Science.gov

Sample records for bacterium chlorobium vibrioforme

  1. Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1.

    PubMed

    Kjaer, B; Frigaard, N U; Yang, F; Zybailov, B; Miller, M; Golbeck, J H; Scheller, H V

    1998-03-10

    Photosynthetically active reaction center complexes were prepared from the green sulfur bacterium Chlorobium vibrioforme NCIMB 8327, and the content of quinones was determined by extraction and high-performance liquid chromatography. The analysis showed a stoichiometry of 1.7 molecules of menaquinone-7/reaction center. No other quinones were detected in the isolated reaction centers, whereas membrane preparations also contained chlorobiumquinone. The possible involvement of quinones in electron transport was investigated by electron paramagnetic resonance (EPR) spectroscopy. A highly anisotropic radical was detected by Q-band EPR spectroscopy in both membranes and isolated reaction centers following dark reduction with sodium dithionite and photoaccumulation at 205 K. At 34 GHz, the EPR spectrum is characterized by a g tensor with gxx = 2.0063, gyy = 2.0052, gzz = 2.0020 and delta B of 0.7 mT, consistent with its identification as a quinone. This spectrum is highly similar in terms of g values and line widths to photoaccumulated A1- in photosystem I of Synechococcus sp. PCC 7002. The results indicate that menaquinone-7 in the green sulfur bacterial reaction center is analogous to phylloquinone in photosystem I.

  2. Two genes encoding new carotenoid-modifying enzymes in the green sulfur bacterium Chlorobium tepidum.

    PubMed

    Maresca, Julia A; Bryant, Donald A

    2006-09-01

    The green sulfur bacterium Chlorobium tepidum produces chlorobactene as its primary carotenoid. Small amounts of chlorobactene are hydroxylated by the enzyme CrtC and then glucosylated and acylated to produce chlorobactene glucoside laurate. The genes encoding the enzymes responsible for these modifications of chlorobactene, CT1987, and CT0967, have been identified by comparative genomics, and these genes were insertionally inactivated in C. tepidum to verify their predicted function. The gene encoding chlorobactene glucosyltransferase (CT1987) has been named cruC, and the gene encoding chlorobactene lauroyltransferase (CT0967) has been named cruD. Homologs of these genes are found in the genomes of all sequenced green sulfur bacteria and filamentous anoxygenic phototrophs as well as in the genomes of several nonphotosynthetic bacteria that produce similarly modified carotenoids. The other bacteria in which these genes are found are not closely related to green sulfur bacteria or to one another. This suggests that the ability to synthesize modified carotenoids has been a frequently transferred trait.

  3. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum.

    PubMed

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E; Jones, A Daniel; Bryant, Donald A

    2004-08-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C. tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants by converting phytoene into lycopene using two plant-like desaturases (CrtP and CrtQ) and a plant-like cis-trans isomerase (CrtH) and thus differs from the pathway known in all other bacteria. In contrast to the situation in cyanobacteria and plants, the construction of a crtB mutant completely lacking carotenoids demonstrates that carotenoids are not essential for photosynthetic growth of green sulfur bacteria. However, the bacteriochlorophyll a contents of mutants lacking colored carotenoids (crtB, crtP, and crtQ mutants) were decreased from that of the wild type, and these mutants exhibited a significant growth rate defect under all light intensities tested. Therefore, colored carotenoids may have both structural and photoprotection roles in green sulfur bacteria. The ability to manipulate the carotenoid composition so dramatically in C. tepidum offers excellent possibilities for studying the roles of carotenoids in the light-harvesting chlorosome antenna and iron-sulfur-type (photosystem I-like) reaction center. The phylogeny of carotenogenic enzymes in green sulfur

  4. Two exopolyphosphatases with distinct molecular architectures and substrate specificities from the thermophilic green-sulfur bacterium Chlorobium tepidum TLS.

    PubMed

    Albi, Tomás; Serrano, Aurelio

    2014-09-01

    The genome of the thermophilic green-sulfur bacterium Chlorobium tepidum TLS possesses two genes encoding putative exopolyphosphatases (PPX; EC 3.6.1.11), namely CT0099 (ppx1, 993 bp) and CT1713 (ppx2, 1557 bp). The predicted polypeptides of 330 and 518 aa residues are Ppx-GppA phosphatases of different domain architectures - the largest one has an extra C-terminal HD domain - which may represent ancient paralogues. Both ppx genes were cloned and overexpressed in Escherichia coli BL21(DE3). While CtPPX1 was validated as a monomeric enzyme, CtPPX2 was found to be a homodimer. Both PPX homologues were functional, K(+)-stimulated phosphohydrolases, with an absolute requirement for divalent metal cations and a marked preference for Mg(2+). Nevertheless, they exhibited remarkably different catalytic specificities with regard to substrate classes and chain lengths. Even though both enzymes were able to hydrolyse the medium-size polyphosphate (polyP) P13-18 (polyP mix with mean chain length of 13-18 phosphate residues), CtPPX1 clearly reached its highest catalytic efficiency with tripolyphosphate and showed substantial nucleoside triphosphatase (NTPase) activity, while CtPPX2 preferred long-chain polyPs (>300 Pi residues) and did not show any detectable NTPase activity. These catalytic features, taken together with the distinct domain architectures and molecular phylogenies, indicate that the two PPX homologues of Chl. tepidum belong to different Ppx-GppA phosphatase subfamilies that should play specific biochemical roles in nucleotide and polyP metabolisms. In addition, these results provide an example of the remarkable functional plasticity of the Ppx-GppA phosphatases, a family of proteins with relatively simple structures that are widely distributed in the microbial world.

  5. Two exopolyphosphatases with distinct molecular architectures and substrate specificities from the thermophilic green-sulfur bacterium Chlorobium tepidum TLS.

    PubMed

    Albi, Tomás; Serrano, Aurelio

    2014-09-01

    The genome of the thermophilic green-sulfur bacterium Chlorobium tepidum TLS possesses two genes encoding putative exopolyphosphatases (PPX; EC 3.6.1.11), namely CT0099 (ppx1, 993 bp) and CT1713 (ppx2, 1557 bp). The predicted polypeptides of 330 and 518 aa residues are Ppx-GppA phosphatases of different domain architectures - the largest one has an extra C-terminal HD domain - which may represent ancient paralogues. Both ppx genes were cloned and overexpressed in Escherichia coli BL21(DE3). While CtPPX1 was validated as a monomeric enzyme, CtPPX2 was found to be a homodimer. Both PPX homologues were functional, K(+)-stimulated phosphohydrolases, with an absolute requirement for divalent metal cations and a marked preference for Mg(2+). Nevertheless, they exhibited remarkably different catalytic specificities with regard to substrate classes and chain lengths. Even though both enzymes were able to hydrolyse the medium-size polyphosphate (polyP) P13-18 (polyP mix with mean chain length of 13-18 phosphate residues), CtPPX1 clearly reached its highest catalytic efficiency with tripolyphosphate and showed substantial nucleoside triphosphatase (NTPase) activity, while CtPPX2 preferred long-chain polyPs (>300 Pi residues) and did not show any detectable NTPase activity. These catalytic features, taken together with the distinct domain architectures and molecular phylogenies, indicate that the two PPX homologues of Chl. tepidum belong to different Ppx-GppA phosphatase subfamilies that should play specific biochemical roles in nucleotide and polyP metabolisms. In addition, these results provide an example of the remarkable functional plasticity of the Ppx-GppA phosphatases, a family of proteins with relatively simple structures that are widely distributed in the microbial world. PMID:24969471

  6. Electron transfer kinetics in purified reaction centers from the green sulfur bacterium Chlorobium tepidum studied by multiple-flash excitation.

    PubMed

    Kusumoto, N; Sétif, P; Brettel, K; Seo, D; Sakurai, H

    1999-09-14

    Reaction center preparations from the green sulfur bacterium Chlorobium tepidum, which contain monoheme cytochrome c, were studied by flash-absorption spectroscopy in the near-UV, visible, and near-infrared regions. The decay kinetics of the photooxidized primary donor P840(+), together with the amount of photooxidized cytochrome c, were analyzed along a series of four flashes spaced by 1 ms: 95% of the P840(+) was reduced by cytochrome c with a t(1/2) of approximately 65 micros after the first flash, 80% with a t(1/2) of approximately 100 micros after the second flash, and 23% with a t(1/2) of approximately 100 micros after the third flash; after the fourth flash, almost no cytochrome c oxidation occurred. The observed rates, the establishment of redox equilibrium after each flash, and the total amount of photooxidizable cytochrome c are consistent with the presence of two equivalent cytochrome c molecules per photooxidizable P840. The data are well fitted assuming a standard free energy change DeltaG degrees of -53 meV for electron transfer from one cytochrome c to P840(+), DeltaG degrees being independent of the oxidation state of the other cytochrome c. These observations support a model with two monoheme cytochromes c which are symmetrically arranged around the reaction center core. From the ratio of menaquinone-7 to the bacteriochlorophyll pigment absorbing at 663 nm, it was estimated that our preparations contain 0.6-1.2 menaquinone-7 molecules per reaction center. However, no transient signal due to menaquinone could be observed between 360 and 450 nm in the time window from 10 ns to 4 micros. No recombination reaction between the primary partners P840(+) and A(0)(-) could be detected under normal conditions. Such a recombination was observed (t(1/2) approximately 19 ns) under highly reducing conditions or after accumulation of three electrons on the acceptor side during a series of flashes, showing that the secondary acceptors can stabilize three electrons

  7. The three-dimensional structure of CsmA: a small antenna protein from the green sulfur bacterium Chlorobium tepidum.

    PubMed

    Pedersen, Marie Østergaard; Underhaug, Jarl; Dittmer, Jens; Miller, Mette; Nielsen, Niels Chr

    2008-08-20

    The structure of the chlorosome baseplate protein CsmA from Chlorobium tepidum in a 1:1 chloroform:methanol solution was determined using liquid-state NMR spectroscopy. The data reveal that the 59-residue protein is predominantly alpha-helical with a long helical domain extending from residues V6 to L36, containing a putative bacteriochlorophyll a binding domain, and a short helix in the C-terminal part extending from residues M41 to G49. These elements are compatible with a model of CsmA having the long N-terminal alpha-helical stretch immersed into the lipid monolayer confining the chlorosome and the short C-terminal helix protruding outwards, thus available for interaction with the Fenna-Matthews-Olson antenna protein.

  8. Biological conversion of synthesis gas. [Chlorobium thiosulfatophilum, chlorobium phaeobacteroides, and Rhodospirillum rubrum

    SciTech Connect

    Not Available

    1992-01-06

    The anaerobic bacterium Rhodospirillum rubrum has been chosen for catalysis of the biological water gas shift reaction. Two bacteria, Chlorobium thiosulfatophilum and Chlorobium phaeobacteroides, are being evaluated as candidates for H{sub 2}S conversion to elemental sulfur. Since these latter two organisms both grow and convert H{sub 2}S in batch culture using standard basal medium, the choice of a suitable bacterium must be made in consideration of specific growth and uptake rates. Produced elemental sulfur stability against further oxidation to sulfate, and minimal use of H{sub 2} as a producing agent must also be considered. The effects of temperature on the performance of R. rubrum were evaluated. It was found that the cell concentration was highest at temperatures of 25 and 30{degree}C, and that the specific uptake rate was highest at temperatures of 30, 32 and 34{degree}C. No growth was observed at 37{degree}C. Also, temperature did not affect the yield of H{sub 2} from CO. Thus, R. rubrum may be used for biological rates gas shift at any temperature between 30 and 34{degree}C, although growth is maximized at lower temperatures. Preliminary studies with C. thiosulfatophilum showed rapid utilization of H{sub 2}S from the gas and liquid phases with subsequent production of elemental sulfur. Elemental sulfur production interfered with cell concentrations measurements, although a technique has been developed to rectify this problem.

  9. Sorption of metals by Chlorobium spp.

    PubMed

    Garcia-Gil, J; Borrego, C

    1997-12-01

    The capacity of two species of green phototrophic sulfur bacteria, Chlorobium limicola and C. phaeobacteroides, to sorb several metal ions (Mn2+, Fe2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+) has been tested in laboratory batch cultures at increasing concentrations up to 2,000 mumol/l. Except for nickel--which was not sorbed to bacterial cells--the rest of metals tested were bound in a fast and passive process, which was mathematically described by means of Freundlich isotherms models. The sorption capacity of the two species studied were found to be dependent on the metal involved, whereas no differences were observed in the sorption intensity, suggesting that in all cases the sorption process proceeds in a similar way. Further, the comparison of the sorption intensity values as well as the metal recovery index (Ri), for both species, revealed that C. phaeobacteroides was more efficient that C. limicola to attach metal ions. The ecological significance of this ability in the water column of some stratified lakes, where coinciding maxima of ferrous iron and green photosynthetic sulfur bacteria are frequently found, is discussed.

  10. Influence of organics and silica on Fe(II) oxidation rates and cell-mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox - Implications for Fe(II) oxidation in ancient oceans

    NASA Astrophysics Data System (ADS)

    Gauger, Tina; Byrne, James M.; Konhauser, Kurt O.; Obst, Martin; Crowe, Sean; Kappler, Andreas

    2016-06-01

    Most studies on microbial phototrophic Fe(II) oxidation (photoferrotrophy) have focused on purple bacteria, but recent evidence points to the importance of green-sulfur bacteria (GSB). Their recovery from modern ferruginous environments suggests that these photoferrotrophs can offer insights into how their ancient counterparts grew in Archean oceans at the time of banded iron formation (BIF) deposition. It is unknown, however, how Fe(II) oxidation rates, cell-mineral aggregate formation, and Fe-mineralogy vary under environmental conditions reminiscent of the geological past. To address this, we studied the Fe(II)-oxidizer Chlorobium ferrooxidans KoFox, a GSB living in co-culture with the heterotrophic Geospirillum strain KoFum. We investigated the mineralogy of Fe(III) metabolic products at low/high light intensity, and in the presence of dissolved silica and/or fumarate. Silica and fumarate influenced the crystallinity and particle size of the produced Fe(III) minerals. The presence of silica also enhanced Fe(II) oxidation rates, especially at high light intensities, potentially by lowering Fe(II)-toxicity to the cells. Electron microscopic imaging showed no encrustation of either KoFox or KoFum cells with Fe(III)-minerals, though weak associations were observed suggesting co-sedimentation of Fe(III) with at least some biomass via these aggregates, which could support diagenetic Fe(III)-reduction. Given that GSB are presumably one of the most ancient photosynthetic organisms, and pre-date cyanobacteria, our findings, on the one hand, strengthen arguments for photoferrotrophic activity as a likely mechanism for BIF deposition on a predominantly anoxic early Earth, but, on the other hand, also suggest that preservation of remnants of Fe(II)-oxidizing GSB as microfossils in the rock record is unlikely.

  11. Final Report - "CO2 Sequestration in Cell Biomass of Chlorobium Thiosulfatophilum"

    SciTech Connect

    James L. Gaddy, PhD; Ching-Whan Ko, PhD

    2009-05-04

    World carbon dioxide emissions from the combustion of fossil fuels have increased at a rate of about 3 percent per year during the last 40 years to over 24 billion tons today. While a number of methods have been proposed and are under study for dealing with the carbon dioxide problem, all have advantages as well as disadvantages which limit their application. The anaerobic bacterium Chlorobium thiosulfatophilum uses hydrogen sulfide and carbon dioxide to produce elemental sulfur and cell biomass. The overall objective of this project is to develop a commercial process for the biological sequestration of carbon dioxide and simultaneous conversion of hydrogen sulfide to elemental sulfur. The Phase I study successfully demonstrated the technical feasibility of utilizing this bacterium for carbon dioxide sequestration and hydrogen sulfide conversion to elemental sulfur by utilizing the bacterium in continuous reactor studies. Phase II studies involved an advanced research and development to develop the engineering and scale-up parameters for commercialization of the technology. Tasks include culture isolation and optimization studies, further continuous reactor studies, light delivery systems, high pressure studies, process scale-up, a market analysis and economic projections. A number of anaerobic and aerobic microorgansims, both non-photosynthetic and photosynthetic, were examined to find those with the fastest rates for detailed study to continuous culture experiments. C. thiosulfatophilum was selected for study to anaerobically produce sulfur and Thiomicrospira crunogena waws selected for study to produce sulfate non-photosynthetically. Optimal conditions for growth, H2S and CO2 comparison, supplying light and separating sulfur were defined. The design and economic projections show that light supply for photosynthetic reactions is far too expensive, even when solar systems are considered. However, the aerobic non-photosynthetic reaction to produce sulfate with T

  12. Chlorobium aminolipid: a new membrane lipid from green sulfur bacteria

    SciTech Connect

    Olson, J.M.; Shaw, E.K.; Gaffney, J.S.; Scandella, C.J.

    1983-01-01

    A preliminary chemical characterization of the aminolipid from Chlorobium limicola f. thiosulfatophilum shows that this lipid contains no phosphorus, glycerol, sugar, ornithine or lysine. The lipid has an R/sub f/-value of 0.03 in chloroform-methanol-ammonia (13:5:1 v/v) on silica gel TLC plates. In chloroform-methanol-water (65:25:4) the R/sub f/- value is 0.16. The absorption spectrum indicates bands at 225 and 231 nm, and the fluorescence (maximum emission at 340 nm) shows excitation maxima at 232, 288, and approx. 325 nm. Acid hydrolysis of the lipid yields fluorescent substances A (ninhydrin positive) and B (negative) in addition to myristic acid (C 14:0). The fluorescence emission and excitation spectra of substance A are very similar to those of the intact lipid. Although these excitation spectra resemble the absorption spectra of 7,8-dihydropterins (bands at approx. 230, approx. 280, and 320-330 nm at pH 7), the weight of evidence appears to be against substance A being a pterin. Nevertheless the UV absorption and fluorescence spectra do indicate that the amino moiety (substance A) is an aromatic heterocyclic component.

  13. Unusually Stable Spinae from a Freshwater Chlorobium sp

    PubMed Central

    Brooke, J. S.; Koval, S. F.; Beveridge, T. J.

    1995-01-01

    A green Chlorobium sp. with spinae, strain JSB1, was isolated from an enrichment culture previously obtained from Fayetteville Green Lake, N.Y. (J. S. Brooke, J. B. Thompson, T. J. Beveridge, and S. F. Koval, Arch. Microbiol. 157:319-322, 1992). Cells were gram-negative, nonmotile rods which contained bacteriochlorophyll c and chlorosomes. Spinae were best seen by transmission electron microscopy in thin sections of cells fixed in the presence of tannic acid. High-resolution scanning electron microscopy showed the spinae randomly distributed at the cell surface and at the junctions between cells. Spinae were physically sheared from cells and isolated from the culture supernatant by ultrafiltration. As observed by electron microscopy, spinae demonstrated unusual structural stability when exposed for 1 h at 37 deg C to chemical treatments such as hydrogen bond-breaking agents, detergents, metal-chelating agents, proteases, and organic solvents. They were stable for 1 h at 37 deg C over the pH range 2.3 to 9.9 and in 1 M HCl and 1 M NaOH. The structural integrity of the spinae was also maintained when spinae were subjected to harsher treatments of autoclaving in 2% (wt/vol) sodium dodecyl sulfate and exposure to dithiothreitol at pH 9 for 1 h at 100 deg C. Partially dissociated spinae were obtained after 5 h at 100 deg C in 1 M HCl and 1 M NaOH. In acid, the tubular spinae became amorphous structures, with no helical striations visible. In alkali, the spinae had dissociated into irregular aggregates of disks. Since both high temperature and extremes of pH were required to achieve partial dissociation of the spinae, the strength of the structure presumably comes from covalent bonding. PMID:16534897

  14. Pump-probe anisotropies of Fenna-Matthews-Olson protein trimers from Chlorobium tepidum: a diagnostic for exciton localization?

    PubMed Central

    Savikhin, S; Buck, D R; Struve, W S

    1997-01-01

    Exciton calculations on symmetric and asymmetric Fenna-Matthews-Olson (FMO) trimers, combined with absorption difference anisotropy measurements on FMO trimers from the green bacterium Chlorobium tepidum, suggest that real samples exhibit sufficient diagonal energy disorder so that their laser-excited exciton states are noticeably localized. Our observed anisotropies are clearly inconsistent with 21-pigment exciton simulations based on a threefold-symmetric FMO protein. They are more consistent with a 7-pigment model that assumes that the laser-prepared states are localized within a subunit of the trimer. Differential diagonal energy shifts of 50 cm(-1) between symmetry-related pigments in different subunits are large enough to cause sharp localization in the stationary states; these shifts are commensurate with the approximately 95 cm(-1) inhomogeneous linewidth of the lowest exciton levels. Experimental anisotropies (and by implication steady-state linear and circular dichroism) likely arise from statistical averaging over states with widely contrasting values of these observables, in consequence of their sensitivity to diagonal energy disorder. PMID:9336204

  15. Draft Genome Sequence of Lampenflora Chlorobium limicola Strain Frasassi in a Sulfidic Cave System.

    PubMed

    Mansor, Muammar; Macalady, Jennifer L

    2016-01-01

    The draft genome sequence of Chlorobium limicola strain Frasassi was assembled from metagenomic sequencing of a green mat in an artificially lighted aquarium inside the Frasassi caves in Italy. The genome is 2.08 Mbp in size and contains the necessary genes for anoxygenic photosynthesis and CO2 fixation. PMID:27174272

  16. Electromagnetic study of the chlorosome antenna complex of Chlorobium tepidum.

    PubMed

    Valleau, Stéphanie; Saikin, Semion K; Ansari-Oghol-Beig, Davood; Rostami, Masoud; Mossallaei, Hossein; Aspuru-Guzik, Alán

    2014-04-22

    Green sulfur bacteria are an iconic example of nature's adaptation: thriving in environments of extremely low photon density, the bacterium ranks itself among the most efficient natural light-harvesting organisms. The photosynthetic antenna complex of this bacterium is a self-assembled nanostructure, ≈60 × 150 nm, made of bacteriochlorophyll molecules. We study the system from a computational nanoscience perspective by using electrodynamic modeling with the goal of understanding its role as a nanoantenna. Three different nanostructures, built from two molecular packing moieties, are considered: a structure built of concentric cylinders of aggregated bacteriochlorophyll d monomers, a single cylinder of bacteriochlorophyll c monomers, and a model for the entire chlorosome. The theoretical model captures both coherent and incoherent components of exciton transfer. The model is employed to extract optical spectra, concentration and depolarization of electromagnetic fields within the chlorosome, and fluxes of energy transfer for the structures. The second model nanostructure shows the largest field enhancement. Further, field enhancement is found to be more sensitive to dynamic noise rather than structural disorder. Field depolarization, however, is similar for all structures. This indicates that the directionality of transfer is robust to structural variations, while on the other hand, the intensity of transfer can be tuned by structural variations.

  17. Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum.

    PubMed Central

    Prokhorenko, V I; Steensgaard, D B; Holzwarth, A R

    2000-01-01

    The energy transfer processes in isolated chlorosomes from green bacteria Chlorobium tepidum and Chloroflexus aurantiacus have been studied at low temperatures (1.27 K) by two-pulse photon echo and one-color transient absorption techniques with approximately 100 fs resolution. The decay of the coherence in both types of chlorosomes is characterized by four different dephasing times stretching from approximately 100 fs up to 300 ps. The fastest component reflects dephasing that is due to interaction of bacteriochlorophylls with the phonon bath, whereas the other components correspond to dephasing due to different energy transfer processes such as distribution of excitation along the rod-like aggregates, energy exchange between different rods in the chlorosome, and energy transfer to the base plate. As a basis for the interpretation of the excitation dephasing and energy transfer pathways, a superlattice-like structural model is proposed based on recent experimental data and computer modeling of the Bchl c aggregates (1994. Photosynth. Res. 41:225-233.) This model predicts a fine structure of the Q(y) absorption band that is fully supported by the present photon echo data. PMID:11023914

  18. Chlorobium limicola forma thiosulfatophilum: biocatalyst in the production of sulfur and organic carbon from a gas stream containing H/sub 2/O and CO/sub 2/

    SciTech Connect

    Cork, D.J.; Garunas, R.; Sajjad, A.

    1983-03-01

    Chlorobium limicola forma thiosulfatophilum (ATCC 17092) was grown in a 1-liter continuously stirred tank reactor (800-ml liquid volume) at pH 6.8, 30/sup 0/C, saturated light intensity, and gas flow rate of 23.6 ml/min from a gas cylinder blend consisting of 3.9 mol% H/sub 2/S, 9.2 mol% CO/sub 2/, 86.4 mol% N/sub 2/, and 0.5 mol% H/sub 2/. This is the first demonstration of photoautotrophic growth of a Chlorobium sp. on a continuous inorganic gas feed. A significant potential exists for applying this photoautotrophic process to desulfurization and CO/sub 2/ fixation of gases containing acidic components (H/sub 2/S and CO/sub 2/).

  19. 34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria.

    PubMed Central

    Fry, B; Gest, H; Hayes, J M

    1988-01-01

    Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments. PMID:11536596

  20. 34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1988-01-01

    Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments.

  1. Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria.

    PubMed

    Wang, J; Brune, D C; Blankenship, R E

    1990-02-22

    The efficiency of energy transfer in chlorosome antennas in the green sulfur bacteria Chlorobium vibrioforme and Chlorobium limicola was found to be highly sensitive to the redox potential of the suspension. Energy transfer efficiencies were measured by comparing the absorption spectrum of the bacteriochlorophyll c or d pigments in the chlorosome to the excitation spectrum for fluorescence arising from the chlorosome baseplate and membrane-bound antenna complexes. The efficiency of energy transfer approaches 100% at low redox potentials induced by addition of sodium dithionite or other strong reductants, and is lowered to 10-20% under aerobic conditions or after addition of a variety of membrane-permeable oxidizing agents. The redox effect on energy transfer is observed in whole cells, isolated membranes and purified chlorosomes, indicating that the modulation of energy transfer efficiency arises within the antenna complexes and is not directly mediated by the redox state of the reaction center. It is proposed that chlorosomes contain a component that acts as a highly quenching center in its oxidized state, but is an inefficient quencher when reduced by endogenous or exogenous reductants. This effect may be a control mechanism that prevents cellular damage resulting from reaction of oxygen with reduced low-potential electron acceptors found in the green sulfur bacteria. The redox modulation effect is not observed in the green gliding bacterium Chloroflexus aurantiacus, which contains chlorosomes but does not contain low-potential electron acceptors.

  2. Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria

    NASA Technical Reports Server (NTRS)

    Wang, J.; Brune, D. C.; Blankenship, R. E.

    1990-01-01

    The efficiency of energy transfer in chlorosome antennas in the green sulfur bacteria Chlorobium vibrioforme and Chlorobium limicola was found to be highly sensitive to the redox potential of the suspension. Energy transfer efficiencies were measured by comparing the absorption spectrum of the bacteriochlorophyll c or d pigments in the chlorosome to the excitation spectrum for fluorescence arising from the chlorosome baseplate and membrane-bound antenna complexes. The efficiency of energy transfer approaches 100% at low redox potentials induced by addition of sodium dithionite or other strong reductants, and is lowered to 10-20% under aerobic conditions or after addition of a variety of membrane-permeable oxidizing agents. The redox effect on energy transfer is observed in whole cells, isolated membranes and purified chlorosomes, indicating that the modulation of energy transfer efficiency arises within the antenna complexes and is not directly mediated by the redox state of the reaction center. It is proposed that chlorosomes contain a component that acts as a highly quenching center in its oxidized state, but is an inefficient quencher when reduced by endogenous or exogenous reductants. This effect may be a control mechanism that prevents cellular damage resulting from reaction of oxygen with reduced low-potential electron acceptors found in the green sulfur bacteria. The redox modulation effect is not observed in the green gliding bacterium Chloroflexus aurantiacus, which contains chlorosomes but does not contain low-potential electron acceptors.

  3. The crystal structure of ferritin from Chlorobium tepidum reveals a new conformation of the 4-fold channel for this protein family.

    PubMed

    Arenas-Salinas, Mauricio; Townsend, Philip D; Brito, Christian; Marquez, Valeria; Marabolli, Vanessa; Gonzalez-Nilo, Fernando; Matias, Cata; Watt, Richard K; López-Castro, Juan D; Domínguez-Vera, José; Pohl, Ehmke; Yévenes, Alejandro

    2014-11-01

    Ferritins are ubiquitous iron-storage proteins found in all kingdoms of life. They share a common architecture made of 24 subunits of five α-helices. The recombinant Chlorobium tepidum ferritin (rCtFtn) is a structurally interesting protein since sequence alignments with other ferritins show that this protein has a significantly extended C-terminus, which possesses 12 histidine residues as well as several aspartate and glutamic acid residues that are potential metal ion binding residues. We show that the macromolecular assembly of rCtFtn exhibits a cage-like hollow shell consisting of 24 monomers that are related by 4-3-2 symmetry; similar to the assembly of other ferritins. In all ferritins of known structure the short fifth α-helix adopts an acute angle with respect to the four-helix bundle. However, the crystal structure of the rCtFtn presented here shows that this helix adopts a new conformation defining a new assembly of the 4-fold channel of rCtFtn. This conformation allows the arrangement of the C-terminal region into the inner cavity of the protein shell. Furthermore, two Fe(III) ions were found in each ferroxidase center of rCtFtn, with an average FeA-FeB distance of 3 Å; corresponding to a diferric μ-oxo/hydroxo species. This is the first ferritin crystal structure with an isolated di-iron center in an iron-storage ferritin. The crystal structure of rCtFtn and the biochemical results presented here, suggests that rCtFtn presents similar biochemical properties reported for other members of this protein family albeit with distinct structural plasticity. PMID:25079050

  4. Single Bacterium Detection Using Sers

    NASA Astrophysics Data System (ADS)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  5. Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.; Cheng, P.; Causgrove, T. P.; Brune, D. C.; Wang, J.

    1993-01-01

    The efficiency of energy transfer from the peripheral chlorosome antenna structure to the membrane-bound antenna in green sulfur bacteria depends strongly on the redox potential of the medium. The fluorescence spectra and lifetimes indicate that efficient quenching pathways are induced in the chlorosome at high redox potential. The midpoint redox potential for the induction of this effect in isolated chlorosomes from Chlorobium vibrioforme is -146 mV at pH 7 (vs the normal hydrogen electrode), and the observed midpoint potential (n = 1) decreases by 60 mV per pH unit over the pH range 7-10. Extraction of isolated chlorosomes with hexane has little effect on the redox-induced quenching, indicating that the component(s) responsible for this effect are bound and not readily extractable. We have purified and partially characterized the trimeric water-soluble bacteriochlorophyll a-containing protein from the thermophilic green sulfur bacterium Chlorobium tepidum. This protein is located between the chlorosome and the membrane. Fluorescence spectra of the purified protein indicate that it also contains groups that quench excitations at high redox potential. The results indicate that the energy transfer pathway in green sulfur bacteria is regulated by redox potential. This regulation appears to operate in at least two distinct places in the energy transfer pathway, the oligomeric pigments in the interior of the chlorosome and in the bacteriochlorophyll a protein. The regulatory effect may serve to protect the cell against superoxide-induced damage when oxygen is present. By quenching excitations before they reach the reaction center, reduction and subsequent autooxidation of the low potential electron acceptors found in these organisms is avoided.

  6. Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria.

    PubMed

    Blankenship, R E; Cheng, P; Causgrove, T P; Brune, D C; Wang SH-H; Choh J-U; Wang, J

    1993-01-01

    The efficiency of energy transfer from the peripheral chlorosome antenna structure to the membrane-bound antenna in green sulfur bacteria depends strongly on the redox potential of the medium. The fluorescence spectra and lifetimes indicate that efficient quenching pathways are induced in the chlorosome at high redox potential. The midpoint redox potential for the induction of this effect in isolated chlorosomes from Chlorobium vibrioforme is -146 mV at pH 7 (vs the normal hydrogen electrode), and the observed midpoint potential (n = 1) decreases by 60 mV per pH unit over the pH range 7-10. Extraction of isolated chlorosomes with hexane has little effect on the redox-induced quenching, indicating that the component(s) responsible for this effect are bound and not readily extractable. We have purified and partially characterized the trimeric water-soluble bacteriochlorophyll a-containing protein from the thermophilic green sulfur bacterium Chlorobium tepidum. This protein is located between the chlorosome and the membrane. Fluorescence spectra of the purified protein indicate that it also contains groups that quench excitations at high redox potential. The results indicate that the energy transfer pathway in green sulfur bacteria is regulated by redox potential. This regulation appears to operate in at least two distinct places in the energy transfer pathway, the oligomeric pigments in the interior of the chlorosome and in the bacteriochlorophyll a protein. The regulatory effect may serve to protect the cell against superoxide-induced damage when oxygen is present. By quenching excitations before they reach the reaction center, reduction and subsequent autooxidation of the low potential electron acceptors found in these organisms is avoided.

  7. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico

    PubMed Central

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A.

    2015-01-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  8. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico.

    PubMed

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A; Setién, Alvaro Aguilar

    2015-12-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc.

  9. Characterization of a novel extremely alkalophilic bacterium

    NASA Technical Reports Server (NTRS)

    Souza, K. A.; Deal, P. H.

    1977-01-01

    A new alkalophilic bacterium, isolated from a natural spring of high pH is characterized. It is a Gram-positive, non-sporulating, motile rod requiring aerobic and alkaline conditions for growth. The characteristics of this organism resemble those of the coryneform group of bacteria; however, there are no accepted genera within this group with which this organism can be closely matched. Therefore, a new genus may be warranted.

  10. Forster energy transfer in chlorosomes of green photosynthetic bacteria

    NASA Technical Reports Server (NTRS)

    Causgrove, T. P.; Brune, D. C.; Blankenship, R. E.

    1992-01-01

    Energy transfer properties of whole cells and chlorosome antenna complexes isolated from the green sulfur bacteria Chlorobium limicola (containing bacteriochlorophyll c), Chlorobium vibrioforme (containing bacteriochlorophyll d) and Pelodictyon phaeoclathratiforme (containing bacteriochlorophyll e) were measured. The spectral overlap of the major chlorosome pigment (bacteriochlorophyll c, d or, e) with the bacteriochlorophyll a B795 chlorosome baseplate pigment is greatest for bacteriochlorophyll c and smallest for bacteriochlorophyll e. The absorbance and fluorescence spectra of isolated chlorosomes were measured, fitted to gaussian curves and the overlap factors with B795 calculated. Energy transfer times from the bacteriochlorophyll c, d or e to B795 were measured in whole cells and the results interpreted in terms of the Forster theory of energy transfer.

  11. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.

  12. Agrobacterium tumefaciens Is a Diazotrophic Bacterium

    PubMed Central

    Kanvinde, Lalita; Sastry, G. R. K.

    1990-01-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grow on nitrogen-free medium, reduce acetylene to ethylene, and incorporate 15N supplied as 15N2. As with most other well-characterized diazotrophic bacteria, the presence of NH4+ in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship. Images PMID:16348237

  13. Agrobacterium tumefaciens is a diazotrophic bacterium

    SciTech Connect

    Kanvinde, L.; Sastry, G.R.K. )

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  14. Immobilization of the Methanogenic bacterium methanosarcina barkeri

    SciTech Connect

    Scherer, P.; Kluge, M.; Klein, J.; Sahm, H.

    1981-05-01

    Whole cells of the methanogen Methanosarcina barkeri were immobilized in an alginate network which was crosslinked with Ca/sup 2+/ calcium ions. The rates of methanol conversion to methane of entrapped cells were found to be in the same range as the corresponding rates of free cells. Furthermore, immobilized cells were active for a longer period than free cells. The particle size of the spherical alginate beads and thus diffusion has no obvious influence on the turnover of methanol. The half-value period for methanol conversion activity determined in a buffer medium was approximately 4 days at 37/degree/C for entrapped cells. The high rates of methanol degradation indicated that the immobilization technique preserved the cellular functions of this methanogenic bacterium. 24 refs.

  15. The chemical formula of a magnetotactic bacterium.

    PubMed

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life.

  16. Chitoporin from the Marine Bacterium Vibrio harveyi

    PubMed Central

    Chumjan, Watcharin; Winterhalter, Mathias; Schulte, Albert; Benz, Roland; Suginta, Wipa

    2015-01-01

    VhChiP is a sugar-specific porin present in the outer membrane of the marine bacterium Vibrio harveyi. VhChiP is responsible for the uptake of chitin oligosaccharides, with particular selectivity for chitohexaose. In this study, we employed electrophysiological and biochemical approaches to demonstrate that Trp136, located at the mouth of the VhChiP pore, plays an essential role in controlling the channel's ion conductivity, chitin affinity, and permeability. Kinetic analysis of sugar translocation obtained from single channel recordings indicated that the Trp136 mutations W136A, W136D, W136R, and W136F considerably reduce the binding affinity of the protein channel for its best substrate, chitohexaose. Liposome swelling assays confirmed that the Trp136 mutations decreased the rate of bulk chitohexaose permeation through the VhChiP channel. Notably, all of the mutants show increases in the off-rate for chitohexaose of up to 20-fold compared with that of the native channel. Furthermore, the cation/anion permeability ratio Pc/Pa is decreased in the W136R mutant and increased in the W136D mutant. This demonstrates that the negatively charged surface at the interior of the protein lumen preferentially attracts cationic species, leading to the cation selectivity of this trimeric channel. PMID:26082491

  17. Characterizations of intracellular arsenic in a bacterium

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Yannone, S. M.; Tainer, J. A.

    2011-12-01

    Life requires a key set of chemical elements to sustain growth. Yet, a growing body of literature suggests that microbes can alter their nutritional requirements based on the availability of these chemical elements. Under limiting conditions for one element microbes have been shown to utilize a variety of other elements to serve similar functions often (but not always) in similar molecular structures. Well-characterized elemental exchanges include manganese for iron, tungsten for molybdenum and sulfur for phosphorus or oxygen. These exchanges can be found in a wide variety of biomolecules ranging from protein to lipids and DNA. Recent evidence suggested that arsenic, as arsenate or As(V), was taken up and incorporated into the cellular material of the bacterium GFAJ-1. The evidence was interpreted to support As(V) acting in an analogous role to phosphate. We will therefore discuss our ongoing efforts to characterize intracellular arsenate and how it may partition among the cellular fractions of the microbial isolate GFAJ-1 when exposed to As(V) in the presence of various levels of phosphate. Under high As(V) conditions, cells express a dramatically different proteome than when grown given only phosphate. Ongoing studies on the diversity and potential role of proteins and metabolites produced in the presence of As(V) will be reported. These investigations promise to inform the role and additional metabolic potential for As in biology. Arsenic assimilation into biomolecules contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  18. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    SciTech Connect

    Dees, C.; Ringleberg, D.; Scott, T.C.; Phelps, T.

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  19. Pangenome Evolution in the Marine Bacterium Alteromonas

    PubMed Central

    López-Pérez, Mario; Rodriguez-Valera, Francisco

    2016-01-01

    We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7–83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9–5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed. PMID:27189983

  20. Pangenome Evolution in the Marine Bacterium Alteromonas.

    PubMed

    López-Pérez, Mario; Rodriguez-Valera, Francisco

    2016-01-01

    We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7-83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9-5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed. PMID:27189983

  1. Coiled to diffuse: Brownian motion of a helical bacterium.

    PubMed

    Butenko, Alexander V; Mogilko, Emma; Amitai, Lee; Pokroy, Boaz; Sloutskin, Eli

    2012-09-11

    We employ real-time three-dimensional confocal microscopy to follow the Brownian motion of a fixed helically shaped Leptospira interrogans (LI) bacterium. We extract from our measurements the translational and the rotational diffusion coefficients of this bacterium. A simple theoretical model is suggested, perfectly reproducing the experimental diffusion coefficients, with no tunable parameters. An older theoretical model, where edge effects are neglected, dramatically underestimates the observed rates of translation. Interestingly, the coiling of LI increases its rotational diffusion coefficient by a factor of 5, compared to a (hypothetical) rectified bacterium of the same contour length. Moreover, the translational diffusion coefficients would have decreased by a factor of ~1.5, if LI were rectified. This suggests that the spiral shape of the spirochaete bacteria, in addition to being employed for their active twisting motion, may also increase the ability of these bacteria to explore the surrounding fluid by passive Brownian diffusion.

  2. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    PubMed Central

    Pradhan, Nirakar; Dipasquale, Laura; d’Ippolito, Giuliana; Panico, Antonio; Lens, Piet N. L.; Esposito, Giovanni; Fontana, Angelo

    2015-01-01

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production. PMID:26053393

  3. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana.

    PubMed

    Pradhan, Nirakar; Dipasquale, Laura; d'Ippolito, Giuliana; Panico, Antonio; Lens, Piet N L; Esposito, Giovanni; Fontana, Angelo

    2015-06-04

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.

  4. Understanding the detailed motion of a model bacterium

    NASA Astrophysics Data System (ADS)

    Thawani, Akanksha; Tirumkudulu, Mahesh

    2014-11-01

    Inspired by the motion of flagellated bacteria such as Escherichia coli and Bacillus subtilis, we have built a macroscopic model bacterium, in order to investigate the intricate aspects of their motion which cannot be visualized under a microscope. The flagellated rod shaped cells were approximated with a spherical head attached to a rigid metal helix, via a plastic hook. The motion of model bacterium was observed in a high viscosity silicone oil to replicate the low Reynolds number flow conditions. A significant wobble was observed even in the absence of an off-axis flagellum. We suspect that the flexibility in the hook connecting the head and flagellum is the cause for wobble, since wobble was observed to increase significantly with hook-flexibility. The motion of the model bacterium was predicted using the Slender Body theory of Lighthill, and was compared with the measured trajectories.

  5. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2012-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  6. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  7. Microcalorimetric Measurements of Glucose Metabolism by Marine Bacterium Vibrio alginolyticus

    PubMed Central

    Gordon, Andrew S.; Millero, Frank J.; Gerchakov, Sol M.

    1982-01-01

    Microcalorimetric measurements of heat production from glucose by Vibrio alginolyticus were made to assess the viability of calorimetry as a technique for studying the metabolism of marine bacteria at organic nutrient concentrations found in marine waters. The results show that the metabolism of glucose by this bacterium can be measured by calorimetry at submicromolar concentrations. A linear correlation between glucose concentration and total heat production was observed over a concentration range of 8 mM to 0.35 μM. It is suggested that these data indicate a constant efficiency of metabolism for this bacterium over the wide range of glucose concentrations studied. PMID:16346131

  8. Gut bacterium of Dendrobaena veneta (Annelida: Oligochaeta) possesses antimycobacterial activity.

    PubMed

    Fiołka, Marta J; Zagaja, Mirosław P; Piersiak, Tomasz D; Wróbel, Marek; Pawelec, Jarosław

    2010-09-01

    The new bacterial strain with antimycobacterial activity has been isolated from the midgut of Dendrobaena veneta (Annelida). Biochemical and molecular characterization of isolates from 18 individuals identified all as Raoultella ornithinolytica genus with 99% similarity. The bacterium is a possible symbiont of the earthworm D. veneta. The isolated microorganism has shown the activity against four strains of fast-growing mycobacteria: Mycobacterium butiricum, Mycobacterium jucho, Mycobacterium smegmatis and Mycobacterium phlei. The multiplication of the gut bacterium on plates with Sauton medium containing mycobacteria has caused a lytic effect. After the incubation of the cell free extract prepared from the gut bacterium with four strains of mycobacteria in liquid Sauton medium, the cells of all tested strains were deformed and divided to small oval forms and sometimes created long filaments. The effect was observed by the use of light, transmission and scanning microscopy. Viability of all examined species of mycobacteria was significantly decreased. The antimycobacterial effect was probably the result of the antibiotic action produced by the gut bacterium of the earthworm. The application of ultrafiltration procedure allowed to demonstrate that antimicrobial substance with strong antimycobacterial activity from bacterial culture supernatant, is a protein with the molecular mass above 100 kDa.

  9. Complete Genome of the Cellulolytic Ruminal Bacterium Ruminococcus albus 7

    SciTech Connect

    Suen, Garret; Stevenson, David M; Bruce, David; Chertkov, Olga; Copeland, A; Cheng, Jan-Fang; Detter, J. Chris; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Ivanova, N; Kyrpides, Nikos C; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Ovchinnikova, Galina; Pitluck, Sam; Tapia, Roxanne; Woyke, Tanja; Boyum, Julie; Mead, David; Weimer, Paul J

    2011-01-01

    Ruminococcus albus 7 is a highly cellulolytic ruminal bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome of this microbe. This genome will be useful for rumen microbiology and cellulosome biology and in biofuel production, as one of its major fermentation products is ethanol.

  10. Revised Genome Sequence of the Purple Photosynthetic Bacterium Blastochloris viridis

    PubMed Central

    Faulkner, Matthew; Liu, Xuan; Huang, Fang; Darby, Alistair C.; Hall, Neil

    2016-01-01

    Blastochloris viridis is a unique anaerobic, phototrophic purple bacterium that produces bacteriochlorophyll b. Here we report an improved genome sequence of Blastochloris viridis DSM133, which is instrumental to the studies of photosynthesis, metabolic versatility, and genetic engineering of this microorganism. PMID:26798090

  11. Isolation of a Bacterium Capable of Degrading Peanut Hull Lignin

    PubMed Central

    Kerr, Thomas J.; Kerr, Robert D.; Benner, Ronald

    1983-01-01

    Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter sp., was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled [14C]lignin-labeled lignocellulose and [14C]cellulose-labeled lignocellulose from the cordgrass Spartina alterniflora and could also degrade [14C]Kraft lignin from slash pine. After 10 days of incubation with [14C]cellulose-labeled lignocellulose or [14C]lignin-labeled lignocellulose from S. alterniflora, the bacterium mineralized 6.5% of the polysaccharide component and 2.9% of the lignin component. Images PMID:16346424

  12. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    SciTech Connect

    Elias, Dwayne A; Wall, Judy D.; Mormile, Dr. Melanie R.; Begemann, Matthew B

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  13. Isolation of the Legionnaires' disease bacterium from environmental samples.

    PubMed

    Morris, G K; Patton, C M; Feeley, J C; Johnson, S E; Gorman, G; Martin, W T; Skaliy, P; Mallison, G F; Politi, B D; Mackel, D C

    1979-04-01

    We analyzed 24 environmental samples collected in or near the Indiana Memorial Union, where an epidemic of Legionnaires' disease occurred in early 1978. We conducted fluorescent antibody analyses and culture on F-G and charcoal yeast extract agars of each sample directly; splenic tissue of guinea pigs inoculated with the sample; and yolk sacs from embryonated eggs inoculated with splenic tissue of guinea pigs injected with the sample. Legionnaires' disease (LD) bacterium was isolated from seven of the 24 samples: one water sample from the air-conditioner cooling tower of the Union; three water samples from a stream near the Union; and three mud samples from the same stream. The LD bacterium strains were of three different serotypes. These findings indicate that LD bacteria may be widespread in nature. PMID:373549

  14. Isolation of a bacterium capable of degrading peanut hull lignin

    SciTech Connect

    Kerr, T.A.; Kerr, R.D.; Benner, R.

    1983-11-01

    Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter species, was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled (/sup 14/C) lignin-labeled lignocellulose and (/sup 14/C)cellulose-labeled lignocellulose from the cordgrass Spartina alterniflora and could also degrade (/sup 14/C) Kraft lignin from slash pine. After 10 days of incubation with (/sup 14/C) cellulose-labeled lignocellulose or (/sup 14/C) lignin-labeled lignocellulose from S. alterniflora, the bacterium mineralized 6.5% of the polysaccharide component and 2.9% of the lignin component. (Refs. 24).

  15. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium

    PubMed Central

    Little, C. Deane; Palumbo, Anthony V.; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine the rate, methane dependence, and mechanism of TCE biodegradation. TCE biodegradation by strain 46-1 appears to be a cometabolic process that occurs when the organism is actively metabolizing a suitable growth substrate such as methane or methanol. It is proposed that TCE biodegradation by methanotrophs occurs by formation of TCE epoxide, which breaks down spontaneously in water to form dichloroacetic and glyoxylic acids and one-carbon products. Images PMID:16347616

  16. Thermostable purified endoglucanase from thermophilic bacterium acidothermus cellulolyticus

    DOEpatents

    Tucker, Melvin P.; Grohmann, Karel; Himmel, Michael E.; Mohagheghi, Ali

    1992-01-01

    A substantially purified high molecular weight cellulase enzyme having a molecular weight of between about 156,000 to about 203,400 daltons isolated from the bacterium Acidothermus cellulolyticus (ATCC 43068) and a method of producing it are disclosed. The enzyme is water soluble, possesses both C.sub.1 and C.sub.x types of enzymatic activity, has a high degree of stability toward heat and exhibits both a high optimum temperature activity and high inactivation characteristics.

  17. An on-bacterium flow cytometric immunoassay for protein quantification.

    PubMed

    Lan, Wen-Jun; Lan, Wei; Wang, Hai-Yan; Yan, Lei; Wang, Zhe-Li

    2013-09-01

    The polystyrene bead-based flow cytometric immunoassay has been widely reported. However, the preparation of functional polystyrene bead is still inconvenient. This study describes a simple and easy on-bacterium flow cytometric immunoassay for protein quantification, in which Staphylococcus aureus (SAC) is used as an antibody-antigen carrier to replace the polystyrene bead. The SAC beads were prepared by carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling, paraformaldehyde fixation and antibody binding. Carcinoembryonic antigen (CEA) and cytokeratin-19 fragment (CYFRA 21-1) proteins were used as models in the test system. Using prepared SAC beads, biotinylated proteins, and streptavidin-phycoerythrin (SA-PE), the on-bacterium flow cytometric immunoassay was validated by quantifying CEA and CYFRA 21-1 in sample. Obtained data demonstrated a concordant result between the logarithm of the protein concentration and the logarithm of the PE mean fluorescence intensity (MFI). The limit of detection (LOD) in this immunoassay was at least 0.25 ng/ml. Precision and accuracy assessments appeared that either the relative standard deviation (R.S.D.) or the relative error (R.E.) was <10%. The comparison between this immunoassay and a polystyrene bead-based flow cytometric immunoassay showed a correlation coefficient of 0.998 for serum CEA or 0.996 for serum CYFRA 21-1. In conclusion, the on-bacterium flow cytometric immunoassay may be of use in the quantification of serum protein. PMID:23739299

  18. Fast Neutron Irradiation of the Highly Radioresistant Bacterium Deinococcus Radiodurans

    NASA Astrophysics Data System (ADS)

    Case, Diane Louise

    Fast neutron dose survival curves were generated for the bacterium Deinococcus radiodurans, which is renowned for its unusually high resistance to gamma, x-ray, and ultraviolet radiation, but for which fast neutron response was unknown. The fast neutrons were produced by the University of Massachusetts Lowell 5.5-MV, type CN Van de Graaff accelerator through the ^7Li(p,n)^7 Be reaction by bombarding a thick metallic lithium target with a 4-MeV proton beam. The bacteria were uniformly distributed on 150-mm agar plates and were exposed to the fast neutron beam under conditions of charged particle equilibrium. The plates were subdivided into concentric rings of increasing diameter from the center to the periphery of the plate, within which the average neutron dose was calculated as the product of the precisely known neutron fluence at the average radius of the ring and the neutron energy dependent kerma factor. The neutron fluence and dose ranged from approximately 3 times 1013 n cm^ {-2} to 1 times 1012 n cm^ {-2}, and 200 kilorad to 5 kilorad, respectively, from the center to the periphery of the plate. Percent survival for Deinococcus radiodurans as a function of fast neutron dose was derived from the ability of the irradiated cells to produce visible colonies within each ring compared to that of a nonirradiated control population. The bacterium Escherichia coli B/r (CSH) was irradiated under identical conditions for comparative purposes. The survival response of Deinococcus radiodurans as a result of cumulative fast neutron exposures was also investigated. The quantification of the ability of Deinococcus radiodurans to survive cellular insult from secondary charged particles, which are produced by fast neutron interactions in biological materials, will provide valuable information about damage and repair mechanisms under extreme cellular stress, and may provide new insight into the origin of this bacterium's unprecedented radiation resistance.

  19. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    SciTech Connect

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  20. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides

    SciTech Connect

    Brown, A.E.; Gilbert, C.W.; Guy, R.; Arntzen, C.J.

    1984-10-01

    The photoaffinity herbicide azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine) selectively labels the L subunit of the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Herbicide-resistant mutants retain the L subunit and have altered binding properties for methylthio- and chloro-substituted triazines as well as altered equilibrium constants for electron transfer between primary and secondary electron acceptors. We suggest that a subtle alteration in the L subunit is responsible for herbicide resistance and that the L subunit is the functional analog of the 32-kDa Q/sub B/ protein of chloroplast membranes. 42 references, 6 figures, 1 table.

  1. CORNEAL REACTIONS TO BACTERIUM GRANULOSIS AND OTHER MICROORGANISMS

    PubMed Central

    Olitsky, Peter K.; Knutti, Ralph E.; Tyler, Joseph R.

    1932-01-01

    The conclusions which may be drawn from the results of the experiments here presented are: 1. The cornea of the rabbit is highly sensitive to the action of various injected bacteria. The lesions vary from insignificant, transient changes to severe, destructive panophthalmitis, with fine gradations from the mildest to the violent form of inflammation. Moreover, animals that receive the same organisms show like changes. 2. The varying degree of inflammatory reaction is related to the pathogenicity of the special culture employed; as, for example, is shown by the reactions to Type I pneumococci and to Bacterium granulosis. It is evident that when a microorganism having a certain degree of virulence is used, a lesion of localized vasculonebulous keratitis resembling pannus tenuis or vasculosus of human trachoma can be induced. Thus Bacterium granulosis, Bacillus xerosis, Hemophilus influenzae, Pneumococcus Type II, Streptococcus viridans, and gonococcus can cause the pannus-like corneal changes in the rabbit. Of these organisms, however, only Bacterium granulosis induces early, uncomplicated and enduring keratitic lesions; the others cause first, diffuse keratitis with suppurative lesions; then, as a residual effect, transient, localized, vasculonebulous changes in the cornea. These changes, in contradistinction to the granulosis lesions, are, therefore delayed, complicated, and transient. When, on the other hand, the invasiveness and infecting power of the organisms are low, as is the case with the filtrable, Gram-negative bacillus and the small, Gram-negative bacilli ultimately derived from cases of folliculosis, no marked effect is produced by their intracorneal inoculation. If the pathogenicity of bacteria is high (as shown by Pneumococcus Type I, hemolytic streptococcus, and the remaining bacteria), intracorneal inoculation of the microorganisms leads to serious suppurative or destructive changes. 3. The results of experiments with monkeys indicate that while

  2. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    PubMed

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain. PMID:26972517

  3. Vector potential of houseflies for the bacterium Aeromonas caviae.

    PubMed

    Nayduch, D; Noblet, G Pittman; Stutzenberger, F J

    2002-06-01

    Houseflies, Musca domestica Linnaeus (Diptera: Muscidae), have been implicated as vectors or transporters of numerous gastrointestinal pathogens encountered during feeding and ovipositing on faeces. The putative enteropathogen Aeromonas caviae (Proteobacteria: Aeromonadaceae) may be present in faeces of humans and livestock. Recently A. caviae was detected in houseflies by PCR and isolated by culture methods. In this study, we assessed the vector potential of houseflies for A. caviae relative to multiplication and persistence of the bacterium in the fly and to contamination of other flies and food materials. In experimentally fed houseflies, the number of bacteria increased up to 2 days post-ingestion (d PI) and then decreased significantly 3 d PI. A large number of bacteria was detected in the vomitus and faeces of infected flies at 2-3 d PI. The bacteria persisted in flies for up to 8 d PI, but numbers were low. Experimentally infected flies transmitted A. caviae to chicken meat, and transmissibility was directly correlated with exposure time. Flies contaminated the meat for up to 7 d PI; however, a significant decrease in contamination was observed 2-3 d PI. In the fly-to-fly transmission experiments, the transmission of A. caviae was observed and was apparently mediated by flies sharing food. These results support houseflies as potential vectors for A. caviae because the bacterium multiplied, persisted in flies for up to 8 d PI, and could be transmitted to human food items.

  4. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE PAGESBeta

    Gardner, Jeffrey G.

    2016-06-04

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  5. Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium

    PubMed Central

    Ahmad, S. A.; Shukor, M. Y.; Shamaan, N. A.; Mac Cormack, W. P.; Syed, M. A.

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo6+ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries. PMID:24381945

  6. Molybdate reduction to molybdenum blue by an Antarctic bacterium.

    PubMed

    Ahmad, S A; Shukor, M Y; Shamaan, N A; Mac Cormack, W P; Syed, M A

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo⁶⁺ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries. PMID:24381945

  7. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    NASA Astrophysics Data System (ADS)

    Sparks, N. H. C.; Mann, S.; Bazylinski, D. A.; Lovley, D. R.; Jannasch, H. W.; Frankel, R. B.

    1990-04-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo¨ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 × 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of 110 faces which are capped and truncated by 111 end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization.

  8. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    USGS Publications Warehouse

    Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.

    1990-01-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.

  9. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil

    PubMed Central

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium. PMID:27609930

  10. Genome Sequence of the Mycorrhizal Helper Bacterium Pseudomonas fluorescens BBc6R8

    PubMed Central

    Gross, H.; Morin, E.; Karpinets, T.; Utturkar, S.; Mehnaz, S.; Martin, F.; Frey-Klett, P.; Labbé, J.

    2014-01-01

    We report the draft genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens strain BBc6R8. This is the first genome of a mycorrhizal helper bacterium. The draft genome contains 6,952,353 bp and is predicted to encode 6,317 open reading frames. Comparative genomic analyses will help to identify helper traits. PMID:24407649

  11. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil.

    PubMed

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi; Sheng, Xia-Fang

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium. PMID:27609930

  12. Draft Genome Sequence of Pseudomonas aeruginosa Strain RB, a Bacterium Capable of Synthesizing Cadmium Selenide Nanoparticles.

    PubMed

    Ayano, Hiroyuki; Kuroda, Masashi; Soda, Satoshi; Ike, Michihiko

    2014-01-01

    Pseudomonas aeruginosa strain RB is a bacterium capable of synthesizing cadmium selenide (CdSe) nanoparticles and was isolated from a soil sample. Here, we present the draft genome sequence of P. aeruginosa strain RB. To the best of our knowledge, this is the first report of a draft genome of a CdSe-synthesizing bacterium.

  13. Kinetic study of trichloroethylene and toluene degradation by a bioluminescent reporter bacterium

    SciTech Connect

    Kelly, C.J.; Sanseverino, J.; Bienkowski, P.R.; Sayler, G.S.

    1995-12-31

    A constructed bioluminescent reporter bacterium, Pseudomonas putida B2, is very briefly described in this paper. The bacterium degrades toluene and trichloroethylene (TCE), and produces light in the presence of toluene. The light response is an indication of cellular viability and expression of the genes encoding toluene and TCE degrading enzymes.

  14. Near-complete genome sequence of the cellulolytic Bacterium Bacteroides (Pseudobacteroides) cellulosolvens ATCC 35603

    DOE PAGESBeta

    Dassa, Bareket; Utturkar, Sagar M.; Hurt, Richard A.; Klingeman, Dawn Marie; Keller, Martin; Xu, Jian; Reddy, Harish Kumar; Borovok, Ilya; Grinberg, Inna Rozman; Lamed, Raphael; et al

    2015-09-24

    We report the single-contig genome sequence of the anaerobic, mesophilic, cellulolytic bacterium, Bacteroides cellulosolvens. The bacterium produces a particularly elaborate cellulosome system, whereas the types of cohesin-dockerin interactions are opposite of other known cellulosome systems: cell-surface attachment is thus mediated via type-I interactions whereas enzymes are integrated via type-II interactions.

  15. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil.

    PubMed

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi; Sheng, Xia-Fang

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium.

  16. Genome Sequence of the Antarctic Psychrophile Bacterium Planococcus antarcticus DSM 14505

    PubMed Central

    Margolles, Abelardo; Gueimonde, Miguel

    2012-01-01

    Planococcus antarcticus DSM 14505 is a psychrophile bacterium that was isolated from cyanobacterial mat samples, originally collected from ponds in McMurdo, Antarctica. This orange-pigmented bacterium grows at 4°C and may possess interesting enzymatic activities at low temperatures. Here we report the first genomic sequence of P. antarcticus DSM 14505. PMID:22843594

  17. Mechanism of anaerobic degradation of triethanolamine by a homoacetogenic bacterium

    SciTech Connect

    Speranza, Giovanna . E-mail: giovanna.speranza@unimi.it; Morelli, Carlo F.; Cairoli, Paola; Mueller, Britta; Schink, Bernhard

    2006-10-20

    Triethanolamine (TEA) is converted into acetate and ammonia by a strictly anaerobic, gram-positive Acetobacterium strain LuTria3. Fermentation experiments with resting cell suspensions and specifically deuterated substrates indicate that in the acetate molecule the carboxylate and the methyl groups correspond to the alcoholic function and to its adjacent methylene group, respectively, of the 2-hydroxyethyl unit of TEA. A 1,2 shift of a hydrogen (deuterium) atom from -CH{sub 2} -O- to =N-CH{sub 2} - without exchange with the medium was observed. This fact gives evidence that a radical mechanism occurs involving the enzyme and/or coenzyme molecule as a hydrogen carrier. Such a biodegradation appears analogous to the conversion of 2-phenoxyethanol into acetate mediated by another strain of the anaerobic homoacetogenic bacterium Acetobacterium.

  18. Characterisation of an unusual bacterium isolated from genital ulcers.

    PubMed

    Ursi, J P; van Dyck, E; Ballard, R C; Jacob, W; Piot, P; Meheus, A Z

    1982-02-01

    The preliminary characterisation of an unusual gram-negative bacillus isolated from genital ulcers in Swaziland is reported. Like Haemophilus ducreyi, it is an oxidase positive, nitrate-reductase-positive gram-negative rod that forms streptobacillary chains in some circumstances; it was therefore called the "ducreyi-like bacterium" (DLB). Distinguishing features of DLB are production of alpha-haemolysis on horse-blood agar, stimulation of growth by a microaerophilic atmosphere and by a factor produced by Staphylococcus aureus, a strongly positive porphyrin test, and a remarkable ability to undergo autolysis. DLB had a guanine + cytosine value of c. 50 mole% but it cannot be classified, even at the genus level, until more taxonomic data are obtained.

  19. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    SciTech Connect

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  20. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    PubMed

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. PMID:26965627

  1. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    PubMed

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol.

  2. Mechanism of anaerobic degradation of triethanolamine by a homoacetogenic bacterium.

    PubMed

    Speranza, Giovanna; Morelli, Carlo F; Cairoli, Paola; Müller, Britta; Schink, Bernhard

    2006-10-20

    Triethanolamine (TEA) is converted into acetate and ammonia by a strictly anaerobic, gram-positive Acetobacterium strain LuTria3. Fermentation experiments with resting cell suspensions and specifically deuterated substrates indicate that in the acetate molecule the carboxylate and the methyl groups correspond to the alcoholic function and to its adjacent methylene group, respectively, of the 2-hydroxyethyl unit of TEA. A 1,2 shift of a hydrogen (deuterium) atom from -CH2-O- to =N-CH2- without exchange with the medium was observed. This fact gives evidence that a radical mechanism occurs involving the enzyme and/or coenzyme molecule as a hydrogen carrier. Such a biodegradation appears analogous to the conversion of 2-phenoxyethanol into acetate mediated by another strain of the anaerobic homoacetogenic bacterium Acetobacterium.

  3. Genome Sequence of the Haloalkaliphilic Methanotrophic Bacterium Methylomicrobium alcaliphilum 20Z

    PubMed Central

    Vuilleumier, Stéphane; Khmelenina, Valentina N.; Bringel, Françoise; Reshetnikov, Alexandr S.; Lajus, Aurélie; Mangenot, Sophie; Rouy, Zoé; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Dispirito, Alan A.; Dunfield, Peter; Klotz, Martin G.; Semrau, Jeremy D.; Stein, Lisa Y.; Barbe, Valérie; Médigue, Claudine; Trotsenko, Yuri A.

    2012-01-01

    Methylomicrobium strains are widespread in saline environments. Here, we report the complete genome sequence of Methylomicrobium alcaliphilum 20Z, a haloalkaliphilic methanotrophic bacterium, which will provide the basis for detailed characterization of the core pathways of both single-carbon metabolism and responses to osmotic and high-pH stresses. Final assembly of the genome sequence revealed that this bacterium contains a 128-kb plasmid, making M. alcaliphilum 20Z the first methanotrophic bacterium of known genome sequence for which a plasmid has been reported. PMID:22207753

  4. Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii

    PubMed Central

    Miquel, Sylvie; Martín, Rebeca; Bridonneau, Chantal; Robert, Véronique; Sokol, Harry; Bermúdez-Humarán, Luis G; Thomas, Muriel; Langella, Philippe

    2014-01-01

    Faecalibacterium prausnitzii is a major commensal bacterium, and its prevalence is often decreased in conditions of intestinal dysbiosis. The phylogenic identity of this bacterium was described only recently. It is still poorly characterized, and its specific growth requirements in the human gastrointestinal tract are not known. In this review, we consider F. prausnitzii metabolism, its ecophysiology in both humans and animals, and the effects of drugs and nutrition on its population. We list important questions about this beneficial and ubiquitous commensal bacterium that it would be valuable to answer. PMID:24637606

  5. Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii.

    PubMed

    Miquel, Sylvie; Martín, Rebeca; Bridonneau, Chantal; Robert, Véronique; Sokol, Harry; Bermúdez-Humarán, Luis G; Thomas, Muriel; Langella, Philippe

    2014-01-01

    Faecalibacterium prausnitzii is a major commensal bacterium, and its prevalence is often decreased in conditions of intestinal dysbiosis. The phylogenic identity of this bacterium was described only recently. It is still poorly characterized, and its specific growth requirements in the human gastrointestinal tract are not known. In this review, we consider F. prausnitzii metabolism, its ecophysiology in both humans and animals, and the effects of drugs and nutrition on its population. We list important questions about this beneficial and ubiquitous commensal bacterium that it would be valuable to answer.

  6. Anaerobic degradation of toluene by a denitrifying bacterium.

    PubMed Central

    Evans, P J; Mang, D T; Kim, K S; Young, L Y

    1991-01-01

    A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene. Images PMID:2059037

  7. Tracing the run-flip motion of an individual bacterium

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Morse, Michael; Tang, Jay; Powers, Thomas; Breuer, Kenneth S.

    2012-11-01

    We have developed a digital 3D tracking microscope in which the microscope stage follows the motion of an individual motile microorganism so that the target remains focused at the center of the view-field. The tracking mechanism is achieved by a high-speed feedback control through real-time image analysis and the trace of the microorganism is recorded with submicron accuracy. We apply this tracking microscope to a study of the motion of an individual Caulobacter crescentus, a bacterium that moves up to 100 microns (or 50 body lengths) per second and reverses its direction of motion occasionally by switching the rotation direction of its single helical flagellum. By tracking the motion of a single cell over many seconds, we show how a flip event occurs with submicron resolution and how the speed of a single cell varies over time and with the rotational rate of the flagellum. We also present statistics for the run-reverse dynamics of an ensemble of cells.

  8. Presence of an Unusual Methanogenic Bacterium in Coal Gasification Waste

    PubMed Central

    Tomei, Francisco A.; Rouse, Dwight; Maki, James S.; Mitchell, Ralph

    1988-01-01

    Methanogenic bacteria growing on a pilot-scale, anaerobic filter processing coal gasification waste were enriched in a mineral salts medium containing hydrogen and acetate as potential energy sources. Transfer of the enrichments to methanol medium resulted in the initial growth of a strain of Methanosarcina barkeri, but eventually small cocci became dominant. The cocci growing on methanol produced methane and exhibited the typical fluorescence of methanogenic bacteria. They grew in the presence of the cell wall synthesis-inhibiting antibiotics d-cycloserine, fosfomycin, penicillin G, and vancomycin as well as in the presence of kanamycin, an inhibitor of protein synthesis in eubacteria. The optimal growth temperature was 37°C, and the doubling time was 7.5 h. The strain lysed after reaching stationary phase. The bacterium grew poorly with hydrogen as the energy source and failed to grow on acetate. Morphologically, the coccus shared similarities with Methanosarcina sp. Cells were 1 μm wide, exhibited the typical thick cell wall and cross-wall formation, and formed tetrads. Packets and cysts were not formed. Images PMID:16347791

  9. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7

    PubMed Central

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-01-01

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments. PMID:26426011

  10. Biophysical basis for cooperation among the bacterium Thiovulum majus

    NASA Astrophysics Data System (ADS)

    Petroff, A.; Libchaber, A.

    2013-12-01

    The organization of microorganisms into communities plays a vital role in determining how nutrients flow through an ecosystem. Here we investigate the basis of a mathematically simple form of community formation displayed by the bacterium Thiovulum majus. T. majus cells attach to surfaces using a tether. As a tethered cell beats its flagella, it creates a flow that pulls nutrients to the cell. At high cell densities, variations in the density of cells drive large-scale convective flows that stir the environment. Here we use a combination of experimental observations and mathematical analysis to investigate how the macroscopic dynamics of a community arise from the behavior of individual cells. We begin by considering the flow of water around a single tethered cell and the resulting cell motion. We then show how the behavior of cells responding to the flow of nutrients through the community gives rise to soliton-like collective modes that efficiently stir the environment. Finally, we present new techniques for visualizing the flow of nutrients through these communities and the resulting collective phenomena. Because these dynamics arise from hydrodynamic coupling between cells and their environment, this system can be understood using classical techniques of fluid mechanics. In this way, T. majus communities provide a tractable example of the general phenomenon of community formation in response to nutrient flow.

  11. Gracilibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi.

    PubMed

    Oh, Young Joon; Lee, Hae-Won; Lim, Seul Ki; Kwon, Min-Sung; Lee, Jieun; Jang, Ja-Young; Park, Hae Woong; Nam, Young-Do; Seo, Myung-Ji; Choi, Hak-Jong

    2016-09-01

    A novel halophilic bacterium, strain K7(T), was isolated from kimchi, a traditional Korean fermented food. The strain is Gram-positive, motile, and produces terminal endospores. The isolate is facultative aerobic and grows at salinities of 0.0-25.0% (w/v) NaCl (optimum 10-15% NaCl), pH 5.5-8.5 (optimum pH 7.0-7.5), and 15-42°C (optimum 37°C). The predominant isoprenoid quinone in the strain is menaquinone-7 and the peptidoglycan of the strain is meso-diaminopimelic acid. The major fatty acids of the strain are anteisio-C15:0, iso-C15:0, and, C16:0 (other components were < 10.0%), while the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and three unidentified lipids. A phylogenetic analysis of 16S rRNA gene sequence similarity showed that the isolated strain was a cluster of the genus Gracilibacillus. High levels of gene sequence similarity were observed between strain K7(T) and Gracilibacillus orientalis XH-63(T) (96.5%), and between the present strain and Gracilibacillus xinjiangensis (96.5%). The DNA G+C content of this strain is 37.7 mol%. Based on these findings, strain K7(T) is proposed as a novel species: Gracilibacillus kimchii sp. nov. The type strain is K7(T) (KACC 18669(T); JCM 31344(T)).

  12. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    PubMed Central

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345

  13. New Type of Bacterium Expands Possibilities of Life, Scientists Indicate

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-12-01

    Leading up to NASA's 2 December news briefing about a new astrobiology finding, segments of the blogosphere had run wild with speculation that the agency would announce that it has found life elsewhere. Although some bloggers and readers may have been disappointed in the actual announcement, scientists at the briefing at NASA headquarters in Washington, D. C., said the finding of a bacterium that can grow by using arsenic instead of phosphorus is “phenomenal,” with broad implications for searching for life on Earth and elsewhere and for other areas of research on Earth. Felisa Wolfe-Simon, a NASA Astrobiology Research Fellow in residence at the U.S. Geological Survey in Menlo Park, Calif., led a team that discovered and experimented on the microbe, known as strain GFAJ-1 of the common bacteria group Gammaproteobacteria. Noting that life is mostly composed of carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus, she said, “If there is an organism on Earth doing something different, we've cracked open the door to what is possible for life elsewhere.”

  14. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7.

    PubMed

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-01-01

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments. PMID:26426011

  15. Aerobic biodegradation of 4-methylquinoline by a soil bacterium.

    PubMed Central

    Sutton, S D; Pfaller, S L; Shann, J R; Warshawsky, D; Kinkle, B K; Vestal, J R

    1996-01-01

    Methylquinolines and related N-heterocyclic aromatic compounds are common contaminants associated with the use of hydrocarbons in both coal gasification and wood treatment processes. These compounds have been found in groundwater, and many are known mutagens. A stable, five-member bacterial consortium able to degrade 4-methylquinoline was established by selective enrichment using soil collected from an abandoned coal gasification site. The consortium was maintained for 5 years by serial transfer in a medium containing 4-methylquinoline. A gram-negative soil bacterium, strain Lep1, was isolated from the consortium and shown to utilize 4-methylquinoline as a source of carbon and energy during growth in liquid medium. A time course experiment demonstrated that both the isolate Lep1 and the consortium containing Lep1 were able to degrade 4-methylquinoline under aerobic conditions. Complete degradation of 4-methylquinoline by either strain Lep1 alone or the consortium was characterized by the production and eventual disappearance of 2-hydroxy-4-methylquinoline, followed by the appearance and persistence of a second metabolite tentatively identified as a hydroxy-4-methylcoumarin. Currently, there is no indication that 4-methylquinoline degradation proceeds differently in the consortium culture compared with Lep1 alone. This is the first report of 4-methylquinoline biodegradation under aerobic conditions. PMID:8702284

  16. Yersinia ruckeri sp. nov., the redmouth (RM) bacterium

    USGS Publications Warehouse

    Ewing, W.H.; Ross, A.J.; Brenner, Don J.; Fanning, G. R.

    1978-01-01

    Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine (G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteriaceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed. Strain 2396-61 (= ATCC 29473) is designated the type strain of the species.

  17. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    DOE PAGESBeta

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-02-23

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less

  18. Perchlorate reduction by a novel chemolithoautotrophic, hydrogen-oxidizing bacterium.

    PubMed

    Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E

    2002-10-01

    Water treatment technologies are needed that can remove perchlorate from drinking water without introducing organic chemicals that stimulate bacterial growth in water distribution systems. Hydrogen is an ideal energy source for bacterial degradation of perchlorate as it leaves no organic residue and is sparingly soluble. We describe here the isolation of a perchlorate-respiring, hydrogen-oxidizing bacterium (Dechloromonas sp. strain HZ) that grows with carbon dioxide as sole carbon source. Strain HZ is a Gram-negative, rod-shaped facultative anaerobe that was isolated from a gas-phase anaerobic packed-bed biofilm reactor treating perchlorate-contaminated groundwater. The ability of strain HZ to grow autotrophically with carbon dioxide as the sole carbon source was confirmed by demonstrating that biomass carbon (100.9%) was derived from CO2. Chemolithotrophic growth with hydrogen was coupled with complete reduction of perchlorate (10 mM) to chloride with a maximum doubling time of 8.9 h. Strain HZ also grew using acetate as the electron donor and chlorate, nitrate, or oxygen (but not sulphate) as an electron acceptor. Phylogenetic analysis of the 16S rRNA sequence placed strain HZ in the genus Dechloromonas within the beta subgroup of the Proteobacteria. The study of this and other novel perchlorate-reducing bacteria may lead to new, safe technologies for removing perchlorate and other chemical pollutants from drinking water.

  19. Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80.

    PubMed

    Zhang, Hao; Mu, Wenhui; Hou, Zhiguang; Wu, Xian; Zhao, Weiwei; Zhang, Xianghui; Pan, Hongyu; Zhang, Shihong

    2012-01-01

    By enrichment culturing of the sludge collected from the industrial wastewater treatment pond, we isolated a highly efficient nicosulfuron degrading bacterium Serratia marcescens N80. In liquid medium, Serratia marcescens N80 grows using nicosulfuron as the sole nitrogen source, and the optimal temperature, pH values, and inoculation for degradation are 30-35°C, 6.0-7.0, and 3.0% (v/v), respectively. With the initial concentration of 10 mg L⁻¹, the degradation rate is 93.6% in 96 hours; as the initial concentrations are higher than 10 mg L⁻¹, the biodegradation rates decrease as the nicosulfuron concentrations increase; when the concentration is 400 mg L⁻¹, the degradation rate is only 53.1%. Degradation follows the pesticide degradation kinetic equation at concentrations between 5 mg L⁻¹ and 50 mg L⁻¹. Identification of the metabolites by the liquid chromatography/mass spectrometry (LC/MS) indicates that the degradation of nicosulfuron is achieved by breaking the sulfonylurea bridge. The strain N80 also degraded some other sulfonylurea herbicides, including ethametsulfuron, tribenuron-methyl, metsulfuron-methyl, chlorimuron-ethyl,and rimsulfuron.

  20. A serine sensor for multicellularity in a bacterium

    PubMed Central

    Subramaniam, Arvind R; DeLoughery, Aaron; Bradshaw, Niels; Chen, Yun; O’Shea, Erin; Losick, Richard; Chai, Yunrong

    2013-01-01

    We report the discovery of a simple environmental sensing mechanism for biofilm formation in the bacterium Bacillus subtilis that operates without the involvement of a dedicated RNA or protein. Certain serine codons, the four TCN codons, in the gene for the biofilm repressor SinR caused a lowering of SinR levels under biofilm-inducing conditions. Synonymous substitutions of these TCN codons with AGC or AGT impaired biofilm formation and gene expression. Conversely, switching AGC or AGT to TCN codons upregulated biofilm formation. Genome-wide ribosome profiling showed that ribosome density was higher at UCN codons than at AGC or AGU during biofilm formation. Serine starvation recapitulated the effect of biofilm-inducing conditions on ribosome occupancy and SinR production. As serine is one of the first amino acids to be exhausted at the end of exponential phase growth, reduced translation speed at serine codons may be exploited by other microbes in adapting to stationary phase. DOI: http://dx.doi.org/10.7554/eLife.01501.001 PMID:24347549

  1. Gracilibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi.

    PubMed

    Oh, Young Joon; Lee, Hae-Won; Lim, Seul Ki; Kwon, Min-Sung; Lee, Jieun; Jang, Ja-Young; Park, Hae Woong; Nam, Young-Do; Seo, Myung-Ji; Choi, Hak-Jong

    2016-09-01

    A novel halophilic bacterium, strain K7(T), was isolated from kimchi, a traditional Korean fermented food. The strain is Gram-positive, motile, and produces terminal endospores. The isolate is facultative aerobic and grows at salinities of 0.0-25.0% (w/v) NaCl (optimum 10-15% NaCl), pH 5.5-8.5 (optimum pH 7.0-7.5), and 15-42°C (optimum 37°C). The predominant isoprenoid quinone in the strain is menaquinone-7 and the peptidoglycan of the strain is meso-diaminopimelic acid. The major fatty acids of the strain are anteisio-C15:0, iso-C15:0, and, C16:0 (other components were < 10.0%), while the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and three unidentified lipids. A phylogenetic analysis of 16S rRNA gene sequence similarity showed that the isolated strain was a cluster of the genus Gracilibacillus. High levels of gene sequence similarity were observed between strain K7(T) and Gracilibacillus orientalis XH-63(T) (96.5%), and between the present strain and Gracilibacillus xinjiangensis (96.5%). The DNA G+C content of this strain is 37.7 mol%. Based on these findings, strain K7(T) is proposed as a novel species: Gracilibacillus kimchii sp. nov. The type strain is K7(T) (KACC 18669(T); JCM 31344(T)). PMID:27572507

  2. Acquisition of polyamines by the obligate intracytoplasmic bacterium Rickettsia prowazekii.

    PubMed Central

    Speed, R R; Winkler, H H

    1990-01-01

    Both the polyamine content and the route of acquisition of polyamines by Rickettsia prowazekii, an obligate intracellular parasitic bacterium, were determined. The rickettsiae grew normally in an ornithine decarboxylase mutant of the Chinese hamster ovary (C55.7) cell line whether or not putrescine, which this host cell required in order to grow, was present. The rickettsiae contained approximately 6 mM putrescine, 5 mM spermidine, and 3 mM spermine when cultured in the presence or absence of putrescine. Neither the transport of putrescine and spermidine by the rickettsiae nor a measurable rickettsial ornithine decarboxylase activity could be demonstrated. However, we demonstrated the de novo synthesis of polyamines from arginine by the rickettsiae. Arginine decarboxylase activity (29 pmol of 14CO2 released per h per 10(8) rickettsiae) was measured in the rickettsiae growing within their host cell. A markedly lower level of this enzymatic activity was observed in cell extracts of R. prowazekii and could be completely inhibited with 1 mM difluoromethylarginine, an irreversible inhibitor of the enzyme. R. prowazekii failed to grow in C55.7 cells that had been cultured in the presence of 1 mM difluoromethylarginine. After rickettsiae were grown in C55.7 in the presence of labeled arginine, the specific activities of arginine in the host cell cytoplasm and polyamines in the rickettsiae were measured; these measurements indicated that 100% of the total polyamine content of R. prowazekii was derived from arginine. PMID:2120188

  3. Hydrodynamics and collective behavior of the tethered bacterium Thiovulum majus

    PubMed Central

    Petroff, Alexander; Libchaber, Albert

    2014-01-01

    The ecology and dynamics of many microbial systems, particularly in mats and soils, are shaped by how bacteria respond to evolving nutrient gradients and microenvironments. Here we show how the response of the sulfur-oxidizing bacterium Thiovulum majus to changing oxygen gradients causes cells to organize into large-scale fronts. To study this phenomenon, we develop a technique to isolate and enrich these bacteria from the environment. Using this enrichment culture, we observe the formation and dynamics of T. majus fronts in oxygen gradients. We show that these dynamics can be understood as occurring in two steps. First, chemotactic cells moving up the oxygen gradient form a front that propagates with constant velocity. We then show, through observation and mathematical analysis, that this front becomes unstable to changes in cell density. Random perturbations in cell density create oxygen gradients. The response of cells magnifies these gradients and leads to the formation of millimeter-scale fluid flows that actively pull oxygenated water through the front. We argue that this flow results from a nonlinear instability excited by stochastic fluctuations in the density of cells. Finally, we show that the dynamics by which these modes interact can be understood from the chemotactic response of cells. These results provide a mathematically tractable example of how collective phenomena in ecological systems can arise from the individual response of cells to a shared resource. PMID:24459183

  4. Novel Trypanosomatid-Bacterium Association: Evolution of Endosymbiosis in Action

    PubMed Central

    Kostygov, Alexei Y.; Dobáková, Eva; Grybchuk-Ieremenko, Anastasiia; Váhala, Dalibor; Maslov, Dmitri A.; Votýpka, Jan

    2016-01-01

    ABSTRACT We describe a novel symbiotic association between a kinetoplastid protist, Novymonas esmeraldas gen. nov., sp. nov., and an intracytoplasmic bacterium, “Candidatus Pandoraea novymonadis” sp. nov., discovered as a result of a broad-scale survey of insect trypanosomatid biodiversity in Ecuador. We characterize this association by describing the morphology of both organisms, as well as their interactions, and by establishing their phylogenetic affinities. Importantly, neither partner is closely related to other known organisms previously implicated in eukaryote-bacterial symbiosis. This symbiotic association seems to be relatively recent, as the host does not exert a stringent control over the number of bacteria harbored in its cytoplasm. We argue that this unique relationship may represent a suitable model for studying the initial stages of establishment of endosymbiosis between a single-cellular eukaryote and a prokaryote. Based on phylogenetic analyses, Novymonas could be considered a proxy for the insect-only ancestor of the dixenous genus Leishmania and shed light on the origin of the two-host life cycle within the subfamily Leishmaniinae. PMID:26980834

  5. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7.

    PubMed

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-09-29

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments.

  6. IN SITU RT-PCR WITH A SULFATE-REDUCING BACTERIUM ISOLATED FROM SEAGRASS ROOTS

    EPA Science Inventory

    Bacteria considered to be obligate anaerobes internally colonize roots of the submerged macrophyte Halodule wrightii. A sulfate reducing bacterium, Summer lac 1, was isolated on lactate from H. wrightii roots. The isolate has physiological characteristics typical of Desulfovibri...

  7. O-allyl decoration on alpha-glucan isolated from the haloalkaliphilic Halomonas pantelleriensis bacterium.

    PubMed

    Corsaro, Maria Michela; Gambacorta, Agata; Lanzetta, Rosa; Nicolaus, Barbara; Pieretti, Giuseppina; Romano, Ida; Parrilli, Michelangelo

    2007-07-01

    An alpha-glucan containing the unprecedented peculiar O-allyl substituent was isolated from the haloalkaliphilic Gram-negative Halomonas pantelleriensis bacterium. Its dextran-like structure was deduced from chemical degradative and spectroscopic methods.

  8. Characterization of a Neochlamydia-like bacterium associated with epitheliocystis in cultured Arctic charr Salvelinus alpinus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infections of branchial epithelium by intracellular gram-negative bacteria, termed epitheliocystis, have limited culture of Arctic char (Salvelinus alpinus). To characterize a bacterium associated with epitheliocystis in cultured char, gills were sampled for histopathologic examination, conventiona...

  9. Draft Genome Sequence of the Versatile Alkane-Degrading Bacterium Aquabacterium sp. Strain NJ1

    PubMed Central

    Shiwa, Yuh; Yoshikawa, Hirofumi; Zylstra, Gerben J.

    2014-01-01

    The draft genome sequence of a soil bacterium, Aquabacterium sp. strain NJ1, capable of utilizing both liquid and solid alkanes, was deciphered. This is the first report of an Aquabacterium genome sequence. PMID:25477416

  10. Characterization of a Neochlamydia-like Bacterium Associated with Epitheliocystis in Cultured Artic Char Salvelinus alpinus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infections of branchial epithelium by intracellular gram-negative bacteria, termed epitheliocystis, have limited culture of Arctic char (Salvelinus alpinus). To characterize a bacterium associated with epitheliocystis in cultured char, gills were sampled for histopathologic examination, conventional...

  11. Enhancement of xylose utilization from corn stover by a recombinant bacterium for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant ethanologenic Escherichia coli ferments glucose, xylose and arabinose to ethanol. However, the bacterium preferentially utilizes glucose first, then arabinose and finally xylose (sequential utilization of sugars) during fermentation of lignocellulosic hydrolyzates to ethanol making the p...

  12. Complete Genome Sequence of the p-Nitrophenol-Degrading Bacterium Pseudomonas putida DLL-E4

    PubMed Central

    Hu, Xiaojun; Wang, Jue; Wang, Fei; Chen, Qiongzhen; Huang, Yan

    2014-01-01

    The first complete genome sequence of a p-nitrophenol (PNP)-degrading bacterium is reported here. Pseudomonas putida DLL-E4, a Gram-negative bacterium isolated from methyl-parathion-polluted soil, can utilize PNP as the sole carbon and nitrogen source. P. putida DLL-E4 has a 6,484,062 bp circular chromosome that contains 5,894 genes, with a G+C content of 62.46%. PMID:24948765

  13. Draft Genome Sequence of a Dyella-Like Bacterium from the Planthopper Hyalesthes obsoletus.

    PubMed

    Lahav, Tamar; Zchori-Fein, Einat; Naor, Vered; Freilich, Shiri; Iasur-Kruh, Lilach

    2016-01-01

    We report here the draft genome sequence of a Dyella-like bacterium (DLB) isolated from Hyalesthes obsoletus, the insect vector of the uncultivable mollicute bacterium "Candidatus Phytoplasma." This isolate inhibits Spiroplasma melliferum, a cultivable mollicute. The draft genome of DLB consists of 4,196,214 bp, with a 68.6% G+C content, and 3,757 genes were predicted. PMID:27445378

  14. Draft Genome Sequence of DLB, a Dyella-Like Bacterium from the Planthopper Hyalesthes obsoletus

    PubMed Central

    Lahav, Tamar; Zchori-Fein, Einat; Naor, Vered; Freilich, Shiri

    2016-01-01

    We report here the draft genome sequence of a Dyella-like bacterium (DLB) isolated from Hyalesthes obsoletus, the insect vector of the uncultivable mollicute bacterium “Candidatus Phytoplasma.” This isolate inhibits Spiroplasma melliferum, a cultivable mollicute. The draft genome of DLB consists of 4,196,214 bp, with a 68.6% G+C content, and 3,757 genes were predicted. PMID:27445378

  15. Effect of alginic acid decomposing bacterium on the growth of Laminaria japonica (Phaeophyceae).

    PubMed

    Wang, You; Tang, Xue-Xi; Yang, Zhen; Yu, Zhi-Ming

    2006-01-01

    We collected the diseased blades of Laminaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as Alteromonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1) The blades of L. japonica exhibited symptoms of lesion, bleaching and deterioration when infected by the bacterium, and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L. japonica.

  16. Metabolomics evaluation of the impact of smokeless tobacco exposure on the oral bacterium Capnocytophaga sputigena.

    PubMed

    Sun, Jinchun; Jin, Jinshan; Beger, Richard D; Cerniglia, Carl E; Yang, Maocheng; Chen, Huizhong

    2016-10-01

    The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the arginine-nitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine.

  17. Metabolomics evaluation of the impact of smokeless tobacco exposure on the oral bacterium Capnocytophaga sputigena.

    PubMed

    Sun, Jinchun; Jin, Jinshan; Beger, Richard D; Cerniglia, Carl E; Yang, Maocheng; Chen, Huizhong

    2016-10-01

    The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the arginine-nitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine. PMID:27480511

  18. Respiratory-driven Na+ electrical potential in the bacterium Vitreoscilla.

    PubMed

    Efiok, B J; Webster, D A

    1990-05-15

    Vitreoscilla is a Gram-negative bacterium with unique respiratory physiology in which Na+ was implicated as a coupling cation for the generation of a transmembrane electrical gradient (delta psi). Thus, cells respiring in the presence of 110 mM Na+ generated a delta psi of -142 mV compared to only -42 and -56 mV for Li+ and choline, respectively, and even the -42 and -56 mV were insensitive to the protonophore 3,5-di-tert-butyl-4-hydroxybenzaldehyde (DTHB). The kinetics of delta psi formation and collapse correlated well with the kinetics of Na+ fluxes but not with those of H+ fluxes. Cyanide inhibited respiration, Na+ extrusion, and delta psi formation 81% or more, indicating that delta psi formation and Na+ extrusion were coupled to respiration. Experiments were performed to distinguish among three possible transport systems for this coupling: (1) a Na(+)-transporting ATPase; (2) an electrogenic Na+/H+ antiport system; (3) a primary Na+ pump directly driven by the free energy of electron transport. DCCD and arsenate decreased cellular ATP up to 86% but had no effect on delta psi, evidence against a Na(+)-transporting ATPase. Low concentrations of DTHB had no effect on delta psi; high concentrations transiently collapsed delta psi, but led to a stimulation of Na+ extrusion, the opposite of that expected for a Na+/H+ antiport system. Potassium ion, which collapses delta psi, also stimulated Na+ extrusion. The experimental evidence is against Na+ extrusion by mechanisms 1 and 2 and supports the existence of a respiratory-driven primary Na+ pump for generating delta psi in Vitreoscilla. PMID:2372555

  19. Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium.

    PubMed

    Bogdanova, Tat'yana I; Tsaplina, Iraida A; Kondrat'eva, Tamara F; Duda, Vitalii I; Suzina, Natalya E; Melamud, Vitalii S; Tourova, Tat'yana P; Karavaiko, Grigorii I

    2006-05-01

    A thermotolerant, Gram-positive, aerobic, endospore-forming, acidophilic bacterium (strain Kr1T) was isolated from the pulp of a gold-containing sulfide concentrate processed at 40 degrees C in a gold-recovery plant (Siberia). Cells of strain Kr1(T) were straight to slightly curved rods, 0.8-1.2 microm in diameter and 1.5-4.5 microm in length. Strain Kr1T formed spherical and oval, refractile, subterminally located endospores. The temperature range for growth was 20-60 degrees C, with an optimum at 40 degrees C. The pH range for growth on medium containing ferrous iron was 1.2-2.4, with an optimum at pH 2.0; the pH range for growth on medium containing S0 was 2.0-5.0, with an optimum at pH 2.5. Strain Kr1T was mixotrophic, oxidizing ferrous iron, S0, tetrathionate or sulfide minerals as energy sources in the presence of 0.02 % yeast extract or other organic substrates. The G+C content of the DNA of strain Kr1T was 48.2+/-0.5 mol%. Strain Kr1T showed a low level of DNA-DNA reassociation with the known Sulfobacillus species (11-44 %). 16S rRNA gene sequence analysis revealed that Kr1T formed a separate phylogenetic group with a high degree of similarity between the nucleotide sequences (98.3-99.6 %) and 100 % bootstrap support within the phylogenetic Sulfobacillus cluster. On the basis of its physiological properties and the results of phylogenetic analyses, strain Kr1T can be affiliated to a novel species of the genus Sulfobacillus, for which the name Sulfobacillus thermotolerans sp. nov. is proposed. The type strain is Kr1T (=VKM B-2339T=DSM 17362T).

  20. Energy coupling to K+ transport in a marine bacterium.

    PubMed

    Sedgwick, E G; MacLeod, R A

    1980-10-01

    Cells of the marine bacterium Alteromonas haloplanktis 214 ATCC 19855 (previously referred to as marine pseudomonad B-16) were depleted of K+ by washing with 0.1 M MgSO4. Washing with 0.05 M MgSO4 lowered the Vmax for K+ transport compared with washing with 0.1 M with 0.05 but did not change the Km, while washing with lower concentrations of MgSO4 caused loss of ultraviolet-absorbing material from the cells. K+ uptake was a strictly aerobic process and was accompanied by proton release. When an anaerobic suspension of cells was added to incubation mixtures containing increasing amounts of O2, intracellular ATP concentrations increased as the O2 concentration increased and reached near maximum values before K+ transport began. The O2 concentration initiating K+ transport caused transport to proceed at its maximum rate. For these experiments A. haloplanktis was depleted of ATP by incubating under anaerobic conditions. Incubating with either N,N'-dicyclohexyl carbodiimide (DCCD) or arsenate failed to deplete intact cells of ATP or prevent K+ transport. The inhibitory activity of DCCD for ATPase in membrane preparations was higher at 5 mM than at other MgSO4 concentrations and increased with time. Cyanide and the uncoupling agents tetrachloro-salicylanide (TCS) and carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) prevented K+ uptake while TSC and FCCP though not cyanide caused K+ to be released from K+-containing cells. It is concluded that the driving force for K+ transport in these cells is likely to be the membrane potential and that K+ transport may be gated.

  1. Metabolic Evolution of a Deep-Branching Hyperthermophilic Chemoautotrophic Bacterium

    PubMed Central

    Braakman, Rogier; Smith, Eric

    2014-01-01

    Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA) cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere. PMID:24516572

  2. Trace Metal Sequestration by the Manganese Oxidizing Bacterium Pseudomonas putida

    NASA Astrophysics Data System (ADS)

    Toner, B.; Manceau, A.; Marcus, M. A.; Sposito, G.

    2002-12-01

    Bacterial cells are an important source of chemically reactive surfaces in freshwater and soil environments. Pseudomonas putida strain MnB1 cells, like many gram negative bacteria, present an outer membrane studded with phosphate groups and carbohydrates as well as a billowing biofilm of extracellular polysaccharides to the surrounding microenvironment. The cell outer membrane and the biofilm possess functional groups that complex trace metals. During certain growth phases P. putida is also a manganese oxidizing bacterium, causing the cells to coat themselves in Mn(IV) oxide. Therefore, in addition to the cell outer membrane and associated biofilm, trace metals may sorb to the biogenic Mn oxide. To explore the relative contributions to trace metal sorption by the bacterial cells and biogenic Mn oxide, zinc and nickel were added to suspensions of bacterial cells with three different conditions: cells in the absence of Mn, cells in the process of Mn oxidation and cells with preformed biogenic Mn oxide. Adsorption isotherms were measured to quantify Zn and Ni sorption to P. putida in the presence and absence of biogenic Mn oxide. Zinc and Ni K-edge EXAFS spectra were measured to determine how and where the metals were binding to the bacterial cells and biogenic Mn oxide. The Zn and Ni adsorption isotherms exhibited two plateaus. The metal complexation was dependent on concentration with Zn having a higher affinity for phosphate and Ni for carboxyl functional groups. The preformed biogenic Mn oxide has high affinity for Zn and Ni and the bacterial surface contributed little to metal removal from solution under these conditions. However, if the metal is present in solution while Mn oxidation is occurring the bacterial cell surface influences greatly the overall removal of metal. Manganese oxidizing bacteria such as P. putida contribute to environmental metal sequestration by catalyzing the production of Mn oxide minerals, and the bacterial cells are themselves reactive

  3. Interaction of Cadmium With the Aerobic Bacterium Pseudomonas Mendocina

    NASA Astrophysics Data System (ADS)

    Schramm, P. J.; Haack, E. A.; Maurice, P. A.

    2006-05-01

    The fate of toxic metals in the environment can be heavily influenced by interaction with bacteria in the vadose zone. This research focuses on the interactions of cadmium with the strict aerobe Pseudomonas mendocina. P. mendocina is a gram-negative bacterium that has shown potential in the bioremediation of recalcitrant organic compounds. Cadmium is a common environmental contaminant of wide-spread ecological consequence. In batch experiments P. mendocina shows typical bacterial growth curves, with an initial lag phase followed by an exponential phase and a stationary to death phase; concomitant with growth was an increase in pH from initial values of 7 to final values at 96 hours of 8.8. Cd both delays the onset of the exponential phase and decreases the maximum population size, as quantified by optical density and microscopic cell counts (DAPI). The total amount of Cd removed from solution increases over time, as does the amount of Cd removed from solution normalized per bacterial cell. Images obtained with transmission electron microscopy (TEM) showed the production of a cadmium, phosphorus, and iron containing precipitate that was similar in form and composition to precipitates formed abiotically at elevated pH. However, by late stationary phase, the precipitate had been re-dissolved, perhaps by biotic processes in order to obtain Fe. Stressed conditions are suggested by TEM images showing the formation of pili, or nanowires, when 20ppm Cd was present and a marked decrease in exopolysaccharide and biofilm material in comparison to control cells (no cadmium added).

  4. Phenotypic Variation in the Plant Pathogenic Bacterium Acidovorax citrulli

    PubMed Central

    Shrestha, Ram Kumar; Rosenberg, Tally; Makarovsky, Daria; Eckshtain-Levi, Noam; Zelinger, Einat; Kopelowitz, June; Sikorski, Johannes; Burdman, Saul

    2013-01-01

    Acidovorax citrulli causes bacterial fruit blotch (BFB) of cucurbits, a disease that threatens the cucurbit industry worldwide. Despite the economic importance of BFB, little is known about pathogenicity and fitness strategies of the bacterium. We have observed the phenomenon of phenotypic variation in A. citrulli. Here we report the characterization of phenotypic variants (PVs) of two strains, M6 and 7a1, isolated from melon and watermelon, respectively. Phenotypic variation was observed following growth in rich medium, as well as upon isolation of bacteria from inoculated plants or exposure to several stresses, including heat, salt and acidic conditions. When grown on nutrient agar, all PV colonies possessed a translucent appearance, in contrast to parental strain colonies that were opaque. After 72 h, PV colonies were bigger than parental colonies, and had a fuzzy appearance relative to parental strain colonies that are relatively smooth. A. citrulli colonies are generally surrounded by haloes detectable by the naked eye. These haloes are formed by type IV pilus (T4P)-mediated twitching motility that occurs at the edge of the colony. No twitching haloes could be detected around colonies of both M6 and 7a1 PVs, and microscopy observations confirmed that indeed the PVs did not perform twitching motility. In agreement with these results, transmission electron microscopy revealed that M6 and 7a1 PVs do not produce T4P under tested conditions. PVs also differed from their parental strain in swimming motility and biofilm formation, and interestingly, all assessed variants were less virulent than their corresponding parental strains in seed transmission assays. Slight alterations could be detected in some DNA fingerprinting profiles of 7a1 variants relative to the parental strain, while no differences at all could be seen among M6 variants and parental strain, suggesting that, at least in the latter, phenotypic variation is mediated by slight genetic and/or epigenetic

  5. Idiomarina maris sp. nov., a marine bacterium isolated from sediment.

    PubMed

    Zhang, Yan-Jiao; Zhang, Xi-Ying; Zhao, Hui-Lin; Zhou, Ming-Yang; Li, Hui-Juan; Gao, Zhao-Ming; Chen, Xiu-Lan; Dang, Hong-Yue; Zhang, Yu-Zhong

    2012-02-01

    A protease-producing marine bacterium, designated CF12-14(T), was isolated from sediment of the South China Sea. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain CF12-14(T) formed a separate lineage within the genus Idiomarina (Gammaproteobacteria). The isolate showed the highest 16S rRNA gene sequence similarity with Idiomarina salinarum ISL-52(T) (94.7 %), Idiomarina seosinensis CL-SP19(T) (94.6 %) and other members of the genus Idiomarina (91.9-94.6 %). Cells were gram-negative, aerobic, flagellated, straight or slightly curved, and often formed buds and prosthecae. Strain CF12-14(T) grew at 4-42 °C (optimum 30-35 °C) and with 0.1-15 % (w/v) NaCl (optimum 2-3 %). The isolate reduced nitrate to nitrite and hydrolysed DNA, but did not produce acids from sugars. The predominant cellular fatty acids were iso-C(15 : 0) (27.4 %), iso-C(17 : 0) (16.0 %) and iso-C(17 : 1)ω9c (15.8 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The major respiratory quinone was ubiquinone 8. The DNA G+C content was 50.4 mol%. The phylogenetic, phenotypic and chemotaxonomic data supported the conclusion that CF12-14(T) represents a novel species of the genus Idiomarina, for which the name Idiomarina maris sp. nov. is proposed. The type strain is CF12-14(T) ( = CCTCC AB 208166(T) = KACC 13974(T)).

  6. Sodium-coupled ATP synthesis in the bacterium Vitreoscilla.

    PubMed

    Efiok, B J; Webster, D A

    1992-01-01

    The bacterium Vitreoscilla generates an electrical potential gradient due to sodium ion (delta psi Na+) across its membrane via respiratory-driven primary Na+ pump(s). The role of the delta psi Na+ as a driving force for ATP synthesis was, therefore, investigated. In respiring starved cells pulsed with 100 mM external Na+ [( Na+]o) there was a 167% net increase in cellular ATP concentration over basal levels compared with 0, 56, 78, and 78% for no addition, choline, Li+, and K+ controls, respectively. Doubling the [Na+]o to 200 mM boosted the net increase to 244% but a similar doubling of the choline caused only an increase to 78%. When the initial condition was intracellular Na+ ([Na+]i) = [Na+]o = 100 mM, there was a 94% net increase in cellular ATP compared with only 18 and 11% for Li+ and K+ controls, respectively, indicating that Nai+ may be the only cation tested that the cells extruded to generate the electrochemical gradient required to drive ATP synthesis. The Na(+)-dependent ATP synthesis was inhibited completely by monensin (12 microM), but only transiently by the protonophore 3,5-di-tert-butyl-4-hydroxybenzaldehyde (100 microM), further evidence that the Na+ gradient and not a H+ gradient was driving the ATP synthesis. ATP synthesis in response to an artificially imposed H+ gradient (delta pH approximately 3) in the absence of an added cation, or in the presence of Li+, K+, or choline, yielded similar delta ATP/delta pH ratios of 0.98-1.22. In the presence of Na+, however, this ratio dropped to 0.23, indicating that Na+ inhibited H(+)-coupling to ATP synthesis and possibly that H+ and Na+ coupling to ATP synthesis share a common catalyst. The above evidence adds to previous findings that under normal growth conditions Na+ is probably the main coupling cation for ATP synthesis in Vitreoscilla. PMID:1309288

  7. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings

    SciTech Connect

    Burd, G.I.; Dixon, D.G.; Glick, B.R.

    1998-10-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, and CrO{sub 4}{sup {minus}}, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride were partially protected against nickel toxicity. In addition, protection by the bacterium against nickel toxicity was evident in pot experiments with canola and tomato seeds. The presence of K. ascorbata SUD165 had no measurable influence on the amount of nickel accumulated per milligram (dry weight) of either roots or shoots of canola plants. Therefore, the bacterial plant growth-promoting effect in the presence of nickel was probably not attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect the ability of the bacterium to lower the level of stress ethylene induced by the nickel.

  8. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    SciTech Connect

    Xie, Gary; Dalin, Eileen; Tice, Hope; Chertkov, Olga; Land, Miriam L

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  9. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    SciTech Connect

    Rhee, Mun Su; Moritz, Brelan E.; Xie, Gary; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Chertkov, Olga; Brettin, Thomas S; Han, Cliff; Detter, J. Chris; Pitluck, Sam; Land, Miriam L; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, Keelnathan T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  10. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    PubMed Central

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  11. Investigations of Iron Minerals Formed by Dissimilatory Alkaliphilic Bacterium with 57Fe Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chistyakova, N. I.; Rusakov, V. S.; Shapkin, A. A.; Zhilina, T. N.; Zavarzina, D. G.; Lančok, A.; Kohout, J.

    2010-07-01

    Anaerobic alkaliphilic bacterium of Geoalkalibacter ferrihydriticus type (strain Z-0531), isolated from a bottom sediment sample from the weakly mineralized soda Lake Khadyn, have been analyzed. The strain uses the amorphous Fe(III)-hydroxide (AFH) as an electron acceptor and acetate CH3COO- as an electron donor. Mössbauer investigations of solid phase samples obtained during the process of the bacterium growth were carried out at room temperature, 77.8 K, 4.2 K without and with the presence of an external magnetic field (6 T) applied perpendicular to the γ-bebam.

  12. Investigations of Iron Minerals Formed by Dissimilatory Alkaliphilic Bacterium with {sup 57}Fe Moessbauer Spectroscopy

    SciTech Connect

    Chistyakova, N. I.; Rusakov, V. S.; Shapkin, A. A.; Zhilina, T. N.; Zavarzina, D. G.; Kohout, J.

    2010-07-13

    Anaerobic alkaliphilic bacterium of Geoalkalibacter ferrihydriticus type (strain Z-0531), isolated from a bottom sediment sample from the weakly mineralized soda Lake Khadyn, have been analyzed. The strain uses the amorphous Fe(III)-hydroxide (AFH) as an electron acceptor and acetate CH{sub 3}COO{sup -} as an electron donor. Moessbauer investigations of solid phase samples obtained during the process of the bacterium growth were carried out at room temperature, 77.8 K, 4.2 K without and with the presence of an external magnetic field (6 T) applied perpendicular to the {gamma}-bebam.

  13. Description of a bacterium associated with redmouth disease of rainbow trout (Salmo gairdneri)

    USGS Publications Warehouse

    1966-01-01

    A description was given of a gram-negative, peritrichously flagellated, fermentative bacterium that was isolated on numerous occasions from kidney tissues of rainbow trout (Salmo gairdneri) afflicted with redmouth disease. Although the bacteria apparently were members of the family Enterobacteriaceae, it was impossible to determine their taxonomic position within the family with certainty. Hence it was recommended that their taxonomic position remain sub judice for the present. As a temporary designation RM bacterium was used. Redmouth disease was transmitted from infected to normal fish through the medium of water.

  14. Isolation from the Sorghum bicolor Mycorrhizosphere of a Bacterium Compatible with Arbuscular Mycorrhiza Development and Antagonistic towards Soilborne Fungal Pathogens

    PubMed Central

    Budi, S. W.; van Tuinen, D.; Martinotti, G.; Gianinazzi, S.

    1999-01-01

    A gram-positive bacterium with antagonistic activity towards soilborne fungal pathogens has been isolated from the mycorrhizosphere of Sorghum bicolor inoculated with Glomus mosseae. It has been identified as Paenibacillus sp. strain B2 based on its analytical profile index and on 16S ribosomal DNA analysis. Besides having antagonistic activity, this bacterium stimulates mycorrhization. PMID:10543835

  15. Draft Genome Sequence of an Anaerobic and Extremophilic Bacterium, Caldanaerobacter yonseiensis, Isolated from a Geothermal Hot Stream

    PubMed Central

    Lee, Sang-Jae; Lee, Yong-Jik; Park, Gun-Seok; Kim, Byoung-Chan; Lee, Sang Jun; Shin, Jae-Ho

    2013-01-01

    Caldanaerobacter yonseiensis is a strictly anaerobic, thermophilic, spore-forming bacterium, which was isolated from a geothermal hot stream in Indonesia. This bacterium utilizes xylose and produces a variety of proteases. Here, we report the draft genome sequence of C. yonseiensis, which reveals insights into the pentose phosphate pathway and protein degradation metabolism in thermophilic microorganisms. PMID:24201201

  16. Cadherin Domains in the Polysaccharide-Degrading Marine Bacterium Saccharophagus degradans 2-40 Are Carbohydrate-Binding Modules▿

    PubMed Central

    Fraiberg, Milana; Borovok, Ilya; Bayer, Edward A.; Weiner, Ronald M.; Lamed, Raphael

    2011-01-01

    The complex polysaccharide-degrading marine bacterium Saccharophagus degradans strain 2-40 produces putative proteins that contain numerous cadherin and cadherin-like domains involved in intercellular contact interactions. The current study reveals that both domain types exhibit reversible calcium-dependent binding to different complex polysaccharides which serve as growth substrates for the bacterium. PMID:21036994

  17. Draft Genome Sequence of Arthrobacter sp. Strain SPG23, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium

    PubMed Central

    Gkorezis, Panagiotis; Bottos, Eric M.; Van Hamme, Jonathan D.; Thijs, Sofie; Rineau, Francois; Balseiro-Romero, Maria; Weyens, Nele

    2015-01-01

    We report here the 4.7-Mb draft genome of Arthrobacter sp. SPG23, a hydrocarbonoclastic Gram-positive bacterium belonging to the Actinobacteria, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain SPG23 is a potent plant growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. PMID:26701084

  18. Classification of the Legionnaires' disease bacterium: Legionella pneumophila, genus novum, species nova, of the family Legionellaceae, familia nova.

    PubMed

    Brenner, D J; Steigerwalt, A G; McDade, J E

    1979-04-01

    Deoxyribonucleic acid (DNA) relatedness was used to classify strains of the Legionnaires' disease (LD) bacterium. These DNA comparisons showed that all strains of the LD bacterium were members of the same species. Included were strains isolated from the environment and strains with three different O-antigens. The DNA from the LD bacterium was not significantly related to DNA from any other group of bacteria that was tested. Biochemical data, growth characteristics, and guanine-plus-cytosine ratios were used to rule out the possibility that the LD bacterium was significantly related to members of genera whose DNA was not tested. In view of these data we propose that the LD bacterium be named Legionella pneumophila species nova, the type species of Legionella, genus novum. The type strain of L. pneumophila is Philadelphia 1.

  19. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes).

    PubMed

    Thiel, Vera; Hamilton, Trinity L; Tomsho, Lynn P; Burhans, Richard; Gay, Scott E; Ramaley, Robert F; Schuster, Stephan C; Steinke, Laurey; Bryant, Donald A

    2014-08-28

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons.

  20. Aerobic mineralization of vinyl chlorides by a bacterium of the order Actinomycetales

    SciTech Connect

    Phelps, T.J.; Malachowsky, K.; Schram, R.M. ); White, D.C. Oak Ridge National Lab., TN )

    1991-04-01

    A gram-positive branched bacterium isolated from a trichloroethylene-degrading consortium mineralized vinyl chloride in growing cultures and cell suspensions. Greater than 67% of the (1,2-{sup 14}C)vinyl chloride was mineralized to carbon dioxide, with approximately 10% of the radioactivity appearing in {sup 14}C-aqueous-phase products.

  1. Draft Genome Sequence of “Candidatus Phytoplasma pruni” Strain CX, a Plant-Pathogenic Bacterium

    PubMed Central

    Shao, J.; Bottner-Parker, K. D.; Gundersen-Rindal, D. E.; Zhao, Y.; Davis, R. E.

    2015-01-01

    “Candidatus Phytoplasma pruni” strain CX, belonging to subgroup 16SrIII-A, is a plant-pathogenic bacterium causing economically important diseases in many fruit crops. Here, we report the draft genome sequence, which consists of 598,508 bases, with a G+C content of 27.21 mol%. PMID:26472824

  2. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    PubMed

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. PMID:26853478

  3. Draft Genome Sequence of the Algicidal Bacterium Mangrovimonas yunxiaonensis Strain LY01

    PubMed Central

    Li, Yi; Zhu, Hong; Li, Chongping; Zhang, Huajun; Chen, Zhangran; Zheng, Wei

    2014-01-01

    Mangrovimonas yunxiaonensis LY01, a novel bacterium isolated from mangrove sediment, showed high algicidal effects on harmful algal blooms of Alexandrium tamarense. Here, we present the first draft genome sequence of this strain to further understanding of the functional genes related to algicidal activity. PMID:25428978

  4. Response to comments on "A bacterium that can grow using arsenic instead of phosphorus"

    USGS Publications Warehouse

    Wolfe-Simon, Felisa; Blum, Jodi Switzer; Kulp, Thomas R.; Gordon, Gwyneth W.; Hoeft, Shelley E.; Pett-Ridge, Jennifer; Stolz, John F.; Webb, Samuel M.; Weber, Peter K.; Davies, Paul C.W.; Anbar, Ariel D.; Oremland, Ronald S.

    2011-01-01

    Concerns have been raised about our recent study suggesting that arsenic (As) substitutes for phosphorus in major biomolecules of a bacterium that tolerates extreme As concentrations. We welcome the opportunity to better explain our methods and results and to consider alternative interpretations. We maintain that our interpretation of As substitution, based on multiple congruent lines of evidence, is viable.

  5. Robinsoniella peoriensis: A model anaerobic commensal bacterium for acquisition of antibiotic resistance?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: R. peoriensis was characterized in our laboratories from swine manure and feces as a Gram-positive, anaerobic bacterium. Since then strains of this species have been identified from a variety of mammalian and other gastrointestinal (GI) tracts, suggesting it is a member of the commensal ...

  6. Draft Genome Sequence and Gene Annotation of the Uropathogenic Bacterium Proteus mirabilis Pr2921

    PubMed Central

    Giorello, F. M.; Romero, V.; Farias, J.; Scavone, P.; Umpiérrez, A.; Zunino, P.

    2016-01-01

    Here, we report the genome sequence of Proteus mirabilis Pr2921, a uropathogenic bacterium that can cause severe complicated urinary tract infections. After gene annotation, we identified two additional copies of ucaA, one of the most studied fimbrial protein genes, and other fimbriae related-proteins that are not present in P. mirabilis HI4320. PMID:27340058

  7. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium

    PubMed Central

    Ho, Ying-Ning

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  8. Complete Genome Sequence of Sphingomonas sp. Strain NIC1, an Efficient Nicotine-Degrading Bacterium

    PubMed Central

    Zhu, Xiongyu; Wang, Weiwei; Xu, Ping

    2016-01-01

    Sphingomonas sp. strain NIC1, an efficient nicotine-degrading bacterium, was isolated from tobacco leaves. Here, we present the complete genome sequence of strain NIC1, which contains one circular chromosome and two circular plasmids. The genomic information will provide insights into its molecular mechanism for nicotine degradation. PMID:27417841

  9. Complete genome sequence of the cellulase-producing bacterium Clavibacter michiganensis PF008.

    PubMed

    Bae, Chungyun; Oh, Eom-Ji; Lee, Han-Beoyl; Kim, Byung-Yong; Oh, Chang-Sik

    2015-11-20

    The Gram-positive Actinobacterium Clavibacter michiganensis strain PF008 produces a cellulase of biotechnological interest, which is used for degradation of cellulose, a major component of plant cell walls. Here we report the complete genome sequence of this bacterium for better understanding of cellulase production and its virulence mechanism.

  10. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    PubMed

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments.

  11. Effect of tannic acid on the transcriptome of the soil bacterium Pseudomonas protegens Pf-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tannins are plant-produced organic compounds that are found in soils, are able to sequester iron, and have antimicrobial properties. We studied the effect of tannic acid on the molecular physiology of the soil-inhabiting biocontrol bacterium Pseudomonas protegens Pf-5 (formerly Pseudomonas fluoresce...

  12. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    PubMed

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading. PMID:27540159

  13. Complete Genome Sequence of the Type Strain of the Acetogenic Bacterium Moorella thermoacetica DSM 521T

    PubMed Central

    Poehlein, Anja; Bengelsdorf, Frank R.; Esser, Carola; Schiel-Bengelsdorf, Bettina; Daniel, Rolf

    2015-01-01

    Here we report the closed genome sequence of the type strain Moorella thermoacetica DSM 521T, an acetogenic bacterium, which is able to grow autotrophically on H2 + CO2 and/or CO, using the Wood-Ljungdahl pathway. The genome consists of a circular chromosome (2.53 Mb). PMID:26450731

  14. The construction of an engineered bacterium to remove cadmium from wastewater.

    PubMed

    Chang, S; Shu, H

    2014-01-01

    The removal of cadmium (Cd) from wastewater before it is released from factories is important for protecting human health. Although some researchers have developed engineered bacteria, the resistance of these engineered bacteria to Cd have not been improved. In this study, two key genes involved in glutathione synthesis (gshA and gshB), a serine acetyltransferase gene (cysE), a Thlaspi caerulescens phytochelatin synthase gene (TcPCS1), and a heavy metal ATPase gene (TcHMA3) were transformed into Escherichia coli BL21. The resistance of the engineered bacterium to Cd was significantly greater than that of the initial bacterium and the Cd accumulation in the engineered bacterium was much higher than in the initial bacterium. In addition, the Cd resistance of the bacteria harboring gshB, gshA, cysE, and TcPCS1 was higher than that of the bacteria harboring gshA, cysE, and TcPCS1. This finding demonstrated that gshB played an important role in glutathione synthesis and that the reaction catalyzed by glutathione synthase was the limiting step for producing phytochelatins. Furthermore, TcPCS1 had a greater specificity and a higher capacity for removing Cd than SpPCS1, and TcHMA3 not only played a role in T. caerulescens but also functioned in E. coli. PMID:25521138

  15. Genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens BBc6R8

    SciTech Connect

    Deveau, Aurelie; Grob, Harald; Morin, Emmanuelle; Karpinets, Tatiana V; Utturkar, Sagar M; Mehnaz, Samina; Kurz, Sven; Martin, Francis; Frey-Klett, Pascale; Labbe, Jessy L

    2014-01-01

    We report the draft genome sequence of the mycorrhiza helper bacterium Pseudomonas fluorescens strain BBc6R8 . Several traits which could be involved in the mycorrhiza helper ability of the bacterial strain such as multiple secretion systems, auxin metabolism and phosphate mobilization were evidenced in the genome.

  16. Draft Genome Sequence of the Deinococcus-Thermus Bacterium Meiothermus ruber Strain A

    SciTech Connect

    Thiel, Vera; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Schuster, Stephan C.; Ward, David M.; Bryant, Donald A.

    2015-03-26

    The draft genome sequence of the Deinococcus-Thermus group bacterium Meiothermus ruber strain A, isolated from a cyanobacterial enrichment culture obtained from Octopus Spring (Yellowstone National Park, WY), comprises 2,968,099 bp in 170 contigs. It is predicted to contain 2,895 protein-coding genes, 44 tRNA-coding genes, and 2 rRNA operons.

  17. Draft Genome Sequence of the Novel Agar-Digesting Marine Bacterium HQM9▿

    PubMed Central

    Du, Zongjun; Zhang, Zhewen; Miao, Tingting; Wu, Jiayan; Lü, Guoqiang; Yu, Jun; Xiao, Jingfa; Chen, Guanjun

    2011-01-01

    Strain HQM9, an aerobic, rod-shaped marine bacterium from red algae, can produce agarases and liquefy solid plating media efficiently when agar is used as a coagulant. Here we report the draft genome sequence and the initial findings from a preliminary analysis of strain HQM9, which should be a novel species of Flavobacteriaceae. PMID:21725015

  18. Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus.

    PubMed

    König, Claudia C; Scherlach, Kirstin; Schroeckh, Volker; Horn, Fabian; Nietzsche, Sandor; Brakhage, Axel A; Hertweck, Christian

    2013-05-27

    Stimulating encounter: The intimate, physical interaction between the soil-derived bacterium Streptomyces rapamycinicus and the human pathogenic fungus Aspergillus fumigatus led to the activation of an otherwise silent polyketide synthase (PKS) gene cluster coding for an unusual prenylated polyphenol (fumicycline A). The meroterpenoid pathway is regulated by a pathway-specific activator gene as well as by epigenetic factors.

  19. Complete Genome Sequence of the Acetogenic Bacterium Moorella thermoacetica DSM 2955T

    PubMed Central

    Bengelsdorf, Frank R.; Poehlein, Anja; Esser, Carola; Schiel-Bengelsdorf, Bettina; Daniel, Rolf

    2015-01-01

    Here, we report the complete genome sequence of Moorella thermoacetica DSM 2955T, an acetogenic bacterium, which uses the Wood–Ljungdahl pathway for reduction of H2 + CO2 or CO. The genome consists of a single circular chromosome (2.62 Mb). PMID:26450730

  20. Draft Genome Sequence of the Moderately Halophilic Bacterium Pseudoalteromonas ruthenica Strain CP76.

    PubMed

    de la Haba, Rafael R; Sánchez-Porro, Cristina; León, María José; Papke, R Thane; Ventosa, Antonio

    2013-05-23

    Pseudoalteromonas ruthenica strain CP76, isolated from a saltern in Spain, is a moderately halophilic bacterium belonging to the Gammaproteobacteria. Here we report the draft genome sequence, which consists of a 4.0-Mb chromosome, of this strain, which is able to produce the extracellular enzyme haloprotease CPI.

  1. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes

    PubMed Central

    Ghazal, Shimaa; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W. Kelley; Khalil, Kamal M.

    2016-01-01

    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes. PMID:26988056

  2. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes.

    PubMed

    Ghazal, Shimaa; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Khalil, Kamal M; Tisa, Louis S

    2016-01-01

    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes. PMID:26988056

  3. Draft Genome Sequence of an Anaerobic Ammonium-Oxidizing Bacterium, “Candidatus Brocadia sinica”

    PubMed Central

    Oshiki, Mamoru; Shinyako-Hata, Kaori; Satoh, Hisashi

    2015-01-01

    A draft genome sequence of an anaerobic ammonium-oxidizing (anammox) bacterium, “Candidatus Brocadia sinica,” was determined by pyrosequencing and by screening a fosmid library. A 4.07-Mb genome sequence comprising 3 contigs was assembled, in which 3,912 gene-coding regions, 47 tRNAs, and a single rrn operon were annotated. PMID:25883286

  4. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome

    PubMed Central

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E.; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert. PMID:26294639

  5. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    PubMed

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  6. The construction of an engineered bacterium to remove cadmium from wastewater.

    PubMed

    Chang, S; Shu, H

    2014-01-01

    The removal of cadmium (Cd) from wastewater before it is released from factories is important for protecting human health. Although some researchers have developed engineered bacteria, the resistance of these engineered bacteria to Cd have not been improved. In this study, two key genes involved in glutathione synthesis (gshA and gshB), a serine acetyltransferase gene (cysE), a Thlaspi caerulescens phytochelatin synthase gene (TcPCS1), and a heavy metal ATPase gene (TcHMA3) were transformed into Escherichia coli BL21. The resistance of the engineered bacterium to Cd was significantly greater than that of the initial bacterium and the Cd accumulation in the engineered bacterium was much higher than in the initial bacterium. In addition, the Cd resistance of the bacteria harboring gshB, gshA, cysE, and TcPCS1 was higher than that of the bacteria harboring gshA, cysE, and TcPCS1. This finding demonstrated that gshB played an important role in glutathione synthesis and that the reaction catalyzed by glutathione synthase was the limiting step for producing phytochelatins. Furthermore, TcPCS1 had a greater specificity and a higher capacity for removing Cd than SpPCS1, and TcHMA3 not only played a role in T. caerulescens but also functioned in E. coli.

  7. Mechanisms of Stress Resistance and Gene Regulation in the Radioresistant Bacterium Deinococcus radiodurans.

    PubMed

    Agapov, A A; Kulbachinskiy, A V

    2015-10-01

    The bacterium Deinococcus radiodurans reveals extraordinary resistance to ionizing radiation, oxidative stress, desiccation, and other damaging conditions. In this review, we consider the main molecular mechanisms underlying such resistance, including the action of specific DNA repair and antioxidation systems, and transcription regulation during the anti-stress response.

  8. Draft Genome Sequence of Jeotgalibacillus soli DSM 23228, a Bacterium Isolated from Alkaline Sandy Soil

    PubMed Central

    Chan, Kok-Gan; Yaakop, Amira Suriaty; Chan, Chia Sing; Ee, Robson; Tan, Wen-Si; Gan, Han Ming

    2015-01-01

    Jeotgalibacillus soli, a bacterium capable of degrading N-acyl homoserine lactone, was isolated from a soil sample in Portugal. J. soli constitutes the only Jeotgalibacillus species isolated from a non-marine source. Here, the draft genome, several interesting glycosyl hydrolases, and its putative N-acyl homoserine lactonases are presented. PMID:25999554

  9. Draft Genome Sequence of Sphingobium yanoikuyae TJ, a Halotolerant Di-n-Butyl-Phthalate-Degrading Bacterium

    PubMed Central

    Jin, Decai; Zhu, Ying; Wang, Xinxin; Kong, Xiao; Liu, Huijun; Wang, Yafeng

    2016-01-01

    Sphingobium yanoikuyae TJ is a halotolerant di-n-butyl-phthalate-degrading bacterium, isolated from the Haihe estuary in Bohai Bay, Tianjin, China. Here, we report the 5.1-Mb draft genome sequence of this strain, which will provide insights into the diversity of Sphingobium spp. and the mechanism of phthalate ester degradation in the estuary. PMID:27313307

  10. Draft Genome Sequence of a Thermophilic Desulfurization Bacterium, Geobacillus thermoglucosidasius Strain W-2

    PubMed Central

    Zhu, Lin; Li, Mingchang; Guo, Shuyi

    2016-01-01

    Geobacillus thermoglucosidasius strain W-2 is a thermophilic bacterium isolated from a deep-subsurface oil reservoir in northern China, which is capable of degrading organosulfur compounds. Here, we report the draft genome sequence of G. thermoglucosidasius strain W-2, which may help to elucidate the genetic basis of biodegradation of organosulfur pollutants under heated conditions. PMID:27491977

  11. Complete genome sequence of Pandoraea thiooxydans DSM 25325(T), a thiosulfate-oxidizing bacterium.

    PubMed

    Yong, Delicia; Ee, Robson; Lim, Yan-Lue; Yu, Choo-Yee; Ang, Geik-Yong; How, Kah-Yan; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2016-01-10

    Pandoraea thiooxydans DSM 25325(T) is a thiosulfate-oxidizing bacterium isolated from rhizosphere soils of a sesame plant. Here, we present the first complete genome of P. thiooxydans DSM 25325(T). Several genes involved in thiosulfate oxidation and biodegradation of aromatic compounds were identified.

  12. Isolation of Laribacter hongkongensis, a novel bacterium associated with gastroenteritis, from Chinese tiger frog.

    PubMed

    Lau, Susanna K P; Lee, Leo C K; Fan, Rachel Y Y; Teng, Jade L L; Tse, Cindy W S; Woo, Patrick C Y; Yuen, Kwok-Yung

    2009-01-31

    Laribacter hongkongensis is a recently discovered novel bacterium associated with community-acquired gastroenteritis. Although the bacterium has been isolated from freshwater fish and natural freshwater environments, it is not known if other freshwater animals could also be a source of L. hongkongensis. In a surveillance study on freshwater food animals (other than fish) in Hong Kong, L. hongkongensis was isolated from eight of 10 Chinese tiger frogs (Hoplobatrachus chinensis), a widespread frog species commonly consumed in China and southeast Asia. The large intestine was the site with the highest recovery rate, followed by the small intestine and stomach. None of the 30 Malaysian prawns, 20 pieces of sand shrimp, 20 Chinese mystery snails or 10 Chinese soft-shelled turtles was found to harbor the bacterium. Among the eight positive frogs, a total of 26 isolates of L. hongkongensis, confirmed by phenotypic tests and PCR, were obtained. As with human, freshwater fish and natural water isolates, a heterogeneous population of L. hongkongensis in frogs was identified by pulsed-field gel electrophoresis, with 6 different patterns among the 26 isolates and a single frog often carrying different strains. The present report represents the first to describe the isolation of L. hongkongensis from amphibians. The high isolation rate and genetic heterogeneity of L. hongkongensis among the Chinese tiger frogs suggested that these animals are also natural reservoir for the bacterium. Caution should be exercised in handling and cooking these frogs. PMID:19033083

  13. Complete Genome Sequence of Enterobacter cloacae B2-DHA, a Chromium-Resistant Bacterium

    PubMed Central

    Rahman, Aminur; Nahar, Noor; Olsson, Björn

    2016-01-01

    Previously, we reported a chromium-resistant bacterium, Enterobacter cloacae B2-DHA, isolated from the landfills of tannery industries in Bangladesh. Here, we investigated its genetic composition using massively parallel sequencing and comparative analysis with other known Enterobacter genomes. Assembly of the sequencing reads revealed a genome of ~4.21 Mb in size. PMID:27257201

  14. Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber

    PubMed Central

    Antón, Josefa; Peña, Arantxa; Santos, Fernando; Martínez-García, Manuel; Schmitt-Kopplin, Philippe; Rosselló-Mora, Ramon

    2008-01-01

    Since its discovery in 1998, representatives of the extremely halophilic bacterium Salinibacter ruber have been found in many hypersaline environments across the world, including coastal and solar salterns and solar lakes. Here, we review the available information about the distribution, abundance and diversity of this member of the Bacteroidetes. PMID:18957079

  15. Genome sequence of Citrobacter sp. strain A1, a dye-degrading bacterium.

    PubMed

    Chan, Giek Far; Gan, Han Ming; Rashid, Noor Aini Abdul

    2012-10-01

    Citrobacter sp. strain A1, isolated from a sewage oxidation pond, is a facultative aerobe and mesophilic dye-degrading bacterium. This organism degrades azo dyes efficiently via azo reduction and desulfonation, followed by the successive biotransformation of dye intermediates under an aerobic environment. Here we report the draft genome sequence of Citrobacter sp. A1.

  16. Genome sequence of Pedobacter arcticus sp. nov., a sea ice bacterium isolated from tundra soil.

    PubMed

    Yin, Ye; Yue, Guidong; Gao, Qiang; Wang, Zhiyong; Peng, Fang; Fang, Chengxiang; Yang, Xu; Pan, Li

    2012-12-01

    Pedobacter arcticus sp. nov. was originally isolated from tundra soil collected from Ny-Ålesund, in the Arctic region of Norway. It is a Gram-negative bacterium which shows bleb-shaped appendages on the cell surface. Here, we report the draft annotated genome sequence of Pedobacter arcticus sp. nov., which belongs to the genus Pedobacter.

  17. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    PubMed

    Banerjee, Aulie; Supakar, Subhrangshu; Banerjee, Raja

    2014-01-01

    Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13)C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  18. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    PubMed

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria. PMID:27610355

  19. Helicobacter hepaticus sp. nov., a microaerophilic bacterium isolated from livers and intestinal mucosal scrapings from mice.

    PubMed Central

    Fox, J G; Dewhirst, F E; Tully, J G; Paster, B J; Yan, L; Taylor, N S; Collins, M J; Gorelick, P L; Ward, J M

    1994-01-01

    A bacterium with a spiral shape and bipolar, single, sheathed flagella was isolated from the livers of mice with active, chronic hepatitis. The bacteria also colonized the cecal and colonic mucosae of mice. The bacterium grew at 37 degrees C under microaerophilic and anaerobic conditions, rapidly hydrolyzed urea, was catalase and oxidase positive, reduced nitrate to nitrite, and was resistant to cephalothin metronidazole. On the basis of 16S rRNA gene sequence analysis, the organism was classified as a novel helicobacter, Helicobacter hepaticus. This new helicobacter, like two other murine Helicobacter species, H. muridarum and "H. rappini," is an efficient colonizer of the gastrointestinal tract, but in addition, it has the pathogenic potential to elicit persistent hepatitis in mice. Images PMID:8051250

  20. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells.

    PubMed

    Aguayo, S; Donos, N; Spratt, D; Bozec, L

    2015-02-13

    The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine.

  1. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    PubMed

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  2. The bacterium Xenorhabdus nematophila inhibits phospholipases A2 from insect, prokaryote, and vertebrate sources

    NASA Astrophysics Data System (ADS)

    Park, Youngjin; Kim, Yonggyun; Stanley, David

    The bacterium, Xenorhabdus nematophila, is a virulent insect pathogen. Part of its pathogenicity is due to impairing cellular immunity by blocking biosynthesis of eicosanoids, the major recognized signal transduction system in insect cellular immunity. X. nematophila inhibits the first step in eicosanoid biosynthesis, phospholipase A2 (PLA2). Here we report that the bacterium inhibits PLA2 from two insect immune tissues, hemocytes and fat body, as well as PLA2s selected to represent a wide range of organisms, including prokaryotes, insects, reptiles, and mammals. Our finding on a bacterial inhibitor of PLA2 activity contributes new insight into the chemical ecology of microbe-host interactions, which usually involve actions rather than inhibitors of PLA2s.

  3. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium

    PubMed Central

    Tago, Damian; Meyer, Damien F.

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria. PMID:27610355

  4. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Pan, Hongmiao; Yue, Haidong; Song, Tao; Zhao, Yong; Chen, Guanjun; Wu, Longfei; Xiao, Tian

    2006-12-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in diameter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gram stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  5. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium.

    PubMed

    Begemann, Matthew B; Mormile, Melanie R; Sitton, Oliver C; Wall, Judy D; Elias, Dwayne A

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobiumhydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6-carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate, and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  6. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium

    PubMed Central

    Begemann, Matthew B.; Mormile, Melanie R.; Sitton, Oliver C.; Wall, Judy D.; Elias, Dwayne A.

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium hydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6-carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate, and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources. PMID:22509174

  7. Crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus

    NASA Astrophysics Data System (ADS)

    Nikonova, E. Yu.; Tishchenko, S. V.; Gabdulkhakov, A. G.; Shklyaeva, A. A.; Garber, M. B.; Nikonov, S. V.; Nevskaya, N. A.

    2011-07-01

    The crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus was solved by the molecular-replacement method and refined to R cryst = 19.4% and R free = 25.1% at 2.1 Å protein consists of two domains linked together by a flexible hinge region. In the structure under consideration, the domains are in close proximity and adopt a closed conformation. Earlier, this conformation has been found in the structure of protein L1 from the bacterium Thermus thermophilus, whereas the structures of archaeal L1 proteins and the structures of all L1 proteins in the RNA-bound form have an open conformation. The fact that a closed conformation was found in the structures of two L1 proteins which crystallize in different space groups and belong to different bacteria suggests that this conformation is a characteristic feature of L1 bacterial proteins in the free form.

  8. A partial proteome reference map of the wine lactic acid bacterium Oenococcus oeni ATCC BAA-1163.

    PubMed

    Mohedano, María de la Luz; Russo, Pasquale; de Los Ríos, Vivian; Capozzi, Vittorio; Fernández de Palencia, Pilar; Spano, Giuseppe; López, Paloma

    2014-02-26

    Oenococcus oeni is the main lactic acid bacterium that carries out the malolactic fermentation in virtually all red wines and in some white and sparkling wines. Oenococcus oeni possesses an array of metabolic activities that can modify the taste and aromatic properties of wine. There is, therefore, industrial interest in the proteins involved in these metabolic pathways and related transport systems of this bacterium. In this work, we report the characterization of the O. oeni ATCC BAA-1163 proteome. Total and membrane protein preparations from O. oeni were standardized and analysed by two-dimensional gel electrophoresis. Using tandem mass spectrometry, we identified 224 different spots corresponding to 152 unique proteins, which have been classified by their putative function and subjected to bioinformatics analysis.

  9. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium

    PubMed Central

    Tago, Damian; Meyer, Damien F.

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  10. Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome

    PubMed Central

    Thompson, Luke R.

    2016-01-01

    A draft genome of SAR324 bacterium lautmerah10 was assembled from a metagenome of a surface water sample from the Red Sea, Saudi Arabia. The genome is more complete and has a higher G+C content than that of previously sequenced SAR324 representatives. Its genomic information shows a versatile metabolism that confers an advantage to SAR324, which is reflected in its distribution throughout different depths of the marine water column. PMID:26868398

  11. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes)

    PubMed Central

    Thiel, Vera; Hamilton, Trinity L.; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Ramaley, Robert F.; Schuster, Stephan C.; Steinke, Laurey

    2014-01-01

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons. PMID:25169864

  12. Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent.

    PubMed

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z; Nisar, Muhammad A; Zulfiqar, Soumble; Shakoori, Abdul R

    2016-12-01

    Cadmium resistant bacterium, isolated from industrial wastewater, was characterized as Salmonella enterica 43C on the basis of biochemical and 16S rRNA ribotyping. It is first ever reported S. enterica 43C bared extreme resistance against heavy metal consortia in order of Pb(2+)>Cd(2+)>As(3+)>Zn(2+)>Cr(6+)>Cu(2+)>Hg(2+). Cd(2+) stress altered growth pattern of the bacterium in time dependent manner. It could remove nearly 57 % Cd(2+) from the medium over a period of 8 days. Kinetic and thermodynamic studies based on various adsorption isotherm models (Langmuir and Freundlich) depicted the Cd(2+) biosorption as spontaneous, feasible and endothermic in nature. Interestingly, the bacterium followed pseudo first order kinetics, making it a good biosorbent for heavy metal ions. The S. enterica 43C Cd(2+) processivity was significantly influenced by temperature, pH, initial Cd(2+) concentration, biomass dosage and co-metal ions. FTIR analysis of the bacterium revealed the active participation of amide and carbonyl moieties in Cd(2+) adsorption confirmed by EDX analysis. Electron micrographs beckoned further surface adsorption and increased bacterial size due to intracellular Cd(2+) accumulation. An overwhelming increase in glutathione and other non-protein thiols levels played a significant role in thriving oxidative stress generated by metal cations. Presence of metallothionein clearly depicted the role of such proteins in bacterial metal resistance mechanism. The present study results clearly declare S. enterica 43C a suitable candidate for green chemistry to bioremediate environmental Cd(2+).

  13. Effect of tannic acid on the transcriptome of the soil bacterium Pseudomonas protegens Pf-5.

    PubMed

    Lim, Chee Kent; Penesyan, Anahit; Hassan, Karl A; Loper, Joyce E; Paulsen, Ian T

    2013-05-01

    Tannins are a diverse group of plant-produced, polyphenolic compounds with metal-chelating and antimicrobial properties that are prevalent in many soils. Using transcriptomics, we determined that tannic acid, a form of hydrolysable tannin, broadly affects the expression of genes involved in iron and zinc homeostases, sulfur metabolism, biofilm formation, motility, and secondary metabolite biosynthesis in the soil- and rhizosphere-inhabiting bacterium Pseudomonas protegens Pf-5.

  14. Insights in Nanoparticle-Bacterium Interactions: New Frontiers to Bypass Bacterial Resistance to Antibiotics.

    PubMed

    Diab, Roudayna; Khameneh, Bahman; Joubert, Olivier; Duval, Raphael

    2015-01-01

    Nanotechnology has been revealed as a fundamental approach for antibiotics delivery. In this paper, recent findings demonstrating the superiority of nanocarried-antibiotics over "naked" ones and the ways by which nanoparticles can help to overwhelm bacterial drug resistance are reviewed. The second part of this paper sheds light on nanoparticle-bacterium interaction patterns. Finally, key factors affecting the effectiveness of nanoparticles interactions with bacteria are discussed.

  15. Permanent draft genome of acetaldehyde degradation bacterium, Shewanella sp. YQH10.

    PubMed

    Liu, Yang; Shang, Xiexie; Zeng, Runying

    2015-02-01

    Shewanella sp. YQH10 isolated from mangrove sediment, was a novel species of Shewanella, which has the ability to degrade acetaldehyde. Here, we present an annotated draft genome sequence of Shewanella sp. YQH10, which contains 4,215,794 bp with a G + C content of 48.1%. This information regarding the genetic basis of this bacterium can greatly advance our understanding of the physiology of this species.

  16. Effect of Tannic Acid on the Transcriptome of the Soil Bacterium Pseudomonas protegens Pf-5

    PubMed Central

    Lim, Chee Kent; Penesyan, Anahit; Hassan, Karl A.

    2013-01-01

    Tannins are a diverse group of plant-produced, polyphenolic compounds with metal-chelating and antimicrobial properties that are prevalent in many soils. Using transcriptomics, we determined that tannic acid, a form of hydrolysable tannin, broadly affects the expression of genes involved in iron and zinc homeostases, sulfur metabolism, biofilm formation, motility, and secondary metabolite biosynthesis in the soil- and rhizosphere-inhabiting bacterium Pseudomonas protegens Pf-5. PMID:23435890

  17. Draft Genome Sequence of Gordonia sihwensis Strain 9, a Branched Alkane-Degrading Bacterium

    PubMed Central

    Brown, Lisa M.; Gunasekera, Thusitha S.; Striebich, Richard C.

    2016-01-01

    Gordonia sihwensis strain 9 is a Gram-positive bacterium capable of efficient aerobic degradation of branched and normal alkanes. The draft genome of G. sihwensis S9 is 4.16 Mb in size, with 3,686 coding sequences and 68.1% G+C content. Alkane monooxygenase and P-450 cytochrome genes required for alkane degradation are predicted in G. sihwensis S9. PMID:27340079

  18. Draft Genome Sequence of Pseudomonas frederiksbergensis SI8, a Psychrotrophic Aromatic-Degrading Bacterium

    PubMed Central

    Brown, Lisa M.; Striebich, Richard C.; Mueller, Susan S.; Gunasekera, Thusitha S.

    2015-01-01

    Pseudomonas frederiksbergensis strain SI8 is a psychrotrophic bacterium capable of efficient aerobic degradation of aromatic hydrocarbons. The draft genome of P. frederiksbergensis SI8 is 6.57 Mb in size, with 5,904 coding sequences and 60.5% G+C content. The isopropylbenzene (cumene) degradation pathway is predicted to be present in P. frederiksbergensis SI8. PMID:26184950

  19. Draft Genome Sequence of a Strictly Anaerobic Dichloromethane-Degrading Bacterium.

    PubMed

    Kleindienst, Sara; Higgins, Steven A; Tsementzi, Despina; Konstantinidis, Konstantinos T; Mack, E Erin; Löffler, Frank E

    2016-01-01

    An anaerobic, dichloromethane-degrading bacterium affiliated with novel Peptococcaceae was maintained in a microbial consortium. The organism originated from pristine freshwater sediment collected from Rio Mameyes in Luquillo, Puerto Rico, in October 2009 (latitude 18°21'43.9″, longitude -65°46'8.4″). The draft genome sequence is 2.1 Mb and has a G+C content of 43.5%. PMID:26941136

  20. Draft Genome Sequence of the Extremely Halophilic Phototrophic Purple Sulfur Bacterium Halorhodospira halochloris.

    PubMed

    Singh, Kumar Saurabh; Kirksey, Jared; Hoff, Wouter D; Deole, Ratnakar

    2014-01-01

    Halorhodospira halochloris is an extremely halophilic bacterium isolated from hypersaline Wadi Nantrun lakes in Egypt. Here we report the draft genome sequence of this gammaproteobacteria (GI number: 589289709, GenBank Accession number: CP007268). The 3.5-Mb genome encodes for photosynthesis and biosynthesis of organic osmoprotectants. Comparison with the genome of H.halophila promises to yield insights into the evolution of halophilic adaptations. PMID:25057327

  1. Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent.

    PubMed

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z; Nisar, Muhammad A; Zulfiqar, Soumble; Shakoori, Abdul R

    2016-12-01

    Cadmium resistant bacterium, isolated from industrial wastewater, was characterized as Salmonella enterica 43C on the basis of biochemical and 16S rRNA ribotyping. It is first ever reported S. enterica 43C bared extreme resistance against heavy metal consortia in order of Pb(2+)>Cd(2+)>As(3+)>Zn(2+)>Cr(6+)>Cu(2+)>Hg(2+). Cd(2+) stress altered growth pattern of the bacterium in time dependent manner. It could remove nearly 57 % Cd(2+) from the medium over a period of 8 days. Kinetic and thermodynamic studies based on various adsorption isotherm models (Langmuir and Freundlich) depicted the Cd(2+) biosorption as spontaneous, feasible and endothermic in nature. Interestingly, the bacterium followed pseudo first order kinetics, making it a good biosorbent for heavy metal ions. The S. enterica 43C Cd(2+) processivity was significantly influenced by temperature, pH, initial Cd(2+) concentration, biomass dosage and co-metal ions. FTIR analysis of the bacterium revealed the active participation of amide and carbonyl moieties in Cd(2+) adsorption confirmed by EDX analysis. Electron micrographs beckoned further surface adsorption and increased bacterial size due to intracellular Cd(2+) accumulation. An overwhelming increase in glutathione and other non-protein thiols levels played a significant role in thriving oxidative stress generated by metal cations. Presence of metallothionein clearly depicted the role of such proteins in bacterial metal resistance mechanism. The present study results clearly declare S. enterica 43C a suitable candidate for green chemistry to bioremediate environmental Cd(2+). PMID:27491862

  2. Complete Genome Sequence of the Thermophilic, Piezophilic, Heterotrophic Bacterium Marinitoga piezophila KA3

    SciTech Connect

    Lucas, Susan; Han, James; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Peters, Lin; Mikhailova, Natalia; Teshima, Hazuki; Detter, J. Chris; Han, Cliff; Tapia, Roxanne; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Ivanova, N; Pagani, Ioanna; Vannier, Pauline; Oger, Phil; Bartlett, Douglas; Noll, Kenneth M; Woyke, Tanja; Jebbar, Mohamed

    2012-01-01

    Marinitoga piezophila KA3 is a thermophilic, anaerobic, chemoorganotrophic, sulfur-reducing bacterium isolated from the Grandbonum deep-sea hydrothermal vent site at the East Pacific Rise (13 degrees N, 2,630-m depth). The genome of M. piezophila KA3 comprises a 2,231,407-bp circular chromosome and a 13,386-bp circular plasmid. This genome was sequenced within Department of Energy Joint Genome Institute CSP 2010.

  3. Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus.

    PubMed

    Roldán, M D; Blasco, R; Caballero, F J; Castillo, F

    1998-01-01

    The phototrophic bacterium Rhodobacter capsulatus detoxified p-nitrophenol and 4-nitrocatechol. The bacterium tolerated moderate concentrations of p-nitrophenol (up to 0.5 mM) and degraded it under light at an optimal O2 pressure of 20 kPa. The bacterium did not metabolize the xenobiotic in the dark or under strictly anoxic conditions or high O2 pressure. Bacterial growth with acetate in the presence of p-nitrophenol took place with the simultaneous release of nonstoichiometric amounts of 4-nitrocatechol, which can also be degraded by the bacterium. Crude extracts from R. capsulatus produced 4-nitrocatechol from p-nitrophenol upon the addition of NAD(P)H, although at a very low rate. A constitutive catechol 1, 2-dioxygenase activity yielding cis,cis-muconate was also detected in crude extracts of R. capsulatus. Further degradation of 4-nitrocatechol included both nitrite- and CO2-releasing steps since: (1) a strain of R. capsulatus (B10) unable to assimilate nitrate and nitrite released nitrite into the medium when grown with p-nitrophenol or 4-nitrocatechol, and the nitrite concentration was stoichiometric with the 4-nitrocatechol degraded, and (2) cultures of R. capsulatus growing microaerobically produced low amounts of 14CO2 from radiolabeled p-nitrophenol. The radioactivity was also incorporated into cellular compounds from cells grown with uniformly labeled 14C-p-nitrophenol. From these results we concluded that the xenobiotic is used as a carbon source by R. capsulatus, but that only the strain able to assimilate nitrite (E1F1) can use p-nitrophenol as a nitrogen source.

  4. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  5. PSEUDOMONAS NATRIEGENS, A MARINE BACTERIUM WITH A GENERATION TIME OF LESS THAN 10 MINUTES

    PubMed Central

    Eagon, R. G.

    1962-01-01

    Eagon, R. G. (University of Georgia, Athens). Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. J. Bacteriol. 83:736–737. 1962.—Pseudomonas natriegens, a marine microorganism, was demonstrated to have a generation time of 9.8 min. This is the shortest generation time reported to date. Optimal growth occurred at 37 C in brain heart infusion broth supplemented with 1.5% sea salt. PMID:13888946

  6. Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06.

    PubMed

    Liu, Yang; Wang, Runping; Zeng, Runying

    2014-12-01

    Rhizobium sp. MGL06, the first Rhizobium isolate from a marine environment, is a malachite-green-tolerant bacterium with a broader salinity tolerance (range: 0.5% to 9%) than other rhizobia. This study sequences and annotates the draft genome sequence of this strain. Genome sequence information provides a basis for analyzing the malachite green tolerance, broad salinity adaptation, nitrogen fixation properties, and taxonomic classification of the isolate.

  7. Catalytic Biomineralization of Fluorescent Calcite by the Thermophilic Bacterium Geobacillus thermoglucosidasius▿

    PubMed Central

    Yoshida, Naoto; Higashimura, Eiji; Saeki, Yuichi

    2010-01-01

    The thermophilic Geobacillus bacterium catalyzed the formation of 100-μm hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate. PMID:20851984

  8. Sexual Transmission of a Plant Pathogenic Bacterium, Candidatus Liberibacter asiaticus, between Conspecific Insect Vectors during Mating

    PubMed Central

    Mann, Rajinder S.; Pelz-Stelinski, Kirsten; Hermann, Sara L.; Tiwari, Siddharth; Stelinski, Lukasz L.

    2011-01-01

    Candidatus Liberibacter asiaticus is a fastidious, phloem-inhabiting, gram-negative bacterium transmitted by Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae). The bacterium is the presumed causal agent of huanglongbing (HLB), one of the most destructive and economically important diseases of citrus. We investigated whether Las is transmitted between infected and uninfected D. citri adults during courtship. Our results indicate that Las was sexually transmitted from Las-infected male D. citri to uninfected females at a low rate (<4%) during mating. Sexual transmission was not observed following mating of infected females and uninfected males or among adult pairs of the same sex. Las was detected in genitalia of both sexes and also in eggs of infected females. A latent period of 7 days or more was required to detect the bacterium in recipient females. Rod shaped as well as spherical structures resembling Las were observed in ovaries of Las-infected females with transmission electron microscopy, but were absent in ovaries from uninfected D. citri females. The size of the rod shaped structures varied from 0.39 to 0.67 µm in length and 0.19 to 0.39 µm in width. The spherical structures measured from 0.61 to 0.80 µm in diameter. This investigation provides convincing evidence that a plant pathogenic bacterium is sexually transmitted from male to female insects during courtship and established evidence that bacteria persist in reproductive organs. Moreover, these findings provide an alternative sexually horizontal mechanism for the spread of Las within populations of D. citri, even in the absence of infected host trees. PMID:22216209

  9. Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Hochstein, L. I.

    1976-01-01

    The previously described extremely halophilic bacterium, strain M6, metabolizes a variety of carbohydrates with the production of acid. In addition, the organism produces nitrite (but no gas) from nitrate, is motile, and grows most rapidly at about 50 C. These characteristics distinguish it from all previously described halophilic bacteria in the genus Halobacterium. It is suggested that it be designated as a new species, Halobacterium saccharovorum.

  10. Identification of insertion sequence from a gamma-hexachlorocyclohexane degrading bacterium, Sphingomonas paucimobilis UT26.

    PubMed

    Miyauchi, Keisuke; Fukuda, Masao; Tsuda, Masataka; Takagi, Masamichi; Nagata, Yuji

    2005-01-01

    Tn5-derived mutants of the gamma-hexachlorocyclohexane-degrading bacterium Sphingomonas paucimobilis UT26 were genetically characterized, and an endogenous insertion sequence (IS) which belongs to the IS1380 family was identified. The IS, named ISsp1, existed as multi copies in UT26, and its transposition appeared to be activated during the process of Tn5-mutagenesis. It was found that transposon mutagenesis can cause endogenous mutations.

  11. Draft Genome Sequence of the Deinococcus-Thermus Bacterium Meiothermus ruber Strain A

    PubMed Central

    Thiel, Vera; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Schuster, Stephan C.; Ward, David M.

    2015-01-01

    The draft genome sequence of the Deinococcus-Thermus group bacterium Meiothermus ruber strain A, isolated from a cyanobacterial enrichment culture obtained from Octopus Spring (Yellowstone National Park, WY), comprises 2,968,099 bp in 170 contigs. It is predicted to contain 2,895 protein-coding genes, 44 tRNA-coding genes, and 2 rRNA operons. PMID:25814606

  12. Draft genome sequence of a strictly anaerobic dichloromethane-degrading bacterium

    DOE PAGESBeta

    Kleindienst, Sara; Higgins, Steven A.; Tsementzi, Despina; Konstantinidis, Konstantinos T.; Mack, E. Erin; Loffler, Frank E.

    2016-03-03

    Here, an anaerobic, dichloromethane-degrading bacterium affiliated with novel Peptococcaceae was maintained in a microbial consortium. The organism originated from pristine freshwater sediment collected from Rio Mameyes in Luquillo, Puerto Rico, in October 2009 (latitude 18°21'43.9", longitude –65°46'8.4"). The draft genome sequence is 2.1 Mb and has a G+C content of 43.5%.

  13. Draft Genome Sequence of a Strictly Anaerobic Dichloromethane-Degrading Bacterium

    PubMed Central

    Higgins, Steven A.; Tsementzi, Despina; Konstantinidis, Konstantinos T.; Mack, E. Erin

    2016-01-01

    An anaerobic, dichloromethane-degrading bacterium affiliated with novel Peptococcaceae was maintained in a microbial consortium. The organism originated from pristine freshwater sediment collected from Rio Mameyes in Luquillo, Puerto Rico, in October 2009 (latitude 18°21′43.9″, longitude −65°46′8.4″). The draft genome sequence is 2.1 Mb and has a G+C content of 43.5%. PMID:26941136

  14. Draft Genome Sequence of Staphylococcus succinus Strain CSM-77, a Moderately Halophilic Bacterium Isolated from a Triassic Salt Mine

    PubMed Central

    Gilmore, Brendan F.

    2016-01-01

    Here, we report the draft genome sequence of Staphylococcus succinus strain CSM-77. This moderately halophilic bacterium was isolated from the surface of a halite sample obtained from a Triassic salt mine. PMID:27284152

  15. Hydrolysis of fenamiphos and its oxidation products by a soil bacterium in pure culture, soil and water.

    PubMed

    Megharaj, M; Singh, N; Kookana, R S; Naidu, R; Sethunathan, N

    2003-05-01

    A bacterium, identified as Brevibacterium sp. MM1, readily hydrolysed fenamiphos, a widely used organophosphorus insecticide and its toxic oxides (fenamiphos sulfoxide, fenamiphos sulfone), which all contain a common P-O-C bond, in a mineral salts medium. The bacterium also hydrolysed fenamiphos and its oxides in soil and groundwater. Interestingly, fenamiphos phenol, fenamiphos sulfoxide phenol and fenamiphos sulfone phenol, formed during bacterial hydrolysis of fenamiphos and its oxides, persisted in the mineral salts medium, but were transitory in soil and groundwater due to their further metabolism by indigenous micro-organisms. The cell-free preparation (crude enzyme) of this bacterium was very effective in hydrolysing fenamiphos. This is the first report on exceptionally rapid hydrolysis of fenamiphos by a bacterium in pure cultures, soil and groundwater.

  16. Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium.

    PubMed Central

    Heitkamp, M A; Franklin, W; Cerniglia, C E

    1988-01-01

    Microbiological analyses of sediments located near a point source for petrogenic chemicals resulted in the isolation of a pyrene-mineralizing bacterium. This isolate was identified as a Mycobacterium sp. on the basis of its cellular and colony morphology, gram-positive and strong acid-fast reactions, diagnostic biochemical tests, 66.6% G + C content of the DNA, and high-molecular-weight mycolic acids (C58 to C64). The mycobacterium mineralized pyrene when grown in a mineral salts medium supplemented with nutrients but was unable to utilize pyrene as a sole source of carbon and energy. The mycobacterium grew well at 24 and 30 degrees C and minimally at 35 degrees C. No growth was observed at 5 or 42 degrees C. The mycobacterium grew well at salt concentrations up to 4%. Pyrene-induced Mycobacterium cultures mineralized 5% of the pyrene after 6 h and reached a maximum of 48% mineralization within 72 h. Treatment of induced and noninduced cultures with chloramphenicol showed that pyrene-degrading enzymes were inducible in this Mycobacterium sp. This bacterium could also mineralize other polycyclic aromatic hydrocarbons and alkyl- and nitro-substituted polycyclic aromatic hydrocarbons including naphthalene, phenanthrene, fluoranthene, 3-methylcholanthrene, 1-nitropyrene, and 6-nitrochrysene. This is the first report of a bacterium able to extensively mineralize pyrene and other polycyclic aromatic hydrocarbons containing four aromatic rings. Images PMID:3202633

  17. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides

    PubMed Central

    Devendran, Saravanan; Abdel-Hamid, Ahmed M.; Evans, Anton F.; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I.; Cann, Isaac

    2016-01-01

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose. PMID:27748409

  18. Purification and Characterization of Haloalkaline, Organic Solvent Stable Xylanase from Newly Isolated Halophilic Bacterium-OKH

    PubMed Central

    Sanghvi, Gaurav; Jivrajani, Mehul; Patel, Nirav; Jivrajani, Heta; Bhaskara, Govinal Badiger; Patel, Shivani

    2014-01-01

    A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.0 and 37°C temperature in the medium containing 15% NaCl and 1% (w/v) corn cobs. Sugarcane bagasse and wheat straw also induce xylanase production when used as carbon source. The enzyme was active over a range of 0–25% sodium chloride examined in culture broth. The optimum xylanase activity was observed at 5% sodium chloride. Xylanase was purified with 25.81%-fold purification and 17.1% yield. Kinetic properties such as Km and Vmax were 4.2 mg/mL and 0.31 μmol/min/mL, respectively. The enzyme was stable at pH 6.0 and 50°C with 60% activity after 8 hours of incubation. Enzyme activity was enhanced by Ca2+, Mn2+, and Mg2+ but strongly inhibited by heavy metals such as Hg2+, Fe3+, Ni2+, and Zn2+. Xylanase was found to be stable in organic solvents like glutaraldehyde and isopropanol. The purified enzyme hydrolysed lignocellulosic substrates. Xylanase, purified from the halophilic bacterium-OKH, has potential biotechnological applications. PMID:27350996

  19. Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA.

    PubMed

    Rahman, Aminur; Nahar, Noor; Nawani, Neelu N; Jass, Jana; Hossain, Khaled; Saud, Zahangir Alam; Saha, Ananda K; Ghosh, Sibdas; Olsson, Björn; Mandal, Abul

    2015-01-01

    Chromium and chromium containing compounds are discharged into the nature as waste from anthropogenic activities, such as industries, agriculture, forest farming, mining and metallurgy. Continued disposal of these compounds to the environment leads to development of various lethal diseases in both humans and animals. In this paper, we report a soil borne bacterium, B2-DHA that can be used as a vehicle to effectively remove chromium from the contaminated sources. B2-DHA is resistant to chromium with a MIC value of 1000 µg mL(-1) potassium chromate. The bacterium has been identified as a Gram negative, Enterobacter cloacae based on biochemical characteristics and 16S rRNA gene analysis. TOF-SIMS and ICP-MS analyses confirmed intracellular accumulation of chromium and thus its removal from the contaminated liquid medium. Chromium accumulation in cells was 320 µg/g of cells dry biomass after 120-h exposure, and thus it reduced the chromium concentration in the liquid medium by as much as 81%. Environmental scanning electron micrograph revealed the effect of metals on cellular morphology of the isolates. Altogether, our results indicate that B2-DHA has the potential to reduce chromium significantly to safe levels from the contaminated environments and suggest the potential use of this bacterium in reducing human exposure to chromium, hence avoiding poisoning.

  20. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides

    NASA Astrophysics Data System (ADS)

    Devendran, Saravanan; Abdel-Hamid, Ahmed M.; Evans, Anton F.; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I.; Cann, Isaac

    2016-10-01

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  1. [Mechanisms of Forespore Formation during Polysporogenesis of an Anaerobic Bacterium Anaerobacter polyendosporus PST(T)].

    PubMed

    Duda, V I; Suzina, N E

    2015-01-01

    Forespore formation in the anaerobic bacterium Anaerobacterpolyendosporus PS-1(T) was studied by phase contrast, fluorescence, and electron microscopy. It is concluded that in this bacterium the formation of all forespores in multispore sporangia occurs via the same mechanism as that operating in all known bacilli and clostridia during the single-spore variant of endogenous sporogenesis. Its cytological indicators are as follows: (1) formation of the forespore septum, (2) engulfment of the smaller prespore cell by the larger mother cell, (3) cortex synthesis, (4) assembly of the spore coats, (5) exosporium formation, and (6) lysis of the mother cell. Polysporogenesis in strain PS-1(T) is characterized by synchronous formation of all spores (siblings) in a given sporangium and by the absence of any indication of forespore division within the mother cell. These data suggest that multiple spores within a single PS-1(T) cell result not from division of the first forespores developing at one or two cell poles, as it was reported for another polysporogenic bacterium, "Metabacterium polyspora", but rather from simultaneous independent formation of several prespores in a single mother cell in the course of modified cell division. PMID:27169242

  2. In Search of an Uncultured Human-Associated TM7 Bacterium in the Environment

    PubMed Central

    Dinis, Jorge M.; Barton, David E.; Ghadiri, Jamsheed; Surendar, Deepa; Reddy, Kavitha; Velasquez, Fernando; Chaffee, Carol L.; Lee, Mei-Chong Wendy; Gavrilova, Helen; Ozuna, Hazel; Smits, Samuel A.; Ouverney, Cleber C.

    2011-01-01

    We have identified an environmental bacterium in the Candidate Division TM7 with ≥98.5% 16S rDNA gene homology to a group of TM7 bacteria associated with the human oral cavity and skin. The environmental TM7 bacterium (referred to as TM7a-like) was readily detectable in wastewater with molecular techniques over two years of sampling. We present the first images of TM7a-like cells through FISH technique and the first images of any TM7 as viable cells through the STARFISH technique. In situ quantification showed TM7 concentration in wastewater up to five times greater than in human oral sites. We speculate that upon further characterization of the physiology and genetics of the TM7a-like bacterium from environmental sources and confirmation of its genomic identity to human-associated counterparts it will serve as model organisms to better understand its role in human health. The approach proposed circumvents difficulties imposed by sampling humans, provides an alternative strategy to characterizing some diseases of unknown etiology, and renders a much needed understanding of the ecophysiological role hundreds of unique Bacteria and Archaea strains play in mixed microbial communities. PMID:21701585

  3. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    PubMed Central

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  4. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes--Final Report

    SciTech Connect

    Mary E. Lidstrom

    2003-12-26

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions.

  5. Anomalous Magnetic Orientations of Magnetosome Chains in a Magnetotactic Bacterium: Magnetovibrio blakemorei Strain MV-1

    PubMed Central

    Kalirai, Samanbir S.; Bazylinski, Dennis A.; Hitchcock, Adam P.

    2013-01-01

    There is a good deal of published evidence that indicates that all magnetosomes within a single cell of a magnetotactic bacterium are magnetically oriented in the same direction so that they form a single magnetic dipole believed to assist navigation of the cell to optimal environments for their growth and survival. Some cells of the cultured magnetotactic bacterium Magnetovibrio blakemorei strain MV-1 are known to have relatively wide gaps between groups of magnetosomes that do not seem to interfere with the larger, overall linear arrangement of the magnetosomes along the long axis of the cell. We determined the magnetic orientation of the magnetosomes in individual cells of this bacterium using Fe 2p X-ray magnetic circular dichroism (XMCD) spectra measured with scanning transmission X-ray microscopy (STXM). We observed a significant number of cases in which there are sub-chains in a single cell, with spatial gaps between them, in which one or more sub-chains are magnetically polarized opposite to other sub-chains in the same cell. These occur with an estimated frequency of 4.0±0.2%, based on a sample size of 150 cells. We propose possible explanations for these anomalous cases which shed insight into the mechanisms of chain formation and magnetic alignment. PMID:23308202

  6. Alcanivorax dieselolei, an alkane-degrading bacterium associated with the mucus of the zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa).

    PubMed

    Campos, F F; Garcia, J E; Luna-Finkler, C L; Davolos, C C; Lemos, M V F; Pérez, C D

    2015-05-01

    Analyses of 16S rDNA genes were used to identify the microbiota isolated from the mucus of the zoanthid Palythoa caribaeorum at Porto de Galinhas on the coast of Pernambuco State, Brazil. This study is important as the first report of this association, because of the potential biotechnological applications of the bacterium Alcanivorax dieselolei, and as evidence for the presence of a hydrocarbon degrading bacterium in a reef ecosystem such as Porto de Galinhas.

  7. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium

    PubMed Central

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter

    2016-01-01

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. PMID:27340073

  8. Anaerobic, Nitrate-Dependent Oxidation of U(IV) Oxide Minerals by the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    SciTech Connect

    Beller, H R

    2004-06-25

    Under anaerobic conditions and at circumneutral pH, cells of the widely-distributed, obligate chemolithoautotrophic bacterium Thiobacillus denitrificans oxidatively dissolved synthetic and biogenic U(IV) oxides (uraninite) in nitrate-dependent fashion: U(IV) oxidation required the presence of nitrate and was strongly correlated to nitrate consumption. This is the first report of anaerobic U(IV) oxidation by an autotrophic bacterium.

  9. Effect of arsenite-oxidizing bacterium B. laterosporus on arsenite toxicity and arsenic translocation in rice seedlings.

    PubMed

    Yang, Gui-Di; Xie, Wan-Ying; Zhu, Xi; Huang, Yi; Yang, Xiao-Jun; Qiu, Zong-Qing; Lv, Zhen-Mao; Wang, Wen-Na; Lin, Wen-Xiong

    2015-10-01

    Arsenite [As (III)] oxidation can be accelerated by bacterial catalysis, but the effects of the accelerated oxidation on arsenic toxicity and translocation in rice plants are poorly understood. Herein we investigated how an arsenite-oxidizing bacterium, namely Brevibacillus laterosporus, influences As (III) toxicity and translocation in rice plants. Rice seedlings of four cultivars, namely Guangyou Ming 118 (GM), Teyou Hang II (TH), Shanyou 63 (SY) and Minghui 63 (MH), inoculated with or without the bacterium were grown hydroponically with As (III) to investigate its effects on arsenic toxicity and translocation in the plants. Percentages of As (III) oxidation in the solutions with the bacterium (100%) were all significantly higher than those without (30-72%). The addition of the bacterium significantly decreased As (III) concentrations in SY root, GM root and shoot, while increased the As (III) concentrations in the shoot of SY, MH and TH and in the root of MH. Furthermore, the As (III) concentrations in the root and shoot of SY were both the lowest among the treatments with the bacterium. On the other hand, its addition significantly alleviated the As (III) toxicity on four rice cultivars. Among the treatments amended with B. laterosporus, the bacterium showed the best remediation on SY seedlings, with respect to the subdued As (III) toxicity and decreased As (III) concentration in its roots. These results indicated that As (III) oxidation accelerated by B. laterosporus could be an effective method to alleviate As (III) toxicity on rice seedlings. PMID:26024808

  10. [Diversity analysis of desulfuration bacterium from the oxidation ditch of city sewage treatment plant with SO2 gas].

    PubMed

    Huang, Bing; Zhang, Shi-Ling; Zhang, Jiang-Hong; Ao, Yong; Shi, Zhe

    2011-07-01

    A group of removing SO2 bacterium was obtained from the oxidation ditch of city sewage treatment plant by inductive domestication over 6 d with low concentration SO2 gas, and they have an ability with biodegradation rate of 888 mg x (L x h)(-1) and a degradation efficiency of 85% during 1.5 h for SO2 dissolved in water with their synergy. The clone library and two phylogenetic trees of the removing SO2 bacterium communities were obtained based on 16S rRNA DNA comparison by DNA extraction of the sample and in situ polymerase chain reaction (PCR). The phylogenetic analysis showed that 8 dominant desulfuration bacterium occupy about 69% of all removing SO2 bacterium, and some of them have a kindred with discovered desulfuration bacterium but not homogeneity, and there are four belong to alpha-Proteobacteria, another four belong to beta-Proteobacteria in them. The gene information about 16S rRNA sequence of the dominant desulfuration bacteria and domestication method provide a basic of looking for or domesticating removing SO2 bacterium for development microbial desulfurization technology of contained SO2 tail gas.

  11. Effect of arsenite-oxidizing bacterium B. laterosporus on arsenite toxicity and arsenic translocation in rice seedlings.

    PubMed

    Yang, Gui-Di; Xie, Wan-Ying; Zhu, Xi; Huang, Yi; Yang, Xiao-Jun; Qiu, Zong-Qing; Lv, Zhen-Mao; Wang, Wen-Na; Lin, Wen-Xiong

    2015-10-01

    Arsenite [As (III)] oxidation can be accelerated by bacterial catalysis, but the effects of the accelerated oxidation on arsenic toxicity and translocation in rice plants are poorly understood. Herein we investigated how an arsenite-oxidizing bacterium, namely Brevibacillus laterosporus, influences As (III) toxicity and translocation in rice plants. Rice seedlings of four cultivars, namely Guangyou Ming 118 (GM), Teyou Hang II (TH), Shanyou 63 (SY) and Minghui 63 (MH), inoculated with or without the bacterium were grown hydroponically with As (III) to investigate its effects on arsenic toxicity and translocation in the plants. Percentages of As (III) oxidation in the solutions with the bacterium (100%) were all significantly higher than those without (30-72%). The addition of the bacterium significantly decreased As (III) concentrations in SY root, GM root and shoot, while increased the As (III) concentrations in the shoot of SY, MH and TH and in the root of MH. Furthermore, the As (III) concentrations in the root and shoot of SY were both the lowest among the treatments with the bacterium. On the other hand, its addition significantly alleviated the As (III) toxicity on four rice cultivars. Among the treatments amended with B. laterosporus, the bacterium showed the best remediation on SY seedlings, with respect to the subdued As (III) toxicity and decreased As (III) concentration in its roots. These results indicated that As (III) oxidation accelerated by B. laterosporus could be an effective method to alleviate As (III) toxicity on rice seedlings.

  12. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium.

    PubMed

    Derrien, Muriel; Vaughan, Elaine E; Plugge, Caroline M; de Vos, Willem M

    2004-09-01

    The diversity of mucin-degrading bacteria in the human intestine was investigated by combining culture and 16S rRNA-dependent approaches. A dominant bacterium, strain MucT, was isolated by dilution to extinction of faeces in anaerobic medium containing gastric mucin as the sole carbon and nitrogen source. A pure culture was obtained using the anaerobic soft agar technique. Strain MucT was a Gram-negative, strictly anaerobic, non-motile, non-spore-forming, oval-shaped bacterium that could grow singly and in pairs. When grown on mucin medium, cells produced a capsule and were found to aggregate. Strain MucT could grow on a limited number of sugars, including N-acetylglucosamine, N-acetylgalactosamine and glucose, but only when a protein source was provided and with a lower growth rate and final density than on mucin. The G + C content of DNA from strain MucT was 47.6 mol%. 16S rRNA gene sequence analysis revealed that the isolate was part of the division Verrucomicrobia. The closest described relative of strain MucT was Verrucomicrobium spinosum (92 % sequence similarity). Remarkably, the 16S rRNA gene sequence of strain MucT showed 99 % similarity to three uncultured colonic bacteria. According to the data obtained in this work, strain MucT represents a novel bacterium belonging to a new genus in subdivision 1 of the Verrucomicrobia; the name Akkermansia muciniphila gen. nov., sp. nov. is proposed; the type strain is MucT (= ATCC BAA-835T = CIP 107961T).

  13. An Oleaginous Bacterium That Intrinsically Accumulates Long-Chain Free Fatty Acids in its Cytoplasm

    PubMed Central

    Katayama, Taiki; Kanno, Manabu; Morita, Naoki; Hori, Tomoyuki; Narihiro, Takashi; Mitani, Yasuo

    2014-01-01

    Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited β-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production. PMID:24296497

  14. Measurement of soil bacterial colony temperatures and isolation of a high heat-producing bacterium

    PubMed Central

    2013-01-01

    Background The cellular temperatures of microorganisms are considered to be the same as those of their surroundings because the cellular volume is too small to maintain a cellular temperature that is different from the ambient temperature. However, by forming a colony or a biofilm, microorganisms may be able to maintain a cellular temperature that is different from the ambient temperature. In this study, we measured the temperatures of bacterial colonies isolated from soils using an infrared imager and investigated the thermogenesis by a bacterium that increases its colony temperature. Results The temperatures of some colonies were higher or lower than that of the surrounding medium. A bacterial isolate with the highest colony temperature was identified as Pseudomonas putida. This bacterial isolate had an increased colony temperature when it grew at a temperature suboptimal for its growth. Measurements of heat production using a microcalorimeter showed that the temperature of this extraordinary, microcalorimetrically determined thermogenesis corresponded with the thermographically observed increase in bacterial colony temperature. When investigating the effects of the energy source on this thermal behavior, we found that heat production by this bacterium increased without additional biomass production at a temperature suboptimal for its growth. Conclusions We found that heat production by bacteria affected the bacterial colony temperature and that a bacterium identified as Pseudomonas putida could maintain a cellular temperature different from the ambient temperature, particularly at a sub-optimal growth temperature. The bacterial isolate P. putida KT1401 increased its colony temperature by an energy-spilling reaction when the incubation temperature limited its growth. PMID:23497132

  15. Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine

    SciTech Connect

    Bhupathiraju, V.K.; Sharma, P.K.; Tanner, R.S.; McInerney, M.J.; Oren, A.; Woese, C.R.

    1994-07-01

    A strictly anaerobic, moderately halophilic, gram-negative bacterium was isolated from a highly saline oil field brine. The bacterium was a non-spore-forming, nonmotile rod, appearing singly, in pairs, or occasionally as long chains, and measured 0.3 to 0.4 by 2.6 to 4 {micro}m. The bacterium had a specific requirement for NaCl and grew at NaCl concentrations of between 6 and 24%, with optimal growth at 9% NaCl. The isolate grew at temperatures of between 22 and 51 C and pH values of between 5.6 and 8.0. The doubling time in a complex medium containing 10% NaCl was 9 h. Growth was inhibited by chloramphenicol, tetracycline, and penicillin but not by cycloheximide or azide. Fermentable substrates were predominantly carbohydrates. The end products of glucose fermentation were acetate, ethanol, CO{sub 2}, and H{sub 2}. The major components of the cellular fatty acids were C{sub 14:0}, C{sub 16:0}, C{sub 16:1}, and C{sub 17:0 cyc} acids. The DNA base composition of the isolate was 34 mol% G+C. Oligonucleotide catalog and sequence analyses of the 16S rRNA showed that strain VS-752{sup T} was most closely related to Haloanaerobium praevalens GSL{sup T} (ATCC 33744), the sole member of the genus Haloanaerobium. The authors propose that strain VS-752 (ATCC 51327) by established as the type strain of a new species, Haloanaerobium salsugo, in the genus Haloanaerobium. 40 refs., 3 figs, 5 tabs.

  16. Cloning and characterization of nif structural and regulatory genes in the purple sulfur bacterium, Halorhodospira halophila.

    PubMed

    Tsuihiji, Hisayoshi; Yamazaki, Yoichi; Kamikubo, Hironari; Imamoto, Yasushi; Kataoka, Mikio

    2006-03-01

    Halorhodospira halophila is a halophilic photosynthetic bacterium classified as a purple sulfur bacterium. We found that H. halophila generates hydrogen gas during photoautotrophic growth as a byproduct of a nitrogenase reaction. In order to consider the applied possibilities of this photobiological hydrogen generation, we cloned and characterized the structural and regulatory genes encoding the nitrogenase, nifH, nifD and nifA, from H. halophila. This is the first description of the nif genes for a purple sulfur bacterium. The amino-acid sequences of NifH and NifD indicated that these proteins are an Fe protein and a part of a MoFe protein, respectively. The important residues are conserved completely. The sequence upstream from the nifH region and sequence similarities of nifH and nifD with those of the other organisms suggest that the regulatory system might be a NifL-NifA system; however, H. halophila lacks nifL. The amino-acid sequence of H. halophila NifA is closer to that of the NifA of the NifL-NifA system than to that of NifA without NifL. H. halophila NifA does not conserve either the residue that interacts with NifL or the important residues involved in NifL-independent regulation. These results suggest the existence of yet another regulatory system, and that the development of functional systems and their molecular counterparts are not necessarily correlated throughout evolution. All of these Nif proteins of H. halophila possess an excess of acidic residues, which acts as a salt-resistant mechanism.

  17. Influence of Mn Ion on the Iron Biomineralization by an Iron-reducing Bacterium

    NASA Astrophysics Data System (ADS)

    Lee, S.; Roh, Y.; Lee, I.; Phelps, T. J.

    2003-12-01

    Manganese ion is known to be easily sorbed to iron oxide surface or co-precipitated into iron oxides structure, but the effect of manganese ion on iron biomineralization is not sufficiently understood. The objectives of this study were to examine the influence of Mn substitution and sorption on iron biomineralization and to identify biogeochemical factors determining phase distribution of Mn ion during iron biomineralization. The reductive biomineralization of Mn-substituted (Fe1-xMnxOOH) or Mn-sorbed (FeOOH plus MnCl2) akaganeite by an iron-reducing bacterium (Shewanella alga, PV-4) was investigated under ananerobic conditions at circumneutral pH (pH = 7 - 8) and at 25 deg.C. The influence of Mn ion on the iron biomineralization was explored along with effects of bicarbonate (30 - 210 mM) on biomineralization using lactate (10 mM) as an electron donor. No exogenous electron carrier substance (i.e., anthraquinone disulfonate) or reducing agent (i.e., cysteine) was added to the anaerobic medium. Solid phases and aqueous chemistry were characterized after incubations with both of the iron-reducing bacterium and Mn-substituted or Mn-sorbed akaganeite for 30 days. The iron reducing bacterium, S. alga, mainly formed siderite (FeCO3), green rust [Fe2+Fe3+(OH)16CO3 4H2O], and magnetite (Fe3O4) using Mn-substituted akaganeite, while rhodochrosite (MnCO3), siderite, and magnetite were dominant phases using Mn-sorbed akaganeite in the bicarbonate buffered medium. Scanning electron microscopy and transmission electron microscopy with energy dispersive X-ray analysis of iron minerals formed by S. alga showed that Mn was preferentially concentrated in the siderite and green rust. This research indicates that microorganisms may affect the cyclings of Fe, Mn and C and the fate of metal contaminants in subsurface environments.

  18. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio).

    PubMed

    Knauf, Sascha; Barnett, Ulrike; Maciej, Peter; Klapproth, Matthias; Ndao, Ibrahima; Frischmann, Sieghard; Fischer, Julia; Zinner, Dietmar; Liu, Hsi

    2015-01-01

    The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum), yaws (ssp. pertenue), and endemic syphilis (ssp. endemicum) in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio) at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90%) baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560) versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7). Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication campaign with

  19. Pontibacter diazotrophicus sp. nov., a Novel Nitrogen-Fixing Bacterium of the Family Cytophagaceae

    PubMed Central

    Xu, Linghua; Zeng, Xian-Chun; Nie, Yao; Luo, Xuesong; Zhou, Enmin; Zhou, Lingli; Pan, Yunfan; Li, Wenjun

    2014-01-01

    Few diazotrophs have been found to belong to the family Cytophagaceae so far. In the present study, a Gram-negative, rod-shaped bacterium that forms red colonies, was isolated from sands of the Takalamakan desert. It was designated H4XT. Phylogenetic and biochemical analysis indicated that the isolate is a new species of the genus Pontibacter. The 16S rRNA gene of H4XT displays 94.2–96.8% sequence similarities to those of other strains in Pontibacter. The major respiratory quinone is menaquinone-7 (MK-7). The DNA G+C content is 46.6 mol%. The major cellular fatty acids are iso-C15∶0, C16∶1ω5c, summed feature 3 (containing C16∶1ω6c and/or C16∶1ω7c) and summed feature 4 (comprising anteiso-C17∶1B and/or iso-C17∶1I). The major polar lipids are phosphatidylethanolamine (PE), one aminophospholipid (APL) and some unknown phospholipids (PLs). It is interesting to see that this bacterium can grow very well in a nitrogen-free medium. PCR amplification suggested that the bacterium possesses at least one type of nitrogenase gene. Acetylene reduction assay showed that H4XT actually possesses nitrogen-fixing activity. Therefore, it can be concluded that H4XT is a new diazotroph. We thus referred it to as Pontibacter diazotrophicus sp. nov. The type strain is H4XT ( = CCTCC AB 2013049T = NRRL B-59974T). PMID:24647674

  20. Studies of the Extracellular Glycocalyx of the Anaerobic Cellulolytic Bacterium Ruminococcus albus 7▿

    PubMed Central

    Weimer, Paul J.; Price, Neil P. J.; Kroukamp, Otini; Joubert, Lydia-Marie; Wolfaardt, Gideon M.; Van Zyl, Willem H.

    2006-01-01

    Anaerobic cellulolytic bacteria are thought to adhere to cellulose via several mechanisms, including production of a glycocalyx containing extracellular polymeric substances (EPS). As the compositions and structures of these glycocalyces have not been elucidated, variable-pressure scanning electron microscopy (VP-SEM) and chemical analysis were used to characterize the glycocalyx of the ruminal bacterium Ruminococcus albus strain 7. VP-SEM revealed that growth of this strain was accompanied by the formation of thin cellular extensions that allowed the bacterium to adhere to cellulose, followed by formation of a ramifying network that interconnected individual cells to one another and to the unraveling cellulose microfibrils. Extraction of 48-h-old whole-culture pellets (bacterial cells plus glycocalyx [G] plus residual cellulose [C]) with 0.1 N NaOH released carbohydrate and protein in a ratio of 1:5. Boiling of the cellulose fermentation residue in a neutral detergent solution removed almost all of the adherent cells and protein while retaining a residual network of adhering noncellular material. Trifluoroacetic acid hydrolysis of this residue (G plus C) released primarily glucose, along with substantial amounts of xylose and mannose, but only traces of galactose, the most abundant sugar in most characterized bacterial exopolysaccharides. Linkage analysis and characterization by nuclear magnetic resonance suggested that most of the glucosyl units were not present as partially degraded cellulose. Calculations suggested that the energy demand for synthesis of the nonprotein fraction of EPS by this organism represents only a small fraction (<4%) of the anabolic ATP expenditure of the bacterium. PMID:17028224

  1. Adhesive properties of a symbolic bacterium from a wood-boreing marine shipworm

    SciTech Connect

    Imam, S.H.; Greene, R.V.; Griffin, H.L. )

    1990-05-01

    Adhesive properties of cellulolytic, nitrogen-fixing bacterium isolated from a marine shipworm are described. {sup 35}S-labeled cells of the shipworm bacterium bound preferentially Whatman no.1 cellulose filter paper, compared with its binding to other cellulose substrata or substrata lacking cellulose. The ability of the bacteria to bind to Whatman no. 1 filter paper was significantly reduced by glutaraldehyde or heat treatment of cells. Pretreatment of cells with azide, valinomycin, gramicidin-D, bis-hexafluoroacetylacetone (1799), or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone inhibited adhesion activity. Cells pretreated with pronase or trypsin also exhibited reduced binding activity, but chymotrypsin and peptidase had no effect on adhesion activity. Cellodextrins and methyl cellulose 15 inhibited the adhesion of the shipworm bacteria to filter paper, whereas glucose, cellobiose, and soluble carboxymethyl cellulose had no significant effect. The divalent cation chelators EDTA and EGTA (ethylene hlycol-bis({beta}-aminoethyl ether)-N,N,N{prime}N{prime}-tetraacetic acid) had little or no effect on adhesive properties of shipworm bacteria. Also, preabsorbing the substratum with extracellular endoglucanase isolated from the ship worm bacterium or 1% bovine serum albumin had no apparent effect on bacterial binding. Low concentration (0.01%) of sodium dodecyl sulfate solubilized a fraction from whole cells, which appeared to be involved in cellular binding activity. After removal of sodium dodecyl, sulfate, several proteins in this fraction associated with intact cells. These cells exhibited up to 50% enhanced binding to filter paper in comparison to cells which had not been exposed to the sodium dodecyl sulfate-solubilized fraction.

  2. Draft Genome Sequence of the Endophytic Strain Rhodococcus kyotonensis KB10, a Potential Biodegrading and Antibacterial Bacterium Isolated from Arabidopsis thaliana

    PubMed Central

    Hong, Chi Eun; Jo, Sung Hee

    2016-01-01

    Rhodococcus kyotonensis KB10 is an endophytic bacterium isolated from Arabidopsis thaliana. The organism showed mild antibacterial activity against the phytopathogen Pseudomonas syringae pv. tomato DC3000. This study reports the genome sequence of R. kyotonensis KB10. This bacterium contains an ectoine biosynthesis gene cluster and has the potential to degrade nitroaromatic compounds. The identified bacterium may be a suitable biocontrol agent and degrader of environmental pollutants. PMID:27389269

  3. A bacterium that can grow by using arsenic instead of phosphorus.

    PubMed

    Wolfe-Simon, Felisa; Switzer Blum, Jodi; Kulp, Thomas R; Gordon, Gwyneth W; Hoeft, Shelley E; Pett-Ridge, Jennifer; Stolz, John F; Webb, Samuel M; Weber, Peter K; Davies, Paul C W; Anbar, Ariel D; Oremland, Ronald S

    2011-06-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.

  4. Genome sequence of Xanthomonas sacchari R1, a biocontrol bacterium isolated from the rice seed.

    PubMed

    Fang, Yunxia; Lin, Haiyan; Wu, Liwen; Ren, Deyong; Ye, Weijun; Dong, Guojun; Zhu, Li; Guo, Longbiao

    2015-07-20

    Xanthomonas sacchari, was first identified as a pathogenic bacterium isolated from diseased sugarcane in Guadeloupe. In this study, R1 was first isolated from rice seed samples from Philippines in 2002. The antagonistic ability against several rice pathogens raises our attention. The genomic feature of this strain was described in this paper. The total genome size of X. sacchari R1 is 5,000,479 bp with 4315 coding sequences (CDS), 59 tRNAs, 2rRNAs and one plasmid. PMID:25931193

  5. Complete genome sequence of Enterobacter cloacae GGT036: a furfural tolerant soil bacterium.

    PubMed

    Gong, Gyeongtaek; Um, Youngsoon; Park, Tai Hyun; Woo, Han Min

    2015-01-10

    Enterobacter cloacae is a facultative anaerobic bacterium to be an important cause of nosocomial infection. However, the isolated E. cloacae GGT036 showed higher furfural-tolerant cellular growth, compared to industrial relevant strains such as Escherichia coli and Corynebacterium glutamicum. Here, we report the complete genome sequence of E. cloacae GGT036 isolated from Mt. Gwanak, Seoul, Republic of Korea. The genomic DNA sequence of E. cloacae GGT036 will provide valuable genetic resources for engineering of industrially relevant strains being tolerant to cellular inhibitors present in lignocellulosic hydrolysates. PMID:25444880

  6. Genome Sequence of the Boron-Tolerant and -Requiring Bacterium Bacillus boroniphilus

    PubMed Central

    Çöl, Bekir; Özkeserli, Zeynep; Kumar, Dibyendu; Özdağ, Hilal

    2014-01-01

    Bacillus boroniphilus is a highly boron-tolerant bacterium that also requires this element for its growth. The complete genome sequence of B. boroniphilus was determined by a combination of shotgun sequencing and paired-end sequencing using 454 pyrosequencing technology. A total of 84,872,624 reads from shotgun sequencing and a total of 194,092,510 reads from paired-end sequencing were assembled using Newbler 2.3. The estimated size of the draft genome is 5.2 Mb. PMID:24385571

  7. Coarse grained simulation reveals antifreeze properties of hyperactive antifreeze protein from Antarctic bacterium Colwellia sp.

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung; Van, Thanh Dac; Le, Ly

    2015-10-01

    The novel hyperactive antifreeze protein (AFP) of Antarctic sea ice bacterium Colwellia sp. provides a target for studying the protection of psychrophilic microgoranisms against freezing environment. Interestingly, the Colwellia sp. hyperactive antifreeze protein (ColAFP) was crystallized without the structural dynamic characteristics. Here, the result indicated, through coarse grained simulation of ColAFP under various subfreezing temperature, that ColAFP remains active at temperature of equal and greater than 275 K (∼2 °C). Extensive simulation analyses also revealed the adaptive mechanism of ColAFP in subfreezing environment. Our result provides a structural dynamic understanding of the ColAFP.

  8. Complete genome of a coastal marine bacterium Muricauda lutaonensis KCTC 22339(T).

    PubMed

    Oh, Jeongsu; Choe, Hanna; Kim, Byung Kwon; Kim, Kyung Mo

    2015-10-01

    Muricauda lutaonensis KCTC 22339(T) is a yellow-pigmented, gram-negative, rod-shaped bacterium that was isolated from a coastal hot spring of a volcanic island in the Pacific Ocean, off the eastern coast of Taiwan. We here report the complete genome of M. lutaonensis KCTC 22339(T), which consists of 3,274,259bp with the G+C content of 44.97%. The completion of the M. lutaonensis genome sequence is expected to provide a valuable resource for understanding the secondary metabolic pathways related to bacterial pigmentation.

  9. Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge

    NASA Astrophysics Data System (ADS)

    Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.

    2006-12-01

    Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only

  10. [Isolation and characterization of a facultative anaerobic aniline-degrading bacterium].

    PubMed

    Zeng, Guo-Qu; Ren, Sui-Zhou; Cao, Wei; Hu, Jin-Cai; Lin, Lu-Jing; Sun, Guo-Ping

    2006-08-01

    An aniline-degrading bacterium (designated strain AN29) was isolated from dyeing wastewater process (anaerobic baffled reactor, ABR) with the capability of utilizing aniline as sole carbon source and nitrogen source. It was identified as Pseudomonas sp. based upon the phenotypic properties and a partial analysis of the 16S rDNA. The strain could degrade aniline under the aerobic and anaerobic conditions, the optimal initial pH 6.5 - 8.0, a temperature of 37 degrees C, and initial aniline concentrations of 500 - 2 000 mg/L with maximum concentration of 4 000 mg/L respectively.

  11. A bacterium that can grow by using arsenic instead of phosphorus

    USGS Publications Warehouse

    Wolfe-Simon, Felisa; Blum, J.S.; Kulp, T.R.; Gordon, G.W.; Hoeft, S.E.; Pett-Ridge, J.; Stolz, J.F.; Webb, S.M.; Weber, P.K.; Davies, P.C.W.; Anbar, A.D.; Oremland, R.S.

    2011-01-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.

  12. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    SciTech Connect

    Maurice, P.

    2004-12-13

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals.

  13. News & notes: paper digestion by the cellulolytic ruminal bacterium Fibrobacter succinogenes.

    PubMed

    Martin, S A; Martin, J A

    1998-12-01

    The objective of this study was to evaluate the ability of the predominant cellulolytic ruminal bacterium Fibrobacter succinogenes S85 to digest filter paper, office paper, newspaper, and magazine paper. When F. succinogenes S85 was incubated with all four paper sources, little digestion of any paper occurred between 0 and 48 h. However, digestion of filter paper increased from 12% at 48 h to 80% at 120 h. No significant digestion of office paper, newspaper, or magazine paper occurred between 48 and 120 h. These results suggest that F. succinogenes S85 is unable to digest office paper, newspaper, or magazine paper.

  14. Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen

    NASA Astrophysics Data System (ADS)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2016-04-01

    Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.

  15. Partial genome sequence of the haloalkaliphilic soda lake bacterium Thioalkalivibrio thiocyanoxidans ARh 2T

    DOE PAGESBeta

    Berben, Tom; Sorokin, Dimitry Y.; Ivanova, Natalia; Pati, Amrita; Kyrpides, Nikos; Goodwin, Lynne A.; Woyke, Tanja; Muyzer, Gerard

    2015-10-26

    Thioalkalivibrio thiocyanoxidans strain ARh 2T is a sulfur-oxidizing bacterium isolated from haloalkaline soda lakes. It is a motile, Gram-negative member of the Gammaproteobacteria. Remarkable properties include the ability to grow on thiocyanate as the sole energy, sulfur and nitrogen source, and the capability of growth at salinities of up to 4.3 M total Na+. This draft genome sequence consists of 61 scaffolds comprising 2,765,337 bp, and contains 2616 protein-coding and 61 RNA-coding genes. In conclusion, this organism was sequenced as part of the Community Science Program of the DOE Joint Genome Institute.

  16. An Updated genome annotation for the model marine bacterium Ruegeria pomeroyi DSS-3

    PubMed Central

    2014-01-01

    When the genome of Ruegeria pomeroyi DSS-3 was published in 2004, it represented the first sequence from a heterotrophic marine bacterium. Over the last ten years, the strain has become a valuable model for understanding the cycling of sulfur and carbon in the ocean. To ensure that this genome remains useful, we have updated 69 genes to incorporate functional annotations based on new experimental data, and improved the identification of 120 protein-coding regions based on proteomic and transcriptomic data. We review the progress made in understanding the biology of R. pomeroyi DSS-3 and list the changes made to the genome. PMID:25780504

  17. Complete genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344.

    PubMed

    Wibberg, Daniel; Luque-Almagro, Víctor M; Igeño, Ma Isabel; Bremges, Andreas; Roldán, Ma Dolores; Merchán, Faustino; Sáez, Lara P; Guijo, Ma Isabel; Manso, Ma Isabel; Macías, Daniel; Cabello, Purificación; Becerra, Gracia; Ibáñez, Ma Isabel; Carmona, Ma Isabel; Escribano, Ma María Paz; Castillo, Francisco; Sczyrba, Alexander; Moreno-Vivián, Conrado; Blasco, Rafael; Pühler, Alfred; Schlüter, Andreas

    2014-04-10

    Pseudomonas pseudoalcaligenes CECT5344, a Gram-negative bacterium isolated from the Guadalquir River (Córdoba, Spain), is able to utilize different cyano-derivatives. Here, the complete genome sequence of P. pseudoalcaligenes CECT5344 harboring a 4,686,340bp circular chromosome encoding 4513 genes and featuring a GC-content of 62.34% is reported. Necessarily, remaining gaps in the genome had to be closed by assembly of few long reads obtained from PacBio single molecule real-time sequencing. Here, the first complete genome sequence for the species P. pseudoalcaligenes is presented. PMID:24553071

  18. Cadmium-nickel toxicity interactions towards a bacterium, filamentous fungi, and a cultured mammalian cell line

    SciTech Connect

    Babich, H.; Shopsis, C.; Borenfreund, E.

    1986-10-01

    The response of the biota to exposure to individual metals may differ from its response to multiple metals, as mixtures of metals may interact antagonistically or synergistically in their resultant toxicity. The present study evaluated the effects of a combination of Cd and Ni on the freshwater bacterium, Aeromonas hydrophila, the terrestrial fungi, Trichodema viride and Aspergillus niger, and the mammalian cell line, BALB/c mouse 3T3 fibroblasts. This particular spectrum of target cells was selected because studies in the literature show a wide variety of possible interactions between Cd and Ni in their combined toxicities towards bacteria cyanobacteria, slime molds, isolated rat hepatocytes, and rats.

  19. An Updated genome annotation for the model marine bacterium Ruegeria pomeroyi DSS-3.

    PubMed

    Rivers, Adam R; Smith, Christa B; Moran, Mary Ann

    2014-01-01

    When the genome of Ruegeria pomeroyi DSS-3 was published in 2004, it represented the first sequence from a heterotrophic marine bacterium. Over the last ten years, the strain has become a valuable model for understanding the cycling of sulfur and carbon in the ocean. To ensure that this genome remains useful, we have updated 69 genes to incorporate functional annotations based on new experimental data, and improved the identification of 120 protein-coding regions based on proteomic and transcriptomic data. We review the progress made in understanding the biology of R. pomeroyi DSS-3 and list the changes made to the genome.

  20. Complete genome sequence of Enterobacter cloacae GGT036: a furfural tolerant soil bacterium.

    PubMed

    Gong, Gyeongtaek; Um, Youngsoon; Park, Tai Hyun; Woo, Han Min

    2015-01-10

    Enterobacter cloacae is a facultative anaerobic bacterium to be an important cause of nosocomial infection. However, the isolated E. cloacae GGT036 showed higher furfural-tolerant cellular growth, compared to industrial relevant strains such as Escherichia coli and Corynebacterium glutamicum. Here, we report the complete genome sequence of E. cloacae GGT036 isolated from Mt. Gwanak, Seoul, Republic of Korea. The genomic DNA sequence of E. cloacae GGT036 will provide valuable genetic resources for engineering of industrially relevant strains being tolerant to cellular inhibitors present in lignocellulosic hydrolysates.

  1. Partial genome sequence of the haloalkaliphilic soda lake bacterium Thioalkalivibrio thiocyanoxidans ARh 2(T).

    PubMed

    Berben, Tom; Sorokin, Dimitry Y; Ivanova, Natalia; Pati, Amrita; Kyrpides, Nikos; Goodwin, Lynne A; Woyke, Tanja; Muyzer, Gerard

    2015-01-01

    Thioalkalivibrio thiocyanoxidans strain ARh 2(T) is a sulfur-oxidizing bacterium isolated from haloalkaline soda lakes. It is a motile, Gram-negative member of the Gammaproteobacteria. Remarkable properties include the ability to grow on thiocyanate as the sole energy, sulfur and nitrogen source, and the capability of growth at salinities of up to 4.3 M total Na(+). This draft genome sequence consists of 61 scaffolds comprising 2,765,337 bp, and contains 2616 protein-coding and 61 RNA-coding genes. This organism was sequenced as part of the Community Science Program of the DOE Joint Genome Institute.

  2. Whole genome shotgun sequence of Bacillus amyloliquefaciens TF28, a biocontrol entophytic bacterium.

    PubMed

    Zhang, Shumei; Jiang, Wei; Li, Jing; Meng, Liqiang; Cao, Xu; Hu, Jihua; Liu, Yushuai; Chen, Jingyu; Sha, Changqing

    2016-01-01

    Bacillus amyloliquefaciens TF28 is a biocontrol endophytic bacterium that is capable of inhibition of a broad range of plant pathogenic fungi. The strain has the potential to be developed into a biocontrol agent for use in agriculture. Here we report the whole-genome shotgun sequence of the strain. The genome size of B. amyloliquefaciens TF28 is 3,987,635 bp which consists of 3754 protein-coding genes, 65 tandem repeat sequences, 47 minisatellite DNA, 2 microsatellite DNA, 63 tRNA, 7rRNA, 6 sRNA, 3 prophage and CRISPR domains. PMID:27688836

  3. Complete genome of a coastal marine bacterium Muricauda lutaonensis KCTC 22339(T).

    PubMed

    Oh, Jeongsu; Choe, Hanna; Kim, Byung Kwon; Kim, Kyung Mo

    2015-10-01

    Muricauda lutaonensis KCTC 22339(T) is a yellow-pigmented, gram-negative, rod-shaped bacterium that was isolated from a coastal hot spring of a volcanic island in the Pacific Ocean, off the eastern coast of Taiwan. We here report the complete genome of M. lutaonensis KCTC 22339(T), which consists of 3,274,259bp with the G+C content of 44.97%. The completion of the M. lutaonensis genome sequence is expected to provide a valuable resource for understanding the secondary metabolic pathways related to bacterial pigmentation. PMID:25986927

  4. FACTORS LIMITING BACTERIAL GROWTH : III. CELL SIZE AND "PHYSIOLOGIC YOUTH" IN BACTERIUM COLI CULTURES.

    PubMed

    Hershey, A D; Bronfenbrenner, J

    1938-07-20

    1. Measurements of the rate of oxygen uptake per cell in transplants of Bacterium coli from cultures of this organism in different phases of growth have given results in essential agreement with the observations of others. 2. Correlations of viable count, centrifugable nitrogen, and turbidity, with oxygen consumption, indicate that the increased metabolism during the early portion of the growth period is quantitatively referable to increased average size of cells. 3. Indirect evidence has suggested that the initial rate of growth of transplants is not related to the phase of growth of the parent culture.

  5. Response to Comments on "A Bacterium That Can Grow Using Arsenic Instead of Phosphorus"

    SciTech Connect

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2011-03-07

    Concerns have been raised about our recent study describing a bacterium that can grow using arsenic (As) instead of phosphorus (P). Our data suggested that As could act as a substitute for P in major biomolecules in this organism. Although the issues raised are of investigative interest, we contend that they do not invalidate our conclusions. We argue that while no single line of evidence we presented was sufficient to support our interpretation of the data, taken as an entire dataset we find no plausible alternative to our conclusions. Here we reply to the critiques and provide additional arguments supporting the assessment of the data we reported.

  6. A bacterium that can grow by using arsenic instead of phosphorus

    SciTech Connect

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2010-11-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical significance.

  7. Exoelectrogenic bacterium phylogenetically related to Citrobacter freundii, isolated from anodic biofilm of a microbial fuel cell.

    PubMed

    Huang, Jianjian; Zhu, Nengwu; Cao, Yanlan; Peng, Yue; Wu, Pingxiao; Dong, Wenhao

    2015-02-01

    An electrogenic bacterium, named Citrobacter freundii Z7, was isolated from the anodic biofilm of microbial fuel cell (MFC) inoculated with aerobic sewage sludge. Cyclic voltammetry (CV) analysis exhibited that the strain Z7 had relatively high electrochemical activity. When the strain Z7 was inoculated into MFC, the maximum power density can reach 204.5 mW/m(2) using citrate as electron donor. Series of substrates including glucose, glycerol, lactose, sucrose, and rhammose could be utilized to generate power. CV tests and the addition of anode solution as well as AQDS experiments indicated that the strain Z7 might transfer electrons indirectly via secreted mediators.

  8. Draft genome sequence of algal polysaccharides degradation bacterium, Flammeovirga sp. OC4.

    PubMed

    Liu, Yang; Yi, Zhiwei; Cai, Yaping; Zeng, Runying

    2015-06-01

    Flammeovirga sp. OC4 was isolated from seawater sample of the South China Sea using the method of in-situ-enrichment, which has the ability to degrade algal polysaccharides. Colonies are reddish orange in the exponential growth phase and turn white in the late stationary growth phase, which is the indicator of the bacterial death. Here, we present an annotated draft genome sequence of Flammeovirga sp. OC4, which contains 8,069,312bp with a G+C content of 34.8%. This information regarding the genetic basis of this bacterium can greatly advance our understanding of algal polysaccharides-degrading mechanism and the physiology of this species.

  9. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aurantiacus

    SciTech Connect

    Tang, Kuo-Hsiang; Barry, Kerrie; Chertkov, Olga; Dalin, Eileen; Han, Cliff; Hauser, Loren John; Honchak, Barbara M; Karbach, Lauren E; Land, Miriam L; Lapidus, Alla L.; Larimer, Frank W; Mikhailova, Natalia; Pitluck, Sam; Pierson, Beverly K

    2011-01-01

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.

  10. Clostridium perfringens: a flesh-eating bacterium living in your garden.

    PubMed

    Rothwell, Ann

    2010-10-01

    Gas gangrene is a painful, rapidly developing and potentially fatal infection despite antibiotic treatment. During the First World War thousands of soldiers died from this disease. Dr Alexis Carrel pioneered a controversial method of irrigating wounds with Dakin's solution to destroy Clostridium perfringens, a bacterium found in heavily fertilised soils that causes gas gangrene. Although this method is no longer used due to the discovery of antibiotics, many of his other ideas, such as scientifically determining the type and number of bacteria and delaying the closure of a wound until the bacteria had been eradicated, are still used today. PMID:21049805

  11. Complete genome sequence of Hymenobacter swuensis, an ionizing-radiation resistant bacterium isolated from mountain soil.

    PubMed

    Jung, Jong-Hyun; Yang, Ho-Yeon; Jeong, Sunwook; Joe, Min-Ho; Cho, Yong-Joon; Kim, Myung-Kyum; Lim, Sangyong

    2014-05-20

    Hymenobacter swuensis is a gamma-radiation resistant bacterium isolated from mountain soil in South Korea (N 35°51'38″, E 127°44'47″; altitude 1500m). The complete genome of H. swuensis consists of one chromosome (4,904,241bp) with three plasmids. The genomic sequence indicated that H. swuensis includes a series of genes involved in 2'-hydroxy-carotenoid biosynthesis. This is the first report describing the Hymenobacter genome and key enzymes in the 2'-hydroxy-carotenoid biosynthesis pathway. These data may provide opportunities for genetic engineering and antioxidant 2'-hydroxy-carotenoid production. PMID:24637374

  12. Francisella Inflammasomes: Integrated Responses to a Cytosolic Stealth Bacterium.

    PubMed

    Wallet, Pierre; Lagrange, Brice; Henry, Thomas

    2016-01-01

    Francisella tularensis is a facultative intracellular bacterium causing tularemia, a zoonotic disease. Francisella replicates in the macrophage cytosol and eventually triggers cytosolic immune responses. In murine macrophages, Francisella novicida and Francisella tularensis live vaccine strain lyse in the host cytosol and activate the cytosolic DNA receptor Aim2. Here, we review the mechanisms leading or contributing to Aim2 inflammasome activation, including the role of TLRs and of IFN signaling and the implication of the guanylate-binding proteins 2 and 5 in triggering cytosolic bacteriolysis. Furthermore, we present how this cytosolic Gram-negative bacterium escapes recognition by caspase-11 but can trigger a non-canonical caspase-8 inflammasome. In addition, we highlight the differences in inflammasome activation in murine and human cells with pyrin, NLRP3, and AIM2 involved in sensing Francisella in human phagocytes. From a bacterial prospective, we describe the hiding strategy of Francisella to escape recognition by innate sensors and to resist to bacteriolysis in the host cytosol. Finally, we discuss the inability of the inflammasome sensors to detect F. tularensis subspecies tularensis strains, making them highly pathogenic stealth microbes.

  13. Development of a gene cloning system for the hydrogen-producing marine photosynthetic bacterium Rhodopseudomonas sp

    SciTech Connect

    Matsunaga, T.; Matsunaga, N.; Tsubaki, K.; Tanaka, T.

    1986-10-01

    Seventy-six strains of marine photosynthetic bacteria were analyzed by agarose gel electrophoresis for plasmid DNA content. Among these strains, 12 carried two to four different plasmids with sizes ranging from 3.1 to 11.0 megadaltons. The marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 had two plasmids, pRD06S and pRD06L. The smaller plasmid, pRD06S, had a molecular weight of 3.8 megadaltons and was cut at a single site by restriction endonucleases SalI, SmaI, PstI, XhoI, and BglII. Moreover, the marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 containing plasmid pRD06 had a satisfactory growth rate (doubling time, 7.5 h), a hydrogen-producing rate of 0.96 ..mu..mol/mg (dry weight) of cells per h, and nitrogen fixation capability. Plasmid pRD06S, however, had neither drug resistance nor heavy-metal resistance, and its copy number was less than 10. Therefore, a recombinant plasmid consisting of pRD06S and Escherichia coli cloning vector pUC13 was constructed and cloned in E. coli. The recombinant plasmid was transformed into Rhodopseudomonas sp. NKPB002106. As a result, Rhodopseudomonas sp. NKPB002106 developed ampicillin resistance. Thus, a shuttle vector for gene transfer was constructed for marine photosynthetic bacteria.

  14. Detection of a novel bacterium associated with spores of the arbuscular mycorrhizal fungus Gigaspora margarita.

    PubMed

    Long, Liangkun; Yao, Qing; Ai, Yuncan; Deng, Mingrong; Zhu, Honghui

    2009-06-01

    With PCR-denaturing gradient gel electrophoresis analysis, two bacterial 16S rRNA gene V3 region sequences, 7A and 7B, were detected in association with the crushed spores of the arbuscular mycorrhizal fungus Gigaspora margarita W.N. Becker & I.R. Hall 1976 MAFF520054. DNA sequencing and phylogenetic analysis revealed that 7B was mostly related to the documented cytoplasm endosymbiotic bacterium Candidatus Glomeribacter gigasporarum of G. margarita, but 7A could not be confidently assigned to a known taxon. Further characterization of 7A was conducted by obtaining its almost complete 16S rRNA gene sequence via PCR amplification and sequencing. BLAST search indicates that the 16S rRNA gene sequence did not match any identified species sequences in the GenBank database. Further detection revealed that 7A was also associated with the clean G. margarita MAFF520054 spores that were obtained by the surface-sterilized method or dual culture with Ri T-DNA transformed carrot roots. Many ellipse-shaped or egg-shaped bacterium-like organisms were clustered in layer 3 of the fungal spore wall by transmission electron microscopy observation. Our results indicate that 7A represents a novel bacterial population associated with G. margarita MAFF520054 spores, and its doubtless location (wall or cytoplasm) remains unclear based on the present data.

  15. Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae.

    PubMed

    Kojima, Motoki; Akahoshi, Tomohiro; Okamoto, Kenji; Yanase, Hideshi

    2012-11-01

    In order to reduce the cost of bioethanol production from lignocellulosic biomass, we developed a tool for cell surface display of cellulolytic enzymes on the ethanologenic bacterium Zymobacter palmae. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, to express and display heterologous cellulolytic enzymes on the Z. palmae cell surface, we utilized the cell-surface display motif of the Pseudomonas ice nucleation protein Ina. The gene encoding Ina from Pseudomonas syringae IFO3310 was cloned, and its product was comprised of three functional domains: an N-terminal domain, a central domain with repeated amino acid residues, and a C-terminal domain. The N-terminal domain of Ina was shown to function as the anchoring motif for a green fluorescence protein fusion protein in Escherichia coli. To express a heterologous cellulolytic enzyme extracellularly in Z. palmae, we fused the N-terminal coding sequence of Ina to the coding sequence of an N-terminal-truncated Cellulomonas endoglucanase. Z. palmae cells carrying the fusion endoglucanase gene were shown to degrade carboxymethyl cellulose. Although a portion of the expressed fusion endoglucanase was released from Z. palmae cells into the culture broth, we confirmed the display of the protein on the cell surface by immunofluorescence microscopy. The results indicate that the N-terminal anchoring motif of Ina from P. syringae enabled the translocation and display of the heterologous cellulase on the cell surface of Z. palmae.

  16. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    PubMed

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment. PMID:26086561

  17. Marine bacterium strain screening and pyrethroid insecticide-degrading efficiency analysis

    NASA Astrophysics Data System (ADS)

    Sun, Aili; Liu, Jinghua; Shi, Xizhi; Li, Dexiang; Chen, Jiong; Tang, Daojun

    2014-09-01

    A pyrethroid insecticide-degrading bacterium, strain HS-24, was isolated from an offshore seawater environment. The strain, which can degrade cypermethrin (CYP) and deltamethrin (DEL), was identified as Methylophaga sp. The optimal culture and degradation conditions for CYP and DEL by strain HS-24 is pH 7 at 28°C. Under optimum culture conditions, strain HS-24 exhibited a broad degradation concentration range of 100, 200, 400, 600, and 800 mg/L for CYP and DEL. The metabolic intermediates were analyzed by NMR, which provided strong evidence that CYP and DEL removal occurred mainly because of a biological process. The toxicity of the degradation products of strain HS-24 was studied simultaneously by measuring the light output of the luminescence bacterium. This demonstrated that the biodegradation ability of strain HS-24 significantly decreased the toxicity of CYP- and DEL-contaminated aquaculture seawater. Finally, the findings of this paper indicate that strain HS-24 is thus revealed as a biological agent for the remediation of marine aquatic environments.

  18. Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice.

    PubMed

    Auman, Ann J; Breezee, Jennifer L; Gosink, John J; Kämpfer, Peter; Staley, James T

    2006-05-01

    A gas vacuolate bacterium, designated strain 37T, was isolated from a sea ice core collected from Point Barrow, Alaska, USA. Cells of strain 37T were large (6-14 microm in length), rod-shaped, contained gas vacuoles of two distinct morphologies, and grew well at NaCl concentrations of 1-10 % and at temperatures of -12 to 10 degrees C. The DNA G+C content was 40 mol%. Whole-cell fatty acid analysis showed that 16 : 1omega7c comprised 67 % of the total fatty acid content. Phylogenetic analysis of 16S rRNA gene sequences indicated that this bacterium was closely related to members of the genus Psychromonas, with highest sequence similarity (96.8 %) to Psychromonas antarctica. Phenotypic analysis differentiated strain 37T from P. antarctica on the basis of several characteristics, including cell morphology, growth temperature range and the ability to hydrolyse polymers. DNA-DNA hybridization experiments revealed a level of relatedness of 37 % between strain 37T and P. antarctica, providing further support that it represents a distinct species. The name Psychromonas ingrahamii sp. nov. is proposed for this novel species. The type strain is 37T (=CCUG 51855T=CIP 108865T).

  19. Melanin from the Nitrogen-Fixing Bacterium Azotobacter chroococcum: A Spectroscopic Characterization

    PubMed Central

    Banerjee, Raja

    2014-01-01

    Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state 13C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation. PMID:24416247

  20. Application of DNA adductomics to soil bacterium Sphingobium sp. strain KK22.

    PubMed

    Kanaly, Robert A; Micheletto, Ruggero; Matsuda, Tomonari; Utsuno, Youko; Ozeki, Yasuhiro; Hamamura, Natsuko

    2015-10-01

    Toward the development of ecotoxicology methods to investigate microbial markers of impacts of hydrocarbon processing activities, DNA adductomic analyses were conducted on a sphingomonad soil bacterium. From growing cells that were exposed or unexposed to acrolein, a commonly used biocide in hydraulic fracturing processes, DNA was extracted, digested to 2'-deoxynucleosides and analyzed by liquid chromatography-positive ionization electrospray-tandem mass spectrometry in selected reaction monitoring mode transmitting the [M + H](+) > [M + H - 116](+) transition over 100 transitions. Overall data shown as DNA adductome maps revealed numerous putative DNA adducts under both conditions with some occurring specifically for each condition. Adductomic analyses of triplicate samples indicated that elevated levels of some targeted putative adducts occurred in exposed cells. Two exposure-specific adducts were identified in exposed cells as 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro-6-hydroxy-(and 8-hydroxy-)pyrimido[1,2-a]- purine-(3H)-one (6- and 8-hydroxy-PdG) following synthesis of authentic standards of these compounds and subsequent analyses. A time course experiment showed that 6- and 8-hydroxy-PdG were detected in bacterial DNA within 30 min of acrolein exposure but were not detected in unexposed cells. This work demonstrated the first application of DNA adductomics to examine DNA damage in a bacterium and sets a foundation for future work. PMID:26305056

  1. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036.

    PubMed

    Choi, Sun Young; Gong, Gyeongtaek; Park, Hong-Sil; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2015-01-10

    Detoxification process of cellular inhibitors including furfural is essential for production of bio-based chemicals from lignocellulosic biomass. Here we isolated an extreme furfural-tolerant bacterium Enterobacter cloacae GGT036 from soil sample collected in Mt. Gwanak, Republic of Korea. Among isolated bacteria, only E. cloacae GGT036 showed cell growth with 35 mM furfural under aerobic culture. Compared to the maximal half inhibitory concentration (IC50) of well-known industrial strains Escherichia coli (24.9 mM furfural) and Corynebacterium glutamicum (10 mM furfural) based on the cell density, IC50 of E. cloacae GGT036 (47.7 mM) was significantly higher after 24 h, compared to E. coli and C. glutamicum. Since bacterial cell growth was exponentially inhibited depending on linearly increased furfural concentrations in the medium, we concluded that E. cloacae GGT036 is an extreme furfural-tolerant bacterium. Recently, the complete genome sequence of E. cloacae GGT036 was announced and this could provide an insight for engineering of E. cloacae GGT036 itself or other industrially relevant bacteria.

  2. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    PubMed

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  3. Characterization of outer membrane vesicles released by the psychrotolerant bacterium Pseudoalteromonas antarctica NF3

    PubMed Central

    Nevot, Maria; Deroncelé, Víctor; Messner, Paul; Guinea, Jesús; Mercadé, Elena

    2015-01-01

    Summary Pseudoalteromonas antarctica NF3 is an Antarctic psychrotolerant Gram-negative bacterium that accumulates large amounts of an extracellular polymeric substance (EPS) with high protein content. Transmission electron microscopy analysis after high-pressure freezing and freeze substitution (HPF-FS) shows that the EPS is composed of a capsular polymer and large numbers of outer membrane vesicles (OMVs). These vesicles are bilayered structures and predominantly spherical in shape, with an average diameter of 25–70 nm, which is similar to what has been observed in OMVs from other Gram-negative bacteria. Analyses of lipopolysaccharide (LPS), phospholipids and protein profiles of OMVs are consistent with the bacterial outer membrane origin of these vesicles. In an initial attempt to elucidate the functions of OMVs proteins, we conducted a proteomic analysis on 1D SDS-PAGE bands. Those proteins putatively identified match with outer membrane proteins and proteins related to nutrient processing and transport in Gram-negative bacteria. This approach suggests that OMVs present in the EPS from P. antarctica NF3, might function to deliver proteins to the external media, and therefore play an important role in the survival of the bacterium in the extreme Antarctic environment. PMID:16913913

  4. A highly infective plant-associated bacterium influences reproductive rates in pea aphids

    PubMed Central

    Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.

    2016-01-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  5. Isolation and Characterization of an Anaerobic, Cellulolytic Bacterium, Clostridium cellulovorans sp. nov

    PubMed Central

    Sleat, Robert; Mah, Robert A.; Robinson, Ralph

    1984-01-01

    A new anaerobic, mesophilic, spore-forming cellulolytic bacterium is described. Cellulose is cleared within 24 to 48 h around colonies formed in cellulose agar roll tubes. Cells stain gram negative and are nonmotile rods which form oblong spores either centrally or subterminally in a clostridial swelling. Colonies are irregular with an opaque edge and a center devoid of both vegetative cells and spores. Cellulose, xylan, pectin, cellobiose, glucose, maltose, galactose, sucrose, lactose, and mannose serve as substrates for growth. H2, CO2, acetate, butyrate, formate, and lactate are produced during fermentation of cellulose or cellobiose. The temperature and pH for optimum growth are 37°C and 7.0, respectively. The DNA composition is 26 to 27 mol% guanine plus cytosine. This bacterium resembles “Clostridium lochheadii” in morphological and some biochemical characteristics but is not identical to it. The name Clostridium cellulovorans sp. nov. is proposed. The type strain is 743B (ATCC 35296). Images PMID:16346602

  6. Polaribacter butkevichii sp. nov., a novel marine mesophilic bacterium of the family Flavobacteriaceae.

    PubMed

    Nedashkovskaya, Olga I; Kim, Seung Bum; Lysenko, Anatoly M; Kalinovskaya, Nataliya I; Mikhailov, Valery V; Kim, In Seop; Bae, Kyung Sook

    2005-12-01

    A novel heterotrophic, yellow pigmented, aerobic, Gram-negative, nonmotile, oxidase- and catalase-positive bacterium KMM 3,938(T) was isolated from sea water collected in the Sea of Japan, Russia. The strain grew at mesophilic temperature range, and required the presence of NaCl for growth. 16S rRNA gene sequence analysis revealed that strain KMM 3,938(T) is a member of the family Flavobacteriaceae. The predominant fatty acids were C13:0 iso, C14:0 iso, C15:0 iso, C15:0, C15:1Delta6, 3OH-C15:0:3 iso, and 3OH-C15:0. The G + C content of the DNA of KMM 3938(T) was 32.4 mol%. On the basis of phenotypic, chemotaxonomic, genotypic, and phylogenetic characteristics, the novel bacterium was assigned to the genus Polaribacter as Polaribacter butkevichii sp. nov. The type strain is KMM 3938(T )(= KCTC 12100(T) = CCUG 48005(T)).

  7. Genome Analysis of Thermosulfurimonas dismutans, the First Thermophilic Sulfur-Disproportionating Bacterium of the Phylum Thermodesulfobacteria.

    PubMed

    Mardanov, Andrey V; Beletsky, Alexey V; Kadnikov, Vitaly V; Slobodkin, Alexander I; Ravin, Nikolai V

    2016-01-01

    Thermosulfurimonas dismutans S95(T), isolated from a deep-sea hydrothermal vent is the first bacterium of the phylum Thermodesulfobacteria reported to grow by the disproportionation of elemental sulfur, sulfite, or thiosulfate with carbon dioxide as the sole carbon source. In contrast to its phylogenetically close relatives, which are dissimilatory sulfate-reducers, T. dismutans is unable to grow by sulfate respiration. The features of this organism and its 2,1 Mb draft genome sequence are described in this report. Genome analysis revealed that the T. dismutans genome contains the set of genes for dissimilatory sulfate reduction including ATP sulfurylase, the AprA and B subunits of adenosine-5'-phosphosulfate reductase, and dissimilatory sulfite reductase. The oxidation of elemental sulfur to sulfite could be enabled by APS reductase-associated electron transfer complex QmoABC and heterodisulfide reductase. The genome also contains several membrane-linked molybdopterin oxidoreductases that are thought to be involved in sulfur metabolism as subunits of thiosulfate, polysulfide, or tetrathionate reductases. Nitrate could be used as an electron acceptor and reduced to ammonium, as indicated by the presence of periplasmic nitrate and nitrite reductases. Autotrophic carbon fixation is enabled by the Wood-Ljungdahl pathway, and the complete set of genes that is required for nitrogen fixation is also present in T. dismutans. Overall, our results provide genomic insights into energy and carbon metabolism of chemolithoautotrophic sulfur-disproportionating bacterium that could be important primary producer in microbial communities of deep-sea hydrothermal vents.

  8. Nematode-Bacterium Symbioses - Cooperation and Conflict Revealed in the 'Omics' Age

    PubMed Central

    Murfin, Kristen E.; Dillman, Adler R.; Foster, Jeremy M.; Bulgheresi, Silvia; Slatko, Barton E.; Sternberg, Paul W.; Goodrich-Blair, Heidi

    2012-01-01

    Nematodes are ubiquitous organisms that have a significant global impact on ecosystems, economies, agriculture, and human health. The applied importance of nematodes and the experimental tractability of many species have promoted their use as models in various research areas, including developmental biology, evolutionary biology, ecology, and animal-bacterium interactions. Nematodes are particularly well suited for investigating host associations with bacteria because all nematodes have interacted with bacteria during their evolutionary history and engage in a diversity of association types. Interactions between nematodes and bacteria can be positive (mutualistic) or negative (pathogenic/parasitic) and may be transient or stably maintained (symbiotic). Furthermore, since many mechanistic aspects of nematode-bacterium interactions are conserved their study can provide broader insights into other types of associations, including those relevant to human diseases. Recently, genome-scale studies have been applied to diverse nematode-bacterial interactions, and have helped reveal mechanisms of communication and exchange between the associated partners. In addition to providing specific information about the system under investigation, these studies also have helped inform our understanding of genome evolution, mutualism, and innate immunity. In this review we will discuss the importance and diversity of nematodes, 'omics' studies in nematode-bacterial systems, and the wider implications of the findings. PMID:22983035

  9. Evaluation of nitrate removal by continuous culturing of an aerobic denitrifying bacterium, Paracoccus pantotrophus.

    PubMed

    Hasegawa-Kurisu, K; Otani, Y; Hanaki, K

    2006-01-01

    Nitrate removal under aerobic conditions was investigated using pure cultures of Paracoccus pantotrophus, which is a well-known aerobic-denitrifying (AD) bacterium. When a high concentration of cultures with a high carbon/nitrogen (C/N) ratio was preserved at the beginning of batch experiments, subsequently added nitrate was completely removed. When continuous culturing was perpetuated, a high nitrate removal rate (66.5%) was observed on day 4 post-culture, although gradual decreases in AD ability with time were observed. The attenuation in AD ability was probably caused by carbon limitation, because when carbon concentration of inflow water was doubled, nitrate removal efficiency improved from 18.1% to 59.6%. Bacterial community analysis using the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method showed that P. pantotrophus disappeared in the suspended medium on day 8 post-culture, whereas other bacterial communities dominated by Acidovorax sp. appeared. Interestingly, this replaced bacterial community also showed AD ability. As P. pantotrophus was detected as attached colonies around the membrane and bottom of the reactor, this bacterium can therefore be introduced in a fixed form for treatment of wastewater containing nitrate with a high C/N ratio. PMID:17163031

  10. Structural characterization of the lipid A from the LPS of the haloalkaliphilic bacterium Halomonas pantelleriensis.

    PubMed

    Carillo, Sara; Pieretti, Giuseppina; Casillo, Angela; Lindner, Buko; Romano, Ida; Nicolaus, Barbara; Parrilli, Michelangelo; Giuliano, Mariateresa; Cammarota, Marcella; Lanzetta, Rosa; Corsaro, Maria Michela

    2016-09-01

    Halomonas pantelleriensis DSM9661(Τ) is a Gram-negative haloalkaliphilic bacterium isolated from the sand of the volcanic Venus mirror lake, closed to seashore in the Pantelleria Island in the south of Italy. It is able to optimally grow in media containing 3-15 % (w/v) total salt and at pH between 9 and 10. To survive in these harsh conditions, the bacterium has developed several strategies that probably concern the bacteria outer membrane, a barrier regulating the exchange with the environment. In such a context, the lipopolysaccharides (LPSs), which are among the major constituent of the Gram-negative outer membrane, are thought to contribute to the restrictive membrane permeability properties. The structure of the lipid A family derived from the LPS of Halomonas pantelleriensis DSM 9661(T) is reported herein. The lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different numbers of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of ESI FT-ICR mass spectrometry and chemical analysis. Preliminary immunological assays were performed, and a comparison with the lipid A structure of the phylogenetic proximal Halomonas magadiensis is also reported.

  11. Development of a gene cloning system for the hydrogen-producing marine photosynthetic bacterium Rhodopseudomonas sp.

    PubMed Central

    Matsunaga, T; Matsunaga, N; Tsubaki, K; Tanaka, T

    1986-01-01

    Seventy-six strains of marine photosynthetic bacteria were analyzed by agarose gel electrophoresis for plasmid DNA content. Among these strains, 12 carried two to four different plasmids with sizes ranging from 3.1 to 11.0 megadaltons. The marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 had two plasmids, pRD06S and pRD06L. The smaller plasmid, pRD06S, had a molecular weight of 3.8 megadaltons and was cut at a single site by restriction endonucleases SalI, SmaI, PstI, XhoI, and BglII. Moreover, the marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 containing plasmid pRD06 had a satisfactory growth rate (doubling time, 7.5 h), a hydrogen-producing rate of 0.96 mumol/mg (dry weight) of cells per h, and nitrogen fixation capability. Plasmid pRD06S, however, had neither drug resistance nor heavy-metal resistance, and its copy number was less than 10. Therefore, a recombinant plasmid consisting of pRD06S and Escherichia coli cloning vector pUC13 was constructed and cloned in E. coli. The recombinant plasmid was transformed into Rhodopseudomonas sp. NKPB002106. As a result, Rhodopseudomonas sp. NKPB002106 developed ampicillin resistance. Thus, a shuttle vector for gene transfer was constructed for marine photosynthetic bacteria. PMID:3020006

  12. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus

    PubMed Central

    Sunkar, Swetha; Nachiyar, C Valli

    2012-01-01

    Objective To synthesize the ecofriendly nanoparticles, which is viewed as an alternative to the chemical method which initiated the use of microbes like bacteria and fungi in their synthesis. Methods The current study uses the endophytic bacterium Bacillus cereus isolated from the Garcinia xanthochymus to synthesize the silver nanoparticles (AgNPs). The AgNPs were synthesized by reduction of silver nitrate solution by the endophytic bacterium after incubation for 3-5 d at room temperature. The synthesis was initially observed by colour change from pale white to brown which was confirmed by UV-Vis spectroscopy. The AgNPs were further characterized using FTIR, SEM-EDX and TEM analyses. Results The synthesized nanoparticles were found to be spherical with the size in the range of 20-40 nm which showed a slight aggregation. The energy-dispersive spectra of the nanoparticle dispersion confirmed the presence of elemental silver. The AgNPs were found to have antibacterial activity against a few pathogenic bacteria like Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Klebsiella pneumoniae. Conclusions The endophytic bacteria identified as Bacillus cereus was able to synthesize silver nanoparticles with potential antibacterial activity. PMID:23593575

  13. Pseudomonas sp. strain 273, and aerobic {alpha},{omega}-dichloroalkane-degrading bacterium

    SciTech Connect

    Wischnak, C.; Mueller, R.; Loeffler, F.E. |; Li, J.; Urbance, J.W.

    1998-09-01

    A gram-negative, aerobic bacterium was isolated from soil; this bacterium grew in 50% (vol/vol) suspensions of 1,10-dichlorodecane (1,10-DCD) as the sole source of carbon and energy. Phenotypic and small-subunit ribosomal RNA characterizations identified the organism, designated strain 273, as a member of the genus Pseudomonas. After induction with 1,10-DCD, Pseudomonas sp. strain 273 released stoichiometric amounts of chloride from C{sub 5} to C{sub 12} {alpha},{omega}-dichloroalkanes in the presence of oxygen. No dehalogenation occurred under anaerobic conditions. The best substrates for dehalogenation and growth were C{sub 9} to C{sub 12} chloroalkanes. The isolate also grew with nonhalogenated aliphatic compounds, and decane-grown cells dechlorinated 1,10-DCD without a lag phase. In addition, cells grown on decane dechlorinated 1,10-DCD in the presence of chloramphenicol, indicating that the 1,10-DCD-dechlorinating enzyme system was also induced by decane. Other known alkane-degrading Pseudomonas species did not grow with 1,10-DCD as a carbon source. Dechlorination of 1,10-DCD was demonstrated in cell extracts of Pseudomonas sp. strain 273. Cell-free activity was strictly oxygen dependent, and NADH stimulated dechlorination, whereas EDTA had an inhibitory effect.

  14. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    PubMed Central

    Mehboob, Farrakh; van Gelder, Antonie H.; Rijpstra, W. Irene C.; Damsté, Jaap S. Sinninghe; Stams, Alfons J. M.

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 μm in diameter, and 2–8 μm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO2. The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts. PMID:20680263

  15. Non-specific immune response of bullfrog Rana catesbeiana to intraperitoneal injection of bacterium Aeromonas hydrophila

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Zou, Wenzheng; Yan, Qingpi

    2008-08-01

    Non-specific immune response of bullfrog Rana catesbeiana to pathogenic Aeromonas hydrophila was studied to 60 individuals in two groups. Each bullfrog in bacterium-injected group was injected intraperitoneally (i.p.) with 0.2 ml bacterial suspension at a density of 5.2 × 106 CFU/ml, while each one in control group injected i.p. with 0.2 ml sterile saline solution (0.85%, w/v). Three bullfrogs in both groups were sampled at 0, 1, 3, 7, 11, 15 and 20 days post-injection (dpi) for the evaluation of non-specific immune parameters. It was observed that intraperitoneal injection of A. hydrophila significantly increased the number of leucocytes and that of NBT-positive cells in peripheral blood. Significant increases in serum bactericidal activity and serum acid phosphatase activity were also observed in the bacterium-injected frogs when compared with those in the control group. However, a significant reduction was detected in vitro in phagocytosis activity of peripheral blood phagocytes. No significant difference in changes in the number of peripheral erythrocytes, serum superoxide dismutase (SOD) activity, and lysozyme activity was detected between the two groups. It is suggested that bullfrogs may produce a series of non-specific immune reactions in response to the A. hydrophila infection.

  16. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans

    PubMed Central

    Rivas, Amable J.; Lemos, Manuel L.; Osorio, Carlos R.

    2013-01-01

    Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a pathogen of a variety of marine animals including fish, crustaceans, molluscs, and cetaceans. In humans, it can cause opportunistic infections that may evolve into necrotizing fasciitis with fatal outcome. Although the genetic basis of virulence in this bacterium is not completely elucidated, recent findings demonstrate that the phospholipase-D Dly (damselysin) and the pore-forming toxins HlyApl and HlyAch play a main role in virulence for homeotherms and poikilotherms. The acquisition of the virulence plasmid pPHDD1 that encodes Dly and HlyApl has likely constituted a main driving force in the evolution of a highly hemolytic lineage within the subspecies. Interestingly, strains that naturally lack pPHDD1 show a strong pathogenic potential for a variety of fish species, indicating the existence of yet uncharacterized virulence factors. Future and deep analysis of the complete genome sequence of Photobacterium damselae subsp. damselae will surely provide a clearer picture of the virulence factors employed by this bacterium to cause disease in such a varied range of hosts. PMID:24093021

  17. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    PubMed

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project. PMID:25188453

  18. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque

    PubMed Central

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-01-01

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium. PMID:26860259

  19. Proteomic analysis of membrane proteins from a radioresistant and moderate thermophilic bacterium Deinococcus geothermalis.

    PubMed

    Tian, Bing; Wang, Hu; Ma, Xiaoqiong; Hu, Yaping; Sun, Zongtao; Shen, Shaochuan; Wang, Fei; Hua, Yuejin

    2010-10-01

    Deinococcus geothermalis is a radioresistant and moderate thermophilic bacterium. Little was known about the membrane or membrane associated proteins of this bacterium. This study established the membrane subproteome profile of D. geothermalis, using 1-D PAGE and LC-MS/MS analysis following Triton X-114 detergent extraction. A total of 552 proteins from the membrane preparations were identified from two independent trials. In the total identified proteins, 117 were membrane subproteomic proteins, and 89 of them were described for the first time in D. geothermalis including fimbrial pilin (Dgeo_2038), cytochrome bd ubiquinol oxidase (Dgeo_2705) and multi-sensor (Dgeo_2096). The major membrane subproteomic proteins were distributed into 18 functional groups including nutrient transport and metabolism, energy production and conversion, cell wall/membrane biogenesis and a poorly characterized subclass. The identifications of Deinococcus-specific proteins, such as cell surface receptor IPT/TIG (Dgeo_1119) and four hypothetical proteins, demonstrated the special protein composition and functions in the cell membrane of Deinococcus. The results provide a basis for quantitative proteomic analysis, which will facilitate the understanding of the adaptation of this organism to different environmental stresses and the development of strategies for bioremediation of environmental waste.

  20. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium

    USGS Publications Warehouse

    Caccavo, F.; Coates, J.D.; Rossello-Mora, R. A.; Ludwig, W.; Schleifer, K.H.; Lovley, D.R.; McInerney, M.J.

    1996-01-01

    A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAI-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAI-1 differs from all other described bacteria, and represents the type strain of a new genus and species. Geovibrio ferrireducens.

  1. Biochemical and Structural Insights into Xylan Utilization by the Thermophilic Bacterium Caldanaerobius polysaccharolyticus*

    PubMed Central

    Han, Yejun; Agarwal, Vinayak; Dodd, Dylan; Kim, Jason; Bae, Brian; Mackie, Roderick I.; Nair, Satish K.; Cann, Isaac K. O.

    2012-01-01

    Hemicellulose is the next most abundant plant cell wall component after cellulose. The abundance of hemicellulose such as xylan suggests that their hydrolysis and conversion to biofuels can improve the economics of bioenergy production. In an effort to understand xylan hydrolysis at high temperatures, we sequenced the genome of the thermophilic bacterium Caldanaerobius polysaccharolyticus. Analysis of the partial genome sequence revealed a gene cluster that contained both hydrolytic enzymes and also enzymes key to the pentose-phosphate pathway. The hydrolytic enzymes in the gene cluster were demonstrated to convert products from a large endoxylanase (Xyn10A) predicted to anchor to the surface of the bacterium. We further use structural and calorimetric studies to demonstrate that the end products of Xyn10A hydrolysis of xylan are recognized and bound by XBP1, a putative solute-binding protein, likely for transport into the cell. The XBP1 protein showed preference for xylo-oligosaccharides as follows: xylotriose > xylobiose > xylotetraose. To elucidate the structural basis for the oligosaccharide preference, we solved the co-crystal structure of XBP1 complexed with xylotriose to a 1.8-Å resolution. Analysis of the biochemical data in the context of the co-crystal structure reveals the molecular underpinnings of oligosaccharide length specificity. PMID:22918832

  2. Conversion of Daidzein and Genistein by an Anaerobic Bacterium Newly Isolated from the Mouse Intestine▿

    PubMed Central

    Matthies, Anastasia; Clavel, Thomas; Gütschow, Michael; Engst, Wolfram; Haller, Dirk; Blaut, Michael; Braune, Annett

    2008-01-01

    The metabolism of isoflavones by gut bacteria plays a key role in the availability and bioactivation of these compounds in the intestine. Daidzein and genistein are the most common dietary soy isoflavones. While daidzein conversion yielding equol has been known for some time, the corresponding formation of 5-hydroxy-equol from genistein has not been reported previously. We isolated a strictly anaerobic bacterium (Mt1B8) from the mouse intestine which converted daidzein via dihydrodaidzein to equol as well as genistein via dihydrogenistein to 5-hydroxy-equol. Strain Mt1B8 was a gram-positive, rod-shaped bacterium identified as a member of the Coriobacteriaceae. Strain Mt1B8 also transformed dihydrodaidzein and dihydrogenistein to equol and 5-hydroxy-equol, respectively. The conversion of daidzein, genistein, dihydrodaidzein, and dihydrogenistein in the stationary growth phase depended on preincubation with the corresponding isoflavonoid, indicating enzyme induction. Moreover, dihydrogenistein was transformed even more rapidly in the stationary phase when strain Mt1B8 was grown on either genistein or daidzein. Growing the cells on daidzein also enabled conversion of genistein. This suggests that the same enzymes are involved in the conversion of the two isoflavones. PMID:18539813

  3. Genome Analysis of Thermosulfurimonas dismutans, the First Thermophilic Sulfur-Disproportionating Bacterium of the Phylum Thermodesulfobacteria.

    PubMed

    Mardanov, Andrey V; Beletsky, Alexey V; Kadnikov, Vitaly V; Slobodkin, Alexander I; Ravin, Nikolai V

    2016-01-01

    Thermosulfurimonas dismutans S95(T), isolated from a deep-sea hydrothermal vent is the first bacterium of the phylum Thermodesulfobacteria reported to grow by the disproportionation of elemental sulfur, sulfite, or thiosulfate with carbon dioxide as the sole carbon source. In contrast to its phylogenetically close relatives, which are dissimilatory sulfate-reducers, T. dismutans is unable to grow by sulfate respiration. The features of this organism and its 2,1 Mb draft genome sequence are described in this report. Genome analysis revealed that the T. dismutans genome contains the set of genes for dissimilatory sulfate reduction including ATP sulfurylase, the AprA and B subunits of adenosine-5'-phosphosulfate reductase, and dissimilatory sulfite reductase. The oxidation of elemental sulfur to sulfite could be enabled by APS reductase-associated electron transfer complex QmoABC and heterodisulfide reductase. The genome also contains several membrane-linked molybdopterin oxidoreductases that are thought to be involved in sulfur metabolism as subunits of thiosulfate, polysulfide, or tetrathionate reductases. Nitrate could be used as an electron acceptor and reduced to ammonium, as indicated by the presence of periplasmic nitrate and nitrite reductases. Autotrophic carbon fixation is enabled by the Wood-Ljungdahl pathway, and the complete set of genes that is required for nitrogen fixation is also present in T. dismutans. Overall, our results provide genomic insights into energy and carbon metabolism of chemolithoautotrophic sulfur-disproportionating bacterium that could be important primary producer in microbial communities of deep-sea hydrothermal vents. PMID:27379079

  4. An O2-sensing stressosome from a Gram-negative bacterium

    PubMed Central

    Jia, Xin; Wang, Jian-bo; Rivera, Shannon; Duong, Duc; Weinert, Emily E.

    2016-01-01

    Bacteria have evolved numerous pathways to sense and respond to changing environmental conditions, including, within Gram-positive bacteria, the stressosome complex that regulates transcription of general stress response genes. However, the signalling molecules recognized by Gram-positive stressosomes have yet to be identified, hindering our understanding of the signal transduction mechanism within the complex. Furthermore, an analogous pathway has yet to be described in Gram-negative bacteria. Here we characterize a putative stressosome from the Gram-negative bacterium Vibrio brasiliensis. The sensor protein RsbR binds haem and exhibits ligand-dependent control of the stressosome complex activity. Oxygen binding to the haem decreases activity, while ferrous RsbR results in increased activity, suggesting that the V. brasiliensis stressosome may be activated when the bacterium enters anaerobic growth conditions. The findings provide a model system for investigating ligand-dependent signalling within stressosome complexes, as well as insights into potential pathways controlled by oxygen-dependent signalling within Vibrio species. PMID:27488264

  5. Chemical compounds effective against the citrus Huanglongbing bacterium 'Candidatus Liberibacter asiaticus' in planta.

    PubMed

    Zhang, Muqing; Powell, Charles A; Zhou, Lijuan; He, Zhenli; Stover, Ed; Duan, Yongping

    2011-09-01

    Citrus Huanglongbing (HLB) is one of the most destructive diseases of citrus worldwide and is threatening the survival of the Floridian citrus industry. Currently, there is no established cure for this century-old and emerging disease. As a possible control strategy for citrus HLB, therapeutic compounds were screened using a propagation test system with 'Candidatus Liberibacter asiaticus'-infected periwinkle and citrus plants. The results demonstrated that the combination of penicillin and streptomycin (PS) was effective in eliminating or suppressing the 'Ca. L. asiaticus' bacterium and provided a therapeutically effective level of control for a much longer period of time than when administering either antibiotic separately. When treated with the PS, 'Ca. L. asiaticus'-infected periwinkle cuttings achieved 70% of regeneration rates versus <50% by other treatments. The 'Ca. L. asiaticus' bacterial titers in the infected periwinkle plants, as measured by quantitative real-time polymerase chain reaction, decreased significantly following root soaking or foliar spraying with PS. Application of the PS via trunk injection or root soaking also eliminated or suppressed the 'Ca. L. asiaticus' bacterium in the HLB-affected citrus plants. This may provide a useful tool for the management of citrus HLB and other Liberibacter-associated diseases.

  6. Structural characterization of the lipid A from the LPS of the haloalkaliphilic bacterium Halomonas pantelleriensis.

    PubMed

    Carillo, Sara; Pieretti, Giuseppina; Casillo, Angela; Lindner, Buko; Romano, Ida; Nicolaus, Barbara; Parrilli, Michelangelo; Giuliano, Mariateresa; Cammarota, Marcella; Lanzetta, Rosa; Corsaro, Maria Michela

    2016-09-01

    Halomonas pantelleriensis DSM9661(Τ) is a Gram-negative haloalkaliphilic bacterium isolated from the sand of the volcanic Venus mirror lake, closed to seashore in the Pantelleria Island in the south of Italy. It is able to optimally grow in media containing 3-15 % (w/v) total salt and at pH between 9 and 10. To survive in these harsh conditions, the bacterium has developed several strategies that probably concern the bacteria outer membrane, a barrier regulating the exchange with the environment. In such a context, the lipopolysaccharides (LPSs), which are among the major constituent of the Gram-negative outer membrane, are thought to contribute to the restrictive membrane permeability properties. The structure of the lipid A family derived from the LPS of Halomonas pantelleriensis DSM 9661(T) is reported herein. The lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different numbers of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of ESI FT-ICR mass spectrometry and chemical analysis. Preliminary immunological assays were performed, and a comparison with the lipid A structure of the phylogenetic proximal Halomonas magadiensis is also reported. PMID:27329160

  7. Accurate Cell Division in Bacteria: How Does a Bacterium Know Where its Middle Is?

    NASA Astrophysics Data System (ADS)

    Howard, Martin; Rutenberg, Andrew

    2004-03-01

    I will discuss the physical principles lying behind the acquisition of accurate positional information in bacteria. A good application of these ideas is to the rod-shaped bacterium E. coli which divides precisely at its cellular midplane. This positioning is controlled by the Min system of proteins. These proteins coherently oscillate from end to end of the bacterium. I will present a reaction-diffusion model that describes the diffusion of the Min proteins, and their binding/unbinding from the cell membrane. The system possesses an instability that spontaneously generates the Min oscillations, which control accurate placement of the midcell division site. I will then discuss the role of fluctuations in protein dynamics, and investigate whether fluctuations set optimal protein concentration levels. Finally I will examine cell division in a different bacteria, B. subtilis. where different physical principles are used to regulate accurate cell division. See: Howard, Rutenberg, de Vet: Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys. Rev. Lett. 87 278102 (2001). Howard, Rutenberg: Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys. Rev. Lett. 90 128102 (2003). Howard: A mechanism for polar protein localization in bacteria. J. Mol. Biol. 335 655-663 (2004).

  8. A Commensal Bacterium Promotes Virulence of an Opportunistic Pathogen via Cross-Respiration

    PubMed Central

    Stacy, Apollo; Fleming, Derek; Lamont, Richard J.; Rumbaugh, Kendra P.

    2016-01-01

    ABSTRACT Bacteria rarely inhabit infection sites alone, instead residing in diverse, multispecies communities. Despite this fact, bacterial pathogenesis studies primarily focus on monoculture infections, overlooking how community interactions influence the course of disease. In this study, we used global mutant fitness profiling (transposon sequencing [Tn-seq]) to determine the genetic requirements for the pathogenic bacterium Aggregatibacter actinomycetemcomitans to cause disease when coinfecting with the commensal bacterium Streptococcus gordonii. Our results show that S. gordonii extensively alters A. actinomycetemcomitans requirements for virulence factors and biosynthetic pathways during infection. In addition, we discovered that the presence of S. gordonii enhances the bioavailability of oxygen during infection, allowing A. actinomycetemcomitans to shift from a primarily fermentative to a respiratory metabolism that enhances its growth yields and persistence. Mechanistically, respiratory metabolism enhances the fitness of A. actinomycetemcomitans in vivo by increasing ATP yields via central metabolism and creating a proton motive force. Our results reveal that, similar to cross-feeding, where one species provides another species with a nutrient, commensal bacteria can also provide electron acceptors that promote the respiratory growth and fitness of pathogens in vivo, an interaction that we term cross-respiration. PMID:27353758

  9. Biomass yield efficiency of the marine anammox bacterium, "Candidatus Scalindua sp.," is affected by salinity.

    PubMed

    Awata, Takanori; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2015-01-01

    The growth rate and biomass yield efficiency of anaerobic ammonium oxidation (anammox) bacteria are markedly lower than those of most other autotrophic bacteria. Among the anammox bacterial genera, the growth rate and biomass yield of the marine anammox bacterium "Candidatus Scalindua sp." is still lower than those of other anammox bacteria enriched from freshwater environments. The activity and growth of marine anammox bacteria are generally considered to be affected by the presence of salinity and organic compounds. Therefore, in the present study, the effects of salinity and volatile fatty acids (VFAs) on the anammox activity, inorganic carbon uptake, and biomass yield efficiency of "Ca. Scalindua sp." enriched from the marine sediments of Hiroshima Bay, Japan, were investigated in batch experiments. Differences in VFA concentrations (0-10 mM) were observed under varying salinities (0.5%-4%). Anammox activity was high at 0.5%-3.5% salinity, but was 30% lower at 4% salinity. In addition, carbon uptake was higher at 1.5%-3.5% salinity. The results of the present study clearly demonstrated that the biomass yield efficiency of the marine anammox bacterium "Ca. Scalindua sp." was significantly affected by salinity. On the other hand, the presence of VFAs up to 10 mM did not affect anammox activity, carbon uptake, or biomass yield efficiency.

  10. A symbiotic bacterium differentially influences arsenate absorption and transformation in Dunaliella salina under different phosphate regimes.

    PubMed

    Wang, Ya; Zhang, Chun Hua; Lin, Man Man; Ge, Ying

    2016-11-15

    In this study, we investigated the effects of a symbiotic bacterium and phosphate (PO4(3-)) nutrition on the toxicity and metabolism of arsenate (As(V)) in Dunaliella salina. The bacterium was identified as Alteromonas macleodii based on analysis of its 16S rRNA gene sequence. When no As(V) was added, A. macleodii significantly enhanced the growth of D. salina, irrespective of PO4(3-) nutrition levels, but this effect was reversed after As(V)+PO4(3-) treatment (1.12mgL(-1)) for 3 days. Arsenic (As) absorption by the non-axenic D. salina was significantly higher than that by its axenic counterpart during incubation with 1.12mgL(-1) PO4(3-). However, when the culture was treated with 0.112mgL(-1) PO4(3-), As(V) reduction and its subsequent arsenite (As(III)) excretion by non-axenic D. salina were remarkably enhanced, which, in turn, contributed to lower As absorption in non-axenic algal cells from days 7 to 9. Moreover, dimethylarsinic acid was synthesized by D. salina alone, and the rates of its production and excretion were accelerated when the PO4(3-) concentration was 0.112mgL(-1). Our data demonstrate that A. macleodii strongly affected As toxicity, uptake, and speciation in D. salina, and these impacts were mediated by PO4(3-) in the cultures.

  11. Enzymatic properties of chitinase-producing antagonistic bacterium Paenibacillus chitinolyticus with various substrates.

    PubMed

    Song, Yong-Su; Seo, Dong-Jun; Ju, Wan-Taek; Lee, Yong-Seong; Jung, Woo-Jin

    2015-12-01

    Various chitin substrates were used to investigate the properties of enzymes produced from the chitinase-producing bacterium Paenibacillus chitinolyticus MP-306 against phytopathogens. The MP-306 bacterium was incubated in nine culture media [crab shell powder chitin (CRS), chitin-protein complex powder (CPC), carboxymethyl-chitin powder (CMC), yeast extract only (YE), LB (Trypton, NaCl, and yeast extract), GT (Trypton, NaCl, and glucose), crab shell colloidal chitin (CSC), squid pen powder chitin (SPC), and cicada slough powder chitin (CSP)] at 30 °C for 3 days. Chitinase isozymes in CPC medium were expressed strongly as CN1, CN2, CN3, CN4, CN5, and CN6 bands on native-PAGE gels. Chitinase isozymes in CPC and CMC medium were expressed as 13 bands (CS1-CS13) on SDS-PAGE gels. Chitinase isozymes were expressed strongly on SDS-PAGE gels as two bands (CS6 and CS8) on YE and LB medium and 13 bands (CS1-CS13) on SPC medium. In crude enzyme, chitinase isozymes at pH 7 and pH 9 in chitin media appeared strongly on SDS-PAGE gels. Partial purified enzyme indicated high stability of enzyme activity at various temperatures and pHs in chitin medium, while these enzymes indicated low activity staining of enzyme on electrophoresis gels at various temperatures and pHs condition of chitin medium.

  12. Data supporting functional diversity of the marine bacterium Cobetia amphilecti KMM 296.

    PubMed

    Balabanova, Larissa; Nedashkovskaya, Olga; Podvolotskaya, Anna; Slepchenko, Lubov; Golotin, Vasily; Belik, Alexey; Shevchenko, Ludmila; Son, Oksana; Rasskazov, Valery

    2016-09-01

    Data is presented in support of functionality of hyper-diverse protein families encoded by the Cobetia amphilecti KMM 296 (formerly Cobetia marina KMM 296) genome ("The genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853)" [1]) providing its nutritional versatility, adaptability and biocontrol that could be the basis of the marine bacterium evolutionary and application potential. Presented data include the information of growth and biofilm-forming properties of the food-associated isolates of Pseudomonas, Bacillus, Listeria, Salmonella and Staphylococcus under the conditions of their co-culturing with C. amphilecti KMM 296 to confirm its high inter-species communication and anti-microbial activity. Also included are the experiments on the crude petroleum consumption by C. amphilecti KMM 296 as the sole source of carbon in the presence of sulfate or nitrate to ensure its bioremediation capacity. The multifunctional C. amphilecti KMM 296 genome is a promising source for the beneficial psychrophilic enzymes and essential secondary metabolites. PMID:27508225

  13. Root-to-Root Travel of the Beneficial Bacterium Azospirillum brasilense†

    PubMed Central

    Bashan, Yoav; Holguin, Gina

    1994-01-01

    The root-to-root travel of the beneficial bacterium Azospirillum brasilense on wheat and soybean roots in agar, sand, and light-textured soil was monitored. We used a motile wild-type (Mot+) strain and a motility-deficient (Mot-) strain which was derived from the wild-type strain. The colonization levels of inoculated roots were similar for the two strains. Mot+ cells moved from inoculated roots (either natural or artificial roots in agar, sand, or light-textured soil) to noninoculated roots, where they formed a band-type colonization composed of bacterial aggregates encircling a limited part of the root, regardless of the plant species. The Mot- strain did not move toward noninoculated roots of either plant species and usually stayed at the inoculation site and root tips. The effect of attractants and repellents was the primary factor governing the motility of Mot+ cells in the presence of adequate water. We propose that interroot travel of A. brasilense is an essential preliminary step in the root-bacterium recognition mechanism. Bacterial motility might have a general role in getting Azospirillum cells to the site where firmer attachment favors colonization of the root system. Azospirillum travel toward plants is a nonspecific active process which is not directly dependent on nutrient deficiency but is a consequence of a nonspecific bacterial chemotaxis, influenced by the balance between attractants and possibly repellents leaked by the root. PMID:16349297

  14. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers

    PubMed Central

    Bottomley, Peter J.

    2015-01-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS. PMID:26092466

  15. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3.

    PubMed

    Liu, Min; Luo, Kun; Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity.

  16. A model of insect—pathogen dynamics in which a pathogenic bacterium can also reproduce saprophytically

    PubMed Central

    Godfray, H. C. J.; Briggs, C. J.; Barlow, N. D.; O'Callaghan, M.; Glare, T. R.; Jackson, T. A.

    1999-01-01

    We developed a model of the population dynamic interaction between an insect and a pathogenic bacterium motivated by study of Serratia entomophila, a commercially exploited pathogen of the New Zealand grass grub (Costelytra zealandica). The bacterium is able to reproduce saprophytically, though it competes for saprophytic substrates with non-pathogenic strains, which appear to be superior competitors, probably because they lack a plasmid that carries genes required for pathogenicity. The effect of saprophytism and competition on the invasion criterion (R0), short-term dynamics and long-term dynamics are described. Saprophytism can reduce (possibly to zero) the host threshold at which the pathogen can invade, though this reduction is less when there is competition with non-pathogenic strains. In a model of short-term population dynamics designed to mimic the application of bacteria to a host epizootic, saprophytism enhances the reduction in host density, though again this is tempered by competition with non-pathogens. In the long term, a pathogen that can develop saprophytically can drive its host to extinction in the absence of competition with non-pathogens. When the latter are present, host extinction is prevented. The addition of saprophytic reproduction can stabilize an otherwise unstable host–pathogen model, but we were unable to find a stable equilibrium given the further addition of a wholly saprophytic bacterial strain. The model suggests that enhancing or selecting for saprophytic ability could be a way of improving biological control.

  17. Engineering of a psychrophilic bacterium for the bioremediation of aromatic compounds.

    PubMed

    Parrilli, Ermengilda; Papa, Rosanna; Tutino, Maria Luisa; Sannia, Giovanni

    2010-01-01

    Microbial degradation of aromatic hydrocarbons has been studied with the aim of developing applications for the removal of toxic compounds. Efforts have been directed toward the genetic manipulation of mesophilic bacteria to improve their ability to degrade pollutants, even though many pollution problems occur in sea waters and in effluents of industrial processes which are characterized by low temperatures. From these considerations the idea of engineering a psychrophilic microorganism for the oxidation of aromatic compounds was developed.In a previous paper it was demonstrated that the recombinant Antarctic Pseudoalteromonas haloplanktis TAC125 (PhTAC/tou) expressing a toluene-o-xylene monooxygenase (ToMO) is able to convert several aromatic compounds into corresponding catechols. In our work we improved the metabolic capability of PhTAC/tou cells by combining action of recombinant ToMO enzyme with that of the endogenous P. haloplanktis TAC125 laccase-like protein. This strategy allowed conferring new and specific degradative capabilities to a bacterium isolated from an unpolluted environment; indeed engineered PhTAC/tou cells are able to grow on aromatic compounds as sole carbon and energy sources. Our approach demonstrates the possibility to use the engineered psychrophilic bacterium for the bioremediation of chemically contaminated marine environments and/or cold effluents.

  18. Characterization of a Marine Bacterium Associated with Crassostrea virginica (the Eastern Oyster)

    PubMed Central

    Weiner, Ronald M.; Segall, Anca M.; Colwell, Rita R.

    1985-01-01

    A gram-negative bacterium found to be closely associated with oysters has been isolated and characterized. The organism, designated LST, has a generation time of 106 min in Marine broth under optimal growth conditions at 25°C. During the decline phase of growth, it exhibits a morphological transition from a motile rod (ca. 1 μm in length) to an elongated, 3- to 40-μm, nonmotile, tightly coiled helix. LST synthesizes and releases a pigment in the stationary and decline phases of growth. Identified as melanin on the basis of chemical properties and UV absorbance maxima, the pigment comprises polymers of heterogeneous molecular weights, ranging from 12,000 to 120,000. The guanosine-plus-cytosine content of the LST DNA is 46%, and results of phenetic analysis and DNA-DNA hybridization indicate that this bacterium represents a new species. LST adheres to a variety of surfaces, including glass, plastics, and oyster shell, and has been shown to promote the settlement of oyster larvae. Images PMID:16346712

  19. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers.

    PubMed

    Mellbye, Brett L; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2015-09-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.

  20. Application of DNA adductomics to soil bacterium Sphingobium sp. strain KK22

    PubMed Central

    Kanaly, Robert A; Micheletto, Ruggero; Matsuda, Tomonari; Utsuno, Youko; Ozeki, Yasuhiro; Hamamura, Natsuko

    2015-01-01

    Toward the development of ecotoxicology methods to investigate microbial markers of impacts of hydrocarbon processing activities, DNA adductomic analyses were conducted on a sphingomonad soil bacterium. From growing cells that were exposed or unexposed to acrolein, a commonly used biocide in hydraulic fracturing processes, DNA was extracted, digested to 2′-deoxynucleosides and analyzed by liquid chromatography-positive ionization electrospray-tandem mass spectrometry in selected reaction monitoring mode transmitting the [M + H]+ > [M + H − 116]+ transition over 100 transitions. Overall data shown as DNA adductome maps revealed numerous putative DNA adducts under both conditions with some occurring specifically for each condition. Adductomic analyses of triplicate samples indicated that elevated levels of some targeted putative adducts occurred in exposed cells. Two exposure-specific adducts were identified in exposed cells as 3-(2′-deoxyribosyl)-5,6,7,8-tetrahydro-6-hydroxy-(and 8-hydroxy-)pyrimido[1,2-a]- purine-(3H)-one (6- and 8-hydroxy-PdG) following synthesis of authentic standards of these compounds and subsequent analyses. A time course experiment showed that 6- and 8-hydroxy-PdG were detected in bacterial DNA within 30 min of acrolein exposure but were not detected in unexposed cells. This work demonstrated the first application of DNA adductomics to examine DNA damage in a bacterium and sets a foundation for future work. PMID:26305056

  1. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics.

    PubMed

    Ting, Lily; Williams, Timothy J; Cowley, Mark J; Lauro, Federico M; Guilhaus, Michael; Raftery, Mark J; Cavicchioli, Ricardo

    2010-10-01

    The cold marine environment constitutes a large proportion of the Earth's biosphere. Sphingopyxis alaskensis was isolated as a numerically abundant bacterium from several cold marine locations, and has been extensively studied as a model marine bacterium. Recently, a metabolic labelling platform was developed to comprehensively identify and quantify proteins from S. alaskensis. The approach incorporated data normalization and statistical validation for the purpose of generating highly confident quantitative proteomics data. Using this approach, we determined quantitative differences between cells grown at 10°C (low temperature) and 30°C (high temperature). Cold adaptation was linked to specific aspects of gene expression: a dedicated protein-folding system using GroESL, DnaK, DnaJ, GrpE, SecB, ClpB and PPIase; polyhydroxyalkanoate-associated storage materials; a link between enzymes in fatty acid metabolism and energy generation; de novo synthesis of polyunsaturated fatty acids in the membrane and cell wall; inorganic phosphate ion transport by a phosphate import PstB homologue; TonB-dependent receptor and bacterioferritin in iron homeostasis; histidine, tryptophan and proline amino acid metabolism; and a large number of proteins without annotated functions. This study provides a new level of understanding on how important marine bacteria can adapt to compete effectively in cold marine environments. This study is also a benchmark for comparative proteomic analyses with other important marine bacteria and other cold-adapted organisms. PMID:20482592

  2. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3.

    PubMed

    Liu, Min; Luo, Kun; Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity. PMID:25244184

  3. The Complete Genome Sequence of the Lactic Acid Bacterium Lactococcus lactis ssp. lactis IL1403

    PubMed Central

    Bolotin, Alexander; Wincker, Patrick; Mauger, Stéphane; Jaillon, Olivier; Malarme, Karine; Weissenbach, Jean; Ehrlich, S. Dusko; Sorokin, Alexei

    2001-01-01

    Lactococcus lactis is a nonpathogenic AT-rich gram-positive bacterium closely related to the genus Streptococcus and is the most commonly used cheese starter. It is also the best-characterized lactic acid bacterium. We sequenced the genome of the laboratory strain IL1403, using a novel two-step strategy that comprises diagnostic sequencing of the entire genome and a shotgun polishing step. The genome contains 2,365,589 base pairs and encodes 2310 proteins, including 293 protein-coding genes belonging to six prophages and 43 insertion sequence (IS) elements. Nonrandom distribution of IS elements indicates that the chromosome of the sequenced strain may be a product of recent recombination between two closely related genomes. A complete set of late competence genes is present, indicating the ability of L. lactis to undergo DNA transformation. Genomic sequence revealed new possibilities for fermentation pathways and for aerobic respiration. It also indicated a horizontal transfer of genetic information from Lactococcus to gram-negative enteric bacteria of Salmonella-Escherichia group. [The sequence data described in this paper has been submitted to the GenBank data library under accession no. AE005176.] PMID:11337471

  4. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium.

    PubMed

    Kao, An-Chieh; Chu, Yu-Ju; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2013-12-01

    Arsenic (As) contamination of groundwater is a significant public health concern. In this study, the removal of arsenic from groundwater using biological processes was investigated. The efficiency of arsenite (As(III)) bacterial oxidation and subsequent arsenate (As(V)) removal from contaminated groundwater using bacterial biomass was examined. A novel As(III)-oxidizing bacterium (As7325) was isolated from the aquifer in the blackfoot disease (BFD) endemic area in Taiwan. As7325 oxidized 2300μg/l As(III) using in situ As(III)-contaminated groundwater under aerobic conditions within 1d. After the oxidation of As(III) to As(V), As(V) removal was further examined using As7325 cell pellets. The results showed that As(V) could be adsorbed efficiently by lyophilized As7325 cell pellets, the efficiency of which was related to lyophilized cell pellet concentration. Our study conducted the examination of an alternative technology for the removal of As(III) and As(V) from groundwater, indicating that the oxidation of As(III)-contaminated groundwater by native isolated bacterium, followed by As(V) removal using bacterial biomass is a potentially effective technology for the treatment of As(III)-contaminated groundwater.

  5. Isolation, Identification and Characteristics of an Endophytic Quinclorac Degrading Bacterium Bacillus megaterium Q3

    PubMed Central

    Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography–tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity. PMID:25244184

  6. INDISIM-Paracoccus, an individual-based and thermodynamic model for a denitrifying bacterium.

    PubMed

    Araujo Granda, Pablo; Gras, Anna; Ginovart, Marta; Moulton, Vincent

    2016-08-21

    We have developed an individual-based model for denitrifying bacteria. The model, called INDISIM-Paracoccus, embeds a thermodynamic model for bacterial yield prediction inside the individual-based model INDISIM, and is designed to simulate the bacterial cell population behavior and the product dynamics within the culture. The INDISIM-Paracoccus model assumes a culture medium containing succinate as a carbon source, ammonium as a nitrogen source and various electron acceptors such as oxygen, nitrate, nitrite, nitric oxide and nitrous oxide to simulate in continuous or batch culture the different nutrient-dependent cell growth kinetics of the bacterium Paracoccus denitrificans. The individuals in the model represent microbes and the individual-based model INDISIM gives the behavior-rules that they use for their nutrient uptake and reproduction cycle. Three previously described metabolic pathways for P. denitrificans were selected and translated into balanced chemical equations using a thermodynamic model. These stoichiometric reactions are an intracellular model for the individual behavior-rules for metabolic maintenance and biomass synthesis and result in the release of different nitrogen oxides to the medium. The model was implemented using the NetLogo platform and it provides an interactive tool to investigate the different steps of denitrification carried out by a denitrifying bacterium. The simulator can be obtained from the authors on request. PMID:27179457

  7. A highly infective plant-associated bacterium influences reproductive rates in pea aphids.

    PubMed

    Hendry, Tory A; Clark, Kelley J; Baltrus, David A

    2016-02-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction.

  8. "Candidatus Paraholospora nucleivisitans", an intracellular bacterium in Paramecium sexaurelia shuttles between the cytoplasm and the nucleus of its host.

    PubMed

    Eschbach, Erik; Pfannkuchen, Martin; Schweikert, Michael; Drutschmann, Denja; Brümmer, Franz; Fokin, Sergei; Ludwig, Wolfgang; Görtz, Hans-Dieter

    2009-10-01

    An intracellular bacterium was discovered in two isolates of Paramecium sexaurelia from an aquarium with tropical fish in Münster (Germany) and from a pond in the Wilhelma zoological-botanical garden, Stuttgart (Germany). The bacteria were regularly observed in the cytoplasm of the host, but on some occasions they were found in the macronucleus of the host cell. In these cases, only a few, if any, bacteria were observed remaining in the cytoplasm. The bacterium was not infectious to P. sexaurelia or other species of Paramecium and appeared to be an obligate intracellular bacterium, while bacteria-free host cells were completely viable. The fluorescence in situ hybridisation (FISH) and comparative 16SrDNA sequence analyses showed that the bacterium belonged to a new genus, and was most closely, yet quite distantly, related to Holospora obtusa. In spite of this relationship, the new bacteria differed from Holospora by at least two biological features. Whereas all Holospora species reside exclusively in the nuclei of various species of Paramecium and show a life cycle with a morphologically distinct infectious form, for the new bacterium no infectious form and no life cycle have been observed. For the new bacterium, the name Candidatus Paraholospora nucleivisitans is suggested. The host P. sexaurelia is usually known from tropical and subtropical areas and is not a species typically found in Germany and central Europe. Possibly, it had been taken to Germany with fish or plants from tropical or subtropical waters. Candidatus Paraholospora nucleivisitans may therefore be regarded as an intracellular neobacterium for Germany.

  9. Helicobacter pylori infection and chronic immune thrombocytopenic purpura: long-term results of bacterium eradication and association with bacterium virulence profiles.

    PubMed

    Emilia, Giovanni; Luppi, Mario; Zucchini, Patrizia; Morselli, Monica; Potenza, Leonardo; Forghieri, Fabio; Volzone, Francesco; Jovic, Gordana; Leonardi, Giovanna; Donelli, Amedea; Torelli, Giuseppe

    2007-12-01

    Eradication of Helicobacter pylori may lead to improvement of chronic immune thrombocytopenic purpura (ITP), although its efficacy over time is uncertain. We report the results of H pylori screening and eradication in 75 consecutive adult patients with ITP. We also used molecular methods to investigate lymphocyte clonality and H pylori genotypes in the gastric biopsies from 10 H pylori-positive patients with ITP and 19 H pylori-positive patients without ITP with chronic gastritis. Active H pylori infection was documented in 38 (51%) patients and successfully eradicated in 34 (89%) patients. After a median follow-up of 60 months, a persistent platelet response in 23 (68%) of patients with eradicated infection was observed; 1 relapse occurred. No differences in mucosal B- or T-cell clonalities were observed between patients with ITP and control participants. Of note, the frequency of the H pylori cagA gene (P = .02) and the frequency of concomitant H pylori cagA, vacAs1, and iceA genes (triple-positive strains; P = .015) resulted statistically higher in patients with ITP than in control participants. All asymptomatic H pylori-positive patients with ITP were suffering from chronic gastritis. Our data suggest a sustained platelet recovery in a proportion of patients with ITP by H pylori eradication alone. Overrepresentation of specific H pylori genotypes in ITP suggests a possible role for bacterium-related factors in the disease pathogenesis. PMID:17652264

  10. Genome Assembly of Chryseobacterium polytrichastri ERMR1:04, a Psychrotolerant Bacterium with Cold Active Proteases, Isolated from East Rathong Glacier in India

    PubMed Central

    Singh, Dharam; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Kumar, Sanjay

    2015-01-01

    We report here the genome assembly of a psychrotolerant bacterium, Chryseobacterium polytrichastri ERMR1:04, which secretes cold-active proteases. The bacterium was isolated from a pristine location, the East Rathong Glacier in the Sikkim Himalaya. The 5.53-Mb genome provides insight into the cold-active industrial enzyme and adaptation in the cold environment. PMID:26543128

  11. Cloacibacillus porcorum sp. nov., a mucin-degrading bacterium from the swine intestinal tract and emended description of the genus Cloacibacillus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel anaerobic, mesophilic, amino-acid-fermenting bacterium, designated strain CL-84T, was isolated from the swine intestinal tract on mucin-based media. The bacterium had curved-rod cells (0.8-1.2 µm x 3.5-5.0 µm), stained Gram negative, and was non-motile with no evidence of spores. CL-84T pro...

  12. Near-complete genome sequence of the cellulolytic Bacterium Bacteroides (Pseudobacteroides) cellulosolvens ATCC 35603

    SciTech Connect

    Dassa, Bareket; Utturkar, Sagar M.; Hurt, Richard A.; Klingeman, Dawn Marie; Keller, Martin; Xu, Jian; Reddy, Harish Kumar; Borovok, Ilya; Grinberg, Inna Rozman; Lamed, Raphael; Zhivin, Olga; Bayer, Edward A.; Brown, Steven D.

    2015-09-24

    We report the single-contig genome sequence of the anaerobic, mesophilic, cellulolytic bacterium, Bacteroides cellulosolvens. The bacterium produces a particularly elaborate cellulosome system, whereas the types of cohesin-dockerin interactions are opposite of other known cellulosome systems: cell-surface attachment is thus mediated via type-I interactions whereas enzymes are integrated via type-II interactions.

  13. Whole-Genome Sequence of Filimonas lacunae, a Bacterium of the Family Chitinophagaceae Characterized by Marked Colony Growth under a High-CO2 Atmosphere

    PubMed Central

    Shiratori-Takano, Hatsumi; Takano, Hideaki

    2016-01-01

    We report here the genome sequence of Filimonas lacunae, a bacterium of the family Chitinophagaceae characterized by high-CO2-dependent growth. The 7.81-Mb circular genome harbors many genes involved in carbohydrate degradation and related genetic regulation, suggesting the role of the bacterium as a carbohydrate degrader in diverse environments. PMID:27417842

  14. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  15. Localization of propionibacterium acnes in granulomas supports a possible etiologic link between sarcoidosis and the bacterium.

    PubMed

    Negi, Mariko; Takemura, Tamiko; Guzman, Josune; Uchida, Keisuke; Furukawa, Asuka; Suzuki, Yoshimi; Iida, Tadatsune; Ishige, Ikuo; Minami, Junko; Yamada, Tetsuo; Kawachi, Hiroshi; Costabel, Ulrich; Eishi, Yoshinobu

    2012-09-01

    Sarcoidosis likely results from the exposure of a genetically susceptible subject to an environmental agent, possibly an infectious one. Mycobacterial and propionibacterial organisms are the most commonly implicated potential etiologic agents. Propionibacterium acnes is the only microorganism, however, found in sarcoid lesions by bacterial culture. To evaluate the pathogenic role of this indigenous bacterium, we screened for the bacterium in sarcoid and non-sarcoid tissues using immunohistochemical methods with novel P. acnes-specific monoclonal antibodies that react with cell-membrane-bound lipoteichoic acid (PAB antibody) and ribosome-bound trigger-factor protein (TIG antibody). We examined formalin-fixed and paraffin-embedded samples of lungs and lymph nodes from 196 patients with sarcoidosis, and corresponding control samples from 275 patients with non-sarcoidosis diseases. The samples were mostly from Japanese patients, with 64 lymph node samples from German patients. Immunohistochemistry with PAB antibody revealed small round bodies within sarcoid granulomas in 20/27 (74%) video-assisted thoracic surgery lung samples, 24/50 (48%) transbronchial lung biopsy samples, 71/81 (88%) Japanese lymph node samples, and 34/38 (89%) German lymph node samples. PAB antibody did not react with non-sarcoid granulomas in any of the 45 tuberculosis samples or the 34 samples with sarcoid reaction. In nongranulomatous areas, small round bodies detected by PAB antibody were found in alveolar macrophages of lungs and paracortical macrophages of lymph nodes from many sarcoid and some non-sarcoid patients. Large-spheroidal acid-fast bodies, Hamazaki-Wesenberg bodies, which were found in 50% of sarcoid and 15% of non-sarcoid lymph node samples, reacted with both PAB and TIG antibodies. Electron microscopy revealed that these Hamazaki-Wesenberg bodies had a single bacterial structure and lacked a cell wall with occasional protrusions from the body. The high frequency and specificity

  16. Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

    PubMed Central

    2012-01-01

    Background Chloronitrophenols (CNPs) are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP) is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography–mass spectrometry identified 4-chloro-2-aminophenol (4C2AP) and 2-aminophenol (2AP) as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Conclusions Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i) the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii) the bioremediation of 4C2NP by any bacterium. PMID:23171039

  17. The impact of a pathogenic bacterium on a social carnivore population.

    PubMed

    Höner, Oliver P; Wachter, Bettina; Goller, Katja V; Hofer, Heribert; Runyoro, Victor; Thierer, Dagmar; Fyumagwa, Robert D; Müller, Thomas; East, Marion L

    2012-01-01

    1. The long-term ecological impact of pathogens on group-living, large mammal populations is largely unknown. We evaluated the impact of a pathogenic bacterium, Streptococcus equi ruminatorum, and other key ecological factors on the dynamics of the spotted hyena Crocuta crocuta population in the Ngorongoro Crater, Tanzania. 2. We compared key demographic parameters during two years when external signs of bacterial infection were prevalent ('outbreak') and periods of five years before and after the outbreak when such signs were absent or rare. We also tested for density dependence and calculated the basic reproductive rate R(0) of the bacterium. 3. During the five pre-outbreak years, the mean annual hyena mortality rate was 0.088, and annual population growth was relatively high (13.6%). During the outbreak, mortality increased by 78% to a rate of 0.156, resulting in an annual population decline of 4.3%. After the outbreak, population size increased moderately (5.1%) during the first three post-outbreak years before resuming a growth similar to pre-outbreak levels (13.9%). We found no evidence that these demographic changes were driven by density dependence or other ecological factors. 4. Most hyenas showed signs of infection when prey abundance in their territory was low. During the outbreak, mortality increased among adult males and yearlings, but not among adult females - the socially dominant group members. These results suggest that infection and mortality were modulated by factors linked to low social status and poor nutrition. During the outbreak, we estimated R(0) for the bacterium to be 2.7, indicating relatively fast transmission. 5. Our results suggest that the short-term 'top-down' impact of S. equi ruminatorum during the outbreak was driven by 'bottom-up' effects on nutritionally disadvantaged age-sex classes, whereas the longer-term post-outbreak reduction in population growth was caused by poor survival of juveniles during the outbreak and subsequent

  18. The impact of a pathogenic bacterium on a social carnivore population.

    PubMed

    Höner, Oliver P; Wachter, Bettina; Goller, Katja V; Hofer, Heribert; Runyoro, Victor; Thierer, Dagmar; Fyumagwa, Robert D; Müller, Thomas; East, Marion L

    2012-01-01

    1. The long-term ecological impact of pathogens on group-living, large mammal populations is largely unknown. We evaluated the impact of a pathogenic bacterium, Streptococcus equi ruminatorum, and other key ecological factors on the dynamics of the spotted hyena Crocuta crocuta population in the Ngorongoro Crater, Tanzania. 2. We compared key demographic parameters during two years when external signs of bacterial infection were prevalent ('outbreak') and periods of five years before and after the outbreak when such signs were absent or rare. We also tested for density dependence and calculated the basic reproductive rate R(0) of the bacterium. 3. During the five pre-outbreak years, the mean annual hyena mortality rate was 0.088, and annual population growth was relatively high (13.6%). During the outbreak, mortality increased by 78% to a rate of 0.156, resulting in an annual population decline of 4.3%. After the outbreak, population size increased moderately (5.1%) during the first three post-outbreak years before resuming a growth similar to pre-outbreak levels (13.9%). We found no evidence that these demographic changes were driven by density dependence or other ecological factors. 4. Most hyenas showed signs of infection when prey abundance in their territory was low. During the outbreak, mortality increased among adult males and yearlings, but not among adult females - the socially dominant group members. These results suggest that infection and mortality were modulated by factors linked to low social status and poor nutrition. During the outbreak, we estimated R(0) for the bacterium to be 2.7, indicating relatively fast transmission. 5. Our results suggest that the short-term 'top-down' impact of S. equi ruminatorum during the outbreak was driven by 'bottom-up' effects on nutritionally disadvantaged age-sex classes, whereas the longer-term post-outbreak reduction in population growth was caused by poor survival of juveniles during the outbreak and subsequent

  19. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio)

    PubMed Central

    Knauf, Sascha; Barnett, Ulrike; Maciej, Peter; Klapproth, Matthias; Ndao, Ibrahima; Frischmann, Sieghard; Fischer, Julia; Zinner, Dietmar; Liu, Hsi

    2015-01-01

    The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum), yaws (ssp. pertenue), and endemic syphilis (ssp. endemicum) in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio) at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90%) baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560) versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7). Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication campaign with

  20. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium

    PubMed Central

    Ma, Yufan; Wang, Zhao; Zhao, Wen; Lu, Tingli; Wang, Rutao; Mei, Qibing; Chen, Tao

    2013-01-01

    Background Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. Methods The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG), 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS), 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA), nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. Results It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the amount of negative charges in fluid liposomes reduces fluid liposomes-bacteria fusion when tested without calcium cations due to electric repulsion, but addition of calcium cations brings the fusion level of fluid liposomes to similar or higher levels. Among the negative phospholipids examined, DMPA gave the highest degree of fusion, DMPS and DMPG had intermediate fusion levels, and PI resulted in the lowest degree of fusion

  1. Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16.

    PubMed

    Pohlmann, Anne; Fricke, Wolfgang Florian; Reinecke, Frank; Kusian, Bernhard; Liesegang, Heiko; Cramm, Rainer; Eitinger, Thomas; Ewering, Christian; Pötter, Markus; Schwartz, Edward; Strittmatter, Axel; Voss, Ingo; Gottschalk, Gerhard; Steinbüchel, Alexander; Friedrich, Bärbel; Bowien, Botho

    2006-10-01

    The H(2)-oxidizing lithoautotrophic bacterium Ralstonia eutropha H16 is a metabolically versatile organism capable of subsisting, in the absence of organic growth substrates, on H(2) and CO(2) as its sole sources of energy and carbon. R. eutropha H16 first attracted biotechnological interest nearly 50 years ago with the realization that the organism's ability to produce and store large amounts of poly[R-(-)-3-hydroxybutyrate] and other polyesters could be harnessed to make biodegradable plastics. Here we report the complete genome sequence of the two chromosomes of R. eutropha H16. Together, chromosome 1 (4,052,032 base pairs (bp)) and chromosome 2 (2,912,490 bp) encode 6,116 putative genes. Analysis of the genome sequence offers the genetic basis for exploiting the biotechnological potential of this organism and provides insights into its remarkable metabolic versatility.

  2. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic bacterium Pseudoalteromonas haloplanktis.

    PubMed

    Vullo, Daniela; De Luca, Viviana; Del Prete, Sonia; Carginale, Vincenzo; Scozzafava, Andrea; Capasso, Clemente; Supuran, Claudiu T

    2015-09-01

    The Antarctic bacterium Pseudoalteromonas haloplanktis encodes for a γ-class carbonic anhydrase (CA, EC 4.2.1.1), which was cloned, purified and characterized. The enzyme (PhaCAγ) has a good catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with a k(cat) of 1.4×10(5) s(-1) and a k(cat)/K(m) of 1.9×10(6) M(-1)×s(-1). A series of sulfonamides and a sulfamate were investigated as inhibitors of the new enzyme. Methazolamide and indisulam showed the best inhibitory properties (K(I)s of 86.7-94.7 nM). This contribution shed new light on γ-CAs inhibition profiles with a relevant class of pharmacologic agents.

  3. Indole-based alkaloids from deep-sea bacterium Shewanella piezotolerans with antitumor activities.

    PubMed

    Wang, Yao; Tang, Xixiang; Shao, Zhongzhe; Ren, Jinwei; Liu, Dong; Proksch, Peter; Lin, Wenhan

    2014-05-01

    Chromatographic separation of a crude extract obtained from a fermentation broth of a chemically unknown bacterium Shewanella piezotolerans WP3 collected in deep-sea yielded three new indole alkaloids namely shewanellines A (1a), B (1b) and C (2), together with 12 known indole alkaloids. The structures were unambiguously elucidated on the basis of 1D and 2D NMR ((1)H, (13)C, COSY, HMBC, HSQC and NOESY) in association with MS and CD data. Compounds 1-4, 7, 9 and 11-14 were selected for the evaluation of their cytotoxic activities against human tumor cell lines HL-60 and BEL-7402, whereas compounds 2, 4 and 9 exhibited significant inhibition toward HL-60.

  4. New crystal forms of NTPDase1 from the bacterium Legionella pneumophila

    PubMed Central

    Zebisch, Matthias; Schäfer, Petra; Lauble, Peter; Sträter, Norbert

    2013-01-01

    Nucleoside triphosphate diphosphohydrolases (NTPDases) are a large class of nucleotidases that hydrolyze the (γ/β)- and (β/α)-anhydride bonds of nucleoside triphosphates and diphosphates, respectively. NTPDases are found throughout the eukaryotic domain. In addition, a very small number of members can be found in bacteria, most of which live as parasites of eukaryotic hosts. NTPDases of intracellular and extracellular parasites are emerging as important regulators for the survival of the parasite. To deepen the knowledge of the structure and function of this enzyme class, recombinant production of the NTPDase1 from the bacterium Legionella pneumophila has been established. The protein could be crystallized in six crystal forms, of which one has been described previously. The crystals diffracted to resolutions of between 1.4 and 2.5 Å. Experimental phases determined by a sulfur SAD experiment using an orthorhombic crystal form produced an interpretable electron-density map. PMID:23519799

  5. Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium. [Pseudomonas sp

    SciTech Connect

    Nozawa, T.; Maruyama, Y. )

    1988-12-01

    The anaerobic metabolism of phthalate and other aromatic compounds by the denitrifying bacterium Pseudomonas sp. strain P136 was studied. Benzoate, cyclohex-1-ene-carboxylate, 2-hydroxycyclohexanecarboxylate, and pimelate were detected as predominant metabolic intermediates during the metabolism of three isomers of phthalate, m-hydroxybenzoate, p-hydroxybenzoate, and cyclohex-3-ene-carboxylate. Inducible acyl-coeznyme A synthetase activities for phthalates, benzoate, cyclohex-1-ene-carboxylate, and cyclohex-3-ene-carboxylate were detected in the cells grown on aromatic compounds. Simultaneous adaptation to these aromatic compounds also occurred. A similar phenomenon was observed in the aerobic metabolism of aromatic compounds by this strain. A new pathway for the anaerobic metabolism of phthalate and a series of other aromatic compounds by this strain was proposed. Some properties of the regulation of this pathway were also discussed.

  6. Nanomechanical properties of the sea-water bacterium Paracoccus seriniphilus--a scanning force microscopy approach.

    PubMed

    Davoudi, Neda; Müller-Renno, Christine; Ziegler, Christiane; Raid, Indek; Seewig, Jörg; Schlegel, Christin; Muffler, Kai; Ulber, Roland

    2015-03-02

    The measurement of force-distance curves on a single bacterium provides a unique opportunity to detect properties such as the turgor pressure under various environmental conditions. Marine bacteria are very interesting candidates for the production of pharmaceuticals, but are only little studied so far. Therefore, the elastic behavior of Paracoccus seriniphilus, an enzyme producing marine organism, is presented in this study. After a careful evaluation of the optimal measurement conditions, the spring constant and the turgor pressure are determined as a function of ionic strength and pH. Whereas the ionic strength changes the turgor pressure passively, the results give a hint that the change to acidic pH increases the turgor pressure by an active mechanism. Furthermore, it could be shown, that P. seriniphilus has adhesive protrusions outside its cell wall.

  7. Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree.

    PubMed

    Rivas, Raúl; Trujillo, Martha E; Mateos, P F; Martínez-Molina, E; Velázquez, Encarna

    2004-03-01

    A Gram-positive, aerobic, non-motile bacterium was isolated from a decayed elm tree. Phylogenetic analysis based on 16S rDNA sequences revealed 99.0 % similarity to Cellulomonas humilata. Chemotaxonomic data that were determined for this isolate included cell-wall composition, fatty acid profiles and polar lipids; the results supported the placement of strain XIL11(T) in the genus Cellulomonas. The DNA G+C content was 73 mol%. The results of DNA-DNA hybridization with C. humilata ATCC 25174(T), in combination with chemotaxonomic and physiological data, demonstrated that isolate XIL11(T) should be classified as a novel Cellulomonas species. The name Cellulomonas xylanilytica sp. nov. is proposed, with strain XIL11(T) (=LMG 21723(T)=CECT 5729(T)) as the type strain.

  8. [Expression of phosphofructokinase gene from Escherichia coli K-12 in obligately autotrophic bacterium Acidithiobacillus thiooxidans].

    PubMed

    Tian, Keli; Lin, Jianqun; Liu, Xiangmei; Liu, Ying; Zhang, Changkai

    2003-10-01

    A plasmid pSDK-1 containing the Escherichia coli phosphofructokinase-1 (EC 2.7.1. 11) gene (pfkA) was constructed and transferred into Acidithiobacillus thiooxidans Tt-Z2 by conjugation. The transfer frequency of plasmid from E. coli to Tt-Z2 was 2.6 x 10(-6). More than 68% of Tt-Z2 cells carried the recombinant plasmids after being cultured for 50 generations without selective pressure, which showed that pSDK-1 was maintained consistently in Tt-Z2. The pfkA gene from E. coli could be expressed in this obligately autotrophic bacterium but the enzyme activity (14 U/g was lower than that in E. coli (K-12: 86 U/g; DF1010 carrying plasmid pSDK-1: 97 U/g). In th presence of glucose, the Tt-Z2 transconjugant consumed glucose leading to a better growth yield.

  9. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    PubMed

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation. PMID:23186687

  10. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum

    SciTech Connect

    Niedzwiedzki, Dariusz; Kobayashi, Masayuki; Blankenship, R. E.

    2011-01-13

    Light-harvesting complex 2 from the anoxygenic phototrophic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption, fluorescence and flash photolysis spectroscopy. Steady-state absorption and fluorescence measurements show that carotenoids play a negligible role as supportive energy donors and transfer excitation to bacteriochlorophyll-a with low energy transfer efficiency of ~30%. HPLC analysis determined that the dominant carotenoids in the complex are rhodopin and spirilloxanthin. Carotenoid excited triplet state formation upon direct (carotenoid) or indirect (bacteriochlorophyll-a Q{sub x} band) excitation shows that carotenoid triplets are mostly localized on spirilloxanthin. In addition, no triplet excitation transfer between carotenoids was observed. Such specific carotenoid composition and spectroscopic results strongly suggest that this organism optimized carotenoid composition in the light-harvesting complex 2 in order to maximize photoprotective capabilities of carotenoids but subsequently drastically suppressed their supporting role in light-harvesting process.

  11. Molecular Mechanisms of Adaptation of the Moderately Halophilic Bacterium Halobacillis halophilus to Its Environment

    PubMed Central

    Hänelt, Inga; Müller, Volker

    2013-01-01

    The capability of osmoadaptation is a prerequisite of organisms that live in an environment with changing salinities. Halobacillus halophilus is a moderately halophilic bacterium that grows between 0.4 and 3 M NaCl by accumulating both chloride and compatible solutes as osmolytes. Chloride is absolutely essential for growth and, moreover, was shown to modulate gene expression and activity of enzymes involved in osmoadaptation. The synthesis of different compatible solutes is strictly salinity- and growth phase-dependent. This unique hybrid strategy of H. halophilus will be reviewed here taking into account the recently published genome sequence. Based on identified genes we will speculate about possible scenarios of the synthesis of compatible solutes and the uptake of potassium ion which would complete our knowledge of the fine-tuned osmoregulation and intracellular osmolyte balance in H. halophilus. PMID:25371341

  12. Clostridium amazonense sp. nov. an obliqately anaerobic bacterium isolated from a remote Amazonian community in Peru

    PubMed Central

    O’Neal, Lindsey; Obregón-Tito, Alexandra J.; Tito, Raul Y.; Ozga, Andrew T.; Polo, Susan I.; Lewis, Cecil M.; Lawson, Paul A.

    2015-01-01

    A strictly anaerobic Gram-stain positive, spore-forming, rod-shaped bacterium designated NE08VT, was isolated from a fecal sample of an individual residing in a remote Amazonian community in Peru. Phylogenetic analysis based on the 16S rRNA gene sequence showed the organism belonged to the genus Clostridium and is most closely related to Clostridium vulturis (97.4% sequence similarity) and was further characterized using biochemical and chemotaxonomic methods. The major cellular fatty acids were anteiso C13:0 and C16:0 with a genomic DNA G + C content of 31.6 mol%. Fermentation products during growth on glucose were acetate and butyrate. Based on phylogenetic, phenotypic and chemotaxonomic information, strain NE08V was identified as representing a novel species of the genus Clostridium, for which the name Clostridium amazonense sp. nov. is proposed. The type strain is NE08VT (DSM 23598T = CCUG 59712T). PMID:26123611

  13. Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus.

    PubMed

    Wi, Ah Ram; Jeon, Sung-Jong; Kim, Sunghui; Park, Ha Ju; Kim, Dockyu; Han, Se Jong; Yim, Joung Han; Kim, Han-Woo

    2014-06-01

    A bacterium with lipolytic activity was isolated from the Chukchi Sea within the Arctic Ocean. The lipase BpL5 from the isolate, Bacillus pumilus ArcL5, belongs to subfamily 4 of lipase family I. The optimum pH and temperature of the recombinant enzyme BpL5, as expressed in Escherichia coli, were 9.0 and 20 °C, respectively. The enzyme retained 85 % of its activity at 5 °C. There was a significant difference between temperatures for maximal activity (20 °C) and for protein denaturation (approx. 45 °C). The enzyme preferred middle-chain (C8) p-nitrophenyl substrates. Two mutants, S139A and S139Y, were rationally designed based on the 3D-structure model, and their activities were compared with that of the wild type. The both mutants showed significantly improved activity against tricaprylin.

  14. A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria.

    PubMed

    Lefèvre, Christopher T; Menguy, Nicolas; Abreu, Fernanda; Lins, Ulysses; Pósfai, Mihály; Prozorov, Tanya; Pignol, David; Frankel, Richard B; Bazylinski, Dennis A

    2011-12-23

    Magnetotactic bacteria contain magnetosomes--intracellular, membrane-bounded, magnetic nanocrystals of magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4))--that cause the bacteria to swim along geomagnetic field lines. We isolated a greigite-producing magnetotactic bacterium from a brackish spring in Death Valley National Park, California, USA, strain BW-1, that is able to biomineralize greigite and magnetite depending on culture conditions. A phylogenetic comparison of BW-1 and similar uncultured greigite- and/or magnetite-producing magnetotactic bacteria from freshwater to hypersaline habitats shows that these organisms represent a previously unknown group of sulfate-reducing bacteria in the Deltaproteobacteria. Genomic analysis of BW-1 reveals the presence of two different magnetosome gene clusters, suggesting that one may be responsible for greigite biomineralization and the other for magnetite.

  15. Bioluminescent reporter bacterium for toxicity monitoring in biological wastewater treatment systems

    SciTech Connect

    Kelly, C.J.; Lajoie, C.A.; Layton, A.C.; Sayler, G.S.

    1999-01-01

    Toxic shock due to certain chemical loads in biological wastewater treatment systems can result in death of microorganisms and loss of floc structure. To overcome the limitations of existing approaches to toxicity monitoring, genes encoding enzymes for light production were inserted to a bacterium (Shk 1) isolated from activated sludge. The Shk 1 bioreporter indicated a toxic response to concentrations of cadmium, 2,4-dinitrophenol, and hydroquinone by reductions in initial levels of bioluminescence on exposure to the toxicant. The decrease in bioluminescence was more severe with increasing toxicant concentration. Bioluminescence did not decrease in response to ethanol concentrations up to 1,000 mg/L or to pH conditions between 6.1 and 7.9. A continuous toxicity monitoring system using this bioreporter was developed for influent wastewater and tested with hydroquinone. The reporter exhibited a rapid and proportional decrease in bioluminescence in response to increasing hydroquinone concentrations.

  16. The nucleotide sequence of Beneckea harveyi 5S rRNA. [bioluminescent marine bacterium

    NASA Technical Reports Server (NTRS)

    Luehrsen, K. R.; Fox, G. E.

    1981-01-01

    The primary sequence of the 5S ribosomal RNA isolated from the free-living bioluminescent marine bacterium Beneckea harveyi is reported and discussed in regard to indications of phylogenetic relationships with the bacteria Escherichia coli and Photobacterium phosphoreum. Sequences were determined for oligonucleotide products generated by digestion with ribonuclease T1, pancreatic ribonuclease and ribonuclease T2. The presence of heterogeneity is indicated for two sites. The B. harveyi sequence can be arranged into the same four helix secondary structures as E. coli and other prokaryotic 5S rRNAs. Examination of the 5S-RNS sequences of the three bacteria indicates that B. harveyi and P. phosphoreum are specifically related and share a common ancestor which diverged from an ancestor of E. coli at a somewhat earlier time, consistent with previous studies.

  17. Biotransformation of luteoloside by a newly isolated human intestinal bacterium using UHPLC-Q-TOF/MS.

    PubMed

    Tao, Jin-hua; Wang, Dong-geng; Yang, Chi; Huang, Jin-hua; Qiu, Wen-qian; Zhao, Xi

    2015-06-01

    To explore the metabolic pathways and metabolites of luteoloside yielded by the isolated human intestinal bacteria from healthy human feces and characterize the β-d-glucosidase activity of the specific strain which catalyzed the breakdown of luteoloside, a preculture bacterial GAM broth and luteoloside were mixed incubated together for 48h. UHPLC-Q-TOF/MS was used for analysis of the metabolites of luteoloside in the corresponding supernatant fractions from fermentation. Aliquots of the reactive solutions were collected at different times and were measured with a microplate reader at 405nm to evaluate the enzymatic activity. Three metabolites (acetylated luteoloside, luteolin and deoxygenated luteolin) were detected in the fractions isolated from the bacterial samples. The variation of β-d-glucosidase activity inside the bacterium was in coincidence with the changes in luteolin generation or luteoloside degradation in different time periods.

  18. Cytochrome P450 enzymes from the metabolically diverse bacterium Rhodopseudomonas palustris

    SciTech Connect

    Bell, Stephen G. . E-mail: stephen.bell@chem.ox.ac.uk; Hoskins, Nicola; Xu Feng; Caprotti, Domenico; Rao Zihe; Wong, L.-L. . E-mail: luet.wong@chem.ox.ac.uk

    2006-03-31

    Four (CYP195A2, CYP199A2, CYP203A1, and CYP153A5) of the seven P450 enzymes, and palustrisredoxin A, a ferredoxin associated with CYP199A2, from the metabolically diverse bacterium Rhodopseudomonas palustris have been expressed and purified. A range of substituted benzenes, phenols, benzaldehydes, and benzoic acids was shown to bind to the four P450 enzymes. Monooxygenase activity of CYP199A2 was reconstituted with palustrisredoxin A and putidaredoxin reductase of the P450cam system from Pseudomonas putida. We found that 4-ethylbenzoate and 4-methoxybenzoate were oxidized to single products, and 4-methoxybenzoate was demethylated to form 4-hydroxybenzoate. Crystals of substrate-free CYP199A2 which diffracted to {approx}2.0 A have been obtained.

  19. Columnaris disease in fish: a review with emphasis on bacterium-host interactions

    PubMed Central

    2013-01-01

    Flavobacterium columnare (F. columnare) is the causative agent of columnaris disease. This bacterium affects both cultured and wild freshwater fish including many susceptible commercially important fish species. F. columnare infections may result in skin lesions, fin erosion and gill necrosis, with a high degree of mortality, leading to severe economic losses. Especially in the last decade, various research groups have performed studies aimed at elucidating the pathogenesis of columnaris disease, leading to significant progress in defining the complex interactions between the organism and its host. Despite these efforts, the pathogenesis of columnaris disease hitherto largely remains unclear, compromising the further development of efficient curative and preventive measures to combat this disease. Besides elaborating on the agent and the disease it causes, this review aims to summarize these pathogenesis data emphasizing the areas meriting further investigation. PMID:23617544

  20. Proteomic Profiling of the Dioxin-Degrading Bacterium Sphingomonas wittichii RW1

    PubMed Central

    Colquhoun, David R.; Hartmann, Erica M.; Halden, Rolf U.

    2012-01-01

    Sphingomonas wittichii RW1 is a bacterium of interest due to its ability to degrade polychlorinated dioxins, which represent priority pollutants in the USA and worldwide. Although its genome has been fully sequenced, many questions exist regarding changes in protein expression of S. wittichii RW1 in response to dioxin metabolism. We used difference gel electrophoresis (DIGE) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to identify proteomic changes induced by growth on dibenzofuran, a surrogate for dioxin, as compared to acetate. Approximately 10% of the entire putative proteome of RW1 could be observed. Several components of the dioxin and dibenzofuran degradation pathway were shown to be upregulated, thereby highlighting the utility of using proteomic analyses for studying bioremediation agents. This is the first global protein analysis of a microorganism capable of utilizing the carbon backbone of both polychlorinated dioxins and dibenzofurans as the sole source for carbon and energy. PMID:23091346

  1. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America.

    PubMed

    Eads, David A; Biggins, Dean E

    2015-08-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research. PMID:25817984

  2. Draft whole genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344.

    PubMed

    Luque-Almagro, Víctor M; Acera, Felipe; Igeño, Ma Isabel; Wibberg, Daniel; Roldán, Ma Dolores; Sáez, Lara P; Hennig, Magdalena; Quesada, Alberto; Huertas, Ma José; Blom, Jochen; Merchán, Faustino; Escribano, Ma Paz; Jaenicke, Sebastian; Estepa, Jessica; Guijo, Ma Isabel; Martínez-Luque, Manuel; Macías, Daniel; Szczepanowski, Rafael; Becerra, Gracia; Ramirez, Silvia; Carmona, Ma Isabel; Gutiérrez, Oscar; Manso, Isabel; Pühler, Alfred; Castillo, Francisco; Moreno-Vivián, Conrado; Schlüter, Andreas; Blasco, Rafael

    2013-01-01

    Pseudomonas pseudoalcaligenes CECT5344 is a Gram-negative bacterium able to tolerate cyanide and to use it as the sole nitrogen source. We report here the first draft of the whole genome sequence of a P. pseudoalcaligenes strain that assimilates cyanide. Three aspects are specially emphasized in this manuscript. First, some generalities of the genome are shown and discussed in the context of other Pseudomonadaceae genomes, including genome size, G + C content, core genome and singletons among other features. Second, the genome is analysed in the context of cyanide metabolism, describing genes probably involved in cyanide assimilation, like those encoding nitrilases, and genes related to cyanide resistance, like the cio genes encoding the cyanide insensitive oxidases. Finally, the presence of genes probably involved in other processes with a great biotechnological potential like production of bioplastics and biodegradation of pollutants also is discussed. PMID:22998548

  3. Phylogeny of the filamentous bacterium 'Nostocoida limicola' III from activated sludge.

    PubMed

    Liu, J R; McKenzie, C A; Seviour, E M; Webb, R I; Blackall, L L; Saint, C P; Seviour, R J

    2001-01-01

    Five strains of the filamentous bacterium 'Nostocoida limicola' III were successfully isolated into pure culture from samples of activated sludge biomass from five plants in Australia. 16S rRNA gene sequence analyses showed that all isolates were members of the Planctomycetales, most closely related to Isosphaera pallida, but they differed phenotypically from this species in that they did not glide and were not thermotolerant. The ultrastructure of these 'N. limicola' III isolates was also consistent with them being Planctomycetales, in that they possessed complex intracellular membrane systems compartmentalizing the cells. However, the arrangements of these intracellular membranes differed between isolates. These data confirm that 'N. limicola' III is phylogenetically unrelated to both 'N. limicola' I and 'N. limicola' II, activated sludge filamentous bacteria which share morphological features in common with 'N. limicola' III and which have been presumed historically to be the same or very similar bacteria. PMID:11211260

  4. [Electrooptical properties of soil nitrogen-fixing bacterium Azospirillum brasilense: effect of copper ions].

    PubMed

    Ignatov, O V; Kamnev, A A; Markina, L N; Antoniuk, L P; Kolina, M; Ignatov, V V

    2001-01-01

    The effects of copper ions on the uptake of some essential metals in the biomass and the electrooptical properties of cell suspensions of the nitrogen-fixing soil bacterium Azospirillum brasilense sp. 245 were studied. Copper cations were shown to be effectively taken up by the cell biomass from the culture medium. The addition of copper ions increased the rate of uptake of some other metals present in the culture medium. This was accompanied by changes in the electrooptical characteristics of cell suspension as measured within the orienting electric field frequency range of 10 to 10,000 kHz. The effects observed during short-term incubation of A. brasilense in the presence of copper cations were less significant than during long-term incubation. These results can be used for rapid screening of microbial cultures for enhanced efficiency of sorption and uptake of metals.

  5. Isolation of pigmentation mutants of the green filamentous photosynthetic bacterium Chloroflexus aurantiacus.

    PubMed

    Pierson, B K; Keith, L M; Leovy, J G

    1984-07-01

    Mutants deficient in the production of bacteriochlorophyll c (Bchl c) and one mutant lacking colored carotenoids were isolated from the filamentous gliding bacterium Chloroflexus aurantiacus. Mutagenesis was achieved by using UV radiation or N-methyl-N'-nitro-N-nitrosoguanidine. Several clones were isolated that were deficient in Bchl c synthesis. All reverted. One double mutant deficient both in Bchl c synthesis and in the synthesis of colored carotenoids under anaerobic conditions was isolated. Isolation of a revertant in Bchl c synthesis from this double mutant produced a mutant strain of Chloroflexus that grew photosynthetically under anaerobic conditions and lacked colored carotenoids. Analysis of pigment contents and growth rates of the mutants revealed a positive association between growth rate and content of Bchl c under light-limiting conditions.

  6. Identification of bisphosphatidic acid and its plasmalogen analogues in the phospholipids of a marine bacterium.

    PubMed

    McAllister, D J; De Siervo, A J

    1975-07-01

    A relatively nonpolar unidentified phospholipid (phospholipid X) , isolated from the gram-negative marine bacterium MB 45, was characterized both chromatographically and by chemical analysis. Phospholipid X was shown to be an acidic phospholipid without vicinal hydroxyl, free-amino, or amide groups. The presence of O-alkenyl groups was indicated by a positive reaction for plasmalogen. Mild alkaline methanolysis of phospholipid X yielded only glycerophosphoryglycerol as the derivative. Acetolysis produced only diacyl-glycerol monoacetate. Clevage of O-alkenyl chains by methanolic hydrochloride resulted in the formation of three lyso derivatives. It was estimated that 18.2% of phospholipid X was plasmalogen. From these data, together with chromatographic comparisons with standards, infrared spectra, a molecular weight estimation, and the determination of the glycerol-phosphate-acyl ester ratio, it was concluded that phospholipid X was bisphosphatidic acid mixed with its plasmalogen analogues. PMID:1141198

  7. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil.

    PubMed

    Rice, Marlen C; Norton, Jeanette M; Valois, Frederica; Bollmann, Annette; Bottomley, Peter J; Klotz, Martin G; Laanbroek, Hendrikus J; Suwa, Yuichi; Stein, Lisa Y; Sayavedra-Soto, Luis; Woyke, Tanja; Shapiro, Nicole; Goodwin, Lynne A; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Kyrpides, Nikos; Varghese, Neha; Mikhailova, Natalia; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Daum, Chris

    2016-01-01

    Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism with implications for function in soil environments. PMID:27471578

  8. Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum.

    PubMed Central

    Davis, R; Lehman, L; Petrovich, R; Shah, V K; Roberts, G P; Ludden, P W

    1996-01-01

    The alternative nitrogenase from a nifH mutant of the photosynthetic bacterium Rhodospirillum rubrum has been purified and characterized. The dinitrogenase protein (ANF1) contains three subunits in an apparent alpha2beta2gamma2 structure and contains Fe but no Mo or V. A factor capable of activating apo-dinitrogenase (lacking the FeMo cofactor) from Azotobacter vinelandii was extracted from the alternative dinitrogenase protein with N-methylformamide. The electron paramagnetic resonance (EPR) signal of the dinitrogenase protein is not characteristic of the EPR signals of molybdenum- or vanadium-containing dinitrogenases. The alternative dinitrogenase reductase (ANF2) was purified as an alpha2 dimer containing an Fe4S4 cluster and exhibited an EPR spectrum characteristic of dinitrogenase reductases. The enzyme complex reduces protons to H2 very well but reduces N2 to ammonium poorly. Acetylene is reduced to a mixture of ethylene and ethane. PMID:8631723

  9. Biodegradation of nitrobenzene in a lysogeny broth medium by a novel halophilic bacterium Bacillus licheniformis.

    PubMed

    Li, Tian; Deng, Xinping; Wang, Jinjun; Chen, Yucheng; He, Lin; Sun, Yuchuan; Song, Caixia; Zhou, Zhifeng

    2014-12-15

    The Bacillus licheniformis strain YX2, a novel nitrobenzene-degrading halophilic bacterium, was isolated from active sludge obtained from a pesticide factory. Strain YX2 can withstand highly acidic and alkaline conditions and high temperatures. Degradation of nitrobenzene (200mgL(-1)) by YX2 exceeded 70% after 72h in lysogeny broth medium (pH 4-9). Under optimal degradation conditions (33°C, pH 7 in LB medium) YX2 degraded 50, 100, 200, and 600mgL(-1) nitrobenzene within 36, 36, 72, and 156h, respectively. Even in the presence of benzene, phenol or aniline, strain YX2 efficiently degraded nitrobenzene. Furthermore, strain YX2 completely degraded 600mgL(-1) nitrobenzene in 7% NaCl (w/w). Thus, our data show that strain YX2 may have promise for removing nitrobenzene from complex wastewaters with high salinity and variable pH.

  10. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America.

    PubMed

    Eads, David A; Biggins, Dean E

    2015-08-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research.

  11. Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium

    SciTech Connect

    Reineke, W.; Knackmuss, H.J.

    1984-02-01

    A chlorobenzene-degrading bacterium was isolated by continuous enrichment from a mixture of soil and sewage samples. This organism, strain WR1306, was grown in a chemostat on a mineral medium with chlorobenzene being supplied through the vapor phase with a critical D/sub c/ value at a dilution rate of 0.55 h/sup -1/. Maximum growth rates in batch culture were accomplished at substrate concentrations of less than or equal to 0.5 mM in the culture medium. During growth on chlorobenzene, stoichiometric amounts of chloride were released. Respiration data and enzyme activities in cell extracts as well as the isolation of 3-chlorocatechol from the culture fluid are consistent with the degradation of chlorobenzene via 3-chloro-cis-1,2-dihydroxycyclohexa-3,5-diene, 3-chlorocatechol, 2-chloro-cis, cis-muconate, trans-4-carboxymethylenebut-2-en-4-olide, maleylacetate, and 3-oxoadipate. 55 references.

  12. Capnocytophaga ochracea-related Bacterium Bacteremia in a Hypertrophic Cardiomyopathy Patient without Neutropenia.

    PubMed

    Ito, Shimpei; Hagiya, Hideharu; Kimura, Keigo; Nishi, Isao; Yoshida, Hisao; Kioka, Hidetaka; Ohtani, Tomohito; Yamaguchi, Osamu; Tanabe, Kazuaki; Tomono, Kazunori; Sakata, Yasushi

    2016-01-01

    Gram-negative fusiform rods were detected in a blood culture obtained from a 63-year-old man who had been hospitalized for a long duration for severe heart failure. Although the organism could not be identified using a conventional method, it was finally identified as a bacterium of the Capnocytophaga ochracea group based on the results of biochemical testing, 16S rRNA sequencing and a matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis. Although neutropenic patients with poor oral hygiene are exclusively vulnerable to Capnocytophaga bacteremia, this case was unique because such predisposing conditions were not noted. A multi-centered investigation is warranted for a better understanding of this clinically rare, but potentially pathogenic organism. PMID:27629977

  13. The structure of ferricytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H

    PubMed Central

    Harvilla, Paul B.; Wolcott, Holly N.

    2014-01-01

    Approximately 40% of all proteins are metalloproteins, and approximately 80% of Earth’s ecosystems are at temperatures ≤ 5 °C, including 90% of the global ocean. Thus, an essential aspect of marine metallobiochemistry is an understanding of the structure, dynamics, and mechanisms of cold adaptation of metalloproteins from marine microorganisms. Here, the molecular structure of the electron-transfer protein cytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H has been determined by X-ray crystallography (PDB: 4O1W). The structure is highly superimposable with that of the homologous cytochrome from the mesophile Marinobacter hydrocarbonoclasticus. Based on structural analysis and comparison of psychrophilic, psychrotolerant, and mesophilic sequences, a methionine-based ligand-substitution mechanism for psychrophilic protein stabilization is proposed. PMID:24727932

  14. Decoherence dynamics of coherent electronic excited states in the photosynthetic purple bacterium Rhodobacter sphaeroides.

    PubMed

    Liang, Xian-Ting; Zhang, Wei-Min; Zhuo, Yi-Zhong

    2010-01-01

    In this paper, we present a theoretical description to the quantum coherence and decoherence phenomena of energy transfer in photosynthesis observed in a recent experiment [Science 316, 1462 (2007)]. As a successive two-color laser pulses with selected frequencies cast on a sample of the photosynthetic purple bacterium Rb. sphaeroides two resonant excitations of electrons in chromophores can be generated. However, this effective two-level subsystem will interact with its protein environment and decoherence is inevitable. We describe this subsystem coupled with its environment as a dynamical spin-boson model. The non-Markovian decoherence dynamics is described using a quasiadiabatic propagator path integral (QUAPI) approach. With the photon-induced effective time-dependent level splitting energy and level flip coupling coefficient between the two excited states and the environment-induced non-Markovian decoherence dynamics, our theoretical result is in good agreement with the experimental data.

  15. Strain IMB-1, a novel bacterium for the removal of methyl bromide in fumigated agricultural soils

    USGS Publications Warehouse

    Connell, Hancock T.L.; Costello, A.M.; Lidstrom, M.E.; Oremland, R.S.

    1998-01-01

    A facultatively methylotrophic bacterium, strain IMB-1, that has been isolated from agricultural soil grows on methyl bromide (MeBr), methyl iodide, methyl chloride, and methylated amines, as well as on glucose, pyruvate, or acetate. Phylogenetic analysis of its 16S rRNA gene sequence indicates that strain IMB-1 classes in the alpha subgroup of the class Proteobacteria and is closely related to members of the genus Rhizobium. The ability of strain IMB-1 to oxidize MeBr to CO2 is constitutive in cells regardless of the growth substrate. Addition of cell suspensions of strain IMB-1 to soils greatly accelerates the oxidation of MeBr, as does pretreatment of soils with low concentrations of methyl iodide. These results suggest that soil treatment strategies can be devised whereby bacteria can effectively consume MeBr during field fumigations, which would diminish or eliminate the outward flux of MeBr to the atmosphere.

  16. Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes

    SciTech Connect

    Wallace, W.; Attaway, H. |

    1995-12-31

    Perchlorate and chlorate salts are widely used by the chemical, aerospace and defense industries as oxidizers in propellant, explosives and pyrotechnics. The authors have isolated a anaerobic bacterium which is capable of the dissimilatory reduction of both perchlorate and chlorate for energy and growth. Strain HAP-1 is a gram negative, thin rod, non-sporeforming, highly motile strict anaerobe. Antibiotic resistance profiles, utilization of carbon substrates and electron acceptors demonstrated similar physiological characteristics to Wolinella succinogenes. Pairwise comparisons of 16S RNA sequences showed only a 0.75% divergence between strain HAP-1 and W. succinogenes. Physiological, morphological and 16S RRNA sequence data indicate strain HAP-1 is a subspecies of W. succinogenes that can utilize perchlorate and chlorate as terminal electron acceptors.

  17. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    PubMed

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation.

  18. Complete genome sequencing and analysis of Saprospira grandis str. Lewin, a predatory marine bacterium.

    PubMed

    Saw, Jimmy H W; Yuryev, Anton; Kanbe, Masaomi; Hou, Shaobin; Young, Aaron G; Aizawa, Shin-Ichi; Alam, Maqsudul

    2012-03-19

    Saprospira grandis is a coastal marine bacterium that can capture and prey upon other marine bacteria using a mechanism known as 'ixotrophy'. Here, we present the complete genome sequence of Saprospira grandis str. Lewin isolated from La Jolla beach in San Diego, California. The complete genome sequence comprises a chromosome of 4.35 Mbp and a plasmid of 54.9 Kbp. Genome analysis revealed incomplete pathways for the biosynthesis of nine essential amino acids but presence of a large number of peptidases. The genome encodes multiple copies of sensor globin-coupled rsbR genes thought to be essential for stress response and the presence of such sensor globins in Bacteroidetes is unprecedented. A total of 429 spacer sequences within the three CRISPR repeat regions were identified in the genome and this number is the largest among all the Bacteroidetes sequenced to date.

  19. [Isolation and characteristic of a moderately halophilic bacterium accumulated ectoine as main compatible solute].

    PubMed

    He, Jian; Wang, Ting; Sun, Ji-Quan; Gu, Li-Feng; Li, Shun-Peng

    2005-12-01

    A moderately halophilic bacterium(designated strain I15) was isolated from lawn soil. Based on the analysis of 16S rDNA (GenBank accession number DQ010162), morphology, physiological and biochemical characteristics, strain I15 was identified as Virgibacillus marismortuii. This strain was capable of growing under 0% approximately 25% NaCl, and exhibited an optimum NaCl concentration of 10% and an optimum temperature of 30 degrees C and an optimum pH of 7.5 - 8.0 for its growth, respectively. Under hyperosmotic stress, strain 115 accumulated ectoine as the main compatible solute. Under 15% NaCl conditions the intracellar ectoine can reach to 1.608 mmol/(g x cdw), accounted for 89.6% of the total compatible solutes. The biosynthesis of ectoine was under the control of osmotic, and the accumulated ectoine synthesized intraceilularly can released under hypoosmotic shocks and resynthesis under hyperosmotic shock rapidly. PMID:16496700

  20. New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crystal

    NASA Astrophysics Data System (ADS)

    Satterfield, Cindy L.; Lowenstein, Tim K.; Vreeland, Russell H.; Rosenzweig, William D.; Powers, Dennis W.

    2005-04-01

    The purported oldest living organism, the spore-forming bacterium Virgibacillus sp. Permian strain 2 9-3, was recently cultured from a brine inclusion in halite of the 250 Ma Permian Salado Formation. However, the antiquity of Virgibacillus sp. 2 9-3 has been challenged; it has been argued that the halite crystal and the fluid inclusion from which the bacterial spores were extracted may be younger than the Permian Salado salts. Here we report that brine inclusions from the same layer of salt that housed Virgibacillus sp. 2 9-3 are composed of evaporated Late Permian seawater that was trapped in halite cement crystals precipitated syndepositionally from shallow groundwater brines at temperatures of 17 37 °C. These results support the 250 Ma age of the fluid inclusions, and by inference, the long-term survivability of microorganisms such as Virgibacillus sp. 2 9-3.

  1. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic bacterium Pseudoalteromonas haloplanktis.

    PubMed

    Vullo, Daniela; De Luca, Viviana; Del Prete, Sonia; Carginale, Vincenzo; Scozzafava, Andrea; Capasso, Clemente; Supuran, Claudiu T

    2015-09-01

    The Antarctic bacterium Pseudoalteromonas haloplanktis encodes for a γ-class carbonic anhydrase (CA, EC 4.2.1.1), which was cloned, purified and characterized. The enzyme (PhaCAγ) has a good catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with a k(cat) of 1.4×10(5) s(-1) and a k(cat)/K(m) of 1.9×10(6) M(-1)×s(-1). A series of sulfonamides and a sulfamate were investigated as inhibitors of the new enzyme. Methazolamide and indisulam showed the best inhibitory properties (K(I)s of 86.7-94.7 nM). This contribution shed new light on γ-CAs inhibition profiles with a relevant class of pharmacologic agents. PMID:26174556

  2. The glucose transport system of the hyperthermophilic anaerobic bacterium Thermotoga neapolitana

    SciTech Connect

    Galperin, M.Y.; Noll, K.M.; Romano, A.H.

    1996-08-01

    The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external D-glucose. This active transport of 2-DOG was dependent upon the presence of sodium ion and an external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T.neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation. 33 refs., 3 figs., 1 tab.

  3. Proteolysin, a Novel Highly Thermostable and Cosolvent-Compatible Protease from the Thermophilic Bacterium Coprothermobacter proteolyticus

    PubMed Central

    Toplak, Ana; Wu, Bian; Fusetti, Fabrizia; Quaedflieg, Peter J. L. M.

    2013-01-01

    Through genome mining, we identified a gene encoding a putative serine protease of the thermitase subgroup of subtilases (EC 3.4.21.66) in the thermophilic bacterium Coprothermobacter proteolyticus. The gene was functionally expressed in Escherichia coli, and the enzyme, which we called proteolysin, was purified to near homogeneity from crude cell lysate by a single heat treatment step. Proteolysin has a broad pH tolerance and is active at temperatures of up to 80°C. In addition, the enzyme shows good activity and stability in the presence of organic solvents, detergents, and dithiothreitol, and it remains active in 6 M guanidinium hydrochloride. Based on its stability and activity profile, proteolysin can be an excellent candidate for applications where resistance to harsh process conditions is required. PMID:23851086

  4. New features of the cell wall of the radio-resistant bacterium Deinococcus radiodurans.

    PubMed

    Farci, Domenica; Bowler, Matthew W; Kirkpatrick, Joanna; McSweeney, Sean; Tramontano, Enzo; Piano, Dario

    2014-07-01

    We have analyzed the cell wall of the radio-resistant bacterium Deinococcus radiodurans. Unexpectedly, the bacterial envelope appears to be organized in different complexes of high molecular weight. Each complex is composed of several proteins, most of which are coded by genes of unknown function and the majority are constituents of the inner/outer membrane system. One of the most abundant complexes is constituted by the gene DR_0774. This protein is a type of secretin which is a known subunit of the homo-oligomeric channel that represents the main bulk of the type IV piliation family. Finally, a minor component of the pink envelope consists of several inner-membrane proteins. The implications of these findings are discussed.

  5. Complete genome of Pandoraea pnomenusa RB-38, an oxalotrophic bacterium isolated from municipal solid waste landfill site.

    PubMed

    Lim, Yan-Lue; Ee, Robson; Yong, Delicia; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2015-11-20

    Pandoraea pnomenusa RB-38 is a bacterium isolated from a former sanitary landfill site. Here, we present the complete genome of P. pnomenusa RB38 in which an oxalate utilization pathway was identified. The genome analysis suggested the potential of this strain as an effective biocontrol agent against oxalate-producing phytopathogens.

  6. Draft Genome Sequence of Bacillus pseudalcaliphilus PN-137T (DSM 8725), an Alkaliphilic Halotolerant Bacterium Isolated from Garden Soils.

    PubMed

    Wang, Jie-Ping; Liu, Bo; Liu, Guo-Hong; Xiao, Rong-Feng; Zheng, Xue-Fang; Shi, Huai; Ge, Ci-Bin

    2015-01-01

    Bacillus pseudalcaliphilus PN-137(T) (DSM 8725) is a Gram-positive, spore-forming, alkaliphilic, and halotolerant bacterium. Here, we report the 4.49-Mb genome sequence of B. pseudalcaliphilus PN-137(T), which will accelerate the application of this alkaliphile and provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria.

  7. Multiple, stochastic factors can determine acquisition success of the foregut-borne bacterium, Xylella fastidiosa, by a sharpshooter vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylella fastidiosa is a phytopathogenic foregut-borne bacterium whose vectors are sharpshooter leafhoppers. Despite several decades of study, the mechanisms of transmission (acquisition and inoculation) of X. fastidiosa still are not fully understood. Studies of the inoculation mechanism depend upon...

  8. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk

    PubMed Central

    Meneghel, Julie; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes. PMID:26941141

  9. Whole-Genome Sequence of Marine Bacterium Phaeodactylibacter xiamenensis Strain KD52, Isolated from the Phycosphere of Microalga Phacodactylum tricornutum

    PubMed Central

    Chen, Zhangran; Lei, Xueqian; Li, Yi; Zhang, Jingyan; Zhang, Huajun; Yang, Luxi; Zheng, Wei

    2014-01-01

    Phaeodactylibacter xiamenensis KD52 is a novel bacterium isolated from a culture of the alga Phaeodactylum tricornutum in Xiamen, Fujian Province, China. Here, we present the first draft genome sequence of this strain, which will provide an opportunity to further understand the functional genes related to signing for nutrition from the host algae and the molecular mechanisms underlying its beneficial properties. PMID:25502677

  10. Complete genome of Pandoraea pnomenusa RB-38, an oxalotrophic bacterium isolated from municipal solid waste landfill site.

    PubMed

    Lim, Yan-Lue; Ee, Robson; Yong, Delicia; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2015-11-20

    Pandoraea pnomenusa RB-38 is a bacterium isolated from a former sanitary landfill site. Here, we present the complete genome of P. pnomenusa RB38 in which an oxalate utilization pathway was identified. The genome analysis suggested the potential of this strain as an effective biocontrol agent against oxalate-producing phytopathogens. PMID:26393955

  11. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk.

    PubMed

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine; Fonseca, Fernanda

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes. PMID:26941141

  12. Complete Genome Sequence of Raoultella ornithinolytica Strain S12, a Lignin-Degrading Bacterium Isolated from Forest Soil.

    PubMed

    Bao, Wenying; Zhou, Yun; Jiang, Jingwei; Xu, Zhihui; Hou, Liyuan; Leung, Frederick Chi-Ching

    2015-03-19

    We report the complete genome sequence of Raoultella ornithinolytica strain S12, isolated from a soil sample collected from areas bordering rotten wood and wet soil on Mt. Zijin, Nanjing. The complete genome of this bacterium may contribute toward the discovery of efficient lignin-degrading pathways.

  13. Complete Genome Sequence of Spiroplasma turonicum Tab4cT, a Bacterium Isolated from Horse Flies (Haematopota sp.).

    PubMed

    Lo, Wen-Sui; Gasparich, Gail E; Kuo, Chih-Horng

    2016-09-22

    Spiroplasma turonicum Tab4c(T) was isolated from a horse fly (Haematopota sp.; probably Haematopota pluvialis) collected at Champchevrier, Indre-et-Loire, Touraine, France, in 1991. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma spp.

  14. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment

    PubMed Central

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant’Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fábio Oliveira; Souza, Emanuel Maltempi; Brandelli, Adriano

    2015-01-01

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments. PMID:25838495

  15. Draft Genome of Shewanella frigidimarina Ag06-30, a Marine Bacterium Isolated from Potter Peninsula, King George Island, Antarctica

    PubMed Central

    Parmeciano Di Noto, Gisela; Vázquez, Susana C.; MacCormack, Walter P.; Iriarte, Andrés

    2016-01-01

    We present the draft genome of Shewanella frigidimarina Ag06-30, a marine bacterium from King George Island, Antarctica, which encodes the carbapenemase SFP-1. The assembly contains 4,799,218 bp (G+C content 41.24%). This strain harbors several mobile genetic elements that provide insight into lateral gene transfer and bacterial plasticity and evolution. PMID:27151790

  16. Draft Genome of Shewanella frigidimarina Ag06-30, a Marine Bacterium Isolated from Potter Peninsula, King George Island, Antarctica.

    PubMed

    Parmeciano Di Noto, Gisela; Vázquez, Susana C; MacCormack, Walter P; Iriarte, Andrés; Quiroga, Cecilia

    2016-05-05

    We present the draft genome of Shewanella frigidimarina Ag06-30, a marine bacterium from King George Island, Antarctica, which encodes the carbapenemase SFP-1. The assembly contains 4,799,218 bp (G+C content 41.24%). This strain harbors several mobile genetic elements that provide insight into lateral gene transfer and bacterial plasticity and evolution.

  17. Draft Genome Sequence of the Boron-Tolerant and Moderately Halotolerant Bacterium Gracilibacillus boraciitolerans JCM 21714T

    PubMed Central

    Oshima, Kenshiro; Suda, Wataru; Kitamura, Keiko; Iida, Toshiya; Ohmori, Yoshihiro; Fujiwara, Toru; Hattori, Masahira

    2014-01-01

    Gracilibacillus boraciitolerans JCM 21714T has been characterized as a highly boron-tolerant and moderately halotolerant bacterium. Here, we report the draft genome sequence of this strain. The genome sequence facilitates an understanding of the biochemical functions of boron and provides a base to identify the gene(s) involved in the boron tolerance mechanism of the strain. PMID:24558242

  18. Complete Genome Sequence of the Bacterium Aalborg_AAW-1, Representing a Novel Family within the Candidate Phylum SR1.

    PubMed

    Dueholm, Morten Simonsen; Albertsen, Mads; Stokholm-Bjerregaard, Mikkel; McIlroy, Simon J; Karst, Søren M; Nielsen, Per Halkjær

    2015-01-01

    Here, we present the complete genome sequence of the candidate phylum SR1 bacterium Aalborg_AAW-1. Its 16S rRNA gene is only 85.5% similar to that of the closest relative, RAAC1_SR1, and the genome of Aalborg_AAW-1 consequently represents the first of a novel family within the candidate phylum SR1.

  19. Draft Genome Sequence of Anaeromyxobacter sp. Strain PSR-1, an Arsenate-Respiring Bacterium Isolated from Arsenic-Contaminated Soil.

    PubMed

    Tonomura, Mimori; Ehara, Ayaka; Suzuki, Haruo; Amachi, Seigo

    2015-01-01

    Here, we report a draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. It contained three distinct arsenic resistance gene clusters (ars operons), while no respiratory arsenate reductase gene (arr) was identified. PMID:25977440

  20. Draft Genome Sequence of Anaeromyxobacter sp. Strain PSR-1, an Arsenate-Respiring Bacterium Isolated from Arsenic-Contaminated Soil

    PubMed Central

    Tonomura, Mimori; Ehara, Ayaka; Suzuki, Haruo

    2015-01-01

    Here, we report a draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. It contained three distinct arsenic resistance gene clusters (ars operons), while no respiratory arsenate reductase gene (arr) was identified. PMID:25977440

  1. Draft Genome Sequence and Description of Janthinobacterium sp. Strain CG3, a Psychrotolerant Antarctic Supraglacial Stream Bacterium

    PubMed Central

    Smith, Heidi; Akiyama, Tatsuya; Franklin, Michael; Woyke, Tanja; Teshima, Hazuki; Davenport, Karen; Daligault, Hajnalka; Erkkila, Tracy; Goodwin, Lynne; Gu, Wei; Xu, Yan; Chain, Patrick

    2013-01-01

    Here we present the draft genome sequence of Janthinobacterium sp. strain CG3, a psychrotolerant non-violacein-producing bacterium that was isolated from the Cotton Glacier supraglacial stream. The genome sequence of this organism will provide insight as to the mechanisms necessary for bacteria to survive in UV-stressed icy environments. PMID:24265494

  2. Growth and survival of the fish pathogenic bacterium, Flavobacterium columnare, in tilapia mucus and porcine gastric mucin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare is an economically important gram negative bacterium that infects most freshwater farmed fish worldwide. Flavobacterium columnare colonizes the skin and gills of fish in the initial steps of pathogenesis. The fish’s surface is coated with mucus made up of high molecular we...

  3. Draft Genome Sequence for Microbacterium laevaniformans Strain OR221, a Bacterium Tolerant to Metals, Nitrate, and Low pH

    SciTech Connect

    Brown, Steven D; Palumbo, Anthony Vito; Panikov, Nikolai; Ariyawansa, Thilini; Klingeman, Dawn Marie; Johnson, Courtney M; Land, Miriam L; Utturkar, Sagar M; Epstein, Slava

    2012-01-01

    Microbacterium laevaniformans strain OR221 was isolated from subsurface sediments obtained from the Field Research Center (FRC) in Oak Ridge, TN. It was characterized as a bacterium tolerant to heavy metals such as uranium, nickel, cobalt, cadmium, as well as nitrate and low pH. We present its draft genome sequence.

  4. Boron nitride nanotube-based biosensing of various bacterium/viruses: continuum modelling-based simulation approach.

    PubMed

    Panchal, Mitesh B; Upadhyay, Sanjay H

    2014-09-01

    In this study, the feasibility of single walled boron nitride nanotube (SWBNNT)-based biosensors has been ensured considering the continuum modelling-based simulation approach, for mass-based detection of various bacterium/viruses. Various types of bacterium or viruses have been taken into consideration at the free-end of the cantilevered configuration of the SWBNNT, as a biosensor. Resonant frequency shift-based analysis has been performed with the adsorption of various bacterium/viruses considered as additional mass to the SWBNNT-based sensor system. The continuum mechanics-based analytical approach, considering effective wall thickness has been considered to validate the finite element method (FEM)-based simulation results, based on continuum volume-based modelling of the SWBNNT. As a systematic analysis approach, the FEM-based simulation results are found in excellent agreement with the analytical results, to analyse the SWBNNTs for their wide range of applications such as nanoresonators, biosensors, gas-sensors, transducers and so on. The obtained results suggest that by using the SWBNNT of smaller size the sensitivity of the sensor system can be enhanced and detection of the bacterium/virus having mass of 4.28 × 10⁻²⁴ kg can be effectively performed. PMID:25082222

  5. Role of RpoS in stress tolerance and environmental fitness of the phyllosphere bacterium Pseudomonas fluorescens strain 122.

    PubMed

    Stockwell, Virginia O; Hockett, Kevin; Loper, Joyce E

    2009-06-01

    Bacteria living epiphytically on aerial plant surfaces encounter severe and rapidly fluctuating environmental conditions, and their capacity to withstand environmental stress contributes to epiphytic fitness. The stationary phase sigma factor RpoS is a key determinant in stress response of gram-negative bacteria, including Pseudomonas spp. This study focused on the role of RpoS in stress response and epiphytic fitness of Pseudomonas fluorescens strain 122 on aerial plant surfaces. RpoS had a significant role in the response of the phyllosphere bacterium P. fluorescens 122 to stresses imposed by desiccation, UV irradiation, starvation, and an oxidative environment. While significant, the difference in stress response between an rpoS mutant and the parental strain was less for strain 122 than for the rhizosphere bacterium P. fluorescens Pf-5. No consistent influence of RpoS on epiphytic population size of strain 122 on pear or apple flowers or leaves was observed in field trials. These data may indicate that P. fluorescens occupies protected microsites on aerial plant surfaces where the bacteria escape exposure to environmental stress, or that redundant stress-response mechanisms are operating in this bacterium, thereby obscuring the role of RpoS in epiphytic fitness of the bacterium.

  6. Draft genome sequence of Enterobacter cloacae subsp. cloacae strain 08XA1, a fecal bacterium of giant pandas.

    PubMed

    Yan, Yue; Zhao, Chuan-Wu; Zhang, Yi-Zheng; Zhang, Zhi-He; Pan, Guang-Lin; Liu, Wen-Wang; Ma, Qing-Yi; Hou, Rong; Tan, Xue-Mei

    2012-12-01

    Enterobacter cloacae, a common pathogenic bacterium, is a Gram-negative bacillus. We analyzed the draft genome of Enterobacter cloacae subsp. cloacae strain 08XA1 from the feces of a giant panda in China. Genes encoding a β-lactamase and efflux pumps, as well as other factors, have been found in the genome. PMID:23209197

  7. Complete Genome Sequence of Klebsiella variicola Strain HKUOPLA, a Cellulose-Degrading Bacterium Isolated from Giant Panda Feces.

    PubMed

    Lu, Matthew Guan-Xi; Jiang, Jingwei; Liu, Lirui; Ma, Angel Po-Yee; Leung, Frederick Chi-Ching

    2015-01-01

    We report here the complete genome sequence of Klebsiella variicola strain HKUOPLA, isolated from a giant panda feces sample collected from Ocean Park, Hong Kong. The complete genome of this bacterium may contribute toward the discovery of efficient cellulose-degrading pathways.

  8. Complete Genome Sequence of Klebsiella pneumoniae Strain HKUOPLC, a Cellulose-Degrading Bacterium Isolated from Giant Panda Feces.

    PubMed

    Lu, Matthew Guan-Xi; Jiang, Jingwei; Liu, Lirui; Ma, Angel Po-Yee; Leung, Frederick Chi-Ching

    2015-01-01

    We report here the complete genome sequence of Klebsiella pneumoniae strain HKUOPLC, isolated from a giant panda fecal sample collected from Ocean Park, Hong Kong. The complete genome of this bacterium may contribute to the discovery of efficient cellulose-degrading pathways.

  9. Draft Genome Sequence of the Aromatic Hydrocarbon-Degrading Bacterium Sphingobium sp. Strain Ant17, Isolated from Antarctic Soil

    PubMed Central

    Guerrero, Leandro D.; Makhalanyane, Thulani P.; Aislabie, Jackie M.

    2014-01-01

    Here, we present the draft genome sequence of Sphingobium sp. strain Ant17, an aromatic hydrocarbon-degrading bacterium that was isolated from Antarctic oil-contaminated soil. An analysis of this genome can lead to insights into the mechanisms of xenobiotic degradation processes at low temperatures and potentially aid in bioremediation applications. PMID:24723703

  10. Draft Genome Sequence of Pannonibacter phragmitetus Strain CGMCC9175, a Halotolerant Polycyclic Aromatic Hydrocarbon-Degrading Bacterium

    PubMed Central

    Jin, Decai; Zhou, Lisha; Zhang, Zhuo

    2016-01-01

    Pannonibacter phragmitetus CGMCC9175 is a halotolerant polycyclic aromatic hydrocarbon (PAH)-degrading bacterium isolated from PAH-contaminated intertidal zone sediment. Here, we report the 5.7-Mb draft genome sequence of this strain, which will provide insights into the diversity of Pannonibacter and the mechanism of PAH degradation in sediments. PMID:26823598

  11. Draft Genome Sequence of Clostridium scatologenes ATCC 25775, a Chemolithoautotrophic Acetogenic Bacterium Producing 3-Methylindole and 4-Methylphenol

    PubMed Central

    Song, Yoseb; Jeong, Yujin; Shin, Hyeon Seok

    2014-01-01

    Clostridium scatologenes ATCC 25775 is a strictly anaerobic and chemolithoautotrophic acetogenic bacterium that converts syngas into multi-carbon compounds such as acetate, indole, 3-methylindole, and 4-methylphenol. Here we report the draft genome sequence of C. scatologenes ATCC 25775 (7.3 Mbp) to elucidate its metabolic pathway for syngas fermentation. PMID:24831152

  12. Draft Genome Sequence of Chryseobacterium sp. Strain GSE06, a Biocontrol Endophytic Bacterium Isolated from Cucumber (Cucumis sativus).

    PubMed

    Jeong, Jin-Ju; Park, Byeong Hyeok; Park, Hongjae; Choi, In-Geol; Kim, Ki Deok

    2016-06-16

    Chryseobacterium sp. strain GSE06 is a biocontrol endophytic bacterium against the destructive soilborne oomycete Phytophthora capsici, which causes Phytophthora blight of pepper. Here, we present its draft genome sequence, which contains genes related to biocontrol traits, such as colonization, antimicrobial activity, plant growth promotion, and abiotic or biotic stress adaptation.

  13. Complete Genome Sequence of Klebsiella pneumoniae Strain HKUOPLC, a Cellulose-Degrading Bacterium Isolated from Giant Panda Feces.

    PubMed

    Lu, Matthew Guan-Xi; Jiang, Jingwei; Liu, Lirui; Ma, Angel Po-Yee; Leung, Frederick Chi-Ching

    2015-01-01

    We report here the complete genome sequence of Klebsiella pneumoniae strain HKUOPLC, isolated from a giant panda fecal sample collected from Ocean Park, Hong Kong. The complete genome of this bacterium may contribute to the discovery of efficient cellulose-degrading pathways. PMID:26564041

  14. Complete Genome Sequence of Klebsiella variicola Strain HKUOPLA, a Cellulose-Degrading Bacterium Isolated from Giant Panda Feces.

    PubMed

    Lu, Matthew Guan-Xi; Jiang, Jingwei; Liu, Lirui; Ma, Angel Po-Yee; Leung, Frederick Chi-Ching

    2015-01-01

    We report here the complete genome sequence of Klebsiella variicola strain HKUOPLA, isolated from a giant panda feces sample collected from Ocean Park, Hong Kong. The complete genome of this bacterium may contribute toward the discovery of efficient cellulose-degrading pathways. PMID:26472841

  15. Draft Genome Sequence of Photorhabdus luminescens Strain BA1, an Entomopathogenic Bacterium Isolated from Nematodes Found in Egypt.

    PubMed

    Ghazal, Shimaa; Hurst, Sheldon G; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Badr, Usama M; Hussein, Mona A; Abouzaied, Mohamed A; Khalil, Kamal M; Tisa, Louis S

    2014-01-01

    Photorhabdus luminescens strain BA1 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.0-Mbp draft genome sequence for P. luminscens strain BA1, with a G+C content of 42.46% and 4,250 candidate protein-coding genes. PMID:24786955

  16. Friend and foe: factors influencing the movement of the bacterium Helicobacter pylori along the parasitism–mutualism continuum

    PubMed Central

    Lin, Derek; Koskella, Britt

    2015-01-01

    Understanding the transition of bacterial species from commensal to pathogen, or vice versa, is a key application of evolutionary theory to preventative medicine. This requires working knowledge of the molecular interaction between hosts and bacteria, ecological interactions among microbes, spatial variation in bacterial prevalence or host life history, and evolution in response to these factors. However, there are very few systems for which such broad datasets are available. One exception is the gram-negative bacterium, Helicobacter pylori, which infects upwards of 50% of the global human population. This bacterium is associated with a wide breadth of human gastrointestinal disease, including numerous cancers, inflammatory disorders, and pathogenic infections, but is also known to confer fitness benefits to its host both indirectly, through interactions with other pathogens, and directly. Outstanding questions are therefore why, when, and how this bacterium transitions along the parasitism–mutualism continuum. We examine known virulence factors, genetic predispositions of the host, and environmental contributors that impact progression of clinical disease and help define geographical trends in disease incidence. We also highlight the complexity of the interaction and discuss future therapeutic strategies for disease management and public health in light of the longstanding evolutionary history between the bacterium and its human host. PMID:25667600

  17. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria

    PubMed Central

    da Silva, Fábio Daniel Florêncio; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Dall’Agnol, Leonardo Teixeira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Oliveira, Karol Guimarães; de Lima, Clayton Pereira Silva; Nunes, Márcio Roberto Teixeira; Vianez-Júnior, João Lídio Silva Gonçalves

    2016-01-01

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here. PMID:27198027

  18. Draft Genome Sequence of Chryseobacterium sp. Strain GSE06, a Biocontrol Endophytic Bacterium Isolated from Cucumber (Cucumis sativus).

    PubMed

    Jeong, Jin-Ju; Park, Byeong Hyeok; Park, Hongjae; Choi, In-Geol; Kim, Ki Deok

    2016-01-01

    Chryseobacterium sp. strain GSE06 is a biocontrol endophytic bacterium against the destructive soilborne oomycete Phytophthora capsici, which causes Phytophthora blight of pepper. Here, we present its draft genome sequence, which contains genes related to biocontrol traits, such as colonization, antimicrobial activity, plant growth promotion, and abiotic or biotic stress adaptation. PMID:27313310

  19. Genome Sequence of Klebsiella pneumoniae YZUSK-4, a Bacterium Proposed as a Starter Culture for Fermented Meat Products.

    PubMed

    Yu, Hai; Yin, Yongqi; Xu, Lin; Yan, Ming; Fang, Weiming; Ge, Qingfeng

    2015-07-23

    Klebsiella pneumoniae strain YZUSK-4, isolated from Chinese RuGao ham, is an efficient branched-chain aminotransferase-producing bacterium that can be used widely in fermented meat products to enhance flavor. The draft genome sequence of strain YZUSK-4 may provide useful genetic information on branched-chain amino acid aminotransferase production and branched-chain amino acid metabolism.

  20. Complete Genome Sequence of Streptococcus salivarius HSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract.

    PubMed

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides. PMID:26847886

  1. Complete Genome Sequence of Streptococcus salivarius HSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract

    PubMed Central

    Fontaine, Laetitia; Kleerebezem, Michiel

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides. PMID:26847886

  2. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk.

    PubMed

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine; Fonseca, Fernanda

    2016-03-03

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes.

  3. Complete Genome Sequence of Spiroplasma helicoides TABS-2T (DSM 22551), a Bacterium Isolated from a Horsefly (Tabanus abactor)

    PubMed Central

    Shen, Wei-Yi; Lo, Wen-Sui; Lai, Yi-Ching

    2016-01-01

    Spiroplasma helicoides TABS-2T (DSM 22551) was isolated from the gut of a horsefly (Tabanus abactor) collected near Ardmore, Oklahoma, USA, in 1987. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma species. PMID:27795290

  4. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS. PMID:26826831

  5. Draft Genome Sequence of Pseudoalteromonas tetraodonis Strain MQS005, a Bacterium with Potential Quorum-Sensing Regulation.

    PubMed

    Pan, Yonglong; Wang, Yanbo; Yan, Xiaoqing; Mazumder, Asit; Liang, Yan

    2016-01-01

    We present here the draft genome sequence of Pseudoalteromonas tetraodonis strain MQS005, a bacterium possessing potential quorum-sensing regulatory activity. This strain was isolated from water from the South China Sea, People's Republic of China. The assembly consists of 4,252,538 bp and contains 144 contigs, with a G+C content of 41.85%. PMID:27491986

  6. Boron nitride nanotube-based biosensing of various bacterium/viruses: continuum modelling-based simulation approach.

    PubMed

    Panchal, Mitesh B; Upadhyay, Sanjay H

    2014-09-01

    In this study, the feasibility of single walled boron nitride nanotube (SWBNNT)-based biosensors has been ensured considering the continuum modelling-based simulation approach, for mass-based detection of various bacterium/viruses. Various types of bacterium or viruses have been taken into consideration at the free-end of the cantilevered configuration of the SWBNNT, as a biosensor. Resonant frequency shift-based analysis has been performed with the adsorption of various bacterium/viruses considered as additional mass to the SWBNNT-based sensor system. The continuum mechanics-based analytical approach, considering effective wall thickness has been considered to validate the finite element method (FEM)-based simulation results, based on continuum volume-based modelling of the SWBNNT. As a systematic analysis approach, the FEM-based simulation results are found in excellent agreement with the analytical results, to analyse the SWBNNTs for their wide range of applications such as nanoresonators, biosensors, gas-sensors, transducers and so on. The obtained results suggest that by using the SWBNNT of smaller size the sensitivity of the sensor system can be enhanced and detection of the bacterium/virus having mass of 4.28 × 10⁻²⁴ kg can be effectively performed.

  7. Genome Sequence of Virgibacillus pantothenticus DSM 26T (ATCC 14576), a Mesophilic and Halotolerant Bacterium Isolated from Soil

    PubMed Central

    Wang, Jie-ping; Liu, Guo-hong; Chen, De-ju; Zhu, Yu-jing; Chen, Zheng; Che, Jian-mei

    2015-01-01

    Virgibacillus pantothenticus DSM 26T is a Gram-positive, spore-forming, aerobic, mesophilic, and halotolerant bacterium. Here, we report its 4.76-Mb draft genome sequence, which is the first genome information of V. pantothenticus and will promote biological research and biotechnological application for the species. PMID:26383648

  8. Complete Genome Sequence of Spiroplasma turonicum Tab4cT, a Bacterium Isolated from Horse Flies (Haematopota sp.).

    PubMed

    Lo, Wen-Sui; Gasparich, Gail E; Kuo, Chih-Horng

    2016-01-01

    Spiroplasma turonicum Tab4c(T) was isolated from a horse fly (Haematopota sp.; probably Haematopota pluvialis) collected at Champchevrier, Indre-et-Loire, Touraine, France, in 1991. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma spp. PMID:27660788

  9. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis.

    PubMed

    Calvo, Juan; Calvente, Viviana; de Orellano, María Edith; Benuzzi, Delia; Sanz de Tosetti, Maria Isabel

    2007-02-15

    The epiphytic bacterium Rahnella aquatilis, isolated from fruit and leaves of apples, was tested for antagonistic properties against Penicillium expansum and Botrytis cinerea on Red Delicious apple fruit. In "in vitro" assays, this bacterium inhibited completely the germination of P. expansum and B. cinerea spores, but it needed direct contact with the spores to do it. However the putative mechanism seemed be different for the two pathogens. The bacterium did not produce extracellular antibiotic substances and when the acute toxicity test was performed no mortality, toxicity symptoms or organ alterations of the test animals (Wistar rats) were observed. Assays of biological control of P. expansum and B. cinerea on apple fruit were carried out at different temperatures. At 15 degrees C and 90% RH, the incidence of disease caused by P. expansum on apples stored for 20 days, was reduced by nearly 100% by R. aquatilis (10(6) cells/ml), while in the case of B. cinerea, the reduction of decay severity was nearly 64% but there was no reduction in the incidence of disease. At 4 degrees C and 90% RH the treatment with the bacterium significantly inhibited the development of B. cinerea on apples stored for 40 days and the incidence of disease was reduced by nearly 100%, while the incidence of disease caused by P. expansum at 4 degrees C was 60%. The results obtained show that R. aquatilis would be an interesting microorganism to be used as a biocontrol agent.

  10. Draft Genome Sequence of Pseudomonas putida JLR11, a Facultative Anaerobic 2,4,6-Trinitrotoluene Biotransforming Bacterium.

    PubMed

    Pascual, Javier; Udaondo, Zulema; Molina, Lazaro; Segura, Ana; Esteve-Núñez, Abraham; Caballero, Antonio; Duque, Estrella; Ramos, Juan Luis; van Dillewijn, Pieter

    2015-09-03

    We report the draft genome sequence of Pseudomonas putida JLR11, a facultative anaerobic bacterium that has been studied in detail for its capacity to use the explosive 2,4,6-trinitrotoluene (TNT) as a nitrogen source. The sequence confirms the mechanisms used by this versatile strain to reduce and assimilate nitrogen from TNT.

  11. Draft Genome Sequence of Pseudomonas putida JLR11, a Facultative Anaerobic 2,4,6-Trinitrotoluene Biotransforming Bacterium

    PubMed Central

    Pascual, Javier; Udaondo, Zulema; Molina, Lazaro; Segura, Ana; Esteve-Núñez, Abraham; Caballero, Antonio; Duque, Estrella; Ramos, Juan Luis

    2015-01-01

    We report the draft genome sequence of Pseudomonas putida JLR11, a facultative anaerobic bacterium that has been studied in detail for its capacity to use the explosive 2,4,6-trinitrotoluene (TNT) as a nitrogen source. The sequence confirms the mechanisms used by this versatile strain to reduce and assimilate nitrogen from TNT. PMID:26337875

  12. Draft Genome Sequence of Chryseobacterium sp. Strain GSE06, a Biocontrol Endophytic Bacterium Isolated from Cucumber (Cucumis sativus)

    PubMed Central

    Jeong, Jin-Ju; Park, Byeong Hyeok; Park, Hongjae

    2016-01-01

    Chryseobacterium sp. strain GSE06 is a biocontrol endophytic bacterium against the destructive soilborne oomycete Phytophthora capsici, which causes Phytophthora blight of pepper. Here, we present its draft genome sequence, which contains genes related to biocontrol traits, such as colonization, antimicrobial activity, plant growth promotion, and abiotic or biotic stress adaptation. PMID:27313310

  13. Draft Genome Sequence of Acinetobacter calcoaceticus Strain P23, a Plant Growth-Promoting Bacterium of Duckweed.

    PubMed

    Sugawara, Masayuki; Hosoyama, Akira; Yamazoe, Atsushi; Morikawa, Masaaki

    2015-01-01

    Acinetobacter calcoaceticus strain P23 is a plant growth-promoting bacterium, which was isolated from the surface of duckweed. We report here the draft genome sequence of strain P23. The genome data will serve as a valuable reference for understanding the molecular mechanism of plant growth promotion in aquatic plants.

  14. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Megaspheara elsdenii T81 grew on either DL-lactate or D-glucose at similar rates (0.85 per h), but displayed major differences in the fermentation of these substrates. Lactate was fermented at up to 210-mM concentration to yield acetic, propionic, butyric, and valeric acids. The bacterium was able t...

  15. Genome Sequence of Virgibacillus pantothenticus DSM 26T (ATCC 14576), a Mesophilic and Halotolerant Bacterium Isolated from Soil.

    PubMed

    Wang, Jie-Ping; Liu, Bo; Liu, Guo-Hong; Chen, De-Ju; Zhu, Yu-Jing; Chen, Zheng; Che, Jian-Mei

    2015-01-01

    Virgibacillus pantothenticus DSM 26(T) is a Gram-positive, spore-forming, aerobic, mesophilic, and halotolerant bacterium. Here, we report its 4.76-Mb draft genome sequence, which is the first genome information of V. pantothenticus and will promote biological research and biotechnological application for the species. PMID:26383648

  16. Draft genome sequence of Enterobacter cloacae subsp. cloacae strain 08XA1, a fecal bacterium of giant pandas.

    PubMed

    Yan, Yue; Zhao, Chuan-Wu; Zhang, Yi-Zheng; Zhang, Zhi-He; Pan, Guang-Lin; Liu, Wen-Wang; Ma, Qing-Yi; Hou, Rong; Tan, Xue-Mei

    2012-12-01

    Enterobacter cloacae, a common pathogenic bacterium, is a Gram-negative bacillus. We analyzed the draft genome of Enterobacter cloacae subsp. cloacae strain 08XA1 from the feces of a giant panda in China. Genes encoding a β-lactamase and efflux pumps, as well as other factors, have been found in the genome.

  17. Complete Genome Sequence of Enterococcus hirae R17, a Daptomycin-Resistant Bacterium Isolated from Retail Pork in China

    PubMed Central

    Peng, Zixin; Wang, Wei; Hu, Yujie

    2016-01-01

    Daptomycin-resistant Enterococcus hirae R17 was isolated from retail pork sold at a free-trade market in Beijing, China. The complete genome sequence of R17 contains a circular 2,886,481-bp chromosome and a circular 73,574-bp plasmid. Genes involved in cell envelope homeostasis of this bacterium were identified by whole-genome analysis. PMID:27340071

  18. Draft Genome Sequence of Pseudoalteromonas tetraodonis Strain MQS005, a Bacterium with Potential Quorum-Sensing Regulation.

    PubMed

    Pan, Yonglong; Wang, Yanbo; Yan, Xiaoqing; Mazumder, Asit; Liang, Yan

    2016-01-01

    We present here the draft genome sequence of Pseudoalteromonas tetraodonis strain MQS005, a bacterium possessing potential quorum-sensing regulatory activity. This strain was isolated from water from the South China Sea, People's Republic of China. The assembly consists of 4,252,538 bp and contains 144 contigs, with a G+C content of 41.85%.

  19. Complete Genome Sequence of Spiroplasma turonicum Tab4cT, a Bacterium Isolated from Horse Flies (Haematopota sp.)

    PubMed Central

    Lo, Wen-Sui; Gasparich, Gail E.

    2016-01-01

    Spiroplasma turonicum Tab4cT was isolated from a horse fly (Haematopota sp.; probably Haematopota pluvialis) collected at Champchevrier, Indre-et-Loire, Touraine, France, in 1991. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma spp. PMID:27660788

  20. Complete Genome Sequence of Dyella thiooxydans ATSB10, a Thiosulfate-Oxidizing Bacterium Isolated from Sunflower Fields in South Korea

    PubMed Central

    Hwangbo, Kyeong; Um, Yurry; Chung, Hee; Yoo, Jemin; Kim, Ki Yoon; Madhaiyan, Munusamy; Sa, Tong Min

    2016-01-01

    Dyella thiooxydans ATSB10 (KACC 12756T = LMG 24673T) is a thiosulfate-oxidizing bacterium isolated from rhizosphere soils of sunflower plants. In this study, we completely sequenced the genome of D. thiooxydans ATSB10 and identified the genes involved in thiosulfate oxidation and the metabolism of aromatic intermediates. PMID:27340060

  1. Transcriptional Changes Underlying Elemental Stoichiometry Shifts in a Marine Heterotrophic Bacterium

    PubMed Central

    Chan, Leong-Keat; Newton, Ryan J.; Sharma, Shalabh; Smith, Christa B.; Rayapati, Pratibha; Limardo, Alexander J.; Meile, Christof; Moran, Mary Ann

    2012-01-01

    Marine bacteria drive the biogeochemical processing of oceanic dissolved organic carbon (DOC), a 750-Tg C reservoir that is a critical component of the global C cycle. Catabolism of DOC is thought to be regulated by the biomass composition of heterotrophic bacteria, as cells maintain a C:N:P ratio of ∼50:10:1 during DOC processing. Yet a complicating factor in stoichiometry-based analyses is that bacteria can change the C:N:P ratio of their biomass in response to resource composition. We investigated the physiological mechanisms of resource-driven shifts in biomass stoichiometry in continuous cultures of the marine heterotrophic bacterium Ruegeria pomeroyi (a member of the Roseobacter clade) under four element limitation regimes (C, N, P, and S). Microarray analysis indicated that the bacterium scavenged for alternate sources of the scarce element when cells were C-, N-, or P-limited; reworked the ratios of biomolecules when C- and P- limited; and exerted tighter control over import/export and cytoplasmic pools when N-limited. Under S limitation, a scenario not existing naturally for surface ocean microbes, stress responses dominated transcriptional changes. Resource-driven changes in C:N ratios of up to 2.5-fold and in C:P ratios of up to sixfold were measured in R. pomeroyi biomass. These changes were best explained if the C and P content of the cells was flexible in the face of shifting resources but N content was not, achieved through the net balance of different transcriptional strategies. The cellular-level metabolic trade-offs that govern biomass stoichiometry in R. pomeroyi may have implications for global carbon cycling if extendable to other heterotrophic bacteria. Strong homeostatic responses to N limitation by marine bacteria would intensify competition with autotrophs. Modification of cellular inventories in C- and P-limited heterotrophs would vary the elemental ratio of particulate organic matter sequestered in the deep ocean. PMID:22783226

  2. Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments

    PubMed Central

    2010-01-01

    Background The pattern-forming bacterium Paenibacillus vortex is notable for its advanced social behavior, which is reflected in development of colonies with highly intricate architectures. Prior to this study, only two other Paenibacillus species (Paenibacillus sp. JDR-2 and Paenibacillus larvae) have been sequenced. However, no genomic data is available on the Paenibacillus species with pattern-forming and complex social motility. Here we report the de novo genome sequence of this Gram-positive, soil-dwelling, sporulating bacterium. Results The complete P. vortex genome was sequenced by a hybrid approach using 454 Life Sciences and Illumina, achieving a total of 289× coverage, with 99.8% sequence identity between the two methods. The sequencing results were validated using a custom designed Agilent microarray expression chip which represented the coding and the non-coding regions. Analysis of the P. vortex genome revealed 6,437 open reading frames (ORFs) and 73 non-coding RNA genes. Comparative genomic analysis with 500 complete bacterial genomes revealed exceptionally high number of two-component system (TCS) genes, transcription factors (TFs), transport and defense related genes. Additionally, we have identified genes involved in the production of antimicrobial compounds and extracellular degrading enzymes. Conclusions These findings suggest that P. vortex has advanced faculties to perceive and react to a wide range of signaling molecules and environmental conditions, which could be associated with its ability to reconfigure and replicate complex colony architectures. Additionally, P. vortex is likely to serve as a rich source of genes important for agricultural, medical and industrial applications and it has the potential to advance the study of social microbiology within Gram-positive bacteria. PMID:21167037

  3. Genome Analysis of Thermosulfurimonas dismutans, the First Thermophilic Sulfur-Disproportionating Bacterium of the Phylum Thermodesulfobacteria

    PubMed Central

    Mardanov, Andrey V.; Beletsky, Alexey V.; Kadnikov, Vitaly V.; Slobodkin, Alexander I.; Ravin, Nikolai V.

    2016-01-01

    Thermosulfurimonas dismutans S95T, isolated from a deep-sea hydrothermal vent is the first bacterium of the phylum Thermodesulfobacteria reported to grow by the disproportionation of elemental sulfur, sulfite, or thiosulfate with carbon dioxide as the sole carbon source. In contrast to its phylogenetically close relatives, which are dissimilatory sulfate-reducers, T. dismutans is unable to grow by sulfate respiration. The features of this organism and its 2,1 Mb draft genome sequence are described in this report. Genome analysis revealed that the T. dismutans genome contains the set of genes for dissimilatory sulfate reduction including ATP sulfurylase, the AprA and B subunits of adenosine-5′-phosphosulfate reductase, and dissimilatory sulfite reductase. The oxidation of elemental sulfur to sulfite could be enabled by APS reductase-associated electron transfer complex QmoABC and heterodisulfide reductase. The genome also contains several membrane-linked molybdopterin oxidoreductases that are thought to be involved in sulfur metabolism as subunits of thiosulfate, polysulfide, or tetrathionate reductases. Nitrate could be used as an electron acceptor and reduced to ammonium, as indicated by the presence of periplasmic nitrate and nitrite reductases. Autotrophic carbon fixation is enabled by the Wood–Ljungdahl pathway, and the complete set of genes that is required for nitrogen fixation is also present in T. dismutans. Overall, our results provide genomic insights into energy and carbon metabolism of chemolithoautotrophic sulfur-disproportionating bacterium that could be important primary producer in microbial communities of deep-sea hydrothermal vents. PMID:27379079

  4. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa×deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT–PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  5. Alsobacter metallidurans gen. nov., sp. nov., a thallium-tolerant soil bacterium in the order Rhizobiales.

    PubMed

    Bao, Zhihua; Sato, Yoshinori; Fujimura, Reiko; Ohta, Hiroyuki

    2014-03-01

    A thallium-tolerant, aerobic bacterium, designated strain SK200a-9(T), isolated from a garden soil sample was characterized using a polyphasic approach. Comparative analysis of 16S rRNA gene sequences revealed that strain SK200a-9(T) was affiliated with an uncultivated lineage within the Alphaproteobacteria and the nearest cultivated neighbours were bacteria in genera in the family Methylocystaceae (93.3-94.4% 16S rRNA gene sequence similarity) and the family Beijerinckiaceae (92.3-93.1%) in the order Rhizobiales. Cells of strain SK200a-9(T) were Gram-stain-negative, non-motile, non-spore-forming, poly-β-hydroxybutyrate-accumulating rods. The strain was a chemo-organotrophic bacterium, which was incapable of growth on C1 substrates. Catalase and oxidase were positive. Atmospheric nitrogen fixation and nitrate reduction were negative. The strain contained ubiquinone Q-10 and cellular fatty acids C18 : 1ω7c, C18 : 0, C16 : 1ω7c and C16 : 0 as predominant components. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content was 64.8 mol%. On the basis of the information described above, strain SK200a-9(T) is considered to represent a novel species of a new genus in the order Rhizobiales, for which the name Alsobacter metallidurans gen. nov., sp. nov. is proposed. The type strain of Alsobacter metallidurans is SK200a-9(T) ( = NBRC 107718(T) = CGMCC 1.12214(T)).

  6. Curiously modern DNA for a "250 million-year-old" bacterium.

    PubMed

    Nickle, David C; Learn, Gerald H; Rain, Matthew W; Mullins, James I; Mittler, John E

    2002-01-01

    Studies of ancient DNA have attracted considerable attention in scientific journals and the popular press. Several of the more extreme claims for ancient DNA have been questioned on biochemical grounds (i.e., DNA surviving longer than expected) and evolutionary grounds (i.e., nucleotide substitution patterns not matching theoretical expectations for ancient DNA). A recent letter to Nature from Vreeland et al. (2000), however, tops all others with respect to age and condition of the specimen. These researchers extracted and cultured a bacterium from an inclusion body from what they claim is a 250 million-year (Myr)-old salt crystal. If substantiated, this observation could fundamentally alter views about bacterial physiology, ecology and evolution. Here we report on molecular evolutionary analyses of the 16S rDNA from this specimen. We find that 2-9-3 differs from a modern halophile, Salibacillus marismortui, by just 3 unambiguous bp in 16S rDNA, versus the approximately 59 bp that would be expected if these bacteria evolved at the same rate as other bacteria. We show, using a Poisson distribution, that unless it can be shown that S. marismortui evolves 5 to 10 times more slowly than other bacteria for which 16S rDNA substitution rates have been established, Vreeland et al.'s claim would be rejected at the 0.05 level. Also, a molecular clock test and a relative rates test fail to substantiate Vreeland et al.'s claim that strain 2-9-3 is a 250-Myr-old bacterium. The report of Vreeland et al. thus falls into a long series of suspect ancient DNA studies.

  7. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress

    PubMed Central

    Chen, Yanmei; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong

    2016-01-01

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd2+ MIC, >250 mg liter−1) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion. PMID:26729719

  8. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice

    PubMed Central

    Vance, Tyler D. R.; Olijve, Luuk L. C.; Campbell, Robert L.; Voets, Ilja K.; Davies, Peter L.; Guo, Shuaiqi

    2014-01-01

    The large size of a 1.5-MDa ice-binding adhesin [MpAFP (Marinomonas primoryensis antifreeze protein)] from an Antarctic Gram-negative bacterium, M. primoryensis, is mainly due to its highly repetitive RII (Region II). MpAFP_RII contains roughly 120 tandem copies of an identical 104-residue repeat. We have previously determined that a single RII repeat folds as a Ca2+-dependent immunoglobulin-like domain. Here, we solved the crystal structure of RII tetra-tandemer (four tandem RII repeats) to a resolution of 1.8 Å. The RII tetra-tandemer reveals an extended (~190-Å × ~25-Å), rod-like structure with four RII-repeats aligned in series with each other. The inter-repeat regions of the RII tetra-tandemer are strengthened by Ca2+ bound to acidic residues. SAXS (small-angle X-ray scattering) profiles indicate the RII tetra-tandemer is significantly rigidified upon Ca2+ binding, and that the protein's solution structure is in excellent agreement with its crystal structure. We hypothesize that >600 Ca2+ help rigidify the chain of ~120 104-residue repeats to form a ~0.6 μm rod-like structure in order to project the ice-binding domain of MpAFP away from the bacterial cell surface. The proposed extender role of RII can help the strictly aerobic, motile bacterium bind ice in the upper reaches of the Antarctic lake where oxygen and nutrients are most abundant. Ca2+-induced rigidity of tandem Ig-like repeats in large adhesins might be a general mechanism used by bacteria to bind to their substrates and help colonize specific niches. PMID:24892750

  9. Virgibacillus salarius sp. nov., a halophilic bacterium isolated from a Saharan salt lake.

    PubMed

    Hua, Ngoc-Phuc; Hamza-Chaffai, Amel; Vreeland, Russell H; Isoda, Hiroko; Naganuma, Takeshi

    2008-10-01

    A Gram-positive, endospore-forming, rod-shaped and moderately halophilic bacterium was isolated from a salt-crust sample collected from Gharsa salt lake (Chott el Gharsa), Tunisia. The newly isolated bacterium, designated SA-Vb1(T), was identified based on polyphasic taxonomy including genotypic, phenotypic and chemotaxonomic characterization. Strain SA-Vb1(T) was closely related to the type strains of Virgibacillus marismortui and Virgibacillus olivae, with 16S rRNA gene sequence similarities of 99.7 and 99.4 %, respectively. However, strain SA-Vb1(T) was distinguished from these two type strains on the basis of phenotypic characteristics and DNA-DNA relatedness (29.4 and 5.1 %, respectively). The genetic relationship between strain SA-Vb1(T) and Virgibacillus pantothenticus IAM 11061(T) (the type strain of the type species) and other type strains of the genus was 96-98 % based on 16S rRNA gene sequence similarity and 18.3-22.3 % based on DNA-DNA hybridization. Biochemical analysis resulted in determination of major fatty acids iso-C(15 : 0), anteiso-C(15 : 0) and anteiso-C(17 : 0) (33.3, 29.2 and 9.8 %, respectively); phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine were the main polar lipids and MK-7 was the predominant menaquinone ( approximately 100 %). The distinct characteristics demonstrated by strain SA-Vb1(T) represent properties of a novel species of the genus Virgibacillus, for which the name Virgibacillus salarius sp. nov. is proposed. The type strain is SA-Vb1(T) (=JCM 12946(T) =DSM 18441(T)). PMID:18842865

  10. Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium.

    PubMed Central

    Beller, H R; Spormann, A M; Sharma, P K; Cole, J R; Reinhard, M

    1996-01-01

    A novel sulfate-reducing bacterium isolated from fuel-contaminated subsurface soil, strain PRTOL1, mineralizes toluene as the sole electron donor and carbon source under strictly anaerobic conditions. The mineralization of 80% of toluene carbon to CO2 was demonstrated in experiments with [ring-U-14C]toluene; 15% of toluene carbon was converted to biomass and nonvolatile metabolic by-products, primarily the former. The observed stoichiometric ratio of moles of sulfate consumed per mole of toluene consumed was consistent with the theoretical ratio for mineralization of toluene coupled with the reduction of sulfate to hydrogen sulfide. Strain PRTOL1 also transforms o- and p-xylene to metabolic products when grown with toluene. However, xylene transformation by PRTOL1 is slow relative to toluene degradation and cannot be sustained over time. Stable isotope-labeled substrates were used in conjunction with gas chromatography-mass spectrometry to investigate the by-products of toluene and xylene metabolism. The predominant by-products from toluene, o-xylene, and p-xylene were benzylsuccinic acid, (2-methylbenzyl)succinic acid, and 4-methylbenzoic acid (or p-toluic acid), respectively. Metabolic by-products accounted for nearly all of the o-xylene consumed. Enzyme assays indicated that acetyl coenzyme A oxidation proceeded via the carbon monoxide dehydrogenase pathway. Compared with the only other reported toluene-degrading, sulfate-reducing bacterium, strain PRTOL1 is distinct in that it has a novel 16S rRNA gene sequence and was derived from a freshwater rather than marine environment. PMID:8919780

  11. Characterization of a methane-utilizing bacterium from a bacterial consortium that rapidly degrades trichloroethylene and chloroform.

    PubMed Central

    Alvarez-Cohen, L; McCarty, P L; Boulygina, E; Hanson, R S; Brusseau, G A; Tsien, H C

    1992-01-01

    A mixed culture of bacteria grown in a bioreactor with methane as a carbon and energy source rapidly oxidized trichloroethylene and chloroform. The most abundant organism was a crescent-shaped bacterium that bound the fluorescent oligonucleotide signature probes that specifically hybridize to serine pathway methylotrophs. The 5S rRNA from this bacterium was found to be 93.5% homologous to the Methylosinus trichosporium OB3b 5S RNA sequence. A type II methanotrophic bacterium, isolated in pure culture from the bioreactor, synthesized soluble methane monooxygenase during growth in a copper-limited medium and was also capable of rapid trichloroethylene oxidation. The bacterium contained the gene that encodes the soluble methane monooxygenase B component on an AseI restriction fragment identical in size to a restriction fragment present in AseI digests of DNA from bacteria in the mixed culture. The sequence of the 16S rRNA from the pure culture was found to be 92 and 94% homologous to the 16S rRNAs of M. trichosporium OB3b and M. sporium, respectively. Both the pure and mixed cultures oxidized naphthalene to naphthol, indicating the presence of soluble methane monooxygenase. The mixed culture also synthesized soluble methane monooxygenase, as evidenced by the presence of proteins that cross-reacted with antibodies prepared against purified soluble methane monooxygenase components from M. trichosporium OB3b on Western blots (immunoblots). It was concluded that a type II methanotrophic bacterium phylogenetically related to Methylosinus species synthesizes soluble methane monooxygenase and is responsible for trichloroethylene oxidation in the bioreactor. Images PMID:1377902

  12. Evidence of Carbon Fixation Pathway in a Bacterium from Candidate Phylum SBR1093 Revealed with Genomic Analysis

    PubMed Central

    Wang, Zhiping; Guo, Feng; Liu, Lili; Zhang, Tong

    2014-01-01

    Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB) cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere. PMID:25310003

  13. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    SciTech Connect

    Taghavi, S.; van der Lelie, D.; Hoffman, A.; Zhang, Y.-B.; Walla, M. D.; Vangronsveld, J.; Newman, L.; Monchy, S.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  14. An Extended Cyclic Di-GMP Network in the Predatory Bacterium Bdellovibrio bacteriovorus

    PubMed Central

    Rotem, Or; Nesper, Jutta; Borovok, Ilya; Gorovits, Rena; Kolot, Mikhail; Pasternak, Zohar; Shin, Irina; Glatter, Timo; Pietrokovski, Shmuel; Jenal, Urs

    2015-01-01

    ABSTRACT Over the course of the last 3 decades the role of the second messenger cyclic di-GMP (c-di-GMP) as a master regulator of bacterial physiology was determined. Although the control over c-di-GMP levels via synthesis and breakdown and the allosteric regulation of c-di-GMP over receptor proteins (effectors) and riboswitches have been extensively studied, relatively few effectors have been identified and most are of unknown functions. The obligate predatory bacterium Bdellovibrio bacteriovorus has a peculiar dimorphic life cycle, in which a phenotypic transition from a free-living attack phase (AP) to a sessile, intracellular predatory growth phase (GP) is tightly regulated by specific c-di-GMP diguanylate cyclases. B. bacteriovorus also bears one of the largest complement of defined effectors, almost none of known functions, suggesting that additional proteins may be involved in c-di-GMP signaling. In order to uncover novel c-di-GMP effectors, a c-di-GMP capture-compound mass-spectroscopy experiment was performed on wild-type AP and host-independent (HI) mutant cultures, the latter serving as a proxy for wild-type GP cells. Eighty-four proteins were identified as candidate c-di-GMP binders. Of these proteins, 65 did not include any recognized c-di-GMP binding site, and 3 carried known unorthodox binding sites. Putative functions could be assigned to 59 proteins. These proteins are included in metabolic pathways, regulatory circuits, cell transport, and motility, thereby creating a potentially large c-di-GMP network. False candidate effectors may include members of protein complexes, as well as proteins binding nucleotides or other cofactors that were, respectively, carried over or unspecifically interacted with the capture compound during the pulldown. Of the 84 candidates, 62 were found to specifically bind the c-di-GMP capture compound in AP or in HI cultures, suggesting c-di-GMP control over the whole-cell cycle of the bacterium. High affinity and

  15. A Novel Treatment Protects Chlorella at Commercial Scale from the Predatory Bacterium Vampirovibrio chlorellavorus.

    PubMed

    Ganuza, Eneko; Sellers, Charles E; Bennett, Braden W; Lyons, Eric M; Carney, Laura T

    2016-01-01

    The predatory bacterium, Vampirovibrio chlorellavorus, can destroy a Chlorella culture in just a few days, rendering an otherwise robust algal crop into a discolored suspension of empty cell walls. Chlorella is used as a benchmark for open pond cultivation due to its fast growth. In nature, V. chlorellavorus plays an ecological role by controlling this widespread terrestrial and freshwater microalga, but it can have a devastating effect when it attacks large commercial ponds. We discovered that V. chlorellavorus was associated with the collapse of four pilot commercial-scale (130,000 L volume) open-pond reactors. Routine microscopy revealed the distinctive pattern of V. chlorellavorus attachment to the algal cells, followed by algal cell clumping, culture discoloration and ultimately, growth decline. The "crash" of the algal culture coincided with increasing proportions of 16s rRNA sequencing reads assigned to V. chlorellavorus. We designed a qPCR assay to predict an impending culture crash and developed a novel treatment to control the bacterium. We found that (1) Chlorella growth was not affected by a 15 min exposure to pH 3.5 in the presence of 0.5 g/L acetate, when titrated with hydrochloric acid and (2) this treatment had a bactericidal effect on the culture (2-log decrease in aerobic counts). Therefore, when qPCR results indicated a rise in V. chlorellavorus amplicons, we found that the pH-shock treatment prevented the culture crash and doubled the productive longevity of the culture. Furthermore, the treatment could be repeatedly applied to the same culture, at the beginning of at least two sequential batch cycles. In this case, the treatment was applied preventively, further increasing the longevity of the open pond culture. In summary, the treatment reversed the infection of V. chlorellavorus as confirmed by observations of bacterial attachment to Chlorella cells and by detection of V. chlorellavorus by 16s rRNA sequencing and qPCR assay. The p

  16. A Novel Treatment Protects Chlorella at Commercial Scale from the Predatory Bacterium Vampirovibrio chlorellavorus.

    PubMed

    Ganuza, Eneko; Sellers, Charles E; Bennett, Braden W; Lyons, Eric M; Carney, Laura T

    2016-01-01

    The predatory bacterium, Vampirovibrio chlorellavorus, can destroy a Chlorella culture in just a few days, rendering an otherwise robust algal crop into a discolored suspension of empty cell walls. Chlorella is used as a benchmark for open pond cultivation due to its fast growth. In nature, V. chlorellavorus plays an ecological role by controlling this widespread terrestrial and freshwater microalga, but it can have a devastating effect when it attacks large commercial ponds. We discovered that V. chlorellavorus was associated with the collapse of four pilot commercial-scale (130,000 L volume) open-pond reactors. Routine microscopy revealed the distinctive pattern of V. chlorellavorus attachment to the algal cells, followed by algal cell clumping, culture discoloration and ultimately, growth decline. The "crash" of the algal culture coincided with increasing proportions of 16s rRNA sequencing reads assigned to V. chlorellavorus. We designed a qPCR assay to predict an impending culture crash and developed a novel treatment to control the bacterium. We found that (1) Chlorella growth was not affected by a 15 min exposure to pH 3.5 in the presence of 0.5 g/L acetate, when titrated with hydrochloric acid and (2) this treatment had a bactericidal effect on the culture (2-log decrease in aerobic counts). Therefore, when qPCR results indicated a rise in V. chlorellavorus amplicons, we found that the pH-shock treatment prevented the culture crash and doubled the productive longevity of the culture. Furthermore, the treatment could be repeatedly applied to the same culture, at the beginning of at least two sequential batch cycles. In this case, the treatment was applied preventively, further increasing the longevity of the open pond culture. In summary, the treatment reversed the infection of V. chlorellavorus as confirmed by observations of bacterial attachment to Chlorella cells and by detection of V. chlorellavorus by 16s rRNA sequencing and qPCR assay. The p

  17. Ammoniibacillus agariperforans gen. nov., sp. nov., a thermophilic, agar-degrading bacterium isolated from compost.

    PubMed

    Sakai, Masao; Deguchi, Daigo; Hosoda, Akifumi; Kawauchi, Tomohiro; Ikenaga, Makoto

    2015-02-01

    A thermophilic, agar-degrading bacterium, strain FAB2(T), was isolated from sewage sludge compost. According to phylogenetic analysis based on 16S rRNA gene sequences, strain FAB2(T) belonged to the family Paenibacillaceae within the phylum Firmicutes. However, FAB2(T) was different enough at the genus level from closely related species. The percentages of 16S rRNA gene sequence similarity with related organisms were 90.4 % for Thermobacillus xylanilyticus, 91.8 % for Paenibacillus barengoltzii, 89.4 % for Cohnella lupini, 90.1 % for Fontibacillus aquaticus, and 89.0 % for Saccharibacillus sacchari. Morphological and physiological analyses revealed that the strain was motile, rod-shaped, Gram-stain-positive, aerobic and able to form oval endospores in swollen sporangia. Ammonium was required as a nitrogen source while nitrate, nitrite, urea and glutamate were not utilized. Catalase and oxidase activities were weakly positive and positive, respectively. The bacterium grew in the temperature range of 50-65 °C and in media with pH 7.5 to 9.0. Optimal growth occurred at 60 °C and pH 8.0-8.6. Growth was inhibited at pH≤7.0 and NaCl concentrations ≥2.5 % (w/v). In chemotaxonomic characterization, MK-7 was identified as the dominant menaquinone. Major fatty acids were iso-C16 : 0 and C16 : 0. Dominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phosphatidylcholine was present in a moderate amount. The diamino acid in the cell wall was meso-diaminopimelic acid. The G+C content of the genomic DNA was 49.5 mol% in a nucleic acid study. On the basis of genetic and phenotypic characteristics, strain FAB2(T) ( = NBRC 109510(T) = KCTC 33130(T)) showed characteristics suitable for classification as the type strain of a novel species of a new genus in the family Paenibacillaceae, for which the name Ammoniibacillus agariperforans gen. nov., sp. nov. is proposed.

  18. A Novel Treatment Protects Chlorella at Commercial Scale from the Predatory Bacterium Vampirovibrio chlorellavorus

    PubMed Central

    Ganuza, Eneko; Sellers, Charles E.; Bennett, Braden W.; Lyons, Eric M.; Carney, Laura T.

    2016-01-01

    The predatory bacterium, Vampirovibrio chlorellavorus, can destroy a Chlorella culture in just a few days, rendering an otherwise robust algal crop into a discolored suspension of empty cell walls. Chlorella is used as a benchmark for open pond cultivation due to its fast growth. In nature, V. chlorellavorus plays an ecological role by controlling this widespread terrestrial and freshwater microalga, but it can have a devastating effect when it attacks large commercial ponds. We discovered that V. chlorellavorus was associated with the collapse of four pilot commercial-scale (130,000 L volume) open-pond reactors. Routine microscopy revealed the distinctive pattern of V. chlorellavorus attachment to the algal cells, followed by algal cell clumping, culture discoloration and ultimately, growth decline. The “crash” of the algal culture coincided with increasing proportions of 16s rRNA sequencing reads assigned to V. chlorellavorus. We designed a qPCR assay to predict an impending culture crash and developed a novel treatment to control the bacterium. We found that (1) Chlorella growth was not affected by a 15 min exposure to pH 3.5 in the presence of 0.5 g/L acetate, when titrated with hydrochloric acid and (2) this treatment had a bactericidal effect on the culture (2-log decrease in aerobic counts). Therefore, when qPCR results indicated a rise in V. chlorellavorus amplicons, we found that the pH-shock treatment prevented the culture crash and doubled the productive longevity of the culture. Furthermore, the treatment could be repeatedly applied to the same culture, at the beginning of at least two sequential batch cycles. In this case, the treatment was applied preventively, further increasing the longevity of the open pond culture. In summary, the treatment reversed the infection of V. chlorellavorus as confirmed by observations of bacterial attachment to Chlorella cells and by detection of V. chlorellavorus by 16s rRNA sequencing and qPCR assay. The p

  19. Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov.

    SciTech Connect

    Slobodkin, A.; Wiegel, J.; Reysenbach, A.L.

    1997-10-01

    A thermophilic, anaerobic, spore-forming bacterium (strain JW/AS-Y6) was isolated from a mixed sediment-water sample from a hot spring (Calcite Spring area) at Yellowstone National Park. The vegetative cells of this organism were straight rods, 0.5 to 0.6 by 3.0 to 6.5 {mu}m. Cells occurred singly and exhibited a slight tumbling motility. They formed round refractile endospores in terminal swollen sporangia. Cells stained gram positive. The temperature range for growth at pH 6.8 was 43 to 65{degrees}C, with optimum growth at 58{degrees}C. The range for growth at 60{degrees}C (pH{sup 60C}; with the pH meter calibrated at 60{degrees}C) was 5.9 to 7.8, with an optimum pH{sub 60C} of 6.3 to 6.5. The substrates utilized included glycerol, glucose, fructose, mannose, galactose, xylose, lactate, glycerate, pyruvate, and yeast extract. In the presence of CO{sub 2}, acetate was the only organic product from glyerol and carbohydrate fermentation. No H{sub 2} was produced during growth. The strain was not able to grow chemolithotrophically at the expense of H{sub 2}-CO{sub 2}; however, suspensions of cells in the exponential growth phase consumed H{sub 2}. The bacterium reduced fumarate to succinate and thiosulfate to elemental sulfur. Growth was exhibited by ampicillin, chloramphenicol, erythromycin, rifampin, and tetracycline, but not by streptomycin. The G+C content of the DNA was 54.5 mol% (as determined by high-performance liquid chromatography). The 16S ribosomal DNA sequence analysis placed the isolate in the Gram type-positive Bacillus-Clostridium subphylum. On the basis of physiological properties and phylogenetic analysis we propose that the isolated strain constitutes a new species, Moorella glycerini; the type strain is JW/AS-Y6 (= DSM 11254 = ATCC 700316).

  20. High-pressure hole-burning studies of the bacteriochlorophyll a antenna complex from Chlorobium tepidum

    SciTech Connect

    Reddy, N.R.S.; Jankowiak, R.; Small, G.J. |

    1995-10-26

    The dependence of the low-temperature Q{sub y} absorption and nonphotochemical hole-burned spectra of the title complex (also known as the FMO complex) on pressure (<= 700 MPa) is reported. Pressure-induced structural changes of the complex were found to be elastic. The linear pressure shifts at 4.2 K for the principal absorption bands at 805, 814 and 825 nm are -0.08, -0.11, and -0.11 cm{sup -1}/MPa, respectively. Importantly, the 825 and 814 nm absorption profiles (shape, intensity) are independent of pressure. The results establish that, even at the highest values used, pressure has only a weak effect on the pairwise excitonic couplings of the bacteriochlorophyll (BChl) molecules, inhomogeneous broadening, and electron-phonon coupling. The pressure dependence of the Q{sub y} spectrum and zero-phonon holes (ZPH) burned in the 825 nm band can be rationalized in terms of dispersion interactions when BChl occupation numbers for the exciton levels are taken into account. These ZPH, which are assigned to the lowest level at 827 nm, carry a width of 0.6 cm{sup -1} at 4.2 K, which is independent of the pressure at which the hole is burned. This width is ascribed to dephasing, T{sub 2} = 35 ps. Possible mechanisms for the dephasing are considered, and its pressure independence is discussed. 80 refs., 12 figs., 1 tab.

  1. Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation.

    PubMed

    Luo, Shenglian; Wan, Yong; Xiao, Xiao; Guo, Hanjun; Chen, Liang; Xi, Qiang; Zeng, Guangming; Liu, Chengbin; Chen, Jueliang

    2011-03-01

    Valuable endophytic strains facilitating plants growth and detoxification of heavy metals are required because the application of plant-endophyte symbiotic system is a promising potential technique to improve efficiency of phytoremediation. In this study, endophytic bacterium LRE07 was isolated from cadmium hyperaccumulator Solanum nigrum L. It was identified as Serratia sp. by 16S rRNA sequence analysis. The endophytic bacterium LRE07 was resistant to the toxic effects of heavy metals, solubilized mineral phosphate, and produced indoleacetic acid and siderophore. The heavy metal detoxification was studied in growing LRE07 cells. The strain bound over 65% of cadmium and 35% of zinc in its growing cells from single metal solutions 72 h after inoculation. Besides the high removal efficiencies in single-ion system, an analogous removal phenomenon was also observed in multi-ions system, indicating that the endophyte possesses specific and remarkable heavy metal remediation abilities. PMID:20953602

  2. [Genetic variability of the bacterium Ralstonia solanacearum (Burkholderiales: Burholderiaceae) in the banana-growing region of Uraba (Colombia)].

    PubMed

    Cardozo, Carolina; Rodríguez, Paola; Cotes, José Miguel; Marín, Mauricio

    2010-03-01

    The banana moko disease, caused by the bacterium Ralstonia solanacearum, is one of the most important phytopathological problems of the banana agribusiness in tropical countries. In Uraba and Magdalena (Colombia), the main exporting regions of banana in Colombia, this disease causes a destruction estimated in 16.5 ha/year. The bacterium presents an extremely high level of genetic variation that affects control measures. This is the first study of its variation in Colombia and was done with AFLP molecular markers on a population of 100 isolates from banana plants, soils and "weeds". The high level of genetic diversity, with Nei and Shannon indexes of h=0.32 and I=0.48, respectively, and the AMOVA, showed that this population is subestructured (Fst=0.66): the host is the main factor of differentiation. Even so, previous tests show that all varieties have pathogenicity on Musa.

  3. Microbial selenite reduction with organic carbon and electrode as sole electron donor by a bacterium isolated from domestic wastewater.

    PubMed

    Nguyen, Van Khanh; Park, Younghyun; Yu, Jaecheul; Lee, Taeho

    2016-07-01

    Selenium is said to be multifaceted element because it is essential at a low concentration but very toxic at an elevated level. For the purpose of screening a potential microorganism for selenite bioremediation, we isolated a bacterium, named strain THL1, which could perform both heterotrophic selenite reduction, using organic carbons such as acetate, lactate, propionate, and butyrate as electron donors under microaerobic condition, and electrotrophic selenite reduction, using an electrode polarized at -0.3V (vs. standard hydrogen electrode) as the sole electron donor under anaerobic condition. This bacterium determined to be a new strain of the genus Cronobacter, could remove selenite with an efficiency of up to 100%. This study is the first demonstration on a pure culture could take up electrons from an electrode to perform selenite reduction. The selenium nanoparticles produced by microbial selenite reduction might be considered for recovery and use in the nanotechnology industry. PMID:27099943

  4. Characterization and identification of a chlorine-resistant bacterium, Sphingomonas TS001, from a model drinking water distribution system.

    PubMed

    Sun, Wenjun; Liu, Wenjun; Cui, Lifeng; Zhang, Minglu; Wang, Bei

    2013-08-01

    This study describes the identification and characterization of a new chlorine resistant bacterium, Sphingomonas TS001, isolated from a model drinking water distribution system. The isolate was identified by 16s rRNA gene analysis and morphological and physiological characteristics. Phylogenetic analysis indicates that TS001 belongs to the genus Sphingomonas. The model distribution system HPC results showed that, when the chlorine residual was greater than 0.7 mg L(-1), 100% of detected heterotrophic bacteria (HPC) was TS001. The bench-scale inactivation efficiency testing showed that this strain was very resistant to chlorine, and 4 mg L(-1) of chlorine with 240 min retention time provided only approximately 5% viability reduction of TS001. In contrast, a 3-log inactivation (99.9%) was obtained for UV fluencies of 40 mJ cm(-2). A high chlorine-resistant and UV sensitive bacterium, Sphingomonas TS001, was documented for the first time.

  5. Alteromonas infernus sp. nov., a new polysaccharide-producing bacterium isolated from a deep-sea hydrothermal vent.

    PubMed

    Raguénès, G H; Peres, A; Ruimy, R; Pignet, P; Christen, R; Loaec, M; Rougeaux, H; Barbier, G; Guezennec, J G

    1997-04-01

    A deep-sea, aerobic, mesophilic and heterotrophic new bacterium was isolated from a sample of fluid collected among a dense population of Riftia pachyptila, in the vicinity of an active hydrothermal vent of the Southern depression of the Guaymas basin (Gulf of California). On the basis of phenotypic and phylogenetic analyses and DNA/DNA relatedness, the strain GY785 was recognized as a new species of the genus Alteromonas and the name of Alteromonas infernus is proposed. During the stationary phase in batch cultures in the presence of glucose, this bacterium secreted two unusual polysaccharides. The water-soluble exopolysaccharide-1 produced contained glucose, galactose, galacturonic and glucuronic acids as monosaccharides. The gel-forming exopolysaccharide-2 was separated from the bacterial cells by dialysis against distilled water and partially characterized. PMID:9134716

  6. Draft genome sequence of Bacillus okhensis Kh10-101T, a halo-alkali tolerant bacterium from Indian saltpan.

    PubMed

    Krishna, Pilla Sankara; Sreenivas, Ara; Singh, Deepak Kumar; Shivaji, Sisinthy; Prakash, Jogadhenu S S

    2015-12-01

    We report the 4.86-Mb draft genome sequence of Bacillus okhensis strain Kh10-101T, a halo-alkali tolerant rod shaped bacterium isolated from a salt pan near port of Okha, India. This bacterium is a potential model to study the molecular response of bacteria to salt as well as alkaline stress, as it thrives under both high salt and high pH conditions. The draft genome consist of 4,865,284 bp with 38.2% G + C, 4952 predicted CDS, 157 tRNAs and 8 rRNAs. Sequence was deposited at DDBJ/EMBL/GenBank under the project accession JRJU00000000. PMID:26697400

  7. Draft Genome Sequence of Providencia sneebia Strain ST1, a Quorum Sensing Bacterium Associated with Marine Microalgae

    PubMed Central

    Zhou, Jin; Lao, Yong-Min; Cai, Zhong-Hua

    2016-01-01

    Providencia sneebia strain ST1 is a symbiotic bacterium (belonging to phylum gammaproteobacteria) with marine microalgae. This bacterium exhibits the ability to produce N-Acyl homoserine lactone signal molecule. To date, no genome that originates from marine Providencia spp. has been reported. In this study, we present the genome sequence of this strain. It has a genome size of 4.89 M, with 19 contigs and an average G+C of 51.97%. The function of 4,631 proteins was predicted, and 3,652 proteins were assigned to COG functional categories. Among them, 407 genes are involved in carbohydrate metabolism, 306 genes participate in nitrogen utilization and energy conversion, and 185 genes related to signal transduction process. Thus, this strain plays an active role in the biogeochemical cycle in algal life history. The whole-genome of this isolate and annotation will help enhance understanding of bacterial ecological behavior in the phycosphere. PMID:27026792

  8. Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40T

    PubMed Central

    Weiner, Ronald M.; Taylor, Larry E.; Henrissat, Bernard; Hauser, Loren; Land, Miriam; Coutinho, Pedro M.; Rancurel, Corinne; Saunders, Elizabeth H.; Longmire, Atkinson G.; Zhang, Haitao; Bayer, Edward A.; Gilbert, Harry J.; Larimer, Frank; Zhulin, Igor B.; Ekborg, Nathan A.; Lamed, Raphael; Richardson, Paul M.; Borovok, Ilya; Hutcheson, Steven

    2008-01-01

    The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment. PMID:18516288

  9. Stereochemical course of hydrolytic reaction catalyzed by alpha-galactosidase from cold adaptable marine bacterium of genus Pseudoalteromonas

    NASA Astrophysics Data System (ADS)

    Bakunina, Irina; Balabanova, Larissa; Golotin, Vasiliy; Slepchenko, Lyubov; Isakov, Vladimir; Rasskazov, Valeriy

    2014-10-01

    The recombinant α-galactosidase of the marine bacterium (α-PsGal) was synthesized with the use of the plasmid 40Gal, consisting of plasmid pET-40b (+) (Novagen) and the gene corresponding to the open reading frame of the mature α-galactosidase of marine bacterium Pseudoalteromonas sp. KMM 701, transformed into the E. coli Rosetta(DE3) cells. In order to understand the mechanism of action, the stereochemistry of hydrolysis of 4-nitrophenyl α-D-galactopyranoside (4-NPGP) by α-PsGal was measured by 1H NMR spectroscopy. The kinetics of formation of α- and β-anomer of galactose showed that α-anomer initially formed and accumulated, and then an appreciable amount of β-anomer appeared as a result of mutarotation. The data clearly show that the enzymatic hydrolysis of 4-NPGP proceeds with the retention of anomeric configuration, probably, due to a double displacement mechanism of reaction.

  10. Effect of light intensity on the formation of the photochemical apparatus in the green bacterium Chloropseudomonas ethylicum.

    PubMed

    Holt, S C; Conti, S F; Fuller, R C

    1966-01-01

    Holt, Stanley C. (Dartmouth Medical School, Hanover, N.H.), S. F. Conti, and R. C. Fuller. Effect of light intensity on the formation of the photochemical apparatus in the green bacterium Chloropseudomonas ethylicum. J. Bacteriol. 91:349-355. 1966.-When the green bacterium Chloropseudomonas ethylicum was grown at various light intensities, the formation of the photosynthetic vesicles was found to be an inverse function of the light intensity at which the cells were grown. The specific chlorophyll content of isolated vesicles varied as the light intensity was changed over a wide range. Thus, the regulation of chlorophyll content in C. ethylicum in response to a change in light intensity is achieved both by a change in the number of vesicles that are formed and by a change in the specific chlorophyll content of these vesicles.

  11. A novel cryoprotective protein (CRP) with high activity from the ice-nucleating bacterium, Pantoea agglomerans IFO12686.

    PubMed

    Koda, N; Asaeda, T; Yamade, K; Kawahara, H; Obata, H

    2001-04-01

    The ice-nucleating bacterium, Pantoea agglomerans IFO12686, induces the cryoprotective protein (CRP) by cold acclimation at 12 degrees C. The CRP was purified to apparent homogeneity by various chromatographies. We found that the purified CRP was a monomer of approximately 29,000 according to gel filtration chromatography and SDS-PAGE, and was a heat-stable protein. The CRP could protect freeze-labile enzymes, lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH) and isocitrate dehydrogenase (iCDH), against freezing-thawing denaturation. The activity of the CRP was about 3.5 x 10(4) times more effective than bovine serum albumin (BSA) and 2 x 10(6) times than COR26 from the ice-nucleating bacterium Pseudomonas fluorescens KUIN-1. We confirmed that the CRP was a novel protein, as judged by the a different molecule mass from the already-known cryoprotectants, and has an extremely high cryoprotective activity. PMID:11388469

  12. Heterologous expression and purification of a multiheme cytochrome from a Gram-positive bacterium capable of performing extracellular respiration.

    PubMed

    Costa, N L; Carlson, H K; Coates, J D; Louro, R O; Paquete, C M

    2015-07-01

    Microbial electrochemical technologies are emerging as environmentally friendly biotechnological processes. Recently, a thermophilic Gram-positive bacterium capable of electricity production in a microbial fuel cell was isolated. Thermincola potens JR contains several multiheme c-type cytochromes that were implicated in the process of electricity production. In order to understand the molecular basis by which Gram-positive bacteria perform extracellular electron transfer, the relevant proteins need to be characterized in detail. Towards this end, a chimeric gene containing the signal peptide from Shewanella oneidensis MR-1 small tetraheme cytochrome c (STC) and the gene sequence of the target protein TherJR_0333 was constructed. This manuscript reports the successful expression of this chimeric gene in the Gram-negative bacterium Escherichia coli and its subsequent purification and characterization. This methodology opens the possibility to study other multiheme cytochromes from Gram-positive bacteria, allowing the extracellular electron transfer mechanisms of this class of organisms to be unraveled.

  13. A bacterium capable of using phytol as its sole carbon source, isolated from algal sediment of Mud Lake, Florida.

    PubMed

    Hoag, K B; Bradley, W H; Tousimis, A J; Price, D L

    1969-07-01

    A species of Flavobacterium that consistently attacks pure phytol and can use it as a sole source of carbon has been isolated from the blue-green algal sediment of Mud Lake, Florida. Biochemical tests demonstrate that this bacterium also readily uses various other organic compounds. This bacterium may account for the degradation products of chlorophyll and its side chain phytol, which have been found in the Mud Lake algal sediment. Phytol and its degradation products play a role in Refsum's disease, but phytol is also the most promising precursor of the isoprenoid hydrocarbons found in oil shale of the Green River Formation (Eocene) of Colorado, Utah, and Wyoming. The discovery of this species of Flavobacterium is a significant product of a protracted study of the bacteriology, phycology, zoology, and geochemistry of the algal sediment forming in Mud Lake, which is believed to be a modern analogue of the kind of algal sediment that, through geologic time, became oil shale.

  14. Role of prodigiosin and chitinases in antagonistic activity of the bacterium Serratia marcescens against the fungus Didymella applanata.

    PubMed

    Duzhak, A B; Panfilova, Z I; Duzhak, T G; Vasyunina, E A; Shternshis, M V

    2012-08-01

    The molecular features of antagonism of the bacterium Serratia marcescens against the plant pathogenic fungus Didymella applanata have been studied. The chitinases and the red pigment prodigiosin (PG) of S. marcescens were isolated and characterized. Specific antifungal activity of the purified PG and chitinases against D. applanata was tested in vitro. The antagonistic properties of several S. marcescens strains exhibiting different levels of PG and chitinase production were analyzed in vitro with regard to D. applanata. It was found that the ability of S. marcescens to suppress the vital functions of D. applanata depends mainly on the level of PG production, whereas chitinase production does not provide the bacterium with any competitive advantage over the fungus.

  15. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  16. Phylogeny and photoheterotrophy in the acidophilic phototrophic purple bacterium Rhodoblastus acidophilus.

    PubMed

    Kempher, Megan L; Madigan, Michael T

    2012-07-01

    Norbert Pfennig isolated the first acidophilic purple bacterium over 40 years ago and named the organism Rhodopseudomonas acidophila (now Rhodoblastusacidophilus). Since the original work of Pfennig, no systematic study has been conducted on the phylogeny and carbon nutrition of a collection of strains of Rbl. acidophilus. We have isolated six new strains of Rbl. acidophilus from a Canadian peat bog. These strains, three of the original Pfennig strains and two additional putative R. acidophilus strains isolated several years ago in this laboratory,were characterized as to their pigments, phylogeny, and carbon sources supporting photoheterotrophic growth. Phototrophic cultures were either purple or orange in color,and the color of a particular strain was linked to phylogeny. As for the Pfennig strains of Rbl. acidophilus, all new strains grew photoheterotrophically at pH 5 on a variety of organic and fatty acids. However, in addition to methanol and ethanol, the new strains as well as the Pfennig strains grew on several other primary alcohols, results not reported in the original species description. Our work shows that some phylogenetic and physiological diversity exists within the species Rbl. acidophilus and supports the observation that few species of acidophilic purple bacteria appear to exist in nature.

  17. A novel radio-tolerant astaxanthin-producing bacterium reveals a new astaxanthin derivative: astaxanthin dirhamnoside.

    PubMed

    Asker, Dalal; Awad, Tarek S; Beppu, Teruhiko; Ueda, Kenji

    2012-01-01

    Astaxanthin is a red ketocarotenoid that exhibits extraordinary health-promoting activities such as antioxidant, anti-inflammatory, antitumor, and immune booster. The recent discovery of the beneficial roles of astaxanthin against many degenerative diseases such as cancers, heart diseases, and exercise-induced fatigue has raised its market demand as a nutraceutical and medicinal ingredient in aquaculture, food, and pharmaceutical industries. To satisfy the growing demand for this high-value nutraceuticals ingredient and consumer interest in natural products, many research efforts are being made to discover novel microbial producers with effective biotechnological production of astaxanthin. Using a rapid screening method based on 16S rRNA gene, and effective HPLC-Diodearray-MS methods for carotenoids analysis, we succeeded to isolate a unique astaxanthin-producing bacterium (strain TDMA-17(T)) that belongs to the family Sphingomonadaceae (Asker et al., Appl Microbiol Biotechnol 77: 383-392, 2007). In this chapter, we provide a detailed description of effective HPLC-Diodearray-MS methods for rapid analysis and identification of the carotenoids produced by strain TDMA-17(T). We also describe the methods of isolation and identification for a novel bacterial carotenoid (astaxanthin derivative), a major carotenoid that is produced by strain TDMA-17(T). Finally, we describe the polyphasic taxonomic analysis of strain TDMA-17(T) and the description of a novel species belonging to genus Sphingomonas. PMID:22623297

  18. Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment

    USGS Publications Warehouse

    Finster, K.; Coates, J.D.; Liesack, W.; Pfennig, N.

    1997-01-01

    A mesophilic, acetate-oxidizing, sulfur-reducing bacterium, strain NZ27(T), was isolated from anoxic mud from a freshwater sulfur spring. The cells were ovoid, motile, and gram negative. In addition to acetate, the strain oxidized pyruvate, succinate, and fumarate. Sulfur flower could be replaced by polysulfide as an electron acceptor. Ferric nitrilotriacetic acid was reduced in the presence of pyruvate; however, this reduction did not sustain growth. These phenotypic characteristics suggested that strain NZ27(T) is affiliated with the genus Desulfuromonas. A phylogenetic analysis based on the results of comparative 16S ribosomal DNA sequencing confirmed that strain NZ27(T) belongs to the Desulfuromonas cluster in the recently proposed family 'Geobacteraceae' in the delta subgroup of the Proteobacteria. In addition, the results of DNA-DNA hybridization studies confirmed that strain NZ27(T) represents a novel species. Desulfuromonas thiophila, a name tentatively used in previous publications, is the name proposed for strain NZ27(T) in this paper.

  19. Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium

    PubMed Central

    van Noort, Vera; Seebacher, Jan; Bader, Samuel; Mohammed, Shabaz; Vonkova, Ivana; Betts, Matthew J; Kühner, Sebastian; Kumar, Runjun; Maier, Tobias; O'Flaherty, Martina; Rybin, Vladimir; Schmeisky, Arne; Yus, Eva; Stülke, Jörg; Serrano, Luis; Russell, Robert B; Heck, Albert JR; Bork, Peer; Gavin, Anne-Claude

    2012-01-01

    Protein post-translational modifications (PTMs) represent important regulatory states that when combined have been hypothesized to act as molecular codes and to generate a functional diversity beyond genome and transcriptome. We systematically investigate the interplay of protein phosphorylation with other post-transcriptional regulatory mechanisms in the genome-reduced bacterium Mycoplasma pneumoniae. Systematic perturbations by deletion of its only two protein kinases and its unique protein phosphatase identified not only the protein-specific effect on the phosphorylation network, but also a modulation of proteome abundance and lysine acetylation patterns, mostly in the absence of transcriptional changes. Reciprocally, deletion of the two putative N-acetyltransferases affects protein phosphorylation, confirming cross-talk between the two PTMs. The measured M. pneumoniae phosphoproteome and lysine acetylome revealed that both PTMs are very common, that (as in Eukaryotes) they often co-occur within the same protein and that they are frequently observed at interaction interfaces and in multifunctional proteins. The results imply previously unreported hidden layers of post-transcriptional regulation intertwining phosphorylation with lysine acetylation and other mechanisms that define the functional state of a cell. PMID:22373819

  20. Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat

    NASA Technical Reports Server (NTRS)

    Madigan, M. T.; Jung, D. O.; Woese, C. R.; Achenbach, L. A.

    2000-01-01

    A new species of purple nonsulfur bacteria isolated from an Antarctic microbial mat is described. The organism, designated strain ANT.BR, was mildly psychrophilic, growing optimally at 15-18 degrees C with a growth temperature range of 0-25 degrees C. Cells of strain ANT.BR were highly motile curved rods and spirals, contained bacteriochlorophyll a, and showed a multicomponent in vivo absorption spectrum. A specific phylogenetic relationship was observed between strain ANT.BR and the purple bacterium Rhodoferax fermentans FR2T, and the two organisms shared several physiological and other phenotypic properties, with the notable exception of growth temperature optimum. Tests of genomic DNA hybridization, however, showed Rfx. fermentans FR2T and strain ANT.BR to be genetically distinct bacteria. Because of its unique set of properties, especially its requirement for low growth temperatures, we propose to recognize strain ANT.BR as a new species of the genus Rhodoferax, Rhodoferax antarcticus, named for its known habitat, the Antarctic.

  1. Landscape Changes Influence the Occurrence of the Melioidosis Bacterium Burkholderia pseudomallei in Soil in Northern Australia

    PubMed Central

    Kaestli, Mirjam; Mayo, Mark; Harrington, Glenda; Ward, Linda; Watt, Felicity; Hill, Jason V.; Cheng, Allen C.; Currie, Bart J.

    2009-01-01

    Background The soil-dwelling saprophyte bacterium Burkholderia pseudomallei is the cause of melioidosis, a severe disease of humans and animals in southeast Asia and northern Australia. Despite the detection of B. pseudomallei in various soil and water samples from endemic areas, the environmental habitat of B. pseudomallei remains unclear. Methodology/Principal Findings We performed a large survey in the Darwin area in tropical Australia and screened 809 soil samples for the presence of these bacteria. B. pseudomallei were detected by using a recently developed and validated protocol involving soil DNA extraction and real-time PCR targeting the B. pseudomallei–specific Type III Secretion System TTS1 gene cluster. Statistical analyses such as multivariable cluster logistic regression and principal component analysis were performed to assess the association of B. pseudomallei with environmental factors. The combination of factors describing the habitat of B. pseudomallei differed between undisturbed sites and environmentally manipulated areas. At undisturbed sites, the occurrence of B. pseudomallei was found to be significantly associated with areas rich in grasses, whereas at environmentally disturbed sites, B. pseudomallei was associated with the presence of livestock animals, lower soil pH and different combinations of soil texture and colour. Conclusions/Significance This study contributes to the elucidation of environmental factors influencing the occurrence of B. pseudomallei and raises concerns that B. pseudomallei may spread due to changes in land use. PMID:19156200

  2. Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP.

    PubMed

    Johnson, Winifred M; Kido Soule, Melissa C; Kujawinski, Elizabeth B

    2016-09-01

    Microbes, the foundation of the marine foodweb, do not function in isolation, but rather rely on molecular level interactions among species to thrive. Although certain types of interactions between autotrophic and heterotrophic microorganisms have been well documented, the role of specific organic molecules in regulating inter-species relationships and supporting growth are only beginning to be understood. Here, we examine one such interaction by characterizing the metabolic response of a heterotrophic marine bacterium, Ruegeria pomeroyi DSS-3, to growth on dimethylsulfoniopropionate (DMSP), an abundant organosulfur metabolite produced by phytoplankton. When cultivated on DMSP, R. pomeroyi synthesized a quorum-sensing molecule, N-(3-oxotetradecanoyl)-l-homoserine lactone, at significantly higher levels than during growth on propionate. Concomitant with the production of a quorum-sensing molecule, we observed differential production of intra- and extracellular metabolites including glutamine, vitamin B2 and biosynthetic intermediates of cyclic amino acids. Our metabolomics data indicate that R. pomeroyi changes regulation of its biochemical pathways in a manner that is adaptive for a cooperative lifestyle in the presence of DMSP, in anticipation of phytoplankton-derived nutrients and higher microbial density. This behavior is likely to occur on sinking marine particles, indicating that this response may impact the fate of organic matter. PMID:26882264

  3. In situ phenotypic heterogeneity among single cells of the filamentous bacterium Candidatus Microthrix parvicella

    PubMed Central

    Sheik, Abdul R; Muller, Emilie EL; Audinot, Jean-Nicolas; Lebrun, Laura A; Grysan, Patrick; Guignard, Cedric; Wilmes, Paul

    2016-01-01

    Microorganisms in biological wastewater treatment plants require adaptive strategies to deal with rapidly fluctuating environmental conditions. At the population level, the filamentous bacterium Candidatus Microthrix parvicella (Ca. M. parvicella) has been found to fine-tune its gene expression for optimized substrate assimilation. Here we investigated in situ substrate assimilation by single cells of Ca. M. parvicella using nano-scale secondary-ion mass spectrometry (nanoSIMS). NanoSIMS imaging highlighted phenotypic heterogeneity among Ca. M. parvicella cells of the same filament, whereby 13C-oleic acid and 13C-glycerol-3-phosphate assimilation occurred in ≈21–55% of cells, despite non-assimilating cells being intact and alive. In response to alternating aerobic–anoxic regimes, 13C-oleic acid assimilation occurred among subpopulations of Ca. M. parvicella cells (≈3–28% of cells). Furthermore, Ca. M. parvicella cells exhibited two temperature optima for 13C-oleic acid assimilation and associated growth rates. These results suggest that phenotypic heterogeneity among Ca. M. parvicella cells allows the population to adapt rapidly to fluctuating environmental conditions facilitating its widespread occurrence in biological wastewater treatment plants. PMID:26505828

  4. Isolation and Identification of a Red Pigment from the Antarctic Bacterium Shewanella frigidimarina.

    PubMed

    Martín-Cerezo, Maria Luisa; García-López, Eva; Cid, Cristina

    2015-01-01

    The present study dealt with the isolation, identification and characterization of pigments from red snow samples of the Quito coastal front glacier (S 62º 27,217', W 059º 45,960') in Greenwich, Archipelago South Shetland, Antarctica, during summer 2013. As a strain of Shewanella was found to be the most common and abundant species with maximum red color production, the pigment -contained in the protein fraction- was isolated and characterized by high performance liquid chromatography (HPLC), two-dimensional fluorescence Difference Gel Electrophoresis (2-D DIGE) and matrix- assisted laser desorption/ionization-time of flight mass spectrometry (MALDI/TOF/TOF). The identified pigment is a cytochrome c3 with apparent molecular weight of 10 kDa and apparent pI around 4.5. The maximum pigment concentration was produced at warm temperatures, 28ºC, and with increasing exposure time to UV radiation. Here we demonstrate that the synthesis of cytochrome c3 by the Antarctic bacterium is due to thermal adaptation and/or adaptation to radiation. Further, pigments such as cytochrome c3 enable this bacterial species to use an anaerobic and ferric metabolism. In addition, this study draws attention to the relevance of adaptation investigations; to the study of in vivo monitoring of environmental warming and UV radiation due to global warming; and to the study of the potential habitability of other worlds in the Solar System and beyond.

  5. Free-living freshwater amoebae differ in their susceptibility to the pathogenic bacterium Legionella pneumophila.

    PubMed

    Dey, Rafik; Bodennec, Jacques; Mameri, Mouh Oulhadj; Pernin, Pierre

    2009-01-01

    Legionella pneumophila is known as a facultative intracellular parasite of free-living soil and freshwater amoebae, of which several species have been shown to support the growth of the pathogenic bacteria. We report for the first time the behaviour of two strains (c2c and Z503) of the amoeba Willaertia magna towards different strains of L. pneumophila serogroup 1 and compared it with Acanthamoeba castellanii and Hartmannella vermiformis, known to be L. pneumophila permissive. In contrast to the results seen with other amoebae, W. magna c2c inhibited the growth of one strain of Legionella (L. pneumophila, Paris), but not of others belonging to the same serogroup (L. pneumophila, Philadelphia and L. pneumophila, Lens). Also, the different L. pneumophila inhibited cell growth and induced cell death in A. castellanii, H. vermiformis and W. magna Z503 within 3-4 days while W. magna c2c strain remained unaffected even up to 7 days. Electron microscopy demonstrated that the formation of numerous replicative phagosomes observed within Acanthamoeba and Hartmannella is rarely seen in W. magna c2c cocultured with L. pneumophila. Moreover, the morphological differences were observed between L. pneumophila cultured either with Willaertia or other amoebae. These observations show that amoebae are not all equally permissive to L. pneumophila and highlight W. magna c2c as particularly resistant towards some strains of this bacterium.

  6. Quorum sensing activity of Aeromonas caviae strain YL12, a bacterium isolated from compost.

    PubMed

    Lim, Yan-Lue; Ee, Robson; Yin, Wai-Fong; Chan, Kok-Gan

    2014-04-22

    Quorum sensing is a well-studied cell-to-cell communication method that involves a cell-density dependent regulation of genes expression mediated by signalling molecules. In this study, a bacterium isolated from a plant material compost pile was found to possess quorum sensing activity based on bioassay screening. Isolate YL12 was identified using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and molecular typing using rpoD gene which identified the isolate as Aeromonas caviae. High resolution tandem mass spectrometry was subsequently employed to identify the N-acyl homoserine lactone profile of Aeromonas caviae YL12 and confirmed that this isolate produced two short chain N-acyl homoserine lactones, namely C4-HSL and C6, and the production was observed to be cell density-dependent. Using the thin layer chromatography (TLC) bioassay, both AHLs were found to activate C. violaceum CV026, whereas only C6-HSL was revealed to induce bioluminescence expression of E. coli [pSB401]. The data presented in this study will be the leading steps in understanding the role of quorum sensing in Aeromonas caviae strain YL12.

  7. Isolation and Identification of a Red Pigment from the Antarctic Bacterium Shewanella frigidimarina.

    PubMed

    Martín-Cerezo, Maria Luisa; García-López, Eva; Cid, Cristina

    2015-01-01

    The present study dealt with the isolation, identification and characterization of pigments from red snow samples of the Quito coastal front glacier (S 62º 27,217', W 059º 45,960') in Greenwich, Archipelago South Shetland, Antarctica, during summer 2013. As a strain of Shewanella was found to be the most common and abundant species with maximum red color production, the pigment -contained in the protein fraction- was isolated and characterized by high performance liquid chromatography (HPLC), two-dimensional fluorescence Difference Gel Electrophoresis (2-D DIGE) and matrix- assisted laser desorption/ionization-time of flight mass spectrometry (MALDI/TOF/TOF). The identified pigment is a cytochrome c3 with apparent molecular weight of 10 kDa and apparent pI around 4.5. The maximum pigment concentration was produced at warm temperatures, 28ºC, and with increasing exposure time to UV radiation. Here we demonstrate that the synthesis of cytochrome c3 by the Antarctic bacterium is due to thermal adaptation and/or adaptation to radiation. Further, pigments such as cytochrome c3 enable this bacterial species to use an anaerobic and ferric metabolism. In addition, this study draws attention to the relevance of adaptation investigations; to the study of in vivo monitoring of environmental warming and UV radiation due to global warming; and to the study of the potential habitability of other worlds in the Solar System and beyond. PMID:26369950

  8. Discovery and characterization of a novel ATP/polyphosphate xylulokinase from a hyperthermophilic bacterium Thermotoga maritima.

    PubMed

    Martín del Campo, Julia S; Chun, You; Kim, Jae-Eung; Patiño, Rodrigo; Zhang, Y-H Percival

    2013-07-01

    Xylulokinase (XK, E.C. 2.7.1.17) is one of the key enzymes in xylose metabolism and it is essential for the activation of pentoses for the sustainable production of biocommodities from biomass sugars. The open reading frame (TM0116) from the hyperthermophilic bacterium Thermotoga maritima MSB8 encoding a putative xylulokinase were cloned and expressed in Escherichia coli BL21 Star (DE3) in the Luria-Bertani and auto-inducing high-cell-density media. The basic biochemical properties of this thermophilic XK were characterized. This XK has the optimal temperature of 85 °C. Under a suboptimal condition of 60 °C, the k cat was 83 s⁻¹, and the K(m) values for xylulose and ATP were 1.24 and 0.71 mM, respectively. We hypothesized that this XK could work on polyphosphate possibly because this ancestral thermophilic microorganism utilizes polyphosphate to regulate the Embden-Meyerhof pathway and its substrate-binding residues are somewhat similar to those of other ATP/polyphosphate-dependent kinases. This XK was found to work on low-cost polyphosphate, exhibiting 41 % of its specific activity on ATP. This first ATP/polyphosphate XK could have a great potential for xylose utilization in thermophilic ethanol-producing microorganisms and cell-free biosystems for low-cost biomanufacturing without the use of ATP.

  9. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea.

    PubMed

    Vullo, Daniela; De Luca, Viviana; Del Prete, Sonia; Carginale, Vincenzo; Scozzafava, Andrea; Osman, Sameh M; AlOthman, Zeid; Capasso, Clemente; Supuran, Claudiu T

    2016-02-15

    The Antarctic bacterium Colwellia psychrerythraea encodes for a γ-class carbonic anhydrase (CA, EC 4.2.1.1), which was cloned, purified and characterized. The enzyme (CpsCAγ) has a moderate catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with a k(cat) 6.0×10(5) s(-1) and a k(cat)/K(m) of 4.7×10(6) M(-1) s(-1). A series of sulfonamides and a sulfamate were investigated as inhibitors of the new enzyme. The best inhibitor was metanilamide (K(I) of 83.5 nM) followed by indisulam, valdecoxib, celecoxib, sulthiame and hydrochlorothiazide (K(I)s ranging between 343 and 491 nM). Acetazolamide, methazolamide as well as other aromatic/heterocyclic derivatives showed inhibition constants between 502 and 7660 nM. The present study may shed some more light regarding the role that γ-CAs play in the life cycle of psychrophilic bacteria as the Antarctic one investigated here, by allowing the identification of inhibitors which may be useful as pharmacologic tools. PMID:26832216

  10. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation

    PubMed Central

    Yin, Liang; Xue, Yanfen; Ma, Yanhe

    2015-01-01

    The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl) and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine), were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress. PMID:26030352

  11. Desulfovibrio alkalitolerans sp. nov., a novel alkalitolerant, sulphate-reducing bacterium isolated from district heating water.

    PubMed

    Abildgaard, Lone; Nielsen, Marie Bank; Kjeldsen, Kasper Urup; Ingvorsen, Kjeld

    2006-05-01

    A novel alkalitolerant, sulphate-reducing bacterium (strain RT2T) was isolated from alkaline district heating water. Strain RT2T was a motile vibrio (0.5-0.8 microm wide and 1.4-1.9 microm long) and grew at pH 6.9-9.9 (optimum at pH 9.0-9.4) and at 16-47 degrees C (optimum at 43 degrees C). The genomic DNA G+C content was 64.7 mol%. A limited number of compounds were used as electron donors with sulphate as electron acceptor, including lactate, pyruvate, formate and hydrogen/acetate. Sulphite and thiosulphate also served as electron acceptors. Based on physiological and genotypic properties, the isolate was considered to represent a novel species of the genus Desulfovibrio, for which the name Desulfovibrio alkalitolerans sp. nov. is proposed. The type strain is RT2T (=DSM 16529T=JCM 12612T). The strain is the first alkali-tolerant member of the genus Desulfovibrio to be described.

  12. Luteimonas arsenica sp. nov., an arsenic-tolerant bacterium isolated from arsenic-contaminated soil.

    PubMed

    Mu, Yao; Pan, Yunfan; Shi, Wanxia; Liu, Lan; Jiang, Zhao; Luo, Xuesong; Zeng, Xian-Chun; Li, Wen-Jun

    2016-06-01

    A Gram-stain-negative, rod-shaped bacterium that formed yellow and viscous colonies was isolated from arsenic-contaminated soil of the Jianghan plain, Hubei Province, China, and it was designated 26-35T. This strain was capable of resisting arsenate and arsenite with MICs of 40 and 20 mM, respectively. The 16S rRNA gene of the novel isolate displayed 96.7-94.2 % sequence similarities to those of other known species of the genus Luteimonas. The respiratory quinone was ubiquinone-8 (Q-8). The DNA G+C content was 71.4 mol%. The predominant cellular fatty acids were iso-C15 : 0, iso-C16 : 0, iso-C17 : 0, iso-C11 : 0, iso-C11 : 0 3-OH and iso-C17 : 1ω9c. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Phylogenetic and physiological analysis indicated that the isolate represents a novel species of the genus Luteimonas, for which the name Luteimonas arsenica sp. nov. is proposed. The type strain is 26-35T (=KCTC 42824T=CCTCC AB 2014326T). PMID:26978245

  13. Biomimetic Synthesis of Silver Nanoparticles Using Endosymbiotic Bacterium Inhabiting Euphorbia hirta L. and Their Bactericidal Potential

    PubMed Central

    Syed, Baker; Yashavantha Rao, Hoovinakola Chinnappa; Nagendra-Prasad, Mysore Nagalingaswamy; Prasad, Ashwini; Harini, Ballagere Puttaraju; Azmath, Pasha; Rakshith, Devaraju; Satish, Sreedharamurthy

    2016-01-01

    The present investigation aims to evaluate biomimetic synthesis of silver nanoparticles using endophytic bacterium EH 419 inhabiting Euphorbia hirta L. The synthesized nanoparticles were initially confirmed with change in color from the reaction mixture to brown indicating the synthesis of nanoparticles. Further confirmation was achieved with the characteristic absorption peak at 440 nm using UV-Visible spectroscopy. The synthesized silver nanoparticles were subjected to biophysical characterization using hyphenated techniques. The possible role of biomolecules in mediating the synthesis was depicted with FTIR analysis. Further crystalline nature of synthesized nanoparticles was confirmed using X-ray diffraction (XRD) with prominent diffraction peaks at 2θ which can be indexed to the (111), (200), (220), and (311) reflections of face centered cubic structure (fcc) of metallic silver. Transmission electron microscopy (TEM) revealed morphological characteristics of synthesized silver nanoparticles to be polydisperse in nature with size ranging from 10 to 60 nm and different morphological characteristics such as spherical, oval, hexagonal, and cubic shapes. Further silver nanoparticles exhibited bactericidal activity against panel of significant pathogenic bacteria among which Pseudomonas aeruginosa was most sensitive compared to other pathogens. To the best of our knowledge, present study forms first report of bacterial endophyte inhabiting Euphorbia hirta L. in mediating synthesizing silver nanoparticles. PMID:27403378

  14. Characterisation of the LH2 spectral variants produced by the photosynthetic purple sulphur bacterium Allochromatium vinosum.

    PubMed

    Carey, Anne-Marie; Hacking, Kirsty; Picken, Nichola; Honkanen, Suvi; Kelly, Sharon; Niedzwiedzki, Dariusz M; Blankenship, Robert E; Shimizu, Yuuki; Wang-Otomo, Zheng-Yu; Cogdell, Richard J

    2014-11-01

    This study systematically investigated the different types of LH2 produced by Allochromatium (Alc.) vinosum, a photosynthetic purple sulphur bacterium, in response to variations in growth conditions. Three different spectral forms of LH2 were isolated and purified, the B800-820, B800-840 and B800-850 LH2 types, all of which exhibit an unusual split 800 peak in their low temperature absorption spectra. However, it is likely that more forms are also present. Relatively more B800-820 and B800-840 are produced under low light conditions, while relatively more B800-850 is produced under high light conditions. Polypeptide compositions of the three different LH2 types were determined by a combination of HPLC and TOF/MS. The B800-820, B800-840 and B800-850 LH2 types all have a heterogeneous polypeptide composition, containing multiple types of both α and β polypeptides, and differ in their precise polypeptide composition. They all have a mixed carotenoid composition, containing carotenoids of the spirilloxanthin series. In all cases the most abundant carotenoid is rhodopin; however, there is a shift towards carotenoids with a higher conjugation number in LH2 complexes produced under low light conditions. CD spectroscopy, together with the polypeptide analysis, demonstrates that these Alc. vinosum LH2 complexes are more closely related to the LH2 complex from Phs. molischianum than they are to the LH2 complexes from Rps. acidophila. PMID:25111749

  15. Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine

    NASA Technical Reports Server (NTRS)

    Bhupathiraju, V. K.; McInerney, M. J.; Woese, C. R.; Tanner, R. S.

    1999-01-01

    Three strains, designated VS-751T, VS-511 and VS-732, of a strictly anaerobic, moderately halophilic, Gram-negative, rod-shaped bacterium were isolated from a highly saline (15-20%) brine from an oil reservoir in central Oklahoma, USA. The optimal concentration of NaCl for growth of these three strains was 2 M (12%), and the strains also grew in the presence of an additional 1 M MgCl2. The strains were mesophilic and grew at a pH range of 6-8. Carbohydrates used by all three strains included glucose, fructose, arabinose, galactose, maltose, mannose, cellobiose, sucrose and inulin. Glucose fermentation products included ethanol, acetate, H2 and CO2, with formate produced by two of the three strains. Differences were noted among strains in the optimal temperature and pH for growth, the maximum and minimum NaCl concentration that supported growth, substrate utilization and cellular fatty acid composition. Despite the phenotypic differences among the three strains, analysis of the 16S rRNA gene sequences and DNA-DNA hybridizations showed that these three strains were members of the same genospecies which belonged to the genus Haloanaerobium. The phenotypic and genotypic characteristics of strains VS-751T, VS-511 and VS-732 are different from those of previously described species of Haloanaerobium. It is proposed that strain VS-751T (ATCC 700103T) be established as the type strain of a new species, Haloanaerobium kushneri.

  16. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives.

    PubMed

    Bielen, Abraham A M; Verhaart, Marcel R A; van der Oost, John; Kengen, Servé W M

    2013-01-17

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus.

  17. Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium.

    PubMed

    Evvyernie, D; Yamazaki, S; Morimoto, K; Karita, S; Kimura, T; Sakka, K; Ohmiya, K

    2000-01-01

    A strictly anaerobic, mesophilic and chitinolytic bacterial strain, M-21, was isolated from a soil sample collected from Mie University campus and identified as Clostridium paraputrificum based on morphological and physiological characteristics, and 16S rRNA sequence analysis. C. paraputrificum M-21 utilized chitin and N-acetyl-D-glucosamine (GlcNAc), a constituent monosaccharide of chitin, to produce a large amount of gas along with acetic acid and propionic acid as major fermentation products. Hydrogen and carbon dioxide accounted for 65% and 35% of the gas evolved, respectively. The conditions for 1 l batch culture of C. paraputrificum, including pH of the medium, incubation temperature and agitation speed, were optimized for hydrogen production with GlcNAc as the carbon source. The bacterium grew rapidly on GlcNAc with a doubling time of around 30 min, and produced hydrogen gas with a yield of 1.9 mol H2/mol GlcNAc under the following cultivation conditions: initial medium pH of 6.5, incubation temperature of 45 degrees C, agitation speed of 250 rpm, and working volume of 50% of the fermentor. The dry cell weight harvested from this culture was 2.0 g/l.

  18. Streptococcus danieliae sp. nov., a novel bacterium isolated from the caecum of a mouse.

    PubMed

    Clavel, Thomas; Charrier, Cédric; Haller, Dirk

    2013-01-01

    We report the characterization of one novel bacterium, strain ERD01G(T), isolated from the cecum of a TNF(deltaARE) mouse. The strain was found to belong to the genus Streptococcus based on phylogenetic analysis of partial 16S rRNA gene sequences. The bacterial species with standing name in nomenclature that was most closely related to our isolate was Streptococcus alactolyticus (97 %). The two bacteria were characterized by a DNA-DNA hybridization similarity value of 35 %, demonstrating that they belong to different species. The new isolate was negative for acetoin production, esculin hydrolysis, urease, α-galactosidase and β-glucosidase, was able to produce acid from starch and trehalose, grew as beta-hemolytic coccobacilli on blood agar, did not grow at >40 °C, did not survive heat treatment at 60 °C for 20 min and showed negative agglutination in Lancefield tests. On the basis of these characteristics, strain ERD01G(T) differed from the most closely related species S. alactolyticus, Streptococcus gordonii, Streptococcus intermedius and Streptococcus sanguinis. Thus, based on genotypic and phenotypic evidence, we propose that the isolate belongs to a novel bacterial taxon within the genus Streptococcus, for which the name Streptococcus danieliae is proposed. The type strain is ERD01G(T) (= DSM 22233(T) = CCUG 57647(T)).

  19. Extragastric manifestations of Helicobacter pylori infection: Possible role of bacterium in liver and pancreas diseases

    PubMed Central

    Rabelo-Gonçalves, Elizabeth MA; Roesler, Bruna M; Zeitune, José MR

    2015-01-01

    Helicobacter pylori (H. pylori) is an ancient microorganism that has co-evolved with humans for over 60000 years. This bacterium typically colonizes the human stomach and it is currently recognized as the most common infectious pathogen of the gastroduodenal tract. Although its chronic infection is associated with gastritis, peptic ulcer, dysplasia, neoplasia, MALT lymphoma and gastric adenocarcinoma, it has been suggested the possible association of H. pylori infection with several extragastric effects including hepatobiliary and pancreatic diseases. Since a microorganism resembling H. pylori was detected in samples from patients with hepatobiliary disorders, several reports have been discussed the possible role of bacteria in hepatic diseases as hepatocellular carcinoma, cirrhosis and hepatic encephalopathy, nonalcoholic fatty liver disease and fibrosis. Additionally, studies have reported the possible association between H. pylori infection and pancreatic diseases, especially because it has been suggested that this infection could change the pancreatic physiology. Some of them have related a possible association between the microorganism and pancreatic cancer. H. pylori infection has also been suggested to play a role in the acute and chronic pancreatitis pathogenesis, autoimmune pancreatitis, diabetes mellitus and metabolic syndrome. Considering that association of H. pylori to liver and pancreas diseases needs further clarification, our work offers a review about the results of some investigations related to the potential pathogenicity of H. pylori in these extragastric diseases. PMID:26730276

  20. Cellulomonas composti sp. nov., a cellulolytic bacterium isolated from cattle farm compost.

    PubMed

    Kang, Myung-Suk; Im, Wan-Taek; Jung, Hae-Min; Kim, Myung Kyum; Goodfellow, Michael; Kim, Kwang Kyu; Yang, Hee-Chan; An, Dong-Shan; Lee, Sung-Taik

    2007-06-01

    A bacterial strain, TR7-06(T), which has cellulase and beta-glucosidase activities, was isolated from compost at a cattle farm near Daejeon, Republic of Korea. It was a Gram-positive, aerobic or facultatively anaerobic, non-motile, rod-shaped bacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belongs to the genus Cellulomonas, with highest sequence similarity to Cellulomonas uda DSM 20107(T) (98.5 %). Cell wall analysis revealed the presence of type A4beta, L-orn-D-Glu peptidoglycan. The cell-wall sugars detected were mannose and glucose. The predominant menaquinone was MK-9(H(4)); MK-8(H(4)) was detected in smaller quantities. The major fatty acids were anteiso-C(15 : 0), C(16 : 0), C(14 : 0) and C(18 : 0). The polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The results of DNA-DNA hybridization and physiological and biochemical tests clearly demonstrated that TR7-06(T) represents a novel species. The combined genotypic and phenotypic data show that strain TR7-06(T) (=KCTC 19030(T)=NBRC 100758(T)) merits description as the type strain of a novel Cellulomonas species, Cellulomonas composti sp. nov.