilization mutant. Though we were unable to retrieve the physical fosmid after complementation, we used genome sequencing to identify the complementing genes derived from the human gut microbiome. Our results demonstrate that the use of B. thetaiotaomicron to express metagenomic DNA is promising, but they also exemplify the challenges that can be encountered in the development of new surrogate hosts for functional screening. IMPORTANCE Human gut microbiome research has been supported by advances in DNA sequencing that make it possible to obtain gigabases of sequence data from metagenomes but is limited by a lack of knowledge of gene function that leads to incomplete annotation of these data sets. There is a need for the development of methods that can provide experimental data regarding microbial gene function. Functional metagenomics is one such method, but functional screens are often carried out using hosts that may not be able to express the bulk of the environmental DNA being screened. We expand the range of current screening hosts and demonstrate that human gut-derived metagenomic libraries can be

  18. The Bacteroides fragilis cell envelope: quarterback, linebacker, coach-or all three?

    PubMed

    Pumbwe, Lilian; Skilbeck, Christopher A; Wexler, Hannah M

    2006-01-01

    Bacteroides fragilis is an anaerobic commensal constituting only 1-2% of the micro-flora of the human gastrointestinal tract, yet it is the predominant anaerobic isolate in cases of intraabdominal sepsis and bacteremia. B. fragilis can play two roles in the host: in its role as friendly commensal, it must be able to establish itself in the host intestinal mucosa, to utilize and process polysaccharides for use by the host, and to resist the noxious effects of bile salts. In its role as pathogen, it must be able to attach itself to the site of infection, evade killing mechanisms by host defense, withstand antimicrobial treatment and produce factors that damage host tissue. The cell envelope of B. fragilis, likewise, must be able to function in the roles of aggressor, defender and strategist in allowing the organism to establish itself in the host--whether as friend or foe. Recent studies of the genomes and proteomes of the genus Bacteroides suggest that these organisms have evolved strategies to survive and dominate in the overcrowded gastrointestinal neighborhood. Analysis of the proteomes of B. fragilis and Bacteroides thetaiotaomicron demonstrates both a tremendous capacity to use a wide range of dietary polysaccharides, and the capacity to create variable surface antigenicities by multiple DNA inversion systems. The latter characteristic is particularly pronounced in the species B. fragilis, which is more frequently found at the mucosal surface (i.e., often the site of attack by host defenses). The B. fragilis cell envelope undergoes major protein expression and ultrastructural changes in response to stressors such as bile or antimicrobial agents. These agents may also act as signals for attachment and colonization. Thus the bacterium manages its surface characteristics to enable it to bind to its target, to use the available nutrients, and to avoid or evade hostile forces (host-derived or external) in its multiple roles.

  19. 5S ribosomal ribonucleic acid sequences in Bacteroides and Fusobacterium: evolutionary relationships within these genera and among eubacteria in general

    NASA Technical Reports Server (NTRS)

    Van den Eynde, H.; De Baere, R.; Shah, H. N.; Gharbia, S. E.; Fox, G. E.; Michalik, J.; Van de Peer, Y.; De Wachter, R.

    1989-01-01

    The 5S ribosomal ribonucleic acid (rRNA) sequences were determined for Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides capillosus, Bacteroides veroralis, Porphyromonas gingivalis, Anaerorhabdus furcosus, Fusobacterium nucleatum, Fusobacterium mortiferum, and Fusobacterium varium. A dendrogram constructed by a clustering algorithm from these sequences, which were aligned with all other hitherto known eubacterial 5S rRNA sequences, showed differences as well as similarities with respect to results derived from 16S rRNA analyses. In the 5S rRNA dendrogram, Bacteroides clustered together with Cytophaga and Fusobacterium, as in 16S rRNA analyses. Intraphylum relationships deduced from 5S rRNAs suggested that Bacteroides is specifically related to Cytophaga rather than to Fusobacterium, as was suggested by 16S rRNA analyses. Previous taxonomic considerations concerning the genus Bacteroides, based on biochemical and physiological data, were confirmed by the 5S rRNA sequence analysis.

  20. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation

    PubMed Central

    Kuwahara, Tomomi; Yamashita, Atsushi; Hirakawa, Hideki; Nakayama, Haruyuki; Toh, Hidehiro; Okada, Natsumi; Kuhara, Satoru; Hattori, Masahira; Hayashi, Tetsuya; Ohnishi, Yoshinari

    2004-01-01

    Bacteroides are predominant human colonic commensals, but the principal pathogenic species, Bacteroides fragilis (BF), lives closely associated with the mucosal surface, whereas a second major species, Bacteroides thetaiotaomicron (BT), concentrates within the colon. We find corresponding differences in their genomes, based on determination of the genome sequence of BF and comparative analysis with BT. Both species have acquired two mechanisms that contribute to their dominance among the colonic microbiota: an exceptional capability to use a wide range of dietary polysaccharides by gene amplification and the capacity to create variable surface antigenicities by multiple DNA inversion systems. However, the gene amplification for polysaccharide assimilation is more developed in BT, in keeping with its internal localization. In contrast, external antigenic structures can be changed more systematically in BF. Thereby, at the mucosal surface, where microbes encounter continuous attack by host defenses, BF evasion of the immune system is favored, and its colonization and infectious potential are increased. PMID:15466707

  1. Divergence of Structure and Function in the Haloacid Dehalogenase Enzyme Superfamily: Bacteroides thetaiotaomicron BT2127 is an Inorganic Pyrophosphatase+

    PubMed Central

    Huang, Hua; Yury, Patskovsky; Toro, Rafael; Farelli, Jeremiah D.; Pandya, Chetanya; Almo, Steven C.; Allen, Karen N.; Dunaway-Mariano, Debra

    2012-01-01

    The explosion of protein sequence information requires that current strategies for function assignment must evolve to complement experimental approaches with computationally-based function prediction. This necessitates the development of strategies based on the identification of sequence markers in the form of specificity determinants and a more informed definition of orthologues. Herein, we have undertaken the function assignment of the unknown Haloalkanoate Dehalogenase superfamily member BT2127 (Uniprot accession # Q8A5V9) from Bacteroides thetaiotaomicron using an integrated bioinformatics/structure/mechanism approach. The substrate specificity profile and steady-state rate constants of BT2127 (with kcat/Km value for pyrophosphate of ∼1 × 105 M−1 s−1), together with the gene context, supports the assigned in vivo function as an inorganic pyrophosphatase. The X-ray structural analysis of the wild-type BT2127 and several variants generated by site-directed mutagenesis shows that substrate discrimination is based, in part, on active site space restrictions imposed by the cap domain (specifically by residues Tyr76 and Glu47). Structure guided site directed mutagenesis coupled with kinetic analysis of the mutant enzymes identified the residues required for catalysis, substrate binding, and domain-domain association. Based on this structure-function analysis, the catalytic residues Asp11, Asp13, Thr113, and Lys147 as well the metal binding residues Asp171, Asn172 and Glu47 were used as markers to confirm BT2127 orthologues identified via sequence searches. This bioinformatic analysis demonstrated that the biological range of BT2127 orthologue is restricted to the phylum Bacteroidetes/Chlorobi. The key structural determinants in the divergence of BT2127 and its closest homologue β-phosphoglucomutase control the leaving group size (phosphate vs. glucose-phosphate) and the position of the Asp acid/base in the open vs. closed conformations. HADSF pyrophosphatases

  2. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism.

    PubMed

    Cuskin, Fiona; Lowe, Elisabeth C; Temple, Max J; Zhu, Yanping; Cameron, Elizabeth; Pudlo, Nicholas A; Porter, Nathan T; Urs, Karthik; Thompson, Andrew J; Cartmell, Alan; Rogowski, Artur; Hamilton, Brian S; Chen, Rui; Tolbert, Thomas J; Piens, Kathleen; Bracke, Debby; Vervecken, Wouter; Hakki, Zalihe; Speciale, Gaetano; Munōz-Munōz, Jose L; Day, Andrew; Peña, Maria J; McLean, Richard; Suits, Michael D; Boraston, Alisdair B; Atherly, Todd; Ziemer, Cherie J; Williams, Spencer J; Davies, Gideon J; Abbott, D Wade; Martens, Eric C; Gilbert, Harry J

    2015-01-08

    Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a 'selfish' model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet.

  3. Use of abundance ratios of somatic coliphages and bacteriophages of Bacteroides thetaiotaomicron GA17 for microbial source identification.

    PubMed

    Muniesa, Maite; Lucena, Francisco; Blanch, Anicet R; Payán, Andrey; Jofre, Juan

    2012-12-01

    Water contaminated with human faeces is a risk to human health and management of water bodies can be improved by determining the sources of faecal pollution. Field studies show that existing methods are insufficient and that different markers are required. This study proposes the combined use of two microbial indicators, the concentrations of which are presented as ratios. This provides a more reliable approach to identifying faecal sources as it avoids variation due to treatment or ageing of the contamination. Among other indicators, bacteriophages have been proposed as rapid and cheap indicators of faecal pollution. Samples analysed in this study were derived from wastewater treatment plants (raw sewage, secondary and tertiary effluents and raw sewage sludge) river water, seawater and animal related wastewater. The abundance ratios of faecal coliforms and Bacteroides phages, either strain RYC2056 (non-specific for faecal origin) or strain GA17 (specific for human pollution), and among somatic coliphages and phages infecting both Bacteroides strains, were evaluated. The results indicate that the ratio of somatic coliphages and phages infecting Bacteroides strain GA17, which is specific to human faecal sources, provides a robust method for discriminating samples, even those presenting different levels and ages of pollution, and allows samples polluted with human faeces to be distinguished from those containing animal faecal pollution. This method allows the generation of numerical data that can be further applied to numerical methods for faecal pollution discrimination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Bacteriophages infecting Bacteroides as a marker for microbial source tracking.

    PubMed

    Jofre, Joan; Blanch, Anicet R; Lucena, Francisco; Muniesa, Maite

    2014-05-15

    Bacteriophages infecting certain strains of Bacteroides are amid the numerous procedures proposed for tracking the source of faecal pollution. These bacteriophages fulfil reasonably well most of the requirements identified as appropriate for a suitable marker of faecal sources. Thus, different host strains are available that detect bacteriophages preferably in water contaminated with faecal wastes corresponding to different animal species. For phages found preferably in human faecal wastes, which are the ones that have been more extensively studied, the amounts of phages found in waters contaminated with human fecal samples is reasonably high; these amounts are invariable through the time; their resistance to natural and anthropogenic stressors is comparable to that of other relatively resistant indicator of faecal pollution such us coliphages; the abundance ratios of somatic coliphages and bacteriophages infecting Bacteroides thetaiotaomicron GA17 are unvarying in recent and aged contamination; and standardised detection methods exist. These methods are easy, cost effective and provide data susceptible of numerical analysis. In contrast, there are some uncertainties regarding their geographical stability, and consequently suitable hosts need to be isolated for different geographical areas. However, a feasible method has been described to isolate suitable hosts in a given geographical area. In summary, phages infecting Bacteroides are a marker of faecal sources that in our opinion merits being included in the "toolbox" for microbial source tracking. However, further research is still needed in order to make clear some uncertainties regarding some of their characteristics and behaviour, to compare their suitability to the one of emerging methods such us targeting Bacteroidetes by qPCR assays; or settling molecular methods for their determination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Degradation of chondroitin sulfate by the gut microbiota of Chinese individuals.

    PubMed

    Shang, Qingsen; Yin, Yeshi; Zhu, Liying; Li, Guoyun; Yu, Guangli; Wang, Xin

    2016-05-01

    Oral preparations of chondroitin sulfate (CS) have long been used as anti-osteoarthritis (anti-OA) drugs. However, little is known about the degradation of CS by human gut microbiota. In the present study, degradation profiles of CSA (the main constituent of CS drugs) by the human gut microbiota from six healthy subjects were investigated. Each individual's microbiota had differing degradation activities, but ΔUA-GalNAc4S was the end product in all cases. To elucidate the mechanisms underlying this phenomenon, different CSA-degrading bacteria were isolated from each individual's microbiota and tested for CSA degradation. In addition to Bacteroides thetaiotaomicron J1, Bacteroides thetaiotaomicron 82 and Bacteroides ovatus E3, a new CSA-degrading bacterium, Clostridium hathewayi R4, was isolated and characterized. Interestingly, at least two different CSA-degrading species were identified from each individual's gut microbiota. Predictably, these functional bacteria also had differing degradation rates, but still generated the same end product, ΔUA-GalNAc4S. In addition, the human fecal isolates produced different degradation profiles for CSC, CSD, and CSE, suggesting that CS could be readily metabolized to varying extents by diverse microbial consortiums, which may help to explain the poor bioavailability and unequal efficacy of CS among individuals in OA treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans.

    PubMed

    Cartmell, Alan; Lowe, Elisabeth C; Baslé, Arnaud; Firbank, Susan J; Ndeh, Didier A; Murray, Heath; Terrapon, Nicolas; Lombard, Vincent; Henrissat, Bernard; Turnbull, Jeremy E; Czjzek, Mirjam; Gilbert, Harry J; Bolam, David N

    2017-07-03

    The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron , a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases and sulfatases that mediate degradation. It is possible that the bacterium recruits lyases with highly plastic specificities and expresses a repertoire of enzymes that target substructures of the glycosaminoglycans with variable sulfation or that the glycans are desulfated before cleavage by the lyases. To distinguish between these mechanisms, the components of the B. thetaiotaomicron Hep/HS degrading apparatus were analyzed. The data showed that the bacterium expressed a single-surface endo-acting lyase that cleaved HS, reflecting its higher molecular weight compared with Hep. Both Hep and HS oligosaccharides imported into the periplasm were degraded by a repertoire of lyases, with each enzyme displaying specificity for substructures within these glycosaminoglycans that display a different degree of sulfation. Furthermore, the crystal structures of a key surface glycan binding protein, which is able to bind both Hep and HS, and periplasmic sulfatases reveal the major specificity determinants for these proteins. The locus described here is highly conserved within the human gut Bacteroides , indicating that the model developed is of generic relevance to this important microbial community.

  7. [Effect of indolylacetic acid on formation of bacteroid forms of Rhizobium leguminosarum].

    PubMed

    Lobanok, E V; Bakanchikova, T I

    1979-01-01

    The purpose of this work was to study the effect of indolylacetic acid (IAA) on the strains of Rhizobium leguminosarum, effective and noneffective with respect to symbiotic nitrogen fixation (L4 and 245a, and 14--73, respectively). IAA at a concentration of 50 mcg/ml and higher inhibited the growth of the bacterium, temporarily delayed celular division, and induced intensive formation of elongated bacteroid-like cells, predominantly Y-shaped or having a clavate shape. Many bacteroid-like cells were capable of division after a certain delay.

  8. First National Survey of Antibiotic Susceptibility of the Bacteroides fragilis Group: Emerging Resistance to Carbapenems in Argentina

    PubMed Central

    Litterio, Mirta; Legaria, María C.; Castello, Liliana; Predari, Silvia C.; Di Martino, Ana; Rossetti, Adelaida; Rollet, Raquel; Carloni, Graciela; Bianchini, Hebe; Cejas, Daniela; Radice, Marcela; Gutkind, Gabriel

    2012-01-01

    The antibiotic susceptibility rates of 363 clinical Bacteroides fragilis group isolates collected from 17 centers in Argentina during the period from 2006 to 2009 were as follows: piperacillin-tazobactam, 99%; ampicillin-sulbactam, 92%; cefoxitin, 72%; tigecycline, 100%; moxifloxacin, 91%; and clindamycin, 52%. No metronidazole resistance was detected in these isolates during this time period. Resistance to imipenem, doripenem, and ertapenem was observed in 1.1%, 1.6%, and 2.3% of B. fragilis group strains, respectively. B. fragilis species showed a resistance profile of 1.5% to imipenem, 1.9% to doripenem, and 2.4% to ertapenem. This is the first report of carbapenem resistance in Argentina. The cfiA gene was present in 8 out of 23 isolates, all of them belonging to the B. fragilis species and displaying reduced susceptibility or resistance to carbapenems (MICs ≥ 4 μg/ml). Three out of eight cfiA-positive isolates were fully resistant to carbapenems, while 5 out of 8 isolates showed low-level resistance (MICs, 4 to 8 μg/ml). The inhibition by EDTA was a good predictor of the presence of metallo-β-lactamases in the fully resistant B. fragilis strains, but discrepant results were observed for low-level resistant isolates. B. fragilis was more susceptible to antimicrobial agents than other Bacteroides species. Bacteroides vulgatus species was the most resistant to ampicillin-sulbactam and piperacillin-tazobactam, and B. thetaiotaomicron/ovatus strains showed the highest level of resistance to carbapenems, with an unknown resistance mechanism. B. vulgatus and the uncommon non-Bacteroides fragilis species were the most resistant to moxifloxacin, showing an overall resistance rate of 15.1%. PMID:22232282

  9. Microbial fuel cells: Their application and microbiology

    NASA Astrophysics Data System (ADS)

    He, Zhen

    The energy crisis is an urgent global issue due to the increased consumption of the finite amount of fossil fuel. As a result, looking for alternative energy sources is of critical importance. Microbial fuel cell (MFC) technology can extract electric energy from wastewater, and thus is a sustainable approach to supply energy to our electricity-based society. My research focuses on the development of a suitable MFC reactor for wastewater treatment and the understanding of the microbial function in the MFC process. First, together with colleagues, I have developed a novel MFC reactor, named upflow microbial fuel cell (UMFC), by combining upflow and MFC technologies. The power output from the UMFC was improved by 10-fold after it was modified with a U-shape cathode. The UMFC appears to be a practical reactor for continuous operation, though the output of electric power requires further improvement. In addition, a sediment MFC with a rotating cathode was also developed and its performance was examined. Second, I have adopted a human distal gut anaerobe, Bacteroides thetaiotaomicron, as the model organism to study the role of fermentative bacterium in electricity generation. When B. thetaiotaomicron grew under an applied electric potential, an electric current was generated. GeneChip data indicated that this bacterium did not alter its metabolism during this process. Although B. thetaiotaomicron may not be capable of respiration with an electrode as the electron acceptor, the experiment has demonstrated that fermentative bacteria may play an important role in electricity generation.

  10. [The effect of oxygen on endotoxin production in bacteria of the Bacteroides fragilis group isolated from patients with colorectal carcinoma].

    PubMed

    Chmelař, D; Hájek, M; Janečková, J; Vobejdová, J; Martineková, P; Kašíková, A

    The aim of the study was to draw attention to the risk posed by anaerobic bacteria of the Bacteroides fragilis (BAFR) group, isolated particularly from abdominal lesions, and to assess the possible role of these species in colorectal cancer. A correlation has previously been suggested between the detection of the bacteria of the genus Bacteroides in patients on a meat-based diet and intestinal and, in particular, colorectal cancer. Given that the species of the BAFR group are major producers of endotoxins, measurements and statistical analysis of endotoxin production were used to compare the Bacteroides strains isolated from clinical specimens of patients with colon cancer, rectal cancer, and other abdominal lesions. Endotoxin production was detected in bacterial strains of the BAFR group (B. fragilis, B. thetaiotaomicron, B. distasonis, and B. vulgatus) isolated from clinical specimens of patients with rectal cancer, colon cancer, and intestinal cancer and was compared with that in strains from samples of patients with inflammatory conditions (anal abscess, appendicitis, skin abscess, etc.) under anaerobic and microaerophilic (with 5% of oxygen) culture conditions. The production of endotoxins was detected quantitatively using the Pyrosate LAL assay kit (Limulus Amoebocyte Lysate Test, BIOGENIX, CR) in four species of the BAFR group after anaerobic and microaerophilic culture. Five strains of each isolated Bacteroides species from each type of specimens were tested (in total 140 BAFR strains). The amount of endotoxin was given in endotoxin units per ml (EU/ml). Endotoxin production by bacteria under microaerophilic culture conditions was several times higher in comparison with strictly anaerobic culture.The difference was statistically significant (F1.269 = 160, p <0.0001). As regards the effect of oxygen on endotoxin production, the amount of endotoxins produced under microaerophilic culture conditions (average 889.1 EU/ml) was 2.5 times as high as that observed

  11. Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium

    PubMed Central

    Li, Jiaojiao; Mandal, Goutam; Rosen, Barry P.

    2016-01-01

    The response of the obligate anaerobe Bacteroides vulgatus ATCC 8482, a common human gut microbiota, to arsenic was determined. B. vulgatus ATCC 8482 is highly resistant to pentavalent As(V) and methylarsenate (MAs(V)). It is somewhat more sensitive to trivalent inorganic As(III) but 100-fold more sensitive to methylarsenite (MAs(III)) than to As(III). B. vulgatus ATCC 8482 has eight continuous genes in its genome that we demonstrate form an arsenical-inducible transcriptional unit. The first gene of this ars operon, arsR, encodes a putative ArsR As(III)-responsive transcriptional repressor. The next three genes encode proteins of unknown function. The remaining genes, arsDABC, have well-characterized roles in detoxification of inorganic arsenic, but there are no known genes for MAs(III) resistance. Expression of each gene after exposure to trivalent and pentavalent inorganic and methylarsenicals was analyzed. MAs(III) was the most effective inducer. The arsD gene was the most highly expressed of the ars operon genes. These results demonstrate that this anaerobic microbiome bacterium has arsenic-responsive genes that confer resistance to inorganic arsenic and may be responsible for the organism's ability to maintain its prevalence in the gut following dietary exposure to inorganic arsenic. PMID:27040269

  12. Bacteroides endodontalis and other black-pigmented Bacteroides species in odontogenic abscesses.

    PubMed Central

    van Winkelhoff, A J; Carlee, A W; de Graaff, J

    1985-01-01

    Twenty-eight odontogenic abscesses were examined for the presence of black-pigmented Bacteroides spp. Of the 28 samples, 26 were found to contain one or more species of black-pigmented Bacteroides. Abscesses were divided into three categories according to the tissue of origin: endodontal, periodontal, and pericoronal. Four abscesses which developed after extraction were also examined. It was found that Bacteroides endodontalis, a newly described species of asaccharolytic black-pigmented Bacteroides, was isolated almost exclusively from periapical abscesses of endodontal origin. B. intermedius proved to be the most frequently isolated species in all of the samples. B. gingivalis was present in all of the periodontal abscesses studied, as well as in two endodontal abscesses. B. melaninogenicus was recovered once from a pericoronal abscess. Precautions for the isolation of B. endodontalis are discussed. PMID:4030089

  13. Composition and metabolism of fecal microbiota from normal and overweight children are differentially affected by melibiose, raffinose and raffinose-derived fructans.

    PubMed

    Adamberg, Kaarel; Adamberg, Signe; Ernits, Karin; Larionova, Anneli; Voor, Tiia; Jaagura, Madis; Visnapuu, Triinu; Alamäe, Tiina

    2018-06-20

    The aim of the study was to investigate the metabolism of non-digestible oligo- and polysaccharides by fecal microbiota, using isothermal microcalorimetry. The five tested substrates were raffinose, melibiose, a mixture of oligo- and polysaccharides produced from raffinose by levansucrase, levan synthesized from raffinose, and levan from timothy grass. Two inocula were comprised of pooled fecal samples from overweight or normal-weight children, from healthy adult volunteers and a pure culture of Bacteroides thetaiotaomicron as a reference bacterium for colon microbiota. The growth was analyzed based on the heat evolution curves, and the production of organic acids and gases. Taxonomic profiles of the microbiota were assessed by 16S rDNA sequencing. Raffinose and melibiose promoted the growth of bifidobacteria in all fecal pools. Several pool-specific substrate-related responses to raffinose and melibiose were revealed. Lactate-producing bacteria (Streptococcus and Enterococcus) became enriched in the pool of overweight children resulting in lactic acid as the major fermentation product on short saccharides. Acetic and butyric acids were prevalent at fermentation in the normal-weight pool coinciding with the enrichment of Catenibacterium. In the adult pool, the specific promotion of Bacteroides and Lachnospiraceae by levans was disclosed. In the fecal pool of normal-weight children, levans stimulated the growth of Senegalimassilia and Lachnoclostridium and this particular pool also showed the highest maximum heat production rate at levan fermentation. Levans and raffinose-derived oligosaccharides, but not raffinose and melibiose were completely fermented by a pure culture of Bacteroides thetaiotaomicron. The main conclusion from the study is that fecal microbiota of normal and overweight children have different compositions and they respond in specific manners to non-digestible oligo- and polysaccharides: raffinose, melibiose, raffinose-derived oligosaccharides and

  14. In vitro activity of flomoxef compared to moxalactam, cefoxitin, cefotaxime, and clindamycin against anaerobes.

    PubMed

    Werner, H; Heizmann, W; Luft, G

    1988-11-01

    To assess the in vitro activity of flomoxef (6315-S), moxalactam, cefoxitin, cefotaxime, and clindamycin against anaerobes 197 clinical isolates (27 Bacteroides fragilis, 42 B. thetaiotaomicron, 10 B. vulgatus, 7 B. ovatus, 6 B. uniformis, 6 B. distasonis, 7 Bacteroides melaninogenicus group, 11 Bacteroides oralis group, 21 Clostridium difficile, 7 C. perfringens, 3 C. sporogenes, 3 Clostridium spp., 33 Propionibacterium acnes, 14 Peptococcaceae) were studied by means of agar dilution tests. The MIC90 of B. fragilis was less than 2 micrograms/ml for flomoxef, less than 4 micrograms/ml for moxalactam, less than 16 micrograms/ml for cefoxitin, less than 128 micrograms/ml for cefotaxime and less than 2 micrograms/ml for clindamycin. The respective MIC90's of B. thetaiotaomicron were less than 64, less than 128, less than 32, less than 256 and 8 micrograms/ml. Strains of the other Bacteroides species and groups were more susceptible to flomoxef and the other antibiotics than B. thetaiotaomicron. Against Clostridium difficile flomoxef (MIC90 less than 4 micrograms/ml) proved to be superior to the other agents tested. Most of the Clostridium strains other than C. difficile were also susceptible to flomoxef; anaerobic grampositive cocci and Propionibacterium acnes were very sensitive (MIC90's less than 1 and less than or equal to 0.125 micrograms/ml, respectively). Its anti-anaerobic activity, together with its efficacy against aerobes, should make flomoxef a useful adjunct to the arsenal of modern antibiotic therapy.

  15. Complex pectin metabolism by gut bacteria reveals novel catalytic functions

    PubMed Central

    Baslé, Arnaud; Gray, Joseph; Venditto, Immacolata; Briggs, Jonathon; Zhang, Xiaoyang; Labourel, Aurore; Terrapon, Nicolas; Buffetto, Fanny; Nepogodiev, Sergey; Xiao, Yao; Field, Robert A.; Zhu, Yanping; O’Neil, Malcolm A.; Urbanowicz, Breeana R.; York, William S.; Davies, Gideon J.; Abbott, D. Wade; Ralet, Marie-Christine; Martens, Eric C.; Henrissat, Bernard; Gilbert, Harry J.

    2017-01-01

    Carbohydrate polymers drive microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron utilizes the most structurally complex glycan known; the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but one of its 21 distinct glycosidic linkages. We show that rhamnogalacturonan-II side-chain and backbone deconstruction are coordinated, to overcome steric constraints, and that degradation reveals previously undiscovered enzyme families and novel catalytic activities. The degradome informs revision of the current structural model of RG-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycans in the human diet. PMID:28329766

  16. Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-beta1 under the control of dietary xylan

    USDA-ARS?s Scientific Manuscript database

    Background: Growth factors have shown promise in treating inflammatory bowel disease. They are unstable when administered orally and required in higher doses with systemic administration. In consideration of these problems, we have engineered the commensal bacterium Bacteroides ovatus for the con...

  17. Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria.

    PubMed Central

    Paster, B J; Dewhirst, F E; Olsen, I; Fraser, G J

    1994-01-01

    The phylogenetic structure of the bacteroides subgroup of the cytophaga-flavobacter-bacteroides (CFB) phylum was examined by 16S rRNA sequence comparative analysis. Approximately 95% of the 16S rRNA sequence was determined for 36 representative strains of species of Prevotella, Bacteroides, and Porphyromonas and related species by a modified Sanger sequencing method. A phylogenetic tree was constructed from a corrected distance matrix by the neighbor-joining method, and the reliability of tree branching was established by bootstrap analysis. The bacteroides subgroup was divided primarily into three major phylogenetic clusters which contained most of the species examined. The first cluster, termed the prevotella cluster, was composed of 16 species of Prevotella, including P. melaninogenica, P. intermedia, P. nigrescens, and the ruminal species P. ruminicola. Two oral species, P. zoogleoformans and P. heparinolytica, which had been recently placed in the genus Prevotella, did not fall within the prevotella cluster. These two species and six species of Bacteroides, including the type species B. fragilis, formed the second cluster, termed the bacteroides cluster. The third cluster, termed the porphyromonas cluster, was divided into two subclusters. The first contained Porphyromonas gingivalis, P. endodontalis, P. asaccharolytica, P. circumdentaria, P. salivosa, [Bacteroides] levii (the brackets around genus are used to indicate that the species does not belong to the genus by the sensu stricto definition), and [Bacteroides] macacae, and the second subcluster contained [Bacteroides] forsythus and [Bacteroides] distasonis. [Bacteroides] splanchnicus fell just outside the three major clusters but still belonged within the bacteroides subgroup. With few exceptions, the 16 S rRNA data were in overall agreement with previously proposed reclassifications of species of Bacteroides, Prevotella, and Porphyromonas. Suggestions are made to accommodate those species which do not

  18. A mitochondrial-like aconitase in the bacterium Bacteroides fragilis: implications for the evolution of the mitochondrial Krebs cycle.

    PubMed

    Baughn, Anthony D; Malamy, Michael H

    2002-04-02

    Aconitase and isocitrate dehydrogenase (IDH) enzyme activities were detected in anaerobically prepared cell extracts of the obligate anaerobe Bacteroides fragilis. The aconitase gene was located upstream of the genes encoding the other two components of the oxidative branch of the Krebs cycle, IDH and citrate synthase. Mutational analysis indicates that these genes are cotranscribed. A nonpolar in-frame deletion of the acnA gene that encodes the aconitase prevented growth in glucose minimal medium unless heme or succinate was added to the medium. These results imply that B. fragilis has two pathways for alpha-ketoglutarate biosynthesis-one from isocitrate and the other from succinate. Homology searches indicated that the B. fragilis aconitase is most closely related to aconitases of two other Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria, Cytophaga hutchinsonii and Fibrobacter succinogenes. Phylogenetic analysis indicates that the CFB group aconitases are most closely related to mitochondrial aconitases. In addition, the IDH of C. hutchinsonii was found to be most closely related to the mitochondrial/cytosolic IDH-2 group of eukaryotic organisms. These data suggest a common origin for these Krebs cycle enzymes in mitochondria and CFB group bacteria.

  19. Bioluminescence Imaging to Track Bacteroides fragilis Inhibition of Vibrio parahaemolyticus Infection in Mice.

    PubMed

    Li, Zhengchao; Deng, Huimin; Zhou, Yazhou; Tan, Yafang; Wang, Xiaoyi; Han, Yanping; Liu, Yangyang; Wang, Ye; Yang, Ruifu; Bi, Yujing; Zhi, Fachao

    2017-01-01

    Bacteroides fragilis is an anaerobic, Gram-negative, commensal bacterium of the human gut. It plays an important role in promoting the maturation of the immune system, as well as suppressing abnormal inflammation. Many recent studies have focused on the relationship between B. fragilis and human immunity, and indicate that B. fragilis has many useful probiotic effects. As inhibition of intestinal pathogens is an important characteristic of probiotic strains, this study examined whether B. fragilis could inhibit pathogenic bacteria. Results showed that Vibrio parahaemolyticus was inhibited by B. fragilis in vitro , and that B. fragilis could protect both RAW 264.7 and LoVo cells from damage caused by V. parahaemolyticus . Using in vivo imaging, we constructed a light-emitting V. parahaemolyticus strain and showed that B. fragilis might shorten the colonization time and reduce the number of lux -expressing bacteria in a mouse model. These results provide useful information for developing B. fragilis into a probiotic product, and also indicate that this commensal bacterium might aid in the clinical treatment of gastroenteritis caused by V. parahaemolyticus .

  20. Bioluminescence Imaging to Track Bacteroides fragilis Inhibition of Vibrio parahaemolyticus Infection in Mice

    PubMed Central

    Li, Zhengchao; Deng, Huimin; Zhou, Yazhou; Tan, Yafang; Wang, Xiaoyi; Han, Yanping; Liu, Yangyang; Wang, Ye; Yang, Ruifu; Bi, Yujing; Zhi, Fachao

    2017-01-01

    Bacteroides fragilis is an anaerobic, Gram-negative, commensal bacterium of the human gut. It plays an important role in promoting the maturation of the immune system, as well as suppressing abnormal inflammation. Many recent studies have focused on the relationship between B. fragilis and human immunity, and indicate that B. fragilis has many useful probiotic effects. As inhibition of intestinal pathogens is an important characteristic of probiotic strains, this study examined whether B. fragilis could inhibit pathogenic bacteria. Results showed that Vibrio parahaemolyticus was inhibited by B. fragilis in vitro, and that B. fragilis could protect both RAW 264.7 and LoVo cells from damage caused by V. parahaemolyticus. Using in vivo imaging, we constructed a light-emitting V. parahaemolyticus strain and showed that B. fragilis might shorten the colonization time and reduce the number of lux-expressing bacteria in a mouse model. These results provide useful information for developing B. fragilis into a probiotic product, and also indicate that this commensal bacterium might aid in the clinical treatment of gastroenteritis caused by V. parahaemolyticus. PMID:28553617

  1. Interaction of metronidazole with resistant and susceptible Bacteroides fragilis.

    PubMed Central

    McLafferty, M A; Koch, R L; Goldman, P

    1982-01-01

    The kinetics of the lethal action of metronidazole and the formation of acetamide have been studied in a strain of Bacteroides fragilis which is relatively resistant to metronidazole. As with a susceptible strain of B. fragilis, the data are consistent with a model in which a labile intermediate in metronidazole metabolism interacts either with water to form acetamide or with a bacterium to cause its death. Although the relatively resistant strain grows more slowly than the susceptible one and is killed less rapidly by metronidazole, the resistant strain displays the same relationship between the lethal action of metronidazole and metronidazole metabolism to acetamide. The relatively resistant strain, like the susceptible one, has an enhanced lethal response to metronidazole in the presence of a strain of Escherichia coli. The results suggest that the proposed labile reactive intermediate of metronidazole forms more slowly in the resistant strains. PMID:7081970

  2. Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus.

    PubMed

    Hamady, Zaed Z R; Scott, Nigel; Farrar, Mark D; Lodge, J Peter A; Holland, Keith T; Whitehead, Terence; Carding, Simon R

    2010-04-01

    Human growth factors are potential therapeutic agents for various inflammatory disorders affecting the gastrointestinal tract. However, they are unstable when administered orally and systemic administration requires high doses increasing the risk of unwanted side effects. Live microorganism-based delivery systems can overcome these problems although they suffer from the inability to control heterologous protein production and there are concerns regarding biosafety and environmental contamination. To overcome these limitations we have developed a new live bacteria drug-delivery system using the human commensal gut bacterium Bacteroides ovatus engineered to secrete human growth factors in response to dietary xylan. The anaerobic nature of B ovatus provides an inherent biosafety feature. B ovatus strains expressing human keratinocyte growth factor-2, which plays a central role in intestinal epithelial homeostasis and repair (BO-KGF), were generated by homologous recombination and evaluated using the dextran sodium sulfate (DSS)-induced model of intestinal epithelial injury and colitis. In response to xylan BO-KGF produced biologically active KGF both in vitro and in vivo. In DSS treated mice administration of xylan and BO-KGF had a significant therapeutic effect in reducing weight loss, improving stool consistency, reducing rectal bleeding, accelerating healing of damaged epithelium, reducing inflammation and neutrophil infiltration, reducing expression of pro-inflammatory cytokines, and accelerating production of goblet cells. BO-KGF and xylan treatment also had a marked prophylactic effect limiting the development of inflammation and disruption of the epithelial barrier. This novel, diet-regulated, live bacterial drug delivery system may be applicable to treating various bowel disorders.

  3. Identification of vaginal fluid, saliva, and feces using microbial signatures in a Han Chinese population.

    PubMed

    Zou, Kai-Nan; Ren, Li-Jie; Ping, Yuan; Ma, Ke; Li, Hui; Cao, Yu; Zhou, Huai-Gu; Wei, Yi-Liang

    2016-10-01

    In recent years, forensic scientists have focused on the discrimination of body fluids using microbial signatures. In this study, we performed PCR-based detection of microbial signatures of vaginal fluid, saliva, and feces in a Han Chinese population. We investigated the 16S rRNA genes of Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus iners, and Atopobium vaginae in vaginal fluid, the 16S rRNA and the glucosyltransferase enzyme genes of Streptococcus salivarius and Streptococcus mutans in saliva, and the 16S rRNA genes of Enterococcus species, the RNA polymerase β-subunit gene of Bacteroides uniformis and Bacteroides vulgatus, and the α-1-6 mannanase gene of Bacteroides thetaiotaomicron in feces. As a result, the detection proportions of L. crispatus, L. gasseri, L. jensenii, L. iners, and A. vaginae were 15/16, 5/16, 8/16, 14/16, and 3/16 in 16 vaginal fluid donors, respectively. L. crispatus and L. jensenii were specifically detected in vaginal fluid; L. gasseri, L. iners, and A. vaginae were also detected in non-vaginal fluid. S. salivarius and S. mutans were not specifically detected in saliva. The detection proportions of Enterococcus species, B. uniformis, B. vulgatus, and B. thetaiotaomicron in 16 feces samples were 16/16, 12/16, 15/16, and 11/16, respectively. B. uniformis and B. thetaiotaomicron were specifically detected in feces. In addition, DNA samples prepared for the identification of body fluid can also be used for individual identification by short tandem repeat typing. The mean detection sensitivities of L. crispatus and L. jensenii were 0.362 and 0.249 pg/uL, respectively. In conclusion, L. crispatus, L. jensenii, B. uniformis, and B. thetaiotaomicron can be used as effective markers for forensic identification of vaginal fluid and feces. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  4. Serum bactericidal activities of moxifloxacin and levofloxacin against aerobic and anaerobic intra-abdominal pathogens.

    PubMed

    Stein, Gary E; Schooley, Sharon; Tyrrell, Kerin L; Citron, Diane M; Nicolau, David P; Goldstein, Ellie J C

    2008-02-01

    We studied the serum bactericidal activity (SBA) of moxifloxacin and levofloxacin against common pathogens associated with complicated intra-abdominal infections. Ten healthy volunteers received a single dose of moxifloxacin (400 mg) and levofloxacin (750 mg) and serum samples were collected at 2, 4, 8, 12, and 24h after the dose of each drug. Bactericidal titers in serum over time were determined for aerobic gram-negative bacilli (Escherichia coli, Klebseilla pneumoniae, and Enterobacter cloacae) and anaerobic bacteria (Bacteroides fragilis, Bacteroides thetaiotaomicron, Prevotella bivia, and Finegoldia magna). Both fluoroquinolones provided rapid (2h) attainment and prolonged (24h) SBA (titers > or = 1:8) against each of the aerobic bacilli studied. SBA was observed for at least 12h against B. fragilis strains with MICs < or = 2 microg/ml to moxifloxacin and < or = 4 microg/ml to levofloxacin. Prolonged (12h) SBA (titers > or = 1:2) was also observed against isolates of B. thetaiotaomicron, P. bivia, and F. magna with moxifloxacin < or = MICs 2 microg/ml.

  5. Immunomodulatory effects of Bacteroides products on in vitro human lymphocyte functions.

    PubMed

    Shenker, B J; Slots, J

    1989-03-01

    Bacteroides spp. have been implicated in the pathogenesis of several diseases, including periodontal diseases. In this study sonic extracts of 6 Bacteroides spp. were examined for their abilities to alter human lymphocyte function. We found that soluble extracts from Bacteroides intermedius, Bacteroides endodontalis, Bacteroides asaccharolyticus, Bacteroides melaninogenicus, and to a lesser degree Bacteroides loescheii, caused dose-dependent inhibition of human lymphocyte responsiveness to both mitogens and antigens. Suppression involved altered DNA, RNA and protein synthesis as well as immunoglobulin production. In contrast, Bacteroides gingivalis did not suppress these responses; instead, it stimulated lymphocyte proliferation and enhanced immunoglobulin production. It has been proposed that impaired host defense may play a pivotal role in the pathogenesis of many infections. The data presented in this paper suggest that microbial mediated immunosuppression may conceivably alter the nature and consequences of host-parasite interactions in periodontal disease.

  6. Black-pigmented Bacteroides spp. in human apical periodontitis.

    PubMed Central

    Haapasalo, M; Ranta, H; Ranta, K; Shah, H

    1986-01-01

    The incidence of black-pigmented (BP) Bacteroides spp. in 62 human dental root canal infections (35 acute and 27 clinically asymptomatic cases of apical periodontitis) in 57 adults was studied. Altogether 37 strains of BP Bacteroides were found in 31 infections, always in mixed anaerobic infections. Two different BP Bacteroides species were present in six infections. B. intermedius was most frequently isolated (15 of 62 canals; 24%) followed by B. denticola which was present in 12 cases. Asaccharolytic BP Bacteroides species, B. gingivalis and B. endodontalis, were found in eight cases. BP Bacteroides species were found both from symptomatic and asymptomatic infections, but there were also several symptomatic cases from which BP Bacteroides species were not isolated. B. gingivalis and B. endodontalis were present only in acute infections, B. intermedius was found both in symptomatic and asymptomatic infections, and B. denticola occurred mostly in asymptomatic infections. BP Bacteroides species were isolated initially from 9 of the 11 teeth with symptoms at 1 week, but only from 22 of the 51 teeth that were symptomless at 1 week. Two strains of B. denticola were resistant to penicillin G at a concentration of 2.4 micrograms/ml, but the MIC of penicillin G for all other strains was 0.6 micrograms/ml or lower. Forty-two randomly selected patients received penicillin V (oral administration, 650 mg, three times daily) during the first week of endodontic therapy. Penicillin had no effect on the occurrence of symptoms after 1 week compared with the control group (20 patients). PMID:3721577

  7. Black-pigmented Bacteroides spp. in human apical periodontitis.

    PubMed

    Haapasalo, M; Ranta, H; Ranta, K; Shah, H

    1986-07-01

    The incidence of black-pigmented (BP) Bacteroides spp. in 62 human dental root canal infections (35 acute and 27 clinically asymptomatic cases of apical periodontitis) in 57 adults was studied. Altogether 37 strains of BP Bacteroides were found in 31 infections, always in mixed anaerobic infections. Two different BP Bacteroides species were present in six infections. B. intermedius was most frequently isolated (15 of 62 canals; 24%) followed by B. denticola which was present in 12 cases. Asaccharolytic BP Bacteroides species, B. gingivalis and B. endodontalis, were found in eight cases. BP Bacteroides species were found both from symptomatic and asymptomatic infections, but there were also several symptomatic cases from which BP Bacteroides species were not isolated. B. gingivalis and B. endodontalis were present only in acute infections, B. intermedius was found both in symptomatic and asymptomatic infections, and B. denticola occurred mostly in asymptomatic infections. BP Bacteroides species were isolated initially from 9 of the 11 teeth with symptoms at 1 week, but only from 22 of the 51 teeth that were symptomless at 1 week. Two strains of B. denticola were resistant to penicillin G at a concentration of 2.4 micrograms/ml, but the MIC of penicillin G for all other strains was 0.6 micrograms/ml or lower. Forty-two randomly selected patients received penicillin V (oral administration, 650 mg, three times daily) during the first week of endodontic therapy. Penicillin had no effect on the occurrence of symptoms after 1 week compared with the control group (20 patients).

  8. Xylan-regulated Delivery of Human Keratinocyte Growth Factor-2 to the Inflamed Colon by the Human Anaerobic Commensal Bacterium Bacteroides ovatus

    USDA-ARS?s Scientific Manuscript database

    The use of genetically modified bacteria to deliver biologically active molecules directly to the gut has become an increasingly attractive area of investigation. The challenge of regulation of production of the therapeutic molecule and colonization of the bowel led us to investigate Bacteroides ov...

  9. UNUSUAL BACTEROIDES-LIKE ORGANISM

    PubMed Central

    Goldberg, Herbert S.; Barnes, Ella M.; Charles, Anthony B.

    1964-01-01

    Goldberg, Herbert S. (University of Missouri, Columbia), Ella M. Barnes, and Anthony B. Charles. Unusual Bacteroides-like organism. J. Bacteriol. 87:737–742. 1964.—An organism is described which appears to be a new species of gram-negative, anaerobic, nonsporulating rod. It was isolated from poultry caeca at levels of 107 to 108 per g. It is primarily distinguished from related organisms by its unusual size (2.0 by 10.0 μ). It is biochemically differentiated from known species of Bacteroides, Fusobacterium, Sphaerophorous, and other accepted related genera. Its presence in large numbers in the gut of poultry, and its high metabolic activity would seem to indicate an important intestinal organism. Images PMID:14127590

  10. Defining the bacteroides ribosomal binding site.

    PubMed

    Wegmann, Udo; Horn, Nikki; Carding, Simon R

    2013-03-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.

  11. The Bacteroid Periplasm in Soybean Nodules Is an Interkingdom Symbiotic Space.

    PubMed

    Strodtman, Kent N; Stevenson, Severin E; Waters, James K; Mawhinney, Thomas P; Thelen, Jay J; Polacco, Joseph C; Emerich, David W

    2017-12-01

    The functional role of the periplasm of nitrogen-fixing bacteroids has not been determined. Proteins were isolated from the periplasm and cytoplasm of Bradyrhizobium diazoefficiens bacteroids and were analyzed using liquid chromatography tandem mass spectrometry proteomics. Identification of bacteroid periplasmic proteins was aided by periplasm prediction programs. Approximately 40% of all the proteins identified as periplasmic in the B. diazoefficiens genome were found expressed in the bacteroid form of the bacteria, indicating the periplasm is a metabolically active symbiotic space. The bacteroid periplasm possesses many fatty acid metabolic enzymes, which was in contrast to the bacteroid cytoplasm. Amino acid analysis of the periplasm revealed an abundance of phosphoserine, phosphoethanolamine, and glycine, which are metabolites of phospholipid metabolism. These results suggest the periplasm is a unique space and not a continuum with the peribacteroid space. A number of plant proteins were found in the periplasm fraction, which suggested contamination. However, antibodies to two of the identified plant proteins, histone H2A and lipoxygenase, yielded immunogold labeling that demonstrated the plant proteins were specifically targeted to the bacteroids. This suggests that the periplasm is an interkingdom symbiotic space containing proteins from both the bacteroid and the plant.

  12. The Glycolytic Versatility of Bacteroides uniformis CECT 7771 and Its Genome Response to Oligo and Polysaccharides

    PubMed Central

    Benítez-Páez, Alfonso; Gómez del Pulgar, Eva M.; Sanz, Yolanda

    2017-01-01

    Bacteroides spp. are dominant components of the phylum Bacteroidetes in the gut microbiota and prosper in glycan enriched environments. However, knowledge of the machinery of specific species isolated from humans (like Bacteroides uniformis) contributing to the utilization of dietary and endogenous sources of glycans and their byproducts is limited. We have used the cutting-edge nanopore-based technology to sequence the genome of B. uniformis CECT 7771, a human symbiont with a proven pre-clinical efficacy on metabolic and immune dysfunctions in obesity animal models. We have also used massive sequencing approaches to distinguish the genome expression patterns in response to carbon sources of different complexity during growth. At genome-wide level, our analyses globally demonstrate that B. uniformis strains exhibit an expanded glycolytic capability when compared with other Bacteroides species. Moreover, by studying the growth and whole-genome expression of B. uniformis CECT 7771 in response to different carbon sources, we detected a differential growth fitness and expression patterns across the genome depending on the carbon source of the culture media. The dietary fibers used exerted different effects on B. uniformis CECT 7771 activating different molecular pathways and, therefore, allowing the production of different metabolite types with potential impact on gut health. The genome and transcriptome analysis of B. uniformis CECT 7771, in response to different carbon sources, shows its high versatility to utilize both dietary and endogenous glycans along with the production of potentially beneficial end products for both the bacterium and the host, pointing to a mechanistic basis of a mutualistic relationship. PMID:28971068

  13. Serological characterization of black-pigmented Bacteroides endodontalis.

    PubMed Central

    van Winkelhoff, A J; Kippuw, N; de Graaff, J

    1986-01-01

    Serological studies on the black-pigmented Bacteroides species B. endodontalis revealed three serotypes based on capsular determinants. A common antigen (O-antigen) could be demonstrated after decapsulation. Weak cross-reactivity was found with B. asaccharolyticus, but not with B. gingivalis. Similarity between the serology of Enterobacteriaceae and black-pigmented Bacteroides spp. is discussed. PMID:3949388

  14. Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids.

    PubMed

    Terpolilli, Jason J; Masakapalli, Shyam K; Karunakaran, Ramakrishnan; Webb, Isabel U C; Green, Rob; Watmough, Nicholas J; Kruger, Nicholas J; Ratcliffe, R George; Poole, Philip S

    2016-10-15

    Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2 Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [(13)C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions. Therefore, comparative metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA cycle was shown to be essential for maximal rates of N2 fixation, levels of pyruvate (5.5-fold reduced), acetyl coenzyme A (acetyl-CoA; 50-fold reduced), free coenzyme A (33-fold reduced), and citrate (4.5-fold reduced) were much lower in bacteroids. Instead of completely oxidizing acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-β-hydroxybutyrate (PHB), the latter via a type III PHB synthase that is active only in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA cycle with its storage in PHB and lipids. Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an energy-expensive process. Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the TCA cycle to generate NAD(P)H for reduction of N2 However, direct reduction of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox

  15. Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids

    PubMed Central

    Terpolilli, Jason J.; Masakapalli, Shyam K.; Karunakaran, Ramakrishnan; Webb, Isabel U. C.; Green, Rob; Watmough, Nicholas J.; Kruger, Nicholas J.; Ratcliffe, R. George

    2016-01-01

    ABSTRACT Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2. Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [13C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions. Therefore, comparative metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA cycle was shown to be essential for maximal rates of N2 fixation, levels of pyruvate (5.5-fold reduced), acetyl coenzyme A (acetyl-CoA; 50-fold reduced), free coenzyme A (33-fold reduced), and citrate (4.5-fold reduced) were much lower in bacteroids. Instead of completely oxidizing acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-β-hydroxybutyrate (PHB), the latter via a type III PHB synthase that is active only in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA cycle with its storage in PHB and lipids. IMPORTANCE Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an energy-expensive process. Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the TCA cycle to generate NAD(P)H for reduction of N2. However, direct reduction of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent

  16. Senior Thai fecal microbiota comparison between vegetarians and non-vegetarians using PCR-DGGE and real-time PCR.

    PubMed

    Ruengsomwong, Supatjaree; Korenori, Yuki; Sakamoto, Naoshige; Wannissorn, Bhusita; Nakayama, Jiro; Nitisinprasert, Sunee

    2014-08-01

    The fecal microbiotas were investigated in 13 healthy Thai subjects using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Among the 186 DNA bands detected on the polyacrylamide gel, 37 bands were identified as representing 11 species: Bacteroides thetaiotaomicron, Bacteroides ovatus, Bacteroides uniformis, Bacteroides vulgatus, Clostridium colicanis, Eubacterium eligenes, E. rectale, Faecalibacterium prausnitzii, Megamonas funiformis, Prevotella copri, and Roseburia intestinalis, belonging mainly to the groups of Bacteroides, Prevotella, Clostridium, and F. prausnitzii. A dendrogram of the PCR-DGGE divided the subjects; vegetarians and non-vegetarians. The fecal microbiotas were also analyzed using a quantitative real-time PCR focused on Bacteroides, Bifidobacterium, Enterobacteriaceae, Clostrium coccoides-Eubacterium rectale, C. leptum, Lactobacillus, and Prevotella. The nonvegetarian and vegetarian subjects were found to have significant differences in the high abundance of the Bacteroides and Prevotella genera, respectively. No significant differences were found in the counts of Bifidabacterium, Enterobacteriaceae, C. coccoides-E. rectale group, C. leptum group, and Lactobacillus. Therefore, these findings on the microbiota of healthy Thais consuming different diets could provide helpful data for predicting the health of South East Asians with similar diets.

  17. Taxonomy, virulence and epidemiology of black-pigmented Bacteroides species in relation to oral infections.

    PubMed

    van Steenbergen, T J; van Winkelhoff, A J; van der Velden, U; de Graaff, J

    1989-01-01

    Black-pigmented Bacteroides species are recognized as suspected pathogens of oral infections. Developments in the taxonomy of this group include description of a new asaccharolytic species, Bacteroides salivosus, and proposal for the reclassification of the asaccharolytic species into a separate genus, Porphyromonas. Studies on the pathogenicity and virulence of black-pigmented Bacteroides species have identified Bacteroides gingivalis as the most virulent species. B. gingivalis and Bacteroides intermedius have been associated with periodontal diseases; Bacteroides endodontalis is isolated specifically from infections in the oral cavity, and other black-pigmented Bacteroides species are recovered from oral mucous sites. DNA restriction endonuclease analysis was adapted for typing of B. gingivalis and B. intermedius.

  18. Selective medium for the isolation of Bacteroides gingivalis.

    PubMed

    Hunt, D E; Jones, J V; Dowell, V R

    1986-03-01

    Bacteroides gingivalis has been implicated in various forms of periodontal disease and may be responsible for other diseases in humans. The role of B. gingivalis in disease has been difficult to assess, because it is inhibited by most selective media commonly used by clinical laboratories to aid in isolating gram-negative, nonsporeforming anaerobes. We have developed a new medium, Bacteroides gingivalis agar, which contains bacitracin, colistin, and nalidixic acid as selective agents. This medium allowed B. gingivalis to be isolated from oral specimens with little difficulty and also allowed B. gingivalis to be isolated from phenotypically similar Bacteroides species, such as B. asaccharolyticus and B. endodontalis, with which it can easily be confused.

  19. Growth yields and fermentation balance of Bacteroides fragilis cultured in glucose-enriched medium.

    PubMed

    Frantz, J C; McCallum, R E

    1979-03-01

    Bacteroides fragilis is an obligate anaerobic bacterium classified with the gram-negative, non-sporeforming bacilli and is the Bacteroides species most frequently isolated from human infections. In the present study, experiments were designed to investigate growth characteristics of B. fragilis in a complex medium. In a minimal defined medium, which was employed for comparison purposes, B. fragilis grew with a generation time of 2 h. Growth of the organism in glucose-enriched medium used in the present study was superior. Maximum generation time was 60 min. Total and viable cells (colony-forming units) were 8.9 x 10(9) and 2.1 x 10(9), respectively, at maximum measurable growth. The molar growth yield (Ym) was 51.5. Growth yields were found to reach a maximum 2 to 3 h before maximum growth and to vary with respect to the phase of growth. Estimates of the fermentation products indicated that glucose was the sole energy substrate. Major products included acetic acid, propionic acid, lactic acid, and succinic acid. Other products included ethyl alcohol, pyruvic acid, and fumaric acid. No attempt was made to recover CO2 or formic acid. The OR balances from two experiments were 0.013 and -0.093 and the respective carbon recoveries were 6.268 and 6.241. The results of the present study show that B. fragilis is capable of rapid rates of growth in vitro by using glucose as the sole energy source.

  20. Linking fecal bacteria in rivers to landscape, geochemical, and hydrologic factors and sources at the basin scale

    PubMed Central

    Verhougstraete, Marc P.; Martin, Sherry L.; Kendall, Anthony D.; Hyndman, David W.; Rose, Joan B.

    2015-01-01

    Linking fecal indicator bacteria concentrations in large mixed-use watersheds back to diffuse human sources, such as septic systems, has met limited success. In this study, 64 rivers that drain 84% of Michigan’s Lower Peninsula were sampled under baseflow conditions for Escherichia coli, Bacteroides thetaiotaomicron (a human source-tracking marker), landscape characteristics, and geochemical and hydrologic variables. E. coli and B. thetaiotaomicron were routinely detected in sampled rivers and an E. coli reference level was defined (1.4 log10 most probable number⋅100 mL−1). Using classification and regression tree analysis and demographic estimates of wastewater treatments per watershed, septic systems seem to be the primary driver of fecal bacteria levels. In particular, watersheds with more than 1,621 septic systems exhibited significantly higher concentrations of B. thetaiotaomicron. This information is vital for evaluating water quality and health implications, determining the impacts of septic systems on watersheds, and improving management decisions for locating, constructing, and maintaining on-site wastewater treatment systems. PMID:26240328

  1. Plasmid analyses in clinical isolates of Bacteroides fragilis and other Bacteroides species.

    PubMed Central

    Wallace, B L; Bradley, J E; Rogolsky, M

    1981-01-01

    Plasmid analyses were performed on Bacteroides strains isolated from clinical specimens. Of 32 Bacteroides strains, 8 were found to contain plasmids. Seven of these eight strains were B. fragilis, and the other one was B. distasonis. Three of these eight strains harbored only a 3.0-megadalton plasmid. Two strains had only a 2.0-megadalton plasmid, and one had 2.0-, 3.0-megadalton plasmid. Of the remaining two strains, one had 2.0-, 3.0-, and 5.0-megadalton plasmids, and the other had 3.0- and 5.0-megadalton plasmids. Beta-Lactamase was produced by 93% of the clinical isolates. Seven of the eight plasmid-carrying strains were cadmium resistant, five were zinc resistant, four were mercury resistant, and two expressed a brick-red fluorescence under ultraviolet light. None of these traits could be associated with a plasmid after performing either curing experiments or genetic transfer experiments by cell-to-cell contact. Images PMID:6974737

  2. Cupriavidus taiwanensis bacteroids in Mimosa pudica Indeterminate nodules are not terminally differentiated.

    PubMed

    Marchetti, Marta; Catrice, Olivier; Batut, Jacques; Masson-Boivin, Catherine

    2011-03-01

    The beta-rhizobium Cupriavidus taiwanensis forms indeterminate nodules on Mimosa pudica. C. taiwanensis bacteroids resemble free-living bacteria in terms of genomic DNA content, cell size, membrane permeability, and viability, in contrast to bacteroids in indeterminate nodules of the galegoid clade. Bacteroid differentiation is thus unrelated to nodule ontogeny.

  3. Further characterization of Bacteroides endodontalis, an asaccharolytic black-pigmented Bacteroides species from the oral S cavity.

    PubMed Central

    van Winkelhoff, A J; van Steenbergen, T J; Kippuw, N; De Graaff, J

    1985-01-01

    In this study, the isolation, characterization, and identification of Bacteroides endodontalis is described. It was found that this asaccharolytic black-pigmented Bacteroides species is associated with infected dental root canals and oral submucous abscesses. B. endodontalis could be differentiated from B. gingivalis by a negative direct hemagglutination test and the absence of trypsin and N-acetyl-beta-glucosamidase. B. endodontalis could be differentiated from B. asaccharolyticus by the absence of alpha-fucosidase, its inability to grow in an atmosphere of 95% N2-5% H2, and a growth requirement for menadione. Immune serum raised against B. endodontalis strain HG 370T agglutinated only B. endodontalis cells. Precautions for the isolation of B. endodontalis are discussed. PMID:3926818

  4. Structural genomics analysis of uncharacterized protein families overrepresented in human gut bacteria identifies a novel glycoside hydrolase

    PubMed Central

    2014-01-01

    Background Bacteroides spp. form a significant part of our gut microbiome and are well known for optimized metabolism of diverse polysaccharides. Initial analysis of the archetypal Bacteroides thetaiotaomicron genome identified 172 glycosyl hydrolases and a large number of uncharacterized proteins associated with polysaccharide metabolism. Results BT_1012 from Bacteroides thetaiotaomicron VPI-5482 is a protein of unknown function and a member of a large protein family consisting entirely of uncharacterized proteins. Initial sequence analysis predicted that this protein has two domains, one on the N- and one on the C-terminal. A PSI-BLAST search found over 150 full length and over 90 half size homologs consisting only of the N-terminal domain. The experimentally determined three-dimensional structure of the BT_1012 protein confirms its two-domain architecture and structural analysis of both domains suggests their specific functions. The N-terminal domain is a putative catalytic domain with significant similarity to known glycoside hydrolases, the C-terminal domain has a beta-sandwich fold typically found in C-terminal domains of other glycosyl hydrolases, however these domains are typically involved in substrate binding. We describe the structure of the BT_1012 protein and discuss its sequence-structure relationship and their possible functional implications. Conclusions Structural and sequence analyses of the BT_1012 protein identifies it as a glycosyl hydrolase, expanding an already impressive catalog of enzymes involved in polysaccharide metabolism in Bacteroides spp. Based on this we have renamed the Pfam families representing the two domains found in the BT_1012 protein, PF13204 and PF12904, as putative glycoside hydrolase and glycoside hydrolase-associated C-terminal domain respectively. PMID:24742328

  5. Cupriavidus taiwanensis Bacteroids in Mimosa pudica Indeterminate Nodules Are Not Terminally Differentiated ▿

    PubMed Central

    Marchetti, Marta; Catrice, Olivier; Batut, Jacques; Masson-Boivin, Catherine

    2011-01-01

    The beta-rhizobium Cupriavidus taiwanensis forms indeterminate nodules on Mimosa pudica. C. taiwanensis bacteroids resemble free-living bacteria in terms of genomic DNA content, cell size, membrane permeability, and viability, in contrast to bacteroids in indeterminate nodules of the galegoid clade. Bacteroid differentiation is thus unrelated to nodule ontogeny. PMID:21257807

  6. Evaluation of Fluoretec-M for detection of oral strains of Bacteroides asaccharolyticus and Bacteroides melaninogenicus.

    PubMed Central

    Mouton, C; Hammond, P; Slots, J; Genco, R J

    1980-01-01

    Fluoretec-M is a polyvalent conjugate used in direct fluorescent-antibody staining for identification of the Bacteroides asaccharolyticus-Bacteroides melaninogenicus group. The Fluoretec-M reagent detected all oral and nonoral test strains of B. melaninogaenicus subsp. intermedius, all test strains of B. melaninogenicus subsp. melaninogenicus, and the nonoral strains of B. asaccharolyticus. However, the Fluoretec-M polyvalent reagent and the monovalent conjugates which constitute Fluoretec-M did not detect the oral strains B. asaccharolyticus. The use of Fluoretec-M can therefore generate false-negative results in studies of specimens from oral cavity and from nonoral sites in which an infection with B. asacacharolyticus of oral origin may have taken place. It is suggested that antibodies reactive with the oral antigenic type of B. asaccharolyticus be included in the preparative procedure of the Fluoretec-M reagent. PMID:6107305

  7. A study on Nim expression in Bacteroides fragilis

    PubMed Central

    Leitsch, David; Sóki, József; Kolarich, Daniel; Urbán, Edit; Nagy, Elisabeth

    2016-01-01

    Summary Members of the genus Bacteroides, mainly Bacteroides fragilis, can cause severe disease in man, especially after intestinal perforation in the course of abdominal surgery. Treatment is based on a small number of antibiotics, including metronidazole which has proved to be highly reliable throughout the last 40 to 50 years. Nevertheless, metronidazole resistance does occur in Bacteroides and has been mainly attributed to Nim proteins, a class of proteins with suggested nitroreductase function. Despite the potentially high importance of Nim proteins for human health, information on the expression of nim genes in Bacteroides fragilis is still lacking. It was the aim of this study to demonstrate expression of nim genes in B. fragilis at the protein level and, further, to correlate the level of Nim levels with the level of metronidazole resistance. By application of two-dimensional gel electrophoresis, Nim proteins could be readily identified in nim-positive strains but their levels were not elevated to a relevant extent after induction of resistance to high doses of metronidazole. Thus, the presented data do not provide evidence for Nim proteins acting as nitroreductases using metronidazole as a substrate because no correlation of Nim levels and level of resistance could be observed. Further, no evidence was found that Nim proteins protect B. fragilis from metronidazole by sequestering activated metronidazole. PMID:24448511

  8. The role of black-pigmented Bacteroides in human oral infections.

    PubMed

    van Winkelhoff, A J; van Steenbergen, T J; de Graaff, J

    1988-03-01

    Today, 10 black-pigmented Bacteroides (BPB) species are recognized. The majority of these species can be isolated from the oral cavity. BPB species are involved in anaerobic infections of oral and non-oral sites. In the oral cavity, BPB species are associated with gingivitis, periodontitis, endodontal infections and odontogenic abscesses. Cultural studies suggest a specific role of the various BPB species in the different types of infection. Bacteroides gingivalis is closely correlated with destructive periodontitis in adults as well as in juveniles. Bacteroides intermedius seems to be less specific since it is found in gingivitis, periodontitis, endodontal infections and odontogenic abscesses. The recently described Bacteroides endodontalis is closely associated with endodontal infections and odontogenic abscesses of endodontal origin. There are indications that these periodontopathic BPB species are only present in the oral cavity of subjects suffering from periodontal breakdown, being absent on the mucosal surfaces of subjects without periodontal breakdown. BPB species associated with healthy oral conditions are Bacteroides melaninogenicus, Bacteroides denticola and Bacteroides loescheii. There are indications that these BPB species are part of the normal indigenous oral microflora. Many studies in the past have documented the pathogenic potential and virulence of BPB species. This virulence can be explained by the large numbers of virulence factors demonstrated in this group of micro-organisms. Among others, the proteolytic activity seems to be one of the most important features. Several artificial substrates as well as numerous biological proteins are degraded. These include anti-inflammatory proteins such as alpha-2-macroglobulin, alpha-1-antitrypsin, C3 and C5 complement factors and immunoglobulins. B. gingivalis is by far the most proteolytic species, followed by B. endodontalis. Like other bacteria, the lipopolysaccharide of B. gingivalis has shown to be

  9. Molecular Investigations of Bacteroides as Microbial Source Tracking Tools in Southeast Louisiana Watersheds

    NASA Astrophysics Data System (ADS)

    Schulz, C. J.; Childers, G. W.; Engel, A. S.

    2006-12-01

    Microbial Source Tracking (MST) is a developing field that is gaining increased attention. MST refers to a host of techniques that discriminates among the origins of fecal material found in natural waters from different sources (e.g. human, livestock, and wildlife) by using microbial indicator species with specificity to only certain host organisms. The development of species-specific molecular markers would allow for better evaluation of public health risks and tracking of nutrient sources impacting a watershed. Although several MST methods have been reported with varying levels of success, few offer general applicability for natural waters due to spatial and temporal constraints associated with these methods. One group of molecular MST markers that show promise for broad environmental applications are molecular 16S rDNA probes for Bacteroides. This method is based on 16S rDNA detection directly from environmental samples without the need for a preliminary cultivation step. In this study we have expanded previous sampling efforts to compile a database of over 1000 partial 16S rRNA Bacteroides genes retrieved from the fecal material of 15 different host species (human, cat, dog, pig, kangaroo). To characterize survival of Bacteroides outside of the host, survival time of the Bacteroides marker was compared to that of E.coli under varying natural environmental conditions (temperature and salinity). Bacteroides displayed a survival curve with shouldering and tailing similar to that of E.coli, but log reduction times differed with treatment. In summary, MST marker stability was identified within host species and the overall Bacteroides community structure correlated to host diet, suggesting that detection of a Bacteroides community could confidently identify fecal contamination point sources. Natural water samples from southeast Louisiana were collected for MST including the Tangipahoa River watershed where the source of fecal contamination has been hotly debated. The

  10. Use of synthetic oligonucleotide DNA probes for the identification of Bacteroides gingivalis.

    PubMed Central

    Moncla, B J; Braham, P; Dix, K; Watanabe, S; Schwartz, D

    1990-01-01

    Six different oligonucleotide probes complementary to the hypervariable regions of 16S rRNA of Bacteroides gingivalis were tested for specificity and sensitivity against 77 field strains of B. gingivalis and 105 strains of 12 other Bacteroides species. The data demonstrated that these probes were very specific (range, 0.85 to 1.00) and sensitive (1.00). Some limited cross-reactions with other Bacteroides species were observed. Four of these probes should be useful for rapid detection and identification of B. gingivalis. Images PMID:1690217

  11. Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence

    PubMed Central

    Tuncil, Yunus E.; Xiao, Yao; Porter, Nathan T.; Reuhs, Bradley L.

    2017-01-01

    ABSTRACT When presented with nutrient mixtures, several human gut Bacteroides species exhibit hierarchical utilization of glycans through a phenomenon that resembles catabolite repression. However, it is unclear how closely these observed physiological changes, often measured by altered transcription of glycan utilization genes, mirror actual glycan depletion. To understand the glycan prioritization strategies of two closely related human gut symbionts, Bacteroides ovatus and Bacteroides thetaiotaomicron, we performed a series of time course assays in which both species were individually grown in a medium with six different glycans that both species can degrade. Disappearance of the substrates and transcription of the corresponding polysaccharide utilization loci (PULs) were measured. Each species utilized some glycans before others, but with different priorities per species, providing insight into species-specific hierarchical preferences. In general, the presence of highly prioritized glycans repressed transcription of genes involved in utilizing lower-priority nutrients. However, transcriptional sensitivity to some glycans varied relative to the residual concentration in the medium, with some PULs that target high-priority substrates remaining highly expressed even after their target glycan had been mostly depleted. Coculturing of these organisms in the same mixture showed that the hierarchical orders generally remained the same, promoting stable coexistence. Polymer length was found to be a contributing factor for glycan utilization, thereby affecting its place in the hierarchy. Our findings not only elucidate how B. ovatus and B. thetaiotaomicron strategically access glycans to maintain coexistence but also support the prioritization of carbohydrate utilization based on carbohydrate structure, advancing our understanding of the relationships between diet and the gut microbiome. PMID:29018117

  12. Monoclonal antibody against a serotype antigen of Porphyromonas (Bacteroides) endodontalis and characteristics of the antigen.

    PubMed Central

    Hanazawa, S; Sagiya, T; Amano, S; Nishikawa, H; Kitano, S

    1990-01-01

    Recent studies have demonstrated the presence of three serotypes (O1K1, O1K2, and O1K-) of Porphyromonas (Bacteroides) endodontalis. In the present study, a hybridoma cell line producing monoclonal antibody (BEE11) specific for serotype O1K1 of P. endodontalis was established. The specificity of the antibody was evaluated by enzyme-linked immunosorbent assay and immunoslot blot analysis. BEE11 antibody reacted with strains ATCC 35406, HG 400, and HG 421 of the bacterium. However, it did not react with HG 422 or HG 948. Also, the antibody did not react with any of the black-pigmented Bacteroides strains tested. Although the antibody reacted with total cell envelope and capsule materials, it did not do so with lipopolysaccharide. The antibody reacted with antigen material having a molecular mass of 110 kilodaltons (kDa), as judged from fractionation by Superose 12 prep gel chromatography. When the peak fraction from the Superose 12 column was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis, the reactivity was detected as a single band at an apparent molecular mass of about 52 kDa. The antigen material purified partially by high-performance liquid chromatography was sensitive to trypsin, V8 protease, and heating to 80 degrees C but not to neuraminidase. Therefore, the present study shows that BEE11 antibody recognizes a serotype antigen of P. endodontalis which may be a dimer consisting of monomers having molecular masses of approximately 52 kDa and sensitivity to proteases and heat. Images PMID:2370106

  13. Comparison of lipopolysaccharides from Bacteroides, Porphyromonas, Prevotella, Campylobacter and Wolinella spp. by tricine-SDS-PAGE.

    PubMed

    Firoozkoohi, J; Zandi, H; Olsen, I

    1997-02-01

    Lipopolysaccharides (LPSs) of 11 bacterial strains from the type species of the genera Bacteroides (B. fragilis), Prevotella (Pr. melaninogenica), Porphyromonas (Po. gingivalis), Campylobacter (C. fetus subsp. fetus), and Wolinella (W. succinogenes), and from the type strains of B. distasonis, B. forsythus, B. ureolyticus, Po. levii, Po. macacae, and C. gracilis, were extracted with hot water-phenol (Westphal method). S-form LPSs, obtained from all organisms, were well resolved with tricine-sodium-dodecyl-sulphate polyacrylamide gel electrophoresis and visualized by silver staining. Lipid A was not stained. Also profiles from LPS of Escherichia coli, serotypes 0111:B4 and 055:B5, could be distinguished. While W. succinogenes showed a relatively short S-form LPS on electrophoregrams, the other bacteria, including B. fragilis, exhibited long-ladder LPSs. Po. gingivalis displayed the largest number of bands and the longest O-chain. The long O-chain of this bacterium may be important for its virulence.

  14. Bacteroides fragilis RecA protein overexpression causes resistance to metronidazole

    PubMed Central

    Steffens, Laura S.; Nicholson, Samantha; Paul, Lynthia V.; Nord, Carl Erik; Patrick, Sheila; Abratt, Valerie R.

    2010-01-01

    Bacteroides fragilis is a human gut commensal and an opportunistic pathogen causing anaerobic abscesses and bacteraemias which are treated with metronidazole (Mtz), a DNA damaging agent. This study examined the role of the DNA repair protein, RecA, in maintaining endogenous DNA stability and its contribution to resistance to Mtz and other DNA damaging agents. RT-PCR of B. fragilis genomic DNA showed that the recA gene was co-transcribed as an operon together with two upstream genes, putatively involved in repairing oxygen damage. A B. fragilis recA mutant was generated using targeted gene inactivation. Fluorescence microscopy using DAPI staining revealed increased numbers of mutant cells with reduced intact double-stranded DNA. Alkaline gel electrophoresis of the recA mutant DNA showed increased amounts of strand breaks under normal growth conditions, and the recA mutant also showed less spontaneous mutagenesis relative to the wild type strain. The recA mutant was sensitive to Mtz, ultraviolet light and hydrogen peroxide. A B. fragilis strain overexpressing the RecA protein exhibited increased resistance to Mtz compared to the wild type. This is the first study to show that overexpression of a DNA repair protein in B. fragilis increases Mtz resistance. This represents a novel drug resistance mechanism in this bacterium. PMID:20435137

  15. Comparative In Vitro Activities of ABT-773 against 362 Clinical Isolates of Anaerobic Bacteria

    PubMed Central

    Citron, Diane M.; Appleman, Maria D.

    2001-01-01

    The activity of ABT-773, a novel ketolide antibiotic, against clinical isolates of anaerobic bacteria was determined and compared to the activities of other antimicrobial agents. MICs at which 90% of isolates were inhibited (MIC90s) were ≤0.06 μg/ml for Actinomyces spp., Clostridium perfringens, Peptostreptococcus spp., Propionibacterium spp., and Porphyromonas spp. The MIC50s and MIC90s were ≤0.06 and >32 μg/ml, respectively, for Eubacterium spp., Lactobacillus spp., Clostridium difficile, and Clostridium ramosum. The MIC90 for Bilophila wadsworthia, Bacteroides ureolyticus, and Campylobacter gracilis was 1 μg/ml, and that for Prevotella bivia and other Prevotella spp. was 0.5 μg/ml. The MIC90 for Fusobacterium nucleatum was 8 μg/ml, and that for Fusobacterium mortiferum and Fusobacterium varium was >32 μg/ml. The MIC90s for the Bacteroides fragilis group were as follows: for B. fragilis, 8 μg/ml; for Bacteroides thetaiotaomicron, Bacteroides ovatus, Bacteroides distasonis, and Bacteroides uniformis, >32 μg/ml; and for Bacteroides vulgatus, 4 μg/ml. Telithromycin MICs for the B. fragilis group were usually 1 to 2 dilutions higher than ABT-773 MICs. For all strains, ABT-773 was more active than erythromycin by 4 or more dilutions, and for some strains this drug was more active than clindamycin. PMID:11120995

  16. Structural and Functional Characterization of a Novel Family GH115 4-O-Methyl-α-Glucuronidase with Specificity for Decorated Arabinogalactans.

    PubMed

    Aalbers, Friso; Turkenburg, Johan P; Davies, Gideon J; Dijkhuizen, Lubbert; Lammerts van Bueren, Alicia

    2015-12-04

    Glycoside hydrolases are clustered into families based on amino acid sequence similarities, and belonging to a particular family can infer biological activity of an enzyme. Family GH115 contains α-glucuronidases where several members have been shown to hydrolyze terminal α-1,2-linked glucuronic acid and 4-O-methylated glucuronic acid from the plant cell wall polysaccharide glucuronoxylan. Other GH115 enzymes show no activity on glucuronoxylan, and therefore, it has been proposed that family GH115 may be a poly-specific family. In this study, we reveal that a putative periplasmic GH115 from the human gut symbiont Bacteroides thetaiotaomicron, BtGH115A, hydrolyzes terminal 4-O-methyl-glucuronic acid residues from decorated arabinogalactan isolated from acacia tree. The three-dimensional structure of BtGH115A reveals that BtGH115A has the same domain architecture as the other structurally characterized member of this family, BoAgu115A; however the position of the C-terminal module is altered with respect to each individual enzyme. Phylogenetic analysis of GH115 amino sequences divides the family into distinct clades that may distinguish different substrate specificities. Finally, we show that BtGH115A α-glucuronidase activity is necessary for the sequential digestion of branched galactans from acacia gum by a galactan-β-1,3-galactosidase from family GH43; however, while B. thetaiotaomicron grows on larch wood arabinogalactan, the bacterium is not able to metabolize acacia gum arabinogalactan, suggesting that BtGH115A is involved in degradation of arabinogalactan fragments liberated by other microbial species in the gastrointestinal tract. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps.

    PubMed

    Zchori-Fein, E; Gottlieb, Y; Kelly, S E; Brown, J K; Wilson, J M; Karr, T L; Hunter, M S

    2001-10-23

    The symbiotic bacterium Wolbachia pipientis has been considered unique in its ability to cause multiple reproductive anomalies in its arthropod hosts. Here we report that an undescribed bacterium is vertically transmitted and associated with thelytokous parthenogenetic reproduction in Encarsia, a genus of parasitoid wasps. Although Wolbachia was found in only one of seven parthenogenetic Encarsia populations examined, the "Encarsia bacterium" (EB) was found in the other six. Among seven sexually reproducing populations screened, EB was present in one, and none harbored Wolbachia. Antibiotic treatment did not induce male production in Encarsia pergandiella but changed the oviposition behavior of females. Cured females accepted one host type at the same rate as control females but parasitized significantly fewer of the other host type. Phylogenetic analysis based on the 16S rDNA gene sequence places the EB in a unique clade within the Cytophaga-Flexibacter-Bacteroid group and shows EB is unrelated to the Proteobacteria, where Wolbachia and most other insect symbionts are found. These results imply evolution of the induction of parthenogenesis in a lineage other than Wolbachia. Importantly, these results also suggest that EB may modify the behavior of its wasp carrier in a way that enhances its transmission.

  18. Mode of Birth Influences Preterm Infant Intestinal Colonization with Bacteroides Over the Early Neonatal Period

    PubMed Central

    Gregory, Katherine E.; LaPlante, Rose D.; Shan, Gururaj; Kumar, Deepak Vijaya; Gregas, Matt

    2015-01-01

    Background Intestinal colonization during infancy is important to short and long term health outcomes. Bacteroides, an early member of the intestinal microbiome, are necessary for breaking down complex molecules within the intestine and function to assist the body’s immune system in fighting against potentially harmful pathogens. Little is known about the colonization pattern of Bacteroides in preterm infants during the early neonatal period. Purpose This study measured Bacteroides colonization during the early neonatal period in a population of preterm infants based on clinical factors including mode of birth, antibiotics, and nutrition. Methods Bacterial DNA was isolated from 144 fecal samples from 29 preterm infants and analyzed using quantitative real time polymerase chain reaction (PCR). Analyses included liner mixed models to determine which clinical factors affect Bacteroides colonization of the infant gut. Results We found that infants born via vaginal canal had a higher rate of increase in Bacteroides than infants born via Cesarean section (p<.001). We did not find significant associations between antibiotic administration and differences in nutritional exposures with Bacteroides colonization. Implications for Practice These findings highlight the significant influence of mode of birth on Bacteroides colonization. While mode of birth is not always modifiable, these study findings may help develop interventions for preterm infants born via Cesarean section aimed at overcoming delayed Bacteroides colonization. Implications for Research Greater study of the intestinal microbiome and the clinical factors relevant to the preterm infant is needed so that interventions may be developed and tested, resulting in optimal microbial and immune health. PMID:26551793

  19. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples.

    PubMed Central

    Wang, R F; Cao, W W; Cerniglia, C E

    1996-01-01

    PCR procedures based on 16S rRNA gene sequences specific for 12 anaerobic bacteria that predominate in the human intestinal tract were developed and used for quantitative detection of these species in human (adult and baby) feces and animal (rat, mouse, cat, dog, monkey, and rabbit) feces. Fusobacterium prausnitzii, Peptostreptococcus productus, and Clostridium clostridiiforme had high PCR titers (the maximum dilutions for positive PCR results ranged from 10(-3) to 10(-8)) in all of the human and animal fecal samples tested. Bacteroides thetaiotaomicron, Bacteroides vulgatus, and Eubacterium limosum also showed higher PCR titers (10(-2) to 10(-6)) in adult human feces. The other bacteria tested, including Escherichia coli, Bifidobacterium adolescentis, Bifidobacterium longum, Lactobacillus acidophilus, Eubacterium biforme, and Bacteroides distasonis, were either at low PCR titers (less than 10(-2)) or not detected by PCR. The reported PCR procedure including the fecal sample preparation method is simplified and rapid and eliminates the DNA isolation steps. PMID:8919784

  20. Evidence for free-living Bacteroides in Cladophora along the shores of the Great Lakes

    USGS Publications Warehouse

    Whitman, Richard L.; Byappanahalli, Muruleedhara; Spoljaric, Ashley; Przybyla-Kelly, Katarzyna; Shively, Dawn A.; Nevers, Meredith

    2014-01-01

    Bacteroides is assumed to be restricted to the alimentary canal of animals and humans and is considered to be non-viable in ambient environments. We hypothesized that Bacteroides could persist and replicate within beach-stranded Cladophora glomerata mats in southern Lake Michigan, USA. Mean Bacteroides concentration (per GenBac3 Taqman quantitative PCR assay) during summer 2012 at Jeorse Park Beach was 5.2 log calibrator cell equivalents (CCE) g-1 dry weight (dw), ranging from 3.7 to 6.7. We monitored a single beach-stranded mat for 3 wk; bacterial concentrations increased by 1.6 log CCE g-1 dw and correlated significantly with ambient temperature (p = 0.003). Clonal growth was evident, as observed by >99% nucleotide sequence similarity among clones. In in vitro studies, Bacteroides concentrations increased by 5.5 log CCE g-1 after 7 d (27°C) in fresh Cladophora collected from rocks. Partial sequencing of the 16S rRNA gene of 36 clones from the incubation experiment showed highly similar genotypes (≥97% sequence overlap). The closest enteric Bacteroides spp. from the National Center for Biotechnology Information database were only 87 to 91% similar. Genomic similarity, clonality, growth, and persistence collectively suggest that putative, free-living Bacteroides inhabit Cladophora mats of southern Lake Michigan. These findings may have important biological, medical, regulatory, microbial source tracking, and public health implications.

  1. Crystal Structures of Apparent Saccharide Sensors from Histidine Kinase Receptors Prevalent in a Human Gut Symbiont

    PubMed Central

    Zhang, Zhen; Liu, Qun; Hendrickson, Wayne A.

    2014-01-01

    The adult human gut presents a complicated ecosystem where host-bacterium symbiosis plays an important role. Bacteroides thetaiotaomicron is a predominant member of the gut microflora, providing the human digestive tract with a large number of glycolytic enzymes. Expression of many of these enzymes appears to be controlled by histidine kinase receptors that are fused into unusual hybrid two-component systems that share homologous periplasmic sensor domains. These sensor domains belong to the third most populated (HK3) family based on a previous bioinformatics analysis of predicted histidine kinase sensors. Here, we present crystal structures of two sensor domains representative of the HK3 family. Each sensor is folded into three domains: two seven-bladed β-propeller domains and one β-sandwich domain. Both sensors form dimers in crystals and one sensor appears to be physiologically relevant. The folding characteristics in the individual domains, the domain organization, and the oligomeric architecture are all unique to the HK3 sensors. The sequence analysis of the HK3 sensors indicates that these sensors are shared among other signaling molecules, implying a combinatorial molecular evolution. PMID:24995510

  2. Fine Structure of Bacteroids in Root Nodules of Vigna sinensis, Acacia longifolia, Viminaria juncea, and Lupinus angustifolius

    PubMed Central

    Dart, P. J.; Mercer, F. V.

    1966-01-01

    Dart, P. J. (University of Sydney, Sydney, Australia), and F. V. Mercer. Fine structure of bacteroids in root nodules of Vigna sinensis, Acacia longifolia, Viminaria juncea, and Lupinus angustifolius. J. Bacteriol. 91:1314–1319.—In nodules of Vigna sinensis, Acacia longifolia, and Viminaria juncea, membrane envelopes enclose groups of bacteroids. The bacteroids often contain inclusion granules and electron-dense bodies, expand little during development, and retain their rod form with a compact, central nucleoid area. The membrane envelope may persist around bacteroids after host cytoplasm breakdown. In nodules of Lupinus angustifolius, the membrane envelopes enclose only one or two bacteroids, which expand noticeably during development and change from their initial rod structure. Images PMID:5929757

  3. Transcriptomic dissection of Bradyrhizobium sp. strain ORS285 in symbiosis with Aeschynomene spp. inducing different bacteroid morphotypes with contrasted symbiotic efficiency.

    PubMed

    Lamouche, Florian; Gully, Djamel; Chaumeret, Anaïs; Nouwen, Nico; Verly, Camille; Pierre, Olivier; Sciallano, Coline; Fardoux, Joël; Jeudy, Christian; Szücs, Attila; Mondy, Samuel; Salon, Christophe; Nagy, István; Kereszt, Attila; Dessaux, Yves; Giraud, Eric; Mergaert, Peter; Alunni, Benoit

    2018-06-19

    To circumvent the paucity of nitrogen sources in the soil legume plants establish a symbiotic interaction with nitrogen-fixing soil bacteria called rhizobia. During symbiosis, the plants form root organs called nodules, where bacteria are housed intracellularly and become active nitrogen fixers known as bacteroids. Depending on their host plant, bacteroids can adopt different morphotypes, being either unmodified (U), elongated (E) or spherical (S). E- and S-type bacteroids undergo a terminal differentiation leading to irreversible morphological changes and DNA endoreduplication. Previous studies suggest that differentiated bacteroids display an increased symbiotic efficiency (E>U and S>U). In this study, we used a combination of Aeschynomene species inducing E- or S-type bacteroids in symbiosis with Bradyrhizobium sp. ORS285 to show that S-type bacteroids present a better symbiotic efficiency than E-type bacteroids. We performed a transcriptomic analysis on E- and S-type bacteroids formed by Aeschynomene afraspera and Aeschynomene indica nodules and identified the bacterial functions activated in bacteroids and specific to each bacteroid type. Extending the expression analysis in E- and S-type bacteroids in other Aeschynomene species by qRT-PCR on selected genes from the transcriptome analysis narrowed down the set of bacteroid morphotype-specific genes. Functional analysis of a selected subset of 31 bacteroid-induced or morphotype-specific genes revealed no symbiotic phenotypes in the mutants. This highlights the robustness of the symbiotic program but could also indicate that the bacterial response to the plant environment is partially anticipatory or even maladaptive. Our analysis confirms the correlation between differentiation and efficiency of the bacteroids and provides a framework for the identification of bacterial functions that affect the efficiency of bacteroids. This article is protected by copyright. All rights reserved. © 2018 Society for Applied

  4. Relative adherence of Bacteroides species and strains to Actinomyces viscosus on saliva-coated hydroxyapatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Ellen, R.P.

    1989-09-01

    The study was designed to compare the adherence of several Bacteroides species to A. viscosus. Using 3H, we labeled 24 laboratory strains, including 13 Bacteroides species and 11 fresh clinical isolates of three Bacteroides species. Their adherence to A. viscosus bound to a saliva-coated mineral surface was quantified by liquid scintillation. Adherence relative to a standard strain, B. gingivalis 2561, was compared. Among the lab bacteroides, those of B. gingivalis (eight strains) were the greatest binders (mean, 80.5 {plus minus} 12.4%). Strains of other lab bacteroides bound less well (mean, 33.4 {plus minus} 6.3%). The difference in means was statisticallymore » significant (p less than 0.01). The mean for B. gingivalis strains was also significantly greater than that for strains of B. intermedius (51.7 {plus minus} 6.2%). Attachment of B. gingivalis was saturable in experiments in which either input concentration or time was the independent variable, indicating that B. gingivalis cells do not accumulate in this vitro simulation of plaque formation by binding to each other. Subculture did not seem to affect the degree of binding.« less

  5. Lincomycins in the Treatment of Bacteroides Infections

    PubMed Central

    Tracy, Oonagh; Gordon, A. M.; Moran, F.; Love, W. C.; McKenzie, Peter

    1972-01-01

    Lincomycin, or the closely related derivative clindamycin, was used to treat six patients with bacteroides infection. In five of the six there was a rapid clinical response to the treatment. Lincomycin and clindamycin seem to be the antibiotics of choice for such infections. PMID:5008478

  6. Putative Porin of Bradyrhizobium sp. (Lupinus) Bacteroids Induced by Glyphosate▿

    PubMed Central

    de María, Nuria; Guevara, Ángeles; Serra, M. Teresa; García-Luque, Isabel; González-Sama, Alfonso; de Lacoba, Mario García; de Felipe, M. Rosario; Fernández-Pascual, Mercedes

    2007-01-01

    Application of glyphosate (N-[phosphonomethyl] glycine) to Bradyrhizobium sp. (Lupinus)-nodulated lupin plants caused modifications in the protein pattern of bacteroids. The most significant change was the presence of a 44-kDa polypeptide in bacteroids from plants treated with the higher doses of glyphosate employed (5 and 10 mM). The polypeptide has been characterized by the amino acid sequencing of its N terminus and the isolation and nucleic acid sequencing of its encoding gene. It is putatively encoded by a single gene, and the protein has been identified as a putative porin. Protein modeling revealed the existence of several domains sharing similarity to different porins, such as a transmembrane beta-barrel. The protein has been designated BLpp, for Bradyrhizobium sp. (Lupinus) putative porin, and would be the first porin described in Bradyrhizobium sp. (Lupinus). In addition, a putative conserved domain of porins has been identified which consists of 87 amino acids, located in the BLpp sequence 30 amino acids downstream of the N-terminal region. In bacteroids, mRNA of the BLpp gene shows a basal constitutive expression that increases under glyphosate treatment, and the expression of the gene is seemingly regulated at the transcriptional level. By contrast, in free-living bacteria glyphosate treatment leads to an inhibition of BLpp mRNA accumulation, indicating a different effect of glyphosate on BLpp gene expression in bacteroids and free-living bacteria. The possible role of BLpp in a metabolite interchange between Bradyrhizobium and lupin is discussed. PMID:17557843

  7. Extensive Mobilome-Driven Genome Diversification in Mouse Gut-Associated Bacteroides vulgatus mpk

    PubMed Central

    Lange, Anna; Beier, Sina; Steimle, Alex; Autenrieth, Ingo B.; Huson, Daniel H.; Frick, Julia-Stefanie

    2016-01-01

    Like many other Bacteroides species, Bacteroides vulgatus strain mpk, a mouse fecal isolate which was shown to promote intestinal homeostasis, utilizes a variety of mobile elements for genome evolution. Based on sequences collected by Pacific Biosciences SMRT sequencing technology, we discuss the challenges of assembling and studying a bacterial genome of high plasticity. Additionally, we conducted comparative genomics comparing this commensal strain with the B. vulgatus type strain ATCC 8482 as well as multiple other Bacteroides and Parabacteroides strains to reveal the most important differences and identify the unique features of B. vulgatus mpk. The genome of B. vulgatus mpk harbors a large and diverse set of mobile element proteins compared with other sequenced Bacteroides strains. We found evidence of a number of different horizontal gene transfer events and a genome landscape that has been extensively altered by different mobilization events. A CRISPR/Cas system could be identified that provides a possible mechanism for preventing the integration of invading external DNA. We propose that the high genome plasticity and the introduced genome instabilities of B. vulgatus mpk arising from the various mobilization events might play an important role not only in its adaptation to the challenging intestinal environment in general, but also in its ability to interact with the gut microbiota. PMID:27071651

  8. Complete Genome Sequence of Bacteroides ovatus V975

    PubMed Central

    Goesmann, Alexander; Carding, Simon R.

    2016-01-01

    The complete genome sequence of Bacteroides ovatus V975 was determined. The genome consists of a single circular chromosome of 6,475,296 bp containing five rRNA operons, 68 tRNA genes, and 4,959 coding genes. PMID:27908995

  9. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon.

    PubMed Central

    Salyers, A A; Vercellotti, J R; West, S E; Wilkins, T D

    1977-01-01

    Ten Bacteroides species found in the human colon were surveyed for their ability to ferment mucins and plant polysaccharides ("dietary fiber"). A number of strains fermented mucopolysaccharides (heparin, hyaluronate, and chondroitin sulfate) and ovomucoid. Only 3 of the 188 strains tested fermented beef submaxillary mucin, and none fermented porcine gastric mucin. Many of the Bacteroides strains tested were also able to ferment a variety of plant polysaccharides, including amylose, dextran, pectin, gum tragacanth, gum guar, larch arabinogalactan, alginate, and laminarin. Some plant polysaccharides such as gum arabic, gum karaya, gum ghatti and fucoidan, were not utilized by any of the strains tested. The ability to utilize mucins and plant polysaccharides varied considerably among the Bacteroides species tested. PMID:848954

  10. Extensive Mobilome-Driven Genome Diversification in Mouse Gut-Associated Bacteroides vulgatus mpk.

    PubMed

    Lange, Anna; Beier, Sina; Steimle, Alex; Autenrieth, Ingo B; Huson, Daniel H; Frick, Julia-Stefanie

    2016-04-25

    Like many other Bacteroides species, Bacteroides vulgatus strain mpk, a mouse fecal isolate which was shown to promote intestinal homeostasis, utilizes a variety of mobile elements for genome evolution. Based on sequences collected by Pacific Biosciences SMRT sequencing technology, we discuss the challenges of assembling and studying a bacterial genome of high plasticity. Additionally, we conducted comparative genomics comparing this commensal strain with the B. vulgatus type strain ATCC 8482 as well as multiple other Bacteroides and Parabacteroides strains to reveal the most important differences and identify the unique features of B. vulgatus mpk. The genome of B. vulgatus mpk harbors a large and diverse set of mobile element proteins compared with other sequenced Bacteroides strains. We found evidence of a number of different horizontal gene transfer events and a genome landscape that has been extensively altered by different mobilization events. A CRISPR/Cas system could be identified that provides a possible mechanism for preventing the integration of invading external DNA. We propose that the high genome plasticity and the introduced genome instabilities of B. vulgatus mpk arising from the various mobilization events might play an important role not only in its adaptation to the challenging intestinal environment in general, but also in its ability to interact with the gut microbiota. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. In vitro fermentation of alginate and its derivatives by human gut microbiota.

    PubMed

    Li, Miaomiao; Li, Guangsheng; Shang, Qingsen; Chen, Xiuxia; Liu, Wei; Pi, Xiong'e; Zhu, Liying; Yin, Yeshi; Yu, Guangli; Wang, Xin

    2016-06-01

    Alginate (Alg) has a long history as a food ingredient in East Asia. However, the human gut microbes responsible for the degradation of alginate and its derivatives have not been fully understood yet. Here, we report that alginate and the low molecular polymer derivatives of mannuronic acid oligosaccharides (MO) and guluronic acid oligosaccharides (GO) can be completely degraded and utilized at various rates by fecal microbiota obtained from six Chinese individuals. However, the derivative of propylene glycol alginate sodium sulfate (PSS) was not hydrolyzed. The bacteria having a pronounced ability to degrade Alg, MO and GO were isolated from human fecal samples and were identified as Bacteroides ovatus, Bacteroides xylanisolvens, and Bacteroides thetaiotaomicron. Alg, MO and GO can increase the production level of short chain fatty acids (SCFA), but GO generates the highest level of SCFA. Our data suggest that alginate and its derivatives could be degraded by specific bacteria in the human gut, providing the basis for the impacts of alginate and its derivates as special food additives on human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Complete Genome Sequence of Bacteroides ovatus V975.

    PubMed

    Wegmann, Udo; Goesmann, Alexander; Carding, Simon R

    2016-12-01

    The complete genome sequence of Bacteroides ovatus V975 was determined. The genome consists of a single circular chromosome of 6,475,296 bp containing five rRNA operons, 68 tRNA genes, and 4,959 coding genes. Copyright © 2016 Wegmann et al.

  13. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Changsoo; Tesar, Christine; Li, Xiaoqing

    2015-10-04

    Carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specific DNA operator. BtAraRmore » forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR-DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.« less

  14. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria

    DOE PAGES

    Chang, Changsoo; Tesar, Christine; Li, Xiaoqing; ...

    2015-10-04

    We report that carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specificmore » DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR–DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Furthermore, our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.« less

  15. Products of Dark CO2 Fixation in Pea Root Nodules Support Bacteroid Metabolism 1

    PubMed Central

    Rosendahl, Lis; Vance, Carroll P.; Pedersen, Walther B.

    1990-01-01

    Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix−) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate

  16. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota.

    PubMed

    Hehemann, Jan-Hendrik; Correc, Gaëlle; Barbeyron, Tristan; Helbert, William; Czjzek, Mirjam; Michel, Gurvan

    2010-04-08

    Gut microbes supply the human body with energy from dietary polysaccharides through carbohydrate active enzymes, or CAZymes, which are absent in the human genome. These enzymes target polysaccharides from terrestrial plants that dominated diet throughout human evolution. The array of CAZymes in gut microbes is highly diverse, exemplified by the human gut symbiont Bacteroides thetaiotaomicron, which contains 261 glycoside hydrolases and polysaccharide lyases, as well as 208 homologues of susC and susD-genes coding for two outer membrane proteins involved in starch utilization. A fundamental question that, to our knowledge, has yet to be addressed is how this diversity evolved by acquiring new genes from microbes living outside the gut. Here we characterize the first porphyranases from a member of the marine Bacteroidetes, Zobellia galactanivorans, active on the sulphated polysaccharide porphyran from marine red algae of the genus Porphyra. Furthermore, we show that genes coding for these porphyranases, agarases and associated proteins have been transferred to the gut bacterium Bacteroides plebeius isolated from Japanese individuals. Our comparative gut metagenome analyses show that porphyranases and agarases are frequent in the Japanese population and that they are absent in metagenome data from North American individuals. Seaweeds make an important contribution to the daily diet in Japan (14.2 g per person per day), and Porphyra spp. (nori) is the most important nutritional seaweed, traditionally used to prepare sushi. This indicates that seaweeds with associated marine bacteria may have been the route by which these novel CAZymes were acquired in human gut bacteria, and that contact with non-sterile food may be a general factor in CAZyme diversity in human gut microbes.

  17. Complete genome sequence of Bacteroides salanitronis type strain (BL78T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gronow, Sabine; Held, Brittany; Lucas, Susan

    2011-01-01

    Bacteroides salanitronis Lan et al. 2006 is a species of the genus Bacteroides, which belongs to the family Bacteroidaceae. The species is of interest because it was isolated from the gut of a chicken and the growing awareness that the anaerobic microflora of the cecum is of benefit for the host and may impact poultry farming. The 4,308,663 bp long genome consists of a 4.24 Mbp chromosome and three plasmids (6 kbp, 19 kbp, 40 kbp) containing 3,737 protein-coding and 101 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. Marsh soils as potential sinks for Bacteroides fecal indicator bacteria, Waccamaw National Wildlife Refuge, Georgetown, SC, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Johnson, Heather E.; Duris, Joseph W.; Krauss, Ken W.

    2014-01-01

    A soil core collected in a tidal freshwater marsh in the Waccamaw National Wildlife Refuge (Georgetown, SC) exuded a particularly strong odor of cow manure upon extrusion. In order to test for manure and determine its provenance, we carried out microbial source tracking using DNA markers for Bacteroides, a noncoliform, anaerobic bacterial group that represents a broad group of the fecal population. Three core sections from 0-3 cm, 9-12 cm and 30-33 were analyzed for the presence of Bacteroides. The ages of core sediments were estimated using 210Pb and 137Cs dating. All three core sections tested positive for Bacteroides DNA markers related to cow or deer feces. Because cow manure is stockpiled, used as fertilizer, and a source of direct contamination in the Great Pee Dee River/Winyah Bay watershed, it is very likely the source of the Bacteroides that was deposited on the marsh. The mid-points of the core sections were dated as follows: 0-3 cm: 2009; 9-12 cm: 1999, and 30-33 cm: 1961. The presence of Bacteroides at different depths/ages in the soil profile indicates that soils in tidal freshwater marshes are, at the least, capable of being short-term sinks for Bacteroides and, may have the potential to be long-term sinks of stable, naturalized populations.

  19. 5-Nitroimidazole-derived Schiff bases and their copper(II) complexes exhibit potent antimicrobial activity against pathogenic anaerobic bacteria.

    PubMed

    Oliveira, Alexandre A; Oliveira, Ana P A; Franco, Lucas L; Ferencs, Micael O; Ferreira, João F G; Bachi, Sofia M P S; Speziali, Nivaldo L; Farias, Luiz M; Magalhães, Paula P; Beraldo, Heloisa

    2018-05-07

    In the present work a family of novel secnidazole-derived Schiff base compounds and their copper(II) complexes were synthesized. The antimicrobial activities of the compounds were evaluated against clinically important anaerobic bacterial strains. The compounds exhibited in vitro antibacterial activity against Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides ovatus, Parabacteroides distasonis and Fusubacterium nucleatum pathogenic anaerobic bacteria. Upon coordination to copper(II) the antibacterial activity significantly increased in several cases. Some derivatives were even more active than the antimicrobial drugs secnidazole and metronidazole. Therefore, the compounds under study are suitable for in vivo evaluation and the microorganisms should be classified as susceptible to them. Electrochemical studies on the reduction of the nitro group revealed that the compounds show comparable reduction potentials, which are in the same range of the bio-reducible drugs secnidazole and benznidazole. The nitro group reduction potential is more favorable for the copper(II) complexes than for the starting ligands. Hence, the antimicrobial activities of the compounds under study might in part be related to intracellular bio-reduction activation. Considering the increasing resistance rates of anaerobic bacteria against a wide range of antimicrobial drugs, the present work constitutes an important contribution to the development of new antibacterial drug candidates.

  20. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host.

    PubMed

    Sonnenburg, Justin L; Chen, Christina T L; Gordon, Jeffrey I

    2006-11-01

    Probiotics are deliberately ingested preparations of live bacterial species that confer health benefits on the host. Many of these species are associated with the fermentation of dairy products. Despite their increasing use, the molecular details of the impact of various probiotic preparations on resident members of the gut microbiota and the host are generally lacking. To address this issue, we colonized germ-free mice with Bacteroides thetaiotaomicron, a prominent component of the adult human gut microbiota, and Bifidobacterium longum, a minor member but a commonly used probiotic. Simultaneous whole genome transcriptional profiling of both bacterial species in their gut habitat and of the intestinal epithelium, combined with mass-spectrometric analysis of habitat-associated carbohydrates, revealed that the presence of B. longum elicits an expansion in the diversity of polysaccharides targeted for degradation by B. thetaiotaomicron (e.g., mannose- and xylose-containing glycans), and induces host genes involved in innate immunity. Although the overall transcriptome expressed by B. thetaiotaomicron when it encounters B. longum in the cecum is dependent upon the genetic background of the mouse (as assessed by a mixed analysis of variance [ANOVA] model of co-colonization experiments performed in NMRI and C57BL/6J animals), B. thetaiotaomicron's expanded capacity to utilize polysaccharides occurs independently of host genotype, and is also observed with a fermented dairy product-associated strain, Lactobacillus casei. This gnotobiotic mouse model provides a controlled case study of how a resident symbiont and a probiotic species adapt their substrate utilization in response to one another, and illustrates both the generality and specificity of the relationship between a host, a component of its microbiota, and intentionally consumed microbial species.

  1. Suppression of bactericidal activity of human polymorphonuclear leukocytes by Bacteroides gingivalis.

    PubMed Central

    Yoneda, M; Maeda, K; Aono, M

    1990-01-01

    The direct effects of the culture supernatant of oral microorganisms on the bactericidal activity of human polymorphonuclear leukocytes (PMNs) were investigated. The bactericidal activity of PMNs, which were preincubated with the supernatant of Bacteroides gingivalis, Bacteroides intermedius, Bacteroides melaninogenicus or phosphate-buffered saline, was examined by counting the surviving bacteria. B. gingivalis-treated PMNs were found to have a diminished ability for killing bacteria in the presence or absence of serum. The chemiluminescence response of PMNs, which were preincubated with the culture supernatant of B. gingivalis, was strikingly reduced compared with that of PMNs preincubated with phosphate-buffered saline or other bacterial culture supernatants. The production of superoxide anion (O2-) by PMNs stimulated with either formyl-methionyl-leucyl-phenylalanine or phorbol myristate acetate was reduced in both cases after the PMNs were preincubated with the culture supernatant of B. gingivalis. However, it was observed that there was more reduction in superoxide anion (O2-) production stimulated with formyl-methionyl-leucyl-phenylalanine compared with that stimulated with phorbol myristate acetate. These results suggest that B. gingivalis releases a factor which interferes with the bactericidal activity of PMNs by modulating the generation of reactive oxygen species. These suppressive effects on bactericidal activity may be important in the pathogenesis of this microorganism. PMID:2153632

  2. Unusual sub-genus associations of faecal Prevotella and Bacteroides with specific dietary patterns.

    PubMed

    De Filippis, Francesca; Pellegrini, Nicoletta; Laghi, Luca; Gobbetti, Marco; Ercolini, Danilo

    2016-10-21

    Diet has a recognized effect in shaping gut microbiota. Many studies link an increase in Prevotella to high-fibre diet, while Bacteroides abundance is usually associated with the consumption of animal fat and protein-rich diets. Nevertheless, closely related species and strains may harbour different genetic pools; therefore, further studies should aim to understand whether species of the same genus are consistently linked to dietary patterns or equally responsive to diet variations. Here, we used oligotyping of 16S rRNA gene sequencing data to exploit the diversity within Prevotella and Bacteroides genera in faecal samples of omnivore and non-omnivore subjects from a previously studied cohort. A great heterogeneity was found in oligotype composition. Nevertheless, different oligotypes within the same genus showed distinctive correlation patterns with dietary components and metabolome. We found that some Prevotella oligotypes are significantly associated with the plant-based diet but some are associated with animal-based nutrients, and the same applies to Bacteroides. Therefore, an indiscriminate association of Bacteroidetes genera with specific dietary patterns may lead to an oversimplified vision that does not take into account sub-genus diversity and the different possible responses to dietary components. We demonstrated that Prevotella and Bacteroides oligotypes show distinctive correlation patterns with dietary components and metabolome. These results substantiate a current oversimplification of diet-dependent microbe-host associations and highlighted that sub-genus differences must be taken into account when planning gut microbiota modulation for health benefits.

  3. In Vitro Evaluation of the Activity of Imipenem-Relebactam against 451 Recent Clinical Isolates of Bacteroides Group and Related Species

    PubMed Central

    Jacobus, Nilda V.; McDermott, Laura A.

    2016-01-01

    We evaluated the in vitro activity of imipenem-relebactam (imipenem-MK7655) against 451 recent clinical isolates within the Bacteroides group and related species. Relebactam did not enhance or inhibit the activity of imipenem against Bacteroides fragilis or other Bacteroides species. No synergistic or antagonistic effect was observed. The MICs of imipenem-relebactam were equal to or within one dilution of the MICs of these isolates to imipenem. PMID:27480858

  4. The evolution of cooperation within the gut microbiota.

    PubMed

    Rakoff-Nahoum, Seth; Foster, Kevin R; Comstock, Laurie E

    2016-05-12

    Cooperative phenotypes are considered central to the functioning of microbial communities in many contexts, including communication via quorum sensing, biofilm formation, antibiotic resistance, and pathogenesis. The human intestine houses a dense and diverse microbial community critical to health, yet we know little about cooperation within this important ecosystem. Here we test experimentally for evolved cooperation within the Bacteroidales, the dominant Gram-negative bacteria of the human intestine. We show that during growth on certain dietary polysaccharides, the model member Bacteroides thetaiotaomicron exhibits only limited cooperation. Although this organism digests these polysaccharides extracellularly, mutants lacking this ability are outcompeted. In contrast, we discovered a dedicated cross-feeding enzyme system in the prominent gut symbiont Bacteroides ovatus, which digests polysaccharide at a cost to itself but at a benefit to another species. Using in vitro systems and gnotobiotic mouse colonization models, we find that extracellular digestion of inulin increases the fitness of B. ovatus owing to reciprocal benefits when it feeds other gut species such as Bacteroides vulgatus. This is a rare example of naturally-evolved cooperation between microbial species. Our study reveals both the complexity and importance of cooperative phenotypes within the mammalian intestinal microbiota.

  5. Induction of vascular endothelial growth factor expression in human pulp fibroblasts stimulated with black-pigmented Bacteroides.

    PubMed

    Yang, L-C; Tsai, C-H; Huang, F-M; Su, Y-F; Lai, C-C; Liu, C-M; Chang, Y-C

    2004-09-01

    To investigate the effect of black-pigmented Bacteroides on the expression of vascular endothelial growth factor (VEGF) gene in human pulp fibroblasts. The supernatants of Porphyromonas endodontalis, Porphyromonas gingivalis and Prevotella intermedia were used to evaluate VEGF gene expression in human pulp fibroblasts. The levels of mRNAs were measured by the quantitative reverse-transcriptase polymerase chain reaction analysis. Black-pigmented Bacteroides induced significantly high levels of VEGF mRNA gene expression in human pulp fibroblasts (P < 0.05). In addition, the expression of VEGF depended on the bacteria tested. Black-pigmented Bacteroides may be involved in developing pulpal disease through the stimulation of VEGF production that would lead to the expansion of the vascular network coincident to progression of the inflammation.

  6. Rapid QPCR-based assay for fecal Bacteroides spp. as a tool for assessing fecal contamination in recreational waters.

    PubMed

    Converse, Reagan R; Blackwood, A Denene; Kirs, Marek; Griffith, John F; Noble, Rachel T

    2009-11-01

    Concentrations of fecal indicator bacteria (FIB; e.g. Escherichia coli, and Enterococcus sp.) can only be used in limited ways for determining the source of fecal contamination in recreational waters because they cannot distinguish human from non-human fecal contamination. Several Bacteroides spp. have been suggested as potential alternative indicators. We have developed a rapid, culture-independent method for quantifying fecal Bacteroides spp. using quantitative PCR (QPCR) targeting the 16S rRNA gene. The assay specifically targets and quantifies the most common human Bacteroides spp. The details of the method are presented, including analyses of a wide range of fecal samples from different organisms. Specificity and performance of the QPCR assay were also tested via a laboratory experiment where human sewage and gull guano were inoculated into a range of environmental water samples. Concentrations of fecal Bacteroides spp., total Enterococcus sp., Enterococcus faecium, Enterococcus faecalis, and Enterococcus casseliflavus were measured using QPCR, and total Enterococcus sp. and E. coli were quantified by membrane filtration (MF). Samples spiked with gull guano were highly concentrated with total Enterococcus sp., E. coli, E. faecalis, and E. casseliflavus, demonstrating that these indicators are prominent in animal feces. On the other hand, fecal Bacteroides spp. concentrations were high in samples containing sewage and were relatively low in samples spiked with gull guano. Sensitivity and specificity results suggest that the rapid fecal Bacteroides spp. QPCR assay may be a useful tool to effectively predict the presence and concentration of human-specific fecal pollution.

  7. Differential Decay of Human Faecal Bacteroides in Marine and Freshwater

    EPA Science Inventory

    Gene sequences from Bacteroides and relatives are being considered for the enumeration of aquatic fecal contamination and estimation of public health risk. To interpret these data, it is necessary to understand the decay of molecular and cultivated indicators and pathogens in en...

  8. Isolation and characterization of Bacteroides host strain HB-73 used to detect sewage specific phages in Hawaii.

    PubMed

    Vijayavel, Kannappan; Fujioka, Roger; Ebdon, James; Taylor, Huw

    2010-06-01

    Previous studies have shown that Escherichia coli and enterococci are unreliable indicators of fecal contamination in Hawaii because of their ability to multiply in environmental soils. In this study, the method of detecting Bacteroides phages as specific markers of sewage contamination in Hawaii's recreational waters was evaluated because these sewage specific phages cannot multiply under environmental conditions. Bacteroides hosts (GB-124, GA-17), were recovered from sewage samples in Europe and were reported to be effective in detecting phages from sewage samples obtained in certain geographical areas. However, GB-124 and GA-17 hosts were ineffective in detecting phages from sewage samples obtained in Hawaii. Bacteroides host HB-73 was isolated from a sewage sample in Hawaii, confirmed as a Bacteroides sp. and shown to recover phages from multiple sources of sewage produced in Hawaii at high concentrations (5.2-7.3 x 10(5) PFU/100 mL). These Bacteroides phages were considered as potential markers of sewage because they also survived for three days in fresh stream water and two days in marine water. Water samples from Hawaii's coastal swimming beaches and harbors, which were known to be contaminated with discharges from streams, were shown to contain moderate (20-187 CFU/100 mL) to elevated (173-816 CFU/100 mL) concentrations of enterococci. These same samples contained undetectable levels (<10 PFU/100 mL) of F+ coliphage and Bacteroides phages and provided evidence to suggest that these enterococci may not necessarily be associated with the presence of raw sewage. These results support previous conclusions that discharges from streams are the major sources of enterococci in coastal waters of Hawaii and the most likely source of these enterococci is from environmental soil rather than from sewage. 2010 Elsevier Ltd. All rights reserved.

  9. Bacteroides (Parabacteroides) distasonis splenic abscess in a sickle cell patient.

    PubMed

    Al-Tawfiq, Jaffar A

    2008-01-01

    Splenic abscess is not an uncommon complication of patients with sickle-cell disease. Here we describe an 18 year-old boy with sickle cell disease and left upper quadrant abdominal pain. Computerized axial tomography revealed left sided free flowing pleural effusion and splenomegaly with liquefaction and possible gas formation. The splenic fluid grew an unusual organism known as Bacteroides distasonis. The patient received antimicrobial therapy and underwent a splenectomy with full recovery. The spleen was cystically infarcted and measured 22 x 16 x 5 cm. The capsule was thickened and covered by fibrinous exudate. Histopathologic examination of the spleen showed complete necrosis with reparative fibrosis. This case presents an unusual cause of splenic abscess due to Bacteroides distasonis with a subacute to chronic course. The presence of fever and left sided pleuritic chest pain in patients with sickle cell disease should raise the suspicion of splenic abscess.

  10. In Vitro Evaluation of the Activity of Imipenem-Relebactam against 451 Recent Clinical Isolates of Bacteroides Group and Related Species.

    PubMed

    Snydman, David R; Jacobus, Nilda V; McDermott, Laura A

    2016-10-01

    We evaluated the in vitro activity of imipenem-relebactam (imipenem-MK7655) against 451 recent clinical isolates within the Bacteroides group and related species. Relebactam did not enhance or inhibit the activity of imipenem against Bacteroides fragilis or other Bacteroides species. No synergistic or antagonistic effect was observed. The MICs of imipenem-relebactam were equal to or within one dilution of the MICs of these isolates to imipenem. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Discovery of a Novel Periodontal Disease-Associated Bacterium.

    PubMed

    Torres, Pedro J; Thompson, John; McLean, Jeffrey S; Kelley, Scott T; Edlund, Anna

    2018-06-02

    One of the world's most common infectious disease, periodontitis (PD), derives from largely uncharacterized communities of oral bacteria growing as biofilms (a.k.a. plaque) on teeth and gum surfaces in periodontal pockets. Bacteria associated with periodontal disease trigger inflammatory responses in immune cells, which in later stages of the disease cause loss of both soft and hard tissue structures supporting teeth. Thus far, only a handful of bacteria have been characterized as infectious agents of PD. Although deep sequencing technologies, such as whole community shotgun sequencing have the potential to capture a detailed picture of highly complex bacterial communities in any given environment, we still lack major reference genomes for the oral microbiome associated with PD and other diseases. In recent work, by using a combination of supervised machine learning and genome assembly, we identified a genome from a novel member of the Bacteroidetes phylum in periodontal samples. Here, by applying a comparative metagenomics read-classification approach, including 272 metagenomes from various human body sites, and our previously assembled draft genome of the uncultivated Candidatus Bacteroides periocalifornicus (CBP) bacterium, we show CBP's ubiquitous distribution in dental plaque, as well as its strong association with the well-known pathogenic "red complex" that resides in deep periodontal pockets.

  12. The relationship between nitrogen fixation and the production of HD from D2 by cell-free extracts of soya-bean nodule bacteroids

    PubMed Central

    Turner, G. L.; Bergersen, F. J.

    1969-01-01

    1. Cell-free extracts prepared from soya-bean nodule bacteroids produced HD from D2 in the presence of dithionite, an ATP-generating system and nitrogen. 2. Crude extracts of bacteroids or of Azotobacter vinelandii showed some background D2 exchange when any one of these was omitted. 3. Partial purification of bacteroid extracts diminished this background activity and gave increased D2 exchange and nitrogen fixation. 4. Although increasing pN2 stimulated both reactions, the apparent Km (N2) for nitrogen fixation was much higher than the apparent Km (N2) for D2 exchange when partially purified bacteroid extracts were used. 5. Carbon monoxide was a competitive inhibitor of nitrogen fixation by partially purified bacteroid extracts, but D2 exchange was inhibited in a non-competitive fashion. 6. These results are discussed in relation to the possible existence of enzyme-bound intermediates of nitrogen fixation. PMID:5353527

  13. Single Upconversion Nanoparticle-Bacterium Cotrapping for Single-Bacterium Labeling and Analysis.

    PubMed

    Xin, Hongbao; Li, Yuchao; Xu, Dekang; Zhang, Yueli; Chen, Chia-Hung; Li, Baojun

    2017-04-01

    Detecting and analyzing pathogenic bacteria in an effective and reliable manner is crucial for the diagnosis of acute bacterial infection and initial antibiotic therapy. However, the precise labeling and analysis of bacteria at the single-bacterium level are a technical challenge but very important to reveal important details about the heterogeneity of cells and responds to environment. This study demonstrates an optical strategy for single-bacterium labeling and analysis by the cotrapping of single upconversion nanoparticles (UCNPs) and bacteria together. A single UCNP with an average size of ≈120 nm is first optically trapped. Both ends of a single bacterium are then trapped and labeled with single UCNPs emitting green light. The labeled bacterium can be flexibly moved to designated locations for further analysis. Signals from bacteria of different sizes are detected in real time for single-bacterium analysis. This cotrapping method provides a new approach for single-pathogenic-bacterium labeling, detection, and real-time analysis at the single-particle and single-bacterium level. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Carriers in electron transport from molecular hydrogen to oxygen in Rhizobium japonicum bacteroids.

    PubMed Central

    Eisbrenner, G; Evans, H J

    1982-01-01

    An investigation has been conducted to identify electron transport carriers that participate in the oxidation of H2 by H2 uptake-positive strains of Rhizobium japonicum bacteroids. We have observed that the reduced form of dibromothymoquinone at a concentration of 0.2 mM strongly inhibited H2 uptake, endogenous respiration, and C2H2 reduction by bacteroid suspensions. Reduced dibromothymoquinone, however, failed to inhibit the transfer of electrons from H2 to methylene blue under anaerobic conditions, indicating that the hydrogenase per se is insensitive to this inhibitor. Metronidazole, at 1 mM, affected rates of H2 uptake and endogenous respiration only slightly, but strongly inhibited C2H2 reduction. Evidence for H2-dependent cytochrome reduction in an H2 uptake-positive strain of R. japonicum bacteroids is presented. In kinetic studies, the rates of reduction of the type b and c cytochromes in the presence of H2 were shown to be severalfold higher than the rates due to endogenous respiration alone. With hydrogenase-deficient mutants of R. japonicum, no measurable effect of H2 on cytochrome reduction was observed. Our results indicate that ubiquinone and cytochromes of types b and c are involved in the oxyhydrogen reaction in R. japonicum. PMID:6277845

  15. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota.

    PubMed

    Chen, Tingting; Long, Wenmin; Zhang, Chenhong; Liu, Shuang; Zhao, Liping; Hamaker, Bruce R

    2017-06-01

    The gut microbiota of individuals are dominated by different fiber-utilizing bacteria, which ferment dietary fiber into short chain fatty acids (SCFAs) known to be important for human health. Here, we show that the dominance of Prevotella versus Bacteroides in fecal innocula, identified into two different enterotypes, differentially impacts in vitro fermentation profiles of SCFAs from fibers with different chemical structures. In a microbiome of the Prevotella enterotype, fructooligosaccharides, and sorghum and corn arabinoxylans significantly promoted one single Prevotella OTU with equally high production of total SCFAs with propionate as the major product. Conversely, in the Bacteroides-dominated microbiota, the three fibers enriched different OTUs leading to different levels and ratios of SCFAs. This is the first report showing how individual differences in two enterotypes cause distinctly different responses to dietary fiber. Microbiota dominated by different fiber-utilizing bacteria may impact host health by way of producing different amounts and profiles of SCFAs from the same carbohydrate substrates.

  16. A new chromogenic medium for isolation of Bacteroides fragilis suitable for screening for strains with antimicrobial resistance.

    PubMed

    Tierney, Daniel; Copsey, Sarah D; Morris, Trefor; Perry, John D

    2016-06-01

    There have been an increasing number of reports describing the acquisition of antimicrobial resistance by Bacteroides fragilis including the occurrence of strains with resistance to multiple antimicrobials that are relied upon for treatment of infections. The aim of this study was to design a chromogenic selective medium for isolation of B. fragilis that could be adapted for specific isolation of antimicrobial-resistant strains. Bacteroides chromogenic agar (BCA) was the result of this endeavour and allowed growth of Bacteroides spp. as black colonies and the efficient inhibition of almost all other genera tested. The medium also allowed some differentiation of B. fragilis from other members of the B. fragilis group. When compared with an adaptation of Bacteroides bile-esculin agar (BBE) for the isolation of B. fragilis from 100 stool samples, 30 isolates of B. fragilis were recovered on BCA compared with 19 isolates recovered on BBE (P = 0.022). When supplemented with meropenem (4 μg/ml) or metronidazole (2 μg/ml), BCA could be used to select for the growth of B. fragilis isolates with resistance to these agents. We conclude that BCA is a useful research tool for surveillance studies to assess the prevalence of B. fragilis and, in particular, the occurrence of antimicrobial-resistant strains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Comparison of bacteroides-prevotella 16S rRNA genetic markers for fecal samples from different animal species.

    PubMed

    Fogarty, Lisa R; Voytek, Mary A

    2005-10-01

    To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment.

  18. Comparison of Bacteroides-Prevotella 16S rRNA Genetic Markers for Fecal Samples from Different Animal Species

    PubMed Central

    Fogarty, Lisa R.; Voytek, Mary A.

    2005-01-01

    To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment. PMID:16204514

  19. Comparison of Bacteroides-Prevotella 16S rRNA genetic markers for fecal samples from different animal species

    USGS Publications Warehouse

    Fogarty, L.R.; Voytek, M.A.

    2005-01-01

    To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment.

  20. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla

    PubMed Central

    Mahowald, Michael A.; Rey, Federico E.; Seedorf, Henning; Turnbaugh, Peter J.; Fulton, Robert S.; Wollam, Aye; Shah, Neha; Wang, Chunyan; Magrini, Vincent; Wilson, Richard K.; Cantarel, Brandi L.; Coutinho, Pedro M.; Henrissat, Bernard; Crock, Lara W.; Russell, Alison; Verberkmoes, Nathan C.; Hettich, Robert L.; Gordon, Jeffrey I.

    2009-01-01

    The adult human distal gut microbial community is typically dominated by 2 bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here, we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from Eubacterium rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the Firmicutes possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole-genome transcriptional profiling, high-resolution proteomic analysis, and biochemical assays of microbial–microbial and microbial–host interactions. B. thetaiotaomicron adapts to E. rectale by up-regulating expression of a variety of polysaccharide utilization loci encoding numerous glycoside hydrolases, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is used by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of its major bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability. PMID:19321416

  1. CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome.

    PubMed

    Tajkarimi, Mehrdad; Wexler, Hannah M

    2017-01-01

    Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from benign resident of the gut microbiome to virulent pathogen are not well understood, but a combination of horizontal gene transfer (HGT) of virulence genes and differential transcription of endogenous genes are clearly involved. The CRISPR-Cas system is a multi-functional system described in prokaryotes that may be involved in control both of HGT and of gene regulation. Results: Clustered regularly interspaced short palindromic repeats (CRISPR) elements in all strains of B. fragilis ( n = 109) with publically available genomes were identified. Three different CRISPR-Cas types, corresponding most closely to Type IB, Type IIIB, and Type IIC, were identified. Thirty-five strains had two CRISPR-Cas types, and three strains included all three CRISPR-Cas types in their respective genomes. The cas1 gene in the Type IIIB system encoded a reverse-transcriptase/Cas1 fusion protein rarely found in prokaryotes. We identified a short CRISPR (3 DR) with no associated cas genes present in most of the isolates; these CRISPRs were found immediately upstream of a hipA/hipB operon and we speculate that this element may be involved in regulation of this operon related to formation of persister cells during antimicrobial exposure. Also, blood isolates of B. fragilis did not have Type IIC CRISPR-Cas systems and had atypical Type IIIB CRISPR-Cas systems that were lacking adjacent cas genes. Conclusions: This is the first systematic report of CRISPR-Cas systems in a wide range of B. fragilis strains

  2. CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome

    PubMed Central

    Tajkarimi, Mehrdad; Wexler, Hannah M.

    2017-01-01

    Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from benign resident of the gut microbiome to virulent pathogen are not well understood, but a combination of horizontal gene transfer (HGT) of virulence genes and differential transcription of endogenous genes are clearly involved. The CRISPR-Cas system is a multi-functional system described in prokaryotes that may be involved in control both of HGT and of gene regulation. Results: Clustered regularly interspaced short palindromic repeats (CRISPR) elements in all strains of B. fragilis (n = 109) with publically available genomes were identified. Three different CRISPR-Cas types, corresponding most closely to Type IB, Type IIIB, and Type IIC, were identified. Thirty-five strains had two CRISPR-Cas types, and three strains included all three CRISPR-Cas types in their respective genomes. The cas1 gene in the Type IIIB system encoded a reverse-transcriptase/Cas1 fusion protein rarely found in prokaryotes. We identified a short CRISPR (3 DR) with no associated cas genes present in most of the isolates; these CRISPRs were found immediately upstream of a hipA/hipB operon and we speculate that this element may be involved in regulation of this operon related to formation of persister cells during antimicrobial exposure. Also, blood isolates of B. fragilis did not have Type IIC CRISPR-Cas systems and had atypical Type IIIB CRISPR-Cas systems that were lacking adjacent cas genes. Conclusions: This is the first systematic report of CRISPR-Cas systems in a wide range of B. fragilis strains

  3. Estimation of the Relative Abundance of Different Bacteroides and Prevotella Ribotypes in Gut Samples by Restriction Enzyme Profiling of PCR-Amplified 16S rRNA Gene Sequences

    PubMed Central

    Wood, Jacqueline; Scott, Karen P.; Avguštin, Gorazd; Newbold, C. James; Flint, Harry J.

    1998-01-01

    We describe an approach for determining the genetic composition of Bacteroides and Prevotella populations in gut contents based on selective amplification of 16S rRNA gene sequences (rDNA) followed by cleavage of the amplified material with restriction enzymes. The relative contributions of different ribotypes to total Bacteroides and Prevotella 16S rDNA are estimated after end labelling of one of the PCR primers, and the contribution of Bacteroides and Prevotella sequences to total eubacterial 16S rDNA is estimated by measuring the binding of oligonucleotide probes to amplified DNA. Bacteroides and Prevotella 16S rDNA accounted for between 12 and 62% of total eubacterial 16S rDNA in samples of ruminal contents from six sheep and a cow. Ribotypes 4, 5, 6, and 7, which include most cultivated rumen Prevotella strains, together accounted for between 20 and 86% of the total amplified Bacteroides and Prevotella rDNA in these samples. The most abundant Bacteroides or Prevotella ribotype in four animals, however, was ribotype 8, for which there is only one known cultured isolate, while ribotypes 1 and 2, which include many colonic Bacteroides spp., were the most abundant in two animals. This indicates that some abundant Bacteroides and Prevotella groups in the rumen are underrepresented among cultured rumen Prevotella isolates. The approach described here provides a rapid, convenient, and widely applicable method for comparing the genotypic composition of bacterial populations in gut samples. PMID:9758785

  4. Bacteroides induce higher IgA production than Lactobacillus by increasing activation-induced cytidine deaminase expression in B cells in murine Peyer's patches.

    PubMed

    Yanagibashi, Tsutomu; Hosono, Akira; Oyama, Akihito; Tsuda, Masato; Hachimura, Satoshi; Takahashi, Yoshimasa; Itoh, Kikuji; Hirayama, Kazuhiro; Takahashi, Kyoko; Kaminogawa, Shuichi

    2009-02-01

    The gut mucosal immune system is crucial in host defense against infection by pathogenic microbacteria and viruses via the production of IgA. Previous studies have shown that intestinal commensal bacteria enhance mucosal IgA production. However, it is poorly understood how these bacteria induce IgA production and which genera of intestinal commensal bacteria induce IgA production effectively. In this study, we compared the immunomodulatory effects of Bacteroides and Lactobacillus on IgA production by Peyer's patches lymphocytes. IgA production by Peyer's patches lymphocytes co-cultured with Bacteroides was higher than with Lactobacillus. In addition, the expression of activation-induced cytidine deaminase increased in co-culture with Bacteroides but not with Lactobacillus. We found that intestinal commensal bacteria elicited IgA production. In particular, Bacteroides induced the differentiation of Peyer's patches B cell into IgA(+) B cells by increasing activation-induced cytidine deaminase expression.

  5. Cross-inhibition between black-pigmented Bacteroides species.

    PubMed

    Van Winkelhoff, A J; Kippuw, N; De Graaff, J

    1987-11-01

    Cross-inhibition within the group of black-pigmented Bacteroides, including both oral and non-oral strains, was studied by means of a membrane filter technique. It was found that B. gingivalis possessed the most extended inhibitory capacity among all species tested. B. gingivalis showed inhibitory activity against B. intermedius, B. endodontalis, B. loescheii, and B. melaninogenicus. B. endodontalis was active against some B. intermedius strains. Among the saccharolytic species, some B. melaninogenicus strains were inhibitory for some B. endodontalis strains, some B. gingivalis strains, and some B. intermedius strains. These inhibitory activities observed in vitro may play a role in the colonization of the periodontal pocket.

  6. Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence.

    PubMed

    Tuncil, Yunus E; Xiao, Yao; Porter, Nathan T; Reuhs, Bradley L; Martens, Eric C; Hamaker, Bruce R

    2017-10-10

    When presented with nutrient mixtures, several human gut Bacteroides species exhibit hierarchical utilization of glycans through a phenomenon that resembles catabolite repression. However, it is unclear how closely these observed physiological changes, often measured by altered transcription of glycan utilization genes, mirror actual glycan depletion. To understand the glycan prioritization strategies of two closely related human gut symbionts, Bacteroides ovatus and Bacteroides thetaiotaomicron , we performed a series of time course assays in which both species were individually grown in a medium with six different glycans that both species can degrade. Disappearance of the substrates and transcription of the corresponding polysaccharide utilization loci (PULs) were measured. Each species utilized some glycans before others, but with different priorities per species, providing insight into species-specific hierarchical preferences. In general, the presence of highly prioritized glycans repressed transcription of genes involved in utilizing lower-priority nutrients. However, transcriptional sensitivity to some glycans varied relative to the residual concentration in the medium, with some PULs that target high-priority substrates remaining highly expressed even after their target glycan had been mostly depleted. Coculturing of these organisms in the same mixture showed that the hierarchical orders generally remained the same, promoting stable coexistence. Polymer length was found to be a contributing factor for glycan utilization, thereby affecting its place in the hierarchy. Our findings not only elucidate how B. ovatus and B. thetaiotaomicron strategically access glycans to maintain coexistence but also support the prioritization of carbohydrate utilization based on carbohydrate structure, advancing our understanding of the relationships between diet and the gut microbiome. IMPORTANCE The microorganisms that reside in the human colon fulfill their energy

  7. Synergic activity, for anaerobes, of trovafloxacin with clindamycin or metronidazole: chequerboard and time-kill methods.

    PubMed

    Ednie, L M; Credito, K L; Khantipong, M; Jacobs, M R; Appelbaum, P C

    2000-05-01

    Chequerboard titrations were used to test the activity of trovafloxacin, alone and in combination with clindamycin or metronidazole, against 156 Gram-positive or Gram-negative anaerobes, including 47 Bacteroides fragilis group, 36 Prevotella spp., 26 fusobacteria, 21 peptostreptococci and 26 clostridia. MIC50/MIC90 values (mg/L) of each drug alone against all 156 strains were: trovafloxacin, 0.5/1; clindamycin, 0.25/2; metronidazole, 1/2. Synergy (FIC indices 0. 5-2.0); no antagonism (FIC indices >4.0) was seen. In addition, synergy was tested by time-kill methodology for each of the above combinations against 12 Gram-positive or Gram-negative strains. Results indicated that synergy (defined as a >/= 2 log(10) decrease in cfu/mL at 48 h compared with the more active drug alone) was found between trovafloxacin at or below the MIC and both clindamycin and metronidazole at or below the MIC in one strain each of Bacteroides fragilis, Bacteroides thetaiotaomicron, Prevotella intermedia, Fusobacterium varium, Peptostreptococcus asaccharolyticus and Clostridium bifermentans. Synergy between trovafloxacin (Bacteroides distasonis, Prevotella bivia, Fusobacterium mortiferum, P. asaccharolyticus and C. bifermentans. In many cases of synergy, including those at the trovafloxacin MIC, regrowth after 48 h, which was commonly seen with trovafloxacin alone, was inhibited, and 99.9% killing was observed with the combination after 48 h, but not with trovafloxacin alone.

  8. Discovery of β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans.

    PubMed

    Nihira, Takanori; Suzuki, Erika; Kitaoka, Motomitsu; Nishimoto, Mamoru; Ohtsubo, Ken'ichi; Nakai, Hiroyuki

    2013-09-20

    A gene cluster involved in N-glycan metabolism was identified in the genome of Bacteroides thetaiotaomicron VPI-5482. This gene cluster encodes a major facilitator superfamily transporter, a starch utilization system-like transporter consisting of a TonB-dependent oligosaccharide transporter and an outer membrane lipoprotein, four glycoside hydrolases (α-mannosidase, β-N-acetylhexosaminidase, exo-α-sialidase, and endo-β-N-acetylglucosaminidase), and a phosphorylase (BT1033) with unknown function. It was demonstrated that BT1033 catalyzed the reversible phosphorolysis of β-1,4-D-mannosyl-N-acetyl-D-glucosamine in a typical sequential Bi Bi mechanism. These results indicate that BT1033 plays a crucial role as a key enzyme in the N-glycan catabolism where β-1,4-D-mannosyl-N-acetyl-D-glucosamine is liberated from N-glycans by sequential glycoside hydrolase-catalyzed reactions, transported into the cell, and intracellularly converted into α-D-mannose 1-phosphate and N-acetyl-D-glucosamine. In addition, intestinal anaerobic bacteria such as Bacteroides fragilis, Bacteroides helcogenes, Bacteroides salanitronis, Bacteroides vulgatus, Prevotella denticola, Prevotella dentalis, Prevotella melaninogenica, Parabacteroides distasonis, and Alistipes finegoldii were also suggested to possess the similar metabolic pathway for N-glycans. A notable feature of the new metabolic pathway for N-glycans is the more efficient use of ATP-stored energy, in comparison with the conventional pathway where β-mannosidase and ATP-dependent hexokinase participate, because it is possible to directly phosphorylate the D-mannose residue of β-1,4-D-mannosyl-N-acetyl-D-glucosamine to enter glycolysis. This is the first report of a metabolic pathway for N-glycans that includes a phosphorylase. We propose 4-O-β-D-mannopyranosyl-N-acetyl-D-glucosamine:phosphate α-D-mannosyltransferase as the systematic name and β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase as the short name for BT1033.

  9. Persistence of Bacteroides ovatus under simulated sunlight irradiation

    PubMed Central

    2014-01-01

    Background Bacteroides ovatus, a member of the genus Bacteroides, is considered for use in molecular-based methods as a general fecal indicator. However, knowledge on its fate and persistence after a fecal contamination event remains limited. In this study, the persistence of B. ovatus was evaluated under simulated sunlight exposure and in conditions similar to freshwater and seawater. By combining propidium monoazide (PMA) treatment and quantitative polymerase chain reaction (qPCR) detection, the decay rates of B. ovatus were determined in the presence and absence of exogenous photosensitizers and in salinity up to 39.5 parts per thousand at 27°C. Results UVB was found to be important for B. ovatus decay, averaging a 4 log10 of decay over 6 h of exposure without the presence of extracellular photosensitizers. The addition of NaNO2, an exogenous sensitizer producing hydroxyl radicals, did not significantly change the decay rate of B. ovatus in both low and high salinity water, while the exogenous sensitizer algae organic matter (AOM) slowed down the decay of B. ovatus in low salinity water. At seawater salinity, the decay rate of B. ovatus was slower than that in low salinity water, except when both NaNO2 and AOM were present. Conclusion The results of laboratory experiments suggest that if B. ovatus is released into either freshwater or seawater environment in the evening, 50% of it may be intact by the next morning; if it is released at noon, only 50% may be intact after a mere 5 min of full spectrum irradiation on a clear day. This study provides a mechanistic understanding to some of the important environmental relevant factors that influenced the inactivation kinetics of B. ovatus in the presence of sunlight irradiation, and would facilitate the use of B. ovatus to indicate the occurrence of fecal contamination. PMID:24993443

  10. Morphology, antigenicity, and nucleic acid content of the Bacteroides sp. used in the culture of Entamoeba histolytica.

    PubMed

    Albach, R A; Shaffer, J G; Watson, R H

    1965-10-01

    Albach, Richard A. (Lutheran General Hospital, Park Ridge, Ill.), James G. Shaffer, and Robert H. Watson. Morphology, antigenicity, and nucleic acid content of the Bacteroides sp. used in the culture of Entamoeba histolytica. J. Bacteriol. 90:1045-1053. 1965.-Certain changes in morphology, antigenicity, and nucleic acid content that occur in a culture of Bacteroides sp. in the presence of penicillin G in CLG medium are described. This "variant" is one of seven recovered in several laboratories, all of which are descendants of the original Bacteroides isolated by Shaffer and Frye. Penicillin-inhibited cells of this culture are currently being used in the routine propagation of Entamoeba histolytica in CLG medium. Evidence is presented for the loss of ability to react with antibody in these penicillin-inhibited bacteria in CLG medium, when studied by fluorescent-antibody techniques. The implications of the antigenic changes observed as they pertain to similar antigenic studies of the amoebas are discussed. A pronounced reduction in the ribonucleic acid (RNA) content of such penicillin-inhibited cells was also observed. The potential importance of the changes that occur in the RNA of these cells with respect to considerations of the growth requirements of the amoebas is also discussed.

  11. Direct Analysis of Genes Encoding 16S rRNA from Complex Communities Reveals Many Novel Molecular Species within the Human Gut

    PubMed Central

    Suau, Antonia; Bonnet, Régis; Sutren, Malène; Godon, Jean-Jacques; Gibson, Glenn R.; Collins, Matthew D.; Doré, Joel

    1999-01-01

    The human intestinal tract harbors a complex microbial ecosystem which plays a key role in nutrition and health. Although this microbiota has been studied in great detail by culture techniques, microscopic counts on human feces suggest that 60 to 80% of the observable bacteria cannot be cultivated. Using comparative analysis of cloned 16S rRNA gene (rDNA) sequences, we have investigated the bacterial diversity (both cultivated and noncultivated bacteria) within an adult-male fecal sample. The 284 clones obtained from 10-cycle PCR were classified into 82 molecular species (at least 98% similarity). Three phylogenetic groups contained 95% of the clones: the Bacteroides group, the Clostridium coccoides group, and the Clostridium leptum subgroup. The remaining clones were distributed among a variety of phylogenetic clusters. Only 24% of the molecular species recovered corresponded to described organisms (those whose sequences were available in public databases), and all of these were established members of the dominant human fecal flora (e.g., Bacteroides thetaiotaomicron, Fusobacterium prausnitzii, and Eubacterium rectale). However, the majority of generated rDNA sequences (76%) did not correspond to known organisms and clearly derived from hitherto unknown species within this human gut microflora. PMID:10543789

  12. High quality draft genome sequence of Bacteroides barnesiae type strain BL2T (DSM 18169T) from chicken caecum

    DOE PAGES

    Sakamoto, Mitsuo; Lapidus, Alla L.; Han, James; ...

    2015-08-02

    Bacteroides barnesiae Lan et al. 2006 is a species of the genus Bacteroides, which belongs to the family Bacteroidaceae. Strain BL2T is of interest because it was isolated from the gut of a chicken and the growing awareness that the anaerobic microbiota of the caecum is of benefit for the host and may impact poultry farming. We report that the 3,621,509 bp long genome with its 3,059 protein-coding and 97 RNA genes is a part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.

  13. High quality draft genome sequence of Bacteroides barnesiae type strain BL2T (DSM 18169T) from chicken caecum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Mitsuo; Lapidus, Alla L.; Han, James

    Bacteroides barnesiae Lan et al. 2006 is a species of the genus Bacteroides, which belongs to the family Bacteroidaceae. Strain BL2T is of interest because it was isolated from the gut of a chicken and the growing awareness that the anaerobic microbiota of the caecum is of benefit for the host and may impact poultry farming. We report that the 3,621,509 bp long genome with its 3,059 protein-coding and 97 RNA genes is a part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.

  14. Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts

    PubMed Central

    Chiang, Herbert; Pudlo, Nicholas A.; Wu, Meng; McNulty, Nathan P.; Abbott, D. Wade; Henrissat, Bernard; Gilbert, Harry J.; Bolam, David N.; Gordon, Jeffrey I.

    2011-01-01

    Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs) that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target unique suites of

  15. Influence of Environmental and Genetic Factors Linked to Celiac Disease Risk on Infant Gut Colonization by Bacteroides Species▿

    PubMed Central

    Sánchez, Ester; De Palma, Giada; Capilla, Amalia; Nova, Esther; Pozo, Tamara; Castillejo, Gemma; Varea, Vicente; Marcos, Ascensión; Garrote, José Antonio; Polanco, Isabel; López, Ana; Ribes-Koninckx, Carmen; García-Novo, Maria Dolores; Calvo, Carmen; Ortigosa, Luis; Palau, Francesc; Sanz, Yolanda

    2011-01-01

    Celiac disease (CD) is an immune-mediated enteropathy involving genetic and environmental factors whose interaction might influence disease risk. The aim of this study was to determine the effects of milk-feeding practices and the HLA-DQ genotype on intestinal colonization of Bacteroides species in infants at risk of CD development. This study included 75 full-term newborns with at least one first-degree relative suffering from CD. Infants were classified according to milk-feeding practice (breast-feeding or formula feeding) and HLA-DQ genotype (high or low genetic risk). Stools were analyzed at 7 days, 1 month, and 4 months by PCR and denaturing gradient gel electrophoresis (DGGE). The Bacteroides species diversity index was higher in formula-fed infants than in breast-fed infants. Breast-fed infants showed a higher prevalence of Bacteroides uniformis at 1 and 4 months of age, while formula-fed infants had a higher prevalence of B. intestinalis at all sampling times, of B. caccae at 7 days and 4 months, and of B. plebeius at 4 months. Infants with high genetic risk showed a higher prevalence of B. vulgatus, while those with low genetic risk showed a higher prevalence of B. ovatus, B. plebeius, and B. uniformis. Among breast-fed infants, the prevalence of B. uniformis was higher in those with low genetic risk than in those with high genetic risk. Among formula-fed infants, the prevalence of B. ovatus and B. plebeius was increased in those with low genetic risk, while the prevalence of B. vulgatus was higher in those with high genetic risk. The results indicate that both the type of milk feeding and the HLA-DQ genotype influence the colonization process of Bacteroides species, and possibly the disease risk. PMID:21642397

  16. DESIGN AND EVALUATION OF BACTEROIDES DNA PROBES FOR THE SPECIFIC DETECTION OF HUMAN FECAL POLLUTION

    EPA Science Inventory

    Because Bacteroides spp. are obligate anaerobes that dominate the human fecal flora, and because some species may live only in the human intestine, these bacteria might be useful to distinguish human from nonhuman sources of fecal pollution. To test this hypothesis, PCR primers s...

  17. Porphyromonas (Bacteroides) endodontalis: its role in endodontal infections.

    PubMed

    van Winkelhoff, A J; van Steenbergen, T J; de Graaff, J

    1992-09-01

    Porphyromonas endodontalis (formerly Bacteroides endodontalis) is a black-pigmented anaerobic Gram-negative rod which is associated with endodontal infections. It has been isolated from infected dental root canals and submucous abscesses of endodontal origin. The presence of P. endodontalis in infected dental root canals has been correlated with symptoms of an acute infection. It is occasionally found on oral mucous membranes and periodontal pockets. P. endodontalis has shown relatively low virulence in experimental monoinfections. In anaerobic mixed infections it can play an essential role. Differences in virulence between strains have been related to capsular material. On the basis of different types of capsules, three serotypes have been described. P. endodontalis is sensitive to a wide range of antibiotics, including the penicillins, the tetracyclines, and metronidazole.

  18. USE OF BACTEROIDES PCR-BASED METHODS TO EXAMINE FECAL CONTAMINATION SOURCES IN TROPICAL COASTAL WATERS

    EPA Science Inventory

    Several library independent Microbial Source Tracking methods have been developed to rapidly determine the source of fecal contamination. Thus far, none of these methods have been tested in tropical marine waters. In this study, we used a Bacteroides 16S rDNA PCR-based...

  19. Vertebral osteomyelitis caused by Prevotella (Bacteroides) melaninogenicus.

    PubMed

    Mukhopadhyay, Surabhi; Rose, Fredrick; Frechette, Vincent

    2005-02-01

    A 35-year-old, previously healthy female presented with severe low back pain, fever, and a high erythrocyte sedimentation rate 1 week after a routine dental cleaning. Technetium-labeled leukocyte scanning and magnetic resonance imaging scan of the spine were negative for osteomyelitis. The patient underwent biopsy, cultures from which grew Prevotella (Bacteroides) melaninogenicus. Appropriate antibiotic therapy resulted in resolution of symptoms. P. melaninogenicus is a gram-negative anaerobic bacillus that is part of the indigenous oral flora. It may cause dental, sinus, skin, and soft tissue infections. Infection of bone is rare. Only three cases of vertebral osteomyelitis due to P. melaninogenicus have been reported in the literature. The early diagnosis of vertebral osteomyelitis requires a high index of clinical suspicion and cannot be excluded by negative imaging tests alone. The recovery of this unusual organism highlights the importance of requesting anaerobic cultures of biopsy specimens.

  20. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes

    PubMed Central

    Foley, Matthew H.; Cockburn, Darrell W.; Koropatkin, Nicole M.

    2016-01-01

    Resident bacteria in the densely populated human intestinal tract must efficiently compete for carbohydrate nutrition. The Bacteroidetes, a dominant bacterial phylum in the mammalian gut, encode a plethora of discrete polysaccharide utilization loci (PULs) that are selectively activated to facilitate glycan capture at the cell surface. The most well-studied PUL-encoded glycan-up-take system is the starch utilization system (Sus) of Bacteroides thetaiotaomicron. The Sus includes the requisite proteins for binding and degrading starch at the surface of the cell preceding oligosaccharide transport across the outer membrane for further depolymerization to glucose in the periplasm. All mammalian gut Bacteroidetes possess analogous Sus-like systems that target numerous diverse glycans. In this review, we discuss what is known about the eight Sus proteins of B. thetaiotaomicron that define the Sus-like paradigm of nutrient acquisition that is exclusive to the Gram-negative Bacteroidetes. We emphasize the well-characterized outer membrane proteins SusDEF and the α-amylase SusG, each of which have unique structural features that allow them to interact with starch on the cell surface. Despite the apparent redundancy in starch-binding sites among these proteins, each has a distinct role during starch catabolism. Additionally, we consider what is known about how these proteins dynamically interact and cooperate in the membrane and propose a model for the formation of the Sus outer membrane complex. PMID:27137179

  1. Structural Snapshots of Heparin Depolymerization by Heparin Lyase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Young-Hyun; Garron, Marie-Line; Kim, Hye-Yeon

    2010-01-12

    Heparin lyase I (heparinase I) specifically depolymerizes heparin, cleaving the glycosidic linkage next to iduronic acid. Here, we show the crystal structures of heparinase I from Bacteroides thetaiotaomicron at various stages of the reaction with heparin oligosaccharides before and just after cleavage and product disaccharide. The heparinase I structure is comprised of a {beta}-jellyroll domain harboring a long and deep substrate binding groove and an unusual thumb-resembling extension. This thumb, decorated with many basic residues, is of particular importance in activity especially on short heparin oligosaccharides. Unexpected structural similarity of the active site to that of heparinase II with anmore » ({alpha}/{alpha}){sub 6} fold is observed. Mutational studies and kinetic analysis of this enzyme provide insights into the catalytic mechanism, the substrate recognition, and processivity.« less

  2. Characterization of saccharolytic Bacteroides and Prevotella isolates from infected dog and cat bite wounds in humans.

    PubMed Central

    Alexander, C J; Citron, D M; Hunt Gerardo, S; Claros, M C; Talan, D; Goldstein, E J

    1997-01-01

    Saccharolytic, nonpigmented, anaerobic gram-negative rods isolated from infected dog and cat bite wounds in humans have been poorly characterized, and most are not included in the databases of kits used for anaerobic identification; thus, they are problematic for clinical laboratories to identify. Fifty strains isolated from such wounds were characterized with commercial kits for preformed-enzyme detection, carbohydrate fermentation, and other biochemical tests. PCR fingerprinting was performed on these strains to further characterize subgroups within these species. Bacteroides tectum is a frequent isolate in bite wounds and resembles Prevotella bivia in colony morphology and saccharolytic activity, except that it grows in 20% bile and hydrolyzes esculin. Profile numbers generated by various kits associate B. tectum with P. bivia, Prevotella oralis group, or Prevotella melaninogenica. PCR fingerprinting identified at least four subgroups and confirmed the heterogeneous nature of this species. Prevotella heparinolytica was also frequently isolated from these bite wounds. It produces indole and generates a profile number in preformed-enzyme kits that is usually associated with Bacteroides uniformis. However, it is bile sensitive and quite distinct from the Bacteroides fragilis group of anaerobes. The PCR fingerprint profiles generated by strains of P. heparinolytica were very similar to that of the type strain and to each other. Prevotella zoogleoformans, occasionally isolated from dog and cat bite wounds in humans, resembles P. heparinolytica except for a negative indole test. Clinical laboratories should be aware of the characteristics of these animal species when identifying isolates from animal bite wounds in humans. PMID:9003606

  3. Characterization of saccharolytic Bacteroides and Prevotella isolates from infected dog and cat bite wounds in humans.

    PubMed

    Alexander, C J; Citron, D M; Hunt Gerardo, S; Claros, M C; Talan, D; Goldstein, E J

    1997-02-01

    Saccharolytic, nonpigmented, anaerobic gram-negative rods isolated from infected dog and cat bite wounds in humans have been poorly characterized, and most are not included in the databases of kits used for anaerobic identification; thus, they are problematic for clinical laboratories to identify. Fifty strains isolated from such wounds were characterized with commercial kits for preformed-enzyme detection, carbohydrate fermentation, and other biochemical tests. PCR fingerprinting was performed on these strains to further characterize subgroups within these species. Bacteroides tectum is a frequent isolate in bite wounds and resembles Prevotella bivia in colony morphology and saccharolytic activity, except that it grows in 20% bile and hydrolyzes esculin. Profile numbers generated by various kits associate B. tectum with P. bivia, Prevotella oralis group, or Prevotella melaninogenica. PCR fingerprinting identified at least four subgroups and confirmed the heterogeneous nature of this species. Prevotella heparinolytica was also frequently isolated from these bite wounds. It produces indole and generates a profile number in preformed-enzyme kits that is usually associated with Bacteroides uniformis. However, it is bile sensitive and quite distinct from the Bacteroides fragilis group of anaerobes. The PCR fingerprint profiles generated by strains of P. heparinolytica were very similar to that of the type strain and to each other. Prevotella zoogleoformans, occasionally isolated from dog and cat bite wounds in humans, resembles P. heparinolytica except for a negative indole test. Clinical laboratories should be aware of the characteristics of these animal species when identifying isolates from animal bite wounds in humans.

  4. Evaluation of Bacteroides fragilis GB-124 bacteriophages as novel human-associated faecal indicators in the United States

    EPA Science Inventory

    Phages infecting human-associated Bacteroides fragilis (GB-124 phages) have been employed in the European Union (EU) to identify human fecal pollution, but their utility for U.S. was unclear. Primary sewage effluent samples were collected seasonally from seven wastewater treatme...

  5. Structure and sequence analyses of Bacteroides proteins BVU_4064 and BF1687 reveal presence of two novel predominantly-beta domains, predicted to be involved in lipid and cell surface interactions

    DOE PAGES

    Natarajan, Padmaja; Punta, Marco; Kumar, Abhinav; ...

    2015-01-16

    N-terminal domains of BVU_4064 and BF1687 proteins from Bacteroides vulgatus and Bacteroides fragilis respectively are members of the Pfam family PF12985 (DUF3869). Proteins containing a domain from this family can be found in most Bacteroides species and, in large numbers, in all human gut microbiome samples. Both BVU_4064 and BF1687 proteins have a consensus lipobox motif implying they are anchored to the membrane, but their functions are otherwise unknown. The C-terminal half of BVU_4064 is assigned to protein family PF12986 (DUF3870); the equivalent part of BF1687 was unclassified.

  6. Probabilistic analysis showing that a combination of bacteroides and methanobrevibacter source tracking markers is effective for identifying waters contaminated by human fecal pollution

    USGS Publications Warehouse

    Johnston, Christopher; Byappanahalli, Muruleedhara N.; Gibson, Jacqueline MacDonald; Ufnar, Jennifer A.; Whitman, Richard L.; Stewart, Jill R.

    2013-01-01

    Microbial source tracking assays to identify sources of waterborne contamination typically target genetic markers of host-specific microorganisms. However, no bacterial marker has been shown to be 100% host-specific, and cross-reactivity has been noted in studies evaluating known source samples. Using 485 challenge samples from 20 different human and animal fecal sources, this study evaluated microbial source tracking markers including the Bacteroides HF183 16S rRNA, M. smithii nifH, and Enterococcus esp gene targets that have been proposed as potential indicators of human fecal contamination. Bayes' Theorem was used to calculate the conditional probability that these markers or a combination of markers can correctly identify human sources of fecal pollution. All three human-associated markers were detected in 100% of the sewage samples analyzed. Bacteroides HF183 was the most effective marker for determining whether contamination was specifically from a human source, and greater than 98% certainty that contamination was from a human source was shown when both Bacteroides HF183 and M. smithii nifH markers were present. A high degree of certainty was attained even in cases where the prior probability of human fecal contamination was as low as 8.5%. The combination of Bacteroides HF183 and M. smithii nifH source tracking markers can help identify surface waters impacted by human fecal contamination, information useful for prioritizing restoration activities or assessing health risks from exposure to contaminated waters.

  7. Biofilm Formation by a Metabolically Versatile Bacterium

    DTIC Science & Technology

    2009-03-19

    ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium that has good potential as a biocatalyst for the production ofhydrogen gas, a biofuel...Biofilm formation by a metabolically versatile bacterium: final report Report Title ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium...agricultural waste. We characterized five new Rhodopseudomonas genome sequences and isolated and described R. palustris mutant strains that produce

  8. Effect of oligosaccharides on the adhesion of gut bacteria to human HT-29 cells.

    PubMed

    Altamimi, M; Abdelhay, O; Rastall, R A

    2016-06-01

    The influence of five oligosaccharides (cellobiose, stachyose, raffinose, lactulose and chito-oligosaccharides) on the adhesion of eight gut bacteria (Bifidobacterium bifidum ATCC 29521, Bacteroides thetaiotaomicron ATCC 29148D-5, Clostridium leptum ATCC 29065, Blautia coccoides ATCC 29236, Faecalibacterium prausnitzii ATCC 27766, Bacteroides fragilis ATCC 23745, Clostridium difficile ATCC 43255 and Lactobacillus casei ATCC 393) to mucous secreting and non-mucous secreting HT-29 human epithelial cells, was investigated. In pure culture, the bacteria showed variations in their ability to adhere to epithelial cells. The effect of oligosaccharides diminished adhesion and the presence of mucus played a major factor in adhesion, likely due to high adhesiveness to mucins present in the native human mucus layer covering the whole cell surface. However, clostridia displayed almost the same level of adhesion either with or without mucus being present. Bl. coccoides adhesion was decreased by stachyose and cellobiose in non-mucus-secreting cells in pure culture, while in mixed faecal culture cellobiose displayed the highest antiadhesive activity with an overall average of 65% inhibition amongst tested oligomers and lactulose displayed the lowest with an average of 47.4%. Bifidobacteria, Bacteroides, lactobacilli and clostridia were inhibited within the following ranges 47-78%, 32-65%, 11.7-58% and 64-85% respectively. This means that clostridia were the most strongly influenced members of the microflora amongst the bacterial groups tested in mixed culture. In conclusion, introducing oligosaccharides which are candidate prebiotics into pure or mixed cultures has affected bacterial adhesion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [In vitro activities of sulopenem, a new parenteral penem, against anaerobes].

    PubMed

    Watanabe, K; Kato, N; Tanaka-Bandoh, K; Tanaka, Y; Kato, H; Ueno, K

    1996-04-01

    In vitro activities of sulopenem, a novel parenteral penem, was compared with those of imipenem, flomoxef, cefuzonam, cefoperazone and sulbactam/ampicillin against 66 reference strains (19 genera, 61 species) and 392 recent clinical isolates of anaerobic bacteria and fastidious aerobic bacteria. Sulopenem had a very broad spectrum against anaerobic bacteria. In general, this compound was active against anaerobic reference strains with MICs of < or = 0.78 micrograms/ml, while being the least active against Bifidobacterium spp. and less active than imipenem against Lactobacillus spp. Sulopenem was more active against Bacteroides fragilis isolates than imipenem and had the highest activities against Bacteroides thetaiotaomicron, Prevotella intermedia, Porphyromonas gingivalis, Fusobacterium spp. and Peptostreptococcus spp. among the antibiotics tested. Sulopenem was not hydrolyzed by oxyiminocephalosporinase type 1 produced by B. fragilis GAI-0558, GAI-7955 and GAI-10150 and its stability was comparable to imipenem. Its susceptibilities to hydrolysis by a metallo-beta-lactamase from B. fragilis GAI-30144 was less than imipenem. Sulopenem (120 mg/kg, 3 times a day for 4 days) was as effective as imipenem/cilastatin against a mixed intraabdominal mice infection due to E. coli and B. fragilis. Sulopenem (20 mg/kg twice a day for 5 days) did not induce an overgrowth of Clostridium difficile in the caecum of mice.

  10. Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine

    PubMed Central

    Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.

    2014-01-01

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102

  11. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine.

    PubMed

    Maier, Eva; Anderson, Rachel C; Roy, Nicole C

    2014-12-24

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases.

  12. Comparison of randomly cloned and whole genomic DNA probes for the detection of Porphyromonas gingivalis and Bacteroides forsythus

    PubMed Central

    Wong, M.; DiRienzo, J.M.; Lai, C.-H.; Listgarten, M. A.

    2012-01-01

    Whole genomic and randomly-cloned DNA probes for two fastidious periodontal pathogens, Porphyromonas gingivalis and Bacteroides forsythus were labeled with digoxigenin and detected by a colorimetric method. The specificity and sensitivity of the whole genomic and cloned probes were compared. The cloned probes were highly specific compared to the whole genomic probes. A significant degree of cross-reactivity with Bacteroides species. Capnocytophaga sp. and Prevotella sp. was observed with the whole genomic probes. The cloned probes were less sensitive than the whole genomic probes and required at least 106 target cells or a minimum of 10 ng of target DNA to be detected during hybridization. Although a ten-fold increase in sensitivity was obtained with the whole genomic probes, cross-hybridization to closely related species limits their reliability in identifying target bacteria in subgingival plaque samples. PMID:8636873

  13. Improved HF183 reverse primer and probe for greater analytical sensitivity of human Bacteroides in the environment

    EPA Science Inventory

    Background: Numerous indicators have been used to assess the presence of fecal pollution, many relying on molecular methods such as qPCR. One of the targets frequently used, the human-associated Bacteroides 16s rRNA region, has several assays in current usage. These assays vary...

  14. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem

    PubMed Central

    Hooper, Lora V.; Xu, Jian; Falk, Per G.; Midtvedt, Tore; Gordon, Jeffrey I.

    1999-01-01

    Little is known about how members of the indigenous microflora interact with their mammalian hosts to establish mutually beneficial relationships. We have used a gnotobiotic mouse model to show that Bacteroides thetaiotaomicron, a component of the intestinal microflora of mice and humans, uses a repressor, FucR, as a molecular sensor of l-fucose availability. FucR coordinates expression of an operon encoding enzymes in the l-fucose metabolic pathway with expression of another locus that regulates production of fucosylated glycans in intestinal enterocytes. Genetic and biochemical studies indicate that FucR does this by using fucose as an inducer at one locus and as a corepressor at the other locus. Coordinating this commensal’s immediate nutritional requirements with production of a host-derived energy source is consistent with its need to enter and persist within a competitive ecosystem. PMID:10449780

  15. Human Bacteroides and total coliforms as indicators of recent combined sewer overflows and rain events in urban creeks

    USGS Publications Warehouse

    McGinnis, Shannon; Spencer, Susan K.; Firnstahl, Aaron; Stokdyk, Joel; Borchardt, Mark A.; McCarthy, David; Murphy, Heather

    2018-01-01

    Combined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers. For this reason, this study measured correlations between the number and duration of CSOs and mm of rainfall, concentrations of traditional FIOs and alternative indicators, and the presence of human pathogens in two urban creeks. Samples were collected May–July 2016 and analyzed for concentrations of FIOs (total coliforms and E. coli) using membrane filtration as well as for three alternative fecal indicators (human Bacteroides HF183 marker, human polyomavirus (HPoV), pepper mild mottle virus (PMMoV)) and nine human pathogens using qPCR. Four of the nine pathogens analyzed were detected at these sites including adenovirus, Enterohemorrhagic E. coli, norovirus, and Salmonella. Among all indicators studied, human Bacteroides and total coliforms were significantly correlated with recent CSO and rainfall events, while E. coli, PMMoV, and HPoV did not show consistent significant correlations. Further, human Bacteroides were a more specific indicator, while total coliforms were a more sensitive indicator of CSO and rainfall events. Results may have implications for the use and interpretation of these indicators in future policy or monitoring programs.

  16. Human Bacteroides and total coliforms as indicators of recent combined sewer overflows and rain events in urban creeks.

    PubMed

    McGinnis, Shannon; Spencer, Susan; Firnstahl, Aaron; Stokdyk, Joel; Borchardt, Mark; McCarthy, David T; Murphy, Heather M

    2018-07-15

    Combined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers. For this reason, this study measured correlations between the number and duration of CSOs and mm of rainfall, concentrations of traditional FIOs and alternative indicators, and the presence of human pathogens in two urban creeks. Samples were collected May-July 2016 and analyzed for concentrations of FIOs (total coliforms and E. coli) using membrane filtration as well as for three alternative fecal indicators (human Bacteroides HF183 marker, human polyomavirus (HPoV), pepper mild mottle virus (PMMoV)) and nine human pathogens using qPCR. Four of the nine pathogens analyzed were detected at these sites including adenovirus, Enterohemorrhagic E. coli, norovirus, and Salmonella. Among all indicators studied, human Bacteroides and total coliforms were significantly correlated with recent CSO and rainfall events, while E. coli, PMMoV, and HPoV did not show consistent significant correlations. Further, human Bacteroides were a more specific indicator, while total coliforms were a more sensitive indicator of CSO and rainfall events. Results may have implications for the use and interpretation of these indicators in future policy or monitoring programs. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Characterization of the Porphyromonas gingivalis conjugative transposon CTnPg1: determination of the integration site and the genes essential for conjugal transfer.

    PubMed

    Naito, Mariko; Sato, Keiko; Shoji, Mikio; Yukitake, Hideharu; Ogura, Yoshitoshi; Hayashi, Tetsuya; Nakayama, Koji

    2011-07-01

    In our previous study, extensive genomic rearrangements were found in two strains of the Gram-negative anaerobic bacterium Porphyromonas (Por.) gingivalis, and most of these rearrangements were associated with mobile genetic elements such as insertion sequences and conjugative transposons (CTns). CTnPg1, identified in Por. gingivalis strain ATCC 33277, was the first complete CTn reported for the genus Porphyromonas. In the present study, we found that CTnPg1 can be transferred from strain ATCC 33277 to another Por. gingivalis strain, W83, at a frequency of 10(-7) to 10(-6). The excision of CTnPg1 from the chromosome in a donor cell depends on an integrase (Int; PGN_0094) encoded in CTnPg1, whereas CTnPg1 excision is independent of PGN_0084 (a DNA topoisomerase I homologue; Exc) encoded within CTnPg1 and recA (PGN_1057) on the donor chromosome. Intriguingly, however, the transfer of CTnPg1 between Por. gingivalis strains requires RecA function in the recipient. Sequencing analysis of CTnPg1-integrated sites on the chromosomes of transconjugants revealed that the consensus attachment (att) sequence is a 13 bp sequence, TTTTCNNNNAAAA. We further report that CTnPg1 is able to transfer to two other bacterial species, Bacteroides thetaiotaomicron and Prevotella oralis. In addition, CTnPg1-like CTns are located in the genomes of other oral anaerobic bacteria, Porphyromonas endodontalis, Prevotella buccae and Prevotella intermedia, with the same consensus att sequence. These results suggest that CTns in the CTnPg1 family are widely distributed among oral anaerobic Gram-negative bacteria found in humans and play important roles in horizontal gene transfer among these bacteria.

  18. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions.

    PubMed

    Elshaghabee, Fouad M F; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD(+)/NADP(+), drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial

  19. Identification and Use of the Putative Bacteroides ovatus Xylanase Promoter for the Inducible Production of Recombinant Human Proteins

    USDA-ARS?s Scientific Manuscript database

    The use of genetically modified bacteria to deliver biologically active molecules directly to the gut has become an increasingly attractive area of investigation. The challenge of regulation of production of the therapeutic molecule and colonization of the bowel led us to investigate Bacteroides ov...

  20. NREL Researchers Discover How a Bacterium, Clostridium thermocellum,

    Science.gov Websites

    containing the bacterium actually promotes the growth of C. thermocellum, yet its mechanistic details remained a puzzle. This enhanced growth implied the bacterium had the ability to use CO2 and prompted NREL researchers to investigate the phenomena enhancing the bacterium's growth. "It took us by surprise that

  1. Two Multidrug-Resistant Clinical Isolates of Bacteroides fragilis Carry a Novel Metronidazole Resistance nim Gene (nimJ)

    PubMed Central

    Veeranagouda, Yaligara; Hsi, Justin; Meggersee, Rosemary; Abratt, Valerie; Wexler, Hannah M.

    2013-01-01

    Two multidrug-resistant Bacteroides fragilis clinical isolates contain and express a novel nim gene, nimJ, that is not recognized by the “universal” nim primers and can confer increased resistance to metronidazole when introduced into a susceptible strain on a multicopy plasmid. HMW615, an appendiceal isolate, contains at least two copies of nimJ on its genome, while HMW616, an isolate from a patient with sepsis, contains one genomic copy of nimJ. B. fragilis NimJ is phylogenetically closer to Prevotella baroniae NimI and Clostridium botulinum NimA than to the other known Bacteroides Nim proteins. The predicted protein structure of NimJ, based on fold recognition analysis, is consistent with the crystal structures derived for known Nim proteins, and specific amino acid residues important for substrate binding in the active site are conserved. This study demonstrates that the “universal” nim primers will not detect all nim genes with the ability to confer metronidazole resistance, but nimJ alone cannot account for the very high metronidazole MICs of these resistant clinical isolates. PMID:23716049

  2. Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides.

    PubMed

    Thomas, François; Barbeyron, Tristan; Tonon, Thierry; Génicot, Sabine; Czjzek, Mirjam; Michel, Gurvan

    2012-09-01

    Alginate constitutes a significant part of seaweed biomass and thus a crucial nutrient for numerous marine heterotrophic bacteria. However, the mechanisms for alginate assimilation remain largely unknown in marine microorganisms. We show here that the genome of the marine flavobacterium Zobellia galactanivorans contains seven putative alginate lyase genes, five of them localized within two clusters comprising additional carbohydrate-related genes. The transcription of these genes and the alginolytic activity were strongly induced when Z. galactanivorans used alginate as sole carbon source. These clusters were shown to be transcribed as polycistronic mRNAs and thus to constitute operons. Several candidate enzymes were successfully overexpressed in Escherichia coli, purified and their activity tested. Particularly, AlyA1, AlyA4, AlyA5 and AlyA7 are confirmed as active alginate lyases. Zg2622 and Zg2614 are a dehydrogenase and a kinase, respectively, further converting the terminal unsaturated monosaccharides released by alginate lyases into 2-keto-3-deoxy-6-phosphogluconate. In-depth phylogenomic analyses reveal that such alginolytic operons originated from an ancestral marine flavobacterium and were independently transferred to marine proteobacteria and Japanese gut Bacteroides. These bacteria thus gained the capacity to assimilate the main polysaccharide of brown algae, an adaptive advantage in coastal environments but also in the gut microbiota of specific human population. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Development and Validation of an Enzymatic Method To Determine Stevioside Content from Stevia rebaudiana.

    PubMed

    Udompaisarn, Somsiri; Arthan, Dumrongkiet; Somana, Jamorn

    2017-04-19

    An enzymatic method for specific determination of stevioside content was established. Recombinant β-glucosidase BT_3567 (rBT_3567) from Bacteroides thetaiotaomicron HB-13 exhibited selective hydrolysis of stevioside at β-1,2-glycosidic bond to yield rubusoside and glucose. Coupling of this enzyme with glucose oxidase and peroxidase allowed for quantitation of stevioside content in Stevia samples by using a colorimetric-based approach. The series of reactions for stevioside determination can be completed within 1 h at 37 °C. Stevioside determination using the enzymatic assay strongly correlated with results obtained from HPLC quantitation (r 2 = 0.9629, n = 16). The percentages of coefficient variation (CV) of within day (n = 12) and between days (n = 12) assays were lower than 5%, and accuracy ranges were 95-105%. This analysis demonstrates that the enzymatic method developed in this study is specific, easy to perform, accurate, and yields reproducible results.

  4. Characterization of the Bacteroides fragilis bfr Gene Product Identifies a Bacterial DPS-Like Protein and Suggests Evolutionary Links in the Ferritin Superfamily

    PubMed Central

    Gauss, George H.; Reott, Michael A.; Rocha, Edson R.; Young, Mark J.; Douglas, Trevor

    2012-01-01

    A factor contributing to the pathogenicity of Bacteroides fragilis, the most common anaerobic species isolated from clinical infections, is the bacterium's extreme aerotolerance, which allows survival in oxygenated tissues prior to anaerobic abscess formation. We investigated the role of the bacterioferritin-related (bfr) gene in the B. fragilis oxidative stress response. The bfr mRNA levels are increased in stationary phase or in response to O2 or iron. In addition, bfr null mutants exhibit reduced aerotolerance, and the bfr gene product protects DNA from hydroxyl radical cleavage in vitro. Crystallographic studies revealed a protein with a dodecameric structure and greater similarity to an archaeal DNA protection in starved cells (DPS)-like protein than to the 24-subunit bacterioferritins. Similarity to the DPS-like (DPSL) protein extends to the subunit and includes a pair of conserved cysteine residues juxtaposed to a buried dimetal binding site within the four-helix bundle. Compared to archaeal DPSLs, however, this bacterial DPSL protein contains several unique features, including a significantly different conformation in the C-terminal tail that alters the number and location of pores leading to the central cavity and a conserved metal binding site on the interior surface of the dodecamer. Combined, these characteristics confirm this new class of miniferritin in the bacterial domain, delineate the similarities and differences between bacterial DPSL proteins and their archaeal homologs, allow corrected annotations for B. fragilis bfr and other dpsl genes within the bacterial domain, and suggest an evolutionary link within the ferritin superfamily that connects dodecameric DPS to the (bacterio)ferritin 24-mer. PMID:22020642

  5. Suppurative otitis and ascending meningoencephalitis associated with Bacteroides tectus and Porphyromonas gulae in a captive Parma wallaby (Macropus parma) with toxoplasmosis.

    PubMed

    Giannitti, Federico; Schapira, Andrea; Anderson, Mark; Clothier, Kristin

    2014-09-01

    A 6-year-old female Parma wallaby (Macropus parma) at a zoo in California developed acute ataxia and left-sided circling. Despite intensive care, clinical signs progressed to incoordination and prostration, and the animal was euthanized. At necropsy, the left tympanic cavity was filled with homogeneous suppurative exudate that extended into the cranium expanding the meninges and neuroparenchyma in the lateral and ventral aspect of the caudal ipsilateral brainstem and medulla oblongata. Microscopically, the brainstem showed regional severe suppurative meningoencephalitis with large numbers of neutrophils, fewer macrophages, and lymphocytes admixed with fibrin, necrotic cellular debris, hemorrhage, and mineralization, with numerous intralesional Gram-negative bacilli. Bacteroides spp. and Porphyromonas spp. were isolated on anaerobic culture from the meninges, and the bacteria were further characterized by partial 16S ribosomal RNA gene sequencing as Bacteroides tectus and Porphyromonas gulae. Bacterial aerobic culture from the meninges yielded very low numbers of mixed flora and Proteus spp., which were considered contaminants. Culture of Mycoplasma spp. from middle ear and meninges was negative. Additionally, Toxoplasma gondii cysts were detected by immunohistochemistry in the heart and brain, and anti-Toxoplasma antibodies were detected in serum. The genera Bacteroides and Porphyromonas have been associated with oral disease in marsupials; but not with otitis and meningoencephalitis. The results of the present work highlight the importance of performing anaerobic cultures in the diagnostic investigation of cases of suppurative otitis and meningoencephalitis in macropods. © 2014 The Author(s).

  6. Characterization of the cellulose-degrading bacterium NCIMB 10462

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, C.; Scott, T.C.; Phelps, T.J.

    The gram-negative cellulase-producing bacterium NCIMB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulose. Because of renewed interest in cellulose-degrading bacteria for use in the bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its true metabolic potential. Metabolic and physical characterization of NCIMB 10462 revealed that this is an alkalophilic, non-fermentative, gram-negative, oxidase-positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium has few characteristics consistent with a classification of P. fluorescens and a very low probability match with the genus Sphingomonas. However, total lipid analysismore » did not reveal that any sphingolipid bases are produced by this bacterium. NCIMB 10462 grows best aerobically, but also grows well in complex media under reducing conditions. NCIMB 10462 grows slowly under anaerobic conditions on complex media, but growth on cellulosic media occurred only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIMB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is its ability to degrade cellulose, we suggest that it be called Pseudomonas cellulosa.« less

  7. Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions.

    PubMed

    Bourcy, Marie; Brocard, Lysiane; Pislariu, Catalina I; Cosson, Viviane; Mergaert, Peter; Tadege, Millon; Mysore, Kirankumar S; Udvardi, Michael K; Gourion, Benjamin; Ratet, Pascal

    2013-03-01

    Medicago truncatula and Sinorhizobium meliloti form a symbiotic association resulting in the formation of nitrogen-fixing nodules. Nodule cells contain large numbers of bacteroids which are differentiated, nitrogen-fixing forms of the symbiotic bacteria. In the nodules, symbiotic plant cells home and maintain hundreds of viable bacteria. In order to better understand the molecular mechanism sustaining the phenomenon, we searched for new plant genes required for effective symbiosis. We used a combination of forward and reverse genetics approaches to identify a gene required for nitrogen fixation, and we used cell and molecular biology to characterize the mutant phenotype and to gain an insight into gene function. The symbiotic gene DNF2 encodes a putative phosphatidylinositol phospholipase C-like protein. Nodules formed by the mutant contain a zone of infected cells reduced to a few cell layers. In this zone, bacteria do not differentiate properly into bacteroids. Furthermore, mutant nodules senesce rapidly and exhibit defense-like reactions. This atypical phenotype amongst Fix(-) mutants unravels dnf2 as a new actor of bacteroid persistence inside symbiotic plant cells. © 2012 CNRS. New Phytologist © 2012 New Phytologist Trust.

  8. Products of dark CO sub 2 fixation in pea root nodules support bacteroid metabolism. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosendahl, L.; Pedersen, W.B.; Vance, C.P.

    1990-05-01

    Products of the nodule cytosol in vivo dark ({sup 14}C)CO{sub 2} fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv Bodil) nodules. The distribution of the metabolites of the dark CO{sub 2} fixation products was compared in effective (fix{sup +}) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix{sup {minus}}) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The {sup 14}C incorporation from ({sup 14}C)CO{sub 2} was about threefold greater in themore » wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the {sup 14}C label in the cytosol was found in organic acids in both symbioses. The results indicate a central role for nodule cytosol dark CO{sub 2} fixation in the supply of the bacteroids with dicarboxylic acids.« less

  9. Single Bacterium Detection Using Sers

    NASA Astrophysics Data System (ADS)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  10. Plant Carbohydrate Scavenging through TonB-Dependent Receptors: A Feature Shared by Phytopathogenic and Aquatic Bacteria

    PubMed Central

    Boulanger, Alice; Lautier, Martine; Guynet, Catherine; Denancé, Nicolas; Vasse, Jacques

    2007-01-01

    TonB-dependent receptors (TBDRs) are outer membrane proteins mainly known for the active transport of iron siderophore complexes in Gram-negative bacteria. Analysis of the genome of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc), predicts 72 TBDRs. Such an overrepresentation is common in Xanthomonas species but is limited to only a small number of bacteria. Here, we show that one Xcc TBDR transports sucrose with a very high affinity, suggesting that it might be a sucrose scavenger. This TBDR acts with an inner membrane transporter, an amylosucrase and a regulator to utilize sucrose, thus defining a new type of carbohydrate utilization locus, named CUT locus, involving a TBDR for the transport of substrate across the outer membrane. This sucrose CUT locus is required for full pathogenicity on Arabidopsis, showing its importance for the adaptation to host plants. A systematic analysis of Xcc TBDR genes and a genome context survey suggested that several Xcc TBDRs belong to other CUT loci involved in the utilization of various plant carbohydrates. Interestingly, several Xcc TBDRs and CUT loci are conserved in aquatic bacteria such as Caulobacter crescentus, Colwellia psychrerythraea, Saccharophagus degradans, Shewanella spp., Sphingomonas spp. or Pseudoalteromonas spp., which share the ability to degrade a wide variety of complex carbohydrates and display TBDR overrepresentation. We therefore propose that TBDR overrepresentation and the presence of CUT loci designate the ability to scavenge carbohydrates. Thus CUT loci, which seem to participate to the adaptation of phytopathogenic bacteria to their host plants, might also play a very important role in the biogeochemical cycling of plant-derived nutrients in marine environments. Moreover, the TBDRs and CUT loci identified in this study are clearly different from those characterized in the human gut symbiont Bacteroides thetaiotaomicron, which allow glycan foraging, suggesting a convergent

  11. Crystal structures of two novel dye-decolorizing peroxidases reveal a beta-barrel fold with a conserved heme-binding motif.

    PubMed

    Zubieta, Chloe; Krishna, S Sri; Kapoor, Mili; Kozbial, Piotr; McMullan, Daniel; Axelrod, Herbert L; Miller, Mitchell D; Abdubek, Polat; Ambing, Eileen; Astakhova, Tamara; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C; Duan, Lian; Elsliger, Marc-André; Feuerhelm, Julie; Grzechnik, Slawomir K; Hale, Joanna; Hampton, Eric; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kumar, Abhinav; Marciano, David; Morse, Andrew T; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Reyes, Ron; Rife, Christopher L; Schimmel, Paul; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2007-11-01

    BtDyP from Bacteroides thetaiotaomicron (strain VPI-5482) and TyrA from Shewanella oneidensis are dye-decolorizing peroxidases (DyPs), members of a new family of heme-dependent peroxidases recently identified in fungi and bacteria. Here, we report the crystal structures of BtDyP and TyrA at 1.6 and 2.7 A, respectively. BtDyP assembles into a hexamer, while TyrA assembles into a dimer; the dimerization interface is conserved between the two proteins. Each monomer exhibits a two-domain, alpha+beta ferredoxin-like fold. A site for heme binding was identified computationally, and modeling of a heme into the proposed active site allowed for identification of residues likely to be functionally important. Structural and sequence comparisons with other DyPs demonstrate a conservation of putative heme-binding residues, including an absolutely conserved histidine. Isothermal titration calorimetry experiments confirm heme binding, but with a stoichiometry of 0.3:1 (heme:protein). (c) 2007 Wiley-Liss, Inc.

  12. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

    PubMed Central

    Zhu, Yanping; Cameron, Elizabeth; Pudlo, Nicholas A.; Porter, Nathan T.; Urs, Karthik; Thompson, Andrew J.; Cartmell, Alan; Rogowski, Artur; Hamilton, Brian S.; Chen, Rui; Tolbert, Thomas J.; Piens, Kathleen; Bracke, Debby; Vervecken, Wouter; Hakki, Zalihe; Speciale, Gaetano; Munōz-Munōz, Jose L.; Day, Andrew; Peña, Maria J.; McLean, Richard; Suits, Michael D.; Boraston, Alisdair B.; Atherly, Todd; Ziemer, Cherie J.; Williams, Spencer J.; Davies, Gideon J.; Abbott, D. Wade; Martens, Eric C.; Gilbert, Harry J.

    2016-01-01

    Yeasts, which have been a component of the human diet for at least 7000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for Bacteroides thetaiotaomicron (Bt), a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by Bt presents a ‘selfish’ model for the catabolism of this recalcitrant polysaccharide. This report shows how a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet. PMID:25567280

  13. Starch Catabolism by a Prominent Human Gut Symbiont Is Directed by the Recognition of Amylose Helices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koropatkin, Nicole M.; Martens, Eric C.; Gordon, Jeffrey I.

    2009-01-12

    The human gut microbiota performs functions that are not encoded in our Homo sapiens genome, including the processing of otherwise undigestible dietary polysaccharides. Defining the structures of proteins involved in the import and degradation of specific glycans by saccharolytic bacteria complements genomic analysis of the nutrient-processing capabilities of gut communities. Here, we describe the atomic structure of one such protein, SusD, required for starch binding and utilization by Bacteroides thetaiotaomicron, a prominent adaptive forager of glycans in the distal human gut microbiota. The binding pocket of this unique {alpha}-helical protein contains an arc of aromatic residues that complements the naturalmore » helical structure of starch and imposes this conformation on bound maltoheptaose. Furthermore, SusD binds cyclic oligosaccharides with higher affinity than linear forms. The structures of several SusD/oligosaccharide complexes reveal an inherent ligand recognition plasticity dominated by the three-dimensional conformation of the oligosaccharides rather than specific interactions with the composite sugars.« less

  14. Metabolome progression during early gut microbial colonization of gnotobiotic mice

    PubMed Central

    Marcobal, Angela; Yusufaly, Tahir; Higginbottom, Steven; Snyder, Michael; Sonnenburg, Justin L.; Mias, George I.

    2015-01-01

    The microbiome has been implicated directly in host health, especially host metabolic processes and development of immune responses. These are particularly important in infants where the gut first begins being colonized, and such processes may be modeled in mice. In this investigation we follow longitudinally the urine metabolome of ex-germ-free mice, which are colonized with two bacterial species, Bacteroides thetaiotaomicron and Bifidobacterium longum. High-throughput mass spectrometry profiling of urine samples revealed dynamic changes in the metabolome makeup, associated with the gut bacterial colonization, enabled by our adaptation of non-linear time-series analysis to urine metabolomics data. Results demonstrate both gradual and punctuated changes in metabolite production and that early colonization events profoundly impact the nature of small molecules circulating in the host. The identified small molecules are implicated in amino acid and carbohydrate metabolic processes, and offer insights into the dynamic changes occurring during the colonization process, using high-throughput longitudinal methodology. PMID:26118551

  15. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice.

    PubMed

    Choi, Vivian M; Herrou, Julien; Hecht, Aaron L; Teoh, Wei Ping; Turner, Jerrold R; Crosson, Sean; Bubeck Wardenburg, Juliane

    2016-05-01

    Bacteroides fragilis is the leading cause of anaerobic bacteremia and sepsis. Enterotoxigenic strains that produce B. fragilis toxin (BFT, fragilysin) contribute to colitis and intestinal malignancy, yet are also isolated in bloodstream infection. It is not known whether these strains harbor unique genetic determinants that confer virulence in extra-intestinal disease. We demonstrate that BFT contributes to sepsis in mice, and we identify a B. fragilis protease called fragipain (Fpn) that is required for the endogenous activation of BFT through the removal of its auto-inhibitory prodomain. Structural analysis of Fpn reveals a His-Cys catalytic dyad that is characteristic of C11-family cysteine proteases that are conserved in multiple pathogenic Bacteroides spp. and Clostridium spp. Fpn-deficient, enterotoxigenic B. fragilis has an attenuated ability to induce sepsis in mice; however, Fpn is dispensable in B. fragilis colitis, wherein host proteases mediate BFT activation. Our findings define a role for B. fragilis enterotoxin and its activating protease in the pathogenesis of bloodstream infection, which indicates a greater complexity of cellular targeting and activity of BFT than previously recognized. The expression of fpn by both toxigenic and nontoxigenic strains suggests that this protease may contribute to anaerobic sepsis in ways that extend beyond its role in toxin activation. It could thus potentially serve as a target for disease modification.

  16. Brain abscess due to Aggregatibacter aphrophilus and Bacteroides uniformis.

    PubMed

    Bogdan, Maja; Zujić Atalić, Vlasta; Hećimović, Ivan; Vuković, Dubravka

    2015-01-01

    The aim of this report was to describe the occurrence of a bacterial brain abscess in a healthy individual, without any predisposing condition. A thirteen-year old boy was admitted to the Department of Neurosurgery after the onset of vomiting, headache and dizziness. A neurological deficit was detected during the physical examination so urgent magnetic resonance imaging of the brain was performed, revealing an intrahemispheric, right positioned solitary expansive mass with ring enhancement. Purulent material was obtained during osteoplastic craniotomy with total extirpation of the brain abscess. Aggregatibacter aphrophilus and Bacteroides uniformis were isolated. The patient's general condition improved and the neurological deficit subsided as a result of the prompt recognition and treatment of this life threatening condition. To achieve a favourable clinical outcome, prompt recognition and surgical treatment of a brain abscess are of primary importance,followed by administration of appropriate antimicrobial therapy. To our best knowledge, this is the first report of this combination of microorganisms as the cause of a brain abscess. Copyright © 2015 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  17. Alterations of Bacteroides sp., Neisseria sp., Actinomyces sp., and Streptococcus sp. populations in the oropharyngeal microbiome are associated with liver cirrhosis and pneumonia.

    PubMed

    Lu, Haifeng; Qian, Guirong; Ren, Zhigang; Zhang, Chunxia; Zhang, Hua; Xu, Wei; Ye, Ping; Yang, Yunmei; Li, Lanjuan

    2015-06-23

    The microbiomes of humans are associated with liver and lung inflammation. We identified and verified alterations of the oropharyngeal microbiome and assessed their association with cirrhosis and pneumonia. Study components were as follows: (1) determination of the temporal stability of the oropharyngeal microbiome; (2) identification of oropharyngeal microbial variation in 90 subjects; (3) quantitative identification of disease-associated bacteria. DNAs enriched in bacterial sequences were produced from low-biomass oropharyngeal swabs using whole genome amplification and were analyzed using denaturing gradient gel electrophoresis analysis. Whole genome amplification combined with denaturing gradient gel electrophoresis analysis monitored successfully oropharyngeal microbial variations and showed that the composition of each subject's oropharyngeal microbiome remained relatively stable during the follow-up. The microbial composition of cirrhotic patients with pneumonia differed from those of others and clustered together in subgroup analysis. Further, species richness and the value of Shannon's diversity and evenness index increased significantly in patients with cirrhosis and pneumonia versus others (p < 0.001, versus healthy controls; p < 0.01, versus cirrhotic patients without pneumonia). Moreover, we identified variants of Bacteroides, Eubacterium, Lachnospiraceae, Neisseria, Actinomyces, and Streptococcus through phylogenetic analysis. Quantitative polymerase chain reaction assays revealed that the populations of Bacteroides, Neisseria, and Actinomycetes increased, while that of Streptococcus decreased in cirrhotic patients with pneumonia versus others (p < 0.001, versus Healthy controls; p < 0.01, versus cirrhotic patients without pneumonia). Alterations of Bacteroides, Neisseria, Actinomyces, and Streptococcus populations in the oropharyngeal microbiome were associated with liver cirrhosis and pneumonia.

  18. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.

  19. Bacteroides gingivalis-Actinomyces viscosus cohesive interactions as measured by a quantitative binding assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, S.; Ellen, R.P.; Grove, D.A.

    1987-10-01

    There is limited evidence, mostly indirect, to suggest that the adherence of Bacteroides gingivalis to teeth may be enhanced by the presence of gram-positive dental plaque bacteria like Actinomyces viscosus. The purpose of this study was to carry out direct quantitative assessments of the cohesion of B gingivalis and A. viscosus by using an in vitro assay modeled on the natural sequence in which these two species colonize the teeth. The assay allowed comparisons to be made of the adherence of /sup 3/H-labeled B. gingivalis 2561 and 381 to saliva-coated hydroxyapatite beads (S-HA) and A. viscosus WVU627- or T14V-coated S-HAmore » (actinobeads) in equilibrium and kinetics binding studies. A series of preliminary binding studies with 3H-labeled A. viscosus and parallel studies by scanning electron microscopy with unlabeled A. viscosus were conducted to establish a protocol by which actinobeads suitable for subsequent Bacteroides adherence experiments could be prepared. By scanning electron microscopy, the actinobeads had only small gaps of exposed S-HA between essentially irreversibly bound A. viscosus cells. Furthermore, B. gingivalis cells appeared to bind preferentially to the Actinomyces cells instead of the exposed S-HA. B. gingivalis binding to both S-HA and actinobeads was saturable with at least 2 X 10(9) to 3 X 10(9) cells per ml, and equilibrium with saturating concentrations was reached within 10 to 20 min. B. gingivalis always bound in greater numbers to the actinobeads than to S-HA. These findings provide direct measurements supporting the concept that cohesion with dental plaque bacteria like A. viscosus may foster the establishment of B. gingivalis on teeth by enhancing its adherence.« less

  20. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, C.; Ringleberg, D.; Scott, T.C.

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescensmore » with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.« less

  1. An active principle of Nigella sativa L., thymoquinone, showing significant antimicrobial activity against anaerobic bacteria.

    PubMed

    Randhawa, Mohammad Akram; Alenazy, Awwad Khalaf; Alrowaili, Majed Gorayan; Basha, Jamith

    2017-01-01

    Thymoquinone (TQ) is the major active principle of Nigella sativa seed (black seed) and is known to control many fungi, bacteria, and some viruses. However, the activity of TQ against anaerobic bacteria is not well demonstrated. Anaerobic bacteria can cause severe infections, including diarrhea, aspiration pneumonia, and brain abscess, particularly in immunodeficient individuals. The present study aimed to investigate the in vitro antimicrobial activity of TQ against some anaerobic pathogens in comparison to metronidazole. Standard, ATCC, strains of four anaerobic bacteria ( Clostridium difficile , Clostridium perfringens , Bacteroides fragilis , and Bacteroides thetaiotaomicron ), were initially isolated on special Brucella agar base (with hemin and vitamin K). Then, minimum inhibitory concentrations (MICs) of TQ and metronidazole were determined against these anaerobes when grown in Brucella agar, using serial agar dilution method according to the recommended guidelines for anaerobic organisms instructed by the Clinical and Laboratory Standards Institute. TQ showed a significant antimicrobial activity against anaerobic bacteria although much weaker than metronidazole. MICs of TQ and metronidazole against various anaerobic human pathogens tested were found to be between 10-160 mg/L and 0.19-6.25 mg/L, respectively. TQ controlled the anaerobic human pathogenic bacteria, which supports the use of N. sativa in the treatment of diarrhea in folk medicine. Further investigations are in need for determination of the synergistic effect of TQ in combination with metronidazole and the activity of derivatives of TQ against anaerobic infections.

  2. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth.

    PubMed

    Lopez-Siles, Mireia; Khan, Tanweer M; Duncan, Sylvia H; Harmsen, Hermie J M; Garcia-Gil, L Jesús; Flint, Harry J

    2012-01-01

    Faecalibacterium prausnitzii is one of the most abundant commensal bacteria in the healthy human large intestine, but information on genetic diversity and substrate utilization is limited. Here, we examine the phylogeny, phenotypic characteristics, and influence of gut environmental factors on growth of F. prausnitzii strains isolated from healthy subjects. Phylogenetic analysis based on the 16S rRNA sequences indicated that the cultured strains were representative of F. prausnitzii sequences detected by direct analysis of fecal DNA and separated the available isolates into two phylogroups. Most F. prausnitzii strains tested grew well under anaerobic conditions on apple pectin. Furthermore, F. prausnitzii strains competed successfully in coculture with two other abundant pectin-utilizing species, Bacteroides thetaiotaomicron and Eubacterium eligens, with apple pectin as substrate, suggesting that this species makes a contribution to pectin fermentation in the colon. Many F. prausnitzii isolates were able to utilize uronic acids for growth, an ability previously thought to be confined to Bacteroides spp. among human colonic anaerobes. Most strains grew on N-acetylglucosamine, demonstrating an ability to utilize host-derived substrates. All strains tested were bile sensitive, showing at least 80% growth inhibition in the presence of 0.5 μg/ml bile salts, while inhibition at mildly acidic pH was strain dependent. These attributes help to explain the abundance of F. prausnitzii in the colonic community but also suggest factors in the gut environment that may limit its distribution.

  3. Cultured Representatives of Two Major Phylogroups of Human Colonic Faecalibacterium prausnitzii Can Utilize Pectin, Uronic Acids, and Host-Derived Substrates for Growth

    PubMed Central

    Lopez-Siles, Mireia; Khan, Tanweer M.; Duncan, Sylvia H.; Harmsen, Hermie J. M.; Garcia-Gil, L. Jesús

    2012-01-01

    Faecalibacterium prausnitzii is one of the most abundant commensal bacteria in the healthy human large intestine, but information on genetic diversity and substrate utilization is limited. Here, we examine the phylogeny, phenotypic characteristics, and influence of gut environmental factors on growth of F. prausnitzii strains isolated from healthy subjects. Phylogenetic analysis based on the 16S rRNA sequences indicated that the cultured strains were representative of F. prausnitzii sequences detected by direct analysis of fecal DNA and separated the available isolates into two phylogroups. Most F. prausnitzii strains tested grew well under anaerobic conditions on apple pectin. Furthermore, F. prausnitzii strains competed successfully in coculture with two other abundant pectin-utilizing species, Bacteroides thetaiotaomicron and Eubacterium eligens, with apple pectin as substrate, suggesting that this species makes a contribution to pectin fermentation in the colon. Many F. prausnitzii isolates were able to utilize uronic acids for growth, an ability previously thought to be confined to Bacteroides spp. among human colonic anaerobes. Most strains grew on N-acetylglucosamine, demonstrating an ability to utilize host-derived substrates. All strains tested were bile sensitive, showing at least 80% growth inhibition in the presence of 0.5 μg/ml bile salts, while inhibition at mildly acidic pH was strain dependent. These attributes help to explain the abundance of F. prausnitzii in the colonic community but also suggest factors in the gut environment that may limit its distribution. PMID:22101049

  4. Alternative Fecal Indicators and Their Empirical Relationships with Enteric Viruses, Salmonella enterica, and Pseudomonas aeruginosa in Surface Waters of a Tropical Urban Catchment

    PubMed Central

    Liang, L.; Goh, S. G.; Vergara, G. G. R. V.; Fang, H. M.; Rezaeinejad, S.; Chang, S. Y.; Bayen, S.; Lee, W. A.; Sobsey, M. D.; Rose, J. B.

    2014-01-01

    The suitability of traditional microbial indicators (i.e., Escherichia coli and enterococci) has been challenged due to the lack of correlation with pathogens and evidence of possible regrowth in the natural environment. In this study, the relationships between alternative microbial indicators of potential human fecal contamination (Bacteroides thetaiotaomicron, Methanobrevibacter smithii, human polyomaviruses [HPyVs], and F+ and somatic coliphages) and pathogens (Salmonella spp., Pseudomonas aeruginosa, rotavirus, astrovirus, norovirus GI, norovirus GII, and adenovirus) were compared with those of traditional microbial indicators, as well as environmental parameters (temperature, conductivity, salinity, pH, dissolved oxygen, total organic carbon, total suspended solids, turbidity, total nitrogen, and total phosphorus). Water samples were collected from surface waters of urban catchments in Singapore. Salmonella and P. aeruginosa had significant positive correlations with most of the microbial indicators, especially E. coli and enterococci. Norovirus GII showed moderately strong positive correlations with most of the microbial indicators, except for HPyVs and coliphages. In general, high geometric means and significant correlations between human-specific markers and pathogens suggest the possibility of sewage contamination in some areas. The simultaneous detection of human-specific markers (i.e., B. thetaiotaomicron, M. smithii, and HPyVs) with E. coli and enterococcus supports the likelihood of recent fecal contamination, since the human-specific markers are unable to regrow in natural surface waters. Multiple-linear-regression results further confirm that the inclusion of M. smithii and HPyVs, together with traditional indicators, would better predict the occurrence of pathogens. Further study is needed to determine the applicability of such models to different geographical locations and environmental conditions. PMID:25416765

  5. Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut Symbionts

    PubMed Central

    Karunatilaka, Krishanthi S.; Cameron, Elizabeth A.; Martens, Eric C.; Koropatkin, Nicole M.

    2014-01-01

    ABSTRACT Gut microbes play a key role in human health and nutrition by catabolizing a wide variety of glycans via enzymatic activities that are not encoded in the human genome. The ability to recognize and process carbohydrates strongly influences the structure of the gut microbial community. While the effects of diet on the microbiota are well documented, little is known about the molecular processes driving metabolism. To provide mechanistic insight into carbohydrate catabolism in gut symbionts, we studied starch processing in real time in the model Bacteroides thetaiotaomicron starch utilization system (Sus) by single-molecule fluorescence. Although previous studies have explored Sus protein structure and function, the transient interactions, assembly, and collaboration of these outer membrane proteins have not yet been elucidated in live cells. Our live-cell superresolution imaging reveals that the polymeric starch substrate dynamically recruits Sus proteins, serving as an external scaffold for bacterial membrane assembly of the Sus complex, which may promote efficient capturing and degradation of starch. Furthermore, by simultaneously localizing multiple Sus outer membrane proteins on the B. thetaiotaomicron cell surface, we have characterized the dynamics and stoichiometry of starch-induced Sus complex assembly on the molecular scale. Finally, based on Sus protein knockout strains, we have discerned the mechanism of starch-induced Sus complex assembly in live anaerobic cells with nanometer-scale resolution. Our insights into the starch-induced outer membrane protein assembly central to this conserved nutrient uptake mechanism pave the way for the development of dietary or pharmaceutical therapies to control Bacteroidetes in the intestinal tract to enhance human health and treat disease. PMID:25389179

  6. Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes.

    PubMed

    Bircher, Lea; Geirnaert, Annelies; Hammes, Frederik; Lacroix, Christophe; Schwab, Clarissa

    2018-04-17

    Strict anaerobic gut microbes have been suggested as 'next-generation probiotics' for treating several intestinal disorders. The development of preservation techniques is of major importance for therapeutic application. This study investigated cryopreservation (-80°C) and lyophilization survival and storage stability (4°C for 3 months) of the strict anaerobic gut microbes Bacteroides thetaiotaomicron, Faecalibacterium prausnitzii, Roseburia intestinalis, Anaerostipes caccae, Eubacterium hallii and Blautia obeum. To improve preservation survival, protectants sucrose and inulin (both 5% w/v) were added for lyophilization and were also combined with glycerol (15% v/v) for cryopreservation. Bacterial fitness, evaluated by maximum growth rate and lag phase, viability and membrane integrity were determined using a standardized growth assay and by flow cytometry as markers for preservation resistance. Lyophilization was more detrimental to viability and fitness than cryopreservation, but led to better storage stability. Adding sucrose and inulin enhanced viability and the proportion of intact cells during lyophilization of all strains. Viability of protectant-free B. thetaiotaomicron, A. caccae and F. prausnitzii was above 50% after cryopreservation and storage and increased to above 80% if protectants were present. The addition of glycerol, sucrose and inulin strongly enhanced the viability of B. obeum, E. hallii and R. intestinalis from 0.03-2% in protectant-free cultures to 11-37%. This is the first study that quantitatively compared the effect of cryopreservation and lyophilization and the addition of selected protectants on viability and fitness of six strict anaerobic gut microbes. Our results suggest that efficiency of protectants is process- and species-specific. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Multifunctional Nutrient-Binding Proteins Adapt Human Symbiotic Bacteria for Glycan Competition in the Gut by Separately Promoting Enhanced Sensing and Catalysis

    PubMed Central

    Cameron, Elizabeth A.; Kwiatkowski, Kurt J.; Lee, Byung-Hoo; Hamaker, Bruce R.; Koropatkin, Nicole M.

    2014-01-01

    ABSTRACT To compete for the dynamic stream of nutrients flowing into their ecosystem, colonic bacteria must respond rapidly to new resources and then catabolize them efficiently once they are detected. The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model for nutrient acquisition by symbiotic gut bacteria, which harbor thousands of related Sus-like systems. Structural investigation of the four Sus outer membrane proteins (SusD, -E, -F, and -G) revealed that they contain a total of eight starch-binding sites that we demonstrated, using genetic and biochemical approaches, to play distinct roles in starch metabolism in vitro and in vivo in gnotobiotic mice. SusD, whose homologs are abundant in the human microbiome, is critical for the initial sensing of available starch, allowing sus transcriptional activation at much lower concentrations than without this function. In contrast, seven additional binding sites across SusE, -F, and -G are dispensable for sus activation. However, they optimize the rate of growth on starch in a manner dependent on the expression of the bacterial polysaccharide capsule, suggesting that they have evolved to offset the diffusion barrier created by this structure. These findings demonstrate how proteins with similar biochemical behavior can serve orthogonal functions during different stages of cellular adaptation to nutrients. Finally, we demonstrated in gnotobiotic mice fed a starch-rich diet that the Sus binding sites confer a competitive advantage to B. thetaiotaomicron in vivo in a manner that is dependent on other colonizing microbes. This study reveals how numerically dominant families of carbohydrate-binding proteins in the human microbiome fulfill separate and sometimes cooperative roles to optimize gut commensal bacteria for nutrient acquisition. PMID:25205092

  8. Alternative fecal indicators and their empirical relationships with enteric viruses, Salmonella enterica, and Pseudomonas aeruginosa in surface waters of a tropical urban catchment.

    PubMed

    Liang, L; Goh, S G; Vergara, G G R V; Fang, H M; Rezaeinejad, S; Chang, S Y; Bayen, S; Lee, W A; Sobsey, M D; Rose, J B; Gin, K Y H

    2015-02-01

    The suitability of traditional microbial indicators (i.e., Escherichia coli and enterococci) has been challenged due to the lack of correlation with pathogens and evidence of possible regrowth in the natural environment. In this study, the relationships between alternative microbial indicators of potential human fecal contamination (Bacteroides thetaiotaomicron, Methanobrevibacter smithii, human polyomaviruses [HPyVs], and F+ and somatic coliphages) and pathogens (Salmonella spp., Pseudomonas aeruginosa, rotavirus, astrovirus, norovirus GI, norovirus GII, and adenovirus) were compared with those of traditional microbial indicators, as well as environmental parameters (temperature, conductivity, salinity, pH, dissolved oxygen, total organic carbon, total suspended solids, turbidity, total nitrogen, and total phosphorus). Water samples were collected from surface waters of urban catchments in Singapore. Salmonella and P. aeruginosa had significant positive correlations with most of the microbial indicators, especially E. coli and enterococci. Norovirus GII showed moderately strong positive correlations with most of the microbial indicators, except for HPyVs and coliphages. In general, high geometric means and significant correlations between human-specific markers and pathogens suggest the possibility of sewage contamination in some areas. The simultaneous detection of human-specific markers (i.e., B. thetaiotaomicron, M. smithii, and HPyVs) with E. coli and enterococcus supports the likelihood of recent fecal contamination, since the human-specific markers are unable to regrow in natural surface waters. Multiple-linear-regression results further confirm that the inclusion of M. smithii and HPyVs, together with traditional indicators, would better predict the occurrence of pathogens. Further study is needed to determine the applicability of such models to different geographical locations and environmental conditions. Copyright © 2015, American Society for

  9. Multiple mobile promoter regions for the rare carbapenem resistance gene of Bacteroides fragilis.

    PubMed

    Podglajen, I; Breuil, J; Rohaut, A; Monsempes, C; Collatz, E

    2001-06-01

    Two novel insertion sequences (IS), IS1187 and IS1188, are described upstream from the carbapenem resistance gene cfiA in strains of Bacteroides fragilis. Mapping, with the RACE procedure, of transcription start sites of cfiA in these and two other previously reported IS showed that transcription of this rarely encountered gene is initiated close to a variety of B. fragilis consensus promoter sequences, as recently defined (D. P. Bayley, E. R. Rocha, and C. J. Smith, FEMS Microbiol. Lett. 193:149-154, 2000). In the cases of IS1186 and IS1188, these sequences overlap with putative Esigma(70) promoter sequences, while in IS942 and IS1187 such sequences can be observed either upstream or downstream of the B. fragilis promoters.

  10. Genome Sequence and Analysis of the Oral Bacterium Fusobacterium nucleatum Strain ATCC 25586

    PubMed Central

    Kapatral, Vinayak; Anderson, Iain; Ivanova, Natalia; Reznik, Gary; Los, Tamara; Lykidis, Athanasios; Bhattacharyya, Anamitra; Bartman, Allen; Gardner, Warren; Grechkin, Galina; Zhu, Lihua; Vasieva, Olga; Chu, Lien; Kogan, Yakov; Chaga, Oleg; Goltsman, Eugene; Bernal, Axel; Larsen, Niels; D'Souza, Mark; Walunas, Theresa; Pusch, Gordon; Haselkorn, Robert; Fonstein, Michael; Kyrpides, Nikos; Overbeek, Ross

    2002-01-01

    We present a complete DNA sequence and metabolic analysis of the dominant oral bacterium Fusobacterium nucleatum. Although not considered a major dental pathogen on its own, this anaerobe facilitates the aggregation and establishment of several other species including the dental pathogens Porphyromonas gingivalis and Bacteroides forsythus. The F. nucleatum strain ATCC 25586 genome was assembled from shotgun sequences and analyzed using the ERGO bioinformatics suite (http://www.integratedgenomics.com). The genome contains 2.17 Mb encoding 2,067 open reading frames, organized on a single circular chromosome with 27% GC content. Despite its taxonomic position among the gram-negative bacteria, several features of its core metabolism are similar to that of gram-positive Clostridium spp., Enterococcus spp., and Lactococcus spp. The genome analysis has revealed several key aspects of the pathways of organic acid, amino acid, carbohydrate, and lipid metabolism. Nine very-high-molecular-weight outer membrane proteins are predicted from the sequence, none of which has been reported in the literature. More than 137 transporters for the uptake of a variety of substrates such as peptides, sugars, metal ions, and cofactors have been identified. Biosynthetic pathways exist for only three amino acids: glutamate, aspartate, and asparagine. The remaining amino acids are imported as such or as di- or oligopeptides that are subsequently degraded in the cytoplasm. A principal source of energy appears to be the fermentation of glutamate to butyrate. Additionally, desulfuration of cysteine and methionine yields ammonia, H2S, methyl mercaptan, and butyrate, which are capable of arresting fibroblast growth, thus preventing wound healing and aiding penetration of the gingival epithelium. The metabolic capabilities of F. nucleatum revealed by its genome are therefore consistent with its specialized niche in the mouth. PMID:11889109

  11. Formation of glycosidases in batch and continuous culture of Bacteroides fragilis.

    PubMed Central

    Berg, J O; Nord, C E; Wadström, T

    1978-01-01

    Nine strains of bacteroides fragilis were cultivated in stirred fermentors and tested for their ability to produce glycosidases. B. fragilis subsp. vulgatus B70 was used for optimizing the production of glycosidases. The highest bacterial yield was obtained in proteose peptone-yeast extract medium. The optimum pH for maximal bacterial yield was 7.0, and the optimum temperature for growth was 37 degrees C. The formation of glycosidases was optimal between pH 6.5 and 7.5, and the optimum temperature for synthesis of glycosidases was between 33 and 37 degrees C. Culture under controlled conditions in fermentors gave more reproducible production of glycosidases than static cultures in bottles. The strain was also grown in continuous culture at a dilution rate of 0.1 liter/h at pH 7.0 and 37 degrees C with a yield of 2.0 mg of dry weight per ml in the complex medium. The formation of glycosidases remained constant during the entire continuous process. PMID:25044

  12. The capability of non-native strains of Bacteroides bacteria to detect bacteriophages as faecal indicators in a tropical area.

    PubMed

    Sirikanchana, K; Wangkahad, B; Mongkolsuk, S

    2014-12-01

    To evaluate the use of nonlocal, already-available strains of phages to indicate faecal contamination in Thailand waters. Phages of Bacteroides fragilis strains ATCC 700786 (RYC2056PH) and ATCC 51477 (HSP40PH) were measured in 71 human and animal wastewater samples in Thailand using a double-layer agar assay. Bacteriophage RYC2056PH was detected at concentrations comparable to representative human and animal wastewater samples from European and Mediterranean countries, with 61·7 and 33·3% above the threshold value of 100 PFU 100 ml(-1) in wastewater samples of human and animal origins, respectively. On the other hand, HSP40PH was detected at low concentrations in both human- and animal-polluted wastewaters. Moreover, RYC2056PH was found in 12 canal waters with human-influenced pollution and was not detected in 6 nonpolluted river waters being tested in this study. The presence of RYC2056PH could indicate nonsource-specific faecal contamination in Thailand. This study provided the first evidence that bacteriophages of the European-isolated B. fragilis strain RYC2056 could be used as nonsource-specific faecal indicators in the Southeast Asian region. The results of this study support the worldwide use of Bacteroides phages as faecal indicators. © 2014 The Society for Applied Microbiology.

  13. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti

    PubMed Central

    2011-01-01

    Background Sinorhizobium meliloti is a model system for the studies of symbiotic nitrogen fixation. An extensive polymorphism at the genetic and phenotypic level is present in natural populations of this species, especially in relation with symbiotic promotion of plant growth. AK83 and BL225C are two nodule-isolated strains with diverse symbiotic phenotypes; BL225C is more efficient in promoting growth of the Medicago sativa plants than strain AK83. In order to investigate the genetic determinants of the phenotypic diversification of S. meliloti strains AK83 and BL225C, we sequenced the complete genomes for these two strains. Results With sizes of 7.14 Mbp and 6.97 Mbp, respectively, the genomes of AK83 and BL225C are larger than the laboratory strain Rm1021. The core genome of Rm1021, AK83, BL225C strains included 5124 orthologous groups, while the accessory genome was composed by 2700 orthologous groups. While Rm1021 and BL225C have only three replicons (Chromosome, pSymA and pSymB), AK83 has also two plasmids, 260 and 70 Kbp long. We found 65 interesting orthologous groups of genes that were present only in the accessory genome, consequently responsible for phenotypic diversity and putatively involved in plant-bacterium interaction. Notably, the symbiosis inefficient AK83 lacked several genes required for microaerophilic growth inside nodules, while several genes for accessory functions related to competition, plant invasion and bacteroid tropism were identified only in AK83 and BL225C strains. Presence and extent of polymorphism in regulons of transcription factors involved in symbiotic interaction were also analyzed. Our results indicate that regulons are flexible, with a large number of accessory genes, suggesting that regulons polymorphism could also be a key determinant in the variability of symbiotic performances among the analyzed strains. Conclusions In conclusions, the extended comparative genomics approach revealed a variable subset of genes and

  14. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galardini, Marco; Mengoni, Alessio; Brilli, Matteo

    Background: Sinorhizobium meliloti is a model system for the studies of symbiotic nitrogen fixation. An extensive polymorphism at the genetic and phenotypic level is present in natural populations of this species, especially in relation with symbiotic promotion of plant growth. AK83 and BL225C are two nodule-isolated strains with diverse symbiotic phenotypes; BL225C is more efficient in promoting growth of the Medicago sativa plants than strain AK83. In order to investigate the genetic determinants of the phenotypic diversification of S. meliloti strains AK83 and BL225C, we sequenced the complete genomes for these two strains. Results: With sizes of 7.14 Mbp andmore » 6.97 Mbp, respectively, the genomes of AK83 and BL225C are larger than the laboratory strain Rm1021. The core genome of Rm1021, AK83, BL225C strains included 5124 orthologous groups, while the accessory genome was composed by 2700 orthologous groups. While Rm1021 and BL225C have only three replicons (Chromosome, pSymA and pSymB), AK83 has also two plasmids, 260 and 70 Kbp long. We found 65 interesting orthologous groups of genes that were present only in the accessory genome, consequently responsible for phenotypic diversity and putatively involved in plant-bacterium interaction. Notably, the symbiosis inefficient AK83 lacked several genes required for microaerophilic growth inside nodules, while several genes for accessory functions related to competition, plant invasion and bacteroid tropism were identified only in AK83 and BL225C strains. Presence and extent of polymorphism in regulons of transcription factors involved in symbiotic interaction were also analyzed. Our results indicate that regulons are flexible, with a large number of accessory genes, suggesting that regulons polymorphism could also be a key determinant in the variability of symbiotic performances among the analyzed strains.« less

  15. Oxidation of Ethylene Glycol by a Salt-Requiring Bacterium

    PubMed Central

    Caskey, William H.; Taber, Willard A.

    1981-01-01

    Bacterium T-52, cultured on ethylene glycol, readily oxidized glycolate and glyoxylate and exhibited elevated activities of ethylene glycol dehydrogenase and glycolate oxidase. Labeled glyoxylate was identified in reaction mixtures containing [14C]-ethylene glycol, but no glycolate was detected. The most likely pathway of ethylene glycol catabolism by bacterium T-52 is sequential oxidation to glycolate and glyoxylate. PMID:16345810

  16. Pirin-like proteins are regulated by oxidative stress and iron in bacteroides fragilis and involved in the modulation of central energy metabolism and metronidazole susceptibility

    USDA-ARS?s Scientific Manuscript database

    Bacteroides fragilis is the most frequent anaerobe isolated from human infections. Clinical isolates of B. fragilis are among the highest aerotolerant anaerobic bacteria. The oxidative stress response (OSR) in B. fragilis induces an array of genes enabling them to survive prolonged oxygen exposure i...

  17. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaung, Stephanie J.; Deng, Luxue; Li, Ning

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Populationmore » dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Here, our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.« less

  18. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    DOE PAGES

    Yaung, Stephanie J.; Deng, Luxue; Li, Ning; ...

    2015-03-11

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Populationmore » dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Here, our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.« less

  19. A bacterial homolog of a eukaryotic inositol phosphate signaling enzyme mediates cross-kingdom dialog in the mammalian gut.

    PubMed

    Stentz, Régis; Osborne, Samantha; Horn, Nikki; Li, Arthur W H; Hautefort, Isabelle; Bongaerts, Roy; Rouyer, Marine; Bailey, Paul; Shears, Stephen B; Hemmings, Andrew M; Brearley, Charles A; Carding, Simon R

    2014-02-27

    Dietary InsP6 can modulate eukaryotic cell proliferation and has complex nutritive consequences, but its metabolism in the mammalian gastrointestinal tract is poorly understood. Therefore, we performed phylogenetic analyses of the gastrointestinal microbiome in order to search for candidate InsP6 phosphatases. We determined that prominent gut bacteria express homologs of the mammalian InsP6 phosphatase (MINPP) and characterized the enzyme from Bacteroides thetaiotaomicron (BtMinpp). We show that BtMinpp has exceptionally high catalytic activity, which we rationalize on the basis of mutagenesis studies and by determining its crystal structure at 1.9 Å resolution. We demonstrate that BtMinpp is packaged inside outer membrane vesicles (OMVs) protecting the enzyme from degradation by gastrointestinal proteases. Moreover, we uncover an example of cross-kingdom cell-to-cell signaling, showing that the BtMinpp-OMVs interact with intestinal epithelial cells to promote intracellular Ca(2+) signaling. Our characterization of BtMinpp offers several directions for understanding how the microbiome serves human gastrointestinal physiology. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. A Bacterial Homolog of a Eukaryotic Inositol Phosphate Signaling Enzyme Mediates Cross-kingdom Dialog in the Mammalian Gut

    PubMed Central

    Stentz, Régis; Osborne, Samantha; Horn, Nikki; Li, Arthur W.H.; Hautefort, Isabelle; Bongaerts, Roy; Rouyer, Marine; Bailey, Paul; Shears, Stephen B.; Hemmings, Andrew M.; Brearley, Charles A.; Carding, Simon R.

    2014-01-01

    Summary Dietary InsP6 can modulate eukaryotic cell proliferation and has complex nutritive consequences, but its metabolism in the mammalian gastrointestinal tract is poorly understood. Therefore, we performed phylogenetic analyses of the gastrointestinal microbiome in order to search for candidate InsP6 phosphatases. We determined that prominent gut bacteria express homologs of the mammalian InsP6 phosphatase (MINPP) and characterized the enzyme from Bacteroides thetaiotaomicron (BtMinpp). We show that BtMinpp has exceptionally high catalytic activity, which we rationalize on the basis of mutagenesis studies and by determining its crystal structure at 1.9 Å resolution. We demonstrate that BtMinpp is packaged inside outer membrane vesicles (OMVs) protecting the enzyme from degradation by gastrointestinal proteases. Moreover, we uncover an example of cross-kingdom cell-to-cell signaling, showing that the BtMinpp-OMVs interact with intestinal epithelial cells to promote intracellular Ca2+ signaling. Our characterization of BtMinpp offers several directions for understanding how the microbiome serves human gastrointestinal physiology. PMID:24529702

  1. The NAG Sensor NagC Regulates LEE Gene Expression and Contributes to Gut Colonization by Escherichia coli O157:H7.

    PubMed

    Le Bihan, Guillaume; Sicard, Jean-Félix; Garneau, Philippe; Bernalier-Donadille, Annick; Gobert, Alain P; Garrivier, Annie; Martin, Christine; Hay, Anthony G; Beaudry, Francis; Harel, Josée; Jubelin, Grégory

    2017-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 are human pathogens responsible for bloody diarrhea and renal failures. EHEC employ a type 3 secretion system to attach directly to the human colonic epithelium. This structure is encoded by the locus of enterocyte effacement (LEE) whose expression is regulated in response to specific nutrients. In this study, we show that the mucin-derived sugars N-acetylglucosamine (NAG) and N-acetylneuraminic acid (NANA) inhibit EHEC adhesion to epithelial cells through down-regulation of LEE expression. The effect of NAG and NANA is dependent on NagC, a transcriptional repressor of the NAG catabolism in E. coli . We show that NagC is an activator of the LEE1 operon and a critical regulator for the colonization of mice intestine by EHEC. Finally, we demonstrate that NAG and NANA as well as the metabolic activity of Bacteroides thetaiotaomicron affect the in vivo fitness of EHEC in a NagC-dependent manner. This study highlights the role of NagC in coordinating metabolism and LEE expression in EHEC and in promoting EHEC colonization in vivo .

  2. The NAG Sensor NagC Regulates LEE Gene Expression and Contributes to Gut Colonization by Escherichia coli O157:H7

    PubMed Central

    Le Bihan, Guillaume; Sicard, Jean-Félix; Garneau, Philippe; Bernalier-Donadille, Annick; Gobert, Alain P.; Garrivier, Annie; Martin, Christine; Hay, Anthony G.; Beaudry, Francis; Harel, Josée; Jubelin, Grégory

    2017-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 are human pathogens responsible for bloody diarrhea and renal failures. EHEC employ a type 3 secretion system to attach directly to the human colonic epithelium. This structure is encoded by the locus of enterocyte effacement (LEE) whose expression is regulated in response to specific nutrients. In this study, we show that the mucin-derived sugars N-acetylglucosamine (NAG) and N-acetylneuraminic acid (NANA) inhibit EHEC adhesion to epithelial cells through down-regulation of LEE expression. The effect of NAG and NANA is dependent on NagC, a transcriptional repressor of the NAG catabolism in E. coli. We show that NagC is an activator of the LEE1 operon and a critical regulator for the colonization of mice intestine by EHEC. Finally, we demonstrate that NAG and NANA as well as the metabolic activity of Bacteroides thetaiotaomicron affect the in vivo fitness of EHEC in a NagC-dependent manner. This study highlights the role of NagC in coordinating metabolism and LEE expression in EHEC and in promoting EHEC colonization in vivo. PMID:28484684

  3. Isolation of dextran-hydrolyzing intestinal bacteria and characterization of their dextranolytic activities.

    PubMed

    Kim, Jin Kyoung; Shin, So-Yeon; Moon, Jin Seok; Li, Ling; Cho, Seung Kee; Kim, Tae-Jip; Han, Nam Soo

    2015-06-01

    The aim of this study was to isolate dextran-hydrolyzing bacteria from the human intestines and to identify their dextranolytic enzymes. For this, dextranase-producing microorganisms were screened from fecal samples by using blue dextran-containing media. Colonies producing a decolorized zone were isolated and they were grouped using RAPD-PCR. 16S rRNA gene sequencing analysis revealed the isolates were Bacteroides (B.) thetaiotaomicron, B. ovatus, B. vulgatus, B. dorei, B. xylanisolvens, B. uniformis, and Veillonella (V.) rogosae. Thin layer chromatography analysis showed that the dextranases exhibit mainly endo-type activity and produce various oligosaccharides including isomaltose and isomaltotriose. Zymogram analysis demonstrated that enzymes localized mainly in the cell membrane fraction and the molecular weight was 50-70 kDa. When cultured in a dextran-containing medium, all strains isolated in this study produced short-chain fatty acids, with butyric acid as the major compound. This is the first study to report that human intestinal B. xylanisolvens, B. dorei, and V. rogosae metabolize dextran utilizing dextranolytic enzymes. © 2015 Wiley Periodicals, Inc.

  4. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides

    PubMed Central

    Wu, Meng; McNulty, Nathan P.; Rodionov, Dmitry A.; Khoroshkin, Matvei S.; Griffin, Nicholas W.; Cheng, Jiye; Latreille, Phil; Kerstetter, Randall A.; Terrapon, Nicolas; Henrissat, Bernard; Osterman, Andrei L.; Gordon, Jeffrey I.

    2015-01-01

    Libraries of tens of thousands of transposon mutants generated from each of four human gut Bacteroides strains, two representing the same species, were introduced simultaneously into gnotobiotic mice together with 11 other wild-type strains to generate a 15-member artificial human gut microbiota. Mice received one of two distinct diets monotonously, or both in ordered sequence. Quantifying the abundance of mutants in different diet contexts allowed gene-level characterization of fitness determinants, niche, stability and resilience, and yielded a prebiotic (arabinoxylan) that allowed targeted manipulation of the community. The approach described is generalizable and should be useful for defining mechanisms critical for sustaining and/or approaches for deliberately reconfiguring the highly adaptive and durable relationship between the human gut microbiota and host in ways that promote wellness. PMID:26430127

  5. Capsule-Transmitted Gut Symbiotic Bacterium of the Japanese Common Plataspid Stinkbug, Megacopta punctatissima

    PubMed Central

    Fukatsu, Takema; Hosokawa, Takahiro

    2002-01-01

    The Japanese common plataspid stinkbug, Megacopta punctatissima, deposits small brown particles, or symbiont capsules, on the underside of the egg mass for the purpose of transmission of symbiotic bacteria to the offspring. We investigated the microbiological aspects of the bacteria contained in the capsule, such as microbial diversity, phylogenetic placement, localization in vivo, and fitness effects on the host insect. Restriction fragment length polymorphism analysis of 16S ribosomal DNA clones revealed that a single bacterial species dominates the microbiota in the capsule. The bacterium was not detected in the eggs but in the capsules, which unequivocally demonstrated that the bacterium is transmitted to the offspring of the insect orally rather than transovarially, through probing of the capsule content. Molecular phylogenetic analysis showed that the bacterium belongs to the γ-subdivision of the Proteobacteria. In adult insects the bacterium was localized in the posterior section of the midgut. Deprivation of the bacterium from the nymphs resulted in retarded development, arrested growth, abnormal body coloration, and other symptoms, suggesting that the bacterium is essential for normal development and growth of the host insect. PMID:11772649

  6. Amino Acid and Vitamin Requirements of Several Bacteroides Strains

    PubMed Central

    Quinto, Grace

    1966-01-01

    Nutritional studies were performed on nine Bacteroides strains, by use of the methodology and media of anaerobic rumen microbiology. Ristella perfoetens CCI required l-arginine hydrochloride, l-tryptophan, l-leucine, l-histidine hydrochloride, l-cysteine hydrochloride, dl-valine, dl-tyrosine, and the vitamin calcium-d-pantothenate, since scant turbidity developed in media without these nutrients. R. perfoetens was stimulated by glycine, dl-lysine hydrochloride, dl-isoleucine, l-proline, l-glutamic acid, dl-alanine, dl-phenylalanine, dl-methionine, and the vitamins nicotinamide and p-aminobenzoic acid, since maximal turbidity developed more slowly in media without these nutrients than in complete medium. Medium A-23, which was devised for R. perfoetens, contained salts, 0.0002% nicotinamide and calcium d-pantothenate, 0.00001% p-aminobenzoic acid, 0.044% l-tryptophan, 0.09% l-glutamic acid, and 0.1% of the other 13 amino acids listed above. Zuberella clostridiformis and seven strains of R. pseudoinsolita did not require vitamins, and showed no absolute requirement for any one amino acid. Various strains produced maximal turbidity more slowly in media deficient in l-proline, glycine, l-glutamic acid, dl-serine, l-histidine hydrochloride, dl-alanine, or l-cysteine hydrochloride, than in complete medium. These eight strains grew optimally in medium A-23 plus 0.1% dl-serine but without vitamins. PMID:16349673

  7. Swimming efficiency of bacterium Escherichia coli

    PubMed Central

    Chattopadhyay, Suddhashil; Moldovan, Radu; Yeung, Chuck; Wu, X. L.

    2006-01-01

    We use measurements of swimming bacteria in an optical trap to determine fundamental properties of bacterial propulsion. In particular, we directly measure the force required to hold the bacterium in the optical trap and determine the propulsion matrix, which relates the translational and angular velocity of the flagellum to the torques and forces propelling the bacterium. From the propulsion matrix, dynamical properties such as torques, swimming speed, and power can be obtained by measuring the angular velocity of the motor. We find significant heterogeneities among different individuals even though all bacteria started from a single colony. The propulsive efficiency, defined as the ratio of the propulsive power output to the rotary power input provided by the motors, is found to be ≈2%, which is consistent with the efficiency predicted theoretically for a rigid helical coil. PMID:16954194

  8. Coiled to diffuse: Brownian motion of a helical bacterium.

    PubMed

    Butenko, Alexander V; Mogilko, Emma; Amitai, Lee; Pokroy, Boaz; Sloutskin, Eli

    2012-09-11

    We employ real-time three-dimensional confocal microscopy to follow the Brownian motion of a fixed helically shaped Leptospira interrogans (LI) bacterium. We extract from our measurements the translational and the rotational diffusion coefficients of this bacterium. A simple theoretical model is suggested, perfectly reproducing the experimental diffusion coefficients, with no tunable parameters. An older theoretical model, where edge effects are neglected, dramatically underestimates the observed rates of translation. Interestingly, the coiling of LI increases its rotational diffusion coefficient by a factor of 5, compared to a (hypothetical) rectified bacterium of the same contour length. Moreover, the translational diffusion coefficients would have decreased by a factor of ~1.5, if LI were rectified. This suggests that the spiral shape of the spirochaete bacteria, in addition to being employed for their active twisting motion, may also increase the ability of these bacteria to explore the surrounding fluid by passive Brownian diffusion.

  9. Stimulation of matrix metalloproteinases by black-pigmented Bacteroides in human pulp and periodontal ligament cell cultures.

    PubMed

    Chang, Yu-Chao; Lai, Chung-Chih; Yang, Shun-Fa; Chan, You; Hsieh, Yih-Shou

    2002-02-01

    Matrix metalloproteinases (MMPs) are a group of proteolytic enzymes capable of degrading most components of the extracellular matrix. Recently, evidence has shown that MMPs may play a role in tissue degradation in inflamed dental pulp. To date very little is known regarding the mechanism of extracellular matrix destruction at the site of bacterial infection. The purpose of this study was to determine the effects of the supernatants from Porphyromonas endodontalis and Porphyromonas gingivalis on the production and secretion of MMPs by primary human pulp and periodontal ligament (PDL) cell cultures in vitro. The results were evaluated by substrate gel zymography from long-term cultures. The main gelatinase secreted by human pulp and PDL cells migrated at 72 kDa and represented MMP-2. Minor gelatinolytic bands were also observed at 92 kDa regions that correspond to MMP-9. After an 8-day culture period, P. endodontalis and P. gingivalis were found to elevate MMP-2 production both in human pulp and PDL cell cultures. In addition, the stimulation was in a dose- and time-dependent manner. Both human pulp and PDL cells, however, treated with either P. endodontalis or P. gingivalis had no effect on the pattern of MMP-9 produced or secreted in either cell extracts or conditioned medium fractions. These results indicate that black-pigmented Bacteroides species play an important role in tissue destruction and disintegration of extracellular matrix in pulpal and periapical diseases. Thus, activation of MMPs may be one of the distinct host degradative pathways in the pathogenesis of microbial-induced pulpal and periapical lesion. An understanding of the actions of these black-pigmented Bacteroides species on pulp and PDL cells may result in new therapies to augment current treatment of pulpal and periapical lesions.

  10. [Partial biological characteristics and algicidal activity of an algicidal bacterium].

    PubMed

    Li, San-Hua; Zhang, Qi-Ya

    2013-02-01

    An algicidal bacterium was isolated from freshwater (Lake Donghu in Wuhan) and coded as A01. The morphology of the algicidal bacterium was observed using optical microscope and electron microscopes, the results showed that A01 was rod-shaped, approximately 1.5 microm in length and 0.45 microm in width and with no flagella structure. A01 was Gram-negative and belongs to the family Acinetobacter sp. though identification by Gram's staining and 16S rDNA gene analysis. A01 exhibited strong algicidal activity on the bloom-forming cyanobacterium Anabaena eucompacta under laboratory conditions. The removal rate of chlorophyll a after 7-day incubation with the culture supernatant of A01 and thalli were 77% and 61%, respectively. Microscopic observation showed that almost all cyanobacterial cells were destroyed within 3 d of co-incubation with the supernatant of algicidal bacterium, but a mass of the cyanobacterial cell lysis was observed only after 5 d of co-incubation with the thalli of algicidal bacterium. These results indicated that the main algicidal component of A01 was in its culture supernatant. In other words, the strain A01 could secrete algicidal component against Anabaena eucompacta.

  11. Generation of a rabbit single-chain fragment variable (scFv) antibody for specific detection of Bradyrhizobium sp. DOA9 in both free-living and bacteroid forms

    PubMed Central

    Srila, Witsanu; Yuttavanichakul, Watcharin; Teamtisong, Kamonluck; Teaumroong, Neung; Boonkerd, Nantakorn; Tittabutr, Panlada

    2017-01-01

    A simple and reliable method for the detection of specific nitrogen-fixing bacteria in both free-living and bacteroid forms is essential for the development and application of biofertilizer. Traditionally, a polyclonal antibody generated from an immunized rabbit was used for detection. However, the disadvantages of using a polyclonal antibody include limited supply and cross-reactivity to related bacterial strains. This is the first report on the application of phage display technology for the generation of a rabbit recombinant monoclonal antibody for specific detection and monitoring of nitrogen-fixing bacteria in both free-living form and in plant nodules. Bradyrhizobium sp. DOA9, a broad host range soil bacteria, originally isolated from the root nodules of Aeschynomene americana in Thailand was used as a model in this study. A recombinant single-chain fragment variable (scFv) antibody library was constructed from the spleen of a rabbit immunized with DOA9. After three rounds of biopanning, one specific phage-displayed scFv antibody, designated bDOA9rb8, was identified. Specific binding of this antibody was confirmed by phage enzyme-linked immunosorbent assay (phage ELISA). The phage antibody could bind specifically to DOA9 in both free-living cells (pure culture) and bacteroids inside plant nodules. In addition to phage ELISA, specific and robust immunofluorescence staining of both free-living and bacteroid forms could also be observed by confocal-immunofluorescence imaging, without cross-reactivity with other tested bradyrhizobial strains. Moreover, specific binding of free scFv to DOA9 was also demonstrated by ELISA. This recombinant antibody can also be used for the study of the molecular mechanism of plant–microbe interactions in the future. PMID:28654662

  12. Generation of a rabbit single-chain fragment variable (scFv) antibody for specific detection of Bradyrhizobium sp. DOA9 in both free-living and bacteroid forms.

    PubMed

    Vu, Nguyen Xuan; Pruksametanan, Natcha; Srila, Witsanu; Yuttavanichakul, Watcharin; Teamtisong, Kamonluck; Teaumroong, Neung; Boonkerd, Nantakorn; Tittabutr, Panlada; Yamabhai, Montarop

    2017-01-01

    A simple and reliable method for the detection of specific nitrogen-fixing bacteria in both free-living and bacteroid forms is essential for the development and application of biofertilizer. Traditionally, a polyclonal antibody generated from an immunized rabbit was used for detection. However, the disadvantages of using a polyclonal antibody include limited supply and cross-reactivity to related bacterial strains. This is the first report on the application of phage display technology for the generation of a rabbit recombinant monoclonal antibody for specific detection and monitoring of nitrogen-fixing bacteria in both free-living form and in plant nodules. Bradyrhizobium sp. DOA9, a broad host range soil bacteria, originally isolated from the root nodules of Aeschynomene americana in Thailand was used as a model in this study. A recombinant single-chain fragment variable (scFv) antibody library was constructed from the spleen of a rabbit immunized with DOA9. After three rounds of biopanning, one specific phage-displayed scFv antibody, designated bDOA9rb8, was identified. Specific binding of this antibody was confirmed by phage enzyme-linked immunosorbent assay (phage ELISA). The phage antibody could bind specifically to DOA9 in both free-living cells (pure culture) and bacteroids inside plant nodules. In addition to phage ELISA, specific and robust immunofluorescence staining of both free-living and bacteroid forms could also be observed by confocal-immunofluorescence imaging, without cross-reactivity with other tested bradyrhizobial strains. Moreover, specific binding of free scFv to DOA9 was also demonstrated by ELISA. This recombinant antibody can also be used for the study of the molecular mechanism of plant-microbe interactions in the future.

  13. Fish meal extract bile esculin agar (FMBE) a selective medium for Bacteroides fragilis group.

    PubMed

    Beena, V K; Rao, S; Kotian, M; Shivananda, P G

    1997-07-01

    Fish meal extract bile esculin agar (FMBE) is prepared using Fish meal extract concentrate as the basal substance, for the selective isolation and presumptive identification of B.fragilis group. The efficiency of the medium was evaluated by growing stock cultures of B.fragilis groups as well as inoculating clinical specimens and comparing the results with Bacteroides bile esculin agar (BBE). All the 87 stock cultures of B.fragilis grew on FMBE and BBE. No other anaerobes tested grew on the medium. However 7 out of 65 neomycin resistant aerobes grew on the FMBE. From the 100 clinical samples, 62 strains of B. Fragilis group were recovered on FMBE and BBE, and 53 strains on supplemented BHIBA. The cost effectiveness, selectivity and the ability to detect esculin hydrolysis will enable FMBE as a suitable medium as comparable to that of BBE, if not superior.

  14. Bacteroides fragilis mobilizable transposon Tn5520 requires a 71 base pair origin of transfer sequence and a single mobilization protein for relaxosome formation during conjugation.

    PubMed

    Vedantam, Gayatri; Knopf, Sarah; Hecht, David W

    2006-01-01

    Tn5520 is the smallest known bacterial mobilizable transposon and was isolated from an antibiotic resistant Bacteroides fragilis clinical isolate. When a conjugation apparatus is provided in trans, Tn5520 is mobilized (transferred) efficiently within, and from, both Bacteroides spp. and Escherichia coli. Only two genes are present on Tn5520; one encodes an integrase, and the other a multifunctional mobilization (Mob) protein BmpH. BmpH is essential for Tn5520 mobility. The focus of this study was to identify the Tn5520 origin of conjugative transfer (oriT) and to study BmpH-oriT binding. We delimited the functional Tn5520 oriT to a 71 bp sequence upstream of the bmpH gene. A plasmid vector harbouring this minimal 71 bp oriT was mobilized at the same frequency as that of intact Tn5520. The minimal oriT contains one 17 bp inverted repeat (IR) sequence. We constructed and tested multiple IR mutants and showed that the IR was essential in its entirety for mobilization. A nick site sequence (5'-GCTAC-3') was also identified within the minimal oriT; this sequence resembled nick sites found in plasmids of Gram positive origin. We further showed that mutation of a highly conserved GC dinucleotide in the nick site sequence completely abolished mobilization. We also purified BmpH and showed that it specifically bound a Tn5520 oriT fragment in electrophoretic mobility shift assays. We also identified non-nick site sequences within the minimal oriT that were essential for mobilization. We hypothesize that transposon-based single Mob protein systems may contribute to efficient gene dissemination from Bacteroides spp., because fewer DNA processing proteins are required for relaxosome formation.

  15. Quantitative Profiling of Colorectal Cancer-Associated Bacteria Reveals Associations between Fusobacterium spp., Enterotoxigenic Bacteroides fragilis (ETBF) and Clinicopathological Features of Colorectal Cancer

    PubMed Central

    Viljoen, Katie S.; Dakshinamurthy, Amirtha; Goldberg, Paul; Blackburn, Jonathan M.

    2015-01-01

    Various studies have presented clinical or in vitro evidence linking bacteria to colorectal cancer, but these bacteria have not previously been concurrently quantified by qPCR in a single cohort. We quantify these bacteria (Fusobacterium spp., Streptococcus gallolyticus, Enterococcus faecalis, Enterotoxigenic Bacteroides fragilis (ETBF), Enteropathogenic Escherichia coli (EPEC), and afaC- or pks-positive E. coli) in paired tumour and normal tissue samples from 55 colorectal cancer patients. We further investigate the relationship between a) the presence and b) the level of colonisation of each bacterial species with site and stage of disease, age, gender, ethnicity and MSI-status. With the exception of S. gallolyticus, we detected all bacteria profiled here in both tumour and normal samples at varying frequencies. ETBF (FDR = 0.001 and 0.002 for normal and tumour samples) and afaC-positive E. coli (FDR = 0.03, normal samples) were significantly enriched in the colon compared to the rectum. ETBF (FDR = 0.04 and 0.002 for normal and tumour samples, respectively) and Fusobacterium spp. (FDR = 0.03 tumour samples) levels were significantly higher in late stage (III/IV) colorectal cancers. Fusobacterium was by far the most common bacteria detected, occurring in 82% and 81% of paired tumour and normal samples. Fusobacterium was also the only bacterium that was significantly higher in tumour compared to normal samples (p = 6e-5). We also identified significant associations between high-level colonisation by Fusobacterium and MSI-H (FDR = 0.05), age (FDR = 0.03) or pks-positive E. coli (FDR = 0.01). Furthermore, we exclusively identified atypical EPEC in our cohort, which has not been previously reported in association with colorectal cancer. By quantifying colorectal cancer-associated bacteria across a single cohort, we uncovered inter- and intra-individual patterns of colonization not previously recognized, as well as important associations with clinicopathological

  16. Gut bacterium of Dendrobaena veneta (Annelida: Oligochaeta) possesses antimycobacterial activity.

    PubMed

    Fiołka, Marta J; Zagaja, Mirosław P; Piersiak, Tomasz D; Wróbel, Marek; Pawelec, Jarosław

    2010-09-01

    The new bacterial strain with antimycobacterial activity has been isolated from the midgut of Dendrobaena veneta (Annelida). Biochemical and molecular characterization of isolates from 18 individuals identified all as Raoultella ornithinolytica genus with 99% similarity. The bacterium is a possible symbiont of the earthworm D. veneta. The isolated microorganism has shown the activity against four strains of fast-growing mycobacteria: Mycobacterium butiricum, Mycobacterium jucho, Mycobacterium smegmatis and Mycobacterium phlei. The multiplication of the gut bacterium on plates with Sauton medium containing mycobacteria has caused a lytic effect. After the incubation of the cell free extract prepared from the gut bacterium with four strains of mycobacteria in liquid Sauton medium, the cells of all tested strains were deformed and divided to small oval forms and sometimes created long filaments. The effect was observed by the use of light, transmission and scanning microscopy. Viability of all examined species of mycobacteria was significantly decreased. The antimycobacterial effect was probably the result of the antibiotic action produced by the gut bacterium of the earthworm. The application of ultrafiltration procedure allowed to demonstrate that antimicrobial substance with strong antimycobacterial activity from bacterial culture supernatant, is a protein with the molecular mass above 100 kDa. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila.

    PubMed

    Kucera, Dan; Pernicová, Iva; Kovalcik, Adriana; Koller, Martin; Mullerova, Lucie; Sedlacek, Petr; Mravec, Filip; Nebesarova, Jana; Kalina, Michal; Marova, Ivana; Krzyzanek, Vladislav; Obruca, Stanislav

    2018-05-01

    This work explores molecular, morphological as well as biotechnological features of the highly promising polyhydroxyalkanoates (PHA) producer Halomonas halophila. Unlike many other halophiles, this bacterium does not require expensive complex media components and it is capable to accumulate high intracellular poly(3-hydroxybutyrate) (PHB) fractions up to 82% of cell dry mass. Most remarkably, regulating the concentration of NaCl apart from PHB yields influences also the polymer's molecular mass and polydispersity. The bacterium metabolizes various carbohydrates including sugars predominant in lignocelluloses and other inexpensive substrates. Therefore, the bacterium was employed for PHB production on hydrolysates of cheese whey, spent coffee grounds, sawdust and corn stover, which were hydrolyzed by HCl; required salinity of cultivation media was set up during neutralization by NaOH. The bacterium was capable to use all the tested hydrolysates as well as sugar beet molasses for PHB biosynthesis, indicating its potential for industrial PHB production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. [Study on anti-bacterium activity of ginkgolic acids and their momomers].

    PubMed

    Yang, Xiaoming; Zhu, Wei; Chen, Jun; Qian, Zhiyu; Xie, Jimin

    2004-09-01

    Ginkgolic acids and their three monomers were separated from ginkgo sarcotestas. The anti-bacterium activity of ginkgolic acids were tested. The relation between the anti-bacterium activity and side chain of ginkgolic acid were studied. The MIC of ginkgolic acids and their three monomers and salicylic acid were tested. Ginkgolic acid has strong inhibitive effect on G+-bacterium. Salicylic acid has no side chain, so no anti-bacterial activity. When the length of gingkolic acid side chain is C13:0, it has the strongest anti-bacterial activity in three monomers. The side chain of ginkgolic acid is the key functional group that possessed anti-bacterial activity. The length of Ginkgolic acid was the main effective factor of anti-bacterial activity.

  19. [Duration of the preventive use of antibiotics in colorectal surgery--single administration versus short-term prevention].

    PubMed

    Bittner, R; Butters, M; Rampf, W; Kapfer, X

    1989-01-01

    The effect of a combination of 4 g mezlocillin and 0.5 g metronidazole for the prophylaxis against infections in a one-shot dose immediately preoperatively compared to a short-time dose of 2 days given to 90 patients with resection of colorectal carcinoma was investigated in a prospective and randomized study. 6 patients developed a wound infection in the early postoperative phase; 4 of these infections (3 were severe, 1 was mild) occurred in the one-shot group and 2 in the short-time prophylaxis group. After more than 20 days postoperatively 3 late infections were observed which had a mild course (2 cases in the one-shot group, 1 case in the short-time prophylaxis group). All infections were localized in the sacral wound region in patients with abdominoperineal resection. The abdominal wounds healed per primam in each case. Besides those, 26 infections of the urinary tract were observed, which occurred significantly more often after the one-shot dose (40.9%) than with the short-time prophylaxis (18.6%). Intraoperative smears of the lumen of the bowels showed a remaining bacterial settlement. Besides Bacteroides species, especially Escherichia coli were found among the isolates. Moreover in some cases Clostridium, Klebsiella, Proteus and Pseudomonas could be identified. Smears of the site of operation (sacral/peritoneal cavity) were contaminated in over 50%, above all by Bacteroides species; besides those, E. coli were found most often. The subcutaneous smears showed a growth of the germs only in a few cases. Aerobic bacteria in 93.8%, anaerobic bacteria except for thetaiotaomicron and B. asaccharolyticus in 85.1%.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  1. Safety Evaluation of a Novel Strain of Bacteroides fragilis.

    PubMed

    Wang, Ye; Deng, Huimin; Li, Zhengchao; Tan, Yafang; Han, Yanping; Wang, Xiaoyi; Du, Zongmin; Liu, Yangyang; Yang, Ruifu; Bai, Yang; Bi, Yujing; Zhi, Fachao

    2017-01-01

    Commensal non-toxigenic Bacteroides fragilis confers powerful health benefits to the host, and has recently been identified as a promising probiotic candidate. We previously isolated B. fragilis strain ZY-312 and identified it as a novel strain based on 16S rRNA sequencing and morphological analyses. We also determined that ZY-312 displayed desirable probiotic properties, including tolerance to simulated digestive fluid, adherence, and in vitro safety. In this study, we aim to investigate whether ZY-312 meets the safety criteria required for probiotic bacteria through comprehensive and systematic evaluation. Consequently, the fatty acid profile, metabolite production, and biochemical activity of strain ZY-312 were found to closely resemble descriptions of B. fragilis in Bergey's manual. Taxonomic identification of strain ZY-312 based on whole genome sequencing indicated that ZY-312 and ATCC 25285 showed 99.99% similarity. The 33 putative virulence-associated factors identified in ZY-312 mainly encoded structural proteins and proteins with physiological activity, while the lack of bft indicated that ZY-312 was non-toxigenic. In vivo safety was proven in both normal and immune-deficient mice. The 11 identified antibiotic resistance genes were located on the chromosome rather than on a plasmid, ruling out the risk of plasmid-mediated transfer of antibiotic resistance. In vitro , ZY-312 showed resistance to cefepime, kanamycin, and streptomycin. Finally, and notably, ZY-312 exhibited high genetic stability after 100 passages in vitro . This study supplements the foundation work on the safety evaluation of ZY-312, and contributes to the development of the first probiotic representative from the dominant Bacteroidetes phylum.

  2. Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieira, J.M.B.D., E-mail: jmanya@terra.com.br; Laboratorio de Biologia de Anaerobios, IMPPG, UFRJ, Rio de Janeiro; Seabra, S.H.

    Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed inmore » BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.« less

  3. Direct measurement of interaction forces between a single bacterium and a flat plate.

    PubMed

    Klein, Jonah D; Clapp, Aaron R; Dickinson, Richard B

    2003-05-15

    A technique for precisely measuring the equilibrium and viscous interaction forces between a single bacterium and a flat surface as functions of separation distance is described. A single-beam gradient optical trap was used to micromanipulate the bacterium against a flat surface while evanescent wave light scattering was used to measure separation distances. Calibrating the optical trap far from the surface allowed the trapped bacterium to be used as a force probe. Equilibrium force-distance profiles were determined by measuring the deflection of the cell from the center of the optical trap at various trap positions. Simultaneously, viscous forces were determined by measuring the relaxation time for the fluctuating bacterium. Absolute distances were determined using a best-fit approximation to the theoretical prediction for the hindered mobility of a diffusing sphere near a wall. Using this approach, forces in the range from 0.01 to 4 pN were measured at near-nanometer resolution between Staphylococcus aureus and glass that was bare or coated with adsorbed protein.

  4. Correlation between diet and gut bacteria in a population of young adults.

    PubMed

    Mayorga Reyes, Lino; González Vázquez, Raquel; Cruz Arroyo, Schahrasad M; Melendez Avalos, Araceli; Reyes Castillo, Pedro A; Chavaro Pérez, David A; Ramos Terrones, Idalia; Ramos Ibáñez, Norma; Rodríguez Magallanes, Magdalena M; Langella, Philippe; Bermúdez Humarán, Luis; Azaola Espinosa, Alejandro

    2016-06-01

    Dietary habits strongly influence gut microbiota. The aim of this study was to compare and correlated the abundance of Firmicutes and Bacteroidetes phyla, some representative bacteria of these phyla such as Bacteroides thetaiotaomicron, Prevotella, Faecalibacterium prausnitzii, Clostridium leptum and Bifidobacterium longum as a member of Actinobacteria phylum in young adults with their food intake. Faecal samples used came from lean subjects (BMI = 19.83 ± 0.94 kg/m(2)), overweight (BMI = 27.17 ± 0.51 kg/m(2)) and obese (BMI = 41.33 ± 5.25 kg/m(2)). There were significant differences in total studied gut microbiota between the overweight and lean groups. Members of the Firmicutes phylum, and Bifidobacterium longum, were more abundant in the lean group. The results suggest that diet rich in unsaturated fatty acids and fibre promote an abundant population of beneficial bacteria such as B. longum and Bacteroidetes. However, it has been considered that the results may be biased due to the size of the individuals studied; therefore the results could be only valid for the studied population.

  5. Analysis of Poly-β-Hydroxybutyrate in Rhizobium japonicum Bacteroids by Ion-Exclusion High-Pressure Liquid Chromatography and UV Detection †

    PubMed Central

    Karr, Dale B.; Waters, James K.; Emerich, David W.

    1983-01-01

    Ion-exclusion high-pressure liquid chromatography (HPLC) was used to measure poly-β-hydroxybutyrate (PHB) in Rhizobium japonicum bacteroids. The products in the acid digest of PHB-containing material were fractionated by HPLC on Aminex HPX-87H ion-exclusion resin for organic acid analysis. Crotonic acid formed from PHB during acid digestion was detected by its intense absorbance at 210 nm. The Aminex-HPLC method provides a rapid and simple chromatographic technique for routine analysis of organic acids. Results of PHB analysis by Aminex-HPLC were confirmed by gas chromatography and spectrophotometric analysis. PMID:16346443

  6. The construction of an engineered bacterium to remove cadmium from wastewater.

    PubMed

    Chang, S; Shu, H

    2014-01-01

    The removal of cadmium (Cd) from wastewater before it is released from factories is important for protecting human health. Although some researchers have developed engineered bacteria, the resistance of these engineered bacteria to Cd have not been improved. In this study, two key genes involved in glutathione synthesis (gshA and gshB), a serine acetyltransferase gene (cysE), a Thlaspi caerulescens phytochelatin synthase gene (TcPCS1), and a heavy metal ATPase gene (TcHMA3) were transformed into Escherichia coli BL21. The resistance of the engineered bacterium to Cd was significantly greater than that of the initial bacterium and the Cd accumulation in the engineered bacterium was much higher than in the initial bacterium. In addition, the Cd resistance of the bacteria harboring gshB, gshA, cysE, and TcPCS1 was higher than that of the bacteria harboring gshA, cysE, and TcPCS1. This finding demonstrated that gshB played an important role in glutathione synthesis and that the reaction catalyzed by glutathione synthase was the limiting step for producing phytochelatins. Furthermore, TcPCS1 had a greater specificity and a higher capacity for removing Cd than SpPCS1, and TcHMA3 not only played a role in T. caerulescens but also functioned in E. coli.

  7. Safety Evaluation of a Novel Strain of Bacteroides fragilis

    PubMed Central

    Deng, Huimin; Li, Zhengchao; Tan, Yafang; Han, Yanping; Wang, Xiaoyi; Du, Zongmin; Liu, Yangyang; Yang, Ruifu; Bai, Yang; Bi, Yujing; Zhi, Fachao

    2017-01-01

    Commensal non-toxigenic Bacteroides fragilis confers powerful health benefits to the host, and has recently been identified as a promising probiotic candidate. We previously isolated B. fragilis strain ZY-312 and identified it as a novel strain based on 16S rRNA sequencing and morphological analyses. We also determined that ZY-312 displayed desirable probiotic properties, including tolerance to simulated digestive fluid, adherence, and in vitro safety. In this study, we aim to investigate whether ZY-312 meets the safety criteria required for probiotic bacteria through comprehensive and systematic evaluation. Consequently, the fatty acid profile, metabolite production, and biochemical activity of strain ZY-312 were found to closely resemble descriptions of B. fragilis in Bergey’s manual. Taxonomic identification of strain ZY-312 based on whole genome sequencing indicated that ZY-312 and ATCC 25285 showed 99.99% similarity. The 33 putative virulence-associated factors identified in ZY-312 mainly encoded structural proteins and proteins with physiological activity, while the lack of bft indicated that ZY-312 was non-toxigenic. In vivo safety was proven in both normal and immune-deficient mice. The 11 identified antibiotic resistance genes were located on the chromosome rather than on a plasmid, ruling out the risk of plasmid-mediated transfer of antibiotic resistance. In vitro, ZY-312 showed resistance to cefepime, kanamycin, and streptomycin. Finally, and notably, ZY-312 exhibited high genetic stability after 100 passages in vitro. This study supplements the foundation work on the safety evaluation of ZY-312, and contributes to the development of the first probiotic representative from the dominant Bacteroidetes phylum. PMID:28367145

  8. Metabolomics evaluation of the impact of smokeless tobacco exposure on the oral bacterium Capnocytophaga sputigena

    PubMed Central

    Sun, Jinchun; Jin, Jinshan; Beger, Richard D.; Cerniglia, Carl E.; Yang, Maocheng; Chen, Huizhong

    2017-01-01

    The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the argininenitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine. PMID:27480511

  9. Metabolomics evaluation of the impact of smokeless tobacco exposure on the oral bacterium Capnocytophaga sputigena.

    PubMed

    Sun, Jinchun; Jin, Jinshan; Beger, Richard D; Cerniglia, Carl E; Yang, Maocheng; Chen, Huizhong

    2016-10-01

    The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the arginine-nitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine. Published by Elsevier Ltd.

  10. Use of genetically modified bacteria for drug delivery in humans: Revisiting the safety aspect.

    PubMed

    Wegmann, Udo; Carvalho, Ana Lucia; Stocks, Martin; Carding, Simon R

    2017-05-23

    The use of live, genetically modified bacteria as delivery vehicles for biologics is of considerable interest scientifically and has attracted significant commercial investment. We have pioneered the use of the commensal gut bacterium Bacteroides ovatus for the oral delivery of therapeutics to the gastrointestinal tract. Here we report on our investigations of the biological safety of engineered B. ovatus bacteria that includes the use of thymineless death as a containment strategy and the potential for the spread of transgenes in vivo in the mammalian gastrointestinal tract. We demonstrate the ability of GM-strains of Bacteroides to survive thymine starvation and overcome it through the exchange of genetic material. We also provide evidence for horizontal gene transfer in the mammalian gastrointestinal tract resulting in transgene-carrying wild type bacteria. These findings sound a strong note of caution on the employment of live genetically modified bacteria for the delivery of biologics.

  11. [A rarely isolated bacterium in microbiology laboratories: Streptococcus uberis].

    PubMed

    Eryıldız, Canan; Bukavaz, Şebnem; Gürcan, Şaban; Hatipoğlu, Osman

    2017-04-01

    Streptococcus uberis is a gram-positive bacterium that is mostly responsible for mastitis in cattle. The bacterium rarely has been associated with human infections. Conventional phenotyphic methods can be inadequate for the identification of S.uberis; and in microbiology laboratories S.uberis is confused with the other streptococci and enterococci isolates. Recently, molecular methods are recommended for the accurate identification of S.uberis isolates. The aim of this report is to present a lower respiratory tract infection case caused by S.uberis and the microbiological methods for identification of this bacterium. A 66-year-old male patient with squamous cell lung cancer who received radiotherapy was admitted in our hospital for the control. According to the chest X-Ray, patient was hospitalized with the prediagnosis of ''cavitary tumor, pulmonary abscess''. In the first day of the hospitalization, blood and sputum cultures were drawn. Blood culture was negative, however, Candida albicans was isolated in the sputum culture and it was estimated to be due to oral lesions. After two weeks from the hospitalization, sputum sample was taken from the patient since he had abnormal respiratory sounds and cough complaint. In the Gram stained smear of the sputum there were abundant leucocytes and gram-positive cocci, and S.uberis was isolated in both 5% sheep blood and chocolate agar media. Bacterial identification and antibiotic susceptibility tests were performed by VITEK 2 (Biomerieux, France) and also, the bacterium was identified by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) based VITEK MS system as S.uberis. The isolate was determined susceptible to ampicillin, erythromycin, clindamycin, levofloxacin, linezolid, penicillin, cefotaxime, ceftriaxone, tetracycline and vancomycin. 16S, 23S ribosomal RNA and 16S-23S intergenic spacer gene regions were amplified with specific primers and partial DNA sequence analysis of 16S

  12. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium

    PubMed Central

    Little, C. Deane; Palumbo, Anthony V.; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine the rate, methane dependence, and mechanism of TCE biodegradation. TCE biodegradation by strain 46-1 appears to be a cometabolic process that occurs when the organism is actively metabolizing a suitable growth substrate such as methane or methanol. It is proposed that TCE biodegradation by methanotrophs occurs by formation of TCE epoxide, which breaks down spontaneously in water to form dichloroacetic and glyoxylic acids and one-carbon products. Images PMID:16347616

  13. Draft Genome Sequence of the Cellulolytic Bacterium Clostridium papyrosolvens C7 (ATCC 700395).

    PubMed

    Zepeda, Veronica; Dassa, Bareket; Borovok, Ilya; Lamed, Raphael; Bayer, Edward A; Cate, Jamie H D

    2013-09-12

    We report the draft genome sequence of the cellulose-degrading bacterium Clostridium papyrosolvens C7, originally isolated from mud collected below a freshwater pond in Massachusetts. This Gram-positive bacterium grows in a mesophilic anaerobic environment with filter paper as the only carbon source, and it has a simple cellulosome system with multiple carbohydrate-degrading enzymes.

  14. Draft Genome Sequence of the Cellulolytic Bacterium Clostridium papyrosolvens C7 (ATCC 700395)

    PubMed Central

    Zepeda, Veronica; Dassa, Bareket; Borovok, Ilya; Lamed, Raphael; Bayer, Edward A.

    2013-01-01

    We report the draft genome sequence of the cellulose-degrading bacterium Clostridium papyrosolvens C7, originally isolated from mud collected below a freshwater pond in Massachusetts. This Gram-positive bacterium grows in a mesophilic anaerobic environment with filter paper as the only carbon source, and it has a simple cellulosome system with multiple carbohydrate-degrading enzymes. PMID:24029755

  15. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia.

    PubMed

    Matijašić, Bojana Bogovič; Obermajer, Tanja; Lipoglavšek, Luka; Grabnar, Iztok; Avguštin, Gorazd; Rogelj, Irena

    2014-06-01

    The purpose of this study was to discover differences in the human fecal microbiota composition driven by long-term omnivore versus vegan/lacto-vegetarian dietary pattern. In addition, the possible association of demographic characteristics and dietary habits such as consumption of particular foods with the fecal microbiota was examined. This study was conducted on a Slovenian population comprising 31 vegetarian participants (11 lacto-vegetarians and 20 vegans) and 29 omnivore participants. Bacterial DNA was extracted from the frozen fecal samples by Maxwell 16 Tissue DNA Purification Kit (Promega). Relative quantification of selected bacterial groups was performed by real-time PCR. Differences in fecal microbiota composition were evaluated by PCR-DGGE fingerprinting of the V3 16S rRNA region. Participants' demographic characteristics, dietary habits and health status information were collected through a questionnaire. Vegetarian diet was associated with higher ratio (% of group-specific DNA in relation to all bacterial DNA) of Bacteroides-Prevotella, Bacteroides thetaiotaomicron, Clostridium clostridioforme and Faecalibacterium prausnitzii, but with lower ratio (%) of Clostridium cluster XIVa. Real-time PCR also showed a higher concentration and ratio of Enterobacteriaceae (16S rDNA copies/g and %) in female participants (p < 0.05 and p < 0.01) and decrease in Bifidobacterium with age (p < 0.01). DGGE analysis of the 16S rRNA V3 region showed that relative quantity of DGGE bands from certain bacterial groups was lower (Bifidobacterium, Streptococus, Collinsella and Lachnospiraceae) or higher (Subdoligranulum) among vegetarians, indicating the association of dietary type with bacterial community composition. Sequencing of selected DGGE bands revealed the presence of common representatives of fecal microbiota: Bacteroides, Eubacterium, Faecalibacterium, Ruminococcaceae, Bifidobacterium and Lachnospiraceae. Up to 4 % of variance in microbial community analyzed

  16. Septic abortion presenting as a right lower trapezius abscess secondary to Bacteroides fragilis bacteraemia.

    PubMed

    Yamanaka, Yusuke; Shimabukuro, Akira

    2017-08-21

    A 43-year-old Japanese woman was evaluated in the outpatient department for right shoulder pain and fever, which began 5 days earlier. MRI of the right shoulder revealed a high-intensity area deep in the right trapezius muscle. Aspiration revealed purulent fluid, and Gram staining of the fluid showed Gram-negative bacilli. The patient was also found to be profoundly anaemic and to have a positive urine pregnancy test. On admission, we initiated intravenous ampicillin-sulbactam and aztreonam. She underwent dilatation and curettage for septic abortion and surgical drainage of the right shoulder abscess. Bacteroides fragilis was isolated from the blood, uterine aspiration and abscess samples. On hospital day 4, a whole-body CT scan revealed no other abscesses, and ampicillin-sulbactam was continued for 28 days. The patient was discharged on hospital day 29. Gram staining is an important tool for evaluating infectious aetiologies. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. The rec A operon: a novel stress response gene cluster in Bacteroides fragilis

    PubMed Central

    Nicholson, Samantha A; Smalley, Darren; Smith, C. Jeffrey; Abratt, Valerie R

    2014-01-01

    Bacteroides fragilis, an opportunistic pathogen of humans, is a leading cause of bacteraemias and anaerobic abscesses which are often treated with metronidazole, a drug which damages DNA. This study investigated the responses of the B. fragilis recA three gene operon to the stress experienced during metronidazole treatment and exposure to reactive oxygen species simulating those generated by the host immune system during infection. A transcriptionally regulated response was observed using quantitative RT-PCR after metronidazole and hydrogen peroxide treatment, with all three genes being upregulated under stress conditions. In vivo and in vitro analysis of the functional role of the second gene of the operon was done using heterologous complementation and protein expression (in Escherichia coli), with subsequent biochemical assay. This gene encoded a functional bacterioferritin co-migratory protein (BCP) which was thiol-specific and had antioxidant properties, including protection of the glutamine synthetase III enzyme. This in vitro data supports the hypothesis that the genes of the operon may be involved in protection of the bacteria from the oxidative burst during tissue invasion and may play a significant role in bacterial survival and metronidazole resistance during treatment of B. fragilis infections. PMID:24703997

  18. The role of pH in determining the species composition of the human colonic microbiota.

    PubMed

    Duncan, Sylvia H; Louis, Petra; Thomson, John M; Flint, Harry J

    2009-08-01

    The pH of the colonic lumen varies with anatomical site and microbial fermentation of dietary residue. We have investigated the impact of mildly acidic pH, which occurs in the proximal colon, on the growth of different species of human colonic bacteria in pure culture and in the complete microbial community. Growth was determined for 33 representative human colonic bacteria at three initial pH values (approximately 5.5, 6.2 and 6.7) in anaerobic YCFA medium, which includes a mixture of short-chain fatty acids (SCFA) with 0.2% glucose as energy source. Representatives of all eight Bacteroides species tested grew poorly at pH 5.5, as did Escherichia coli, whereas 19 of the 23 gram-positive anaerobes tested gave growth rates at pH 5.5 that were at least 50% of those at pH 6.7. Growth inhibition of B. thetaiotaomicron at pH 5.5 was increased by the presence of the SCFA mix (33 mM acetate, 9 mM propionate and 1 mM each of iso-valerate, valerate and iso-butyrate). Analysis of amplified 16S rRNA sequences demonstrated a major pH-driven shift within a human faecal bacterial community in a continuous flow fermentor. Bacteroides spp. accounted for 27% of 16S rRNA sequences detected at pH 5.5, but 86% of sequences at pH 6.7. Conversely, butyrate-producing gram-positive bacteria related to Eubacterium rectale represented 50% of all 16S rRNA sequences at pH 5.5, but were not detected at pH 6.7. Inhibition of the growth of a major group of gram-negative bacteria at mildly acidic pH apparently creates niches that can be exploited by more low pH-tolerant microorganisms.

  19. Overproduction of Hydrogen From an Anaerobic Bacterium

    DTIC Science & Technology

    2008-12-01

    fixation of nitrogen ( Haber - Bosch process), mostly to produce fertilizer. Nitrogenase provides a catalytic alternative to the commercial fixation of...the culture and suggests a uniquely simple hydrogen reactor design based on renewable feedstocks. 1. INTRODUCTION Hydrogen is an ideal... renewable feedstocks. Clostridium phytofermentans is a recently- discovered anaerobic bacterium, reported to possess cellulase enzymes that degrade

  20. Regulation of Polyhydroxybutyrate Synthesis in the Soil Bacterium Bradyrhizobium diazoefficiens

    PubMed Central

    Quelas, J. I.; Mesa, S.; Mongiardini, E. J.; Jendrossek, D.

    2016-01-01

    ABSTRACT Polyhydroxybutyrate (PHB) is a carbon and energy reserve polymer in various prokaryotic species. We determined that, when grown with mannitol as the sole carbon source, Bradyrhizobium diazoefficiens produces a homopolymer composed only of 3-hydroxybutyrate units (PHB). Conditions of oxygen limitation (such as microoxia, oxic stationary phase, and bacteroids inside legume nodules) were permissive for the synthesis of PHB, which was observed as cytoplasmic granules. To study the regulation of PHB synthesis, we generated mutations in the regulator gene phaR and the phasin genes phaP1 and phaP4. Under permissive conditions, mutation of phaR impaired PHB accumulation, and a phaP1 phaP4 double mutant produced more PHB than the wild type, which was accumulated in a single, large cytoplasmic granule. Moreover, PhaR negatively regulated the expression of phaP1 and phaP4 as well as the expression of phaA1 and phaA2 (encoding a 3-ketoacyl coenzyme A [CoA] thiolases), phaC1 and phaC2 (encoding PHB synthases), and fixK2 (encoding a cyclic AMP receptor protein [CRP]/fumarate and nitrate reductase regulator [FNR]-type transcription factor of genes for microoxic lifestyle). In addition to the depressed PHB cycling, phaR mutants accumulated more extracellular polysaccharides and promoted higher plant shoot dry weight and competitiveness for nodulation than the wild type, in contrast to the phaC1 mutant strain, which is defective in PHB synthesis. These results suggest that phaR not only regulates PHB granule formation by controlling the expression of phasins and biosynthetic enzymes but also acts as a global regulator of excess carbon allocation and symbiosis by controlling fixK2. IMPORTANCE In this work, we investigated the regulation of polyhydroxybutyrate synthesis in the soybean-nodulating bacterium Bradyrhizobium diazoefficiens and its influence in bacterial free-living and symbiotic lifestyles. We uncovered a new interplay between the synthesis of this carbon reserve

  1. Determination of phenanthrene bioavailability by using a self-dying reporter bacterium: test with model solids and soil.

    PubMed

    Shin, Doyun; Nam, Kyoungphile

    2012-02-20

    The present study was conducted to investigate the performance and feasibility of a self-dying reporter bacterium to visualize and quantify phenanthrene bioavailability in soil. The self-dying reporter bacterium was designed to die on the initiation of phenanthrene biodegradation. The viability of the reporter bacterium was determined by a fluorescence live/dead cell staining method and visualized by confocal laser scanning microscopic observation. Phenanthrene was spiked into four types of model solids and a sandy loam. The bioavailability of phenanthrene to the reporter bacterium was remarkably declined with the hydrophobicity of the model solids: essentially no phenanthrene was biodegraded in the presence of 9-nm pores and about 35.8% of initial phenanthrene was biodegraded without pores. Decrease in bioavailability was not evident in the nonporous hydrophilic bead, but a small decrease was observed in the porous hydrophilic bead at 1000 mg/kg of phenanthrene. The fluorescence intensity was commensurate with the extent of phenanthrene biodegradation by the reporter bacterium at the concentration range from 50 to 500 mg/kg. Such a quantitative relationship was also confirmed with a sandy loam spiked up to 1000 mg/kg of phenanthrene. This reporter bacterium may be a useful means to determine phenanthrene bioavailability in soil. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    PubMed Central

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  3. [Diversity analysis of desulfuration bacterium from the oxidation ditch of city sewage treatment plant with SO2 gas].

    PubMed

    Huang, Bing; Zhang, Shi-Ling; Zhang, Jiang-Hong; Ao, Yong; Shi, Zhe

    2011-07-01

    A group of removing SO2 bacterium was obtained from the oxidation ditch of city sewage treatment plant by inductive domestication over 6 d with low concentration SO2 gas, and they have an ability with biodegradation rate of 888 mg x (L x h)(-1) and a degradation efficiency of 85% during 1.5 h for SO2 dissolved in water with their synergy. The clone library and two phylogenetic trees of the removing SO2 bacterium communities were obtained based on 16S rRNA DNA comparison by DNA extraction of the sample and in situ polymerase chain reaction (PCR). The phylogenetic analysis showed that 8 dominant desulfuration bacterium occupy about 69% of all removing SO2 bacterium, and some of them have a kindred with discovered desulfuration bacterium but not homogeneity, and there are four belong to alpha-Proteobacteria, another four belong to beta-Proteobacteria in them. The gene information about 16S rRNA sequence of the dominant desulfuration bacteria and domestication method provide a basic of looking for or domesticating removing SO2 bacterium for development microbial desulfurization technology of contained SO2 tail gas.

  4. Luciferase genes cloned from the unculturable luminous bacteroid symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi.

    PubMed

    Haygood, M G; Cohn, D H

    1986-01-01

    Light organs of anomalopid (flashlight) fish contain luminous bacteroids that have never been cultured and, consequently, have been difficult to study. We have characterized the luciferase (lux) region of DNA extracted from light organs of the Caribbean flashlight fish Kryptophanaron alfredi by hybridization of cloned Vibrio harveyi lux genes to restriction-endonuclease-digested, light organ DNA. Comparison of the hybridization pattern of light organ DNA with that of DNA of a putative symbiotic isolate provides a method for identifying the authentic luminous symbiont regardless of its luminescence, and was used to reject one such isolate. Light organ DNA was further used to construct a cosmid clone bank and the luciferase genes were isolated. Unlike other bacterial luciferase genes, the genes were not expressed in Escherichia coli. When placed under the control of the E. coli trp promoter, the genes were transcribed but no luciferase was detected, suggesting a posttranscriptional block to expression.

  5. Characterization of a bacterium of the genus Azospirillum from cellulolytic nitrogen-fixing mixed cultures.

    PubMed

    Wong, P P; Stenberg, N E; Edgar, L

    1980-03-01

    A bacterium with the taxonomic characteristics of the genus Azospirillum was isolated from celluloytic N2-fixing mixed cultures. Its characteristics fit the descriptions of both Azopirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. It may be a variant strain of A. lipoferum. In mixed cultures with cellulolytic organisms, the bacterium grew and fixed N2 with cellelose as a sole source of energy and carbon. The mixed cultures used cellulose from leaves of wheat (Triticum aestivum L.), corn (Zea mays L.), and big bluestem grass (Andropogon gerardii Vitm). Microaerophilic N2-fixing bacteria of the genus Azospirillum, such as the bacterium we isolated, may be important contributors of fixed N2 in soil with partial anaerobiosis and cellulose decomposition.

  6. Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level.

    PubMed

    Despres, Jordane; Forano, Evelyne; Lepercq, Pascale; Comtet-Marre, Sophie; Jubelin, Gregory; Chambon, Christophe; Yeoman, Carl J; Berg Miller, Margaret E; Fields, Christopher J; Martens, Eric; Terrapon, Nicolas; Henrissat, Bernard; White, Bryan A; Mosoni, Pascale

    2016-05-04

    Plant cell wall (PCW) polysaccharides and especially xylans constitute an important part of human diet. Xylans are not degraded by human digestive enzymes in the upper digestive tract and therefore reach the colon where they are subjected to extensive degradation by some members of the symbiotic microbiota. Xylanolytic bacteria are the first degraders of these complex polysaccharides and they release breakdown products that can have beneficial effects on human health. In order to understand better how these bacteria metabolize xylans in the colon, this study was undertaken to investigate xylan breakdown by the prominent human gut symbiont Bacteroides xylanisolvens XB1A(T). Transcriptomic analyses of B. xylanisolvens XB1A(T) grown on insoluble oat-spelt xylan (OSX) at mid- and late-log phases highlighted genes in a polysaccharide utilization locus (PUL), hereafter called PUL 43, and genes in a fragmentary remnant of another PUL, hereafter referred to as rPUL 70, which were highly overexpressed on OSX relative to glucose. Proteomic analyses supported the up-regulation of several genes belonging to PUL 43 and showed the important over-production of a CBM4-containing GH10 endo-xylanase. We also show that PUL 43 is organized in two operons and that the knockout of the PUL 43 sensor/regulator HTCS gene blocked the growth of the mutant on insoluble OSX and soluble wheat arabinoxylan (WAX). The mutation not only repressed gene expression in the PUL 43 operons but also repressed gene expression in rPUL 70. This study shows that xylan degradation by B. xylanisolvens XB1A(T) is orchestrated by one PUL and one PUL remnant that are linked at the transcriptional level. Coupled to studies on other xylanolytic Bacteroides species, our data emphasize the importance of one peculiar CBM4-containing GH10 endo-xylanase in xylan breakdown and that this modular enzyme may be used as a functional marker of xylan degradation in the human gut. Our results also suggest that B. xylanisolvens

  7. Identification of a collagen type I adhesin of Bacteroides fragilis.

    PubMed

    Galvão, Bruna P G V; Weber, Brandon W; Rafudeen, Mohamed S; Ferreira, Eliane O; Patrick, Sheila; Abratt, Valerie R

    2014-01-01

    Bacteroides fragilis is an opportunistic pathogen which can cause life threatening infections in humans and animals. The ability to adhere to components of the extracellular matrix, including collagen, is related to bacterial host colonisation. Collagen Far Western analysis of the B. fragilis outer membrane protein (OMP) fraction revealed the presence two collagen adhesin bands of ∼ 31 and ∼ 34 kDa. The collagen adhesins in the OMP fraction were separated and isolated by two-dimensional SDS-PAGE and also purified by collagen affinity chromatography. The collagen binding proteins isolated by both these independent methods were subjected to tandem mass spectroscopy for peptide identification and matched to a single hypothetical protein encoded by B. fragilis NCTC 9343 (BF0586), conserved in YCH46 (BF0662) and 638R (BF0633) and which is designated in this study as cbp1 (collagen binding protein). Functionality of the protein was confirmed by targeted insertional mutagenesis of the cbp1 gene in B. fragilis GSH18 which resulted in the specific loss of both the ∼ 31 kDa and the ∼ 34 kDa adhesin bands. Purified his-tagged Cbp1, expressed in a B. fragilis wild-type and a glycosylation deficient mutant, confirmed that the cbp1 gene encoded the observed collagen adhesin, and showed that the 34 kDa band represents a glycosylated version of the ∼ 31 kDa protein. Glycosylation did not appear to be required for binding collagen. This study is the first to report the presence of collagen type I adhesin proteins in B. fragilis and to functionally identify a gene encoding a collagen binding protein.

  8. Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer’s Disease

    PubMed Central

    Lukiw, Walter J.

    2016-01-01

    The human microbiome consists of ~3.8 × 1013 symbiotic microorganisms that form a highly complex and dynamic ecosystem: the gastrointestinal (GI) tract constitutes the largest repository of the human microbiome by far, and its impact on human neurological health and disease is becoming increasingly appreciated. Bacteroidetes, the largest phylum of Gram-negative bacteria in the GI tract microbiome, while generally beneficial to the host when confined to the GI tract, have potential to secrete a remarkably complex array of pro-inflammatory neurotoxins that include surface lipopolysaccharides (LPSs) and toxic proteolytic peptides. The deleterious effects of these bacterial exudates appear to become more important as GI tract and blood-brain barriers alter or increase their permeability with aging and disease. For example, presence of the unique LPSs of the abundant Bacteroidetes species Bacteroides fragilis (BF-LPS) in the serum represents a major contributing factor to systemic inflammation. BF-LPS is further recognized by TLR2, TLR4, and/or CD14 microglial cell receptors as are the pro-inflammatory 42 amino acid amyloid-beta (Aβ42) peptides that characterize Alzheimer’s disease (AD) brain. Here we provide the first evidence that BF-LPS exposure to human primary brain cells is an exceptionally potent inducer of the pro-inflammatory transcription factor NF-kB (p50/p65) complex, a known trigger in the expression of pathogenic pathways involved in inflammatory neurodegeneration. This ‘Perspectives communication’ will in addition highlight work from recent studies that advance novel and emerging concepts on the potential contribution of microbiome-generated factors, such as BF-LPS, in driving pro-inflammatory degenerative neuropathology in the AD brain. PMID:27725817

  9. Identification of a Collagen Type I Adhesin of Bacteroides fragilis

    PubMed Central

    Galvão, Bruna P. G. V.; Weber, Brandon W.; Rafudeen, Mohamed S.; Ferreira, Eliane O.; Patrick, Sheila; Abratt, Valerie R.

    2014-01-01

    Bacteroides fragilis is an opportunistic pathogen which can cause life threatening infections in humans and animals. The ability to adhere to components of the extracellular matrix, including collagen, is related to bacterial host colonisation. Collagen Far Western analysis of the B. fragilis outer membrane protein (OMP) fraction revealed the presence two collagen adhesin bands of ∼31 and ∼34 kDa. The collagen adhesins in the OMP fraction were separated and isolated by two-dimensional SDS-PAGE and also purified by collagen affinity chromatography. The collagen binding proteins isolated by both these independent methods were subjected to tandem mass spectroscopy for peptide identification and matched to a single hypothetical protein encoded by B. fragilis NCTC 9343 (BF0586), conserved in YCH46 (BF0662) and 638R (BF0633) and which is designated in this study as cbp1 (collagen binding protein). Functionality of the protein was confirmed by targeted insertional mutagenesis of the cbp1 gene in B. fragilis GSH18 which resulted in the specific loss of both the ∼31 kDa and the ∼34 kDa adhesin bands. Purified his-tagged Cbp1, expressed in a B. fragilis wild-type and a glycosylation deficient mutant, confirmed that the cbp1 gene encoded the observed collagen adhesin, and showed that the 34 kDa band represents a glycosylated version of the ∼31 kDa protein. Glycosylation did not appear to be required for binding collagen. This study is the first to report the presence of collagen type I adhesin proteins in B. fragilis and to functionally identify a gene encoding a collagen binding protein. PMID:24618940

  10. Biofilm Formation by a Metabolically Versatile Bacterium

    DTIC Science & Technology

    2005-10-02

    Rhodopseudomonas palustris is a photosynthetic bacterium that has good potential to be developed as a biocatalyst for the production of hydrogen, a...A for none) Samanta, S. K and C. S. Harwood. 2005. Use of the Rhodopseudomonas palustris genome to identify a single amino acid that contributes to...operon from Rhodopseudomonas palustris mediates dicarboxylic acid degradation and participates in anaerobic benzoate degradation. Microbiology 151

  11. Boron nitride nanotube-based biosensing of various bacterium/viruses: continuum modelling-based simulation approach.

    PubMed

    Panchal, Mitesh B; Upadhyay, Sanjay H

    2014-09-01

    In this study, the feasibility of single walled boron nitride nanotube (SWBNNT)-based biosensors has been ensured considering the continuum modelling-based simulation approach, for mass-based detection of various bacterium/viruses. Various types of bacterium or viruses have been taken into consideration at the free-end of the cantilevered configuration of the SWBNNT, as a biosensor. Resonant frequency shift-based analysis has been performed with the adsorption of various bacterium/viruses considered as additional mass to the SWBNNT-based sensor system. The continuum mechanics-based analytical approach, considering effective wall thickness has been considered to validate the finite element method (FEM)-based simulation results, based on continuum volume-based modelling of the SWBNNT. As a systematic analysis approach, the FEM-based simulation results are found in excellent agreement with the analytical results, to analyse the SWBNNTs for their wide range of applications such as nanoresonators, biosensors, gas-sensors, transducers and so on. The obtained results suggest that by using the SWBNNT of smaller size the sensitivity of the sensor system can be enhanced and detection of the bacterium/virus having mass of 4.28 × 10⁻²⁴ kg can be effectively performed.

  12. Gas-liquid chromatography for evaluating polysaccharide degradation by Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85.

    PubMed

    Collings, G F; Yokoyama, M T

    1980-03-01

    Two predominant rumen cellulolytic bacteria, Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85, were incubated with ground filter paper (Whatman no. 1), cattle manure fiber, wheat straw, Kentucky bluegrass, alfalfa, and corn silage as substrates. Analyses of the initial substrate and the recovered residue after 48 h of static incubation showed that R. flavefaciens C94 was quantitatively more effective than B. succinogenes S85 in degrading total dry matter (32.3% versus 16.1%). However, B. succinogenes S85 demonstrated a qualitative advantage in degrading the hemicellulose and hemicellulosic sugars of particular substrates. R. flavefaciens degraded a mean 29.7% of the cellulose and 35.6% of the hemicellulose in the various substrates, whereas B. succinogenes degraded a mean 17.9 and 31.6% of these fractions, respectively. Gas-liquid chromatography was an important aid in characterizing the polysaccharide-degrading capabilities of these rumen species.

  13. Effect of arsenite-oxidizing bacterium B. laterosporus on arsenite toxicity and arsenic translocation in rice seedlings.

    PubMed

    Yang, Gui-Di; Xie, Wan-Ying; Zhu, Xi; Huang, Yi; Yang, Xiao-Jun; Qiu, Zong-Qing; Lv, Zhen-Mao; Wang, Wen-Na; Lin, Wen-Xiong

    2015-10-01

    Arsenite [As (III)] oxidation can be accelerated by bacterial catalysis, but the effects of the accelerated oxidation on arsenic toxicity and translocation in rice plants are poorly understood. Herein we investigated how an arsenite-oxidizing bacterium, namely Brevibacillus laterosporus, influences As (III) toxicity and translocation in rice plants. Rice seedlings of four cultivars, namely Guangyou Ming 118 (GM), Teyou Hang II (TH), Shanyou 63 (SY) and Minghui 63 (MH), inoculated with or without the bacterium were grown hydroponically with As (III) to investigate its effects on arsenic toxicity and translocation in the plants. Percentages of As (III) oxidation in the solutions with the bacterium (100%) were all significantly higher than those without (30-72%). The addition of the bacterium significantly decreased As (III) concentrations in SY root, GM root and shoot, while increased the As (III) concentrations in the shoot of SY, MH and TH and in the root of MH. Furthermore, the As (III) concentrations in the root and shoot of SY were both the lowest among the treatments with the bacterium. On the other hand, its addition significantly alleviated the As (III) toxicity on four rice cultivars. Among the treatments amended with B. laterosporus, the bacterium showed the best remediation on SY seedlings, with respect to the subdued As (III) toxicity and decreased As (III) concentration in its roots. These results indicated that As (III) oxidation accelerated by B. laterosporus could be an effective method to alleviate As (III) toxicity on rice seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Histological changes and some in vitro biological activities induced by lipopolysaccharide from Bacteroides gingivalis.

    PubMed

    Isogai, H; Isogai, E; Fujii, N; Oguma, K; Kagota, W; Takano, K

    1988-07-01

    The biological activities of lipopolysaccharide from Bacteroides gingivalis 381 (B-LPS) were examined in vivo and in vitro. Intra-oral mucosal injection of B-LPS induced an acute inflammation at the injection site. Intravenous injection of B-LPS induced necrotic lesions with many thrombi in the liver and lymphocytic reduction in the spleen. By immunohistochemical examination, B-LPS was detected in macrophages in the liver, spleen and lymph nodes. In vitro analysis showed that B-LPS was a potent activator of both neutrophils and macrophages in luminol-dependent response and IL-1 secretion from macrophages and was mitogenic to the spleen cells not only from BALB/c mice but also from LPS-non-responder C3H/HeJ mice. Interferon production from human peripheral mononuclear leucocytes was induced, in vitro, by stimulation with B-LPS but not with the other enterobacterial LPS. These findings clarified the various biological activities of B-LPS affecting various cells and tissues, especially neutrophils, macrophages and lymphocytes. The potent inflammability of B-LPS shown in the present study indicates that it is one of the effective agents to induce periodontitis.

  15. Characterization of a novel extremely alkalophilic bacterium

    NASA Technical Reports Server (NTRS)

    Souza, K. A.; Deal, P. H.

    1977-01-01

    A new alkalophilic bacterium, isolated from a natural spring of high pH is characterized. It is a Gram-positive, non-sporulating, motile rod requiring aerobic and alkaline conditions for growth. The characteristics of this organism resemble those of the coryneform group of bacteria; however, there are no accepted genera within this group with which this organism can be closely matched. Therefore, a new genus may be warranted.

  16. Extracellular nucleic acids of the marine bacterium Rhodovulum sulfidophilum and recombinant RNA production technology using bacteria.

    PubMed

    Kikuchi, Yo; Umekage, So

    2018-02-01

    Extracellular nucleic acids of high molecular weight are detected ubiquitously in seawater. Recent studies have indicated that these nucleic acids are, at least in part, derived from active production by some bacteria. The marine bacterium Rhodovulum sulfidophilum is one of those bacteria. Rhodovulumsulfidophilum is a non-sulfur phototrophic marine bacterium that is known to form structured communities of cells called flocs, and to produce extracellular nucleic acids in culture media. Recently, it has been revealed that this bacterium produces gene transfer agent-like particles and that this particle production may be related to the extracellular nucleic acid production mechanism. This review provides a summary of recent physiological and genetic studies of these phenomena and also introduces a new method for extracellular production of artificial and biologically functional RNAs using this bacterium. In addition, artificial RNA production using Escherichia coli, which is related to this topic, will also be described. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Complete Genome Sequence of the p-Nitrophenol-Degrading Bacterium Pseudomonas putida DLL-E4

    PubMed Central

    Hu, Xiaojun; Wang, Jue; Wang, Fei; Chen, Qiongzhen; Huang, Yan

    2014-01-01

    The first complete genome sequence of a p-nitrophenol (PNP)-degrading bacterium is reported here. Pseudomonas putida DLL-E4, a Gram-negative bacterium isolated from methyl-parathion-polluted soil, can utilize PNP as the sole carbon and nitrogen source. P. putida DLL-E4 has a 6,484,062 bp circular chromosome that contains 5,894 genes, with a G+C content of 62.46%. PMID:24948765

  18. Pathogenicity of Moraxella osloensis, a bacterium associated with the nematode Phasmarhabditis hermaphrodita, to the slug Deroceras reticulatum.

    PubMed

    Tan, L; Grewal, P S

    2001-11-01

    Moraxella osloensis, a gram-negative bacterium, is associated with Phasmarhabditis hermaphrodita, a nematode parasite of slugs. This bacterium-feeding nematode has potential for the biological control of slugs, especially the grey garden slug, Deroceras reticulatum. Infective juveniles of P. hermaphrodita invade the shell cavity of the slug, develop into self-fertilizing hermaphrodites, and produce progeny, resulting in host death. However, the role of the associated bacterium in the pathogenicity of the nematode to the slug is unknown. We discovered that M. osloensis alone is pathogenic to D. reticulatum after injection into the shell cavity or hemocoel of the slug. The bacteria from 60-h cultures were more pathogenic than the bacteria from 40-h cultures, as indicated by the higher and more rapid mortality of the slugs injected with the former. Coinjection of penicillin and streptomycin with the 60-h bacterial culture reduced its pathogenicity to the slug. Further work suggested that the reduction and loss of pathogenicity of the aged infective juveniles of P. hermaphrodita to D. reticulatum result from the loss of M. osloensis from the aged nematodes. Also, axenic J1/J2 nematodes were nonpathogenic after injection into the shell cavity. Therefore, we conclude that the bacterium is the sole killing agent of D. reticulatum in the nematode-bacterium complex and that P. hermaphrodita acts only as a vector to transport the bacterium into the shell cavity of the slug. The identification of the toxic metabolites produced by M. osloensis is being pursued.

  19. Halomonas maura is a physiologically versatile bacterium of both ecological and biotechnological interest.

    PubMed

    Llamas, Inmaculada; del Moral, Ana; Martínez-Checa, Fernando; Arco, Yolanda; Arias, Soledad; Quesada, Emilia

    2006-01-01

    Halomonas maura is a bacterium of great metabolic versatility. We summarise in this work some of the properties that make it a very interesting microorganism both from an ecological and biotechnological point of view. It plays an active role in the nitrogen cycle, is capable of anaerobic respiration in the presence of nitrate and has recently been identified as a diazotrophic bacterium. Of equal interest is mauran, the exopolysaccharide produced by H. maura, which contributes to the formation of biofilms and thus affords the bacterium advantages in the colonisation of its saline niches. Mauran is highly viscous, shows thixotropic and pseudoplastic behaviour, has the capacity to capture heavy metals and exerts a certain immunomodulator effect in medicine. All these attributes have prompted us to make further investigations into its molecular characteristics. To date we have described 15 open reading frames (ORF's) related to exopolysaccharide production, nitrogen fixation and nitrate reductase activity among others.

  20. Deinococcus mumbaiensis sp. nov., a radiation-resistant pleomorphic bacterium isolated from Mumbai, India.

    PubMed

    Shashidhar, Ravindranath; Bandekar, Jayant R

    2006-01-01

    A radiation-resistant, Gram-negative and pleomorphic bacterium (CON-1) was isolated from a contaminated tryptone glucose yeast extract agar plate in the laboratory. It was red pigmented, nonmotile, nonsporulating, and aerobic, and contained MK-8 as respiratory quinone. The cell wall of this bacterium contained ornithine. The major fatty acids were C16:0, C16:1, C17:0, C18:1 and iso C18:0. The DNA of CON-1 had a G+C content of 70 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that CON-1 exhibited a maximum similarity (94.72%) with Deinococcus grandis. Based on the genotypic, phenotypic and chemotaxonomic characteristics, the bacterium CON-1 was identified as a new species of the genus Deinococcus, for which the name Deinococcus mumbaiensis sp. nov. is proposed. The type strain of D. mumbaiensis is CON-1 (MTCC 7297(T)=DSM 17424(T)).

  1. From Genome to Function: Systematic Analysis of the Soil Bacterium Bacillus Subtilis

    PubMed Central

    Crawshaw, Samuel G.; Wipat, Anil

    2001-01-01

    Bacillus subtilis is a sporulating Gram-positive bacterium that lives primarily in the soil and associated water sources. Whilst this bacterium has been studied extensively in the laboratory, relatively few studies have been undertaken to study its activity in natural environments. The publication of the B. subtilis genome sequence and subsequent systematic functional analysis programme have provided an opportunity to develop tools for analysing the role and expression of Bacillus genes in situ. In this paper we discuss analytical approaches that are being developed to relate genes to function in environments such as the rhizosphere. PMID:18628943

  2. The Structural Basis of Substrate Recognition in an exo-b-d-glucosaminidase Involved in Chitosan Hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Bueren, A.; Ghinet, M; Gregg, K

    2009-01-01

    Family 2 of the glycoside hydrolase classification is one of the largest families. Structurally characterized members of this family include enzymes with ?-galactosidase activity (Escherichia coli LacZ), ?-glucuronidase activity (Homo sapiens GusB), and ?-mannosidase activity (Bacteroides thetaiotaomicron BtMan2A). Here, we describe the structure of a family 2 glycoside hydrolase, CsxA, from Amycolatopsis orientalis that has exo-?-d-glucosaminidase (exo-chitosanase) activity. Analysis of a product complex (1.85 A resolution) reveals a unique negatively charged pocket that specifically accommodates the nitrogen of nonreducing end glucosamine residues, allowing this enzyme to discriminate between glucose and glucosamine. This also provides structural evidence for the role ofmore » E541 as the catalytic nucleophile and D469 as the catalytic acid/base. The structures of an E541A mutant in complex with a natural ?-1,4-d-glucosamine tetrasaccharide substrate and both E541A and D469A mutants in complex with a pNP-?-d-glucosaminide synthetic substrate provide insight into interactions in the + 1 subsite of this enzyme. Overall, a comparison with the active sites of other GH2 enzymes highlights the unique architecture of the CsxA active site, which imparts specificity for its cationic substrate.« less

  3. The Structural Basis of Substrate Recognition in an exo-beta-d-Glucosaminidase Involved in Chitosan Hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammerts van Bueren, A.; Ghinet, M; Gregg, K

    2009-01-01

    Family 2 of the glycoside hydrolase classification is one of the largest families. Structurally characterized members of this family include enzymes with beta-galactosidase activity (Escherichia coli LacZ), beta-glucuronidase activity (Homo sapiens GusB), and beta-mannosidase activity (Bacteroides thetaiotaomicron BtMan2A). Here, we describe the structure of a family 2 glycoside hydrolase, CsxA, from Amycolatopsis orientalis that has exo-beta-D-glucosaminidase (exo-chitosanase) activity. Analysis of a product complex (1.85 A resolution) reveals a unique negatively charged pocket that specifically accommodates the nitrogen of nonreducing end glucosamine residues, allowing this enzyme to discriminate between glucose and glucosamine. This also provides structural evidence for the role ofmore » E541 as the catalytic nucleophile and D469 as the catalytic acid/base. The structures of an E541A mutant in complex with a natural beta-1,4-D-glucosamine tetrasaccharide substrate and both E541A and D469A mutants in complex with a pNP-beta-D-glucosaminide synthetic substrate provide insight into interactions in the +1 subsite of this enzyme. Overall, a comparison with the active sites of other GH2 enzymes highlights the unique architecture of the CsxA active site, which imparts specificity for its cationic substrate.« less

  4. Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-β1 under the control of dietary xylan 1.

    PubMed

    Hamady, Zaed Z R; Scott, Nigel; Farrar, Mark D; Wadhwa, Meenu; Dilger, Paula; Whitehead, Terence R; Thorpe, Robin; Holland, Keith T; Lodge, J Peter A; Carding, Simon R

    2011-09-01

    While cytokine therapy and the use of immunosuppressive cytokines such as transforming growth factor-β (TGF-β) offer great potential for the treatment of inflammatory bowel disease (IBD), issues concerning formulation, stability in vivo, delivery to target tissues, and potential toxicity need to be addressed. In consideration of these problems we engineered the human commensal bacterium Bacteroides ovatus for the controlled in situ delivery of TGF-β(1) and treatment of colitis. Sequence encoding the human tgf-β1 gene was cloned downstream of the xylanase promoter in the xylan operon of B. ovatus by homologous recombination. Resulting recombinants (BO-TGF) were tested for TGF-β production in the presence and absence of polysaccharide xylan in vitro and in vivo, and used to treat experimental murine colitis. Clinical and pathological scores were used to assess the effectiveness of therapy. Colonic inflammatory markers including inflammatory cytokine expression were assessed by colorimetric assay and real-time polymerase chain reaction (PCR). BO-TGF secreted high levels of biologically active dimeric TGF-β in vitro and in vivo in a xylan-controlled manner. Administration of xylan in drinking water to BO-TGF-treated mice resulted in a significant clinical improvement of colitis, accelerating healing of damaged colonic epithelium, reducing inflammatory cell infiltration, reducing expression of proinflammatory cytokines, and promoting production of mucin-rich goblet cells in colonic crypts. These beneficial effects are comparable and in most cases superior to that achieved by conventional steroid therapy. This novel drug delivery system has potential for the targeted and controlled delivery of TGF-β(1) and other immunotherapeutic agents for the long-term management of various bowel disorders. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.

  5. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Gary; Dalin, Eileen; Tice, Hope

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  6. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711

    PubMed Central

    Shoemaker, William R.; Muscarella, Mario E.

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments. PMID:26089434

  7. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    USGS Publications Warehouse

    Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.

    1990-01-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.

  8. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    PubMed

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  9. Pathogenicity of Moraxella osloensis, a Bacterium Associated with the Nematode Phasmarhabditis hermaphrodita, to the Slug Deroceras reticulatum

    PubMed Central

    Tan, Li; Grewal, Parwinder S.

    2001-01-01

    Moraxella osloensis, a gram-negative bacterium, is associated with Phasmarhabditis hermaphrodita, a nematode parasite of slugs. This bacterium-feeding nematode has potential for the biological control of slugs, especially the grey garden slug, Deroceras reticulatum. Infective juveniles of P. hermaphrodita invade the shell cavity of the slug, develop into self-fertilizing hermaphrodites, and produce progeny, resulting in host death. However, the role of the associated bacterium in the pathogenicity of the nematode to the slug is unknown. We discovered that M. osloensis alone is pathogenic to D. reticulatum after injection into the shell cavity or hemocoel of the slug. The bacteria from 60-h cultures were more pathogenic than the bacteria from 40-h cultures, as indicated by the higher and more rapid mortality of the slugs injected with the former. Coinjection of penicillin and streptomycin with the 60-h bacterial culture reduced its pathogenicity to the slug. Further work suggested that the reduction and loss of pathogenicity of the aged infective juveniles of P. hermaphrodita to D. reticulatum result from the loss of M. osloensis from the aged nematodes. Also, axenic J1/J2 nematodes were nonpathogenic after injection into the shell cavity. Therefore, we conclude that the bacterium is the sole killing agent of D. reticulatum in the nematode-bacterium complex and that P. hermaphrodita acts only as a vector to transport the bacterium into the shell cavity of the slug. The identification of the toxic metabolites produced by M. osloensis is being pursued. PMID:11679319

  10. Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp.

    PubMed

    Davies, Keith G

    2009-01-01

    Pasteuria penetrans is an endospore-forming bacterium, which is a hyperparasite of root-knot nematodes Meloidogyne spp. that are economically important pests of a wide range of crops. The life cycle of the bacterium and nematode are described with emphasis on the bacterium's potential as a biocontrol agent. Two aspects that currently prohibit the commercial development of the bacterium as a biocontrol agent are the inability to culture it outside its host and its host specificity. Vegetative growth of the bacterium is possible in vitro; however, getting the vegetative stages of the bacterium to enter sporogenesis has been problematic. Insights from genomic survey sequences regarding the role of cation concentration and the phosphorylation of Spo0F have proved useful in inducing vegetative bacteria to sporulate. Similarly, genomic data have also proved useful in understanding the attachment of endospores to the cuticle of infective nematode juveniles, and a Velcro-like model of spore attachment is proposed that involves collagen-like fibres on the surface of the endospore interacting with mucins on the nematode cuticle. Ecological studies of the interactions between Daphnia and Pasteuria ramosa are examined and similarities are drawn between the co-evolution of virulence in the Daphnia system and that of plant-parasitic nematodes.

  11. Description of a bacterium associated with redmouth disease of rainbow trout (Salmo gairdneri)

    USGS Publications Warehouse

    Ross, A.J.; Rucker, R.R.; Ewing, W.H.

    1966-01-01

    A description was given of a gram-negative, peritrichously flagellated, fermentative bacterium that was isolated on numerous occasions from kidney tissues of rainbow trout (Salmo gairdneri) afflicted with redmouth disease. Although the bacteria apparently were members of the family Enterobacteriaceae, it was impossible to determine their taxonomic position within the family with certainty. Hence it was recommended that their taxonomic position remain sub judice for the present. As a temporary designation RM bacterium was used. Redmouth disease was transmitted from infected to normal fish through the medium of water.

  12. Cadherin Domains in the Polysaccharide-Degrading Marine Bacterium Saccharophagus degradans 2-40 Are Carbohydrate-Binding Modules▿

    PubMed Central

    Fraiberg, Milana; Borovok, Ilya; Bayer, Edward A.; Weiner, Ronald M.; Lamed, Raphael

    2011-01-01

    The complex polysaccharide-degrading marine bacterium Saccharophagus degradans strain 2-40 produces putative proteins that contain numerous cadherin and cadherin-like domains involved in intercellular contact interactions. The current study reveals that both domain types exhibit reversible calcium-dependent binding to different complex polysaccharides which serve as growth substrates for the bacterium. PMID:21036994

  13. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhee, Mun Su; Moritz, Brelan E.; Xie, Gary

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strainmore » 36D1, is presented and discussed.« less

  14. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    PubMed Central

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  15. [Association between Bacteroides forsythus in the infected root canals and clinical symptoms of chronic apical periodontitis].

    PubMed

    Huang, Ding-ming; Fu, Chun-hua; Zhou, Xue-dong

    2005-01-01

    To investigate the distribution of Bacteroides forsythus in root canals with chronic apical periodontitis and to determine its associations with clinical symptoms. Thirty-eight tooth root canals from 31 subjects were studied with a 16S rDNA-directed polymerase chain reaction (PCR). These teeth were classified into symptomatic and asymptomatic groups according to the clinical symptoms and signs, including spontaneous pain, percussion pain, sinus tract and swelling, respectively. Ten of the 38 root canal samples were positive for B. forsythus. The prevalence of B. forsythus was 26.3% for 38 root canals, 45.5% for spontaneous pain group, 39.1% for percussion pain group, 29.4% for sinus tract group, 42.9% for swelling group, respectively. Significant positive associations were observed between B. forsythus in infected root canals and the spontaneous pain, percussion pain, and swelling of apical periodontitis, respectively (OR=infinity, 9, 12; P<0.05). There was no significant association between B. forsythus and sinus tract of apical periodontitis (OR=1.33). B. forsythus colonized in the infected root canals. It is the putative pathogen of apical periodontitis.

  16. Paradigms: examples from the bacterium Xylella fastidiosa.

    PubMed

    Purcell, Alexander

    2013-01-01

    The history of advances in research on Xylella fastidiosa provides excellent examples of how paradigms both advance and limit our scientific understanding of plant pathogens and the plant diseases they cause. I describe this from a personal perspective, having been directly involved with many persons who made paradigm-changing discoveries, beginning with the discovery that a bacterium, not a virus, causes Pierce's disease of grape and other plant diseases in numerous plant species, including important crop and forest species.

  17. A novel strategy for acetonitrile wastewater treatment by using a recombinant bacterium with biofilm-forming and nitrile-degrading capability.

    PubMed

    Li, Chunyan; Yue, Zhenlei; Feng, Fengzhao; Xi, Chuanwu; Zang, Hailian; An, Xuejiao; Liu, Keran

    2016-10-01

    There is a great need for efficient acetonitrile removal technology in wastewater treatment to reduce the discharge of this pollutant in untreated wastewater. In this study, a nitrilase gene (nit) isolated from a nitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was cloned and transformed into a biofilm-forming bacterium (Bacillus subtilis N4) that expressed the recombinant protein upon isopropylthio-β-galactoside (IPTG) induction. The recombinant bacterium (B. subtilis N4-pHT01-nit) formed strong biofilms and had nitrile-degrading capability. Further testing demonstrated that biofilms formed by B. subtilis N4-pHT01-nit were highly resistant to loading shock from acetonitrile and almost completely degraded the initial concentration of acetonitrile (800 mg L(-1)) within 24 h in a moving bed biofilm reactor (MBBR) after operation for 35 d. The bacterial composition of the biofilm, identified by high-throughput sequencing, in a reactor in which the B. subtilis N4-pHT01-nit bacterium was introduced indicated that the engineered bacterium was successfully immobilized in the reactor and became dominant genus. This work demonstrates that an engineered bacterium with nitrile-degrading and biofilm-forming capacity can improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing the biological oxidation of toxic pollutants in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Genome Sequence of Lactobacillus delbrueckii subsp. lactis CNRZ327, a Dairy Bacterium with Anti-Inflammatory Properties.

    PubMed

    El Kafsi, Hela; Binesse, Johan; Loux, Valentin; Buratti, Julien; Boudebbouze, Samira; Dervyn, Rozenn; Hammani, Amal; Maguin, Emmanuelle; van de Guchte, Maarten

    2014-07-17

    Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain. Copyright © 2014 El Kafsi et al.

  19. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    PubMed

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  20. Complete genome of Martelella sp. AD-3, a moderately halophilic polycyclic aromatic hydrocarbons-degrading bacterium.

    PubMed

    Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi

    2016-05-10

    Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease.

    PubMed

    Bloom, Seth M; Bijanki, Vinieth N; Nava, Gerardo M; Sun, Lulu; Malvin, Nicole P; Donermeyer, David L; Dunne, W Michael; Allen, Paul M; Stappenbeck, Thaddeus S

    2011-05-19

    The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here, we fulfilled Koch's postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively reisolated them in culture. The bacteria colonized IBD-susceptible and -nonsusceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease, but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease

    PubMed Central

    Bloom, Seth M.; Bijanki, Vinieth N.; Nava, Gerardo M.; Sun, Lulu; Malvin, Nicole P.; Donermeyer, David L.; Dunne, W. Michael; Allen, Paul M.; Stappenbeck, Thaddeus S.

    2011-01-01

    SUMMARY The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here we fulfilled Koch’s postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively re-isolated them in culture. The bacteria colonized IBD-susceptible and non-susceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD. PMID:21575910

  3. Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7

    USDA-ARS?s Scientific Manuscript database

    Ruminococcus albus 7 is a highly cellulolytic rumen bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome for this microbe. This genome will be useful for rumen microbiology, cellulosome biology, and in biofuel production, as one of its major fermentation product...

  4. Draft Genome Sequence of an Anaerobic and Extremophilic Bacterium, Caldanaerobacter yonseiensis, Isolated from a Geothermal Hot Stream

    PubMed Central

    Lee, Sang-Jae; Lee, Yong-Jik; Park, Gun-Seok; Kim, Byoung-Chan; Lee, Sang Jun; Shin, Jae-Ho

    2013-01-01

    Caldanaerobacter yonseiensis is a strictly anaerobic, thermophilic, spore-forming bacterium, which was isolated from a geothermal hot stream in Indonesia. This bacterium utilizes xylose and produces a variety of proteases. Here, we report the draft genome sequence of C. yonseiensis, which reveals insights into the pentose phosphate pathway and protein degradation metabolism in thermophilic microorganisms. PMID:24201201

  5. Fine Structure and Host-Virus Relationship of a Marine Bacterium and Its Bacteriophage

    PubMed Central

    Valentine, Artrice F.; Chapman, George B.

    1966-01-01

    Valentine, Artrice F. (Georgetown University, Washington, D.C.), and George B. Chapman. Fine structure and host-virus relationship of a marine bacterium and its bacteriophage. J. Bacteriol. 92:1535–1554. 1966.—The fine structure of a gram-negative marine bacterium, Cytophaga marinoflava sp. n., has been revealed by ultrathin sectioning and electron microscopy. Stages in the morphogenesis of the bacterial virus NCMB 385, which has been shown to be highly specific for this organism, were also demonstrated in bacterial cells fixed according to the Kellenberger technique. The bacterium possessed a cell wall, cytoplasmic membrane, and nuclear and cytoplasmic regions typical of bacterial cells. Both the cell wall and the cytoplasmic membrane showed a tripartite structure, i.e., each was composed of two dense layers separated by a low-density zone. Intracytoplasmic membrane systems were also observed, especially in dividing cells and in cells in which new viruses were being formed. As many as 18 hexagonally shaped, empty phage heads (membranes only) were observed in untreated, infected bacterial cells. Phage heads, intermediate in density to empty heads and fully condensed ones, possibly representing stages in the morphological development of the virus, were also seen. Images PMID:5924277

  6. Complete genome sequence of the haloalkaliphilic, hydrogen-producing bacterium Halanaerobium hydrogeniformans.

    PubMed

    Brown, Steven D; Begemann, Matthew B; Mormile, Melanie R; Wall, Judy D; Han, Cliff S; Goodwin, Lynne A; Pitluck, Samuel; Land, Miriam L; Hauser, Loren J; Elias, Dwayne A

    2011-07-01

    Halanaerobium hydrogenoformans is an alkaliphilic bacterium capable of biohydrogen production at pH 11 and 7% (wt/vol) salt. We present the 2.6-Mb genome sequence to provide insights into its physiology and potential for bioenergy applications.

  7. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Pan, Hongmiao; Yue, Haidong; Song, Tao; Zhao, Yong; Chen, Guanjun; Wu, Longfei; Xiao, Tian

    2006-12-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in diameter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gram stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  8. The Bacteroides sp. 3_1_23 Pif1 protein is a multifunctional helicase.

    PubMed

    Liu, Na-Nv; Duan, Xiao-Lei; Ai, Xia; Yang, Yan-Tao; Li, Ming; Dou, Shuo-Xing; Rety, Stephane; Deprez, Eric; Xi, Xu-Guang

    2015-10-15

    ScPif1 DNA helicase is the prototypical member of a 5'-to-3' helicase superfamily conserved from bacteria to human and plays various roles in the maintenance of genomic homeostasis. While many studies have been performed with eukaryotic Pif1 helicases, including yeast and human Pif1 proteins, the potential functions and biochemical properties of prokaryotic Pif1 helicases remain largely unknown. Here, we report the expression, purification and biochemical analysis of Pif1 helicase from Bacteroides sp. 3_1_23 (BsPif1). BsPif1 binds to a large panel of DNA substrates and, in particular, efficiently unwinds partial duplex DNAs with 5'-overhang, fork-like substrates, D-loop and flap-like substrates, suggesting that BsPif1 may act at stalled DNA replication forks and enhance Okazaki fragment maturation. Like its eukaryotic homologues, BsPif1 resolves R-loop structures and unwinds DNA-RNA hybrids. Furthermore, BsPif1 efficiently unfolds G-quadruplexes and disrupts nucleoprotein complexes. Altogether, these results highlight that prokaryotic Pif1 helicases may resolve common issues that arise during DNA transactions. Interestingly, we found that BsPif1 is different from yeast Pif1, but resembles more human Pif1 with regard to substrate specificity, helicase activity and mode of action. These findings are discussed in the context of the possible functions of prokaryotic Pif1 helicases in vivo. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Generation and purification of recombinant fimbrillin from Porphyromonas (Bacteroides) gingivalis 381.

    PubMed Central

    Washington, O R; Deslauriers, M; Stevens, D P; Lyford, L K; Haque, S; Yan, Y; Flood, P M

    1993-01-01

    Fimbrillin is the major subunit protein of fimbriae from the human periodontal pathogen Porphyromonas (Bacteroides) gingivalis. We describe here the generation and initial characterization of recombinant fimbrillin (r-fimbrillin) isolated from P. gingivalis 381. A fragment of DNA encoding the gene for fimbrillin was generated by polymerase chain reaction and cloned into the expression vector pET11b. Plasmids containing the recombinant gene were transfected into Escherichia coli. Clones were selected on plates for ampicillin resistance and individually screened by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for protein production after activation with IPTG (isopropyl-beta-D- thiogalactopyranoside). One clone, OW0.2, produced significant amounts of a 42-kDa protein after induction with IPTG. This clone contained the pET11b plasmid with a 1-kb insert that had sequence homology to the gene encoding fimbrillin. The majority of recombinant protein from clone OW0.2 was found in the cytoplasm within inclusion bodies. Protein aggregates were solubilized in 8 M urea, and SDS-PAGE analysis showed two major protein bands, one at 42 kDa and the other at 17 kDa. These two proteins coeluted from a DEAE-Sepharose column at 0.15 M NaCl and were reactive to rabbit antiserum to fimbrillin in a Western blot (immunoblot). A preparation giving a single protein band at 42 kDa in SDS-PAGE was obtained by size fractionation by using continuous-elution electrophoresis. Lymph node cells from animals immunized with either fimbrillin from P. gingivalis or r-fimbrillin showed antigen-specific proliferation to both P. gingivalis fimbrillin and r-fimbrillin in an in vitro recall assay. Therefore, it appears that r-fimbrillin is chemically, antigenically, and serologically identical to fimbrillin isolated from P. gingivalis 381. Images PMID:8094377

  10. Assessment of swine-specific bacteriophages of Bacteroides fragilis in swine farms with different antibiotic practices.

    PubMed

    Leknoi, Yuranan; Mongkolsuk, Skorn; Sirikanchana, Kwanrawee

    2017-04-01

    We assessed the occurrence and specificity of bacteriophages of Bacteroides fragilis in swine farms for their potential application in microbial source tracking. A local B. fragilis host strain, SP25 (DSM29413), was isolated from a pooled swine feces sample taken from a non-antibiotic farm. This strain was highly specific to swine fecal materials because it did not detect bacteriophages in any samples from human sewage, sheep, goats, cattle, dogs, and cats. The reference B. fragilis strain, RYC2056, could detect phages in swine samples but also detected phages in most human sewage and polluted urban canal samples. Phages of SP25 exist in the proximity of certain swine farms, regardless of their antibiotic use (p > 0.05). B. fragilis strain SP25 exhibited relatively high resistance to most of the veterinary antimicrobial agents tested. Interestingly, most farms that were positive for SP25 phages were also positive for RYC2056 phages. In conclusion, the swine-specific SP25 strain has the potential to indicate swine fecal contamination in certain bodies of water. Bacterial isolates with larger distributions are being studied and validated. This study highlights the importance of assessing the abundance of phages in local swine populations before determining their potential applicability for source tracking in local surface waters.

  11. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Jeffrey G.

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  12. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE PAGES

    Gardner, Jeffrey G.

    2016-06-04

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  13. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis.

    PubMed

    Hadad, D; Geresh, S; Sivan, A

    2005-01-01

    To select a polyethylene-degrading micro-organism and to study the factors affecting its biodegrading activity. A thermophilic bacterium Brevibaccillus borstelensis strain 707 (isolated from soil) utilized branched low-density polyethylene as the sole carbon source and degraded it. Incubation of polyethylene with B. borstelensis (30 days, 50 degrees C) reduced its gravimetric and molecular weights by 11 and 30% respectively. Brevibaccillus borstelensis also degraded polyethylene in the presence of mannitol. Biodegradation of u.v. photo-oxidized polyethylene increased with increasing irradiation time. Fourier Transform Infra-Red (FTIR) analysis of photo-oxidized polyethylene revealed a reduction in carbonyl groups after incubation with the bacteria. This study demonstrates that polyethylene--considered to be inert--can be biodegraded if the right microbial strain is isolated. Enrichment culture methods were effective for isolating a thermophilic bacterium capable of utilizing polyethylene as the sole carbon and energy source. Maximal biodegradation was obtained in combination with photo-oxidation, which showed that carbonyl residues formed by photo-oxidation play a role in biodegradation. Brevibaccillus borstelensis also degraded the CH2 backbone of nonirradiated polyethylene. Biodegradation of polyethylene by a single bacterial strain contributes to our understanding of the process and the factors affecting polyethylene biodegradation.

  14. Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge

    NASA Astrophysics Data System (ADS)

    Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.

    2006-12-01

    Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only

  15. Thermostable purified endoglucanase from thermophilic bacterium acidothermus cellulolyticus

    DOEpatents

    Tucker, Melvin P.; Grohmann, Karel; Himmel, Michael E.; Mohagheghi, Ali

    1992-01-01

    A substantially purified high molecular weight cellulase enzyme having a molecular weight of between about 156,000 to about 203,400 daltons isolated from the bacterium Acidothermus cellulolyticus (ATCC 43068) and a method of producing it are disclosed. The enzyme is water soluble, possesses both C.sub.1 and C.sub.x types of enzymatic activity, has a high degree of stability toward heat and exhibits both a high optimum temperature activity and high inactivation characteristics.

  16. Genome sequence of the algicidal bacterium Kordia algicida OT-1.

    PubMed

    Lee, Hyun Sook; Kang, Sung Gyun; Kwon, Kae Kyoung; Lee, Jung-Hyun; Kim, Sang-Jin

    2011-08-01

    Kordia algicida OT-1 is an algicidal bacterium against the bloom-forming microalgae. The genome sequence of K. algicida revealed a number of interesting features, including the degradation of macromolecules, the biosynthesis of carotenoid pigment and secondary metabolites, and the capacity for gliding motility, which might facilitate the understanding of algicidal mechanisms.

  17. Activity of Telithromycin (HMR 3647) against Anaerobic Bacteria Compared to Those of Eight Other Agents by Time-Kill Methodology†

    PubMed Central

    Credito, Kim L.; Ednie, Lois M.; Jacobs, Michael R.; Appelbaum, Peter C.

    1999-01-01

    Time-kill studies examined the activities of telithromycin (HMR 3647), erythromycin A, azithromycin, clarithromycin, roxithromycin, clindamycin, pristinamycin, amoxicillin-clavulanate, and metronidazole against 11 gram-positive and gram-negative anaerobic bacteria. Time-kill studies were carried out with the addition of Oxyrase in order to prevent the introduction of CO2. Macrolide-azalide-ketolide MICs were 0.004 to 32.0 μg/ml. Of the latter group, telithromycin had the lowest MICs, especially against non-Bacteroides fragilis group strains, followed by azithromycin, clarithromycin, erythromycin A, and roxithromycin. Clindamycin was active (MIC ≤ 2.0 μg/ml) against all anaerobes except Peptostreptococcus magnus and Bacteroides thetaiotaomicron, while pristinamycin MICs were 0.06 to 4.0 μg/ml. Amoxicillin-clavulanate had MICs of ≤1.0 μg/ml, while metronidazole was active (MICs, 0.03 to 2.0 μg/ml) against all except Propionibacterium acnes. After 48 h at twice the MIC, telithromycin was bactericidal (≥99.9% killing) against 6 strains, with 99% killing of 9 strains and 90% killing of 10 strains. After 24 h at twice the MIC, 90, 99, and 99.9% killing of nine, six, and three strains, respectively, occurred. Lower rates of killing were seen at earlier times. Similar kill kinetics relative to the MIC were seen with other macrolides. After 48 h at the MIC, clindamycin was bactericidal against 8 strains, with 99 and 90% killing of 9 and 10 strains, respectively. After 24 h, 90% killing of 10 strains occurred at the MIC. The kinetics of clindamycin were similar to those of pristinamycin. After 48 h at the MIC, amoxicillin-clavulanate showed 99.9% killing of seven strains, with 99% killing of eight strains and 90% killing of nine strains. At four times the MIC, metronidazole was bactericidal against 8 of 10 strains tested after 48 h and against all 10 strains after 24 h; after 12 h, 99% killing of all 10 strains occurred. PMID:10428930

  18. Activity of telithromycin (HMR 3647) against anaerobic bacteria compared to those of eight other agents by time-kill methodology.

    PubMed

    Credito, K L; Ednie, L M; Jacobs, M R; Appelbaum, P C

    1999-08-01

    Time-kill studies examined the activities of telithromycin (HMR 3647), erythromycin A, azithromycin, clarithromycin, roxithromycin, clindamycin, pristinamycin, amoxicillin-clavulanate, and metronidazole against 11 gram-positive and gram-negative anaerobic bacteria. Time-kill studies were carried out with the addition of Oxyrase in order to prevent the introduction of CO(2). Macrolide-azalide-ketolide MICs were 0.004 to 32.0 microg/ml. Of the latter group, telithromycin had the lowest MICs, especially against non-Bacteroides fragilis group strains, followed by azithromycin, clarithromycin, erythromycin A, and roxithromycin. Clindamycin was active (MIC Bacteroides thetaiotaomicron, while pristinamycin MICs were 0.06 to 4.0 microg/ml. Amoxicillin-clavulanate had MICs of /=99.9% killing) against 6 strains, with 99% killing of 9 strains and 90% killing of 10 strains. After 24 h at twice the MIC, 90, 99, and 99.9% killing of nine, six, and three strains, respectively, occurred. Lower rates of killing were seen at earlier times. Similar kill kinetics relative to the MIC were seen with other macrolides. After 48 h at the MIC, clindamycin was bactericidal against 8 strains, with 99 and 90% killing of 9 and 10 strains, respectively. After 24 h, 90% killing of 10 strains occurred at the MIC. The kinetics of clindamycin were similar to those of pristinamycin. After 48 h at the MIC, amoxicillin-clavulanate showed 99.9% killing of seven strains, with 99% killing of eight strains and 90% killing of nine strains. At four times the MIC, metronidazole was bactericidal against 8 of 10 strains tested after 48 h and against all 10 strains after 24 h; after 12 h, 99% killing of all 10 strains occurred.

  19. Evidence of carbon fixation pathway in a bacterium from candidate phylum SBR1093 revealed with genomic analysis.

    PubMed

    Wang, Zhiping; Guo, Feng; Liu, Lili; Zhang, Tong

    2014-01-01

    Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB) cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere.

  20. In-vitro activity of ciprofloxacin combined with flomoxef against Bacteroides fragilis, compared with that of ciprofloxacin combined with clindamycin.

    PubMed

    Kato, Komei; Iwai, Shigetomi; Sato, Takeshi; Harada, Tomohide; Nakagawa, Yoshiteru; Iwanaga, Hitomi; Ito, Yumiko; Takayama, Tadatoshi

    2002-06-01

    Using checkerboard and time-kill assays, the in-vitro activity of ciprofloxacin alone and in combination with flomoxef against clinical Bacteroides fragilis strains was evaluated. In addition, the microbiological efficacy of this combination was compared with that of ciprofloxacin plus clindamycin. In 88% of the 25 strains tested, the combination of ciprofloxacin plus flomoxef exhibited a synergistic or an additive effect, whereas only 56% of the 25 strains ( P< 0.01, chi(2) test) tested with the combination of ciprofloxacin plus clindamycin exhibited similar effects. In a time-kill study using 7 clinical strains, a synergistic or additive effect of the combination of ciprofloxacin plus flomoxef was observed in all 7 strains. In conclusion, the combination of ciprofloxacin plus flomoxef is very active against B. fragilis, suggesting that this combination may be very useful in the treatment of aerobic and B. fragilis mixed infections, because ciprofloxacin has an expanded spectrum against aerobes.

  1. In-vivo fluorescence detection and imaging of porphyrin-producing bacteria in the human skin and in the oral cavity for diagnosis of acne vulgaris, caries, and squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Schneckenburger, Herbert; Hemmer, Joerg; Tromberg, Bruce J.; Steiner, Rudolf W.

    1994-05-01

    Certain bacteria are able to synthesize metal-free fluorescent porphyrins and can therefore be detected by sensitive autofluorescence measurements in the red spectral region. The porphyrin-producing bacterium Propionibacterium acnes, which is involved in the pathogenesis of acne vulgaris, was localized in human skin. Spectrally resolved fluorescence images of bacteria distribution in the face were obtained by a slow-scan CCD camera combined with a tunable liquid crystal filter. The structured autofluorescence of dental caries and dental plaque in the red is caused by oral bacteria, like Bacteroides or Actinomyces odontolyticus. `Caries images' were created by time-gated imaging in the ns-region after ultrashort laser excitation. Time-gated measurements allow the suppression of backscattered light and non-porphyrin autofluorescence. Biopsies of oral squamous cell carcinoma exhibited red autofluorescence in necrotic regions and high concentrations of the porphyrin-producing bacterium Pseudomonas aerigunosa. These studies suggest that the temporal and spectral characteristics of bacterial autofluorescence can be used in the diagnosis and treatment of a variety of diseases.

  2. Characterization of a potentially novel 'blown pack' spoilage bacterium isolated from bovine hide.

    PubMed

    Moschonas, G; Bolton, D J

    2013-03-01

    To characterize a psychrotrophic bacterium, designated TC1, previously isolated from a cattle hide in Ireland, and to investigate the ability of this strain to cause 'blown pack' spoilage (BPS) of vacuum-packaged beef primals. TC1 was characterized using a combination of phenotypic, chemotaxonomic and genotypic analyses and was assessed for its ability to spoil vacuum-packaged beef at refrigerated temperatures. TC1 was Gram-positive and formed elliptical subterminal endospores. The strain was able to grow between 0 and 33 °C, with optimal growth between 23 and 24 °C. TC1 could be differentiated from its phylogenetically closest neighbour (Clostridium lituseburense DSM 797(T)) by 16S rRNA gene sequencing, pulsed-field gel electrophoresis and cellular fatty acid composition. TC1 spoiled (BPS) beef within 42 days when inoculated in cold-stored (1 °C) vacuum-packed beef. The phenotypic, chemotaxonomic and genotypic characterization indicated that TC1 may represent a potentially novel, cold-tolerant, gas-producing bacterium of considerable economic significance to the beef industry. This study reports and characterizes an emerging BPS bacterium, which should be considered in future activities designed to minimize the psychrophilic and psychrotrophic spoilage of vacuum-packaged beef. © 2012 The Society for Applied Microbiology.

  3. The gene transfer agent-like particle of the marine phototrophic bacterium Rhodovulum sulfidophilum.

    PubMed

    Nagao, Nobuyoshi; Yamamoto, Junya; Komatsu, Hiroyuki; Suzuki, Hiromichi; Hirose, Yuu; Umekage, So; Ohyama, Takashi; Kikuchi, Yo

    2015-12-01

    Gene transfer agents (GTAs) are shaped like bacteriophage particles but have many properties that distinguish them from bacteriophages. GTAs play a role in horizontal gene transfer in nature and thus affect the evolution of prokaryotic genomes. In the course of studies on the extracellular production of designed RNAs using the marine bacterium Rhodovulum sulfidophilum , we found that this bacterium produces a GTA-like particle. The particle contains DNA fragments of 4.5 kb, which consist of randomly fragmented genomic DNA from the bacterium. This 4.5-kb DNA production was prevented while quorum sensing was inhibited. Direct observation of the particle by transmission electron microscopy revealed that the particle resembles a tailed phage and has a head diameter of about 40 nm and a tail length of about 60 nm. We also identified the structural genes for the GTA in the genome. Translated amino acid sequences and gene positions are closely related to those of the genes that encode the Rhodobacter capsulatus GTA. This is the first report of a GTA-like particle from the genus Rhodovulum . However, gene transfer activity of this particle has not yet been confirmed. The differences between this particle and other GTAs are discussed.

  4. Chitin Utilization by the Insect-Transmitted Bacterium Xylella fastidiosa▿ †

    PubMed Central

    Killiny, Nabil; Prado, Simone S.; Almeida, Rodrigo P. P.

    2010-01-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa. PMID:20656858

  5. Investigations of Iron Minerals Formed by Dissimilatory Alkaliphilic Bacterium with 57Fe Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chistyakova, N. I.; Rusakov, V. S.; Shapkin, A. A.; Zhilina, T. N.; Zavarzina, D. G.; Lančok, A.; Kohout, J.

    2010-07-01

    Anaerobic alkaliphilic bacterium of Geoalkalibacter ferrihydriticus type (strain Z-0531), isolated from a bottom sediment sample from the weakly mineralized soda Lake Khadyn, have been analyzed. The strain uses the amorphous Fe(III)-hydroxide (AFH) as an electron acceptor and acetate CH3COO- as an electron donor. Mössbauer investigations of solid phase samples obtained during the process of the bacterium growth were carried out at room temperature, 77.8 K, 4.2 K without and with the presence of an external magnetic field (6 T) applied perpendicular to the γ-bebam.

  6. Studying the Symbiotic Bacterium Xenorhabdus nematophila in Individual, Living Steinernema carpocapsae Nematodes Using Microfluidic Systems.

    PubMed

    Stilwell, Matthew D; Cao, Mengyi; Goodrich-Blair, Heidi; Weibel, Douglas B

    2018-01-01

    Animal-microbe symbioses are ubiquitous in nature and scientifically important in diverse areas, including ecology, medicine, and agriculture. Steinernema nematodes and Xenorhabdus bacteria compose an established, successful model system for investigating microbial pathogenesis and mutualism. The bacterium Xenorhabdus nematophila is a species-specific mutualist of insect-infecting Steinernema carpocapsae nematodes. The bacterium colonizes a specialized intestinal pocket within the infective stage of the nematode, which transports the bacteria between insects that are killed and consumed by the pair for reproduction. Current understanding of the interaction between the infective-stage nematode and its bacterial colonizers is based largely on population-level, snapshot time point studies on these organisms. This limitation arises because investigating temporal dynamics of the bacterium within the nematode is impeded by the difficulty of isolating and maintaining individual living nematodes and tracking colonizing bacterial cells over time. To overcome this challenge, we developed a microfluidic system that enables us to spatially isolate and microscopically observe individual, living Steinernema nematodes and monitor the growth and development of the associated X. nematophila bacterial communities-starting from a single cell or a few cells-over weeks. Our data demonstrate, to our knowledge, the first direct, temporal, in vivo visual analysis of a symbiosis system and the application of this system to reveal continuous dynamics of the symbiont population in the living host animal. IMPORTANCE This paper describes an experimental system for directly investigating population dynamics of a symbiotic bacterium, Xenorhabdus nematophila , in its host-the infective stage of the entomopathogenic nematode Steinernema carpocapsae . Tracking individual and groups of bacteria in individual host nematodes over days and weeks yielded insight into dynamic growth and topology changes

  7. Tyrosine sulfation in a Gram-negative bacterium

    PubMed Central

    Han, Sang-Wook; Lee, Sang-Won; Bahar, Ofir; Schwessinger, Benjamin; Robinson, Michelle R.; Shaw, Jared B.; Madsen, James A.; Brodbelt, Jennifer S.; Ronald, Pamela C.

    2015-01-01

    Tyrosine sulfation, a well-characterized post-translation modification in eukaryotes, has not previously been reported in prokaryotes. Here we demonstrate that the RaxST protein from the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae, is a tyrosine sulfotransferase. We used a newly developed sulfotransferase assay and ultraviolet photodissociation mass spectrometry (UVPD) to demonstrate that RaxST catalyzes sulfation of tyrosine 22 of the Xoo Ax21 (activator of XA21-mediated immunity). These results demonstrate a previously undescribed post-translational modification in a prokaryotic species with implications extending to host immune response and bacterial cell-cell communication system. PMID:23093190

  8. Partial proteome of the corynetoxin-producing Gram-positive bacterium, Rathayibacter toxicus

    USDA-ARS?s Scientific Manuscript database

    Rathayibacter toxicus is a Gram-positive bacterium that is the causative agent of annual ryegrass toxicity (ARGT), a disease that causes devastating losses in the Australian livestock industry. R. toxicus exhibits a complex life cycle, using the nematode Anguina funesta as a physical vector to carry...

  9. Insights into the structure and function of fungal β-mannosidases from glycoside hydrolase family 2 based on multiple crystal structures of the Trichoderma harzianum enzyme.

    PubMed

    Nascimento, Alessandro S; Muniz, Joao Renato C; Aparício, Ricardo; Golubev, Alexander M; Polikarpov, Igor

    2014-09-01

    Hemicellulose is an important part of the plant cell wall biomass, and is relevant to cellulosic ethanol technologies. β-Mannosidases are enzymes capable of cleaving nonreducing residues of β-d-mannose from β-d-mannosides and hemicellulose mannose-containing polysaccharides, such as mannans and galactomannans. β-Mannosidases are distributed between glycoside hydrolase (GH) families 1, 2, and 5, and only a handful of the enzymes have been structurally characterized to date. The only published X-ray structure of a GH family 2 mannosidase is that of the bacterial Bacteroides thetaiotaomicron enzyme. No structures of eukaryotic mannosidases of this family are currently available. To fill this gap, we set out to solve the structure of Trichoderma harzianum GH family 2 β-mannosidase and to refine it to 1.9-Å resolution. Structural comparisons of the T. harzianum GH2 β-mannosidase highlight similarities in its structural architecture with other members of GH family 2, reveal the molecular mechanism of β-mannoside binding and recognition, and shed light on its putative galactomannan-binding site. Coordinates and observed structure factor amplitudes have been deposited with the Protein Data Bank (4CVU and 4UOJ). The T. harzianum β-mannosidase 2A nucleotide sequence has GenBank accession number BankIt1712036 GeneMark.hmm KJ624918. © 2014 FEBS.

  10. Application of agglomerative clustering for analyzing phylogenetically on bacterium of saliva

    NASA Astrophysics Data System (ADS)

    Bustamam, A.; Fitria, I.; Umam, K.

    2017-07-01

    Analyzing population of Streptococcus bacteria is important since these species can cause dental caries, periodontal, halitosis (bad breath) and more problems. This paper will discuss the phylogenetically relation between the bacterium Streptococcus in saliva using a phylogenetic tree of agglomerative clustering methods. Starting with the bacterium Streptococcus DNA sequence obtained from the GenBank, then performed characteristic extraction of DNA sequences. The characteristic extraction result is matrix form, then performed normalization using min-max normalization and calculate genetic distance using Manhattan distance. Agglomerative clustering technique consisting of single linkage, complete linkage and average linkage. In this agglomerative algorithm number of group is started with the number of individual species. The most similar species is grouped until the similarity decreases and then formed a single group. Results of grouping is a phylogenetic tree and branches that join an established level of distance, that the smaller the distance the more the similarity of the larger species implementation is using R, an open source program.

  11. Melanin from the Nitrogen-Fixing Bacterium Azotobacter chroococcum: A Spectroscopic Characterization

    PubMed Central

    Banerjee, Raja

    2014-01-01

    Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state 13C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation. PMID:24416247

  12. Draft Genome Sequence of Arthrobacter sp. Strain SPG23, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium.

    PubMed

    Gkorezis, Panagiotis; Bottos, Eric M; Van Hamme, Jonathan D; Thijs, Sofie; Rineau, Francois; Franzetti, Andrea; Balseiro-Romero, Maria; Weyens, Nele; Vangronsveld, Jaco

    2015-12-23

    We report here the 4.7-Mb draft genome of Arthrobacter sp. SPG23, a hydrocarbonoclastic Gram-positive bacterium belonging to the Actinobacteria, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain SPG23 is a potent plant growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. Copyright © 2015 Gkorezis et al.

  13. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium.

    PubMed

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter; Vangronsveld, Jaco

    2016-06-23

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. Copyright © 2016 Gkorezis et al.

  14. Detection of human-derived fecal contamination in Puerto Rico using carbamazepine, HF183 Bacteroides, and fecal indicator bacteria.

    PubMed

    Wade, Christina; Otero, Ernesto; Poon-Kwong, Brennan; Rozier, Ralph; Bachoon, Dave

    2015-12-30

    The level of fecal pollution in 17 sites in Puerto Rico was determined by Escherichia coli (E.coli) enumeration using an enzyme substrate medium and Quanti-Tray®/2000. Human fecal pollution was identified using an enzyme-linked immunosorbent assay for the detection of carbamazepine (CBZ) and quantitative polymerase chain reaction (qPCR) detection of the human Bacteroides marker, HF183. Carbamazepine was detected in 16 out of 17 sites, including Condado Lagoon, a popular recreational area. Elevated E.coli levels (>410 CFU 100 mL(-1)) were detected in 13 sites. Average CBZ concentrations ranged from 0.005 μg L(-1) to 0.482 μg L(-1) and 7 sites were positive for HF183. Higher CBZ concentrations were associated with the detection of HF183 (Mann-Whitney test; U=42.0; df=7; 1-tailed P value=0.013). This was the second study to determine surface water concentrations of CBZ in the Caribbean and the first in Puerto Rico. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. ["Candidatus contubernalis alkalaceticum," an obligately syntrophic alkaliphilic bacterium capable of anaerobic acetate oxidation in a coculture with Desulfonatronum cooperativum].

    PubMed

    Zhilina, T N; Zavarzina, D G; Kolganova, T V; Turova, T P; Zavarzin, G A

    2005-01-01

    From the silty sediments of the Khadyn soda lake (Tuva), a binary sulfidogenic bacterial association capable of syntrophic acetate oxidation at pH 10.0 was isolated. An obligately syntrophic, gram-positive, spore-forming alkaliphilic rod-shaped bacterium performs acetate oxidation in a syntrophic association with a hydrogenotrophic, alkaliphilic sulfate-reducing bacterium; the latter organism was previously isolated and characterized as the new species Desulfonatronum cooperativum. Other sulfate-reducing bacteria of the genera Desulfonatronum and Desulfonatronovibrio can also act as the hydrogenotrophic partner. Apart from acetate, the syntrophic culture can oxidize ethanol, propanol, isopropanol, serine, fructose, and isobutyric acid. Selective amplification of 16S rRNA gene fragments of the acetate-utilizing syntrophic component of the binary culture was performed; it was found to cluster with clones of uncultured gram-positive bacteria within the family Syntrophomonadaceae. The acetate-oxidizing bacterium is thus the first representative of this cluster obtained in a laboratory culture. Based on its phylogenetic position, the new acetate-oxidizing syntrophic bacterium is proposed to be assigned, in a Candidate status, to a new genus and species: "Candidatus Contubernalis alkalaceticum."

  16. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression.

    PubMed

    Ochoa-Repáraz, Javier; Mielcarz, Daniel W; Ditrio, Lauren E; Burroughs, Ashley R; Begum-Haque, Sakhina; Dasgupta, Suryasarathi; Kasper, Dennis L; Kasper, Lloyd H

    2010-10-01

    The importance of gut commensal bacteria in maintaining immune homeostasis is increasingly understood. We recently described that alteration of the gut microflora can affect a population of Foxp3(+)T(reg) cells that regulate demyelination in experimental autoimmune encephalomyelitis (EAE), the experimental model of human multiple sclerosis. We now extend our previous observations on the role of commensal bacteria in CNS demyelination, and we demonstrate that Bacteroides fragilis producing a bacterial capsular polysaccharide Ag can protect against EAE. Recolonization with wild type B. fragilis maintained resistance to EAE, whereas reconstitution with polysaccharide A-deficient B. fragilis restored EAE susceptibility. Enhanced numbers of Foxp3(+)T(reg) cells in the cervical lymph nodes were observed after intestinal recolonization with either strain of B. fragilis. Ex vivo, CD4(+)T cells obtained from mice reconstituted with wild type B. fragilis had significantly enhanced rates of conversion into IL-10-producing Foxp3(+)T(reg) cells and offered greater protection against disease. Our results suggest an important role for commensal bacterial Ags, in particular B. fragilis expressing polysaccharide A, in protecting against CNS demyelination in EAE and perhaps human multiple sclerosis.

  17. Isolation and characterization of Leu[7]-Surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Bacillus mojavensis is an endophytic bacterium patented for control of fungal diseases in maize and other plants. Culture extracts and filtrates from this bacterium were antagonistic to the pathogenic and mycotoxic fungus Fusarium verticillioides. However, the identity of the inhibitory substance ...

  18. Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut.

    PubMed

    Hemsworth, Glyn R; Thompson, Andrew J; Stepper, Judith; Sobala, Łukasz F; Coyle, Travis; Larsbrink, Johan; Spadiut, Oliver; Goddard-Borger, Ethan D; Stubbs, Keith A; Brumer, Harry; Davies, Gideon J

    2016-07-01

    The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the intrinsic human polysaccharide-degrading enzyme repertoire is limited to various starch-based substrates; more complex polysaccharides demand microbial degradation. Select Bacteroidetes are responsible for the degradation of the ubiquitous vegetable xyloglucans (XyGs), through the concerted action of cohorts of enzymes and glycan-binding proteins encoded by specific xyloglucan utilization loci (XyGULs). Extending recent (meta)genomic, transcriptomic and biochemical analyses, significant questions remain regarding the structural biology of the molecular machinery required for XyG saccharification. Here, we reveal the three-dimensional structures of an α-xylosidase, a β-glucosidase, and two α-l-arabinofuranosidases from the Bacteroides ovatus XyGUL. Aided by bespoke ligand synthesis, our analyses highlight key adaptations in these enzymes that confer individual specificity for xyloglucan side chains and dictate concerted, stepwise disassembly of xyloglucan oligosaccharides. In harness with our recent structural characterization of the vanguard endo-xyloglucanse and cell-surface glycan-binding proteins, the present analysis provides a near-complete structural view of xyloglucan recognition and catalysis by XyGUL proteins. © 2016 The Authors.

  19. Stress of algicidal substances from a bacterium Exiguobacterium sp. h10 on Microcystis aeruginosa.

    PubMed

    Li, Y; Liu, L; Xu, Y; Li, P; Zhang, K; Jiang, X; Zheng, T; Wang, H

    2017-01-01

    Microcystis aeruginosa is a cyanobacterial bloom-causing species and is considered a serious threat to human health and biological safety. In this study, the algicidal bacterium h10 showed high algicidal effects on M. aeruginosa 7820, and strain h10 was confirmed to belong to the genus Exiguobacterium, for which the name Exiguobacterium sp. h10 is proposed. Algicidal activity and mode analysis revealed that the supernatant, rather than the bacterial cells, was responsible for the algicidal activity, indicating that the algicidal mode of strain h10 is by indirect attack through the production of algicidal substances. Analysis of the algicidal substance characteristics showed a molecular weight of <1000 Da and that algicidal substances exhibit high thermal stability and pH instability, and the characteristic functional groups of the algicidal substance mainly included carbonyl, amino and hydroxyl groups. Under the effects of the algicidal substance, the cellular pigment content was significantly decreased, and the algal cell structure and morphology were seriously damaged. The results indicate that the algicidal bacterium Exiguobacterium sp. h10 could be a potential bio-agent for controlling cyanobacterial blooms of M. aeruginosa. In this study, the effects of algicidal substances from an algicidal bacterium Exiguobacterium sp. h10 on the toxic cyanobacterium, Microcystis aeruginosa 7820, were first investigated. The algicidal mode of action was confirmed as an indirect attack through the production of algicidal substances. The characteristics of the algicidal substance were determined, especially the functional groups analysis that confirmed the algicidal substances were glycolipid mixtures. With the stress of algicidal substances, the algal chlorophyll a synthesis, cell structure and morphology were seriously damaged. This study proved that algicidal bacteria are promising sources of potential cyanobacterial bloom-control, and provided good procedures for the

  20. Differentiation of Symbiotic Cells and Endosymbionts in Medicago truncatula Nodulation Are Coupled to Two Transcriptome-Switches

    PubMed Central

    Maunoury, Nicolas; Redondo-Nieto, Miguel; Bourcy, Marie; Van de Velde, Willem; Alunni, Benoit; Laporte, Philippe; Durand, Patricia; Agier, Nicolas; Marisa, Laetitia; Vaubert, Danièle; Delacroix, Hervé; Duc, Gérard; Ratet, Pascal; Aggerbeck, Lawrence; Kondorosi, Eva; Mergaert, Peter

    2010-01-01

    The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix− nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this “nodule-specific transcriptome” were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of differentiated symbiotic

  1. Branimycins B and C, Antibiotics Produced by the Abyssal Actinobacterium Pseudonocardia carboxydivorans M-227.

    PubMed

    Braña, Alfredo F; Sarmiento-Vizcaíno, Aida; Pérez-Victoria, Ignacio; Otero, Luis; Fernández, Jonathan; Palacios, Juan José; Martín, Jesús; de la Cruz, Mercedes; Díaz, Caridad; Vicente, Francisca; Reyes, Fernando; García, Luis A; Blanco, Gloria

    2017-02-24

    Two new antibiotics, branimycins B (2) and C (3), were produced by fermentation of the abyssal actinobacterium Pseudonocardia carboxydivorans M-227, isolated from deep seawater of the Avilés submarine Canyon. Their structures were elucidated by HRMS and NMR analyses. These compounds exhibit antibacterial activities against a panel of Gram-positive bacteria, including Corynebacterium urealyticum, Clostridium perfringens, and Micrococcus luteus, and against the Gram-negative bacterium Neisseria meningitidis. Additionally, branimycin B displayed moderate antibacterial activity against other Gram-negative bacteria such as Bacteroides fragilis, Haemophilus influenzae, and Escherichia coli, and branimycin C against the Gram-positive Enterococcus faecalis and methicillin-sensitive and methicillin-resistant Staphylococcus aureus.

  2. Biodegradation of Ethylene Glycol by a Salt-Requiring Bacterium1

    PubMed Central

    Gonzalez, Carlos F.; Taber, Willard A.; Zeitoun, M. A.

    1972-01-01

    A gram-negative nonmotile rod which was capable of using 1,2-14C-ethylene glycol as a sole carbon source for growth was isolated from a brine pond, Great Salt Lake, Utah. The bacterium (ATCC 27042) required at least 0.85% NaCl for growth and, although the chloride ion was replaceable by sulfate ion, the sodium ion was not replaceable by potassium ion. The maximal concentration of salt tolerated for growth was approximately 12%. The bacterium was oxidase-negative when N,N-dimethyl-p-phenylenediamine was used and weakly positive when N,N,N′,N′-tetramethyl-p-phenylenediamine was used. It grows on many sugars but does not ferment them, it does not have an exogenous vitamin requirement, and it possesses a guanine plus cytosine ratio of 64.3%. Incorporation of ethylene glycol carbon into cell and respired CO2 was quantitated by use of radioactive ethylene glycol and a force-aerated fermentor. Glucose suppressed ethylene glycol metabolism. Cells grown on ethylene and propylene glycol respired ethylene glycol in a Warburg respirometer more rapidly than cells grown on glucose. Spectrophotometric evidence was obtained for oxidation of glycolate to glyoxylate by a dialyzed cell extract. PMID:4568254

  3. Chromatin organization and radio resistance in the bacterium Gemmata obscuriglobus.

    PubMed

    Lieber, Arnon; Leis, Andrew; Kushmaro, Ariel; Minsky, Abraham; Medalia, Ohad

    2009-03-01

    The organization of chromatin has a major impact on cellular activities, such as gene expression. For bacteria, it was suggested that the spatial organization of the genetic material correlates with transcriptional levels, implying a specific architecture of the chromosome within the cytoplasm. Accordingly, recent technological advances have emphasized the organization of the genetic material within nucleoid structures. Gemmata obscuriglobus, a member of the phylum Planctomycetes, exhibits a distinctive nucleoid structure in which chromatin is encapsulated within a discrete membrane-bound compartment. Here, we show that this soil and freshwater bacterium tolerates high doses of UV and ionizing radiation. Cryoelectron tomography of frozen hydrated sections and electron microscopy of freeze-substituted cells have indicated a more highly ordered condensed-chromatin organization in actively dividing and stationary-phase G. obscuriglobus cells. These three-dimensional analyses revealed a complex network of double membranes that engulf the condensed DNA. Bioinformatics analysis has revealed the existence of a putative component involved in nonhomologous DNA end joining that presumably plays a role in maintaining chromatin integrity within the bacterium. Thus, our observations further support the notion that packed chromatin organization enhances radiation tolerance.

  4. Isolation of a New Polysaccharide-Digesting Bacterium from a Salt Marsh

    PubMed Central

    Andrykovitch, George; Marx, Irene

    1988-01-01

    A new marine bacterium that digested a variety of storage and structural polysaccharides, including agar, was isolated. Strain 2-40 is a nonfermentative gram-negative, polarly flagellated rod that sometimes grew as a filamentous helix and secreted a melaninlike pigment. Its characteristics conform to those of no previously described species. PMID:16347602

  5. An Endohyphal Bacterium (Chitinophaga, Bacteroidetes) Alters Carbon Source Use by Fusarium keratoplasticum (F. solani Species Complex, Nectriaceae)

    PubMed Central

    Shaffer, Justin P.; U'Ren, Jana M.; Gallery, Rachel E.; Baltrus, David A.; Arnold, A. Elizabeth

    2017-01-01

    Bacterial endosymbionts occur in diverse fungi, including members of many lineages of Ascomycota that inhabit living plants. These endosymbiotic bacteria (endohyphal bacteria, EHB) often can be removed from living fungi by antibiotic treatment, providing an opportunity to assess their effects on functional traits of their fungal hosts. We examined the effects of an endohyphal bacterium (Chitinophaga sp., Bacteroidetes) on substrate use by its host, a seed-associated strain of the fungus Fusarium keratoplasticum, by comparing growth between naturally infected and cured fungal strains across 95 carbon sources with a Biolog® phenotypic microarray. Across the majority of substrates (62%), the strain harboring the bacterium significantly outperformed the cured strain as measured by respiration and hyphal density. These substrates included many that are important for plant- and seed-fungus interactions, such as D-trehalose, myo-inositol, and sucrose, highlighting the potential influence of EHB on the breadth and efficiency of substrate use by an important Fusarium species. Cases in which the cured strain outperformed the strain harboring the bacterium were observed in only 5% of substrates. We propose that additive or synergistic substrate use by the fungus-bacterium pair enhances fungal growth in this association. More generally, alteration of the breadth or efficiency of substrate use by dispensable EHB may change fungal niches in short timeframes, potentially shaping fungal ecology and the outcomes of fungal-host interactions. PMID:28382021

  6. Effects of an equol-producing bacterium isolated from human faeces on isoflavone and lignan metabolism in mice.

    PubMed

    Tamura, Motoi; Hori, Sachiko; Nakagawa, Hiroyuki; Yamauchi, Satoshi; Sugahara, Takuya

    2016-07-01

    Equol is a metabolite of daidzein that is produced by intestinal microbiota. The oestrogenic activity of equol is stronger than daidzein. Equol-producing bacteria are believed to play an important role in the gut. The rod-shaped and Gram-positive anaerobic equol-producing intestinal bacterium Slackia TM-30 was isolated from healthy human faeces and its effects on urinary phyto-oestrogen, plasma and faecal lipids were assessed in adult mice. The urinary amounts of equol in urine were significantly higher in mice receiving the equol-producing bacterium TM-30 (BAC) group than in the control (CO) group (P < 0.05). However, no significant differences were observed between the urinary amounts of daidzein, dihydrodaidzein, enterodiol, and enterolactone between the BAC and CO groups. No significant differences in the plasma lipids were observed between the two groups. The lipid content (% dry weight) in the faeces sampled on the final day of the experiment tended to be higher in the BAC group than in the CO group (P = 0.07). Administration of equol-producing bacterium TM-30 affected the urinary amounts of phyto-oestrogens and the faecal lipid contents of mice. The equol-producing bacterium TM-30 likely influences the metabolism of phyto-oestrogen via changes in the gastrointestinal environment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Hochstein, L. I.

    1976-01-01

    The previously described extremely halophilic bacterium, strain M6, metabolizes a variety of carbohydrates with the production of acid. In addition, the organism produces nitrite (but no gas) from nitrate, is motile, and grows most rapidly at about 50 C. These characteristics distinguish it from all previously described halophilic bacteria in the genus Halobacterium. It is suggested that it be designated as a new species, Halobacterium saccharovorum.

  8. Draft genome sequence of a strictly anaerobic dichloromethane-degrading bacterium

    DOE PAGES

    Kleindienst, Sara; Higgins, Steven A.; Tsementzi, Despina; ...

    2016-03-03

    Here, an anaerobic, dichloromethane-degrading bacterium affiliated with novel Peptococcaceae was maintained in a microbial consortium. The organism originated from pristine freshwater sediment collected from Rio Mameyes in Luquillo, Puerto Rico, in October 2009 (latitude 18°21'43.9", longitude –65°46'8.4"). The draft genome sequence is 2.1 Mb and has a G+C content of 43.5%.

  9. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping.

    PubMed

    Johnson, Ethan T; Baron, Daniel B; Naranjo, Belén; Bond, Daniel R; Schmidt-Dannert, Claudia; Gralnick, Jeffrey A

    2010-07-01

    Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments.

  10. Genome Sequence of the Algicidal Bacterium Kordia algicida OT-1 ▿

    PubMed Central

    Lee, Hyun Sook; Kang, Sung Gyun; Kwon, Kae Kyoung; Lee, Jung-Hyun; Kim, Sang-Jin

    2011-01-01

    Kordia algicida OT-1 is an algicidal bacterium against the bloom-forming microalgae. The genome sequence of K. algicida revealed a number of interesting features, including the degradation of macromolecules, the biosynthesis of carotenoid pigment and secondary metabolites, and the capacity for gliding motility, which might facilitate the understanding of algicidal mechanisms. PMID:21622754

  11. Physiological characterization of strain DCB-1, a unique dehalogenating sulfidogenic bacterium.

    PubMed Central

    Stevens, T O; Linkfield, T G; Tiedje, J M

    1988-01-01

    Strain DCB-1 is an obligately anaerobic bacterium which carries out the reductive dehalogenation of halobenzoates and was previously known to grow only on pyruvate plus 20% ruminal fluid. When various electron acceptors were supplied, thiosulfate and sulfite were found to stimulate growth. Sulfide was produced from thiosulfate. Cytochrome c and desulfoviridin were detected. The mol% G+C was 49 (at the thermal denaturation temperature). Of 55 carbon sources tested, only pyruvate supported growth as the sole carbon source in mineral medium. Lactate, acetate, L- and D-malate, glycerol, and L- and D-arabinose stimulated growth when supplemented with 10% ruminal fluid and 20 mM thiosulfate. In mineral medium, pyruvate was converted to acetate and lactate, with small amounts of succinate and fumarate accumulating transiently. During growth with thiosulfate, all of these products accumulated transiently. Addition of excess hydrogen to pyruvate-grown cultures resulted in diversion of carbon to formate, lactate, and butyrate, which caused a decrease in cell yield. We conclude that strain DCB-1 is a new type of sulfidogenic bacterium. PMID:3223760

  12. A novel marine bacterium algicidal to the toxic dinoflagellate Alexandrium tamarense.

    PubMed

    Wang, B X; Zhou, Y Y; Bai, S J; Su, J Q; Tian, Y; Zheng, T L; Yang, X R

    2010-11-01

    This work is aiming at investigating algicidal characterization of a bacterium isolate DHQ25 against harmful alga Alexandrium tamarense. 16S rDNA sequence analysis showed that the most probable affiliation of DHQ25 belongs to the γ-proteobacteria subclass and the genus Vibrio. Bacterial isolate DHQ25 showed algicidal activity through an indirect attack. Xenic culture of A. tamarense was susceptible to the culture filtrate of DHQ25 by algicidal activity assay. Algicidal process demonstrated that the alga cell lysed and cellular substances released under the visual field of microscope. DHQ25 was a challenge controller of A. tamarense by the above characterizations of algicidal activity assay and algicidal process. Interactions between bacteria and harmful algal bloom (HAB) species proved to be an important factor regulating the population of these algae. This is the first report of a Vibrio sp. bacterium algicidal to the toxic dinoflagellate A. tamarense. The findings increase our knowledge of the role of bacteria in algal-bacterial interaction. © 2010 The Authors. © 2010 The Society for Applied Microbiology.

  13. Draft Genome Sequence of the Algicidal Bacterium Mangrovimonas yunxiaonensis Strain LY01

    PubMed Central

    Li, Yi; Zhu, Hong; Li, Chongping; Zhang, Huajun; Chen, Zhangran; Zheng, Wei

    2014-01-01

    Mangrovimonas yunxiaonensis LY01, a novel bacterium isolated from mangrove sediment, showed high algicidal effects on harmful algal blooms of Alexandrium tamarense. Here, we present the first draft genome sequence of this strain to further understanding of the functional genes related to algicidal activity. PMID:25428978

  14. Robinsoniella peoriensis: A model anaerobic commensal bacterium for acquisition of antibiotic resistance?

    USDA-ARS?s Scientific Manuscript database

    Background: R. peoriensis was characterized in our laboratories from swine manure and feces as a Gram-positive, anaerobic bacterium. Since then strains of this species have been identified from a variety of mammalian and other gastrointestinal (GI) tracts, suggesting it is a member of the commensal ...

  15. Sexual Transmission of a Plant Pathogenic Bacterium, Candidatus Liberibacter asiaticus, between Conspecific Insect Vectors during Mating

    PubMed Central

    Mann, Rajinder S.; Pelz-Stelinski, Kirsten; Hermann, Sara L.; Tiwari, Siddharth; Stelinski, Lukasz L.

    2011-01-01

    Candidatus Liberibacter asiaticus is a fastidious, phloem-inhabiting, gram-negative bacterium transmitted by Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae). The bacterium is the presumed causal agent of huanglongbing (HLB), one of the most destructive and economically important diseases of citrus. We investigated whether Las is transmitted between infected and uninfected D. citri adults during courtship. Our results indicate that Las was sexually transmitted from Las-infected male D. citri to uninfected females at a low rate (<4%) during mating. Sexual transmission was not observed following mating of infected females and uninfected males or among adult pairs of the same sex. Las was detected in genitalia of both sexes and also in eggs of infected females. A latent period of 7 days or more was required to detect the bacterium in recipient females. Rod shaped as well as spherical structures resembling Las were observed in ovaries of Las-infected females with transmission electron microscopy, but were absent in ovaries from uninfected D. citri females. The size of the rod shaped structures varied from 0.39 to 0.67 µm in length and 0.19 to 0.39 µm in width. The spherical structures measured from 0.61 to 0.80 µm in diameter. This investigation provides convincing evidence that a plant pathogenic bacterium is sexually transmitted from male to female insects during courtship and established evidence that bacteria persist in reproductive organs. Moreover, these findings provide an alternative sexually horizontal mechanism for the spread of Las within populations of D. citri, even in the absence of infected host trees. PMID:22216209

  16. Safety evaluation of Lactobacillus delbrueckii subsp. lactis UO 004, a probiotic bacterium.

    PubMed

    Fernández, M Fernanda; Boris, Soledad; Barbés, Covadonga

    2005-03-01

    Lactobacillus delbrueckii subsp. lactis UO 004 was evaluated for its use as a potential probiotic from a safety point of view. The strain did not exhibit mucinolytic or other enzymatic activities that might be detrimental, such as those involving glycosidases (beta-D-glucosaminidase or alpha-D-galactosidase) or arylamidases (factor Xa and quimotrypsin-like activities), frequently present in Lactobacillus strains isolated from patients with endocarditis, although it was able to express protein Ca and kallikrein-like activities. On the other hand, the presence of the strain did not interfere with the growth of certain species of normal intestinal microbiota, such as Enterococcus fecalis, Escherichia coli, Bifidobacterium bifidum or Bacteroides fragilis. Moreover, the potential probiotic strain UO 004 is sensitive to antibiotics with transmissible resistance mechanisms in Lactobacillus such as chloramphenicol, erythromycin, tetracycline and vancomycin. In addition, strain L. delbrueckii UO 004 was not able to translocate towards the intestinal barrier of mice or produce changes in their activity or general health status.

  17. Isolation and Characterization of a Novel, Highly Selective Astaxanthin-Producing Marine Bacterium.

    PubMed

    Asker, Dalal

    2017-10-18

    A high-throughput screening approach for astaxanthin-producing bacteria led to the discovery of a novel, highly selective astaxanthin-producing marine bacterium (strain N-5). Phylogenetic analysis based on partial 16S rRNA gene and phenotypic metabolic testing indicated it belongs to the genus Brevundimonas. Therefore, it was designated as Brevundimonas sp. strain N-5. To identify and quantify carotenoids produced by strain N-5, HPLC-DAD and HPLC-MS methods were used. The culture conditions including media, shaking, and time had significant effects on cell growth and carotenoids production including astaxanthin. The total carotenoids were ∼601.2 μg g -1 dry cells including a remarkable amount (364.6 μg g -1 dry cells) of optically pure astaxanthin (3S, 3'S) isomer, with high selectivity (∼60.6%) under medium aeration conditions. Notably, increasing the culture aeration enhanced astaxanthin production up to 85% of total carotenoids. This is the first report that describes a natural, highly selective astaxanthin-producing marine bacterium.

  18. IN SITU RT-PCR WITH A SULFATE-REDUCING BACTERIUM ISOLATED FROM SEAGRASS ROOTS

    EPA Science Inventory

    Bacteria considered to be obligate anaerobes internally colonize roots of the submerged macrophyte Halodule wrightii. A sulfate reducing bacterium, Summer lac 1, was isolated on lactate from H. wrightii roots. The isolate has physiological characteristics typical of Desulfovibri...

  19. The chemical formula of a magnetotactic bacterium.

    PubMed

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life. Copyright © 2011 Wiley Periodicals, Inc.

  20. Five new amicoumacins isolated from a marine-derived bacterium Bacillus subtilis.

    PubMed

    Li, Yongxin; Xu, Ying; Liu, Lingli; Han, Zhuang; Lai, Pok Yui; Guo, Xiangrong; Zhang, Xixiang; Lin, Wenhan; Qian, Pei-Yuan

    2012-02-01

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature.

  1. Draft Genome Sequence of Sphingobium fuliginis OMI, a Bacterium That Degrades Alkylphenols and Bisphenols

    PubMed Central

    Ogata, Yuka; Yahara, Tatsuya; Yokoyama, Takashi; Ishizawa, Hidehiro; Takada, Kazuki; Inoue, Daisuke; Sei, Kazunari

    2017-01-01

    ABSTRACT Sphingobium fuliginis OMI is a bacterium that can degrade a variety of recalcitrant alkylphenols and bisphenols. This study reports the draft genome sequence of S. fuliginis OMI. PMID:29167253

  2. A pathway closely related to the (D)-tagatose pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis.

    PubMed

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard

    2013-06-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  3. Identification and use of the putative Bacteroides ovatus xylanase promoter for the inducible production of recombinant human proteins.

    PubMed

    Hamady, Zaed Z R; Farrar, Mark D; Whitehead, Terence R; Holland, Keith T; Lodge, J Peter A; Carding, Simon R

    2008-10-01

    The use of genetically modified bacteria to deliver biologically active molecules directly to the gut has become an increasingly attractive area of investigation. The challenge of regulation of production of the therapeutic molecule and colonization of the bowel led us to investigate Bacteroides ovatus for the production of these molecules, due to its ability to colonize the colon and xylan utilization properties. Here we have identified the putative xylanase promoter. The 5' region of the corresponding mRNA was determined by 5'RACE analysis and the transcription initiation site was identified 216 bp upstream of the ATG start codon. The putative xylanase promoter was regulated by xylan in a dose- and time-dependent manner, and repressed by glucose. This promoter was subsequently used to direct the controlled expression of a gene encoding the human intestinal trefoil factor (TFF-3) after integration as a single copy into the chromosome of B. ovatus. The resulting strain produced biologically active TFF-3 in the presence of xylan. These findings identify the B. ovatus xylanase operon promoter and show that it can be utilized to direct xylan-inducible expression of heterologous eukaryotic genes in B. ovatus.

  4. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    PubMed

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain.

  5. Bacterium-Induced CXCL10 Secretion by Osteoblasts Can Be Mediated in Part through Toll-Like Receptor 4

    PubMed Central

    Gasper, Nancy A.; Petty, Cynthia C.; Schrum, Laura W.; Marriott, Ian; Bost, Kenneth L.

    2002-01-01

    Two common pathogens known to cause bone infection, Salmonella and Staphylococcus aureus, were investigated to determine their abilities to induce chemokine expression in cultured mouse and human osteoblasts. While these cells are responsible for bone formation, we were surprised to find that they could respond to bacterial infection by upregulating expression of the chemokine CXCL10 (IP-10). However, there were significant differences in the abilities of the gram-negative bacterium Salmonella and the gram-positive bacterium S. aureus to induce expression of CXCL10. Reverse transcription-PCR and enzyme-linked immunosorbent assay analyses showed high levels of Salmonella-induced CXCL10 mRNA and protein expression, respectively, whereas the osteoblast response to S. aureus was significantly less. Consistent with these findings, Salmonella-derived lipopolysaccharide (LPS), but not S. aureus-derived peptidoglycan, could induce expression of CXCL10. An antibody against toll-like receptor 4 (TLR4) could block the LPS-induced CXCL10 production, demonstrating the functional expression of TLR4 by osteoblasts. Despite the inducible nature of TLR2 mRNA expression by bacterium-infected osteoblasts, peptidoglycan failed to stimulate CXCL10 secretion. Immunofluorescent staining of bacterium-infected calvaria (i.e., skull bone) demonstrated the presence of CXCL10 in osteoblasts. The fact that osteoblasts did not express CXCR3 mRNA, whereas T lymphocytes can express high levels of this receptor, suggests that osteoblast-derived CXCL10 may recruit T lymphocytes to the sites of bone infections. PMID:12117914

  6. Diversity in bacterium-host interactions within the species Helicobacter heilmannii sensu stricto

    PubMed Central

    2013-01-01

    Helicobacter (H.) heilmannii sensu stricto (s.s.) is a zoonotic bacterium that naturally colonizes the stomach of dogs and cats. In humans, this microorganism has been associated with gastritis, peptic ulcer disease and mucosa associated lymphoid tissue (MALT) lymphoma. Little information is available about the pathogenesis of H. heilmannii s.s. infections in humans and it is unknown whether differences in virulence exist within this species. Therefore, a Mongolian gerbil model was used to study bacterium-host interactions of 9 H. heilmannii s.s. strains. The colonization ability of the strains, the intensity of gastritis and gene expression of various inflammatory cytokines in the stomach were determined at 9 weeks after experimental infection. The induction of an antrum-dominant chronic active gastritis with formation of lymphocytic aggregates was shown for 7 strains. High-level antral colonization was seen for 4 strains, while colonization of 4 other strains was more restricted and one strain was not detected in the stomach at 9 weeks post infection. All strains inducing a chronic active gastritis caused an up-regulation of the pro-inflammatory cytokine IL-1β in the antrum. A reduced antral expression of H+/K+ ATPase was seen in the stomach after infection with 3 highly colonizing strains and 2 highly colonizing strains caused an increased gastrin expression in the fundus. In none of the H. heilmannii s.s.-infected groups, IFN-γ expression was up-regulated. This study demonstrates diversity in bacterium-host interactions within the species H. heilmannii s.s. and that the pathogenesis of gastric infections with this microorganism is not identical to that of an H. pylori infection. PMID:23895283

  7. Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403.

    PubMed

    Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna

    2017-10-01

    Brown seaweed Anthophycus longifolius (Turner) Kützing (family Sargassaceae) associated heterotrophic bacterium Bacillus subtilis MTCC 10403 was found to be a potent isolate with broad range of antibacterial activity against important perceptive food pathogens Vibrio parahaemolyticus, V. vulnificus, and Aeromonas hydrophila. This bacterium was positive for polyketide synthetase gene (KC589397), and therefore, was selected to bioprospect specialized metabolites bearing polyketide backbone. Bioactivity-guided chromatographic fractionation of the ethyl acetate extract of the seaweed-associated bacterium segregated four homologous polyketide furanoterpenoids with potential antibacterial activities against clinically important pathogens. The minimum inhibitory concentration (MIC) assay showed that the referral antibiotics tetracycline and ampicillin were active at 25 μg/mL against the test pathogens, whereas the previously undescribed (4E)-methyl 13-((16-(furan-2-yl) ethyl)-octahydro-7-hydroxy-4-((E)-23-methylbut-21-enyl)-2H-chromen-6-yl)-4-methylpent-4-enoate (compound 1) and methyl 3-(hexahydro-9-((E)-3-methylpent-1-enyl)-4H-furo[3,2-g]isochromen-6-yl) propanoate (compound 3) displayed antibacterial activities against the test pathogens at a lesser concentration (MIC < 7 μg/mL). The title compounds were characterized by comprehensive nuclear magnetic resonance and mass spectroscopic experiments. Polyketide synthase catalyzed putative biosynthetic mechanism additionally corroborated the structural ascriptions of the hitherto undescribed furanoterpenoids from seaweed-associated bacterial symbiont. The electronic and hydrophobic parameters appeared to hold a conspicuous part in directing the antibacterial properties of the compounds. Seaweed-associated B. subtilis MTCC 10403 demonstrated to represent a potential source of antimicrobial polyketides for pharmaceutical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  9. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium

    USGS Publications Warehouse

    Caccavo, F.; Coates, J.D.; Rossello-Mora, R. A.; Ludwig, W.; Schleifer, K.H.; Lovley, D.R.; McInerney, M.J.

    1996-01-01

    A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAI-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAI-1 differs from all other described bacteria, and represents the type strain of a new genus and species. Geovibrio ferrireducens.

  10. Draft Genome Sequence of the Algicidal Bacterium Mangrovimonas yunxiaonensis Strain LY01.

    PubMed

    Li, Yi; Zhu, Hong; Li, Chongping; Zhang, Huajun; Chen, Zhangran; Zheng, Wei; Xu, Hong; Zheng, Tianling

    2014-11-26

    Mangrovimonas yunxiaonensis LY01, a novel bacterium isolated from mangrove sediment, showed high algicidal effects on harmful algal blooms of Alexandrium tamarense. Here, we present the first draft genome sequence of this strain to further understanding of the functional genes related to algicidal activity. Copyright © 2014 Li et al.

  11. Aerobic mineralization of vinyl chlorides by a bacterium of the order Actinomycetales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, T.J.; Malachowsky, K.; Schram, R.M.

    1991-04-01

    A gram-positive branched bacterium isolated from a trichloroethylene-degrading consortium mineralized vinyl chloride in growing cultures and cell suspensions. Greater than 67% of the (1,2-{sup 14}C)vinyl chloride was mineralized to carbon dioxide, with approximately 10% of the radioactivity appearing in {sup 14}C-aqueous-phase products.

  12. Prevalence and characterization of enterotoxigenic Bacteroides fragilis and toxigenic Clostridium difficile in a Taipei emergency department.

    PubMed

    Ji, Dar-Der; Huang, I-Hsiu; Lai, Chao-Chih; Wu, Fang-Tzy; Jiang, Donald Dah-Shyong; Hsu, Bing-Mu; Lin, Wei-Chen

    2017-02-01

    Enterotoxigenic Bacteroides fragilis (ETBF) and toxin-encoding Clostridium difficile (TXCD) are associated with gastroenteritis. Routine anaerobic blood culture for recovery of these anaerobic pathogens is not used for the detection of their toxins, especially for toxin-variant TXCD. The aim of this study was to investigate the prevalence and risk factors of the genotypes of these anaerobes in patients with acute diarrheal illnesses. The data and samples of 513 patients with gastroenteritis were collected in a Taipei emergency department from March 1, 2006 to December 31, 2009. Nonenterotoxigenic B. fragilis (NTBF) and ETBF and the toxin genotypes of TXCD were detected by molecular methods. The prevalence rates of NTBF, ETBF, and TXCD infections were 33.14%, 1.56%, and 2.34%, respectively. ETBF infections often occurred in the elderly (average age = 67.13 years) and during the cold, dry winters. TXCD infections were widely distributed in age and often occurred in the warm, wet springs and summers. The symptoms of ETBF-infected patients were significantly more severe than those of NTBF-infected patients. This study identified and analyzed the prevalence, risk factors, and clinical presentations of these anaerobic infections. Future epidemiologic and clinical studies are needed to understand the role of ETBF and TXCD in human gastroenteritis. Copyright © 2015. Published by Elsevier B.V.

  13. Draft Genome Sequence of Sphingobium fuliginis OMI, a Bacterium That Degrades Alkylphenols and Bisphenols.

    PubMed

    Kuroda, Masashi; Ogata, Yuka; Yahara, Tatsuya; Yokoyama, Takashi; Ishizawa, Hidehiro; Takada, Kazuki; Inoue, Daisuke; Sei, Kazunari; Ike, Michihiko

    2017-11-22

    Sphingobium fuliginis OMI is a bacterium that can degrade a variety of recalcitrant alkylphenols and bisphenols. This study reports the draft genome sequence of S. fuliginis OMI. Copyright © 2017 Kuroda et al.

  14. Isolation of Bacteriophages of the Marine Bacterium Beneckea natriegens from Coastal Salt Marshes1

    PubMed Central

    Zachary, Arthur

    1974-01-01

    Bacteriophages of the marine bacterium Beneckea natriegens were isolated from coastal marshes where they were limited to brackish and marine waters. The phages were widely distributed and morphologically diverse in the marshes. Images PMID:4133830

  15. Enhancement of Survival and Electricity Production in an Engineered Bacterium by Light-Driven Proton Pumping▿ †

    PubMed Central

    Johnson, Ethan T.; Baron, Daniel B.; Naranjo, Belén; Bond, Daniel R.; Schmidt-Dannert, Claudia; Gralnick, Jeffrey A.

    2010-01-01

    Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments. PMID:20453141

  16. Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhupathiraju, V.K.; Sharma, P.K.; Tanner, R.S.

    A strictly anaerobic, moderately halophilic, gram-negative bacterium was isolated from a highly saline oil field brine. The bacterium was a non-spore-forming, nonmotile rod, appearing singly, in pairs, or occasionally as long chains, and measured 0.3 to 0.4 by 2.6 to 4 {micro}m. The bacterium had a specific requirement for NaCl and grew at NaCl concentrations of between 6 and 24%, with optimal growth at 9% NaCl. The isolate grew at temperatures of between 22 and 51 C and pH values of between 5.6 and 8.0. The doubling time in a complex medium containing 10% NaCl was 9 h. Growth wasmore » inhibited by chloramphenicol, tetracycline, and penicillin but not by cycloheximide or azide. Fermentable substrates were predominantly carbohydrates. The end products of glucose fermentation were acetate, ethanol, CO{sub 2}, and H{sub 2}. The major components of the cellular fatty acids were C{sub 14:0}, C{sub 16:0}, C{sub 16:1}, and C{sub 17:0 cyc} acids. The DNA base composition of the isolate was 34 mol% G+C. Oligonucleotide catalog and sequence analyses of the 16S rRNA showed that strain VS-752{sup T} was most closely related to Haloanaerobium praevalens GSL{sup T} (ATCC 33744), the sole member of the genus Haloanaerobium. The authors propose that strain VS-752 (ATCC 51327) by established as the type strain of a new species, Haloanaerobium salsugo, in the genus Haloanaerobium. 40 refs., 3 figs, 5 tabs.« less

  17. Genome Sequence of Sphingobium indicum B90A, a Hexachlorocyclohexane-Degrading Bacterium

    PubMed Central

    Anand, Shailly; Sangwan, Naseer; Lata, Pushp; Kaur, Jasvinder; Dua, Ankita; Singh, Amit Kumar; Verma, Mansi; Kaur, Jaspreet; Khurana, Jitendra P.; Khurana, Paramjit; Mathur, Saloni

    2012-01-01

    Sphingobium indicum B90A, an efficient degrader of hexachlorocyclohexane (HCH) isomers, was isolated in 1990 from sugarcane rhizosphere soil in Cuttack, India. Here we report the draft genome sequence of this bacterium, which has now become a model system for understanding the genetics, biochemistry, and physiology of HCH degradation. PMID:22843598

  18. Ammonificins C and D, Hydroxyethylamine Chromene Derivatives from a Cultured Marine Hydrothermal Vent Bacterium, Thermovibrio ammonificans

    PubMed Central

    Andrianasolo, Eric H.; Haramaty, Liti; Rosario-Passapera, Richard; Vetriani, Costantino; Falkowski, Paul; White, Eileen; Lutz, Richard

    2012-01-01

    Chemical and biological investigation of the cultured marine hydrothermal vent bacterium, Thermovibrio ammonifican led to the isolation of two hydroxyethylamine chromene derivatives, ammonificins C and D. Their structures were elucidated using combination of NMR and mass spectrometry. Absolute stereochemistry was ascertained by comparison of experimental and calculated CD spectra. Biological evaluation and assessment were determined using the patented ApopScreen cell-based screen for apoptosis-induction. Ammonificins C and D induce apoptosis in micromolar concentrations. To our knowledge, this finding is the first report of chemical compounds that induce apoptosis from the cultured deep-sea marine organism, hydrothermal vent bacterium, Thermovibrio ammonificans. PMID:23170085

  19. Vector potential of houseflies for the bacterium Aeromonas caviae.

    PubMed

    Nayduch, D; Noblet, G Pittman; Stutzenberger, F J

    2002-06-01

    Houseflies, Musca domestica Linnaeus (Diptera: Muscidae), have been implicated as vectors or transporters of numerous gastrointestinal pathogens encountered during feeding and ovipositing on faeces. The putative enteropathogen Aeromonas caviae (Proteobacteria: Aeromonadaceae) may be present in faeces of humans and livestock. Recently A. caviae was detected in houseflies by PCR and isolated by culture methods. In this study, we assessed the vector potential of houseflies for A. caviae relative to multiplication and persistence of the bacterium in the fly and to contamination of other flies and food materials. In experimentally fed houseflies, the number of bacteria increased up to 2 days post-ingestion (d PI) and then decreased significantly 3 d PI. A large number of bacteria was detected in the vomitus and faeces of infected flies at 2-3 d PI. The bacteria persisted in flies for up to 8 d PI, but numbers were low. Experimentally infected flies transmitted A. caviae to chicken meat, and transmissibility was directly correlated with exposure time. Flies contaminated the meat for up to 7 d PI; however, a significant decrease in contamination was observed 2-3 d PI. In the fly-to-fly transmission experiments, the transmission of A. caviae was observed and was apparently mediated by flies sharing food. These results support houseflies as potential vectors for A. caviae because the bacterium multiplied, persisted in flies for up to 8 d PI, and could be transmitted to human food items.

  20. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036.

    PubMed

    Choi, Sun Young; Gong, Gyeongtaek; Park, Hong-Sil; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2015-01-10

    Detoxification process of cellular inhibitors including furfural is essential for production of bio-based chemicals from lignocellulosic biomass. Here we isolated an extreme furfural-tolerant bacterium Enterobacter cloacae GGT036 from soil sample collected in Mt. Gwanak, Republic of Korea. Among isolated bacteria, only E. cloacae GGT036 showed cell growth with 35 mM furfural under aerobic culture. Compared to the maximal half inhibitory concentration (IC50) of well-known industrial strains Escherichia coli (24.9 mM furfural) and Corynebacterium glutamicum (10 mM furfural) based on the cell density, IC50 of E. cloacae GGT036 (47.7 mM) was significantly higher after 24 h, compared to E. coli and C. glutamicum. Since bacterial cell growth was exponentially inhibited depending on linearly increased furfural concentrations in the medium, we concluded that E. cloacae GGT036 is an extreme furfural-tolerant bacterium. Recently, the complete genome sequence of E. cloacae GGT036 was announced and this could provide an insight for engineering of E. cloacae GGT036 itself or other industrially relevant bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater

    USDA-ARS?s Scientific Manuscript database

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50**T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rDNA sequences revealed that the novel isolate represented...

  2. Catalytic Biomineralization of Fluorescent Calcite by the Thermophilic Bacterium Geobacillus thermoglucosidasius▿

    PubMed Central

    Yoshida, Naoto; Higashimura, Eiji; Saeki, Yuichi

    2010-01-01

    The thermophilic Geobacillus bacterium catalyzed the formation of 100-μm hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate. PMID:20851984

  3. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    PubMed

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading. Copyright © 2016, American Association for the Advancement of Science.

  4. Effects of Combinations of Substrates on Maximum Growth Rates of Several Rumen Bacteria

    PubMed Central

    Russell, James B.; Delfino, Frank J.; Baldwin, R. L.

    1979-01-01

    Five rumen bacteria, Selenomonas ruminantium, Bacteroides ruminicola, Megasphaera elsdenii, Butyrivibrio fibrisolvens, and Streptococcus bovis were grown in media containing nonlimiting concentrations of glucose, sucrose, maltose, cellobiose, xylose and/or lactate. Each bacterium was grown with every substrate that it could ferment in every possible two-way combination. Only once did a combination of substrates result in a higher maximum growth rate than that observed with either substrate alone. Such stimulations of growth rate would be expected if specific factors unique to individual substrates (transport proteins and/or enzymes) were limiting. Since such synergisms were rare, it was concluded that more general factors limit maximum growth rates in these five bacteria. PMID:16345360

  5. Draft Genome Sequence of the Deinococcus-Thermus Bacterium Meiothermus ruber Strain A

    DOE PAGES

    Thiel, Vera; Tomsho, Lynn P.; Burhans, Richard; ...

    2015-03-26

    The draft genome sequence of the Deinococcus-Thermus group bacterium Meiothermus ruber strain A, isolated from a cyanobacterial enrichment culture obtained from Octopus Spring (Yellowstone National Park, WY), comprises 2,968,099 bp in 170 contigs. It is predicted to contain 2,895 protein-coding genes, 44 tRNA-coding genes, and 2 rRNA operons.

  6. Aerobic mineralization of vinyl chloride by a bacterium of the order Actinomycetales.

    PubMed Central

    Phelps, T J; Malachowsky, K; Schram, R M; White, D C

    1991-01-01

    A gram-positive branched bacterium isolated from a trichloroethylene-degrading consortium mineralized vinyl chloride in growing cultures and cell suspensions. Greater than 67% of the [1,2-14C]vinyl chloride was mineralized to carbon dioxide, with approximately 10% of the radioactivity appearing in cell biomass and another 10% appearing in 14C-aqueous-phase products. PMID:1905522

  7. Isolation and characterization of a novel simazine-degrading bacterium from agricultural soil of central Chile, Pseudomonas sp. MHP41.

    PubMed

    Hernández, Marcela; Villalobos, Patricio; Morgante, Verónica; González, Myriam; Reiff, Caroline; Moore, Edward; Seeger, Michael

    2008-09-01

    s-Triazine herbicides are used extensively in South America in agriculture and forestry. In this study, a bacterium designated as strain MHP41, capable of degrading simazine and atrazine, was isolated from agricultural soil in the Quillota valley, central Chile. Strain MHP41 is able to grow in minimal medium, using simazine as the sole nitrogen source. In this medium, the bacterium exhibited a growth rate of mu=0.10 h(-1), yielding a high biomass of 4.2 x 10(8) CFU mL(-1). Resting cells of strain MHP41 degrade more than 80% of simazine within 60 min. The atzA, atzB, atzC, atzD, atzE and atzF genes encoding the enzymes of the simazine upper and lower pathways were detected in strain MHP41. The motile Gram-negative bacterium was identified as a Pseudomonas sp., based on the Biolog microplate system and comparative sequence analyses of the 16S rRNA gene. Amplified ribosomal DNA restriction analysis allowed the differentiation of strain MHP41 from Pseudomonas sp. ADP. The comparative 16S rRNA gene sequence analyses suggested that strain MHP41 is closely related to Pseudomonas nitroreducens and Pseudomonas multiresinovorans. This is the first s-triazine-degrading bacterium isolated in South America. Strain MHP41 is a potential biocatalyst for the remediation of s-triazine-contaminated environments.

  8. Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study

    USGS Publications Warehouse

    Layton, Blythe A.; Cao, Yiping; Ebentier, Darcy L.; Hanley, Kaitlyn; Ballesté, Elisenda; Brandão, João; Byappanahalli, Muruleedhara N.; Converse, Reagan; Farnleitner, Andreas H.; Gentry-Shields, Jennifer; Gourmelon, Michèle; Lee, Chang Soo; Lee, Jiyoung; Lozach, Solen; Madi, Tania; Meijer, Wim G.; Noble, Rachel; Peed, Lindsay; Reischer, Georg H.; Rodrigues, Raquel; Rose, Joan B.; Schriewer, Alexander; Sinigalliano, Chris; Srinivasan, Sangeetha; Stewart, Jill; ,; Laurie, C.; Wang, Dan; Whitman, Richard; Wuertz, Stefan; Jay, Jenny; Holden, Patricia A.; Boehm, Alexandria B.; Shanks, Orin; Griffith, John F.

    2013-01-01

    A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing in large multi-laboratory studies. Here, we evaluated ten of these methods (BacH, BacHum-UCD, Bacteroides thetaiotaomicron (BtH), BsteriF1, gyrB, HF183 endpoint, HF183 SYBR, HF183 Taqman®, HumM2, and Methanobrevibacter smithii nifH (Mnif)) using 64 blind samples prepared in one laboratory. The blind samples contained either one or two fecal sources from human, wastewater or non-human sources. The assay results were assessed for presence/absence of the human markers and also quantitatively while varying the following: 1) classification of samples that were detected but not quantifiable (DNQ) as positive or negative; 2) reference fecal sample concentration unit of measure (such as culturable indicator bacteria, wet mass, total DNA, etc); and 3) human fecal source type (stool, sewage or septage). Assay performance using presence/absence metrics was found to depend on the classification of DNQ samples. The assays that performed best quantitatively varied based on the fecal concentration unit of measure and laboratory protocol. All methods were consistently more sensitive to human stools compared to sewage or septage in both the presence/absence and quantitative analysis. Overall, HF183 Taqman® was found to be the most effective marker of human fecal contamination in this California-based study.

  9. Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus.

    PubMed

    König, Claudia C; Scherlach, Kirstin; Schroeckh, Volker; Horn, Fabian; Nietzsche, Sandor; Brakhage, Axel A; Hertweck, Christian

    2013-05-27

    Stimulating encounter: The intimate, physical interaction between the soil-derived bacterium Streptomyces rapamycinicus and the human pathogenic fungus Aspergillus fumigatus led to the activation of an otherwise silent polyketide synthase (PKS) gene cluster coding for an unusual prenylated polyphenol (fumicycline A). The meroterpenoid pathway is regulated by a pathway-specific activator gene as well as by epigenetic factors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides

    NASA Astrophysics Data System (ADS)

    Devendran, Saravanan; Abdel-Hamid, Ahmed M.; Evans, Anton F.; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I.; Cann, Isaac

    2016-10-01

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  11. More than meets the eye: associations of vaginal bacteria with gram stain morphotypes using molecular phylogenetic analysis.

    PubMed

    Srinivasan, Sujatha; Morgan, Martin T; Liu, Congzhou; Matsen, Frederick A; Hoffman, Noah G; Fiedler, Tina L; Agnew, Kathy J; Marrazzo, Jeanne M; Fredricks, David N

    2013-01-01

    Bacterial vaginosis (BV) is a highly prevalent condition associated with adverse health outcomes. Gram stain analysis of vaginal fluid is the standard for confirming the diagnosis of BV, wherein abundances of key bacterial morphotypes are assessed. These Lactobacillus, Gardnerella, Bacteroides, and Mobiluncus morphotypes were originally linked to particular bacterial species through cultivation studies, but no studies have systematically investigated associations between uncultivated bacteria detected by molecular methods and Gram stain findings. In this study, 16S-rRNA PCR/pyrosequencing was used to examine associations between vaginal bacteria and bacterial morphotypes in 220 women with and without BV. Species-specific quantitative PCR (qPCR) and fluorescence in Situ hybridization (FISH) methods were used to document concentrations of two bacteria with curved rod morphologies: Mobiluncus and the fastidious BV-associated bacterium-1 (BVAB1). Rank abundance of vaginal bacteria in samples with evidence of curved gram-negative rods showed that BVAB1 was dominant (26.1%), while Mobiluncus was rare (0.2% of sequence reads). BVAB1 sequence reads were associated with Mobiluncus morphotypes (p<0.001). Among women with curved rods, mean concentration of BVAB1 DNA was 2 log units greater than Mobiluncus (p<0.001) using species-specific quantitative PCR. FISH analyses revealed that mean number of BVAB1 cells was 2 log units greater than Mobiluncus cells in women with highest Nugent score (p<0.001). Prevotella and Porphyromonas spp. were significantly associated with the "Bacteroides morphotype," whereas Bacteroides species were rare. Gram-negative rods designated Mobiluncus morphotypes on Gram stain are more likely BVAB1. These findings provide a clearer picture of the bacteria associated with morphotypes on vaginal Gram stain.

  12. Experimental study of the quasi 1d motion of a ``robot bacterium'' within a tube

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Jiao, Yusheng; Li, Shutong; Ding, Yang; Xu, Xinliang; Complex Fluids Team

    2017-11-01

    Understanding how solid boundary influences the motion of a micro-swimmer can be quite important. Here we experimentally study the problem with a system of centi-meter size ``robot bacterium'' immersed in the solvent silicon oil. Equipped with build-in battery and motor, the robot mimics a free swimmer and the overall Reynolds number of the system is kept very small as we use silicon oil with very high viscosity. The motion of centi-meter size ``robot bacterium'' within cylindrical tube is experimentally studied in detail. Our results show that robot bacteria with different shapes respond very different to the solid boundary. For certain shapes the swimmers actually swim much faster within a tube, when compared to their motions without any confinement, in good agreement with our numerical evaluations of the hydrodynamics of the system.

  13. Gut metagenomes of type 2 diabetic patients have characteristic single-nucleotide polymorphism distribution in Bacteroides coprocola.

    PubMed

    Chen, Yaowen; Li, Zongcheng; Hu, Shuofeng; Zhang, Jian; Wu, Jiaqi; Shao, Ningsheng; Bo, Xiaochen; Ni, Ming; Ying, Xiaomin

    2017-02-01

    Gut microbes play a critical role in human health and disease, and researchers have begun to characterize their genomes, the so-called gut metagenome. Thus far, metagenomics studies have focused on genus- or species-level composition and microbial gene sets, while strain-level composition and single-nucleotide polymorphism (SNP) have been overlooked. The gut metagenomes of type 2 diabetes (T2D) patients have been found to be enriched with butyrate-producing bacteria and sulfate reduction functions. However, it is not known whether the gut metagenomes of T2D patients have characteristic strain patterns or SNP distributions. We downloaded public gut metagenome datasets from 170 T2D patients and 174 healthy controls and performed a systematic comparative analysis of their metagenome SNPs. We found that Bacteroides coprocola, whose relative abundance did not differ between the groups, had a characteristic distribution of SNPs in the T2D patient group. We identified 65 genes, all in B. coprocola, that had remarkably different enrichment of SNPs. The first and sixth ranked genes encode glycosyl hydrolases (GenBank accession EDU99824.1 and EDV02301.1). Interestingly, alpha-glucosidase, which is also a glycosyl hydrolase located in the intestine, is an important drug target of T2D. These results suggest that different strains of B. coprocola may have different roles in human gut and a specific set of B. coprocola strains are correlated with T2D.

  14. Complete Genome Sequence of the Endophytic Bacterium Burkholderia sp. Strain KJ006

    PubMed Central

    Kwak, Min-Jung; Song, Ju Yeon; Kim, Seon-Young; Jeong, Haeyoung; Kang, Sung Gyun; Kim, Byung Kwon; Kwon, Soon-Kyeong; Lee, Choong Hoon; Yu, Dong Su

    2012-01-01

    Endophytes live inside plant tissues without causing any harm and may even benefit plants. Here, we provide the high-quality genome sequence of Burkholderia sp. strain KJ006, an endophytic bacterium of rice with antifungal activity. The 6.6-Mb genome, consisting of three chromosomes and a single plasmid, contains genes related to plant growth promotion or degradation of aromatic compounds. PMID:22843575

  15. Nematode-bacterium symbioses--cooperation and conflict revealed in the "omics" age.

    PubMed

    Murfin, Kristen E; Dillman, Adler R; Foster, Jeremy M; Bulgheresi, Silvia; Slatko, Barton E; Sternberg, Paul W; Goodrich-Blair, Heidi

    2012-08-01

    Nematodes are ubiquitous organisms that have a significant global impact on ecosystems, economies, agriculture, and human health. The applied importance of nematodes and the experimental tractability of many species have promoted their use as models in various research areas, including developmental biology, evolutionary biology, ecology, and animal-bacterium interactions. Nematodes are particularly well suited for the investigation of host associations with bacteria because all nematodes have interacted with bacteria during their evolutionary history and engage in a variety of association types. Interactions between nematodes and bacteria can be positive (mutualistic) or negative (pathogenic/parasitic) and may be transient or stably maintained (symbiotic). Furthermore, since many mechanistic aspects of nematode-bacterium interactions are conserved, their study can provide broader insights into other types of associations, including those relevant to human diseases. Recently, genome-scale studies have been applied to diverse nematode-bacterial interactions and have helped reveal mechanisms of communication and exchange between the associated partners. In addition to providing specific information about the system under investigation, these studies also have helped inform our understanding of genome evolution, mutualism, and innate immunity. In this review we discuss the importance and diversity of nematodes, "omics"' studies in nematode-bacterial systems, and the wider implications of the findings.

  16. Nematode-Bacterium Symbioses - Cooperation and Conflict Revealed in the 'Omics' Age

    PubMed Central

    Murfin, Kristen E.; Dillman, Adler R.; Foster, Jeremy M.; Bulgheresi, Silvia; Slatko, Barton E.; Sternberg, Paul W.; Goodrich-Blair, Heidi

    2012-01-01

    Nematodes are ubiquitous organisms that have a significant global impact on ecosystems, economies, agriculture, and human health. The applied importance of nematodes and the experimental tractability of many species have promoted their use as models in various research areas, including developmental biology, evolutionary biology, ecology, and animal-bacterium interactions. Nematodes are particularly well suited for investigating host associations with bacteria because all nematodes have interacted with bacteria during their evolutionary history and engage in a diversity of association types. Interactions between nematodes and bacteria can be positive (mutualistic) or negative (pathogenic/parasitic) and may be transient or stably maintained (symbiotic). Furthermore, since many mechanistic aspects of nematode-bacterium interactions are conserved their study can provide broader insights into other types of associations, including those relevant to human diseases. Recently, genome-scale studies have been applied to diverse nematode-bacterial interactions, and have helped reveal mechanisms of communication and exchange between the associated partners. In addition to providing specific information about the system under investigation, these studies also have helped inform our understanding of genome evolution, mutualism, and innate immunity. In this review we will discuss the importance and diversity of nematodes, 'omics' studies in nematode-bacterial systems, and the wider implications of the findings. PMID:22983035

  17. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides

    PubMed Central

    Brown, Alfred E.; Gilbert, Carl W.; Guy, Rachel; Arntzen, Charles J.

    1984-01-01

    The photoaffinity herbicide azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine) selectively labels the L subunit of the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Herbicide-resistant mutants retain the L subunit and have altered binding properties for methylthio- and chloro-substituted triazines as well as altered equilibrium constants for electron transfer between primary and secondary electron acceptors. We suggest that a subtle alteration in the L subunit is responsible for herbicide resistance and that the L subunit is the functional analog of the 32-kDa QB protein of chloroplast membranes. Images PMID:16593520

  18. Studies of the Extracellular Glycocalyx of the Anaerobic Cellulolytic Bacterium Ruminococcus albus 7▿

    PubMed Central

    Weimer, Paul J.; Price, Neil P. J.; Kroukamp, Otini; Joubert, Lydia-Marie; Wolfaardt, Gideon M.; Van Zyl, Willem H.

    2006-01-01

    Anaerobic cellulolytic bacteria are thought to adhere to cellulose via several mechanisms, including production of a glycocalyx containing extracellular polymeric substances (EPS). As the compositions and structures of these glycocalyces have not been elucidated, variable-pressure scanning electron microscopy (VP-SEM) and chemical analysis were used to characterize the glycocalyx of the ruminal bacterium Ruminococcus albus strain 7. VP-SEM revealed that growth of this strain was accompanied by the formation of thin cellular extensions that allowed the bacterium to adhere to cellulose, followed by formation of a ramifying network that interconnected individual cells to one another and to the unraveling cellulose microfibrils. Extraction of 48-h-old whole-culture pellets (bacterial cells plus glycocalyx [G] plus residual cellulose [C]) with 0.1 N NaOH released carbohydrate and protein in a ratio of 1:5. Boiling of the cellulose fermentation residue in a neutral detergent solution removed almost all of the adherent cells and protein while retaining a residual network of adhering noncellular material. Trifluoroacetic acid hydrolysis of this residue (G plus C) released primarily glucose, along with substantial amounts of xylose and mannose, but only traces of galactose, the most abundant sugar in most characterized bacterial exopolysaccharides. Linkage analysis and characterization by nuclear magnetic resonance suggested that most of the glucosyl units were not present as partially degraded cellulose. Calculations suggested that the energy demand for synthesis of the nonprotein fraction of EPS by this organism represents only a small fraction (<4%) of the anabolic ATP expenditure of the bacterium. PMID:17028224

  19. Characterization of a Neochlamydia-like Bacterium Associated with Epitheliocystis in Cultured Artic Char Salvelinus alpinus

    USDA-ARS?s Scientific Manuscript database

    Infections of branchial epithelium by intracellular gram-negative bacteria, termed epitheliocystis, have limited culture of Arctic char (Salvelinus alpinus). To characterize a bacterium associated with epitheliocystis in cultured char, gills were sampled for histopathologic examination, conventional...

  20. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  1. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  2. Soil-Bacterium Compatibility Model as a Decision-Making Tool for Soil Bioremediation.

    PubMed

    Horemans, Benjamin; Breugelmans, Philip; Saeys, Wouter; Springael, Dirk

    2017-02-07

    Bioremediation of organic pollutant contaminated soil involving bioaugmentation with dedicated bacteria specialized in degrading the pollutant is suggested as a green and economically sound alternative to physico-chemical treatment. However, intrinsic soil characteristics impact the success of bioaugmentation. The feasibility of using partial least-squares regression (PLSR) to predict the success of bioaugmentation in contaminated soil based on the intrinsic physico-chemical soil characteristics and, hence, to improve the success of bioaugmentation, was examined. As a proof of principle, PLSR was used to build soil-bacterium compatibility models to predict the bioaugmentation success of the phenanthrene-degrading Novosphingobium sp. LH128. The survival and biodegradation activity of strain LH128 were measured in 20 soils and correlated with the soil characteristics. PLSR was able to predict the strain's survival using 12 variables or less while the PAH-degrading activity of strain LH128 in soils that show survival was predicted using 9 variables. A three-step approach using the developed soil-bacterium compatibility models is proposed as a decision making tool and first estimation to select compatible soils and organisms and increase the chance of success of bioaugmentation.

  3. Isolation of a thermophilic bacterium capable of low-molecular-weight polyethylene degradation.

    PubMed

    Jeon, Hyun Jeong; Kim, Mal Nam

    2013-02-01

    A thermophilic bacterium capable of low-molecular-weight polyethylene (LMWPE) degradation was isolated from a compost sample, and was identified as Chelatococcus sp. E1, through sequencing of the 16S rRNA gene. LMWPE was prepared by thermal degradation of commercial PE in a strict nitrogen atmosphere. LMWPE with a weight-average-molecular-weight (Mw) in the range of 1,700-23,700 was noticeably mineralized into CO(2) by the bacterium. The biodegradability of LMWPE decreased as the Mw increased. The low molecular weight fraction of LMWPE decreased significantly as a result of the degradation process, and thereby both the number-average-molecular-weight and Mw increased after biodegradation. The polydispersity of LMWPE was either narrowed or widened, depending on the initial Mw of LMWPE, due to the preferential elimination of the low molecular weight fraction, in comparison to the high molecular weight portion. LMWPE free from an extremely low molecular weight fraction was also mineralized by the strain at a remarkable rate, and FTIR peaks assignable to C-O stretching appeared as a result of microbial action. The FTIR peaks corresponding to alkenes also became more intense, indicating that dehydrogenations occurred concomitantly with microbial induced oxidation.

  4. A highly infective plant-associated bacterium influences reproductive rates in pea aphids

    PubMed Central

    Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.

    2016-01-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  5. A highly infective plant-associated bacterium influences reproductive rates in pea aphids.

    PubMed

    Hendry, Tory A; Clark, Kelley J; Baltrus, David A

    2016-02-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction.

  6. Novel insights into the algicidal bacterium DH77-1 killing the toxic dinoflagellate Alexandrium tamarense.

    PubMed

    Yang, Xiaoru; Li, Xinyi; Zhou, Yanyan; Zheng, Wei; Yu, Changping; Zheng, Tianling

    2014-06-01

    Algicidal bacteria may play a major role in controlling harmful algal blooms (HABs) dynamics. Bacterium DH77-1 was isolated with high algicidal activity against the toxic dinoflagellate Alexandrium tamarense and identified as Joostella sp. DH77-1. The results showed that DH77-1 exhibited algicidal activity through indirect attack, which excreted active substance into the filtrate. It had a relatively wide host range and the active substance of DH77-1 was relatively stable since temperature, pH and storage condition had no obvious effect on the algicidal activity. The algicidal compound from bacterium DH77-1 was isolated based on activity-guided bioassay and the molecular weight was determined to be 125.88 by MALDI-TOF mass spectrometer, however further identification via nuclear magnetic resonance (NMR) spectra is ongoing. The physiological responses of algal cells after exposure to the DH77-1 algicidal substances were as follows: the antioxidant system of A. tamarense responded positively in self-defense; total protein content decreased significantly as did the photosynthetic pigment content; superoxide dismutase, peroxidase enzyme and malondialdehyde content increased extraordinarily and algal cell nucleic acid leaked seriously ultimately inducing cell death. Furthermore, DH77-1 is the first record of a Joostella sp. bacterium being algicidal to the harmful dinoflagellate A. tamarense, and the bacterial culture and the active compounds might be potentially used as a bio-agent for controlling harmful algal blooms. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Purification and Characterization of Haloalkaline, Organic Solvent Stable Xylanase from Newly Isolated Halophilic Bacterium-OKH

    PubMed Central

    Sanghvi, Gaurav; Jivrajani, Mehul; Patel, Nirav; Jivrajani, Heta; Bhaskara, Govinal Badiger; Patel, Shivani

    2014-01-01

    A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.0 and 37°C temperature in the medium containing 15% NaCl and 1% (w/v) corn cobs. Sugarcane bagasse and wheat straw also induce xylanase production when used as carbon source. The enzyme was active over a range of 0–25% sodium chloride examined in culture broth. The optimum xylanase activity was observed at 5% sodium chloride. Xylanase was purified with 25.81%-fold purification and 17.1% yield. Kinetic properties such as Km and Vmax were 4.2 mg/mL and 0.31 μmol/min/mL, respectively. The enzyme was stable at pH 6.0 and 50°C with 60% activity after 8 hours of incubation. Enzyme activity was enhanced by Ca2+, Mn2+, and Mg2+ but strongly inhibited by heavy metals such as Hg2+, Fe3+, Ni2+, and Zn2+. Xylanase was found to be stable in organic solvents like glutaraldehyde and isopropanol. The purified enzyme hydrolysed lignocellulosic substrates. Xylanase, purified from the halophilic bacterium-OKH, has potential biotechnological applications. PMID:27350996

  8. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    PubMed

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. Copyright © 2015, Watts et al.

  9. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome

    PubMed Central

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E.; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert. PMID:26294639

  10. In vitro antiplasmodial activity of bacterium RJAUTHB 14 associated with marine sponge Haliclona Grant against Plasmodium falciparum.

    PubMed

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram

    2012-06-01

    Malaria is the most important parasitic disease, leading to annual death of about one million people, and the Plasmodium falciparum develops resistance to well-established antimalarial drugs. The newest antiplasmodial drug from a marine microorganism helps in addressing this problem. In the present study, Haliclona Grant were collected and subjected for enumeration and isolation of associated bacteria. The count of bacterial isolates was maximum in November 2007 (18 × 10(4) colony-forming units (CFU) g(-1), and the average count was maximum during the monsoon season (117 × 10(3) CFU g(-1)). Thirty-three morphologically different bacterial isolates were isolated from Haliclona Grant, and the extracellular ethyl acetate extracts were screened for antiplasmodial activity against P. falciparum. The antiplasmodial activity of bacterium RJAUTHB 14 (11.98 μg[Symbol: see text]ml(-1)) is highly comparable with the positive control chloroquine (IC(50) 19.59 μg[Symbol: see text]ml(-1)), but the other 21 bacterial extracts showed an IC(50) value of more than 100 μg[Symbol: see text]ml(-1). Statistical analysis reveals that significant in vitro antiplasmodial activity (P < 0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes showed no morphological changes in erythrocytes by the ethyl acetate extract of bacterial isolates after 48 h of incubation. The in vitro antiplasmodial activity might be due to the presence of reducing sugars and alkaloids in the ethyl acetate extracts of bacterium RJAUTHB 14. The 16S rRNA gene partial sequence of bacterium RJAUTHB 14 is deposited in NCBI (GenBank accession no. GU269569). It is concluded from the present study that the ethyl acetate extracts of bacterium RJAUTHB 14 possess lead compounds for the development of antiplasmodial drugs.

  11. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    PubMed

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  12. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    PubMed

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project.

  13. Massilia sp. BS-1, a novel violacein-producing bacterium isolated from soil.

    PubMed

    Agematu, Hitosi; Suzuki, Kazuya; Tsuya, Hiroaki

    2011-01-01

    A novel bacterium, Massilia sp. BS-1, producing violacein and deoxyviolacein was isolated from a soil sample collected from Akita Prefecture, Japan. The 16S ribosomal DNA of strain BS-1 displayed 93% homology with its nearest violacein-producing neighbor, Janthinobacterium lividum. Strain BS-1 grew well in a synthetic medium, but required both L-tryptophan and a small amount of L-histidine to produce violacein.

  14. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    PubMed

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  15. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium

    PubMed Central

    Tago, Damian; Meyer, Damien F.

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria. PMID:27610355

  16. Potential usefulness of bacteriophages that infect Bacteroides fragilis as model organisms for monitoring virus removal in drinking water treatment plants.

    PubMed Central

    Jofre, J; Ollé, E; Ribas, F; Vidal, A; Lucena, F

    1995-01-01

    The presence of bacteriophages at different stages in three drinking water treatment plants was evaluated to study the usefulness of phages as model organisms for assessing the efficiency of the processes. The bacteriophages tested were somatic coliphages, F-specific coliphages, and phages infecting Bacteroides fragilis. The presence of enteroviruses and currently used bacterial indicators was also determined. Most bacteriophages were removed during the prechlorination-flocculation-sedimentation step. In these particular treatment plants, which include prechlorination, phages were, in general, more resistant to the treatment processes than present bacterial indicators, with the exception, in some cases, of clostridia. Bacteriophages infecting B. fragilis were found to be more resistant to water treatment than either somatic or F-specific coliphages or even clostridia. Enteric viruses were found only in untreated water in low numbers, and consequently, the efficiency of the plants in the removal of viruses could not be evaluated with precision. The numbers and frequencies of detection of the various microorganisms in water samples taken in the distribution network served by the three plants confirm the results found in the finished water at the plants. PMID:7574632

  17. (Per)chlorate Reduction by the Thermophilic Bacterium Moorella perchloratireducens sp. nov., Isolated from Underground Gas Storage▿

    PubMed Central

    Balk, Melike; van Gelder, Ton; Weelink, Sander A.; Stams, Alfons J. M.

    2008-01-01

    A thermophilic bacterium, strain An10, was isolated from underground gas storage with methanol as a substrate and perchlorate as an electron acceptor. Cells were gram-positive straight rods, 0.4 to 0.6 μm in diameter and 2 to 8 μm in length, growing as single cells or in pairs. Spores were terminal with a bulged sporangium. The temperature range for growth was 40 to 70°C, with an optimum at 55 to 60°C. The pH optimum was around 7. The salinity range for growth was between 0 and 40 g NaCl liter−1 with an optimum at 10 g liter−1. Strain An10 was able to grow on CO, methanol, pyruvate, glucose, fructose, cellobiose, mannose, xylose, and pectin. The isolate was able to respire with (per)chlorate, nitrate, thiosulfate, neutralized Fe(III) complexes, and anthraquinone-2,6-disulfonate. The G+C content of the DNA was 57.6 mol%. On the basis of 16S rRNA analysis, strain An10 was most closely related to Moorella thermoacetica and Moorella thermoautotrophica. The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell extracts. Strain An10 is the first thermophilic and gram-positive bacterium with the ability to use (per)chlorate as a terminal electron acceptor. PMID:17981952

  18. Isolation and Characterization of a Human Intestinal Bacterium Eggerthella sp. AUH-JLD49s for the Conversion of (-)-3'-Desmethylarctigenin.

    PubMed

    Wang, Ye; Yu, Fei; Liu, Ming-Yue; Zhao, Yi-Kai; Wang, Dong-Ming; Hao, Qing-Hong; Wang, Xiu-Ling

    2017-05-24

    Arctiin is the most abundant bioactive compound contained in the Arctium lappa plant. In our previous study, we isolated one single bacterium capable of bioconverting arctigenin, an aglycone of arctiin, to 3'-desmethylarctigenin (3'-DMAG) solely. However, to date, a specific bacterium capable of producing other arctiin metabolites has not been reported. In this study, we isolated one single bacterium, which we named Eggerthella sp. AUH-JLD49s, capable of bioconverting 3'-DMAG under anaerobic conditions. The metabolite of 3'-DMAG by strain AUH-JLD49s was identified as 3'-desmethyl-4'-dehydroxyarctigenin (DMDH-AG) based on electrospray ionization mass spectrometry (ESI-MS) and 1 H and 13 C nuclear magnetic resonance spectroscopy. The bioconversion kinetics and bioconversion capacity of strain AUH-JLD49s were investigated. In addition, the metabolite DMDH-AG showed an inhibitory effect on cell growth of human colon cancer cell line HCT116 and human breast cancer cell line MDA-MB-231.

  19. Genome Sequence of Lysinibacillus sphaericus, a Lignin-Degrading Bacterium Isolated from Municipal Solid Waste Soil.

    PubMed

    Persinoti, Gabriela F; Paixão, Douglas A A; Bugg, Timothy D H; Squina, Fabio M

    2018-05-03

    We report here the draft genome sequence of Lysinibacillus sphaericus strain A1, a potential lignin-degrading bacterium isolated from municipal solid waste (MSW) soil and capable of enhancing gas release from lignocellulose-containing soil. Copyright © 2018 Persinoti et al.

  20. Draft genome sequence of ‘Candidatus Phytoplasma pruni’ strain CX, a plant pathogenic bacterium

    USDA-ARS?s Scientific Manuscript database

    ‘Candidatus Phytoplasma pruni’ strain CX, belonging to subgroup 16SrIII-A, is a plant pathogenic bacterium causing economically important diseases in many fruit crops. Here we report the draft genome sequence that consists of 598,508 bases, with a G+C content of 27.21 mol%. ...

  1. Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40T

    PubMed Central

    Weiner, Ronald M.; Taylor, Larry E.; Henrissat, Bernard; Hauser, Loren; Land, Miriam; Coutinho, Pedro M.; Rancurel, Corinne; Saunders, Elizabeth H.; Longmire, Atkinson G.; Zhang, Haitao; Bayer, Edward A.; Gilbert, Harry J.; Larimer, Frank; Zhulin, Igor B.; Ekborg, Nathan A.; Lamed, Raphael; Richardson, Paul M.; Borovok, Ilya; Hutcheson, Steven

    2008-01-01

    The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment. PMID:18516288

  2. 'Cand. Actinochlamydia clariae' gen. nov., sp. nov., a unique intracellular bacterium causing epitheliocystis in catfish (Clarias gariepinus) in Uganda.

    PubMed

    Steigen, Andreas; Nylund, Are; Karlsbakk, Egil; Akoll, Peter; Fiksdal, Ingrid U; Nylund, Stian; Odong, Robinson; Plarre, Heidrun; Semyalo, Ronald; Skår, Cecilie; Watanabe, Kuninori

    2013-01-01

    Epitheliocystis, caused by bacteria infecting gill epithelial cells in fish, is common among a large range of fish species in both fresh- and seawater. The aquaculture industry considers epitheliocystis an important problem. It affects the welfare of the fish and the resulting gill disease may lead to mortalities. In a culture facility in Kampala, Uganda, juveniles of the African sharptooth catfish (Clarias gariepinus) was observed swimming in the surface, sometimes belly up, showing signs of respiratory problems. Histological examination of gill tissues from this fish revealed large amounts of epitheliocysts, and also presence of a few Ichthyobodo sp. and Trichodina sp. Sequencing of the epitheliocystis bacterium 16S rRNA gene shows 86.3% similarity with Candidatus Piscichlamydia salmonis causing epitheliocystis in Atlantic salmon (Salmo salar). Transmission electron microscopy showed that the morphology of the developmental stages of the bacterium is similar to that of members of the family Chlamydiaceae. The similarity of the bacterium rRNA gene sequences compared with other chlamydia-like bacteria ranged between 80.5% and 86.3%. Inclusions containing this new bacterium have tubules/channels (termed actinae) that are radiating from the inclusion membrane and opening on the cell surface or in neighbouring cells. Radiation of tubules/channels (actinae) from the inclusion membrane has never been described in any of the other members of Chlamydiales. It seems to be a completely new character and an apomorphy. We propose the name Candidatus Actinochlamydia clariae gen. nov., sp. nov. (Actinochlamydiaceae fam. nov., order Chlamydiales, phylum Chlamydiae) for this new agent causing epitheliocystis in African sharptooth catfish.

  3. Monoclonal antibody against Porphyromonas (Bacteroides) endodontalis lipopolysaccharide and application of the antibody for direct identification of the species.

    PubMed

    Hanazawa, S; Sagiya, T; Kitami, H; Ohta, K; Nishikawa, H; Kitano, S

    1991-11-01

    The aim of the present study was to develop a monoclonal antibody that recognizes the shared antigen of Porphyromonas endodontalis so that we could use the antibody in direct identification and detection of P. endodontalis in infectious material from apical periodontal patients. We established a hybridoma cell line producing monoclonal antibody (BEB5) specific for P. endodontalis. BEB5 antibody reacted with all of the P. endodontalis strains tested, but not with any of the other black-pigmented Porphyromonas and Bacteroides spp. The antibody reacted specifically with the lipopolysaccharide (LPS) of three P. endodontalis strains of different serotypes (O1K1, O1K2, and O1K-). Western blotting (immunoblotting) analysis confirmed the specificity of the antibody to these LPSs, because the antibody recognized the typical "repetitive ladder" pattern characteristic of LPS on sodium dodecyl sulfate-polyacrylamide electrophoretic gels. These observations demonstrate that P. endodontalis LPS is the shared antigen of this species. The antibody can specifically identify P. endodontalis on nitrocellulose membrane blots of bacterial colonies grown on agar. The antibody is also capable of directly detecting the presence of P. endodontalis in infectious material by immunoslot blot assay. These results indicate that LPS is the shared antigen of P. endodontalis and that BEB5 antibody against LPS is a useful one for direct identification and detection of the organisms in samples from apical periodontal patients.

  4. Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms.

    PubMed

    Wilson, Marlena M; Anderson, D Eric; Bernstein, Harris D

    2015-01-01

    Bacteroides fragilis is a widely distributed member of the human gut microbiome and an opportunistic pathogen. Cell surface molecules produced by this organism likely play important roles in colonization, communication with other microbes, and pathogenicity, but the protein composition of the outer membrane (OM) and the mechanisms used to transport polypeptides into the extracellular space are poorly characterized. Here we used LC-MS/MS to analyze the OM proteome and secretome of B. fragilis NCTC 9343 grown under laboratory conditions. Of the 229 OM proteins that we identified, 108 are predicted to be lipoproteins, and 61 are predicted to be TonB-dependent transporters. Based on their proximity to genes encoding TonB-dependent transporters, many of the lipoprotein genes likely encode proteins involved in nutrient or small molecule uptake. Interestingly, protease accessibility and biotinylation experiments indicated that an unusually large fraction of the lipoproteins are cell-surface exposed. We also identified three proteins that are members of a novel family of autotransporters, multiple potential type I protein secretion systems, and proteins that appear to be components of a type VI secretion apparatus. The secretome consisted of lipoproteins and other proteins that might be substrates of the putative type I or type VI secretion systems. Our proteomic studies show that B. fragilis differs considerably from well-studied Gram-negative bacteria such as Escherichia coli in both the spectrum of OM proteins that it produces and the range of secretion strategies that it utilizes.

  5. Isolation of an unidentified pink-pigmented bacterium in a clinical specimen.

    PubMed Central

    Odugbemi, T; Nwofor, C; Joiner, K T

    1988-01-01

    An unidentified pink-pigmented bacterium isolated from a clinical specimen is reported. The organism was oxidase, urease, and catalase positive; it grew on Thayer-Martin and MacConkey media. The isolate is possibly similar to an unnamed taxon (G.L. Gilardi and Y.C. Faur, J. Clin. Microbiol. 20:626-629, 1984); however, it had unique characteristics of nonmotility with no flagellum detectable and was a gram-negative coccoid with a few rods in pairs and negative for starch hydrolysis. PMID:3384903

  6. Isolation of an unidentified pink-pigmented bacterium in a clinical specimen.

    PubMed

    Odugbemi, T; Nwofor, C; Joiner, K T

    1988-05-01

    An unidentified pink-pigmented bacterium isolated from a clinical specimen is reported. The organism was oxidase, urease, and catalase positive; it grew on Thayer-Martin and MacConkey media. The isolate is possibly similar to an unnamed taxon (G.L. Gilardi and Y.C. Faur, J. Clin. Microbiol. 20:626-629, 1984); however, it had unique characteristics of nonmotility with no flagellum detectable and was a gram-negative coccoid with a few rods in pairs and negative for starch hydrolysis.

  7. Complete Genome Sequence of the Thermophilic Bacterium Geobacillus thermoleovorans CCB_US3_UF5

    PubMed Central

    Abdul Rahman, Ahmad Yamin; Saito, Jennifer A.; Hou, Shaobin

    2012-01-01

    Geobacillus thermoleovorans CCB_US3_UF5 is a thermophilic bacterium isolated from a hot spring in Malaysia. Here, we report the complete genome of G. thermoleovorans CCB_US3_UF5, which shows high similarity to the genome of Geobacillus kaustophilus HTA 426 in terms of synteny and orthologous genes. PMID:22328744

  8. Draft Genome Sequence of the Efficient Bioflocculant-Producing Bacterium Paenibacillus sp. Strain A9

    PubMed Central

    Liu, Jin-liang; Hu, Xiao-min

    2013-01-01

    Paenibacillus sp. strain A9 is an important bioflocculant-producing bacterium, isolated from a soil sample, and is pale pink-pigmented, aerobic, and Gram-positive. Here, we report the draft genome sequence and the initial findings from a preliminary analysis of strain A9, which is a novel species of Paenibacillus. PMID:23618713

  9. The domestication of the probiotic bacterium Lactobacillus acidophilus

    PubMed Central

    Bull, Matthew J.; Jolley, Keith A.; Bray, James E.; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C. J.; Marchesi, Julian R.; Mahenthiralingam, Eshwar

    2014-01-01

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population. PMID:25425319

  10. The domestication of the probiotic bacterium Lactobacillus acidophilus.

    PubMed

    Bull, Matthew J; Jolley, Keith A; Bray, James E; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C J; Marchesi, Julian R; Mahenthiralingam, Eshwar

    2014-11-26

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population.

  11. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium.

    PubMed

    Kao, An-Chieh; Chu, Yu-Ju; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2013-12-01

    Arsenic (As) contamination of groundwater is a significant public health concern. In this study, the removal of arsenic from groundwater using biological processes was investigated. The efficiency of arsenite (As(III)) bacterial oxidation and subsequent arsenate (As(V)) removal from contaminated groundwater using bacterial biomass was examined. A novel As(III)-oxidizing bacterium (As7325) was isolated from the aquifer in the blackfoot disease (BFD) endemic area in Taiwan. As7325 oxidized 2300μg/l As(III) using in situ As(III)-contaminated groundwater under aerobic conditions within 1d. After the oxidation of As(III) to As(V), As(V) removal was further examined using As7325 cell pellets. The results showed that As(V) could be adsorbed efficiently by lyophilized As7325 cell pellets, the efficiency of which was related to lyophilized cell pellet concentration. Our study conducted the examination of an alternative technology for the removal of As(III) and As(V) from groundwater, indicating that the oxidation of As(III)-contaminated groundwater by native isolated bacterium, followed by As(V) removal using bacterial biomass is a potentially effective technology for the treatment of As(III)-contaminated groundwater. © 2013.

  12. NH4+ transport system of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1.

    PubMed

    Chou, M; Matsunaga, T; Takada, Y; Fukunaga, N

    1999-05-01

    NH4(+) transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3+) into the intact cells. 14CH3NH3+ uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3+ as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3+ completely inhibited 14CH3NH3+ uptake. These results indicate that 14CH3NH3+ uptake in this bacterium is mediated via an NH4+ transport system and not by a specific carrier for CH3NH3+. The respiratory substrate succinate was required to drive 14CH3NH3+ uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3+ uptake. The 14CH3NH3+ uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0 degrees and 15 degrees C, and the apparent Km value for CH3NH3+ of the uptake did not change significantly over the temperature range from 0 degrees to 25 degrees C. Thus, the NH4+ transport system of this bacterium was highly active at low temperatures.

  13. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    PubMed

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Lytic and Chemotactic Features of the Plaque-Forming Bacterium KD531 on Phaeodactylum tricornutum

    PubMed Central

    Chen, Zhangran; Zheng, Wei; Yang, Luxi; Boughner, Lisa A.; Tian, Yun; Zheng, Tianling; Xu, Hong

    2017-01-01

    Phaeodactylum tricornutum is a dominant bloom forming species and potential biofuel feedstock. To control P. tricornutum bloom or to release lipids from P. tricornutum, we previously screened and identified the lytic bacterium Labrenzia sp. KD531 toward P. tricornutum. In the present study, we evaluated the lytic activity of Labrenzia sp. KD531 on microalgae and investigated its lytic mechanism. The results indicated that the lytic activity of KD531 was temperature- and pH-dependent, but light-independent. In addition to P. tricornutum, KD531 also showed lytic activity against other algal species, especially green algae. A quantitative analysis of algal cellular protein, carbohydrate and lipid content together with measurements of dry weight after exposure to bacteria-infected algal lysate indicated that the bacterium KD531 influenced the algal biomass by disrupting the algal cells. Both chemotactic analysis and microscopic observations of subsamples from different regions of formed plaques showed that KD531 could move toward and then directly contact algal cells. Direct contact between P. tricornutum and KD531 cells was essential for the lytic process. PMID:29312256

  15. Structural characterization and anticancer activity of extracellular polysaccharides from ascidian symbiotic bacterium Bacillus thuringiensis.

    PubMed

    Ramamoorthy, Sathishkumar; Gnanakan, Ananthan; S Lakshmana, Senthil; Meivelu, Moovendhan; Jeganathan, Arun

    2018-06-15

    In the present study, extracellular polysaccharides (EPS) producing bacterium Bacillus thuringiensis RSK CAS4 was isolated from ascidian Didemnum granulatum and its production was optimized by response surface methodology. Fructose and galactose were found as the major monosaccharides in the EPS from the strain RSK CAS4. Functional groups and structural characteristics of the EPS were characterized with FT-IR and 1 HNMR. The purified EPS showed potent antioxidant properties in investigation against DPPH, hydroxyl, superoxide free radicals. In vitro anticancer activity of purified EPS was evaluated on HEp-2 cells, A549 and Vero cell lines. Growth of cancer cells was inhibited by the EPS in a dose-dependent manner and maximum anticancer activity was found to be 76% against liver cancer at 1000 μg/ml. The antioxidant and anticancer potentials of theEPS from marine bacterium Bacillusthuringiensis RSK CAS4 suggests it as a potential natural source and its scopeas an alternative to synthetics for pharmaceutical application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Enhanced biosynthesis of dihydrodaidzein and dihydrogenistein by a newly isolated bovine rumen anaerobic bacterium.

    PubMed

    Wang, Xiu-Ling; Shin, Kwang-Hee; Hur, Hor-Gil; Kim, Su-Il

    2005-02-09

    A rod-shaped and Gram-positive anaerobic bacterium, named Niu-O16, which was isolated from bovine rumen contents, was found to be capable of anaerobically converting isoflavones daidzein and genistein to dihydrodaidzein (DHD) and dihydrogenistein (DHG), respectively. The metabolites DHD and DHG were identified using EI-MS and NMR spectrometric analyses. Stereoisomeric metabolites, which were separated on chiral stationary phase HPLC, were formed in equal amounts by the strain Niu-O16. Tautomerization reaction occurred on the B-ring of DHD and DHG seems to be attributed to the equal production of stereoisomeric metabolites. For the synthesis of DHD, the strain Niu-O16 showed an optimal pH range from 6.0 to 7.0 and completely reduced up to 800 microM of daidzein to DHD with the initial OD600nm=1.0 and pH 7.0 for 3 days incubation. The strain Niu-O16, showed relatively faster reduction activity toward daidzein to produce DHD than the previously isolated human intestinal bacterium Clostridium sp. HGH6.

  17. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis.

    PubMed

    Neumann, Sarah; Wessels, Hans J C T; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Kartal, Boran; Jetten, Mike S M; van Niftrik, Laura

    2014-11-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost-effective and environment-friendly nitrogen removal system from wastewater. Anammox bacteria have a compartmentalized cell plan that consists of three separate compartments. Here we report the fractionation of the anammox bacterium Kuenenia stuttgartiensis in order to isolate and analyze the innermost cell compartment called the anammoxosome. The subcellular fractions were microscopically characterized and all membranes in the anammox cell were shown to contain ladderane lipids which are unique for anammox bacteria. Proteome analyses and activity assays with the isolated anammoxosomes showed that these organelles harbor the energy metabolism in anammox cells. Together the experimental data provide the first thorough characterization of a respiratory cell organelle from a bacterium and demonstrate the essential role of the anammoxosome in the production of a major portion of the nitrogen gas in our atmosphere. © 2014 John Wiley & Sons Ltd.

  18. Insights in Nanoparticle-Bacterium Interactions: New Frontiers to Bypass Bacterial Resistance to Antibiotics.

    PubMed

    Diab, Roudayna; Khameneh, Bahman; Joubert, Olivier; Duval, Raphael

    2015-01-01

    Nanotechnology has been revealed as a fundamental approach for antibiotics delivery. In this paper, recent findings demonstrating the superiority of nanocarried-antibiotics over "naked" ones and the ways by which nanoparticles can help to overwhelm bacterial drug resistance are reviewed. The second part of this paper sheds light on nanoparticle-bacterium interaction patterns. Finally, key factors affecting the effectiveness of nanoparticles interactions with bacteria are discussed.

  19. Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus

    PubMed Central

    Xiu, Pengyuan; Liu, Rui

    2017-01-01

    ABSTRACT Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium (Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes (flgA and flgP) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and

  20. Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus.

    PubMed

    Xiu, Pengyuan; Liu, Rui; Zhang, Dechao; Sun, Chaomin

    2017-06-15

    Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium ( Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes ( flgA and flgP ) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote

  1. Whole-Genome Sequence of Cupriavidus sp. Strain BIS7, a Heavy-Metal-Resistant Bacterium

    PubMed Central

    Hong, Kar Wai; Thinagaran, Dinaiz a/l; Gan, Han Ming; Yin, Wai-Fong

    2012-01-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome. PMID:23115161

  2. Whole-genome sequence of Cupriavidus sp. strain BIS7, a heavy-metal-resistant bacterium.

    PubMed

    Hong, Kar Wai; Thinagaran, Dinaiz al; Gan, Han Ming; Yin, Wai-Fong; Chan, Kok-Gan

    2012-11-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.

  3. Response to comments on "A bacterium that can grow using arsenic instead of phosphorus"

    USGS Publications Warehouse

    Wolfe-Simon, Felisa; Blum, Jodi Switzer; Kulp, Thomas R.; Gordon, Gwyneth W.; Hoeft, Shelley E.; Pett-Ridge, Jennifer; Stolz, John F.; Webb, Samuel M.; Weber, Peter K.; Davies, Paul C.W.; Anbar, Ariel D.; Oremland, Ronald S.

    2011-01-01

    Concerns have been raised about our recent study suggesting that arsenic (As) substitutes for phosphorus in major biomolecules of a bacterium that tolerates extreme As concentrations. We welcome the opportunity to better explain our methods and results and to consider alternative interpretations. We maintain that our interpretation of As substitution, based on multiple congruent lines of evidence, is viable.

  4. Complete Genome Sequence of the Naphthalene-Degrading Bacterium Pseudomonas stutzeri AN10 (CCUG 29243)

    PubMed Central

    Brunet-Galmés, Isabel; Busquets, Antonio; Peña, Arantxa; Gomila, Margarita; Nogales, Balbina; García-Valdés, Elena; Lalucat, Jorge; Bennasar, Antonio

    2012-01-01

    Pseudomonas stutzeri AN10 (CCUG 29243) can be considered a model strain for aerobic naphthalene degradation. We report the complete genome sequence of this bacterium. Its 4.71-Mb chromosome provides insights into other biodegradative capabilities of strain AN10 (i.e., benzoate catabolism) and suggests a high number of horizontal gene transfer events. PMID:23144395

  5. Complete genome sequence of the xylan-degrading subseafloor bacterium Microcella alkaliphila JAM-AC0309.

    PubMed

    Kurata, Atsushi; Hirose, Yuu; Misawa, Naomi; Wakazuki, Sachiko; Kishimoto, Noriaki; Kobayashi, Tohru

    2016-03-10

    Here we report the complete genome sequence of Microcella alkaliphila JAM-AC0309, which was newly isolated from the deep subseafloor core sediment from offshore of the Shimokita Peninsula of Japan. An array of genes related to utilization of xylan in this bacterium was identified by whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Draft Genome Sequence of Pontibacter sp. nov. BAB1700, a Halotolerant, Industrially Important Bacterium

    PubMed Central

    Joshi, M. N.; Sharma, A. C.; Pandya, R. V.; Patel, R. P.; Saiyed, Z. M.; Saxena, A. K.

    2012-01-01

    Pontibacter sp. nov. BAB1700 is a halotolerant, Gram-negative, rod-shaped, pink-pigmented, menaquinone-7-producing bacterium isolated from sediments of a drilling well. The draft genome sequence of the strain, consisting of one chromosome of 4.5 Mb, revealed vital gene clusters involved in vitamin biosynthesis and resistance against various metals and antibiotics. PMID:23105068

  7. Occurrence and sources of Escherichia coli in metropolitan St. Louis streams, October 2004 through September 2007

    USGS Publications Warehouse

    Wilkison, Donald H.; Davis, Jerri V.

    2010-01-01

    The occurrence and sources of Escherichia coli (E. coli), one of several fecal indicator bacteria, in metropolitan St. Louis streams known to receive nonpoint source runoff, occasional discharges from combined and sanitary sewers, and treated wastewater effluent were investigated from October 2004 through September 2007. Three Missouri River sites, five Mississippi River sites, and six small basin tributary stream sites were sampled during base flow and storm events for the presence of E. coli and their sources. E. coli host-source determinations were conducted using local library based genotypic methods. Human fecal contamination in stream samples was additionally confirmed by the presence of Bacteroides thetaiotaomicron, an anaerobic, enteric bacterium with a high occurrence in, and specificity to, humans. Missouri River E. coli densities and loads during base flow were approximately 10 times greater than those in the Mississippi River above its confluence with the Missouri River. Although substantial amounts of E. coli originated from within the study area during base flow and storm events, considerable amounts of E. coli in the Missouri River, as well as in the middle Mississippi River sections downstream from its confluence with the Missouri River, originated in Missouri River reaches upstream from the study area. In lower Mississippi River reaches, bacteria contributions from the numerous combined and sanitary sewer overflows within the study area, as well as contributions from nonpoint source runoff, greatly increased instream E. coli densities. Although other urban factors cannot be discounted, average E. coli densities in streams were strongly correlated with the number of upstream combined and sanitary sewer overflow points, and the percentage of upstream impervious cover. Small basin sites with the greatest number of combined and sanitary sewer overflows (Maline Creek and the River des Peres) had larger E. coli densities, larger loads, and a greater

  8. Hydrophobicities of human polymorphonuclear leukocytes and oral Bacteroides and Porphyromonas spp., Wolinella recta, and Eubacterium yurii with special reference to bacterial surface structures.

    PubMed

    Haapasalo, M; Kerosuo, E; Lounatmaa, K

    1990-12-01

    The hydrophobicities of human polymorphonuclear leukocytes (PMNLs) and Bacteroides buccae, B. oris, B. oralis, B. veroralis, B. buccalis, B. heparinolyticus, B. intermedius, B. denticola, B. loescheii, B. melaninogenicus, Porphyromonas gingivalis, P. endodontalis, Wolinella recta, and Eubacterium yurii were studied by the hexadecane method. The majority of the strains were equally or less hydrophobic than the PMNLs. Only in the case of E. yurii and the only strain of B. buccalis were all strains more hydrophobic than the PMNLs. However, some strains of B. intermedius, B. oris, B. denticola, and P. gingivalis were also more hydrophobic than the PMNLs. With the exception of B. intermedius and species with a crystalline surface protein layer (S-layer), the strains of all other species with a thick capsule were more hydrophilic than the strains with little or no extracellular polymeric material. All strains of the S-layer species were either quite hydrophilic or hydrophobic depending on the species, totally irrespective of the presence of the capsule. The results suggest that the S-layers of oral anaerobic bacteria may be important determinants of cell surface hydrophobicity.

  9. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aurantiacus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Kuo-Hsiang; Barry, Kerrie; Chertkov, Olga

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.

  10. Gene function analysis in extremophiles: the "nif" regulon of the strict iron oxidizing bacterium "Leptospirillum ferrooxidans"

    NASA Astrophysics Data System (ADS)

    Parro, Victor; Moreno-Paz, Mercedes

    2004-03-01

    In Centro de Astrobiologia it has been considered the Tinto river as a model ecosystem to study life based on iron. The final goal is to study the biological and metabolic diversity in microorganisms living there, following a genomic approach, to get insights to the mechanisms of adaptation to this environment. The Gram-negative bacterium Leptospirillum ferrooxidans is one of the most abundant microorganisms in the river, and it is one of the main responsible in maintenance of pH balance and, as a consequence, the physico-chemical properties of the exosystem. We have constructed a Shotgun DNA microarrays from this bacterium and we have used it to studied its genetic capacity for nitrogen fixation. With this approach we have identified most of the genes necessary for dinitrogen (N2) reduction, confirming the capacity of L. ferrooxidans as a free diazotrophic (nitrogen fixer) microorganism.

  11. Deficiency of the ferrous iron transporter FeoAB is linked with metronidazole resistance in Bacteroides fragilis

    PubMed Central

    Veeranagouda, Yaligara; Husain, Fasahath; Boente, Renata; Moore, Jane; Smith, C. Jeffrey; Rocha, Edson R.; Patrick, Sheila; Wexler, Hannah M.

    2014-01-01

    Background Metronidazole is the most commonly used antimicrobial for Bacteroides fragilis infections and is recommended for prophylaxis of colorectal surgery. Metronidazole resistance is increasing and the mechanisms of resistance are not clear. Methods A transposon mutant library was generated in B. fragilis 638R (BF638R) to identify the genetic loci associated with resistance to metronidazole. Results Thirty-two independently isolated metronidazole-resistant mutants had a transposon insertion in BF638R_1421 that encodes the ferrous transport fusion protein (feoAB). Deletion of feoAB resulted in a 10-fold increased MIC of metronidazole for the strain. The metronidazole MIC for the feoAB mutant was similar to that for the parent strain when grown on media supplemented with excess iron, suggesting that the increase seen in the MIC of metronidazole was due to reduced cellular iron transport in the feoAB mutant. The furA gene repressed feoAB transcription in an iron-dependent manner and disruption of furA resulted in constitutive transcription of feoAB, regardless of whether or not iron was present. However, disruption of feoAB also diminished the capacity of BF638R to grow in a mouse intraperitoneal abscess model, suggesting that inorganic ferrous iron assimilation is essential for B. fragilis survival in vivo. Conclusions Selection for feoAB mutations as a result of metronidazole treatment will disable the pathogenic potential of B. fragilis and could contribute to the clinical efficacy of metronidazole. While mutations in feoAB are probably not a direct cause of clinical resistance, this study provides a key insight into intracellular metronidazole activity and the link with intracellular iron homeostasis. PMID:25028451

  12. Draft Genome Sequence of a Pseudomonas aeruginosa NA04 Bacterium Isolated from an Entomopathogenic Nematode.

    PubMed

    Salgado-Morales, Rosalba; Rivera-Gómez, Nancy; Lozano-Aguirre Beltrán, Luis Fernando; Hernández-Mendoza, Armando; Dantán-González, Edgar

    2017-09-07

    We report the draft genome sequence of Gram-negative bacterium Pseudomonas aeruginosa NA04, isolated from the entomopathogenic nematode Heterorhabditis indica MOR03. The draft genome consists of 54 contigs, a length of 6.37 Mb, and a G+C content 66.49%. Copyright © 2017 Salgado-Morales et al.

  13. Curiously modern DNA for a "250 million-year-old" bacterium.

    PubMed

    Nickle, David C; Learn, Gerald H; Rain, Matthew W; Mullins, James I; Mittler, John E

    2002-01-01

    Studies of ancient DNA have attracted considerable attention in scientific journals and the popular press. Several of the more extreme claims for ancient DNA have been questioned on biochemical grounds (i.e., DNA surviving longer than expected) and evolutionary grounds (i.e., nucleotide substitution patterns not matching theoretical expectations for ancient DNA). A recent letter to Nature from Vreeland et al. (2000), however, tops all others with respect to age and condition of the specimen. These researchers extracted and cultured a bacterium from an inclusion body from what they claim is a 250 million-year (Myr)-old salt crystal. If substantiated, this observation could fundamentally alter views about bacterial physiology, ecology and evolution. Here we report on molecular evolutionary analyses of the 16S rDNA from this specimen. We find that 2-9-3 differs from a modern halophile, Salibacillus marismortui, by just 3 unambiguous bp in 16S rDNA, versus the approximately 59 bp that would be expected if these bacteria evolved at the same rate as other bacteria. We show, using a Poisson distribution, that unless it can be shown that S. marismortui evolves 5 to 10 times more slowly than other bacteria for which 16S rDNA substitution rates have been established, Vreeland et al.'s claim would be rejected at the 0.05 level. Also, a molecular clock test and a relative rates test fail to substantiate Vreeland et al.'s claim that strain 2-9-3 is a 250-Myr-old bacterium. The report of Vreeland et al. thus falls into a long series of suspect ancient DNA studies.

  14. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon

    PubMed Central

    Ze, Xiaolei; Duncan, Sylvia H; Louis, Petra; Flint, Harry J

    2012-01-01

    The release of energy from particulate substrates such as dietary fiber and resistant starch (RS) in the human colon may depend on the presence of specialist primary degraders (or ‘keystone species') within the microbial community. We have explored the roles of four dominant amylolytic bacteria found in the human colon in the degradation and utilization of resistant starches. Eubacterium rectale and Bacteroides thetaiotaomicron showed limited ability to utilize RS2- and RS3-resistant starches by comparison with Bifidobacterium adolescentis and Ruminococcus bromii. In co-culture, however, R. bromii proved unique in stimulating RS2 and RS3 utilization by the other three bacterial species, even in a medium that does not permit growth of R. bromii itself. Having previously demonstrated low RS3 fermentation in vivo in two individuals with undetectable populations of R. bromii-related bacteria, we show here that supplementation of mixed fecal bacteria from one of these volunteers with R. bromii, but not with the other three species, greatly enhanced the extent of RS3 fermentation in vitro. This argues strongly that R. bromii has a pivotal role in fermentation of RS3 in the human large intestine, and that variation in the occurrence of this species and its close relatives may be a primary cause of variable energy recovery from this important component of the diet. This work also indicates that R. bromii possesses an exceptional ability to colonize and degrade starch particles when compared with previously studied amylolytic bacteria from the human colon. PMID:22343308

  15. Draft Genome Sequence of Sphingobium ummariense Strain RL-3, a Hexachlorocyclohexane-Degrading Bacterium

    PubMed Central

    Kohli, Puneet; Dua, Ankita; Sangwan, Naseer; Oldach, Phoebe; Khurana, J. P.

    2013-01-01

    Here, we report the draft genome sequence of the hexachlorocyclohexane (HCH)-degrading bacterium Sphingobium ummariense strain RL-3, which was isolated from the HCH dumpsite located in Lucknow, India (27°00′N and 81°09′E). The annotated draft genome sequence (4.75 Mb) of strain RL-3 consisted of 139 contigs, 4,645 coding sequences, and 65% G+C content. PMID:24233594

  16. Reduction of nitric oxide catalyzed by hydroxylamine oxidoreductase from an anammox bacterium.

    PubMed

    Irisa, Tatsuya; Hira, Daisuke; Furukawa, Kenji; Fujii, Takao

    2014-12-01

    The hydroxylamine oxidoreductase (HAO) from the anammox bacterium, Candidatus Kuenenia stuttgartiensis has been reported to catalyze the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO) by using bovine cytochrome c as an oxidant. In contrast, we investigated whether the HAO from anammox bacterium strain KSU-1 could catalyze the reduction of NO with reduced benzyl viologen (BVred) and the NO-releasing reagent, NOC 7. The reduction proceeded, resulting in the formation of NH2OH as a product. The oxidation rate of BVred was proportional to the concentration of BVred itself for a short period in each experiment, a situation that was termed quasi-steady state. The analyses of the states at various concentrations of HAO allowed us to determine the rate constant for the catalytic reaction, (2.85 ± 0.19) × 10(5) M(-1) s(-1), governing NO reduction by BVred and HAO, which was comparable to that reported for the HAO from the ammonium oxidizer, Nitrosomonas with reduced methyl viologen. These results suggest that the anammox HAO functions to adjust anammox by inter-conversion of NO and NH2OH depending on the redox potential of the physiological electron transfer protein in anammox bacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. A novel continuous toxicity test system using a luminously modified freshwater bacterium.

    PubMed

    Cho, Jang-Cheon; Park, Kyung-Je; Ihm, Hyuk-Soon; Park, Ji-Eun; Kim, Se-Young; Kang, Ilnam; Lee, Kyu-Ho; Jahng, Deokjin; Lee, Dong-Hun; Kim, Sang-Jong

    2004-09-15

    An automated continuous toxicity test system was developed using a recombinant bioluminescent freshwater bacterium. The groundwater-borne bacterium, Janthinobacterium lividum YH9-RC, was modified with luxAB and optimized for toxicity tests using different kinds of organic carbon compounds and heavy metals. luxAB-marked YH9-RC cells were much more sensitive (average 7.3-8.6 times) to chemicals used for toxicity detection than marine Vibrio fischeri cells used in the Microtox assay. Toxicity tests for wastewater samples using the YH9-RC-based toxicity assay showed that EC50-5 min values in an untreated raw wastewater sample (23.9 +/- 12.8%) were the lowest, while those in an effluent sample (76.7 +/- 14.9%) were the highest. Lyophilization conditions were optimized in 384-multiwell plates containing bioluminescent bacteria that were pre-incubated for 15 min in 0.16 M of trehalose prior to freeze-drying, increasing the recovery of bioluminescence and viability by 50%. Luminously modified cells exposed to continuous phenol or wastewater stream showed a rapid decrease in bioluminescence, which fell below detectable range within 1 min. An advanced toxicity test system, featuring automated real-time toxicity monitoring and alerting functions, was designed and finely tuned. This novel continuous toxicity test system can be used for real-time biomonitoring of water toxicity, and can potentially be used as a biological early warning system.

  18. Monoclonal antibody against Porphyromonas (Bacteroides) endodontalis lipopolysaccharide and application of the antibody for direct identification of the species.

    PubMed Central

    Hanazawa, S; Sagiya, T; Kitami, H; Ohta, K; Nishikawa, H; Kitano, S

    1991-01-01

    The aim of the present study was to develop a monoclonal antibody that recognizes the shared antigen of Porphyromonas endodontalis so that we could use the antibody in direct identification and detection of P. endodontalis in infectious material from apical periodontal patients. We established a hybridoma cell line producing monoclonal antibody (BEB5) specific for P. endodontalis. BEB5 antibody reacted with all of the P. endodontalis strains tested, but not with any of the other black-pigmented Porphyromonas and Bacteroides spp. The antibody reacted specifically with the lipopolysaccharide (LPS) of three P. endodontalis strains of different serotypes (O1K1, O1K2, and O1K-). Western blotting (immunoblotting) analysis confirmed the specificity of the antibody to these LPSs, because the antibody recognized the typical "repetitive ladder" pattern characteristic of LPS on sodium dodecyl sulfate-polyacrylamide electrophoretic gels. These observations demonstrate that P. endodontalis LPS is the shared antigen of this species. The antibody can specifically identify P. endodontalis on nitrocellulose membrane blots of bacterial colonies grown on agar. The antibody is also capable of directly detecting the presence of P. endodontalis in infectious material by immunoslot blot assay. These results indicate that LPS is the shared antigen of P. endodontalis and that BEB5 antibody against LPS is a useful one for direct identification and detection of the organisms in samples from apical periodontal patients. Images PMID:1774262

  19. Suppression of colorectal tumorigenesis by recombinant Bacteroides fragilis enterotoxin-2 in vivo.

    PubMed

    Lv, You; Ye, Tao; Wang, Hui-Peng; Zhao, Jia-Ying; Chen, Wen-Jie; Wang, Xin; Shen, Chen-Xia; Wu, Yi-Bin; Cai, Yuan-Kun

    2017-01-28

    To evaluate the impact of recombinant Bacteroides fragilis enterotoxin-2 (BFT-2, or Fragilysin) on colorectal tumorigenesis in mice induced by azoxymethane/dextran sulfate sodium (AOM/DSS). Recombinant proBFT-2 was expressed in Escherichia coli strain Rosetta (DE3) and BFT-2 was obtained and tested for its biological activity via colorectal adenocarcinoma cell strains SW-480. Seventy C57BL/6J mice were randomly divided into a blank (BC; n = 10), model (AD; n = 20), model + low-dose toxin (ADLT; n = 20, 10 μg), and a model + high-dose toxin (ADHT; n = 20, 20 μg) group. Mice weight, tumor formation and pathology were analyzed. Immunohistochemistry determined Ki-67 and Caspase-3 expression in normal and tumor tissues of colorectal mucosa. Recombinant BFT-2 was successfully obtained, along with its biological activity. The most obvious weight loss occurred in the AD group compared with the ADLT group (21.82 ± 0.68 vs 23.23 ± 0.91, P < 0.05) and the ADHT group (21.82 ± 0.68 vs 23.57 ± 1.06, P < 0.05). More tumors were found in the AD group than in the ADLT and ADHT groups (19.75 ± 3.30 vs 6.50 ± 1.73, P < 0.05; 19.75 ± 3.30 vs 6.00 ± 2.16, P < 0.05). Pathology showed that 12 mice had adenocarcinoma and 6 cases had adenoma in the AD group. Five mice had adenocarcinoma and 15 had adenoma in the ADLT group. Four mice had adenocarcinoma and 16 had adenoma in the ADHT group. The incidence of colorectal adenocarcinoma in both the ADHT group and the ADHT group was reduced compared to that in the AD group ( P < 0.05, P < 0.05). The positive rate of Ki-67 in the ADLT group and the ADHT group was 50% and 40%, respectively, both of which were lower than that found in the AD group (94.44%, P < 0.05, P < 0.05). Caspase-3 expression in the ADLT group and the ADHT group was 45% and 55%, both of which were higher than that found in the BC group (16.67%, P < 0.05, P < 0.05). Oral administration with lower-dose biologically active recombinant BFT-2 inhibited colorectal

  20. Suppression of colorectal tumorigenesis by recombinant Bacteroides fragilis enterotoxin-2 in vivo

    PubMed Central

    Lv, You; Ye, Tao; Wang, Hui-Peng; Zhao, Jia-Ying; Chen, Wen-Jie; Wang, Xin; Shen, Chen-Xia; Wu, Yi-Bin; Cai, Yuan-Kun

    2017-01-01

    AIM To evaluate the impact of recombinant Bacteroides fragilis enterotoxin-2 (BFT-2, or Fragilysin) on colorectal tumorigenesis in mice induced by azoxymethane/dextran sulfate sodium (AOM/DSS). METHODS Recombinant proBFT-2 was expressed in Escherichia coli strain Rosetta (DE3) and BFT-2 was obtained and tested for its biological activity via colorectal adenocarcinoma cell strains SW-480. Seventy C57BL/6J mice were randomly divided into a blank (BC; n = 10), model (AD; n = 20), model + low-dose toxin (ADLT; n = 20, 10 μg), and a model + high-dose toxin (ADHT; n = 20, 20 μg) group. Mice weight, tumor formation and pathology were analyzed. Immunohistochemistry determined Ki-67 and Caspase-3 expression in normal and tumor tissues of colorectal mucosa. RESULTS Recombinant BFT-2 was successfully obtained, along with its biological activity. The most obvious weight loss occurred in the AD group compared with the ADLT group (21.82 ± 0.68 vs 23.23 ± 0.91, P < 0.05) and the ADHT group (21.82 ± 0.68 vs 23.57 ± 1.06, P < 0.05). More tumors were found in the AD group than in the ADLT and ADHT groups (19.75 ± 3.30 vs 6.50 ± 1.73, P < 0.05; 19.75 ± 3.30 vs 6.00 ± 2.16, P < 0.05). Pathology showed that 12 mice had adenocarcinoma and 6 cases had adenoma in the AD group. Five mice had adenocarcinoma and 15 had adenoma in the ADLT group. Four mice had adenocarcinoma and 16 had adenoma in the ADHT group. The incidence of colorectal adenocarcinoma in both the ADHT group and the ADHT group was reduced compared to that in the AD group (P < 0.05, P < 0.05). The positive rate of Ki-67 in the ADLT group and the ADHT group was 50% and 40%, respectively, both of which were lower than that found in the AD group (94.44%, P < 0.05, P < 0.05). Caspase-3 expression in the ADLT group and the ADHT group was 45% and 55%, both of which were higher than that found in the BC group (16.67%, P < 0.05, P < 0.05). CONCLUSION Oral administration with lower-dose biologically active recombinant BFT-2

  1. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans.

    PubMed

    Peng, J B; Yan, W M; Bao, X Z

    1994-07-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host.

  2. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans

    PubMed Central

    Peng, Ji-Bin; Yan, Wang-Ming; Bao, Xue-Zhen

    1994-01-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host. PMID:16349341

  3. Draft Genome Sequence of Lactobacillus paracasei DmW181, a Bacterium Isolated from Wild Drosophila.

    PubMed

    Hammer, Austin J; Walters, Amber; Carroll, Courtney; Newell, Peter D; Chaston, John M

    2017-07-06

    The draft genome sequence of Lactobacillus paracasei DmW181, an anaerobic bacterium isolate from wild Drosophila flies, is reported here. Strain DmW181 possesses genes for sialic acid and mannose metabolism. The assembled genome is 3,201,429 bp, with 3,454 predicted genes. Copyright © 2017 Hammer et al.

  4. Draft Genome Sequence of the 2-Chloro-4-Nitrophenol-Degrading Bacterium Arthrobacter sp. Strain SJCon

    PubMed Central

    Vikram, Surendra; Kumar, Shailesh; Vaidya, Bhumika; Pinnaka, Anil Kumar

    2013-01-01

    We report the 4.39-Mb draft genome sequence of the 2-chloro-4-nitrophenol-degrading bacterium Arthrobacter sp. strain SJCon, isolated from a pesticide-contaminated site. The draft genome sequence of strain SJCon will be helpful in studying the genetic pathways involved in the degradation of several aromatic compounds. PMID:23516196

  5. ‘Cand. Actinochlamydia clariae’ gen. nov., sp. nov., a Unique Intracellular Bacterium Causing Epitheliocystis in Catfish (Clarias gariepinus) in Uganda

    PubMed Central

    Steigen, Andreas; Nylund, Are; Karlsbakk, Egil; Akoll, Peter; Fiksdal, Ingrid U.; Nylund, Stian; Odong, Robinson; Plarre, Heidrun; Semyalo, Ronald; Skår, Cecilie; Watanabe, Kuninori

    2013-01-01

    Background and Objectives Epitheliocystis, caused by bacteria infecting gill epithelial cells in fish, is common among a large range of fish species in both fresh- and seawater. The aquaculture industry considers epitheliocystis an important problem. It affects the welfare of the fish and the resulting gill disease may lead to mortalities. In a culture facility in Kampala, Uganda, juveniles of the African sharptooth catfish (Clarias gariepinus) was observed swimming in the surface, sometimes belly up, showing signs of respiratory problems. Histological examination of gill tissues from this fish revealed large amounts of epitheliocysts, and also presence of a few Ichthyobodo sp. and Trichodina sp. Methods and Results Sequencing of the epitheliocystis bacterium 16S rRNA gene shows 86.3% similarity with Candidatus Piscichlamydia salmonis causing epitheliocystis in Atlantic salmon (Salmo salar). Transmission electron microscopy showed that the morphology of the developmental stages of the bacterium is similar to that of members of the family Chlamydiaceae. The similarity of the bacterium rRNA gene sequences compared with other chlamydia-like bacteria ranged between 80.5% and 86.3%. Inclusions containing this new bacterium have tubules/channels (termed actinae) that are radiating from the inclusion membrane and opening on the cell surface or in neighbouring cells. Conclusions Radiation of tubules/channels (actinae) from the inclusion membrane has never been described in any of the other members of Chlamydiales. It seems to be a completely new character and an apomorphy. We propose the name Candidatus Actinochlamydia clariae gen. nov., sp. nov. (Actinochlamydiaceae fam. nov., order Chlamydiales, phylum Chlamydiae) for this new agent causing epitheliocystis in African sharptooth catfish. PMID:23826156

  6. Combination of a recombinant bacterium with organonitrile-degrading and biofilm-forming capability and a positively charged carrier for organonitriles removal.

    PubMed

    Li, Chunyan; Sun, Yueling; Yue, Zhenlei; Huang, Mingyan; Wang, Jinming; Chen, Xi; An, Xuejiao; Zang, Hailian; Li, Dapeng; Hou, Ning

    2018-04-10

    The immobilization of organonitrile-degrading bacteria via the addition of biofilm-forming bacteria represents a promising technology for the treatment of organonitrile-containing wastewater, but biofilm-forming bacteria simply mixed with degrading bacteria may reduce the biodegradation efficiency. Nitrile hydratase and amidase genes, which play critical roles in organonitriles degradation, were cloned and transformed into the biofilm-forming bacterium Bacillus subtilis N4 to construct a recombinant bacterium B. subtilis N4/pHTnha-ami. Modified polyethylene carriers with positive charge was applied to promote bacterial adherence and biofilm formation. The immobilized B. subtilis N4/pHTnha-ami was resistant to organonitriles loading shocks and could remove organic cyanide ion with a initial concentration of 392.6 mg/L for 24 h in a moving bed biofilm reactor. The imputed quorum-sensing signal and the high-throughput sequencing analysis of the biofilm indicated that B. subtilis N4/pHTnha-ami was successfully immobilized and became dominant. The successful application of the immobilized recombinant bacterium offers a novel strategy for the biodegradation of recalcitrant compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Complete genome sequencing of the luminescent bacterium, Vibrio qinghaiensis sp. Q67 using PacBio technology

    NASA Astrophysics Data System (ADS)

    Gong, Liang; Wu, Yu; Jian, Qijie; Yin, Chunxiao; Li, Taotao; Gupta, Vijai Kumar; Duan, Xuewu; Jiang, Yueming

    2018-01-01

    Vibrio qinghaiensis sp.-Q67 (Vqin-Q67) is a freshwater luminescent bacterium that continuously emits blue-green light (485 nm). The bacterium has been widely used for detecting toxic contaminants. Here, we report the complete genome sequence of Vqin-Q67, obtained using third-generation PacBio sequencing technology. Continuous long reads were attained from three PacBio sequencing runs and reads >500 bp with a quality value of >0.75 were merged together into a single dataset. This resultant highly-contiguous de novo assembly has no genome gaps, and comprises two chromosomes with substantial genetic information, including protein-coding genes, non-coding RNA, transposon and gene islands. Our dataset can be useful as a comparative genome for evolution and speciation studies, as well as for the analysis of protein-coding gene families, the pathogenicity of different Vibrio species in fish, the evolution of non-coding RNA and transposon, and the regulation of gene expression in relation to the bioluminescence of Vqin-Q67.

  8. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.

    PubMed

    Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish

    2017-01-01

    Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes

  9. Draft Genome Sequence of the Obligately Alkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans Strain MLF1

    PubMed Central

    Trubitsyn, Denis; Geurink, Corey; Pikuta, Elena; Lefèvre, Christopher T.; McShan, W. Michael; Gillaspy, Allison F.

    2014-01-01

    Desulfonatronum thiodismutans strain MLF1, an alkaliphilic bacterium capable of sulfate reduction, was isolated from Mono Lake, California. Here we report the 3.92-Mb draft genome sequence comprising 34 contigs and some results of its automated annotation. These data will improve our knowledge of mechanisms by which bacteria withstand extreme environments. PMID:25081260

  10. Identification and Characterization of a High Efficiency Aniline Resistance and Degrading Bacterium MC-01.

    PubMed

    Yang, Liu; Ying, Chen; Fang, Ni; Zhong, Yao; Zhao-Xiang, Zhong; Yun, Sun

    2017-05-01

    Biodegradation is one of the important methods for the treatment of industrial wastewater containing aniline. In this paper, a degrading bacterium named MC-01, which could survive in high concentration aniline wastewater, was screened from industrial wastewater containing aniline and sludge. MC-01 was preliminarily identified as Ochrobactrum sp. based on the amplified 16S rDNA gene sequence and Biolog system identification. MC-01 was highly resistant to aniline. After 24-h culture under aniline concentration of 6500 mg/L, the amount of bacterium survived still remained 0.05 × 10 6  CFU/mL. Experiments showed that there was no coupling expression between the growth of MC-01 and aniline degradation. The optimum growth conditions in LB culture were pH 6.0, 30 °C of temperature, and 4% of incubation amount, respectively. And the optimum conditions of aniline degradation of MC-01 were pH 7.0, 45 °C of temperature, and 3.0% of salt concentration, respectively. The degradation rate of MC-01 (48 h) in different aniline concentrations (200~1600 mg/L) was stable under the optimum conditions, which could reach more than 75%.

  11. The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium.

    PubMed

    Wang, L Q; Meselhy, M R; Li, Y; Nakamura, N; Min, B S; Qin, G W; Hattori, M

    2001-12-01

    A human intestinal bacterium, Eubacterium (E.) sp. strain SDG-2, was tested for its ability to metabolize various (3R)- and (3S)-flavan-3-ols and their 3-O-gallates. This bacterium cleaved the C-ring of (3R)- and (3S)-flavan-3-ols to give 1,3-diphenylpropan-2-ol derivatives, but not their 3-O-gallates. Furthermore, E. sp. strain SDG-2 had the ability of p-dehydroxylation in the B-ring of (3R)-flavan-3-ols, such as (-)-catechin, (-)-epicatechin, (-)-gallocatechin and (-)-epigallocatechin, but not of (3S)-flavan-3-ols, such as (+)-catechin and (+)-epicatechin.

  12. Extracellular polymer substance synthesized by a halophilic bacterium Chromohalobacter canadensis 28.

    PubMed

    Radchenkova, Nadja; Boyadzhieva, Ivanka; Atanasova, Nikolina; Poli, Annarita; Finore, Ilaria; Di Donato, Paola; Nicolaus, Barbara; Panchev, Ivan; Kuncheva, Margarita; Kambourova, Margarita

    2018-04-03

    Halophilic microorganisms are producers of a lot of new compounds whose properties suggest promising perspectives for their biotechnological exploration. Moderate halophilic bacterium Chromohalobacter canadensis 28 was isolated from Pomorie salterns as an extracellular polymer substance (EP) producer. The best carbon source for extracellular polymer production was found to be lactose, a sugar received as a by-product from the dairy industry. After optimization of the culture medium and physicochemical conditions for cultivation, polymer biosynthesis increased more than 2-fold. The highest level of extracellular polymer synthesis by C. canadensis 28 was observed in an unusually high NaCl concentration (15% w/v). Chemical analysis of the purified polymer revealed the presence of an exopolysaccharide (EPS) fraction (14.3% w/w) and protein fraction (72% w/w). HPLC analysis of the protein fraction showed the main presence of polyglutamic acid (PGA) (75.7% w/w). EPS fraction analysis revealed the following sugar composition (% w/w): glucosamine 36.7, glucose 32.3, rhamnose 25.4, xylose 1.7, and not identified sugar 3.9. The hydrogel formed by PGA and EPS fractions showed high swelling behavior, very good emulsifying and stabilizing properties, and good foaming ability. This is the first report for halophilic bacterium able to synthesize a polymer containing PGA fraction. The synthesized biopolymer shows an extremely high hydrophilicity, due to the simultaneous presence of PGA and EPS. The analysis of its functional properties and the presence of glucosamine in the highest proportion in EPS fraction clearly determine the potential of EP synthesized by C. canadensis 28 for application in the cosmetics industry.

  13. Complete Genome Sequence of a New Ruminococcaceae Bacterium Isolated from Anaerobic Biomass Hydrolysis.

    PubMed

    Hahnke, Sarah; Abendroth, Christian; Langer, Thomas; Codoñer, Francisco M; Ramm, Patrice; Porcar, Manuel; Luschnig, Olaf; Klocke, Michael

    2018-04-05

    A new Ruminococcaceae bacterium, strain HV4-5-B5C, participating in the anaerobic digestion of grass, was isolated from a mesophilic two-stage laboratory-scale leach bed biogas system. The draft annotated genome sequence presented in this study and 16S rRNA gene sequence analysis indicated the affiliation of HV4-5-B5C with the family Ruminococcaceae outside recently described genera. Copyright © 2018 Hahnke et al.

  14. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque.

    PubMed

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-02-10

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium.

  15. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque

    PubMed Central

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-01-01

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium. PMID:26860259

  16. Characterization of carbon dioxide concentrating chemolithotrophic bacterium Serratia sp. ISTD04 for production of biodiesel.

    PubMed

    Kumar, Manish; Morya, Raj; Gnansounou, Edgard; Larroche, Christian; Thakur, Indu Shekhar

    2017-11-01

    Proteomics and metabolomics analysis has become a powerful tool for characterization of microbial ability for fixation of Carbon dioxide. Bacterial community of palaeoproterozoic metasediments was enriched in the shake flask culture in the presence of NaHCO 3 . One of the isolate showed resistance to NaHCO 3 (100mM) and was identified as Serratia sp. ISTD04 by 16S rRNA sequence analysis. Carbon dioxide fixing ability of the bacterium was established by carbonic anhydrase enzyme assay along with proteomic analysis by LC-MS/MS. In proteomic analysis 96 proteins were identified out of these 6 protein involved in carbon dioxide fixation, 11 in fatty acid metabolism, indicating the carbon dioxide fixing potency of bacterium along with production of biofuel. GC-MS analysis revealed that hydrocarbons and FAMEs produced by bacteria within the range of C 13 -C 24 and C 11 -C 19 respectively. Presence of 59% saturated and 41% unsaturated organic compounds, make it a better fuel composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats.

    PubMed

    Kandel, Prem P; Lopez, Samantha M; Almeida, Rodrigo P P; De La Fuente, Leonardo

    2016-09-01

    Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect vectors. This bacterium

  18. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats

    PubMed Central

    Kandel, Prem P.; Lopez, Samantha M.; Almeida, Rodrigo P. P.

    2016-01-01

    ABSTRACT Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro. Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. IMPORTANCE Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect

  19. Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves.

    PubMed

    Tamura, Takayoshi; Noda, Masafumi; Ozaki, Moeko; Maruyama, Masafumi; Matoba, Yasuyuki; Kumagai, Takanori; Sugiyama, Masanori

    2010-01-01

    In the present study, we successfully isolated a carrot leaf-derived lactic acid bacterium that produces gamma-aminobutyric acid (GABA) from monosodium L-glutamate (L-MSG) at a hyper conversion rate. The GABA-producing bacterium, identified as Enterococcus (E.) avium G-15, produced 115.7±6.4 g/l GABA at a conversion rate of 86.0±5.0% from the added L-MSG under the optimum culture condition by a continuous L-MSG feeding method using a jar-fermentor, suggesting that the bacterium displays a great potential ability for the commercial-level fermentation production of GABA. Using the reverse transcription polymerase chain reaction (RT-PCR) method, we analyzed the expression of genes for the GABA transporter and glutamate decarboxylase, designated gadT and gadG, respectively, which were cloned from the E. avium G-15 chromosome. Both genes were expressed even without the added L-MSG, but their expression was enhanced by the addition of L-MSG.

  20. Zinc biosorption by the purple non-sulfur bacterium Rhodobacter capsulatus.

    PubMed

    Magnin, Jean-Pierre; Gondrexon, Nicolas; Willison, John C

    2014-12-01

    This paper presents the first report providing information on the zinc (Zn) biosorption potentialities of the purple non-sulfur bacterium Rhodobacter capsulatus. The effects of various biological, physical, and chemical parameters on Zn biosorption were studied in both the wild-type strain B10 and a strain, RC220, lacking the endogenous plasmid. At an initial Zn concentration of 10 mg·L(-1), the Zn biosorption capacity at pH 7 for bacterial biomass grown in synthetic medium containing lactate as carbon source was 17 and 16 mg Zn·(g dry mass)(-1) for strains B10 and RC220, respectively. Equilibrium was achieved in a contact time of 30-120 min, depending on the initial Zn concentration. Zn sorption by live biomass was modelled, at equilibrium, according to the Redlich-Peterson and Langmuir isotherms, in the range of 1-600 mg Zn·L(-1). The wild-type strain showed a maximal Zn uptake capacity (Qm) of 164 ± 8 mg·(g dry mass)(-1) and an equilibrium constant (Kads) of 0.017 ± 0.00085 L·(mg Zn)(-1), compared with values of 73.9 mg·(g dry mass)(-1) and 0.361 L·mg(-1) for the strain lacking the endogenous plasmid. The Qm value observed for R. capsulatus B10 is one of the highest reported in the literature, suggesting that this strain may be useful for Zn bioremediation. The lower Qm value and higher equilibrium constant observed for strain RC220 suggest that the endogenous plasmid confers an enhanced biosorption capacity in this bacterium, although no genetic determinants for Zn resistance appear to be located on the plasmid, and possible explanations for this are discussed.

  1. The Production, Purification and Properties of the Biopolymer Levan Produced by the Bacterium Erwinia Herbicola

    DTIC Science & Technology

    1989-08-01

    standard and an inulin standard provided by Dr. Elwin Reese of this laboratory and a sample of levan from a different bacterium provided by the USDA.23 A...polymyxa 24 Levan standard Continuous culture Tangential Flow purified levan (this study) >■• <-■-’•«■ i-I-» r Inulin standard tu 25 Figure 5. NMR

  2. Genome Sequence of Pedobacter arcticus sp. nov., a Sea Ice Bacterium Isolated from Tundra Soil

    PubMed Central

    Yin, Ye; Yue, Guidong; Gao, Qiang; Wang, Zhiyong; Peng, Fang; Fang, Chengxiang; Yang, Xu

    2012-01-01

    Pedobacter arcticus sp. nov. was originally isolated from tundra soil collected from Ny-Ålesund, in the Arctic region of Norway. It is a Gram-negative bacterium which shows bleb-shaped appendages on the cell surface. Here, we report the draft annotated genome sequence of Pedobacter arcticus sp. nov., which belongs to the genus Pedobacter. PMID:23144423

  3. Hydrogen Production by Co-cultures of Rhizopus oryzae and a Photosynthetic Bacterium, Rhodobacter sphaeroides RV

    NASA Astrophysics Data System (ADS)

    Asada, Yasuo; Ishimi, Katsuhiro; Nagata, Yoko; Wakayama, Tatsuki; Miyake, Jun; Kohno, Hideki

    Hydrogen production with glucose by using co-immobilized cultures of a fungus, Rhizopus oryzae NBRC5384, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. The co-immobilized cultures converted glucose to hydrogen via lactate in a high molar yield of about 8moles of hydrogen per glucose at a maximum under illuminated conditions.

  4. Draft Genome Sequence of the Obligately Alkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans Strain MLF1.

    PubMed

    Trubitsyn, Denis; Geurink, Corey; Pikuta, Elena; Lefèvre, Christopher T; McShan, W Michael; Gillaspy, Allison F; Bazylinski, Dennis A

    2014-07-31

    Desulfonatronum thiodismutans strain MLF1, an alkaliphilic bacterium capable of sulfate reduction, was isolated from Mono Lake, California. Here we report the 3.92-Mb draft genome sequence comprising 34 contigs and some results of its automated annotation. These data will improve our knowledge of mechanisms by which bacteria withstand extreme environments. Copyright © 2014 Trubitsyn et al.

  5. Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

    PubMed Central

    2012-01-01

    Background Chloronitrophenols (CNPs) are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP) is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography–mass spectrometry identified 4-chloro-2-aminophenol (4C2AP) and 2-aminophenol (2AP) as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Conclusions Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i) the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii) the bioremediation of 4C2NP by any bacterium. PMID:23171039

  6. Metabolism of 4-chloro-2-nitrophenol in a gram-positive bacterium, Exiguobacterium sp. PMA.

    PubMed

    Arora, Pankaj Kumar; Sharma, Ashutosh; Mehta, Richa; Shenoy, Belle Damodara; Srivastava, Alok; Singh, Vijay Pal

    2012-11-21

    Chloronitrophenols (CNPs) are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP) is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography-mass spectrometry identified 4-chloro-2-aminophenol (4C2AP) and 2-aminophenol (2AP) as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i) the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii) the bioremediation of 4C2NP by any bacterium.

  7. Complete Genome of Enterobacteriaceae Bacterium Strain FGI 57, a Strain Associated with Leaf-Cutter Ant Fungus Gardens

    PubMed Central

    Aylward, Frank O.; Tremmel, Daniel M.; Bruce, David C.; Chain, Patrick; Chen, Amy; Walston Davenport, Karen; Detter, Chris; Han, Cliff S.; Han, James; Huntemann, Marcel; Ivanova, Natalia N.; Kyrpides, Nikos C.; Markowitz, Victor; Mavrommatis, Kostas; Nolan, Matt; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Deshpande, Shweta; Goodwin, Lynne; Woyke, Tanja

    2013-01-01

    The Enterobacteriaceae bacterium strain FGI 57 was isolated from a fungus garden of the leaf-cutter ant Atta colombica. Analysis of its single 4.76-Mbp chromosome will shed light on community dynamics and plant biomass degradation in ant fungus gardens. PMID:23469353

  8. [Genetic variability of the bacterium Ralstonia solanacearum (Burkholderiales: Burholderiaceae) in the banana-growing region of Uraba (Colombia)].

    PubMed

    Cardozo, Carolina; Rodríguez, Paola; Cotes, José Miguel; Marín, Mauricio

    2010-03-01

    The banana moko disease, caused by the bacterium Ralstonia solanacearum, is one of the most important phytopathological problems of the banana agribusiness in tropical countries. In Uraba and Magdalena (Colombia), the main exporting regions of banana in Colombia, this disease causes a destruction estimated in 16.5 ha/year. The bacterium presents an extremely high level of genetic variation that affects control measures. This is the first study of its variation in Colombia and was done with AFLP molecular markers on a population of 100 isolates from banana plants, soils and "weeds". The high level of genetic diversity, with Nei and Shannon indexes of h=0.32 and I=0.48, respectively, and the AMOVA, showed that this population is subestructured (Fst=0.66): the host is the main factor of differentiation. Even so, previous tests show that all varieties have pathogenicity on Musa.

  9. The O-antigen structure of bacterium Comamonas aquatica CJG.

    PubMed

    Wang, Xiqian; Kondakova, Anna N; Zhu, Yutong; Knirel, Yuriy A; Han, Aidong

    2017-11-01

    Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1 H and 13 C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.

  10. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    PubMed Central

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and contained cytochrome c3 and desulfoviridin. Except for furfural degradation, the characteristics of the furfural isolate were remarkably similar to those of the sulfate reducer Desulfovibrio gigas. The furfural isolate has been tentatively identified as Desulfovibrio sp. strain F-1. Images PMID:16346423

  11. Exploratory Investigation of Bacteroides fragilis Transcriptional Response during In vitro Exposure to Subinhibitory Concentration of Metronidazole

    PubMed Central

    de Freitas, Michele C. R.; Resende, Juliana A.; Ferreira-Machado, Alessandra B.; Saji, Guadalupe D. R. Q.; de Vasconcelos, Ana T. R.; da Silva, Vânia L.; Nicolás, Marisa F.; Diniz, Cláudio G.

    2016-01-01

    Bacteroides fragilis, member from commensal gut microbiota, is an important pathogen associated to endogenous infections and metronidazole remains a valuable antibiotic for the treatment of these infections, although bacterial resistance is widely reported. Considering the need of a better understanding on the global mechanisms by which B. fragilis survive upon metronidazole exposure, we performed a RNA-seq transcriptomic approach with validation of gene expression results by qPCR. Bacteria strains were selected after in vitro subcultures with subinhibitory concentration (SIC) of the drug. From a wild type B. fragilis ATCC 43859 four derivative strains were selected: first and fourth subcultures under metronidazole exposure and first and fourth subcultures after drug removal. According to global gene expression analysis, 2,146 protein coding genes were identified, of which a total of 1,618 (77%) were assigned to a Gene Ontology term (GO), indicating that most known cellular functions were taken. Among these 2,146 protein coding genes, 377 were shared among all strains, suggesting that they are critical for B. fragilis survival. In order to identify distinct expression patterns, we also performed a K-means clustering analysis set to 15 groups. This analysis allowed us to detect the major activated or repressed genes encoding for enzymes which act in several metabolic pathways involved in metronidazole response such as drug activation, defense mechanisms against superoxide ions, high expression level of multidrug efflux pumps, and DNA repair. The strains collected after metronidazole removal were functionally more similar to those cultured under drug pressure, reinforcing that drug-exposure lead to drastic persistent changes in the B. fragilis gene expression patterns. These results may help to elucidate B. fragilis response during metronidazole exposure, mainly at SIC, contributing with information about bacterial survival strategies under stress conditions in their

  12. BmeRABC5 is a multidrug efflux system that can confer metronidazole resistance in Bacteroides fragilis.

    PubMed

    Pumbwe, Lilian; Chang, Abraham; Smith, Rachel L; Wexler, Hannah M

    2007-01-01

    The RND-family efflux pump gene bmeB5 was previously shown to be overexpressed in metronidazole-resistant laboratory mutants of Bacteroides fragilis. In the present study, we characterized the bmeABC5 genes and an upstream putative TetR-family regulator gene (bmeR5). bmeR5 (645 bp) was located 51 bp upstream of bmeA5 and encoded a 24.9-kDa protein. Deletant strains lacking bmeB5 or bmeR5 were constructed from a wild-type B. fragilis strain ADB77. Strain antimicrobial susceptibility was determined and gene expression was quantified. bmeR5 was overexpressed in Escherichia coli using a 6x-His tag system; BmeR5-His6 was isolated from inclusion bodies and its binding to bmeABC5 promoter regions was determined. BmeR5-His6 bound specifically to the bmeR5-bmeC5 intergenic region (IT1). Deletion of bmeR5 (ADB77DeltabmeR5) resulted in a significant (p < 0.05) increase in expression of bmeA5, bmeB5, and bmeC5, and > two-fold increase in minimum inhibitory concentrations (MICs) of ampicillin, cefoxitin, cefoperazone, ciprofloxacin, imipenem, metronidazole, ethidium bromide, and sodium dodecyl sulfate (SDS). MICs were reduced by the efflux pump inhibitor carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The MICs of ampicillin, cefoperazone, metronidazole, and SDS were reduced by approximately two-fold in ADB77DeltabmeB5. A multidrug (metronidazole)-resistant, nim-negative B. fragilis clinical isolate overexpressed bmeABC5 genes, had a G-->T point mutation in IT1, and significantly reduced binding to BmeR5-His6. These data demonstrate that BmeR5 is a local repressor of bmeABC5 expression and that mutations in IT1 can lead to a derepression and resistance to multiple antimicrobial agents, including metronidazole.

  13. Exploratory Investigation of Bacteroides fragilis Transcriptional Response during In vitro Exposure to Subinhibitory Concentration of Metronidazole.

    PubMed

    de Freitas, Michele C R; Resende, Juliana A; Ferreira-Machado, Alessandra B; Saji, Guadalupe D R Q; de Vasconcelos, Ana T R; da Silva, Vânia L; Nicolás, Marisa F; Diniz, Cláudio G

    2016-01-01

    Bacteroides fragilis , member from commensal gut microbiota, is an important pathogen associated to endogenous infections and metronidazole remains a valuable antibiotic for the treatment of these infections, although bacterial resistance is widely reported. Considering the need of a better understanding on the global mechanisms by which B. fragilis survive upon metronidazole exposure, we performed a RNA-seq transcriptomic approach with validation of gene expression results by qPCR. Bacteria strains were selected after in vitro subcultures with subinhibitory concentration (SIC) of the drug. From a wild type B. fragilis ATCC 43859 four derivative strains were selected: first and fourth subcultures under metronidazole exposure and first and fourth subcultures after drug removal. According to global gene expression analysis, 2,146 protein coding genes were identified, of which a total of 1,618 (77%) were assigned to a Gene Ontology term (GO), indicating that most known cellular functions were taken. Among these 2,146 protein coding genes, 377 were shared among all strains, suggesting that they are critical for B. fragilis survival. In order to identify distinct expression patterns, we also performed a K-means clustering analysis set to 15 groups. This analysis allowed us to detect the major activated or repressed genes encoding for enzymes which act in several metabolic pathways involved in metronidazole response such as drug activation, defense mechanisms against superoxide ions, high expression level of multidrug efflux pumps, and DNA repair. The strains collected after metronidazole removal were functionally more similar to those cultured under drug pressure, reinforcing that drug-exposure lead to drastic persistent changes in the B. fragilis gene expression patterns. These results may help to elucidate B. fragilis response during metronidazole exposure, mainly at SIC, contributing with information about bacterial survival strategies under stress conditions in

  14. Outbreak of meningitis in weaner pigs caused by unidentified asaccharolytic gram-negative bacterium.

    PubMed Central

    Mohan, K; Holmes, B; Kock, N; Muvavarirwa, P

    1996-01-01

    Several organisms are known to cause outbreaks of meningitis in pigs, with Haemophilus species being the most frequently implicated. We report such an outbreak in which necropsied pigs manifested an unusual combination of meningitis, tracheitis, and bronchitis. The causative agent appeared to be an asaccharolytic gram-negative nonfermentative bacterium whose classification has yet to be determined. The organism was isolated from the brain and was extremely capnophilic, growing in air only after several serial subcultures. PMID:8815112

  15. Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06.

    PubMed

    Liu, Yang; Wang, Runping; Zeng, Runying

    2014-12-01

    Rhizobium sp. MGL06, the first Rhizobium isolate from a marine environment, is a malachite-green-tolerant bacterium with a broader salinity tolerance (range: 0.5% to 9%) than other rhizobia. This study sequences and annotates the draft genome sequence of this strain. Genome sequence information provides a basis for analyzing the malachite green tolerance, broad salinity adaptation, nitrogen fixation properties, and taxonomic classification of the isolate. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. High-Quality Genome Sequence of the Highly Resistant Bacterium Staphylococcus haemolyticus, Isolated from a Neonatal Bloodstream Infection.

    PubMed

    Hosseinkhani, Farideh; Emaneini, Mohammad; van Leeuwen, Willem

    2017-07-20

    Using Illumina HiSeq and PacBio technologies, we sequenced the genome of the multidrug-resistant bacterium Staphylococcus haemolyticus , originating from a bloodstream infection in a neonate. The sequence data can be used as an accurate reference sequence. Copyright © 2017 Hosseinkhani et al.

  17. Complete genome sequences of two strains of the meat spoilage bacterium Brochothrix thermosphacta isolated from ground chicken

    USDA-ARS?s Scientific Manuscript database

    Brochothrix thermosphacta is an important meat spoilage bacterium. Here we report the genome sequences of two strains of B. thermosphacta isolated from ground chicken. The genome sequences were determined using long-read PacBio single-molecule real-time (SMRT©) technology and are the first complete ...

  18. Shedding light on microbial dark matter: a TM6 bacterium as natural endosymbiont of a free-living amoeba.

    PubMed

    Delafont, Vincent; Samba-Louaka, Ascel; Bouchon, Didier; Moulin, Laurent; Héchard, Yann

    2015-12-01

    The TM6 phylum belongs to the so-called microbial dark matter that gathers uncultivated bacteria detected only via DNA sequencing. Recently, the genome sequence of a TM6 bacterium (TM6SC1) has led to suggest that this bacterium would adopt an endosymbiotic life. In the present paper, free-living amoebae bearing a TM6 strain were isolated from a water network. The amoebae were identified as Vermamoeba vermiformis and the presence of a TM6 strain was detected by polymerase chain reaction and microscopy. The partial sequence of its 16S rRNA gene showed this strain to be closely related to the sequenced TM6SC1 strain. These bacteria displayed a pyriform shape and were found within V. vermiformis. Therefore, these bacteria were named Vermiphilus pyriformis. Interactions studies showed that V. pyriformis was highly infectious and that its relation with V. vermiformis was specific and highly stable. Finally, it was found that V. pyriformis inhibited the encystment of V. vermiformis. Overall, this study describes for the first time an endosymbiotic relationship between a TM6 bacterium and a free-living amoeba in the environment. It suggests that other bacteria of the TM6 phylum might also be endosymbiotic bacteria and may be found in other free-living amoebae or other organisms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes

    PubMed Central

    Cossart, Pascale

    2011-01-01

    Listeria monocytogenes has, in 25 y, become a model in infection biology. Through the analysis of both its saprophytic life and infectious process, new concepts in microbiology, cell biology, and pathogenesis have been discovered. This review will update our knowledge on this intracellular pathogen and highlight the most recent breakthroughs. Promising areas of investigation such as the increasingly recognized relevance for the infectious process, of RNA-mediated regulations in the bacterium, and the role of bacterially controlled posttranslational and epigenetic modifications in the host will also be discussed. PMID:22114192

  20. Development of multiplex polymerase chain reaction assay for simultaneous detection of clostero-, badna- and mandari-viruses along with huanglongbing bacterium in citrus trees.

    PubMed

    Meena, Ram Prasnna; Baranwal, V K

    2016-09-01

    Citrus trees harbor a large number of viral and bacterial pathogens. Citrus yellow vein clearing virus (CYVCV), Indian citrus ringspot virus (ICRSV), Citrus yellow mosaic virus (CYMV), Citrus tristeza virus (CTV) and a bacterium, Candidatus Liberibacter asiaticus (CLa) associated with huanglongbing (HLB) disease, the most prevalent pathogens in citrus orchards of different regions in India and are responsible for debilitating citriculture. For detection of these viral and bacterial pathogens a quick, sensitive and cost effective detection method is required. With this objective a multiplex polymerase chain reaction (mPCR) assay was developed for simultaneous detection of four viruses and a bacterium in citrus. Several sets of primers were designed for each virus based on the retrieved reference sequences from the GenBank. A primer pair published previously was used for greening bacterium. Each pair of primers was evaluated for their sensitivity and differentiation by simplex and mPCR. The constant amplified products were identified on the basis of molecular size in mPCR and were compared with standard PCR. The amplicons were cloned and results were confirmed with sequencing analysis. The mPCR assay was validated using naturally infected field samples for one or more citrus viruses and the huanglongbing bacterium. The mPCR assay developed here will aid in the production of virus free planting materials and rapid indexing for certification of citrus budwood programme. Copyright © 2016 Elsevier B.V. All rights reserved.