Lactic acid production from xylose by Geobacillus stearothermophilus strain 15
NASA Astrophysics Data System (ADS)
Kunasundari, B.; Naresh, S.; Chu, J. E.
2017-09-01
Lactic acid is an important compound with a wide range of industrial applications. The present study tested the efficiency of xylose, as a sole carbon source to be converted to lactic acid by Geobacillus stearothermophilus strain 15. To the best of our knowledge, limited information is available on the directed fermentation of xylose to lactic acid by this bacterium. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentrations of nitrogen and carbon sources on the lactic acid production were investigated statistically. It was found that the bacterium exhibited poor assimilation of xylose to lactic acid. Temperature, agitation rate and incubation time were determined to improve the lactic acid production slightly. The highest lactic acid yield obtained was 8.9% at 45°C, 300 RPM, 96 h, pH of 6.0 with carbon and nitrogen source concentrations were fixed at 5% w/v.
Microarray Genomic Systems Development
2008-06-01
11 species), Escherichia coli TOP10 (7 strains), and Geobacillus stearothermophilus . Using standard molecular biology methods, we isolated genomic...comparisons. Results: Different species of bacteria, including Escherichia coli, Bacillus bacteria, and Geobacillus stearothermophilus produce qualitatively...oligonucleotides to labelled genomic DNA from a set of test samples, including eleven Bacillus species, Geobacillus stearothermophilus , and seven Escherichia
Zhou, Tingting; Dong, Zhiyang; Setlow, Peter; Li, Yong-qing
2013-01-01
Geobacillus stearothermophilus is a gram-positive, thermophilic bacterium, spores of which are very heat resistant. Raman spectroscopy and differential interference contrast microscopy were used to monitor the kinetics of germination of individual spores of G. stearothermophilus at different temperatures, and major conclusions from this work were as follows. 1) The CaDPA level of individual G. stearothermophilus spores was similar to that of Bacillus spores. However, the Raman spectra of protein amide bands suggested there are differences in protein structure in spores of G. stearothermophilus and Bacillus species. 2) During nutrient germination of G. stearothermophilus spores, CaDPA was released beginning after a lag time (T lag) between addition of nutrient germinants and initiation of CaDPA release. CaDPA release was complete at T release, and ΔT release (T release – T lag) was 1–2 min. 3) Activation by heat or sodium nitrite was essential for efficient nutrient germination of G. stearothermophilus spores, primarily by decreasing T lag values. 4) Values of T lag and T release were heterogeneous among individual spores, but ΔT release values were relatively constant. 5) Temperature had major effects on nutrient germination of G. stearothermophilus spores, as at temperatures below 65°C, average T lag values increased significantly. 6) G. stearothermophilus spore germination with exogenous CaDPA or dodecylamine was fastest at 65°C, with longer Tlag values at lower temperatures. 7) Decoating of G. stearothermophilus spores slowed nutrient germination slightly and CaDPA germination significantly, but increased dodecylamine germination markedly. These results indicate that the dynamics and heterogeneity of the germination of individual G. stearothermophilus spores are generally similar to that of Bacillus species. PMID:24058645
Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...
Lansky, Shifra; Salama, Rachel; Solomon, Vered H; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil
2013-06-01
Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that possesses an extensive system for the utilization of hemicellulose. The bacterium produces a small number of endo-acting extracellular enzymes that cleave high-molecular-weight hemicellulolytic polymers into short decorated oligosaccharides, which are further hydrolysed into the respective sugar monomers by a battery of intracellular glycoside hydrolases. One of these intracellular processing enzymes is β-L-arabinopyranosidase (Abp), which is capable of removing β-L-arabinopyranose residues from naturally occurring arabino-polysaccharides. As arabino-polymers constitute a significant part of the hemicellulolytic content of plant biomass, their efficient enzymatic degradation presents an important challenge for many potential biotechnological applications. This aspect has led to an increasing interest in the biochemical characterization and structural analysis of this and related hemicellulases. Abp from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory, as part of its complete structure-function study. The best crystals obtained for this enzyme belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with average unit-cell parameters a = 107.7, b = 202.2, c = 287.3 Å. Full diffraction data sets to 2.3 Å resolution have been collected for both the wild-type enzyme and its D197A catalytic mutant from flash-cooled crystals at 100 K, using synchrotron radiation. These data are currently being used for a high-resolution three-dimensional structure determination of Abp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawwa, Renda; Aikens, John; Turner, Robert J.
2009-08-31
A new enzyme homologous to phosphotriesterase was identified from the bacterium Geobacillus stearothermophilus (GsP). This enzyme belongs to the amidohydrolase family and possesses the ability to hydrolyze both lactone and organophosphate (OP) compounds, making it a phosphotriesterase-like lactonase (PLL). GsP possesses higher OP-degrading activity than recently characterized PLLs, and it is extremely thermostable. GsP is active up to 100 C with an energy of activation of 8.0 kcal/mol towards ethyl paraoxon, and it can withstand an incubation temperature of 60 C for two days. In an attempt to understand the thermostability of PLLs, the X-ray structure of GsP was determinedmore » and compared to those of existing PLLs. Based upon a comparative analysis, a new thermal advantage score and plot was developed and reveals that a number of different factors contribute to the thermostability of PLLs.« less
Lundahl, Gunnel
2003-01-01
Spores of Geobacillus stearothermophilus are very sensitive to changes in temperature. When validating sterilizing processes, the most common bioindicator (BI) is spores of Geobacillus stearothermophilus ATCC12980 and ATCC7953 with about 10(6) spores /BI and a D121-value of about 2 minutes in water. Because these spores of Geobacillus stearothermophilus do not survive at a F0-value above 12 minutes, it has not been possible to evaluate the agreement between the biological F-value (F(BIO)) and physical measurements (time and temperature) when the physical F0-value exceeds that limit. However, it has been proven that glycerin substantially increases the heat resistance of the spores, and it is possible to utilize that property when manufacturing BIs suitable to use in processes with longer sterilization time or high temperature (above 121 degrees C). By the method described, it is possible to make use of the sensitivity and durability of Geobacillus stearothermophilus' spores when glycerin has increased both test range and accuracy. Experience from years of development and validation work with the use of the highly sensitive glycerin-water-spore-suspension sensor (GWS-sensor) is reported. Validation of the steam sterilization process at high temperature has been possible with the use of GWS-sensors. It has also been shown that the spores in suspension keep their characteristics for a period of 19 months when stored cold (8 degrees C).
Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...
2007-03-01
Geobacillus stearothermophilus biological indicator (BI) strips and coupons of three aircraft related surface materials contaminated with the same type...Starlifter Aircraft BIs Geobacillus stearothermophilus mVHP system Vaporizer modules Coupons HD Ammonia Computational flow dynamics CARC CEPS 16. SECURITY...21 18. G. stearothermophilus ATCC 7953VHP Exposure Test Results ..................... 33 19. Vapor Cup
Schäffer, Christina; Novotny, René; Küpcü, Seta; Zayni, Sonja; Scheberl, Andrea; Friedmann, Jacqueline; Sleytr, Uwe B.; Messner, Paul
2015-01-01
The crystalline cell-surface (S) layer sgsE of Geobacillus stearothermophilus NRS 2004/3a represents a natural protein self-assembly system with nanometer-scale periodicity that is evaluated as a combined carrier/patterning element for the conception of novel types of biocatalyst aiming at the controllable display of biocatalytic epitopes, storage stability, and reuse. The glucose-1-phosphate thymidylyltransferase RmlA is used as a model enzyme and chimeric proteins are constructed by translational fusion of rmlA to the C-terminus of truncated forms of sgsE (rSgsE 131–903, rSgsE331–903) and used for the construction of three principal types of biocatalysts: soluble (monomeric), self-assembled in aqueous solution, and recrystallized on negatively charged liposomes. Enzyme activity of the biocatalysts reaches up to 100% compared to sole RmlA cloned from the same bacterium. The S-layer portion of the biocatalysts confers significantly improved shelf life to the fused enzyme without loss of activity over more than three months, and also enables biocatalyst recycling. These nanopatterned composites may open up new functional concepts for biocatalytic applications in nanobiotechnology. PMID:17786898
Vaporized Hydrogen Peroxide (VHP) Decontamination of a Section of a Boeing 747 Cabin
2006-04-01
Geobacillus stearothermophilus spores packaged in sub-divided Tyvek®* envelopes (Apex Laboratories, Inc.). The CI and BI packets were distributed...appropriate concentration of VHP vapor in the cabin test section, biological indicators inoculated with 106 colony forming units of Geobacillus ... stearothermophilus spores demonstrated a total suppression of culture growth. Efficacy was demonstrated with and without seats in the test section of
Swearingen, J W; Fuentes, D E; Araya, M A; Plishker, M F; Saavedra, C P; Chasteen, T G; Vásquez, C C
2006-01-01
The ubiE gene of Geobacillus stearothermophilus V, with its own promoter, was cloned and introduced into Escherichia coli. The cloned gene complemented the ubiE gene deficiency of E. coli AN70. In addition, the expression of this gene in E. coli JM109 resulted in the evolution of volatile selenium compounds when these cells were grown in selenite- or selenate-amended media. These compounds were dimethyl selenide and dimethyl diselenide.
Structure-Specificity Relationships of an Intracellular Xylanase from Geobacillus stearothermophilus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon,V.; Teplitsky, A.; Shulami, S.
2007-01-01
Geobacillus stearothermophilus T-6 is a thermophilic Gram-positive bacterium that produces two selective family 10 xylanases which both take part in the complete degradation and utilization of the xylan polymer. The two xylanases exhibit significantly different substrate specificities. While the extracellular xylanase (XT6; MW 43.8 kDa) hydrolyzes the long and branched native xylan polymer, the intracellular xylanase (IXT6; MW 38.6 kDa) preferentially hydrolyzes only short xylo-oligosaccharides. In this study, the detailed three-dimensional structure of IXT6 is reported, as determined by X-ray crystallography. It was initially solved by molecular replacement and then refined at 1.45 {angstrom} resolution to a final R factormore » of 15.0% and an R{sub free} of 19.0%. As expected, the structure forms the classical ({alpha}/{beta}){sub 8} fold, in which the two catalytic residues (Glu134 and Glu241) are located on the inner surface of the central cavity. The structure of IXT6 was compared with the highly homologous extracellular xylanase XT6, revealing a number of structural differences between the active sites of the two enzymes. In particular, structural differences derived from the unique subdomain in the carboxy-terminal region of XT6, which is completely absent in IXT6. These structural modifications may account for the significant differences in the substrate specificities of these otherwise very similar enzymes.« less
Rogers, J V; Sabourin, C L K; Choi, Y W; Richter, W R; Rudnicki, D C; Riggs, K B; Taylor, M L; Chang, J
2005-01-01
To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Bacillus anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to > or =1000 ppm hydrogen peroxide gas for 20 min. Hydrogen peroxide exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials except G. stearothermophilus on industrial carpet. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with both surrogates. The effectiveness of gaseous hydrogen peroxide on the growth of biological indicators and spore strips was evaluated in parallel as a qualitative assessment of decontamination. At 1 and 7 days postexposure, decontaminated biological indicators and spore strips exhibited no growth, while the nondecontaminated samples displayed growth. Significant differences in decontamination efficacy of hydrogen peroxide gas on porous and nonporous surfaces were observed when comparing the mean log reduction in B. anthracis spores with B. subtilis and G. stearothermophilus spores. These results provide comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using hydrogen peroxide gas.
Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko
2004-01-01
l-Lysine dehydrogenase, which catalyzes the oxidative deamination of l-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Δ1-piperideine-6-carboxylate, indicating that the enzyme is l-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70°C, respectively. No activity was lost at temperatures up to 65°C in the presence of 5 mM l-lysine. The enzyme was relatively selective for l-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for l-lysine, NAD, and NADP at 50°C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da. PMID:14766574
Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko
2004-02-01
L-Lysine dehydrogenase, which catalyzes the oxidative deamination of L-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Delta1-piperideine-6-carboxylate, indicating that the enzyme is L-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70 degrees C, respectively. No activity was lost at temperatures up to 65 degrees C in the presence of 5 mM L-lysine. The enzyme was relatively selective for L-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for L-lysine, NAD, and NADP at 50 degrees C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da.
Rogers, J V; Choi, Y W; Richter, W R; Rudnicki, D C; Joseph, D W; Sabourin, C L K; Taylor, M L; Chang, J C S
2007-10-01
To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using formaldehyde gas. B. anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to approx. 1100 ppm formaldehyde gas for 10 h. Formaldehyde exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with B. subtilis (galvanized metal and painted wallboard paper) and G. stearothermophilus (industrial carpet and painted wallboard paper). Formaldehyde gas inactivated>or=50% of the biological indicators and spore strips (approx. 1x10(6) CFU) when analyzed after 1 and 7 days. Formaldehyde gas significantly reduced the number of viable spores on both porous and nonporous materials in which the two surrogates exhibited similar log reductions to that of B. anthracis on most test materials. These results provide new comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using formaldehyde gas.
Ferner-Ortner, Judith; Mader, Christoph; Ilk, Nicola; Sleytr, Uwe B.; Egelseer, Eva M.
2007-01-01
Surface plasmon resonance studies using C-terminal truncation forms of the S-layer protein SbsC (recombinant SbsC consisting of amino acids 31 to 270 [rSbsC31-270] and rSbsC31-443) and the secondary cell wall polymer (SCWP) isolated from Geobacillus stearothermophilus ATCC 12980 confirmed the exclusive responsibility of the N-terminal region comprising amino acids 31 to 270 for SCWP binding. Quantitative analyses indicated binding behavior demonstrating low, medium, and high affinities. PMID:17644609
Bartosiak-Jentys, Jeremy; Eley, Kirstin
2012-01-01
The pheB gene from Geobacillus stearothermophilus DSM6285 has been exploited as a reporter gene for Geobacillus spp. The gene product, catechol 2,3-dioxygenase (C23O), catalyzes the formation of 2-hydroxymuconic semialdehyde, which can be readily assayed. The reporter was used to examine expression from the ldh promoter associated with fermentative metabolism. PMID:22685159
Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner
2015-04-01
Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3-l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L -1 optically pure (98%) L-lactic acid in 20 h from 50 g L -1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus . The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Kinetics of CO Recombination to the Heme in Geobacillus Stearothermophilus Nitric Oxide Synthase†
Whited, Charlotte A.; Warren, Jeffrey J.; Lavoie, Katherine D.; Winkler, Jay R.; Gray, Harry B.
2012-01-01
We report the kinetics of CO rebinding to the heme in His134Ser, Ile223Val and His134Ser/Ile223Ser mutants of Geobacillus stearothermophilus nitric oxide synthase (gsNOS). The amplitudes of the two observed kinetics phases, which are insensitive to CO concentration, depend on enzyme concentration. We suggest that two forms of gsNOS are in equilibrium under the conditions employed (6.1–27 µM gsNOS with 20 or 100% CO atmosphere). The kinetics of CO rebinding to the heme do not depend on the identity of the NO-gate residues at positions 134 and 223. PMID:23976816
Blanchard, Kristen; Robic, Srebrenka
2014-01-01
Metabolic engineers develop inexpensive enantioselective syntheses of high-value compounds, but their designs are sometimes confounded by the misfolding of heterologously expressed proteins. Geobacillus stearothermophilus NUB3621 is a readily transformable facultative thermophile. It could be used to express and properly fold proteins derived from its many mesophilic or thermophilic Bacillaceae relatives or to direct the evolution of thermophilic variants of mesophilic proteins. Moreover, its capacity for high-temperature growth should accelerate chemical transformation rates in accordance with the Arrhenius equation and reduce the risks of microbial contamination. Its tendency to sporulate in response to nutrient depletion lowers the costs of storage and transportation. Here, we present a draft genome sequence of G. stearothermophilus NUB3621 and describe inducible and constitutive expression plasmids that function in this organism. These tools will help us and others to exploit the natural advantages of this system for metabolic engineering applications. PMID:24788326
2014-01-01
The thermal melting temperature of dihydrofolate reductase from Geobacillus stearothermophilus (BsDHFR) is ∼30 °C higher than that of its homologue from the psychrophile Moritella profunda. Additional proline residues in the loop regions of BsDHFR have been proposed to enhance the thermostability of BsDHFR, but site-directed mutagenesis studies reveal that these proline residues contribute only minimally. Instead, the high thermal stability of BsDHFR is partly due to removal of water-accessible thermolabile residues such as glutamine and methionine, which are prone to hydrolysis or oxidation at high temperatures. The extra thermostability of BsDHFR can be obtained by ligand binding, or in the presence of salts or cosolvents such as glycerol and sucrose. The sum of all these incremental factors allows BsDHFR to function efficiently in the natural habitat of G. stearothermophilus, which is characterized by temperatures that can reach 75 °C. PMID:24730604
Effects of superheated steam on Geobacillus stearothermophilus spore viability.
Head, D S; Cenkowski, S; Holley, R; Blank, G
2008-04-01
To examine the effect of processing with superheated steam (SS) on Geobacillus stearothermophilus ATCC 10149 spores. Two inoculum levels of spores of G. stearothermophilus were mixed with sterile sand and exposed to SS at 105-175 degrees C. The decimal reduction time (D-value) and the thermal resistance constant (z-value) were calculated. The effect of cooling of spores between periods of exposure to SS was also examined. A mean z-value of 25.4 degrees C was calculated for both inoculum levels for SS processing temperatures between 130 degrees C and 175 degrees C. Spore response to SS treatment depends on inoculum size. SS treatment may be effective for reduction in viability of thermally resistant bacterial spores provided treatments are separated by intermittent cooling periods. There is a need for technologies that require short thermal processing times to eliminate bacterial spores in foods. The SS processing technique has the potential to reduce microbial load and to modify food texture with less energy in comparison to commonly used hot air treatment. This work provides information on the effect of SS processing parameters on the viability of G. stearothermophilus spores.
Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner
2015-01-01
BACKGROUND Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. RESULTS A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3–l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L−1 optically pure (98%) L-lactic acid in 20 h from 50 g L−1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. CONCLUSIONS Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus. The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors.Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25937690
Inactivation of Geobacillus stearothermophilus Spores by High-Pressure Carbon Dioxide Treatment
Watanabe, Taisuke; Furukawa, Soichi; Hirata, Junichi; Koyama, Tetsuya; Ogihara, Hirokazu; Yamasaki, Makari
2003-01-01
High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35°C, to high-hydrostatic-pressure treatment at 200 MPa and 65°C, or to heat treatment at 0.1 MPa and 85°C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95°C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95°C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95°C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95°C was more effective than treatment at 95°C alone. PMID:14660357
Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment.
Watanabe, Taisuke; Furukawa, Soichi; Hirata, Junichi; Koyama, Tetsuya; Ogihara, Hirokazu; Yamasaki, Makari
2003-12-01
High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35 degrees C, to high-hydrostatic-pressure treatment at 200 MPa and 65 degrees C, or to heat treatment at 0.1 MPa and 85 degrees C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95 degrees C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95 degrees C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95 degrees C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95 degrees C was more effective than treatment at 95 degrees C alone.
Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier
2016-06-01
Geobacillus stearothermophilus spores are recognized as one of the most wet-heat resistant among aerobic spore-forming bacteria and are responsible for 35% of canned food spoilage after incubation at 55 °C. The purpose of this study was to investigate and model the fate of heat-treated survivor spores of G. stearothermophilus ATCC 12980 in growth-preventing environment. G. stearothermophilus spores were heat-treated at four different conditions to reach one or two decimal reductions. Heat-treated spores were stored in nutrient broth at different temperatures and pH under growth-preventing conditions. Spore survival during storage was evaluated by count plating over a period of months. Results reveal that G. stearothermophilus spores surviving heat treatment lose their viability during storage under growth-preventing conditions. Two different subpopulations were observed during non-thermal inactivation. They differed according to the level of their resistance to storage stress, and the proportion of each subpopulation can be modulated by heat treatment conditions. Finally, tolerance to storage stress under growth-preventing conditions increases at refrigerated temperature and neutral pH regardless of heat treatment conditions. Such results suggest that spore inactivation due to heat treatment could be completed by storage under growth-preventing conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Morris, Angela D; McCombs, Gayle B; Akan, Tamer; Hynes, Wayne; Laroussi, Mounir; Tolle, Susan L
2009-01-01
Cold plasma, also known as Low Temperature Atmospheric Pressure Plasma (LTAPP) is a novel technology consisting of neutral and charged particles, including free radicals, which can be used to destroy or inactivate microorganisms. Research has been conducted regarding the effect of cold plasma on gram-positive bacteria; however, there is limited research regarding its ability to inactivate the spore-formers Geobacillus stearothermophilus and Bacillus cereus. The purpose of this study was to determine if cold plasma inactivates G. stearothermophilus and B. cereus vegetative cells and spores. Nine hundred eighty-one samples were included in this study (762 experimental and 219 controls). Experimental samples were exposed indirectly or directly to cold plasma, before plating and incubating for 16 hours. Control samples were not exposed to cold plasma. The percentage-kill and cell number reductions were calculated from Colony Forming Units (CFU). Data were statistically analyzed at the .05 level using one-way ANOVA, Kruskal Wallis and Tukey's tests. There was a statistically significant difference in the inactivation of G. stearothermophilus vegetative cells receiving indirect and direct exposure (p=0.0001 and p=0.0013, respectively), as well as for B. cereus vegetative cells and spores (p=0.0001 for direct and indirect). There was no statistically significant difference in the inactivation of G. stearothermophilus spores receiving indirect exposure (p=0.7208) or direct exposure (p=0.0835). Results demonstrate that cold plasma exposure effectively kills G. stearothermophilus vegetative cells and B. cereus vegetative cells and spores; however, G. stearothermophilus spores were not significantly inactivated.
Offen, Wendy A; Viksoe-Nielsen, Anders; Borchert, Torben V; Wilson, Keith S; Davies, Gideon J
2015-01-01
The enzyme-catalysed degradation of starch is central to many industrial processes, including sugar manufacture and first-generation biofuels. Classical biotechnological platforms involve steam explosion of starch followed by the action of endo-acting glycoside hydrolases termed α-amylases and then exo-acting α-glucosidases (glucoamylases) to yield glucose, which is subsequently processed. A key enzymatic player in this pipeline is the `Termamyl' class of bacterial α-amylases and designed/evolved variants thereof. Here, the three-dimensional structure of one such Termamyl α-amylase variant based upon the parent Geobacillus stearothermophilus α-amylase is presented. The structure has been solved at 1.9 Å resolution, revealing the classical three-domain fold stabilized by Ca2+ and a Ca2+-Na+-Ca2+ triad. As expected, the structure is similar to the G. stearothermophilus α-amylase but with main-chain deviations of up to 3 Å in some regions, reflecting both the mutations and differing crystal-packing environments.
NASA Astrophysics Data System (ADS)
Kylián, O.; Sasaki, T.; Rossi, F.
2006-05-01
The aim of this work is to identify the main process responsible for sterilization of Geobacillus Stearothermophilus spores in O{2}:N{2} RF inductively coupled plasma. In order to meet this objective the sterilization efficiencies of discharges in mixtures differing in the initial O{2}/N{2} ratios are compared with plasma properties and with scanning electron microscopy images of treated spores. According to the obtained results it can be concluded that under our experimental conditions the time needed to reach complete sterilization is more related to O atom density than UV radiation intensity, i.e. complete sterilization is not related only to DNA damage as in UV sterilization but more likely to the etching of the spore.
Kakagianni, Myrsini; Gougouli, Maria; Koutsoumanis, Konstantinos P
2016-08-01
The presence of Geobacillus stearothermophilus spores in evaporated milk constitutes an important quality problem for the milk industry. This study was undertaken to provide an approach in modelling the effect of temperature on G. stearothermophilus ATCC 7953 growth and in predicting spoilage of evaporated milk. The growth of G. stearothermophilus was monitored in tryptone soy broth at isothermal conditions (35-67 °C). The data derived were used to model the effect of temperature on G. stearothermophilus growth with a cardinal type model. The cardinal values of the model for the maximum specific growth rate were Tmin = 33.76 °C, Tmax = 68.14 °C, Topt = 61.82 °C and μopt = 2.068/h. The growth of G. stearothermophilus was assessed in evaporated milk at Topt in order to adjust the model to milk. The efficiency of the model in predicting G. stearothermophilus growth at non-isothermal conditions was evaluated by comparing predictions with observed growth under dynamic conditions and the results showed a good performance of the model. The model was further used to predict the time-to-spoilage (tts) of evaporated milk. The spoilage of this product caused by acid coagulation when the pH approached a level around 5.2, eight generations after G. stearothermophilus reached the maximum population density (Nmax). Based on the above, the tts was predicted from the growth model as the sum of the time required for the microorganism to multiply from the initial to the maximum level ( [Formula: see text] ), plus the time required after the [Formula: see text] to complete eight generations. The observed tts was very close to the predicted one indicating that the model is able to describe satisfactorily the growth of G. stearothermophilus and to provide realistic predictions for evaporated milk spoilage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, H-J; Kim, J-H; Oh, H-J; Oh, D-K
2006-07-01
Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase used to increase the production rate of D-tagatose. A mutated gene was obtained by an error-prone polymerase chain reaction using L-arabinose isomerase gene from G. stearothermophilus as a template and the gene was expressed in Escherichia coli. The expressed mutated L-arabinose isomerase exhibited the change of three amino acids (Met322-->Val, Ser393-->Thr, and Val408-->Ala), compared with the wild-type enzyme and was then purified to homogeneity. The mutated enzyme had a maximum galactose isomerization activity at pH 8.0, 65 degrees C, and 1.0 mM Co2+, while the wild-type enzyme had a maximum activity at pH 8.0, 60 degrees C, and 1.0-mM Mn2+. The mutated L-arabinose isomerase exhibited increases in D-galactose isomerization activity, optimum temperature, catalytic efficiency (kcat/Km) for D-galactose, and the production rate of D-tagatose from D-galactose. The mutated L-arabinose isomerase from G. stearothermophilus is valuable for the commercial production of D-tagatose. This work contributes knowledge on the characterization of a mutated L-arabinose isomerase, and allows an increased production rate for D-tagatose from D-galactose using the mutated enzyme.
Rigaux, Clémence; André, Stéphane; Albert, Isabelle; Carlin, Frédéric
2014-02-03
Microbial spoilage of canned foods by thermophilic and highly heat-resistant spore-forming bacteria, such as Geobacillus stearothermophilus, is a persistent problem in the food industry. An incubation test at 55 °C for 7 days, then validation of biological stability, is used as an indicator of compliance with good manufacturing practices. We propose a microbial risk assessment model predicting the percentage of non-stability due to G. stearothermophilus in canned green beans manufactured by a French company. The model accounts for initial microbial contaminations of fresh unprocessed green beans with G. stearothermophilus, cross-contaminations in the processing chain, inactivation processes and probability of survival and growth. The sterilization process is modeled by an equivalent heating time depending on sterilization value F₀ and on G. stearothermophilus resistance parameter z(T). Following the recommendations of international organizations, second order Monte-Carlo simulations are used, separately propagating uncertainty and variability on parameters. As a result of the model, the mean predicted non-stability rate is of 0.5%, with a 95% uncertainty interval of [0.1%; 1.2%], which is highly similar to data communicated by the French industry. A sensitivity analysis based on Sobol indices and some scenario tests underline the importance of cross-contamination at the blanching step, in addition to inactivation due to the sterilization process. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki
2015-06-01
We investigate the effects of relative humidity on the sterilization process using a plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals were separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas is nitrogen mixed with 0.1% oxygen, and the relative humidity in the source gas is controlled by changing the mixing ratio of water vapor. The relative humidity near the sample in the reactor chamber is controlled by changing the sample temperature. As a result, the relative humidity near the sample should be kept in the range from 60 to 90% for the sterilization of Geobacillus stearothermophilus spores. When the relative humidity in the source gas increases from 30 to 90%, the sterilization effect is enhanced by the same degree.
NASA Astrophysics Data System (ADS)
Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki
2015-09-01
We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.
The abp gene in Geobacillus stearothermophilus T-6 encodes a GH27 β-L-arabinopyranosidase.
Salama, Rachel; Alalouf, Onit; Tabachnikov, Orly; Zolotnitsky, Gennady; Shoham, Gil; Shoham, Yuval
2012-07-30
In this study we demonstrate that the abp gene in Geobacillus stearothermophilus T-6 encodes a family 27 glycoside hydrolase β-L-arabinopyranosidase. The catalytic constants towards the chromogenic substrate pNP-β-L-arabinopyranoside were 0.8±0.1 mM, 6.6±0.3 s(-1), and 8.2±0.3 s(-1) mM(-1) for K(m), k(cat) and k(cat)/K(m), respectively. (13)C NMR spectroscopy unequivocally showed that Abp is capable of removing β-L-arabinopyranose residues from the natural arabino-polysaccharide, larch arabinogalactan. Most family 27 enzymes are active on galactose and contain a conserved Asp residue, whereas in Abp this residue is Ile67, which shifts the specificity of the enzyme towards arabinopyranoside. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Complete Genome Sequence of the Thermophilic Bacterium Geobacillus thermoleovorans CCB_US3_UF5
Abdul Rahman, Ahmad Yamin; Saito, Jennifer A.; Hou, Shaobin
2012-01-01
Geobacillus thermoleovorans CCB_US3_UF5 is a thermophilic bacterium isolated from a hot spring in Malaysia. Here, we report the complete genome of G. thermoleovorans CCB_US3_UF5, which shows high similarity to the genome of Geobacillus kaustophilus HTA 426 in terms of synteny and orthologous genes. PMID:22328744
Evaluation of the Effects of Hydrogen Peroxide on Common Aircraft Electrical Materials
2010-03-01
commercial biological indicator (BI) spore population of Geobacillus stearothermophilus . Once the sanitization/ decontamination phase is completed, the...its rapid sterilization , easy usage, intrinsic environmental friendliness (i .e . simple by-products composed of only water and oxygen), and
Gandhi, Sivasangkary; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Chor Leow, Thean; Oslan, Siti Nurbaya
2015-01-01
Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v) was the best medium and once optimized, the maximum recombinant α-amylase SR74 achieved in shake flask was 28.6 U mL−1 at 120 h after induction. The recombinant 59 kDa α-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8 U mg−1. The optimum pH of α-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0–8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t 1/2) of 88 min at 60°C. In conclusion, thermostable α-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification. PMID:26090417
Effects of steam autoclave treatment on Geobacillus stearothermophilus spores.
Huesca-Espitia, L C; Suvira, M; Rosenbeck, K; Korza, G; Setlow, B; Li, W; Wang, S; Li, Y-Q; Setlow, P
2016-11-01
To determine the mechanism of autoclave killing of Geobacillus stearothermophilus spores used in biological indicators (BIs) for steam autoclave sterilization, and rates of loss of spore viability and a spore enzyme used in BIs. Spore viability, dipicolinic acid (DPA) release, nucleic acid staining, α-glucosidase activity, protein structure and mutagenesis were measured during autoclaving of G. stearothermophilus spores. Loss of DPA and increases in spore core nucleic acid staining were slower than loss of spore viability. Spore core α-glucosidase was also lost more slowly than spore viability, although soluble α-glucosidase in spore preparations was lost more rapidly. However, spores exposed to an effective autoclave sterilization lost all viability and α-glucosidase activity. Apparently killed autoclaved spores were not recovered by artificial germination in supportive media, much spore protein was denatured during autoclaving, and partially killed autoclave-treated spore preparations did not acquire mutations. These results indicate that autoclave-killed spores cannot be revived, spore killing by autoclaving is likely by protein damage, and spore core α-glucosidase activity is lost more slowly than spore viability. This work provides insight into the mechanism of autoclave killing of spores of an organism used in BIs, and that a spore enzyme in a BI is more stable to autoclaving than spore viability. © 2016 The Society for Applied Microbiology.
Guizelini, Belquis P; Vandenberghe, Luciana P S; Sella, Sandra Regina B R; Soccol, Carlos Ricardo
2012-12-01
Biological indicators are important tools in infection control via sterilization process monitoring. The use of a standardized spore crop with a well-defined heat resistance will guarantee the quality of a biological indicator. Ambient factors during sporulation can affect spore characteristics and properties, including heat resistance. The aim of this study is to evaluate the main sporulation factors responsible for heat resistance in Geobacillus stearothermophilus, a useful biological indicator for steam sterilization. A sequence of a three-step optimization of variables (initial pH, nutrient concentration, tryptone, peptone, beef extract, yeast extract, manganese sulfate, magnesium sulfate, calcium chloride and potassium phosphate) was carried out to screen those that have a significant influence on heat resistance of produced spores. The variable exerting greatest influence on G. stearothermophilus heat resistance during sporulation was found to be the initial pH. Lower nutrient concentration and alkaline pH around 8.5 tended to enhance decimal reduction time at 121 °C (D(121°C)). A central composite design enabled a fourfold enhancement in heat resistance, and the model obtained accurately describes positive pH and negative manganese sulfate concentration influence on spore heat resistance.
Experimental Investigation of the Plasma Bullet and Its Applications
2012-08-01
W. Hynes, M. Laroussi, and S. L. Tolle, “Cold Plasma Technology: Bactericidal Effects on Geobacillus Stearothermophilus and Bacillus Cereus...Polymers on Plasma Sterilization and Decontamination (Vol. 9, No. 6, 2012). The PI was a member of the Scientific Organizing Committee of two major
Kida, Nori; Mochizuki, Yasushi; Taguchi, Fumiaki
2007-01-01
In an investigation of the sporicidal activity of the KMT reagent, a vapor phase study was performed using five kinds of carriers contaminated with Geobacillus stearothermophilus spores. When 25 ml of the KMT reagent was vaporized in a chamber (capacity; approximately 95 liters), the 2-step heating method (vaporization by a combination of low temperature and high temperature) showed the most effective sporicidal activity in comparison with the 1-step heating method (rapid vaporization). The 2-step heating method appeared to be related to the sporicidal activity of vaporized KMT reagent, i.e., ethanol and iodine, which vaporized mainly when heated at a low temperature such as 55 C, and acidic water, which vaporized mainly when heated at a high temperature such as 300 C. We proposed that the KMT reagent can be used as a new disinfectant not only in the liquid phase but also in the vapor phase in the same way as peracetic acid and hydrogen peroxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bick, M.; Lamour, V; Rajashankar, K
2009-01-01
Entry to sporulation in bacilli is governed by a histidine kinase phosphorelay, a variation of the predominant signal transduction mechanism in prokaryotes. Sda directly inhibits sporulation histidine kinases in response to DNA damage and replication defects. We determined a 2.0-Angstroms-resolution X-ray crystal structure of the intact cytoplasmic catalytic core [comprising the dimerization and histidine phosphotransfer domain (DHp domain), connected to the ATP binding catalytic domain] of the Geobacillus stearothermophilus sporulation kinase KinB complexed with Sda. Structural and biochemical analyses reveal that Sda binds to the base of the DHp domain and prevents molecular transactions with the DHp domain to whichmore » it is bound by acting as a simple molecular barricade. Sda acts to sterically block communication between the catalytic domain and the DHp domain, which is required for autophosphorylation, as well as to sterically block communication between the response regulator Spo0F and the DHp domain, which is required for phosphotransfer and phosphatase activities.« less
Pflug, Irving J; Melgaard, Hans L; Schaffer, Shawn M; Lysfjord, Jack P
2008-01-01
This is the report of a project carried out to determine the microbial-kill characteristics of saturated steam plus hydrogen peroxide (H2O2) using a specially-constructed test apparatus. Spores on stainless-steel planchets were inserted into a flowing gaseous atmosphere of steam plus H2O2 for a timed exposure to the lethal agent. The specially-designed test apparatus and its operating parameters are described. Geobacillus stearothermophilus (former name, Bacillus stearothermophilus) spore-death rates were evaluated in several spore-planchet handling modes. Enumeration microbial recovery methods were used. The data were analyzed using survivor-curve methods; D-values were calculated using the initial number of spores per planchet and the number of spores surviving the process. Extensive tests were carried out using Geobacillus stearothermophilus spores; limited tests were carried out using Bacillus smithii ATCC 51232 (former name, Bacillus coagulans), Bacillus macerans, and Bacillus subtilis, subtilis ATCC 35021 spores (former name, Bacillus subtilis, CCC 5230, Kerns 15U). For G. stearothermophilus spores subjected to steam plus H2O2 and recovered using the 2B procedure (planchets deposited in sterile, 100-mL bottles containing 50.0 mL of buffer immediately after they were subjected to the steam-H2O2 condition; 11 experiments), the mean D-value was 0.48 min at 2,500 ppm and 0.22 min at 7,500 ppm. The application of steam plus H2O2 to the sterilization of barrier isolator enclosures is discussed.
Georget, Erika; Kapoor, Shobhna; Winter, Roland; Reineke, Kai; Song, Youye; Callanan, Michael; Ananta, Edwin; Heinz, Volker; Mathys, Alexander
2014-08-01
Bacterial spores are a major concern for food safety due to their high resistance to conventional preservation hurdles. Innovative hurdles can trigger bacterial spore germination or inactivate them. In this work, Geobacillus stearothermophilus spore high pressure (HP) germination and inactivation mechanisms were investigated by in situ infrared spectroscopy (FT-IR) and fluorometry. G. stearothermophilus spores' inner membrane (IM) was stained with Laurdan fluorescent dye. Time-dependent FT-IR and fluorescence spectra were recorded in situ under pressure at different temperatures. The Laurdan spectrum is affected by the lipid packing and level of hydration, and provided information on the IM state through the Laurdan generalized polarization. Changes in the -CH2 and -CH3 asymmetric stretching bands, characteristic of lipids, and in the amide I' band region, characteristic of proteins' secondary structure elements, enabled evaluation of the impact of HP on endospores lipid and protein structures. These studies were complemented by ex situ analyses (plate counts and microscopy). The methods applied showed high potential to identify germination mechanisms, particularly associated to the IM. Germination up to 3 log10 was achieved at 200 MPa and 55 °C. A molecular-level understanding of these mechanisms is important for the development and validation of multi-hurdle approaches to achieve commercial sterility. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier
2017-06-01
Although heat treatment is probably the oldest and the most common method used to inactivate spores in food processes, the specific mechanism of heat killing of spores is still not fully understood. The purpose of this study is to investigate the evolution of the permeabilization and the viability of heat-treated spores during storage under growth-preventing conditions. Geobacillus stearothermophilus spores were heat-treated under various conditions of temperature and pH, and then stored under conditions of temperature and pH that prevent growth. Spore survival was evaluated by count plating immediately after heat treatment, and then during storage over a period of months. Flow cytometry analyses were performed to investigate the Syto 9 permeability of heat-treated spores. Sub-lethally heat-treated spores of G. stearothermophilus were physically committed to permeabilization after heat treatment. However, prolonged heat treatment may abolish the spore permeabilization and block heat-treated spores in the refractive state. However, viability loss and permeabilization during heat treatment seem to be two different mechanisms that occur independently, and the loss of permeabilization properties takes place at a much slower rate than spore killing. Under growth-preventing conditions, viable heat-treated spores presumably lose their viability due to the permeabilization phenomena, which makes them more susceptible to the action of adverse conditions precluding growth. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jung, Eun-Sook; Kim, Hye-Jung; Oh, Deok-Kun
2005-01-01
Using immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus l-arabinose isomerase mutant (Gali 152), we found that the galactose isomerization reaction was maximal at 70 degrees C and pH 7.0. Manganese ion enhanced galactose isomerization to tagatose. The immobilized cells were most stable at 60 degrees C and pH 7.0. The cell and substrate concentrations and dilution rate were optimal at 34 g/L, 300 g/L, and 0.05 h(-1), respectively. Under the optimum conditions, the immobilized cell reactor with Mn2+ produced an average of 59 g/L tagatose with a productivity of 2.9 g/L.h and a conversion yield of 19.5% for the first 20 days. The operational stability of immobilized cells with Mn2+ was demonstrated, and their half-life for tagatose production was 34 days. Tagatose production was compared for free and immobilized enzymes and free and immobilized cells using the same mass of cells. Immobilized cells produced the highest tagatose concentration, indicating that cell immobilization was more efficient for tagatose production than enzyme immobilization.
Challenges to validation of a complex nonsterile medical device tray.
Prince, Daniel; Mastej, Jozef; Hoverman, Isabel; Chatterjee, Raja; Easton, Diana; Behzad, Daniela
2014-01-01
Validation by steam sterilization of reusable medical devices requires careful attention to many parameters that directly influence whether or not complete sterilization occurs. Complex implant/instrument tray systems have a variety of configurations and components. Geobacillus stearothermophilus biological indicators (BIs) are used in overkill cycles to to simulate worst case conditions and are intended to provide substantial sterilization assurance. Survival of G. stearothermophilus spores was linked to steam access and size of load in the chamber. By a small and reproducible margin, it was determined that placement of the trays in a rigid container into minimally loaded chambers were more difficult to completely sterilize than maximally loaded chambers.
Solomon, Hodaya V; Tabachnikov, Orly; Lansky, Shifra; Salama, Rachel; Feinberg, Hadar; Shoham, Yuval; Shoham, Gil
2015-12-01
Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a battery of degrading enzymes for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. A 9.4 kb gene cluster has recently been characterized in G. stearothermophilus that encodes a number of galactan-utilization elements. A key enzyme of this degradation system is Gan42B, an intracellular GH42 β-galactosidase capable of hydrolyzing short β-1,4-galactosaccharides into galactose units, making it of high potential for various biotechnological applications. The Gan42B monomer is made up of 686 amino acids, and based on sequence homology it was suggested that Glu323 is the catalytic nucleophile and Glu159 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Gan42B (at 2.45 Å resolution) and its catalytic mutant E323A (at 2.50 Å resolution), as determined by X-ray crystallography, are reported. These structures demonstrate that the three-dimensional structure of the Gan42B monomer generally correlates with the overall fold observed for GH42 proteins, consisting of three main domains: an N-terminal TIM-barrel domain, a smaller mixed α/β domain, and the smallest all-β domain at the C-terminus. The two catalytic residues are located in the TIM-barrel domain in a pocket-like active site such that their carboxylic functional groups are about 5.3 Å from each other, consistent with a retaining mechanism. The crystal structure demonstrates that Gan42B is a homotrimer, resembling a flowerpot in general shape, in which each monomer interacts with the other two to form a cone-shaped tunnel cavity in the centre. The cavity is ∼35 Å at the wide opening and ∼5 Å at the small opening and ∼40 Å in length. The active sites are situated at the interfaces between the monomers, so that every two neighbouring monomers participate in the formation of each of the three active sites of the trimer. They are located near the small opening of the cone tunnel, all facing the centre of the cavity. The biological relevance of this trimeric structure is supported by independent results obtained from gel-permeation chromatography. These data and their comparison to the structural data of related GH42 enzymes are used for a more general discussion concerning structure-activity aspects in this GH family.
Yoshida, Naoto; Higashimura, Eiji; Saeki, Yuichi
2010-01-01
The thermophilic Geobacillus bacterium catalyzed the formation of 100-μm hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate. PMID:20851984
Effects of Hydrogen Peroxide on Common Aviation Textiles
2009-08-01
efficacious (complete kill of 106 CFU of the spore forming Geobacillus stearothermophilus ) in a narrow-body aircraft fuselage (3), as well as wide-body...disinfectant/ sterilant for transportation vehicles like aircraft, buses, subway trains, ambulances, etc. Although the biological efficacy of STERIS...hydrogen peroxide (VHP)1 technology is of particular interest due to rapid sterilization , easy usage, intrinsic environmental friendliness (i .e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caivano, Antonella; Doria-Rose, Nicole A.; Dept. of Molecular and Cell Biology, University of Washington, Seattle, WA 98124-6108
2010-11-25
We have constructed stable virus-like particles displaying the HIV-1 Gag(p17) protein as an N-terminal fusion with an engineered protein domain from the Geobacillus stearothermophilus pyruvate dehydrogenase subunit E2. Mice immunized with the Gag(p17)-E2 60-mer scaffold particles mounted a strong and sustained antibody response. Antibodies directed to Gag(p17) were boosted significantly with additional immunizations, while anti-E2 responses reached a plateau. The isotype of the induced antibodies was biased towards IgG1, and the E2-primed CD4+ T cells did not secrete IFN{gamma}. Using transgenic mouse model systems, we demonstrated that CD8+ T cells primed with E2 particles were able to exert lytic activitymore » and produce IFN{gamma}. These results show that the E2 scaffold represents a powerful vaccine delivery system for whole antigenic proteins or polyepitope engineered proteins, evoking antibody production and antigen specific CTL activity even in the absence of IFN{gamma}-producing CD4+ T cells.« less
Liato, Viacheslav; Labrie, Steve; Viel, Catherine; Benali, Marzouk; Aïder, Mohammed
2015-10-01
The combined effect of heat treatment and electro-activated solution (EAS) on the heat resistance of spores of Clostridium sporogenes and Geobacillus stearothermophilus was assessed under various heating and exposure time combinations. The acid and neutral EAS showed the highest inhibitory activity, indicating that these solutions may be considered as strong sporicidal disinfectants. These EAS were able to cause a reduction of ≥6 log of spores of C. sporogenes at 60 °C in only 1 min of exposition. For G. stearothermophilus spores, a reduction of 4.5 log was observed at 60 °C in 1 min, while in 5 min, ≥7 log CFU/ml reduction was observed. Inoculated puree of pea and corn were used as a food matrix for the determination of the heat resistance of these spores during the treatments in glass capillaries. The inactivation kinetics of the spores was studied in an oil bath. Combined treatment by EAS and temperature demonstrated a significant decrease in the heat resistance of C. sporogenes. The D100°C in pea puree with NaCl solution was 66.86 min while with acid and neutral EAS it was reduced down to 3.97 and 2.19 min, respectively. The spore of G. stearothermophilus displayed higher heat resistance as confirmed by other similar studies. Its D130°C in pea puree showed a decrease from 1.45 min in NaCl solution down to 1.30 and 0.93 min for acid and neutral EAS, respectively. The differences between the spores of these species are attributable to their different sensitivities with respect to pH, Redox potential and oxygen. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Kinetic experiments of GSXynB2, a ß-xylosidase, acting on 2-nitrophenyl-ß-D-xylopyranoside (2NPX), 4-nitrophenyl-ß-D-xylopyranoside (4NPX), 4-methylumbelliferyl-ß-D-xylopyanoside (MuX) and xylobiose (X2) were conducted at pH 7.0 and 25 °C. Catalysis proceeds in two steps: E + substrate TO E-xylose ...
2006-06-01
Decontamination assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surfaces using a hydrogen...resistant to commonly used disinfectants and require the use of chemical sterilants † to effectively decontaminate exposed areas. Since anthrax...spores can aerosolise the use of vaporous sterilants in the remediation of contaminated areas is desirable. A number of vaporous sterilants exist which
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki; Jeyakanthan, Jeyaraman
2007-02-01
DHNA synthetase from G. kaustophilus has been cloned, expressed, purified and crystallized. The aerobic Gram-positive bacterium Geobacillus kaustophilus is a bacillus species that was isolated from deep-sea sediment from the Mariana Trench. 1,4-Dihydroxy-2-naphthoate (DHNA) synthetase plays a vital role in the biosynthesis of menaquinone (vitamin K{sub 2}) in this bacterium. DHNA synthetase from Geobacillus kaustophilus was crystallized in the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 77.01, b = 130.66, c = 131.69 Å. The crystal diffracted to a resolution of 2.2 Å. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetricmore » unit.« less
Evaluation of the Effects of Hydrogen Peroxide on Common Aviation Structural Materials
2009-12-01
population of Geobacillus stearothermophilus . Once the sanitization/ decontamination phase is completed, the enclosure is 1 VHP is a registered...disinfection and/or decon- tamination technologies available, vaporized hydrogen peroxide (VHP)1 is of particular interest because it can be rapidly sterilized ...decontamination Unit (STERIS Corporation, Mentor, OH, USA) using VAPROX®2 as the sterilant in an enclosed chamber for 1, 10, or 25 VHP cycles . The exposure
2004-11-16
Agent Resistant Coating (CARC) Geobacillus stearothermophilus ATCC 7953 Flott Glass Galvanized aluminum Polyimid (Kapton) Nylon Webbing Runway...spores were harvested from 7-10 day –old cultures plated upon Lemko Agar. The spores were washed thrice in sterile distilled water (dH2O), and...NEGATIVE SURROGATE Inocula of log-phase Y. ruckeri were prepared immediately before application to sterile coupons. Cells were grown in nutrient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foucault, M.; Watzlawick, H.; Mattes, R.
2006-02-01
The α-galactosidases AgaA, AgaB and AgaA A355E mutant from Geobacillus stearothermophilus have been overexpressed in Escherichia coli. Crystals of AgaB and AgaA A355E have been obtained by the vapour-diffusion method and synchrotron data have been collected to 2.0 and 2.8 Å resolution, respectively. α-Galactosidases from thermophilic organisms have gained interest owing to their applications in the sugar industry. The α-galactosidases AgaA, AgaB and AgaA A355E mutant from Geobacillus stearothermophilus have been overexpressed in Escherichia coli. Crystals of AgaB and AgaA A355E have been obtained by the vapour-diffusion method and synchrotron data have been collected to 2.0 and 2.8 Å resolution,more » respectively. Crystals of AgaB belong to space group I222 or I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 87.5, b = 113.3, c = 161.6 Å. Crystals of AgaA A355E belong to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 150.1, c = 233.2 Å.« less
van Bokhorst-van de Veen, Hermien; Xie, Houyu; Esveld, Erik; Abee, Tjakko; Mastwijk, Hennie; Nierop Groot, Masja
2015-02-01
Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores. The three different sporeformers used are Bacillus cereus a food-borne pathogen, and Bacillus atrophaeus and Geobacillus stearothermophilus that are used as biological indicators for validation of chemical sterilization and thermal processes, respectively. The different spores showed variation in their degree of inactivation by applied heat, hypochlorite, hydrogen peroxide, and UV treatments, whereas similar inactivation results were obtained with the different spores treated with nitrogen CAP. G. stearothermophilus spores displayed high resistance to heat, hypochlorite, hydrogen peroxide, while for UV treatment B. atrophaeus spores are most tolerant. Scanning electron microscopy analysis revealed distinct morphological changes for nitrogen CAP-treated B. cereus spores including etching effects and the appearance of rough spore surfaces, whereas morphology of spores treated with heat or disinfectants showed no such changes. Moreover, microscopy analysis revealed CAP-exposed B. cereus spores to turn phase grey conceivably because of water influx indicating damage of the spores, a phenomenon that was not observed for non-treated spores. In addition, data are supplied that exclude UV radiation as determinant of antimicrobial activity of nitrogen CAP. Overall, this study shows that nitrogen CAP treatment has a biocidal effect on selected Bacillus and Geobacillus spores associated with alterations in spore surface morphology and loss of spore integrity. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brüx, Christian; Niefind, Karsten; Ben-David, Alon
2005-12-01
The crystallization and preliminary X-ray analysis of a β-d-xylosidase from G. stearothermophilus T-6, a family 43 glycoside hydrolase, is described. Native and catalytic inactive mutants of the enzymes were crystallized in two different space groups, orthorhombic P2{sub 1}2{sub 1}2 and tetragonal P4{sub 1}2{sub 1}2 (or the enantiomorphic space group P4{sub 3}2{sub 1}2), using a sensitive cryoprotocol. The latter crystal form diffracted X-rays to a resolution of 2.2 Å. β-d-Xylosidases (EC 3.2.1.37) are hemicellulases that cleave single xylose units from the nonreducing end of xylooligomers. In this study, the crystallization and preliminary X-ray analysis of a β-d-xylosidase from Geobacillus stearothermophilus T-6more » (XynB3), a family 43 glycoside hydrolase, is described. XynB3 is a 535-amino-acid protein with a calculated molecular weight of 61 891 Da. Purified recombinant native and catalytic inactive mutant proteins were crystallized and cocrystallized with xylobiose in two different space groups, P2{sub 1}2{sub 1}2 (unit-cell parameters a = 98.32, b = 99.36, c = 258.64 Å) and P4{sub 1}2{sub 1}2 (or the enantiomorphic space group P4{sub 3}2{sub 1}2; unit-cell parameters a = b = 140.15, c = 233.11 Å), depending on the detergent. Transferring crystals to cryoconditions required a very careful protocol. Orthorhombic crystals diffract to 2.5 Å and tetragonal crystals to 2.2 Å.« less
Wood, J P; Lemieux, P; Betancourt, D; Kariher, P; Gatchalian, N G
2010-07-01
To obtain needed data on the dry thermal resistance of Bacillus anthracis spores and other Bacillus species for waste incinerator applications. Tests were conducted in a pilot-scale incinerator utilizing biological indicators comprised of spores of Geobacillus stearothermophilus, Bacillus atrophaeus and B. anthracis (Sterne) and embedded in building material bundles. Tests were also conducted in a dry heat oven to determine the destruction kinetics for the same species. In the pilot-scale incinerator tests, B. atrophaeus and G. stearothermophilus demonstrated similar thermal sensitivity, but B. anthracis (Sterne) was less thermally resistant than G. stearothermophilus. For the dry heat oven tests conducted at 175°C, the D-values were 0·4, 0·2 and 0·3 min for B. atrophaeus, B. anthracis (Sterne) and G. stearothermophilus, respectively. Bacillus anthracis (Sterne) possesses similar or less dry heat resistance compared to B. atrophaeus and G. stearothermophilus. Previous studies have demonstrated conditions under which bacterial spores may survive in an incinerator environment. The data from this study may assist in the selection of surrogates or indicator micro-organisms to ensure B. anthracis spores embedded in building materials are completely inactivated in an incinerator. © 2009 The Society for Applied Microbiology, Journal of Applied Microbiology. No claim to US Government works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan
We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).
Sierra, Raymond G; Gati, Cornelius; Laksmono, Hartawan; Dao, E Han; Gul, Sheraz; Fuller, Franklin; Kern, Jan; Chatterjee, Ruchira; Ibrahim, Mohamed; Brewster, Aaron S; Young, Iris D; Michels-Clark, Tara; Aquila, Andrew; Liang, Mengning; Hunter, Mark S; Koglin, Jason E; Boutet, Sébastien; Junco, Elia A; Hayes, Brandon; Bogan, Michael J; Hampton, Christina Y; Puglisi, Elisabetta V; Sauter, Nicholas K; Stan, Claudiu A; Zouni, Athina; Yano, Junko; Yachandra, Vittal K; Soltis, S Michael; Puglisi, Joseph D; DeMirci, Hasan
2016-01-01
We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).
Pujol, Laure; Johnson, Nicholas Brian; Magras, Catherine; Albert, Isabelle; Membré, Jeanne-Marie
2015-10-15
In a previous study, a quantitative microbial exposure assessment (QMEA) model applied to an aseptic-UHT food process was developed [Pujol, L., Albert, I., Magras, C., Johnson, N. B., Membré, J. M. Probabilistic exposure assessment model to estimate aseptic UHT product failure rate. 2015 International Journal of Food Microbiology. 192, 124-141]. It quantified Sterility Failure Rate (SFR) associated with Bacillus cereus and Geobacillus stearothermophilus per process module (nine modules in total from raw material reception to end-product storage). Previously, the probabilistic model inputs were set by experts (using knowledge and in-house data). However, only the variability dimension was taken into account. The model was then improved using expert elicitation knowledge in two ways. First, the model was refined by adding the uncertainty dimension to the probabilistic inputs, enabling to set a second order Monte Carlo analysis. The eight following inputs, and their impact on SFR, are presented in detail in this present study: D-value for each bacteria of interest (B. cereus and G. stearothermophilus) associated with the inactivation model for the UHT treatment step, i.e., two inputs; log reduction (decimal reduction) number associated with the inactivation model for the packaging sterilization step for each bacterium and each part of the packaging (product container and sealing component), i.e., four inputs; and bacterial spore air load of the aseptic tank and the filler cabinet rooms, i.e., two inputs. Second, the model was improved by leveraging expert knowledge to develop further the existing model. The proportion of bacteria in the product which settled on surface of pipes (between the UHT treatment and the aseptic tank on one hand, and between the aseptic tank and the filler cabinet on the other hand) leading to a possible biofilm formation for each bacterium, was better characterized. It was modeled as a function of the hygienic design level of the aseptic-UHT line: the experts provided the model structure and most of the model parameters values. Mean of SFR was estimated to 10×10(-8) (95% Confidence Interval=[0×10(-8); 350×10(-8)]) and 570×10(-8) (95% CI=[380×10(-8); 820×10(-8)]) for B. cereus and G. stearothermophilus, respectively. These estimations were more accurate (since the confidence interval was provided) than those given by the model with only variability (for which the estimates were 15×10(-8) and 580×10(-8) for B. cereus and G. stearothermophilus, respectively). The updated model outputs were also compared with those obtained when inputs were described by a generic distribution, without specific information related to the case-study. Results showed that using a generic distribution can lead to unrealistic estimations (e.g., 3,181,000 product units contaminated by G. stearothermophilus among 10(8) product units produced) and emphasized the added value of eliciting information from experts from the relevant specialist field knowledge. Copyright © 2015 Elsevier B.V. All rights reserved.
Teplitsky, A; Mechaly, A; Stojanoff, V; Sainz, G; Golan, G; Feinberg, H; Gilboa, R; Reiland, V; Zolotnitsky, G; Shallom, D; Thompson, A; Shoham, Y; Shoham, G
2004-05-01
Xylanases are hemicellulases that hydrolyze the internal beta-1,4-glycoside bonds of xylan. The extracellular thermostable endo-1,4-beta-xylanase (EC 3.2.1.8; XT6) produced by the thermophilic bacterium Geobacillus stearothermophilus T-6 was shown to bleach pulp optimally at pH 9 and 338 K and was successfully used in a large-scale biobleaching mill trial. The xylanase gene was cloned and sequenced. The mature enzyme consists of 379 amino acids, with a calculated molecular weight of 43 808 Da and a pI of 9.0. Crystallographic studies of XT6 were performed in order to study the mechanism of catalysis and to provide a structural basis for the rational introduction of enhanced thermostability by site-specific mutagenesis. XT6 was crystallized in the primitive trigonal space group P3(2)21, with unit-cell parameters a = b = 112.9, c = 122.7 A. A full diffraction data set for wild-type XT6 has been measured to 2.4 A resolution on flash-frozen crystals using synchrotron radiation. A fully exchanged selenomethionyl XT6 derivative (containing eight Se atoms per XT6 molecule) was also prepared and crystallized in an isomorphous crystal form, providing full selenium MAD data at three wavelengths and enabling phase solution and structure determination. The structure of wild-type XT6 was refined at 2.4 A resolution to a final R factor of 15.6% and an R(free) of 18.6%. The structure demonstrates that XT6 is made up of an eightfold TIM-barrel containing a deep active-site groove, consistent with its 'endo' mode of action. The two essential catalytic carboxylic residues (Glu159 and Glu265) are located at the active site within 5.5 A of each other, as expected for 'retaining' glycoside hydrolases. A unique subdomain was identified in the carboxy-terminal part of the enzyme and was suggested to have a role in xylan binding. The three-dimensional structure of XT6 is of great interest since it provides a favourable starting point for the rational improvement of its already high thermal and pH stabilities, which are required for a number of biotechnological and industrial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan
In this paper, we describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. Finally, we used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).
Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan; ...
2015-11-30
In this paper, we describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. Finally, we used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).
Rhee, Mun Su; Kim, Jin-Woo; Qian, Yilei; Ingram, L O; Shanmugam, K T
2007-07-01
Bacillus coagulans is a sporogenic lactic acid bacterium that ferments glucose and xylose, major components of plant biomass, a potential feedstock for cellulosic ethanol. The temperature and pH for optimum rate of growth of B. coagulans (50 to 55 degrees C, pH 5.0) are very similar to that of commercially developed fungal cellulases (50 degrees C; pH 4.8). Due to this match, simultaneous saccharification and fermentation (SSF) of cellulose to products by B. coagulans is expected to require less cellulase than needed if the SSF is conducted at a sub-optimal temperature, such as 30 degrees C, the optimum for yeast, the main biocatalyst used by the ethanol industry. To fully exploit B. coagulans as a platform organism, we have developed an electroporation method to transfer plasmid DNA into this genetically recalcitrant bacterium. We also constructed a B. coagulans/E. coli shuttle vector, plasmid pMSR10 that contains the rep region from a native plasmid (pMSR0) present in B. coagulans strain P4-102B. The native plasmid, pMSR0 (6823bp), has 9 ORFs, and replicates by rolling-circle mode of replication. Plasmid pNW33N, developed for Geobacillus stearothermophilus, was also transformed into this host and stably maintained while several other Bacillus/Escherichia coli shuttle vector plasmids were not transformed into B. coagulans. The transformation efficiency of B. coagulans strain P4-102B using the plasmids pNW33N or pMSR10 was about 1.5x10(16) per mole of DNA. The availability of shuttle vectors and an electroporation method is expected to aid in genetic and metabolic engineering of B. coagulans.
Okpara-Hofmann, J; Knoll, M; Dürr, M; Schmitt, B; Borneff-Lipp, M
2005-04-01
This study compared the effectiveness of sterilizing four types of endoscope using different models of the Sterrad system (Sterrad 50, 100, 100S and 200). Sterilization levels meeting international requirements were attained in all cases with carriers inoculated with Geobacillus stearothermophilus spores. The endoscopes were tested in half cycles ('overkill'). This is the first study to compare the Sterrad models marketed to date in terms of effective sterilization of endoscopes with narrow lumens.
Extraction of Copper from Malanjkhand Low-Grade Ore by Bacillus stearothermophilus.
Singh, Sradhanjali; Sukla, Lala Behari; Mishra, Baroda Kanta
2011-10-01
Thermophilic bacteria are actively prevalent in hot water springs. Their potential to grow and sustain at higher temperatures makes them exceptional compare to other microorganism. The present study was initiated to isolate, identify and determine the feasibility of extraction of copper using thermophilic heterotrophic bacterial strain. Bacillus stearothermophilus is a thermophilic heterotrophic bacterium isolated from hot water spring, Atri, Orissa, India. This bacterium was adapted to low-grade chalcopyrite ore and its efficiency to solubilize copper from Malanjkhand low-grade ore was determined. The low-grade copper ore contains 0.27% Cu, in which the major copper-bearing mineral is chalcopyrite associated with other minerals present as minor phase. Variation in parameters such as pulp-density and temperatures were studied. After 30 days of incubation, it was found that Bacillus stearothermophilus solubilize copper up to 81.25% at pH 6.8 at 60°C.
USDA-ARS?s Scientific Manuscript database
A thermophilic strain, Geobacillus sp. DC3, capable of producing hemicellulolytic enzymes was isolated from the 1.5-km depth of the former Homestake gold mine in Lead, South Dakota. The DC3 strain expressed a high level of extracellular endoxylanase at 39.5 U/mg protein with additional hemicellulase...
Rahman, Raja Noor Zaliha Raja Abd; Leow, Thean Chor; Salleh, Abu Bakar; Basri, Mahiran
2007-01-01
Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0) as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%). Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T) and Geobacillus kaustophilus (DSM 7263T). Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T). Conclusion Strain T1T was able to secrete extracellular thermostable lipase into culture medium. The strain T1T was identified as Geobacillus zalihae T1T as it differs from its type strains Geobacillus kaustophilus (DSM 7263T) and Geobacillus thermoleovorans (DSM 5366T) on some physiological studies, cellular fatty acids composition, RiboPrint analysis, length of lipase gene and protein profile. PMID:17692114
Abd Rahman, Raja Noor Zaliha Raja; Leow, Thean Chor; Salleh, Abu Bakar; Basri, Mahiran
2007-08-10
Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78 degrees C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0) as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5-99.2%). Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70 degrees C and was also stable up to 60 degrees C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T) and Geobacillus kaustophilus (DSM 7263T). Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T). Strain T1T was able to secrete extracellular thermostable lipase into culture medium. The strain T1T was identified as Geobacillus zalihae T1T as it differs from its type strains Geobacillus kaustophilus (DSM 7263T) and Geobacillus thermoleovorans (DSM 5366T) on some physiological studies, cellular fatty acids composition, RiboPrint analysis, length of lipase gene and protein profile.
Pinho, Sílvia C; Nunes, Olga C; Lobo-da-Cunha, Alexandre; Almeida, Manuel F
2015-09-15
Although alkaline hydrolysis treatment emerges as an alternative disinfection/sterilization method for medical waste, information on its effects on the inactivation of biological indicators is scarce. The effects of alkaline treatment on the resistance of Geobacillus stearothermophilus spores were investigated and the influence of temperature (80 °C, 100 °C and 110 °C) and NaOH concentration was evaluated. In addition, spore inactivation in the presence of animal tissues and discarded medical components, used as surrogate of medical waste, was also assessed. The effectiveness of the alkaline treatment was carried out by determination of survival curves and D-values. No significant differences were seen in D-values obtained at 80 °C and 100 °C for NaOH concentrations of 0.5 M and 0.75 M. The D-values obtained at 110 °C (2.3-0.5 min) were approximately 3 times lower than those at 100 °C (8.8-1.6 min). Independent of the presence of animal tissues and discarded medical components, 6 log10 reduction times varied between 66 and 5 min at 100 °C-0.1 M NaOH and 110 °C-1 M NaOH, respectively. The alkaline treatment may be used in future as a disinfection or sterilization alternative method for contaminated waste. Copyright © 2015 Elsevier Ltd. All rights reserved.
Semmler, Egmont; Novak, Wenzel; Allinson, Wilf; Wallis, Darren; Wood, Nigel; Awakowicz, Peter; Wunderlich, Joachim
2016-01-01
A new technology to the pharmaceutical field is presented: surface decontamination by plasmas The technology is comparable to established barrier systems like e-beam, volatile hydrogen peroxide, or radiation inactivation of microbiological contaminations. This plasma technology is part of a fully automated and validated syringe filling line at a major pharmaceutical company and is in production operation. Incoming pre-sterilized syringe containers ("tubs") are processed by plasma, solely on the outside, and passed into the aseptic filling isolator upon successful decontamination. The objective of this article is to present the operating principles and develop and establish a validation routine on the basis of standard commercial biological indicators. Their decontamination efficacies are determined and correlated to the actual inactivation efficacy on the pharmaceutical packaging material.The reference setup is explained in detail and a short presentation of the cycle development and the relevant plasma control parameters is given, with a special focus on the in-process monitor determining the cycle validity. Different microbial inactivation mechanisms are also discussed and evaluated for their contribution and interaction to enhance plasma decontamination. A material-dependent inactivation behavior was observed. In order to be able to correlate the tub surface inactivation of Geobacillus stearothermophilus endospores to metallic biological indicators, a comparative study was performed. Through consistently demonstrating the linear inactivation behavior between the different materials, it becomes possible to develop an effective and time-saving validation scheme. The challenge in new decontamination systems lies in a thorough validation of the inactivation efficacy under different operating regimes. With plasma, as an ionized gas, a new barrier concept is introduced into pharmaceutical aseptic processing of syringes. The presented system operates in vacuum and only decontaminates the outer surface of pre-sterilized syringe containers ("tubs"), before they are transferred into the aseptic area. The plasma does not penetrate into the tub. This article discusses the phase from development and test germ selection, across the identified sporicidal mechanisms, to a proposal for a validation scheme on the basis of commercially available biological indicators. A special focus is placed on an extensive investigation to establish a link between the tub surface microbial kill (polystyrene and Tyvek(and (2)) ) and biological indicator inactivation (stainless steel). Additionally, a rationale is developed on how an optical in-process monitor can be applied to establish a validatable limit on the base of the predetermined inactivation data of Geobacillus stearothermophilus endospores. © PDA, Inc. 2016.
Ortiz, Elio M.; Berretta, Marcelo F.; Benintende, Graciela B.; Zandomeni, Rubén O.
2015-01-01
Geobacillus sp. isolate T6 was collected from a thermal spring in Salta, Argentina. The draft genome sequence (3,767,773 bp) of this isolate is represented by one major scaffold of 3,46 Mbp, a second one of 207 kbp, and 20 scaffolds of <13 kbp. The assembled sequences revealed 3,919 protein-coding genes. PMID:26184933
de Souza, Yuri Pinheiro Alves; da Mota, Fábio Faria
2017-01-01
ABSTRACT We report here the 3,586,065-bp draft genome of Geobacillus sp. LEMMY01, which was isolated (axenic culture) from a thermophilic chemolitoautotrophic consortium obtained from the site of a burning grass pile. The genome contains biosynthetic gene clusters coding for secondary metabolites, such as terpene and lantipeptide, confirming the biotechnological potential of this strain. PMID:28495764
de Souza, Yuri Pinheiro Alves; da Mota, Fábio Faria; Rosado, Alexandre Soares
2017-05-11
We report here the 3,586,065-bp draft genome of Geobacillus sp. LEMMY01, which was isolated (axenic culture) from a thermophilic chemolitoautotrophic consortium obtained from the site of a burning grass pile. The genome contains biosynthetic gene clusters coding for secondary metabolites, such as terpene and lantipeptide, confirming the biotechnological potential of this strain. Copyright © 2017 de Souza et al.
Huma, Tayyaba; Maryam, Arooma; Rehman, Shahid Ur; Qamar, Muhammad Tahir Ul; Shaheen, Tayyaba; Haque, Asma; Shaheen, Bushra
2014-01-01
Alpha amylase family is generally defined as a group of enzymes that can hydrolyse and transglycosylase α-(1, 4) or α-(1, 6) glycosidic bonds along with the preservation of anomeric configuration. For the comparative analysis of alpha amylase family, nucleotide sequences of seven thermo stable organisms of Kingdom Archea i.e. Pyrococcus furiosus (100-105°C), Kingdom Prokaryotes i.e. Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C), Bacillus amyloliquefaciens (72°C), Bacillus subtilis (70°C) and Bacillus KSM K38 (55°C) and Eukaryotes i.e. Aspergillus oryzae (60°C) were selected from NCBI. Primary structure composition analysis and Conserved sequence analysis were conducted through Bio Edit tools. Results from BioEdit shown only three conserved regions of base pairs and least similarity in MSA of the above mentioned alpha amylases. In Mega 5.1 Phylogeny of thermo stable alpha amylases of Kingdom Archea, Prokaryotes and Eukaryote was handled by Neighbor-Joining (NJ) algorithm. Mega 5.1 phylogenetic results suggested that alpha amylases of thermo stable organisms i.e. Pyrococcus furiosus (100-105°C), Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C) and Bacillus amyloliquefaciens (72°C) are more distantly related as compared to less thermo stable organisms. By keeping in mind the characteristics of most thermo stable alpha amylases novel and improved features can be introduced in less thermo stable alpha amylases so that they become more thermo tolerant and productive for industry.
Sooch, Balwinder Singh; Kauldhar, Baljinder Singh; Puri, Munish
2016-11-01
A newly isolated microbial strain of thermophilic genus Geobacillus has been described with emphasis on polyphasic characterization and its application for degradation of hydrogen peroxide. The validation of this thermophilic strain of genus Geobacillus designated as BSS-7 has been demonstrated by polyphasic taxonomy approaches through its morphological, biochemical, fatty acid methyl ester profile and 16S rDNA sequencing. This thermophilic species of Geobacillus exhibited growth at broad pH and temperature ranges coupled with production of extraordinarily high quantities of intracellular catalase, the latter of which as yet not been reported in any member of this genus. The isolated thermophilic bacterial culture BSS-7 exhibited resistance against a variety of organic solvents. The immobilized whole cells of the bacterium successfully demonstrated the degradation of hydrogen peroxide (H2O2) in a packed bed reactor. This strain has potential application in various analytical and diagnostic methods in the form of biosensors and biomarkers in addition to applications in the textile, paper, food and pharmaceutical industries.
Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles.
Neumann, Oara; Feronti, Curtis; Neumann, Albert D; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J
2013-07-16
The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator.
2008-06-01
Assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus Spores on Indoor Surfaces Using a Hydrogen Peroxide Gas...24-25% hydrogen peroxide (CAS # 7722-84-1), and 1-1.4% acetic acid. Clorox® bleach was diluted 1/ 1 0 th with sterile distilled water. Clean Earth...Peridox TM was diluted 1/6th with sterile distilled water. The disinfectants were used within 2 hr of their preparation. 2.2 Coupon Procurement Small size
Surface plasmon resonance-enabled antibacterial digital versatile discs
NASA Astrophysics Data System (ADS)
Dou, Xuan; Chung, Pei-Yu; Jiang, Peng; Dai, Jianli
2012-02-01
We report the achievement of effective sterilization of exemplary bacteria including Escherichia coli and Geobacillus stearothermophilus spores on a digital versatile disc (DVD). The spiral arrangement of aluminum-covered pits generates strong surface plasmon resonance (SPR) absorption of near-infrared light, leading to high surface temperature that could even damage the DVD plastics. Localized protein denaturation and high sterilization efficiency have been demonstrated by using a fluorescence microscope and cell cultures. Numerical simulations have also been conducted to model the SPR properties and the surface temperature distribution of DVDs under laser illumination. The theoretical predictions agree reasonably well with the experimental results.
Assareh, Reza; Shahbani Zahiri, Hossein; Akbari Noghabi, Kambiz; Aminzadeh, Saeed; Bakhshi Khaniki, Gholamreza
2012-09-01
A thermophile cellulase-producing bacterium was isolated and identified as closely related to Geobacillus subterraneus. The strain, named Geobacillus sp. T1, was able to grow and produce cellulase on cellobiose, microcrystalline cellulose, carboxymethylcellulose (CMC), barley straw, wheat straw and Whatman No. 1 filter paper. However, barley and wheat straws were significantly better substrates for cellulase production. When Geobacillus sp. T1 was cultivated in the presence of 0.5% barley straw, 0.1% Tween 80 and pH 6.5 at 50°C, the maximum level of free cellulase up to 143.50 U/mL was produced after 24h. This cellulase (≈ 54 kDa) was most active at pH 6.5 and 70°C. The enzyme in citrate phosphate buffer (10mM) was stable at 60°C for at least 1h. Geobacillus sp. T1 with efficient growth and cellulase production on straws seems a potential candidate for conversion of agricultural biomass to fuels. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dror, Adi; Shemesh, Einav; Dayan, Natali
2014-01-01
The abilities of enzymes to catalyze reactions in nonnatural environments of organic solvents have opened new opportunities for enzyme-based industrial processes. However, the main drawback of such processes is that most enzymes have a limited stability in polar organic solvents. In this study, we employed protein engineering methods to generate a lipase for enhanced stability in methanol, which is important for biodiesel production. Two protein engineering approaches, random mutagenesis (error-prone PCR) and structure-guided consensus, were applied in parallel on an unexplored lipase gene from Geobacillus stearothermophilus T6. A high-throughput colorimetric screening assay was used to evaluate lipase activity after an incubation period in high methanol concentrations. Both protein engineering approaches were successful in producing variants with elevated half-life values in 70% methanol. The best variant of the random mutagenesis library, Q185L, exhibited 23-fold-improved stability, yet its methanolysis activity was decreased by one-half compared to the wild type. The best variant from the consensus library, H86Y/A269T, exhibited 66-fold-improved stability in methanol along with elevated thermostability (+4.3°C) and a 2-fold-higher fatty acid methyl ester yield from soybean oil. Based on in silico modeling, we suggest that the Q185L substitution facilitates a closed lid conformation that limits access for both the methanol and substrate excess into the active site. The enhanced stability of H86Y/A269T was a result of formation of new hydrogen bonds. These improved characteristics make this variant a potential biocatalyst for biodiesel production. PMID:24362426
Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.
Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet
2015-11-01
Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity.
Olivier, S. A.; Bull, M. K.; Stone, G.; van Diepenbeek, R. J.; Kormelink, F.; Jacops, L.; Chapman, B.
2011-01-01
The inactivation of spores of four low-acid food spoilage organisms by high pressure thermal (HPT) and thermal-only processing was compared on the basis of equivalent thermal lethality calculated at a reference temperature of 121.1°C (Fz121.1°C, 0.1 MPa or 600 MPa) and characterized as synergistic, not different or protective. In addition, the relative resistances of spores of the different spoilage microorganisms to HPT processing were compared. Processing was performed and inactivation was compared in both laboratory and pilot scale systems and in model (diluted) and actual food products. Where statistical comparisons could be made, at least 4 times and up to around 190 times more inactivation (log10 reduction/minute at FTz121.1°C) of spores of Bacillus amyloliquefaciens, Bacillus sporothermodurans, and Geobacillus stearothermophilus was achieved using HPT, indicating a strong synergistic effect of high pressure and heat. Bacillus coagulans spores were also synergistically inactivated in diluted and undiluted Bolognese sauce but were protected by pressure against thermal inactivation in undiluted cream sauce. Irrespective of the response characterization, B. coagulans and B. sporothermodurans were identified as the most HPT-resistant isolates in the pilot scale and laboratory scale studies, respectively, and G. stearothermophilus as the least in both studies and all products. This is the first study to comprehensively quantitatively characterize the responses of a range of spores of spoilage microorganisms as synergistic (or otherwise) using an integrated thermal-lethality approach (FTz). The use of the FTz approach is ultimately important for the translation of commercial minimum microbiologically safe and stable thermal processes to HPT processes. PMID:21278265
Olivier, S A; Bull, M K; Stone, G; van Diepenbeek, R J; Kormelink, F; Jacops, L; Chapman, B
2011-04-01
The inactivation of spores of four low-acid food spoilage organisms by high pressure thermal (HPT) and thermal-only processing was compared on the basis of equivalent thermal lethality calculated at a reference temperature of 121.1°C (F(z)(121.1)(°)(C, 0.1 MPa or 600 MPa)) and characterized as synergistic, not different or protective. In addition, the relative resistances of spores of the different spoilage microorganisms to HPT processing were compared. Processing was performed and inactivation was compared in both laboratory and pilot scale systems and in model (diluted) and actual food products. Where statistical comparisons could be made, at least 4 times and up to around 190 times more inactivation (log(10) reduction/minute at F(T)(z)(121.1)(°)(C)) of spores of Bacillus amyloliquefaciens, Bacillus sporothermodurans, and Geobacillus stearothermophilus was achieved using HPT, indicating a strong synergistic effect of high pressure and heat. Bacillus coagulans spores were also synergistically inactivated in diluted and undiluted Bolognese sauce but were protected by pressure against thermal inactivation in undiluted cream sauce. Irrespective of the response characterization, B. coagulans and B. sporothermodurans were identified as the most HPT-resistant isolates in the pilot scale and laboratory scale studies, respectively, and G. stearothermophilus as the least in both studies and all products. This is the first study to comprehensively quantitatively characterize the responses of a range of spores of spoilage microorganisms as synergistic (or otherwise) using an integrated thermal-lethality approach (F(T)(z)). The use of the F(T)(z) approach is ultimately important for the translation of commercial minimum microbiologically safe and stable thermal processes to HPT processes.
Lansky, Shifra; Salama, Rachel; Solomon, Hodaya V; Feinberg, Hadar; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil
2014-11-01
L-Arabinose sugar residues are relatively abundant in plants and are found mainly in arabinan polysaccharides and in other arabinose-containing polysaccharides such as arabinoxylans and pectic arabinogalactans. The majority of the arabinose units in plants are present in the furanose form and only a small fraction of them are present in the pyranose form. The L-arabinan-utilization system in Geobacillus stearothermophilus T6, a Gram-positive thermophilic soil bacterium, has recently been characterized, and one of the key enzymes was found to be an intracellular β-L-arabinopyranosidase (Abp). Abp, a GH27 enzyme, was shown to remove β-L-arabinopyranose residues from synthetic substrates and from the native substrates sugar beet arabinan and larch arabinogalactan. The Abp monomer is made up of 448 amino acids, and based on sequence homology it was suggested that Asp197 is the catalytic nucleophile and Asp255 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Abp (at 2.28 Å resolution) and its catalytic mutant Abp-D197A with (at 2.20 Å resolution) and without (at 2.30 Å resolution) a bound L-arabinose product are reported as determined by X-ray crystallography. These structures demonstrate that the three-dimensional structure of the Abp monomer correlates with the general fold observed for GH27 proteins, consisting of two main domains: an N-terminal TIM-barrel domain and a C-terminal all-β domain. The two catalytic residues are located in the TIM-barrel domain, such that their carboxylic functional groups are about 5.9 Å from each other, consistent with a retaining mechanism. An isoleucine residue (Ile67) located at a key position in the active site is shown to play a critical role in the substrate specificity of Abp, providing a structural basis for the high preference of the enzyme towards arabinopyranoside over galactopyranoside substrates. The crystal structure demonstrates that Abp is a tetramer made up of two `open-pincers' dimers, which clamp around each other to form a central cavity. The four active sites of the Abp tetramer are situated on the inner surface of this cavity, all opening into the central space of the cavity. The biological relevance of this tetrameric structure is supported by independent results obtained from size-exclusion chromatography (SEC), dynamic light-scattering (DLS) and small-angle X-ray scattering (SAXS) experiments. These data and their comparison to the structural data of related GH27 enzymes are used for a more general discussion concerning structure-selectivity aspects in this glycoside hydrolase (GH) family.
NASA Astrophysics Data System (ADS)
Eto, Hiroyuki; Ono, Yoshihito; Ogino, Akihisa; Nagatsu, Masaaki
2008-12-01
A flexible sheet-type dielectric barrier discharge (DBD) was studied for the low-temperature sterilization of medical instruments wrapped with Tyvek packaging. Sterilization experiments using Geobacillus stearothermophilus spores with a population of 106 were carried out with various mixtures of nitrogen and oxygen. We confirmed the inactivation of spores after 4.5 min of DBD irradiation at a temperature of 28.4 °C and relative humidity of 64.4%. The main sterilizing factors of this method are the ozone and UV emissions generated by DBD in dry air and synergistic OH radicals generated by DBD in moist air.
Scrubbing technique for needleless connectors to minimize contamination risk.
Satou, K; Kusanagi, R; Nishizawa, A; Hori, S
2018-03-21
This study aimed to investigate the appropriate scrubbing technique for needleless connectors to minimize contamination risk. To demonstrate a highly effective scrubbing technique to physically eliminate bacteria, needleless connectors were contaminated with Geobacillus stearothermophilus spores and then scrubbed. The study showed that the highest bacterial elimination rate was achieved by scrubbing an access port in a straight line with an alcohol cotton swab, applying a force that was almost equal to an arterial compression haemostasis to the access port, and repeating this procedure once using a new alcohol cotton swab. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles
Neumann, Oara; Feronti, Curtis; Neumann, Albert D.; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J.
2013-01-01
The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator. PMID:23836642
High-pressure thermal sterilization: food safety and food quality of baby food puree.
Sevenich, Robert; Kleinstueck, Elke; Crews, Colin; Anderson, Warwick; Pye, Celine; Riddellova, Katerina; Hradecky, Jaromir; Moravcova, Eliska; Reineke, Kai; Knorr, Dietrich
2014-02-01
The benefits that high-pressure thermal sterilization offers as an emerging technology could be used to produce a better overall food quality. Due to shorter dwell times and lower thermal load applied to the product in comparison to the thermal retorting, lower numbers and quantities of unwanted food processing contaminants (FPCs), for example, furan, acrylamide, HMF, and MCPD-esters could be formed. Two spore strains were used to test the technique; Geobacillus stearothermophilus and Bacillus amyloliquefaciens, over the temperature range 90 to 121 °C at 600 MPa. The treatments were carried out in baby food puree and ACES-buffer. The treatments at 90 and 105 °C showed that G. stearothermophilus is more pressure-sensitive than B. amyloliquefaciens. The formation of FPCs was monitored during the sterilization process and compared to the amounts found in retorted samples of the same food. The amounts of furan could be reduced between 81% to 96% in comparison to retorting for the tested temperature pressure combination even at sterilization conditions of F₀-value in 7 min. © 2014 Institute of Food Technologists®
Evaluation of steam penetration and sterilization of natural latex wraps.
Rossanese, Matteo; Gasson, James; Barker, Colin; Bowlt, Kelly
2014-11-01
To evaluate the efficacy of steam and ethylene oxide (EtO) sterilization of Vetrap™ bandages. Prospective experimental study. Vetrap™ bandages (n = 70; 35 as supplied by the manufacturer, 35 unwound and tightly rewound). Vetrap™ bandage rolls (n = 60) marked with a 1 cm square were inoculated with 0.1 mL Geobacillus stearothermophilus spores, packaged in a pouch together with independent sterilization indicators and assigned into 3 sub-groups for sterilizer type: dynamic air removal, gravity displacement, and bench-top pre-vacuum and further sub-divided into 2 sterilization temperatures. Vetrap™ bandages rolls (n = 10) were inoculated with 0.1 mL Bacillus atrophaeus spores in the same manner and underwent EtO sterilization. After sterilization, the 1 cm marked square was aseptically resected to the level of the cardboard tube and enriched in a flask containing 10 mL tryptic soy broth for 24 hours at 60°C for G. stearothermophilus and 37°C for B. atrophaeus. Aliquots were subsequently plated on a Petri dish of tryptic soy agar and incubated at 60°C for G. stearothermophilus and 37°C for B. atrophaeus for 24 hours. Samples were scored positive if colonies of indicator organism were present on the nutrient agar after 24 hours. Three Vetrap™ bandages yielded post-sterilization growth of G. stearothermophilus: 2 from the dynamic air removal sterilizer at 134°C for 3.5 minutes, and 1 from the bench-top pre-vacuum sterilizer at 121°C for 15 minutes. After EtO sterilization, no positive samples were detected. Steam sterilization may be incomplete for Vetrap™ bandages whereas EtO showed complete destruction of resistant bacterial spores. © Copyright 2014 by The American College of Veterinary Surgeons.
Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.
Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J
2014-12-01
Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk. Copyright © 2014 Elsevier Ltd. All rights reserved.
Improved agar diffusion method for detecting residual antimicrobial agents.
Tsai, C E; Kondo, F
2001-03-01
The improved agar diffusion method for determination of residual antimicrobial agents was investigated, and the sensitivities of various combinations of test organisms and assay media were determined using 7 organisms, 5 media, and 31 antimicrobial agents. Bacillus stearothermophilus and synthetic assay medium (SAM) showed the greatest sensitivity for screening penicillins (penicillin G and ampicillin). The combination of Bacillus subtilis and minimum medium (MM) was the most sensitive for tetracyclines (oxytetracycline and chlortetracycline), B. stearothermophilus and SAM or Micrococcus luteus and Mueller-Hinton agar (MHA) for detecting tylosin and erythromycin, B. subtilis and MHA for aminoglycosides (streptomycin, kanamycin, gentamicin, and dihydrostreptomycin), B. stearothermophilus and SAM for polyethers (salinomycin and lasalocid), and B. subtilis and MM or Clostridium perfringens and GAM for polypeptides (thiopeptin, enramycin, virginiamycin, and bacitracin). However, gram-negative bacterium Escherichia coli ATCC 27166 and MM were better for screening for colistin and polymixin-B. For detecting the synthetic drugs tested, the best combination was B. subtilis and MM for sulfonamides, E. coli 27166 and MM for quinolones (oxolinic acid and nalidixic acid), B. subtilis and MM for furans (furazolidone), and the bioluminescent bacterium Photobacterium phosphoreum and luminescence assay medium for chloramphenicol and oxolinic acid. The results showed that the use of four assay plates, B. stearothermophilus and SAM, B. subtilis and MM, M. luteus and MHA, and E. coli 27166 and MM, was superior to the currently available techniques for screening for residual antimicrobial agents in edible animal tissues.
Cordova, Lauren T; Long, Christopher P; Venkataramanan, Keerthi P; Antoniewicz, Maciek R
2015-11-01
We have isolated a new extremely thermophilic fast-growing Geobacillus strain that can efficiently utilize xylose, glucose, mannose and galactose for cell growth. When grown aerobically at 72 °C, Geobacillus LC300 has a growth rate of 2.15 h(-1) on glucose and 1.52 h(-1) on xylose (doubling time less than 30 min). The corresponding specific glucose and xylose utilization rates are 5.55 g/g/h and 5.24 g/g/h, respectively. As such, Geobacillus LC300 grows 3-times faster than E. coli on glucose and xylose, and has a specific xylose utilization rate that is 3-times higher than the best metabolically engineered organism to date. To gain more insight into the metabolism of Geobacillus LC300 its genome was sequenced using PacBio's RS II single-molecule real-time (SMRT) sequencing platform and annotated using the RAST server. Based on the genome annotation and the measured biomass composition a core metabolic network model was constructed. To further demonstrate the biotechnological potential of this organism, Geobacillus LC300 was grown to high cell-densities in a fed-batch culture, where cells maintained a high xylose utilization rate under low dissolved oxygen concentrations. All of these characteristics make Geobacillus LC300 an attractive host for future metabolic engineering and biotechnology applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Kauldhar, Baljinder Singh; Sooch, Balwinder Singh
2016-01-14
Catalase (EC 1.11.1.6) is one of the important industrial enzyme employed in diagnostic and analytical methods in the form of biomarkers and biosensors in addition to their enormous applications in textile, paper, food and pharmaceutical sectors. The present study demonstrates the utility of a newly isolated and adapted strain of genus Geobacillus possessing unique combination of several industrially important extremophilic properties for the hyper production of catalase. The bacterium can grow over a wide range of pH (3-12) and temperature (10-90 °C) with extraordinary capability to produce catalase. A novel extremophilic strain belonging to genus Geobacillus was exploited for the production of catalase by tailoring its nutritional requirements and process variables. One variable at a time traditional approach followed by computational designing was applied to customize the fermentation process. A simple fermentation media containing only three components namely sucrose (0.55 %, w/v), yeast extract (1.0 %, w/v) and BaCl2 (0.08 %, w/v) was designed for the hyperproduction of catalase. A controlled and optimum air supply caused a tremendous increase in the enzyme production on moving the bioprocess from the flask to bioreactor level. The present paper reports high quantum of catalase production (105,000 IU/mg of cells) in a short fermentation time of 12 h. To the best of our knowledge, there is no report in the literature that matches the performance of the developed protocol for the catalase production. This is the first serious study covering intracellular catalase production from thermophilic genus Geobacillus. An increase in intracellular catalase production by 214.72 % was achieved in the optimized medium when transferred from the shake flask to the fermenter level. The extraordinary high production of catalase from Geobacillus sp. BSS-7 makes the isolated strain a prospective candidate for bulk catalase production on an industrial scale.
NASA Astrophysics Data System (ADS)
Santillan, E. U.; Franks, M. A.; Omelon, C. R.; Bennett, P.
2011-12-01
When carbon dioxide is captured and stored in deep saline aquifers, many biogeochemical changes will occur in these reservoirs. High concentrations of aqueous CO2 itself can be toxic to microorganisms as the gas easily enters cell membranes and alters intracellular cell functions. Because of this, we expect CO2 to be a perturbation that will alter microbial community composition. Microbes that are capable of withstanding CO2 stress will be selected for and their subsequent growth and metabolism will further affect brine chemistry. For this study, we examined three organisms representing metabolic functions and cellular structures potentially found in deep saline aquifers: the Gram-negative dissimilatory iron reducing bacterium Shewanella oneidensis strain MR-1, the aerobic Gram-positive hydrocarbon degrading Geobacillus stearothermophilus, and the methanogenic archaeon Methanothermobacter thermoautotrophicus. Organisms were grown in batch cultures and subsequently exposed to high PCO2 ranging from 25 atm to 60 atm for 2 to 24 hours. Cultures were then plated for viability or tested for metabolic activity such as methane production. Following CO2 stress, organisms were also examined for membrane changes through phospholipid fatty acid analysis and for morphological changes by transmission electron microscopy. After only 2 hours of incubation in 30 atm of CO2, no viable cells were found in planktonic cultures of Shewanella. In contrast, cultures of Geobacillus remained viable (less than a log 2 reduction from initial counts) even after exposure to double the CO2 pressure and for 17 hours. However, when grown in the presence of quartz sandstone, biofilm formation on the rock surface occurred in Shewanella cultures, resulting in survival times greater than 8 hours. Our results suggest that biofilm formation and cell wall thickness may be two very important factors in resisting CO2 toxicity as they create a reactive barrier that slows the diffusion of CO2 into cytoplasmic membranes. This implies that under CO2 stress, biofilm-forming organisms as well as organisms with thick cell walls (e.g., Gram-positive bacteria) will be selected for under these new environmental conditions.
A selection that reports on protein–protein interactions within a thermophilic bacterium
Nguyen, Peter Q.; Silberg, Jonathan J.
2010-01-01
Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein–protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein–protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AKTn). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75°C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78°C by a vector that coexpresses polypeptides corresponding to residues 1–79 and 80–220 of AKTn. In contrast, PQN1 growth was not complemented by AKTn fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein–protein interactions, since AKTn-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein–protein interactions. PMID:20418388
A selection that reports on protein-protein interactions within a thermophilic bacterium.
Nguyen, Peter Q; Silberg, Jonathan J
2010-07-01
Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein-protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein-protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AK(Tn)). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75 degrees C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78 degrees C by a vector that coexpresses polypeptides corresponding to residues 1-79 and 80-220 of AK(Tn). In contrast, PQN1 growth was not complemented by AK(Tn) fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein-protein interactions, since AK(Tn)-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein-protein interactions.
Brumm, Phillip J; Land, Miriam L; Mead, David A
2015-01-01
Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). The genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G + C content of 43.93 %. G. thermoglucosidasius C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. This cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. One plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins.
Risk of Contamination in Assembled vs Disassembled Instruments in Hip Arthroplasty Surgery.
Mayer, Ryan R; Bederman, S Samuel; Colin, Vincent M; Berger, Martina M; Cesario, Thomas C; Schwarzkopf, Ran
2016-08-01
Periprosthetic joint infection (PJI) is one of the most common causes of revision total hip arthroplasty (THA) and associated with higher costs, prolonged pain, and worse clinical outcomes. Many factors have been linked to increased infection rates, one being the operative equipment and instrumentation used during the surgical procedure. With few arthroplasty instruments designed for complete disassembly and increasingly complex instrument designs, this study seeks to understand the effect that instrument disassembly plays on infection using disassembled and assembled standard femoral broach handles (BHs). Two BHs, not designed for disassembly, were modified and then contaminated in the disassembled state with Geobacillus stearothermophilus vegetative-form bacteria and spores. Using both flash and standard sterilization cycles, the BHs were steam sterilized in the disassembled or assembled state and then analyzed for remaining bacteria and spores. At all target locations after either a flash sterilization cycle or a standard sterilization cycle, complete eradication of both the vegetative-form and spore-form of G stearothermophilus was achieved. This study demonstrates that adequate decontamination of the tested BHs can be achieved after steam sterilization in either the disassembled or assembled state, without an increased risk of infection transmission. Copyright © 2016 Elsevier Inc. All rights reserved.
Risk of Contamination in Assembled vs Disassembled Instruments in Hip Arthroplasty Surgery
Mayer, Ryan R.; Bederman, S. Samuel; Colin, Vincent M.; Berger, Martina M.; Cesario, Thomas C.; Schwarzkopf, Ran
2018-01-01
Background Periprosthetic joint infection (PJI) is one of the most common causes of revision total hip arthroplasty (THA) and associated with higher costs, prolonged pain, and worse clinical outcomes. Many factors have been linked to increased infection rates, one being the operative equipment and instrumentation used during the surgical procedure. With few arthroplasty instruments designed for complete disassembly and increasingly complex instrument designs, this study seeks to understand the effect that instrument disassembly plays on infection using disassembled and assembled standard femoral broach handles (BHs). Methods Two BHs, not designed for disassembly, were modified and then contaminated in the disassembled state with Geobacillus stearothermophilus vegetative-form bacteria and spores. Using both flash and standard sterilization cycles, the BHs were steam sterilized in the disassembled or assembled state and then analyzed for remaining bacteria and spores. Results At all target locations after either a flash sterilization cycle or a standard sterilization cycle, complete eradication of both the vegetative-form and spore-form of G stearothermophilus was achieved. Conclusion This study demonstrates that adequate decontamination of the tested BHs can be achieved after steam sterilization in either the disassembled or assembled state, without an increased risk of infection transmission. PMID:26948131
Sterilization of single-use helical stone baskets: an experimental study.
Korkes, Fernando; Menezes, Alex; Silva, Cely Barreto da; Fernandes, Roni de Carvalho; Perez, Marjo Deninson Cardenuto
2011-03-01
To experimentally evaluate the efficacy of a standard sterilization protocol employed during reuse of disposable helical stone baskets. Study performed on 20 helical stone baskets: 10 were used in the initial validation process, contaminated with Escherichia coli ATCC 25922 and imprinted on Müeller-Hinton media; 10 catheters were contaminated with Geobacillus stearothermophilus ATCC 7953, processed, inoculated in TSB and incubated in a water bath at a temperature of 55°C. Bacterial growth was evaluated after 1, 3, 5 and 7 days. After sterilization, stone baskets were also opened and closed 40 times to check for functional problems. All plastic and basket parts were carefully checked for damages. After the 72-hour incubation period, there was growth of E. coli ATCC 25922 in 100% of imprints. After the sterilization process and up to 7 days incubation period on a blood agar plate, there was no growth of G. stearothermophilus ATCC 7953 or any other bacteria. There were no functional problems or damage to baskets after the sterilization process. The ethylene oxide system is efficacious and safe for sterilization of disposable helical stone baskets. However, further clinical studies are required and should provide more safety information.
Hall, Leslie; Otter, Jonathan A.; Chewins, John; Wengenack, Nancy L.
2007-01-01
Mycobacterium tuberculosis is an important human pathogen that is routinely cultured in clinical and research laboratories. M. tuberculosis can contaminate surfaces and is highly resistant to disinfection. We investigated whether hydrogen peroxide vapor (HPV) is effective for the deactivation of M. tuberculosis on experimentally contaminated surfaces in a biological safety cabinet (BSC) and a room. Biological indicators (BIs) consisting of an ∼3-log10 inoculum of M. tuberculosis on stainless steel discs and a 6-log10 inoculum of Geobacillus stearothermophilus were exposed to HPV in BSC time course experiments and at 10 locations during room experiments. In three separate BSC experiments, M. tuberculosis BIs were transferred to growth media at 15-min intervals during a 180-min HPV exposure period. No M. tuberculosis BIs grew following 30 min of HPV exposure. In three separate room experiments, M. tuberculosis and G. stearothermophilus BIs were exposed to HPV for 90, 120, and 150 min, respectively. BIs for both microorganisms were deactivated in all 10 locations following 90 min of HPV exposure. HPV provides an alternative to traditional decontamination methods, such as formaldehyde fumigation, for laboratories and other areas contaminated with M. tuberculosis. PMID:17166957
Characteristics of surface sterilization using electron cyclotron resonance plasma
NASA Astrophysics Data System (ADS)
Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya
2016-07-01
The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.
Study of Inactivation Factors in Low Temperature Surface-wave Plasma Sterilization
NASA Astrophysics Data System (ADS)
Singh, Mrityunjai Kumar; Xu, Lei; Ogino, Akihisa; Nagatsu, Masaaki
In this study we investigated the low temperature surface-wave plasma sterilization of directly and indirectly exposed Geobacillus stearothermophilus spores with a large-volume microwave plasma device. The air-simulated gas mixture was used to produce the plasma. The water vapor addition to the gas mixture improved the sterilization efficiency significantly. The effect of ultraviolet photons produced along with plasma to inactivate the spores was studied using a separate chamber, which was evacuated to less than one mTorr and was observed that spores were sterilized within 60 min. The scanning electron microscopy images revealed no significant changes in the actual size of the spores with that of untreated spores despite the survival curve shown that the spores were inactivated.
Brumm, Phillip J.; Land, Miriam L.; Mead, David A.
2015-10-05
Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. We sequenced the genome, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Moreover, the genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G + C content of 43.93 %. G.more » thermoglucosidasius C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. Furthermore this cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. One plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumm, Phillip J.; Land, Miriam L.; Mead, David A.
Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. We sequenced the genome, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Moreover, the genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G + C content of 43.93 %. G.more » thermoglucosidasius C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. Furthermore this cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. One plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhamsu,J.; Crane, B.
2006-01-01
In an effort to generate more stable reaction intermediates involved in substrate oxidation by nitric-oxide synthases (NOSs), we have cloned, expressed, and characterized a thermostable NOS homolog from the thermophilic bacterium Geobacillus stearothermophilus (gsNOS). As expected, gsNOS forms nitric oxide (NO) from L-arginine via the stable intermediate N-hydroxy L-arginine (NOHA). The addition of oxygen to ferrous gsNOS results in long-lived heme-oxy complexes in the presence (Soret peak 427 nm) and absence (Soret peak 413 nm) of substrates L-arginine and NOHA. The substrate-induced red shift correlates with hydrogen bonding between substrate and heme-bound oxygen resulting in conversion to a ferric heme-superoxymore » species. In single turnover experiments with NOHA, NO forms only in the presence of H4B. The crystal structure of gsNOS at 3.2 A Angstroms of resolution reveals great similarity to other known bacterial NOS structures, with the exception of differences in the distal heme pocket, close to the oxygen binding site. In particular, a Lys-356 (Bacillus subtilis NOS) to Arg-365 (gsNOS) substitution alters the conformation of a conserved Asp carboxylate, resulting in movement of an Ile residue toward the heme. Thus, a more constrained heme pocket may slow ligand dissociation and increase the lifetime of heme-bound oxygen to seconds at 4 degC. Similarly, the ferric-heme NO complex is also stabilized in gsNOS. The slow kinetics of gsNOS offer promise for studying downstream intermediates involved in substrate oxidation.« less
Jain, Ira; Kumar, Vikash; Satyanarayana, T
2014-10-01
The β-xylosidase encoding gene (XsidB) of the extremely thermophilic bacterium Geobacillus thermodenitrificans has been cloned and expressed in Escherichia coli. The homotrimeric recombinant XsidB is of 204.0kDa, which is optimally active at 60°C and pH 7.0 with T1/2 of 58min at 70°C. The β-xylosidase remains unaffected in the presence of most metal ions and organic solvents. The Km [p-nitrophenyl β-xyloside (pNPX)], Vmax and kcat values of the enzyme are 2×10(-3)M, 1250μmolesmg(-1)min(-1) and 13.20×10(5)min(-1), respectively. The enzyme catalyzes transxylosylation reactions in the presence of alcohols as acceptors. The pharmaceutically important β-methyl-d-xylosides could be produced using pNPX as the donor and methanol as acceptor. The products of transxylosylation were identified by TLC and HPLC, and the structure was confirmed by (1)H NMR analysis. The enzyme is also useful in synthesizing transxylosylation products from the wheat bran hydrolysate. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, L.; Terashita, F.; Nonaka, H.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.
2006-01-01
The discharge conditions required for low-temperature plasma sterilization were investigated using low-pressure surface-wave plasma (SWP). The discharge conditions for both continuous wave (CW) and pulse-modulated SWPs in low-temperature sterilization of Geobacillus stearothermophilus with a population of 1.5 × 106 and 3.0 × 106 were studied by varying the microwave input power from 500 W to 3 kW, and the effective plasma treatment time from 40 to 300 s. Results showed that sterilization was possible in a shorter treatment time using a higher microwave power for both CW and pulse-modulated SWPs. Pulse-modulated SWPs gave effective sterilization at a temperature roughly 10 to 20 °C below that of CW SWPs under the same average microwave power.
Impact of an oil-based lubricant on the effectiveness of the sterilization processes .
Rutala, William A; Gergen, Maria F; Weber, David J
2008-01-01
Surgical instruments, including hinged instruments, were inoculated with test microorganisms (ie, methicillin-resistant Staphylococcus aureus, approximately 2 x 10(6) colony-forming units [cfu]; Pseudomonas aeruginosa, approximately 3 x 10(6) cfu; Escherichia coli, approximately 2 x 10(5) cfu; vancomycin-resistant enterococci, 1 x 10(5) cfu; Geobacillus stearothermophilus spores, 2 x 10(5) cfu or more; or Bacillus atrophaeus spores, 9 x 10(4) cfu or more), coated with an oil-based lubricant (hydraulic fluid), subjected to a sterilization process, and then samples from the instruments were cultured. We found that the oil-based lubricant did not alter the effectiveness of the sterilization process because high numbers of clinically relevant bacteria and standard test spores (which are relatively resistant to the sterilization process) were inactivated.
Wang, B-S; Li, B-S; Du, J-Z; Zeng, Q-X
2015-08-01
This study investigated the inactivation effect and kinetics of Bacillus coagulans and Geobacillus stearothermophilus spores suspended in lu-wei beef by combining high pressure (500 and 600 MPa) and moderate heat (70 and 80 °C or 80 and 90 °C). During pressurization, the temperature of pressure-transmitting fluid was tested with a K-type thermocouple, and the number of surviving cells was determined by a plate count method. The pressure come-up time and corresponding inactivation of Bacillus coagulans and G. stearothermophilus spores were considered during the pressure-thermal treatment. For the two types of spores, the results showed a higher inactivation effect in phosphate buffer solution than that in lu-wei beef. Among the bacteria evaluated, G. stearothermophilus spores had a higher resistance than B. coagulans spores during the pressure-thermal processing. One linear model and two nonlinear models (i.e. the Weibull and log-logistic models) were fitted to the survivor data to obtain relevant kinetic parameters, and the performance of these models was compared. The results suggested that the survival curve of the spores could be accurately described utilizing the log-logistic model, which produced the best fit for all inactivation data. The compression heating characteristics of different pressure-transmitting fluids should be considered when using high pressure to sterilize spores, particularly while the pressure is increasing. Spores can be inactivated by combining high pressure and moderate heat. The study demonstrates the synergistic inactivation effect of moderate heat in combination with high pressure in real-life food. The use of mathematical models to predict the inactivation for spores could help the food industry further to develop optimum process conditions. © 2015 The Society for Applied Microbiology.
Sadiq, Faizan A; Flint, Steve; Yuan, Lei; Li, Yun; Liu, TongJie; He, GuoQing
2017-12-04
Biofilms on the surface of dairy manufacturing plants are potential reservoirs of microbial contamination. These microbial aggregates may harbour pathogenic and spoilage organisms which contaminate dairy products. The biofilm forming capacity of many spore forming isolates of dairy origin has not been given much attention. The present study explored the biofilm forming potential of 148 isolates, comprising mesophilic and thermophilic bacteria, with particular emphasis on Bacillus licheniformis on polystyrene and stainless steel (SS) surfaces. We concluded that only four species are of significance for biofilm development on the surface of SS in the presence of skimmed milk, namely, B. licheniformis, Geobacillus stearothermophilus, Geobacillus thermoleovorans group and Anoxybacillus flavithermus. The maximum number of cells recovered from the biofilms developed on SS coupons in the presence of skimmed milk for these four species was as follows: 4.8, 5.2, 4.5 and 5.3logCFU/cm 2 , respectively. Number of cells recovered from biofilms on 1cm 2 SS coupons increased in the presence of tryptic soy broth (TSB) for all mesophiles including B. licheniformis, while decreased for G. stearothermophilus, G. thermoleovorans group and A. flavithermus. The crystal violet staining assay on polystyrene proved to be inadequate to predict cell counts on SS for the bacteria tested in our trial in the presence of either TSB or skimmed milk. The results support the idea that biofilm formation is an important part of bacterial survival strategy as only the most prevalent isolates from milk powders formed good biofilms on SS in the presence of skimmed milk. Biofilm formation also proved to be a strain-dependent characteristic and interestingly significant variation in biofilm formation was observed within the same RAPD groups of B. licheniformis which supports the previously reported genetic and phenotypic heterogeneity within the same RAPD based groups. The work reported in this manuscript will broaden our knowledge on biofilm formation of a large number of dairy isolates and emphasize strain and substrate dependence. Copyright © 2017 Elsevier B.V. All rights reserved.
Lundahl, Gunnel
2007-01-01
When calculating of the physical F121.1 degrees c-value by the equation F121.1 degrees C = t x 10(T-121.1/z the temperature (T), in combination with the z-value, influences the F121.1 degrees c-value exponentially. Because the z-value for spores of Geobacillus stearothermophilus often varies between 6 and 9, the biological F-value (F(Bio) will not always correspond to the F0-value based on temperature records from the sterilization process calculated with a z-value of 10, even if the calibration of both of them are correct. Consequently an error in calibration of thermocouples and difference in z-values influences the F121.1 degrees c-values logarithmically. The paper describes how results from measurements with different z-values can be compared. The first part describes the mathematics of a calculation program, which makes it easily possible to compare F0-values based on temperature records with the F(BIO)-value based on analysis of bioindicators such as glycerin-water-suspension sensors. For biological measurements, a suitable bioindicator with a high D121-value can be used (such a bioindicator can be manufactured as described in the article "A Method of Increasing Test Range and Accuracy of Bioindicators-Geobacillus stearothermophilus Spores"). By the mathematics and calculations described in this macro program it is possible to calculate for every position the theoretical temperature difference (deltaT(th)) needed to explain the difference in results between the thermocouple and the biointegrator. Since the temperature difference is a linear function and constant all over the process this value is an indication of the magnitude of an error. A graph and table from these calculations gives a picture of the run. The second part deals with product characteristics, the sterilization processes, loading patterns. Appropriate safety margins have to be chosen in the development phase of a sterilization process to achieve acceptable safety limits. Case studies are discussed and experiences are shared.
Shallom, Dalia; Golan, Gali; Shoham, Gil; Shoham, Yuval
2004-10-01
The oligomeric organization of enzymes plays an important role in many biological processes, such as allosteric regulation, conformational stability and thermal stability. alpha-Glucuronidases are family 67 glycosidases that cleave the alpha-1,2-glycosidic bond between 4-O-methyl-D-glucuronic acid and xylose units as part of an array of hemicellulose-hydrolyzing enzymes. Currently, two crystal structures of alpha-glucuronidases are available, those from Geobacillus stearothermophilus (AguA) and from Cellvibrio japonicus (GlcA67A). Both enzymes are homodimeric, but surprisingly their dimeric organization is different, raising questions regarding the significance of dimerization for the enzymes' activity and stability. Structural comparison of the two enzymes suggests several elements that are responsible for the different dimerization organization. Phylogenetic analysis shows that the alpha-glucuronidases AguA and GlcA67A can be classified into two distinct subfamilies of bacterial alpha-glucuronidases, where the dimer-forming residues of each enzyme are conserved only within its own subfamily. It seems that the different dimeric forms of AguA and GlcA67A represent the two alternative dimeric organizations of these subfamilies. To study the biological significance of the dimerization in alpha-glucuronidases, we have constructed a monomeric form of AguA by mutating three of its interface residues (W328E, R329T, and R665N). The activity of the monomer was significantly lower than the activity of the wild-type dimeric AguA, and the optimal temperature for activity of the monomer was around 35 degrees C, compared to 65 degrees C of the wild-type enzyme. Nevertheless, the melting temperature of the monomeric protein, 72.9 degrees C, was almost identical to that of the wild-type, 73.4 degrees C. It appears that the dimerization of AguA is essential for efficient catalysis and that the dissociation into monomers results in subtle conformational changes in the structure which indirectly influence the active site region and reduce the activity. Structural and mechanistic explanations for these effects are discussed.
Shallom, Dalia; Golan, Gali; Shoham, Gil; Shoham, Yuval
2004-01-01
The oligomeric organization of enzymes plays an important role in many biological processes, such as allosteric regulation, conformational stability and thermal stability. α-Glucuronidases are family 67 glycosidases that cleave the α-1,2-glycosidic bond between 4-O-methyl-d-glucuronic acid and xylose units as part of an array of hemicellulose-hydrolyzing enzymes. Currently, two crystal structures of α-glucuronidases are available, those from Geobacillus stearothermophilus (AguA) and from Cellvibrio japonicus (GlcA67A). Both enzymes are homodimeric, but surprisingly their dimeric organization is different, raising questions regarding the significance of dimerization for the enzymes' activity and stability. Structural comparison of the two enzymes suggests several elements that are responsible for the different dimerization organization. Phylogenetic analysis shows that the α-glucuronidases AguA and GlcA67A can be classified into two distinct subfamilies of bacterial α-glucuronidases, where the dimer-forming residues of each enzyme are conserved only within its own subfamily. It seems that the different dimeric forms of AguA and GlcA67A represent the two alternative dimeric organizations of these subfamilies. To study the biological significance of the dimerization in α-glucuronidases, we have constructed a monomeric form of AguA by mutating three of its interface residues (W328E, R329T, and R665N). The activity of the monomer was significantly lower than the activity of the wild-type dimeric AguA, and the optimal temperature for activity of the monomer was around 35°C, compared to 65°C of the wild-type enzyme. Nevertheless, the melting temperature of the monomeric protein, 72.9°C, was almost identical to that of the wild-type, 73.4°C. It appears that the dimerization of AguA is essential for efficient catalysis and that the dissociation into monomers results in subtle conformational changes in the structure which indirectly influence the active site region and reduce the activity. Structural and mechanistic explanations for these effects are discussed. PMID:15466046
Filippidou, Sevasti; Jaussi, Marion; Junier, Thomas; Wunderlin, Tina; Jeanneret, Nicole; Regenspurg, Simona; Li, Po-E; Lo, Chien-Chi; McMurry, Kim; Gleasner, Cheryl D.; Vuyisich, Momchilo; Chain, Patrick S.
2015-01-01
The genome of strain GS3372 is the first publicly available strain of Aeribacillus pallidus. This endospore-forming thermophilic strain was isolated from a deep geothermal reservoir. The availability of this genome can contribute to the clarification of the taxonomy of the closely related Anoxybacillus, Geobacillus, and Aeribacillus genera. PMID:26316637
NASA Astrophysics Data System (ADS)
Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki
2015-01-01
Some fundamental experiments are carried out in order to develop a plasma process that will uniformly sterilize both the space and inner wall of the reactor chamber at atmospheric pressure. Air, oxygen, argon, and nitrogen are each used as the plasma source gas to which mixed vapors of water and ethanol at different ratios are added. The reactor chamber is remotely located from the plasma area and a metal mesh for eliminating charged particles is installed between them. Thus, only reactive neutral particles such as plasma-excited gas molecules and radicals are utilized. As a result, adding vapors to the source gas markedly enhances the sterilization effect. In particular, air with water and/or ethanol vapor and oxygen with ethanol vapor show more than 6-log reduction for Geobacillus stearothermophilus spores.
Filippidou, Sevasti; Jaussi, Marion; Junier, Thomas; Wunderlin, Tina; Jeanneret, Nicole; Regenspurg, Simona; Li, Po-E; Lo, Chien-Chi; Johnson, Shannon; McMurry, Kim; Gleasner, Cheryl D; Vuyisich, Momchilo; Chain, Patrick S; Junier, Pilar
2015-08-27
The genome of strain GS3372 is the first publicly available strain of Aeribacillus pallidus. This endospore-forming thermophilic strain was isolated from a deep geothermal reservoir. The availability of this genome can contribute to the clarification of the taxonomy of the closely related Anoxybacillus, Geobacillus, and Aeribacillus genera. Copyright © 2015 Filippidou et al.
Ohnishi, Yasutaka; Matsumoto, Hiroyuki; Iwamori, Satoru
2016-03-01
Active oxygen species (AOS) generated under ultraviolet (UV) lamps can be applied for various industrial processes owing to extremely strong oxidative abilities. We have already reported on an application of the AOS for a sterilization process of microorganisms. Here, a sterilization method using active oxygen generated under ultraviolet (UV) lamps introducing nitrous oxide (N2O) and oxygen gases into a vacuum chamber was investigated. Nitrogen dioxide (NO2) gas was readily produced from N2O by UV photochemical reactions under the low-pressure mercury lamp and then used to sterilize medical devices. We compared the ability of the N2O gas to sterilize Geobacillus stearothermophilus spores with those of conventional methods. Successful sterilization of spores on various biological indicators was achieved within 60 min, not only in sterilization bags but also in a lumen device. Copyright © 2016 Elsevier B.V. All rights reserved.
Pressure-assisted thermal sterilization of soup
NASA Astrophysics Data System (ADS)
Shibeshi, Kidane; Farid, Mohammed M.
2010-12-01
The overall efficiency of an existing scale-up pressure-assisted thermal sterilization (PATS) unit was investigated with regards to inactivation of Geobacillus stearothermophilus spores suspended in pumpkin soup. The PATS unit is a double pipe heat exchanger in which the soup is pumped into its inner high pressure tube and constrained by two high pressure valves, while steam is continuously passed through the annular region to heat the content. The technology is based on pressure generation by thermal expansion of the liquid in an enclosure. In this work, the addition of an air line to push the treated liquid food out of the existing PATS unit has improved the overall quality of the treated samples, as evidenced by achieving higher log reduction of the spores. Compared with thermal processing, the application of PATS shows the potential for lowering the thermal treatment temperature, offering improved food quality.
Designing non-native iron-binding site on a protein cage for biological synthesis of nanoparticles.
Peng, Tao; Paramelle, David; Sana, Barindra; Lee, Chiu Fan; Lim, Sierin
2014-08-13
In biomineralization processes, a supramolecular organic structure is often used as a template for inorganic nanomaterial synthesis. The E2 protein cage derived from Geobacillus stearothermophilus pyruvate dehydrogenase and formed by the self-assembly of 60 subunits, has been functionalized with non-native iron-mineralization capability by incorporating two types of iron-binding peptides. The non-native peptides introduced at the interior surface do not affect the self-assembly of E2 protein subunits. In contrast to the wild-type, the engineered E2 protein cages can serve as size- and shape-constrained reactors for the synthesis of iron nanoparticles. Electrostatic interactions between anionic amino acids and cationic iron molecules drive the formation of iron oxide nanoparticles within the engineered E2 protein cages. The work expands the investigations on nanomaterial biosynthesis using engineered host-guest encapsulation properties of protein cages. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014-01-01
Background Failures to follow recommendations for reprocessing of surgical instruments may place patients at risk for exposure to pathogenic microorganisms. When such failures occur, medical facilities often face considerable uncertainty and challenges in assessing the actual risks of disease transmission. Methods In 2011, staff at an Ohio hospital determined that surgical instruments inside a Steriset Container had inadvertently been autoclaved on a gravity cycle rather than on the recommended pre-vacuum cycle, potentially exposing 72 patients who underwent surgery with the instruments to risk of infection. To provide an assessment of the level of risk, we tested the effectiveness of the machine washer/disinfector step and of the sterilization process inside the Steriset Container on the gravity cycle for killing of Geobacillus stearothermophilus spores, Clostridium difficile spores, and methicillin-resistant Staphylococcus aureus (MRSA). Based on the test results, the risk of transmission of MRSA by the instruments was calculated and the risk of transmission of hepatitis B virus was estimated. Results The machine washer/disinfector consistently reduced MRSA recovery by a factor of 1:100,000. The sterilization process inside the Steriset Container consistently reduced MRSA concentrations by a factor of >1:10,000,000 and killed 105C. difficile spores and 105G. stearothermophilus spores. The risk of MRSA transmission due to the incident was calculated to be 1 in 100 trillion. Conclusions The risk for transmission of infection due to the failure to follow recommended sterilization processes was negligible based upon complete killing of G. stearothermophilus biological indicator spores, C. difficile spores, and MRSA under conditions that replicated the incident where proper procedures were not followed. Such real-time assessments of the risks associated with specific incidents may provide evidence-based information that can be used to inform decisions regarding disclosure of the incident to patients. PMID:24447336
Donskey, Curtis J; Yowler, Marian; Falck-Ytter, Yngve; Kundrapu, Sirisha; Salata, Robert A; Rutala, William A
2014-01-21
Failures to follow recommendations for reprocessing of surgical instruments may place patients at risk for exposure to pathogenic microorganisms. When such failures occur, medical facilities often face considerable uncertainty and challenges in assessing the actual risks of disease transmission. In 2011, staff at an Ohio hospital determined that surgical instruments inside a Steriset Container had inadvertently been autoclaved on a gravity cycle rather than on the recommended pre-vacuum cycle, potentially exposing 72 patients who underwent surgery with the instruments to risk of infection. To provide an assessment of the level of risk, we tested the effectiveness of the machine washer/disinfector step and of the sterilization process inside the Steriset Container on the gravity cycle for killing of Geobacillus stearothermophilus spores, Clostridium difficile spores, and methicillin-resistant Staphylococcus aureus (MRSA). Based on the test results, the risk of transmission of MRSA by the instruments was calculated and the risk of transmission of hepatitis B virus was estimated. The machine washer/disinfector consistently reduced MRSA recovery by a factor of 1:100,000. The sterilization process inside the Steriset Container consistently reduced MRSA concentrations by a factor of >1:10,000,000 and killed 105C. difficile spores and 105G. stearothermophilus spores. The risk of MRSA transmission due to the incident was calculated to be 1 in 100 trillion. The risk for transmission of infection due to the failure to follow recommended sterilization processes was negligible based upon complete killing of G. stearothermophilus biological indicator spores, C. difficile spores, and MRSA under conditions that replicated the incident where proper procedures were not followed. Such real-time assessments of the risks associated with specific incidents may provide evidence-based information that can be used to inform decisions regarding disclosure of the incident to patients.
D'Antonio, Natalie N; Rihs, John D; Stout, Janet E; Yu, Victor L
2010-11-01
The Centers for Disease Control and Prevention's guidelines for hand hygiene state that the use of alcohol-based hand wipes is not an effective substitute for the use of an alcohol-based hand rub or handwashing with an antimicrobial soap and water. The objective of this study was to determine whether a hand wipe with higher ethanol content (65.9%) is as effective as an ethanol hand rub or antimicrobial soap in removing bacteria and spores from hands. In two separate experiments, the hands of 7 subjects were inoculated with a suspension of Serratia marcescens or Geobacillus stearothermophilus. Subjects washed with each of 3 different products: 65.9% ethanol hand wipes (Sani-Hands ALC), 62% ethanol gel rub (Purell), and antimicrobial soap containing 0.75% triclosan (Kindest Kare). A total of 56 observations were analyzed for S marcescens removal and 70 observations were analyzed for G stearothermophilus removal. The rank order of product efficacy for both bacteria and spore removal was antibacterial soap > 65.9% ethanol hand wipes >62% ethanol hand rub. Mean S marcescens log reductions (±SD) for the 65.9% ethanol alcohol wipe, 62% ethanol alcohol rub, and antimicrobial foam soap were 3.44 ± 0.847, 2.32 ± 1.065, and 4.44 ± 1.018, respectively (P < .001). Mean G stearothermophilus log reductions for the 65.9% ethanol wipe, 62% ethanol rub, and antimicrobial foam soap were 0.51 ± 0.26, -0.8 ± 0.32 increase over baseline, and 1.72 ± 0.62, respectively (P < .001). The alcohol-based hand wipe containing 65.9% ethanol was significantly more effective than the 62% ethanol rub in reducing the number of viable bacteria and spores on the hands. Copyright © 2010 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Tracking spore-forming bacteria in food: from natural biodiversity to selection by processes.
Postollec, Florence; Mathot, Anne-Gabrielle; Bernard, Muriel; Divanac'h, Marie-Laure; Pavan, Sonia; Sohier, Danièle
2012-08-01
Sporeforming bacteria are ubiquitous in the environment and exhibit a wide range of diversity leading to their natural prevalence in foodstuff. The state of the art of sporeformer prevalence in ingredients and food was investigated using a multiparametric PCR-based tool that enables simultaneous detection and identification of various genera and species mostly encountered in food, i.e., Alicyclobacillus, Anoxybacillus flavithermus, Bacillus, B. cereus group, B. licheniformis, B. pumilus, B. sporothermodurans, B. subtilis, Brevibacillus laterosporus, Clostridium, Geobacillus stearothermophilus, Moorella and Paenibacillus species. In addition, 16S rDNA sequencing was used to extend identification to other possibly present contaminants. A total of 90 food products, with or without visible trace of spoilage were analysed, i.e., 30 egg-based products, 30 milk and dairy products and 30 canned food and ingredients. Results indicated that most samples contained one or several of the targeted genera and species. For all three tested food categories, 30 to 40% of products were contaminated with both Bacillus and Clostridium. The percentage of contaminations associated with Clostridium or Bacillus represented 100% in raw materials, 72% in dehydrated ingredients and 80% in processed foods. In the last two product types, additional thermophilic contaminants were identified (A. flavithermus, Geobacillus spp., Thermoanaerobacterium spp. and Moorella spp.). These results suggest that selection, and therefore the observed (re)-emergence of unexpected sporeforming contaminants in food might be favoured by the use of given food ingredients and food processing technologies. Copyright © 2012 Elsevier B.V. All rights reserved.
Potprommanee, Laddawan; Wang, Xiao-Qin; Han, Ye-Ju; Nyobe, Didonc; Peng, Yen-Ping; Huang, Qing; Liu, Jing-Yong; Liao, Yu-Ling; Chang, Ken-Lin
2017-01-01
A themophilic cellulase-producing bacterium was isolated from a hot spring district and identified as Geobacillus sp. HTA426. The cellulase enzyme produced by the Geobacillus sp. HTA426 was purified through ammonium sulfate precipitation and ion exchange chromatography, with the recovery yield and fold purification of 10.14% and 5.12, respectively. The purified cellulase has a molecular weight of 40 kDa. The optimum temperature and pH for carboxymethyl cellulase (CMCase) activity of the purified cellulase were 60°C and pH 7.0, respectively. The enzyme was also stable over a wide temperature range of 50°C to 70°C after 5 h of incubation. Moreover, the strain HTA426 was able to grow and produce cellulase on alkali-treated sugarcane bagasse, rice straw and water hyacinth as carbon sources. Enzymatic hydrolysis of sugarcane bagasse, which was regarded as the most effective carbon source for cellulase production (CMCase activity = 103.67 U/mL), followed by rice straw (74.70 U/mL) and water hyacinth (51.10 U/mL). This strain producing an efficient thermostable cellulose is a potential candidate for developing a more efficient and cost-effective process for converting lignocellulosic biomass into biofuel and other industrial process.
Genomic and proteomic characterization of a thermophilic Geobacillus bacteriophage GBSV1.
Liu, Bin; Zhou, Fengfeng; Wu, Suijie; Xu, Ying; Zhang, Xiaobo
2009-03-01
Phages are present wherever life is found, and play roles in many biogeochemical and ecological processes. The thermophilic bacteriophages, however, have not been well studied. In this study, phage GBSV1 was obtained from a thermophilic bacterium Geobacillus sp. 6k51 isolated from a hot spring. GBSV1 contains a double-stranded linear DNA of 34,683bp, which encodes 54 putative open reading frames (ORFs). Thirty three of these 54 ORFs exhibit sequence similarities to genes from 7 species of Geobacillus or Bacillus bacteria, as well as of bacteriophages infecting these bacteria. Twenty-two ORFs have been functionally annotated based on both their sequence similarities to known genes and predicted Pfam protein domains. Five structural proteins of the purified GBSV1 virion have been identified by proteomic analyses. Surprisingly, 7 of the GBSV1 ORFs share sequence similarities with genes from bacteria relevant to human diseases. This is the first report that genes of human disease-inducing bacteria are found in a thermophilic phage. It is suggested that thermophilic phages may be the potential evolutionary link between thermophiles and human pathogens. The characterization of GBSV1 may possibly lead to new insights into virus-host interactions and to a better understanding of gene transfers and evolution of life on earth in general.
Potprommanee, Laddawan; Wang, Xiao-Qin; Han, Ye-Ju; Nyobe, Didonc; Peng, Yen-Ping; Huang, Qing; Liu, Jing-yong; Liao, Yu-Ling; Chang, Ken-Lin
2017-01-01
A themophilic cellulase-producing bacterium was isolated from a hot spring district and identified as Geobacillus sp. HTA426. The cellulase enzyme produced by the Geobacillus sp. HTA426 was purified through ammonium sulfate precipitation and ion exchange chromatography, with the recovery yield and fold purification of 10.14% and 5.12, respectively. The purified cellulase has a molecular weight of 40 kDa. The optimum temperature and pH for carboxymethyl cellulase (CMCase) activity of the purified cellulase were 60°C and pH 7.0, respectively. The enzyme was also stable over a wide temperature range of 50°C to 70°C after 5 h of incubation. Moreover, the strain HTA426 was able to grow and produce cellulase on alkali-treated sugarcane bagasse, rice straw and water hyacinth as carbon sources. Enzymatic hydrolysis of sugarcane bagasse, which was regarded as the most effective carbon source for cellulase production (CMCase activity = 103.67 U/mL), followed by rice straw (74.70 U/mL) and water hyacinth (51.10 U/mL). This strain producing an efficient thermostable cellulose is a potential candidate for developing a more efficient and cost-effective process for converting lignocellulosic biomass into biofuel and other industrial process. PMID:28406925
A head-to-head comparison of hydrogen peroxide vapor and aerosol room decontamination systems.
Holmdahl, T; Lanbeck, P; Wullt, M; Walder, M H
2011-09-01
New technologies have emerged in recent years for the disinfection of hospital rooms and equipment that may not be disinfected adequately using conventional methods. There are several hydrogen peroxide-based area decontamination technologies on the market, but no head-to-head studies have been performed. We conducted a head-to-head in vitro comparison of a hydrogen peroxide vapor (HPV) system (Bioquell) and an aerosolized hydrogen peroxide (aHP) system (Sterinis). The tests were conducted in a purpose-built 136-m(3) test room. One HPV generator and 2 aHP machines were used, following recommendations of the manufacturers. Three repeated tests were performed for each system. The microbiological efficacy of the 2 systems was tested using 6-log Tyvek-pouched Geobacillus stearothermophilus biological indicators (BIs). The indicators were placed at 20 locations in the first test and 14 locations in the subsequent 2 tests for each system. All BIs were inactivated for the 3 HPV tests, compared with only 10% in the first aHP test and 79% in the other 2 aHP tests. The peak hydrogen peroxide concentration was 338 ppm for HPV and 160 ppm for aHP. The total cycle time (including aeration) was 3 and 3.5 hours for the 3 HPV tests and the 3 aHP tests, respectively. Monitoring around the perimeter of the enclosure with a handheld sensor during tests of both systems did not identify leakage. One HPV generator was more effective than 2 aHP machines for the inactivation of G. stearothermophilus BIs, and cycle times were faster for the HPV system.
Low-Temperature Decontamination with Hydrogen Peroxide or Chlorine Dioxide for Space Applications
Macken, S.; Giri, K.; Walker, J. T.; Bennett, A. M.
2012-01-01
The currently used microbial decontamination method for spacecraft and components uses dry-heat microbial reduction at temperatures of >110°C for extended periods to prevent the contamination of extraplanetary destinations. This process is effective and reproducible, but it is also long and costly and precludes the use of heat-labile materials. The need for an alternative to dry-heat microbial reduction has been identified by space agencies. Investigations assessing the biological efficacy of two gaseous decontamination technologies, vapor hydrogen peroxide (Steris) and chlorine dioxide (ClorDiSys), were undertaken in a 20-m3 exposure chamber. Five spore-forming Bacillus spp. were exposed on stainless steel coupons to vaporized hydrogen peroxide and chlorine dioxide gas. Exposure for 20 min to vapor hydrogen peroxide resulted in 6- and 5-log reductions in the recovery of Bacillus atrophaeus and Geobacillus stearothermophilus, respectively. However, in comparison, chlorine dioxide required an exposure period of 60 min to reduce both B. atrophaeus and G. stearothermophilus by 5 logs. Of the three other Bacillus spp. tested, Bacillus thuringiensis proved the most resistant to hydrogen peroxide and chlorine dioxide with D values of 175.4 s and 6.6 h, respectively. Both low-temperature decontamination technologies proved effective at reducing the Bacillus spp. tested within the exposure ranges by over 5 logs, with the exception of B. thuringiensis, which was more resistant to both technologies. These results indicate that a review of the indicator organism choice and loading could provide a more appropriate and realistic challenge for the sterilization procedures used in the space industry. PMID:22492450
Extremophiles as sources of inorganic bio-nanoparticles.
Beeler, Erik; Singh, Om V
2016-09-01
Industrial use of nanotechnology in daily life has produced an emphasis on the safe and efficient production of nanoparticles (NPs). Traditional chemical oxidation and reduction methods are seen as inefficient, environmentally unsound, and often dangerous to those exposed and involved in NP manufacturing. However, utilizing microorganisms for biosynthesis of NPs allows efficient green production of a range of inorganic NPs, while maintaining specific size, shape, stability, and dispersity. Microorganisms living under harsh environmental conditions, called "Extremophiles," are one group of microorganisms being utilized for this biosynthesis. Extremophiles' unique living conditions have endowed them with various processes that enable NP biosynthesis. This includes a range of extremophiles: thermophiles, acidophilus, halophiles, psychrophiles, anaerobes, and some others. Fungi, bacteria, yeasts, and archaea, i.e. Ureibacillus thermosphaericus, and Geobacillus stearothermophilus, among others, have been established for NP biosynthesis. This article highlights the extremophiles and methods found to be viable candidates for the production of varying types of NPs, as well as interpreting selective methods used by the organisms to synthesize NPs.
Structure and mechanism of the UvrA-UvrB DNA damage sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakotiprapha, Danaya; Samuels, Martin; Shen, Koning
2012-04-17
Nucleotide excision repair (NER) is used by all organisms to eliminate DNA lesions. We determined the structure of the Geobacillus stearothermophilus UvrA-UvrB complex, the damage-sensor in bacterial NER and a new structure of UvrA. We observe that the DNA binding surface of UvrA, previously found in an open shape that binds damaged DNA, also exists in a closed groove shape compatible with native DNA only. The sensor contains two UvrB molecules that flank the UvrA dimer along the predicted path for DNA, ~80 Å from the lesion. We show that the conserved signature domain II of UvrA mediates a nexusmore » of contacts among UvrA, UvrB and DNA. Further, in our new structure of UvrA, this domain adopts an altered conformation while an adjacent nucleotide binding site is vacant. Our findings raise unanticipated questions about NER and also suggest a revised picture of its early stages.« less
Ueda, Toyotoshi; Hara, Masanori; Odagawa, Ikumi; Shigihara, Takanori
2009-03-01
A new type of ultrasonic washer-disinfector-sterilizer, able to clean, disinfect and sterilize most kinds of reusable medical devices, has been developed by using the ultrasonic levitation function with umbrella-shape oscillators and ozone bubbling together with sterilization carried out by silver electrolysis. We have examined the biomedical and physicochemical performance of this instrument. Prokariotic and gram-negative Escherichia coli and eukariotic Saccharomyces cerevisiae were killed by silver electrolysis in 18 min and 1 min, respectively. Prokariotic and gram-positive Geobacillus stearothermophilus and Bacillus atrophaeus, which are most resistant to autoclave and gas sterilization, respectively, were killed by silver electrolysis within 20 min. Prokariotic and gram-negative Pseudomonas aeruginosa was also killed by silver electrolysis in 10 min. The intensity distribution of the ultrasonic levitation waves was homogeneous throughout the tank. The concentration of ozone gas was 2.57 mg/ kg. The concentration of dissolved silver ions was around 0.17 mg/L. The disulfide bond in proteins was confirmed to be destroyed by silver electrolysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques, David A.; Streamer, Margaret; Rowland, Susan L.
2009-09-02
The crystal structure of the DNA-damage checkpoint inhibitor of sporulation, Sda, from Bacillus subtilis, has been solved by the MAD technique using selenomethionine-substituted protein. The structure closely resembles that previously solved by NMR, as well as the structure of a homologue from Geobacillus stearothermophilus solved in complex with the histidine kinase KinB. The structure contains three molecules in the asymmetric unit. The unusual trimeric arrangement, which lacks simple internal symmetry, appears to be preserved in solution based on an essentially ideal fit to previously acquired scattering data for Sda in solution. This interpretation contradicts previous findings that Sda was monomericmore » or dimeric in solution. This study demonstrates the difficulties that can be associated with the characterization of small proteins and the value of combining multiple biophysical techniques. It also emphasizes the importance of understanding the physical principles behind these techniques and therefore their limitations.« less
Sabbah, Safaa; Springthorpe, Susan; Sattar, Syed A.
2010-01-01
We used a mixture of surrogates (Acinetobacter baumannii, Mycobacterium terrae, hepatitis A virus, and spores of Geobacillus stearothermophilus) for bioagents in a standardized approach to test environmental surface disinfectants. Each carrier containing 10 μl of mixture received 50 μl of a test chemical or saline at 22 ± 2°C. Disinfectant efficacy criteria were ≥6 log10 reduction for the bacteria and the spores and ≥3 log10 reduction for the virus. Peracetic acid (1,000 ppm) was effective in 5 min against the two bacteria and the spores but not against the virus. Chlorine dioxide (CD; 500 and 1,000 ppm) and domestic bleach (DB; 2,500, 3,500, and 5,000 ppm) were effective in 5 min, except for sporicidal activity, which needed 20 min of contact with either 1,000 ppm of CD or the two higher concentrations of DB. PMID:20639366
Lee, Yong-Jik; Lee, Sang-Jae; Kim, Seong-Bo; Lee, Sang Jun; Lee, Sung Haeng; Lee, Dong-Woo
2014-03-18
Structural genomics demonstrates that despite low levels of structural similarity of proteins comprising a metabolic pathway, their substrate binding regions are likely to be conserved. Herein based on the 3D-structures of the α/β-fold proteins involved in the ara operon, we attempted to predict the substrate binding residues of thermophilic Geobacillus stearothermophilus L-arabinose isomerase (GSAI) with no 3D-structure available. Comparison of the structures of L-arabinose catabolic enzymes revealed a conserved feature to form the substrate-binding modules, which can be extended to predict the substrate binding site of GSAI (i.e., D195, E261 and E333). Moreover, these data implicated that proteins in the l-arabinose metabolic pathway might retain their substrate binding niches as the modular structure through conserved molecular evolution even with totally different structural scaffolds. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Xu, Chenxi; Sun, Xumei; Jin, Min; Zhang, Xiaobo
2017-06-26
Microorganisms are important sources for screening bioactive natural products. However, natural products from deep-sea microbes have not been extensively explored. In this study, the metabolites of bacteriophage GVE2 -infected ( Geobacillus sp. E263 virus) thermophilic bacterium Geobacillus sp. E263, which was isolated from a deep-sea hydrothermal vent, were characterized. A novel quinoid compound, which had anti-tumor activity, was isolated from the phage-challenged thermophile. The chemical structure analysis showed that this novel quinoid compound was 2-amino-6-hydroxy-[1,4]-benzoquinone. The results indicated that 2-amino-6-hydroxy-[1,4]-benzoquinone and its two derivatives could trigger apoptosis of gastric cancer cells and breast cancer cells by inducing the accumulation of intracellular reactive oxygen species. Therefore, our study highlighted that the metabolites from the phage-challenged deep-sea microbes might be a kind of promising sources for anti-tumor drug discovery, because of the similarity of metabolic disorder between bacteriophage-infected microbes and tumor cells.
Evaluating different concentrations of hydrogen peroxide in an automated room disinfection system.
Murdoch, L E; Bailey, L; Banham, E; Watson, F; Adams, N M T; Chewins, J
2016-09-01
A comparative study was made on the efficacy of 5, 10 and 35% weight by weight (w/w) hydrogen peroxide solutions when applied using an automated room disinfection system. Six-log biological indicators of methicillin-resistant Staphylococcus aureus (MRSA) and Geobacillus stearothermophilus were produced on stainless steel coupons and placed within a large, sealed, environmentally controlled enclosure. Five percent hydrogen peroxide was distributed throughout the enclosure using a Bioquell hydrogen peroxide vapour generator (BQ-50) for 40 min and left to reside for a further 200 min. Biological indicators were removed at 10-min intervals throughout the first 120 min of the process. The experiment was repeated for 10 and 35% hydrogen peroxide solutions. Five percent and 10% hydrogen peroxide solutions failed to achieve any reduction of MRSA, but achieved full kill of G. stearothermophilus spores at 70 and 40 min respectively. Thirty-five percent hydrogen peroxide achieved a 6-log reduction of MRSA after 30 min and full kill of G. stearothermophilus at 20 min. The concentration of 5% hydrogen peroxide within the enclosure after the 200-min dwell was measured at 9·0 ppm. This level exceeds the 15-min Short Term Exposure Limit (STEL) for hydrogen peroxide of 2·0 ppm. Users of automated hydrogen peroxide disinfection systems should review system efficacy and room re-entry protocols in light of these results. This research allows hospital infection control teams to consider the impact and risks of using low concentrations of hydrogen peroxide for disinfection within their facilities, and to question automated room disinfection system providers on the efficacy claims they make. The evidence that low concentration hydrogen peroxide solutions do not rapidly, autonomously break down, is in contradiction to the claims made by some hydrogen peroxide equipment providers and raises serious health and safety concerns. Facilities using hydrogen peroxide systems that claim autonomous break down of hydrogen peroxide should introduce monitoring procedures to ensure rooms are safe for re-entry and patient occupation. © 2016 The Society for Applied Microbiology.
2013-01-01
Background The use of microorganisms in the synthesis of nanoparticles emerges as an eco-friendly and exciting approach, for production of nanoparticles due to its low energy requirement, environmental compatibility, reduced costs of manufacture, scalability, and nanoparticle stabilization compared with the chemical synthesis. Results The production of gold nanoparticles by the thermophilic bacterium Geobacillus sp. strain ID17 is reported in this study. Cells exposed to Au3+ turned from colourless into an intense purple colour. This change of colour indicates the accumulation of intracellular gold nanoparticles. Elemental analysis of particles composition was verified using TEM and EDX analysis. The intracellular localization and particles size were verified by TEM showing two different types of particles of predominant quasi-hexagonal shape with size ranging from 5–50 nm. The mayority of them were between 10‒20 nm in size. FT-IR was utilized to characterize the chemical surface of gold nanoparticles. This assay supports the idea of a protein type of compound on the surface of biosynthesized gold nanoparticles. Reductase activity involved in the synthesis of gold nanoparticles has been previously reported to be present in others microorganisms. This reduction using NADH as substrate was tested in ID17. Crude extracts of the microorganism could catalyze the NADH-dependent Au3+ reduction. Conclusions Our results strongly suggest that the biosynthesis of gold nanoparticles by ID17 is mediated by enzymes and NADH as a cofactor for this biological transformation. PMID:23919572
Guan, Jiewen; Chan, Maria; Brooks, Brian W.; Rohonczy, Liz
2013-01-01
This study evaluated the influence of temperature and organic load on the effectiveness of domestic bleach (DB), Surface Decontamination Foam (SDF), and Virkon in inactivating Geobacillus stearothermophilus spores, which are a surrogate for Bacillus anthracis spores. The spores were suspended in light or heavy organic preparations and the suspension was applied to stainless steel carrier disks. The dried spore inoculum was covered with the disinfectants and the disks were then incubated at various temperatures. At −20°C, the 3 disinfectants caused less than a 2.0 log10 reduction of spores in both organic preparations during a 24-h test period. At 4°C, the DB caused a 4.4 log10 reduction of spores in light organic preparations within 2 h, which was about 3 log10 higher than what was achieved with SDF or Virkon. In heavy organic preparations, after 24 h at 4°C the SDF had reduced the spore count by 4.5 log10, which was about 2 log10 higher than for DB or Virkon. In general, the disinfectants were most effective at 23°C but a 24-h contact time was required for SDF and Virkon to reduce spore counts in both organic preparations by at least 5.5 log10. Comparable disinfecting activity with DB only occurred with the light organic load. In summary, at temperatures as low as 4°C, DB was the most effective disinfectant, inactivating spores within 2 h on surfaces with a light organic load, whereas SDF produced the greatest reduction of spores within 24 h on surfaces with a heavy organic load. PMID:24082400
Analysis of α-glucosidase enzyme activity used in a rapid test for steam sterilization assurance.
Setlow, B; Korza, G; Setlow, P
2016-05-01
This study was to determine the sources, location and identity of α-glucosidases in dormant/germinating/outgrowing spores and growing cells of Geobacillus stearothermophilus ATCC 7953, an enzymatic activity in spores used in rapid tests of steam sterilization. α-Glucosidase activity in spores and cells was determined measuring methylumbelliferyl-α-d-glucoside (α-MUG) or α-MUG-6-phosphate hydrolysis fluorometrically. While α-MUG-6-phosphate was not hydrolysed by cell or spore extracts, assays with α-MUG showed that: (1) the α-glucosidase activity was inside and outside spores, and the activity outside spores was largely removed by buffer washes or heat activation, whereas α-glucosidase activity was only inside vegetative cells; (2) most α-glucosidase activity in cells and spores was soluble; (3) Western blots and enzyme inhibition using an anti-α-glucosidase antiserum identified ≥2 α-glucosidases in spores and growing cells; (4) α-glucosidase-specific activities were similar in dormant, germinated and outgrowing spore and growing cell extracts; and (5) significant α-glucosidase was synthesized during spore germination and outgrowth and cell growth, this synthesis was not repressed by glucose nor induced by α-MUG, but glucose inhibited α-MUG uptake. α-MUG hydrolysis by G. stearothermophilus is by α-MUG uptake and hydrolysis by ≥2 α-glucosidases associated with dormant spores and synthesized by germinating and outgrowing spores. The enzyme activity observed by sterilization assurance assays appears likely to come from heat-stable enzyme in the spore core and enzyme(s) synthesized in spore outgrowth. The results of this work provide new insight into the science behind a rapid test for steam sterilization assurance. © 2016 The Society for Applied Microbiology.
Nisha, M; Satyanarayana, T
2015-07-01
In order to understand the role of N1 domain (1-257 aa) in the amylopullulanase (gt-apu) of the extremely thermophilic bacterium Geobacillus thermoleovorans NP33, N1 deletion construct (gt-apuΔN) has been generated and expressed in Escherichia coli. The truncated amylopullulanase (gt-apuΔN) exhibits similar pH and temperature optima like gt-apu, but enhanced thermostability. The gt-apuΔN has greater hydrolytic action and specific activity on pullulan than gt-apu. The k cat (starch and pullulan) and K m (starch) values of gt-apuΔN increased, while K m (pullulan) decreased. The enzyme upon N1 deletion hydrolyzed maltotetraose as the smallest substrate in contrast to maltopentaose of gt-apu. The role of N1 domain of gt-apu in raw starch binding has been confirmed, for the first time, based on deletion and Langmuir-Hinshelwood kinetics. Furthermore, N1 domain appears to exert a negative influence on the thermostability of gt-apu because N1 truncation significantly improves thermostability.
S-Layer Nanosheet Binding of Zn and Gd
Ajo-Franklin, Caroline (ORCID:0000000189096712); Charrier, Marimikel; Yang, Li
2016-04-15
This data characterizes binding of Zn2+ and Gd3+ to engineered nanosheets at 40C and in a brine solution. The engineered nanosheets are composed of surface-layer (S-layer) proteins which form 2 D crystalline sheets and display Zn2+- or Gd3+-binding domains on these sheets. Their ability to bind Zn2+ is compared to S-layer nanosheets that do not contain Zn2+-binding domains. We found that the purification method of these nanosheets was a critical determinant of their function and thus have provided data on the binding from two different purification methods. A key distinction of this dataset from other datasets is that the engineered nanosheets were expressed and purified from E. coli grown at 37C as described in (Kinns, 2010; Howorka, 2000), Kinns, H., et al. Identifying assembly-inhibiting and assembly-tolerant sites in the SbsB S-layer protein from Geobacillus stearothermophilus. Journal of Molecular Biology, 2010. 395(4): p. 742-753. Howorka, S., et al. Surface-accessible residues in the monomeric and assembled forms of a bacterial surface layer protein. Journal of Biological Chemistry, 2000. 275(48): p. 37876-37886.
Sevenier, V; Delannoy, S; André, S; Fach, P; Remize, F
2012-04-16
Two categories of vegetables (carrots and green beans) that are widely used in the manufacture of canned food were surveyed for their spore contamination. Samples were recovered from 10 manufactures spread over all producing areas in France. Two samples over 316 raw vegetables collected were found positive for botulinum neurotoxin producing Clostridia spores as tested by PCR-based GeneDisc assay. Both positive samplestested positive for the type B neurotoxin gene (bont/B). In parallel, heat-resistant spores of thermophilic bacteria that are likely to be associated with canned food spoilage after prolonged incubation at 55 °C were surveyed after specific enrichment. Prevalence varied between 1.6% for Moorella thermoacetica/thermoautotrophica in green bean samples and 8.6% for either Geobacillus stearothermophilus or Thermoanaerobacterium spp. in carrot samples. Vegetable preparation, e.g. washing and edge cutting, considerably reduced spore contamination levels. These data constitute the first wide examination of vegetables specifically cultivated for industrialpurposes for their contamination by spores of thermophilic bacterial species. Copyright © 2012 Elsevier B.V. All rights reserved.
Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects.
de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Rasera, Gabriela Boscariol; Canniatti-Brazaca, Solange Guidolin; do Prado-Silva, Leonardo; Alvarenga, Verônica Ortiz; Sant'Ana, Anderson S; Shahidi, Fereidoon
2017-12-15
Peanut skin (PS) and meal from dry-blanched peanuts (MDBP) were evaluated as sources of phenolic compounds. PS rendered the highest total phenolic content, antioxidant capacity towards ABTS radical cation, DPPH and hydroxyl radicals as well as reducing power. Phenolic acids were present in PS and MDBP whereas proanthocyanidins and monomeric flavonoids were found only in PS as identified by HPLC-DAD-ESI-MS n . Procyanidin-rich extracts prevented oxidation in non-irradiated and gamma-irradiated fish model system. Both extracts inhibited the growth of gram-positive (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Geobacillus stearothermophilus) and gram-negative bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli). Regardless of the strain, phenolic acid-rich extracts showed the lowest minimum inhibitory capacity (MIC); therefore presenting higher antibacterial effect. The MIC of phenolic acid-rich extracts (24-49μgphenolics/mL) was higher but comparable to Ampicillin (10μg/mL). Thus, phenolics in PS and MDBP may serve as antioxidants and antimicrobial compounds. Copyright © 2017. Published by Elsevier Ltd.
Kawamura, Kumiko; Sakuma, Ayaka; Nakamura, Yuka; Oguri, Tomoko; Sato, Natsumi; Kido, Nobuo
2012-07-01
To develop a novel low-temperature plasma sterilizer using pure N(2) gas as a plasma source, we evaluated bactericidal ability of a prototype apparatus provided by NGK Insulators. After determination of the sterilizing conditions without the cold spots, the D value of the BI of Geobacillus stearothermophilus endospores on the filter paper was determined as 1.9 min. However, the inactivation efficiency of BI carrying the same endospores on SUS varied to some extent, suggesting that the bactericidal effect might vary by materials of sterilized instruments. Staphylococcus aureus and Escherichia coli were also exposed to the N(2) gas plasma and confirmed to be inactivated within 30 min. Through the evaluation of bactericidal efficiency in a sterilization bag, we concluded that the UV photons in the plasma and the high-voltage pulse to generate the gas plasma were not concerned with the bactericidal effect of the N(2) gas plasma. Bactericidal effect might be exhibited by activated nitrogen atoms or molecular radicals. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.
PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage.
Prevost, S; Andre, S; Remize, F
2010-12-01
Thermophilic bacteria that form highly heat-resistant spores constitute an important group of spoilage bacteria of low-acid canned food. A PCR assay was developed in order to rapidly trace these bacteria. Three PCR primer pairs were designed from rRNA gene sequences. These primers were evaluated for the specificity and the sensitivity of detection. Two primer pairs allowed detection at the species level of Geobacillus stearothermophilus and Moorella thermoacetica/thermoautrophica. The other pair allowed group-specific detection of anaerobic thermophilic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, Caldanerobium and Caldanaerobacter. After a single enrichment step, these PCR assays allowed the detection of 28 thermophiles from 34 cans of spoiled low-acid food. In addition, 13 ingredients were screened for the presence of these bacteria. This PCR assay serves as a detection method for strains able to spoil low-acid canned food treated at 55°C. It will lead to better reactivity in the canning industry. Raw materials and ingredients might be qualified not only for quantitative spore contamination, but also for qualitative contamination by highly heat-resistant spores.
Genetic Tools and Techniques for Recombinant Expression in Thermophilic Bacillaceae.
Drejer, Eivind B; Hakvåg, Sigrid; Irla, Marta; Brautaset, Trygve
2018-05-10
Although Escherichia coli and Bacillus subtilis are the most prominent bacterial hosts for recombinant protein production by far, additional species are being explored as alternatives for production of difficult-to-express proteins. In particular, for thermostable proteins, there is a need for hosts able to properly synthesize, fold, and excrete these in high yields, and thermophilic Bacillaceae represent one potentially interesting group of microorganisms for such purposes. A number of thermophilic Bacillaceae including B. methanolicus , B. coagulans , B. smithii , B. licheniformis , Geobacillus thermoglucosidasius , G. kaustophilus , and G. stearothermophilus are investigated concerning physiology, genomics, genetic tools, and technologies, altogether paving the way for their utilization as hosts for recombinant production of thermostable and other difficult-to-express proteins. Moreover, recent successful deployments of CRISPR/Cas9 in several of these species have accelerated the progress in their metabolic engineering, which should increase their attractiveness for future industrial-scale production of proteins. This review describes the biology of thermophilic Bacillaceae and in particular focuses on genetic tools and methods enabling use of these organisms as hosts for recombinant protein production.
Dziugan, Piotr; Balcerek, Maria; Binczarski, Michal J; Kregiel, Dorota; Kucner, Marcin; Kunicka-Styczynska, Alina; Pielech-Przybylska, Katarzyna; Smigielski, Krzysztof; Witonska, Izabela A
2016-01-01
Intermediates from processing sugar beets are considered an attractive feedstock for ethanol fermentation due to their high fermentable sugar content. In particular, medium prepared from raw sugar beet juice seems to be suitable for use in fermentation processes, but it is microbiologically unstable and requires sterilization. This study investigates the effect of ozone treatment on the activity of microbial cells from Bacillus subtilis, Leuconostoc mesenteroides, Geobacillus stearothermophilus, Candida vini, and Aspergillus brasiliensis in raw sugar beet juice. Raw sugar beet juice contaminated with 10(5) cfu/mL of the microbial strains was treated with gaseous ozone (ozone concentration in the oxygen stream 0.1 g O3/L O2, flow rate 6 L/h, 10-30 min, 18-20 °C). The number of microflora decreased to 0 cfu/mL after 30 min of ozone treatment in all studied samples. Medium prepared from raw sugar beet juice and sterilized by ozonation is suitable for use in fermentation processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deflaun, Mary F.; Fredrickson, Jim K.; Dong, Hailiang
2007-03-08
A thermophilic, facultative bacterium was isolated from a depth of 3.1 km below ground surface in an ultradeep gold mine in South Africa. This isolate, designated GE-7, was cultivated from pH 8.0, 600C fissure water. GE-7 grows optimally at 650C, pH 6.5 on a wide range of carbon substrates including GE-7 is a long rod-shaped bacterium (4-6 µm long x 0.5 wide) with terminal endospores and flagella, in addition to O2, can also utilize nitrate as an electron acceptor. Phylogenetic analysis of GE-7 16S rDNA sequence revealed high sequence similarity with G. thermoleovorans DSM 5366T (99.6%), however, certain phenotypic characteristicsmore » of GE-7 were distinct from this and other strains of G. thermoleovorans previously described.« less
Reich, Michael S; Akkus, Ozan
2013-09-01
Terminal sterilization of musculoskeletal allografts by gamma radiation minimizes the risk of disease transmission but impairs allograft mechanical properties. Commonly employed crosslinking agents can sterilize tissues without affecting mechanical properties adversely; however, these agents are toxic. Genipin is reported to be a benign crosslinking agent that strengthens mechanical properties of tissues; however, the antimicrobial capacity of genipin is largely unknown. The present study's aims were: (1) to assess the sporicidal potential of genipin, (2) to improve antimicrobial capacity by changing chemical and physical treatment conditions. To establish genipin's sterilization potential Bacillus subtilis var. niger spore strips were treated with 0-10% genipin in PBS or in 1:1 DMSO:PBS up to 72 h at room temperature (RT). Sterilizing doses and concentrations of genipin were used to treat B. pumilus and Geobacillus stearothermophilus spores to assess broader spectrum sporicidal activity of genipin. Scanning electron microscopy (SEM) was performed to evaluate gross morphological changes after genipin treatment. Optimal sterilization conditions were determined by evaluating the effects of temperature (RT-50 °C), DMSO:PBS ratio (0:100-100:0), and treatment duration (24-72 h) on B. subtilis. Genipin penetration of full thickness bovine patellar tendon and cortical bone specimens was observed to assess the feasibility of the agent for treating grafts. Initial studies showed that after 72 h of treatment at RT with 0.63-10% genipin/DMSO:PBS B. subtilis spore strips were sterilized; 0.63% genipin/PBS did not sterilize spore strips at 72 h at RT. Genipin doses and concentrations that sterilized B. subtilis spore strips sterilized B. pumilus and G. stearothermophilus spore strips. SEM revealed no gross morphological differences between untreated and treated spores. Treatment optimization resulted in sterilization within 24 h with 100% PBS, and DMSO facilitated sporicidal activity. Genipin penetrated full thickness patellar tendon specimens and 3.72 ± 0.58 mm in cortical bone specimens. Genipin sterilizes B. subtilis, B. pumilus, and G. stearothermophilus spore strips. It penetrates soft and hard tissues at doses previously shown to be non-toxic and to improve mechanical strength in collagen-rich soft tissues. Further studies are indicated to assess genipin's effects on the mechanical properties of genipin-sterilized grafts, the ability of genipin to eradicate infectious species other than spores, and to assess whether sterilant activity persists after penetrating tissues and biomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yinjie J.; Sapra, Rajat; Joyner, Dominique
2009-01-20
A recently discovered thermophilic bacterium, Geobacillus thermoglucosidasius M10EXG, ferments a range of C5 (e.g., xylose) and C6 sugars (e.g., glucose) and istolerant to high ethanol concentrations (10percent, v/v). We have investigated the central metabolism of this bacterium using both in vitro enzyme assays and 13C-based flux analysis to provide insights into the physiological properties of this extremophile and explore its metabolism for bio-ethanol or other bioprocess applications. Our findings show that glucose metabolism in G. thermoglucosidasius M10EXG proceeds via glycolysis, the pentose phosphate pathway, and the TCA cycle; the Entner?Doudoroff pathway and transhydrogenase activity were not detected. Anaplerotic reactions (includingmore » the glyoxylate shunt, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase) were active, but fluxes through those pathways could not be accuratelydetermined using amino acid labeling. When growth conditions were switched from aerobic to micro-aerobic conditions, fluxes (based on a normalized glucose uptake rate of 100 units (g DCW)-1 h-1) through the TCA cycle and oxidative pentose phosphate pathway were reduced from 64+-3 to 25+-2 and from 30+-2 to 19+-2, respectively. The carbon flux under micro-aerobic growth was directed formate. Under fully anerobic conditions, G. thermoglucosidasius M10EXG used a mixed acid fermentation process and exhibited a maximum ethanol yield of 0.38+-0.07 mol mol-1 glucose. In silico flux balance modeling demonstrates that lactate and acetate production from G. thermoglucosidasius M10EXG reduces the maximum ethanol yieldby approximately threefold, thus indicating that both pathways should be modified to maximize ethanol production.« less
De Vrij, W; Bulthuis, R A; Konings, W N
1988-01-01
The properties of enzymes involved in energy transduction from a mesophilic (Bacillus subtilis) and a thermophilic (B. stearothermophilus) bacterium were compared. Membrane preparations of the two organisms contained dehydrogenases for NADH, succinate, L-alpha-glycerophosphate, and L-lactate. Maximum NADH and cytochrome c oxidation rates were obtained at the respective growth temperatures of the two bacteria. The enzymes involved in the oxidation reactions in membranes of the thermophilic species were more thermostable than those of the mesophilic species. The apparent microviscosities of the two membrane preparations were studied at different temperatures. At the respective optimal growth temperatures, the apparent microviscosities of the membranes of the two organisms were remarkably similar. The transition from the gel to the liquid-crystalline state occurred at different temperatures in the two species. In the two species, the oxidation of physiological (NADH) and nonphysiological (N,N,N',N'-tetramethyl-p-phenylenediamine or phenazine methosulfate) electron donors led to generation of a proton motive force which varied strongly with temperature. At increasing temperatures, the efficiency of energy transduction declined because of increasing H+ permeability. At the growth temperature, the efficiency of energy transduction was lower in B. stearothermophilus than in the mesophilic species. Extremely high respiratory activities enabled B. stearothermophilus to maintain a high proton motive force at elevated temperatures. The pH dependence of proton motive force generation appeared to be similar in the two membrane preparations. The highest proton motive forces were generated at low external pH, mainly because of a high pH gradient. At increasing external pH, the proton motive force declined. PMID:2834342
Ishak, Siti Nor Hasmah; Aris, Sayangku Nor Ariati Mohamad; Halim, Khairul Bariyyah Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Kamarudin, Nor Hafizah Ahmad; Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd
2017-09-25
Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacillus zalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.
Monsalves, María T; Amenábar, Maximiliano J; Ollivet-Besson, Gabriela P; Blamey, Jenny M
2013-07-01
A thermostable superoxide dismutase from a thermophilic bacterium, called Geobacillus wiegeli (GWE1), isolated from the interior of a sterilization drying oven, was purified by anion-exchange and molecular size-exclusion liquid chromatography. On the basis of SDS-PAGE, the purified enzyme was found to be homogeneous and showed an estimated subunit molecular mass of 23.9 kDa. The holoenzyme is a homotetramer of 97.3 kDa. Superoxide dismutase exhibited maximal activity at pH 8.5 and at temperature around 60 ºC. The enzyme was thermostable maintaining 50% of its activity even after 4.5 hours incubation at 60 ºC and more than 70% of its activity after 30 min at 80 ºC. When the microorganism was irradiated with UVA, an increase in the specific activity of superoxide dismutase was observed which was correlated with decreasing levels of anion superoxide, indicating the direct involvement of this enzyme in the capture of reactive oxygen species. This study reports the effects of UV radiation on a superoxide dismutase from a thermophilic bacterium isolated from an anthropogenic environment.
Mau, T; Hartmann, V; Burmeister, J; Langguth, P; Häusler, H
2004-01-01
The use of steam in sterilization processes is limited by the implementation of heat-sensitive components inside the machines to be sterilized. Alternative low-temperature sterilization methods need to be found and their suitability evaluated. Vaporized Hydrogen Peroxide (VHP) technology was adapted for a production machine consisting of highly sensitive pressure sensors and thermo-labile air tube systems. This new kind of "cold" surface sterilization, known from the Barrier Isolator Technology, is based on the controlled release of hydrogen peroxide vapour into sealed enclosures. A mobile VHP generator was used to generate the hydrogen peroxide vapour. The unit was combined with the air conduction system of the production machine. Terminal vacuum pumps were installed to distribute the gas within the production machine and for its elimination. In order to control the sterilization process, different physical process monitors were incorporated. The validation of the process was based on biological indicators (Geobacillus stearothermophilus). The Limited Spearman Karber Method (LSKM) was used to statistically evaluate the sterilization process. The results show that it is possible to sterilize surfaces in a complex tube system with the use of gaseous hydrogen peroxide. A total microbial reduction of 6 log units was reached.
NASA Astrophysics Data System (ADS)
Korkmaz, Nuriye; Ostermann, Kai; Rödel, Gerhard
2011-03-01
Surface layer proteins have the appealing property to self-assemble in nanosized arrays in solution and on solid substrates. In this work, we characterize the formation of assembly structures of the recombinant surface layer protein SbsC of Geobacillus stearothermophilus ATTC 12980, which was tagged with enhanced green fluorescent protein and expressed in the yeast Saccharomyces cerevisiae. The tubular structures formed by the protein in vivo are retained upon bursting the cells by osmotic shock; however, their average length is decreased. During dialysis, monomers obtained by treatment with chaotropic chemicals recrystallize again to form tube-like structures. This process is strictly dependent on calcium (Ca2 + ) ions, with an optimal concentration of 10 mM. Further increase of the Ca2 + concentration results in multiple non-productive nucleation points. We further show that the lengths of the S-layer assemblies increase with time and can be controlled by pH. After 48 h, the average length at pH 9.0 is 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications.
Sakudo, Akikazu; Toyokawa, Yoichi; Nakamura, Tetsuji; Yagyu, Yoshihito; Imanishi, Yuichiro
2017-01-01
Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme‑linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2‑4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75‑142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO‑), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.
Ozone Gas as a Benign Sterilization Treatment for PLGA Nanofiber Scaffolds
de Jesus Andreoli Pinto, Terezinha; Bou-Chacra, Nadia Araci; Galante, Raquel; de Araújo, Gabriel Lima Barros; do Nascimento Pedrosa, Tatiana; Maria-Engler, Silvya Stuchi
2016-01-01
The use of electrospun nanofibers for tissue engineering and regenerative medicine applications is a growing trend as they provide improved support for cell proliferation and survival due, in part, to their morphology mimicking that of the extracellular matrix. Sterilization is a critical step in the fabrication process of implantable biomaterial scaffolds for clinical use, but many of the existing methods used to date can negatively affect scaffold properties and performance. Poly(lactic-co-glycolic acid) (PLGA) has been widely used as a biodegradable polymer for 3D scaffolds and can be significantly affected by current sterilization techniques. The aim of this study was to investigate pulsed ozone gas as an alternative method for sterilizing PLGA nanofibers. The morphology, mechanical properties, physicochemical properties, and response of cells to PLGA nanofiber scaffolds were assessed following different degrees of ozone gas sterilization. This treatment killed Geobacillus stearothermophilus spores, the most common biological indicator used for validation of sterilization processes. In addition, the method preserved all of the characteristics of nonsterilized PLGA nanofibers at all degrees of sterilization tested. These findings suggest that ozone gas can be applied as an alternative method for sterilizing electrospun PLGA nanofiber scaffolds without detrimental effects. PMID:26757850
Ozone Gas as a Benign Sterilization Treatment for PLGA Nanofiber Scaffolds.
Rediguieri, Carolina Fracalossi; Pinto, Terezinha de Jesus Andreoli; Bou-Chacra, Nadia Araci; Galante, Raquel; de Araújo, Gabriel Lima Barros; Pedrosa, Tatiana do Nascimento; Maria-Engler, Silvya Stuchi; De Bank, Paul A
2016-04-01
The use of electrospun nanofibers for tissue engineering and regenerative medicine applications is a growing trend as they provide improved support for cell proliferation and survival due, in part, to their morphology mimicking that of the extracellular matrix. Sterilization is a critical step in the fabrication process of implantable biomaterial scaffolds for clinical use, but many of the existing methods used to date can negatively affect scaffold properties and performance. Poly(lactic-co-glycolic acid) (PLGA) has been widely used as a biodegradable polymer for 3D scaffolds and can be significantly affected by current sterilization techniques. The aim of this study was to investigate pulsed ozone gas as an alternative method for sterilizing PLGA nanofibers. The morphology, mechanical properties, physicochemical properties, and response of cells to PLGA nanofiber scaffolds were assessed following different degrees of ozone gas sterilization. This treatment killed Geobacillus stearothermophilus spores, the most common biological indicator used for validation of sterilization processes. In addition, the method preserved all of the characteristics of nonsterilized PLGA nanofibers at all degrees of sterilization tested. These findings suggest that ozone gas can be applied as an alternative method for sterilizing electrospun PLGA nanofiber scaffolds without detrimental effects.
Pervasiveness of UVC254-resistant Geobacillus strains in extreme environments.
Carlson, Courtney; Singh, Nitin K; Bibra, Mohit; Sani, Rajesh K; Venkateswaran, Kasthuri
2018-02-01
We have characterized a broad collection of extremophilic bacterial isolates from a deep subsurface mine, compost dumping sites, and several hot spring ecosystems. Spore-forming strains isolated from these environments comprised both obligate thermophiles/thermotolerant species (growing at > 55 °C; 240 strains) and mesophiles (growing at 15 to 40 °C; 12 strains). An overwhelming abundance of Geobacillus (81.3%) and Bacillus (18.3%) species was observed among the tested isolates. 16S rRNA sequence analysis documented the presence of 24 species among these isolates, but the 16S rRNA gene was shown to possess insufficient resolution to reliably discern Geobacillus phylogeny. gyrB-based phylogenetic analyses of nine strains revealed the presence of six known Geobacillus and one novel species. Multilocus sequence typing analyses based on seven different housekeeping genes deduced from whole genome sequencing of nine strains revealed the presence of three novel Geobacillus species. The vegetative cells of 41 Geobacillus strains were exposed to UVC 254 , and most (34 strains) survived 120 J/m 2 , while seven strains survived 300 J/m 2 , and cells of only one Geobacillus strain isolated from a compost facility survived 600 J/m 2 . Additionally, the UVC 254 inactivation kinetics of spores from four Geobacillus strains isolated from three distinct geographical regions were evaluated and compared to that of a spacecraft assembly facility (SAF) clean room Geobacillus strain. The purified spores of the thermophilic SAF strain exhibited resistance to 2000 J/m 2 , whereas spores of two environmental Geobacillus strains showed resistance to 1000 J/m 2 . This study is the first to investigate UV resistance of environmental, obligately thermophilic Geobacillus strains, and also lays the foundation for advanced understanding of necessary sterilization protocols practiced in food, medical, pharmaceutical, and aerospace industries.
Althaus, Rafael; Berruga, Maria Isabel; Montero, Ana; Roca, Marta; Molina, Maria Pilar
2009-01-19
To protect both, public health and the dairy industry, from the presence of antibiotic residues in milk, control programmes have been established, which include the needed screening tests. This work focuses on the application of a Microbiological Multi-Residue System in ewe milk, a method based on the use of six different plates, each seeded with one of the following bacteria: Geobacillus stearothermophilus var. calidolactis (beta-lactams), Bacillus subtilis at pH 8.0 (aminoglycosides), Kocuria rhizophila (macrolides), Escherichia coli (quinolones), B. cereus (tetracyclines) and B. subtilis at pH 7.0 (sulphonamides), respectively. Twenty-three antimicrobial substances were analysed and a logistic regression was established for each substance assayed to relate the antibiotic concentration and the zone of microbial growth inhibition. Great linearity in the response was observed (regression coefficients of over 0.97). This fact suggests the possibility of establishing a decision level of antibiotic concentrations near to the Maximum Residue Limits (MRL). Zones of inhibition were suggested as proposed action levels for the different antimicrobial groups (diameters of inhibition of 18 mm for the aminoglycoside, beta-lactam and sulphonamide plates; 19 mm for the tetracycline plate, 21 mm for the macrolide plate, and 24 mm for the quinolone plate). Specificity and cross-reactivity were also assayed.
Klämpfl, Tobias G; Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E; Schmidt, Hans-Ulrich
2012-08-01
Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log(10) CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D(23)(°)(C) values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma.
Nagel, O G; Molina, M P; Basílico, J C; Zapata, M L; Althaus, R L
2009-06-01
To use experimental design techniques and a multiple logistic regression model to optimize a microbiological inhibition test with dichotomous response for the detection of Penicillin G in milk. A 2(3) x 2(2) robust experimental design with two replications was used. The effects of three control factors (V: culture medium volume, S: spore concentration of Geobacillus stearothermophilus, I: indicator concentration), two noise factors (Dt: diffusion time, Ip: incubation period) and their interactions were studied. The V, S, Dt, Ip factors and V x S, V x Ip, S x Ip interactions showed significant effects. The use of 100 microl culture medium volume, 2 x 10(5) spores ml(-1), 60 min diffusion time and 3 h incubation period is recommended. In these elaboration conditions, the penicillin detection limit was of 3.9 microg l(-1), similar to the maximum residue limit (MRL). Of the two noise factors studied, the incubation period can be controlled by means of the culture medium volume and spore concentration. We were able to optimize bioassays of dichotomous response using an experimental design and logistic regression model for the detection of residues at the level of MRL, aiding in the avoidance of health problems in the consumer.
Alrumman, Sulaiman A
2016-01-01
The bioconversion of cellulosic wastes into high-value bio-products by saccharification and fermentation processes is an important step that can reduce the environmental pollution caused by agricultural wastes. In this study, enzymatic saccharification of treated and untreated date palm cellulosic wastes by the cellulases from Geobacillus stearothermophilus was optimized. The alkaline pre-treatment of the date palm wastes was found to be effective in increasing the saccharification percentage. The maximum rate of saccharification was found at a substrate concentration of 4% and enzyme concentration of 30 FPU/g of substrate. The optimum pH and temperature for the bioconversions were 5.0 and 50°C, respectively, after 24h of incubation, with a yield of 31.56mg/mL of glucose at a saccharification degree of 71.03%. The saccharification was increased to 94.88% by removal of the hydrolysate after 24h by using a two-step hydrolysis. Significant lactic acid production (27.8mg/mL) was obtained by separate saccharification and fermentation after 72h of incubation. The results indicate that production of fermentable sugar and lactic acid is feasible and may reduce environmental pollution by using date palm wastes as a cheap substrate. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Alfa, M J; Nemes, R
2004-09-01
We undertook a simulated-use study using quantitative methods to evaluate the cleaning efficacy of ported and non-ported accessory devices used in minimally invasive surgery. We chose laparoscopic scissors and forceps to represent worst-case devices which were inoculated with artificial test soil containing 10(6) cfu/mL Enterococcus faecalis and Geobacillus stearothermophilus and allowed to dry for 1 h. Cleaning was performed manually, as well as by the automated SI-Auto Narrow lumen cleaner. Manual cleaning left two- to 50-fold more soil residuals (protein, haemoglobin and carbohydrate) inside the lumen of non-ported versus ported laparoscopic accessory devices. The SI-Auto Narrow lumen cleaner was more efficient than manual cleaning and achieved >99% reduction in soil parameters in both non-ported (using retro-flushing) and ported laparoscopic devices. Only the automated cleaning of ported devices achieved 10(3)-10(4)-fold reduction in bacterial numbers. Sonication alone (no flushing of inner channel) did not effectively remove soil or organisms from the inner channel. Our findings indicate that non-ported accessory devices cannot be as reliably cleaned as ported devices regardless of the cleaning method used. If non-ported accessory devices are reprocessed, they should be cleaned using retro-flushing in an automated narrow lumen cleaner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques, David A.; Streamer, Margaret; Rowland, Susan L.
2009-06-01
The crystal structure of Sda, a DNA-replication/damage checkpoint inhibitor of sporulation in B. subtilis, has been solved via the MAD method. The subunit arrangement in the crystal has enabled a reappraisal of previous biophysical data, resulting in a new model for the behaviour of the protein in solution. The crystal structure of the DNA-damage checkpoint inhibitor of sporulation, Sda, from Bacillus subtilis, has been solved by the MAD technique using selenomethionine-substituted protein. The structure closely resembles that previously solved by NMR, as well as the structure of a homologue from Geobacillus stearothermophilus solved in complex with the histidine kinase KinB.more » The structure contains three molecules in the asymmetric unit. The unusual trimeric arrangement, which lacks simple internal symmetry, appears to be preserved in solution based on an essentially ideal fit to previously acquired scattering data for Sda in solution. This interpretation contradicts previous findings that Sda was monomeric or dimeric in solution. This study demonstrates the difficulties that can be associated with the characterization of small proteins and the value of combining multiple biophysical techniques. It also emphasizes the importance of understanding the physical principles behind these techniques and therefore their limitations.« less
Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L.; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E.; Schmidt, Hans-Ulrich
2012-01-01
Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log10 CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D23°C values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma. PMID:22582068
Contamination pathways of spore-forming bacteria in a vegetable cannery.
Durand, Loïc; Planchon, Stella; Guinebretiere, Marie-Hélène; André, Stéphane; Carlin, Frédéric; Remize, Fabienne
2015-06-02
Spoilage of low-acid canned food during prolonged storage at high temperatures is caused by heat resistant thermophilic spores of strict or facultative bacteria. Here, we performed a bacterial survey over two consecutive years on the processing line of a French company manufacturing canned mixed green peas and carrots. In total, 341 samples were collected, including raw vegetables, green peas and carrots at different steps of processing, cover brine, and process environment samples. Thermophilic and highly-heat-resistant thermophilic spores growing anaerobically were counted. During vegetable preparation, anaerobic spore counts were significantly decreased, and tended to remain unchanged further downstream in the process. Large variation of spore levels in products immediately before the sterilization process could be explained by occasionally high spore levels on surfaces and in debris of vegetable combined with long residence times in conditions suitable for growth and sporulation. Vegetable processing was also associated with an increase in the prevalence of highly-heat-resistant species, probably due to cross-contamination of peas via blanching water. Geobacillus stearothermophilus M13-PCR genotypic profiling on 112 isolates determined 23 profile-types and confirmed process-driven cross-contamination. Taken together, these findings clarify the scheme of contamination pathway by thermophilic spore-forming bacteria in a vegetable cannery. Copyright © 2015 Elsevier B.V. All rights reserved.
Computational design of a Diels-Alderase from a thermophilic esterase: the importance of dynamics
NASA Astrophysics Data System (ADS)
Linder, Mats; Johansson, Adam Johannes; Olsson, Tjelvar S. G.; Liebeschuetz, John; Brinck, Tore
2012-09-01
A novel computational Diels-Alderase design, based on a relatively rare form of carboxylesterase from Geobacillus stearothermophilus, is presented and theoretically evaluated. The structure was found by mining the PDB for a suitable oxyanion hole-containing structure, followed by a combinatorial approach to find suitable substrates and rational mutations. Four lead designs were selected and thoroughly modeled to obtain realistic estimates of substrate binding and prearrangement. Molecular dynamics simulations and DFT calculations were used to optimize and estimate binding affinity and activation energies. A large quantum chemical model was used to capture the salient interactions in the crucial transition state (TS). Our quantitative estimation of kinetic parameters was validated against four experimentally characterized Diels-Alderases with good results. The final designs in this work are predicted to have rate enhancements of ≈103-106 and high predicted proficiencies. This work emphasizes the importance of considering protein dynamics in the design approach, and provides a quantitative estimate of the how the TS stabilization observed in most de novo and redesigned enzymes is decreased compared to a minimal, `ideal' model. The presented design is highly interesting for further optimization and applications since it is based on a thermophilic enzyme ( T opt = 70 °C).
Alrumman, Sulaiman A.
2016-01-01
The bioconversion of cellulosic wastes into high-value bio-products by saccharification and fermentation processes is an important step that can reduce the environmental pollution caused by agricultural wastes. In this study, enzymatic saccharification of treated and untreated date palm cellulosic wastes by the cellulases from Geobacillus stearothermophilus was optimized. The alkaline pre-treatment of the date palm wastes was found to be effective in increasing the saccharification percentage. The maximum rate of saccharification was found at a substrate concentration of 4% and enzyme concentration of 30 FPU/g of substrate. The optimum pH and temperature for the bioconversions were 5.0 and 50 °C, respectively, after 24 h of incubation, with a yield of 31.56 mg/mL of glucose at a saccharification degree of 71.03%. The saccharification was increased to 94.88% by removal of the hydrolysate after 24 h by using a two-step hydrolysis. Significant lactic acid production (27.8 mg/mL) was obtained by separate saccharification and fermentation after 72 h of incubation. The results indicate that production of fermentable sugar and lactic acid is feasible and may reduce environmental pollution by using date palm wastes as a cheap substrate. PMID:26887233
Mtimet, Narjes; Guégan, Stéphanie; Durand, Lucile; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier
2016-05-01
Thermophilic spore-forming bacteria are potential contaminants in several industrial sectors involving high temperatures (40-65 °C) in the manufacturing process. Among those thermophilic spore-forming bacteria, Thermoanaerobacterium thermosaccharolyticum, called "the swelling canned food spoiler", has generated interest over the last decade in the food sector. The aim of this study was to investigate and to model pH effect on growth, heat resistance and recovery abilities after a heat-treatment of T. thermosaccharolyticum DSM 571. Growth and sporulation were conducted on reinforced clostridium media and liver broth respectively. The highest spore heat resistances and the greatest recovery ability after a heat-treatment were obtained at pH condition allowing maximal growth rate. Growth and sporulation boundaries were estimated, then models using growth limits as main parameters were extended to describe and quantify the effect of pH on recovery of injured spores after a heat-treatment. So, cardinal values were used as a single set of parameters to describe growth, sporulation and recovery abilities. Besides, this work suggests that T. thermosaccharolyticum preserve its ability for germination and outgrowth after a heat-treatment at a low pH where other high resistant spore-forming bacteria like Geobacillus stearothermophilus are unable to grow. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergonzi, Celine; Schwab, Michael; Elias, Mikael
Lactonases are enzymes that are capable of hydrolyzing various lactones such as aliphatic lactones or acyl-homoserine lactones (AHLs), with the latter being used as chemical signaling molecules by numerous Gram-negative bacteria. Lactonases therefore have the ability to quench the chemical communication, also known as quorum sensing, of numerous bacteria, and in particular to inhibit behaviors that are regulated by this system, such as the expression of virulence factors or the production of biofilms. A novel representative from the metallo-β-lactamase superfamily, dubbed GcL, was isolated from the thermophilic bacteriumGeobacillus caldoxylosilyticus. Because of its thermophilic origin, GcL may constitute an interesting candidatemore » for the development of biocontrol agents. Here, we show that GcL is a thermostable enzyme with a half-life at 75°C of 152.5 ± 10 min. Remarkably, it is also shown that GcL is among the most active lactonases characterized to date, with catalytic efficiencies (k cat/K m) against AHLs of greater than 10 6 M $-$1 s $-$1. The structure of GcL is expected to shed light on the catalytic mechanism of the enzyme and the molecular determinants for the substrate specificity in this class of lactonases. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.6 Å resolution of GcL are reported.« less
Probabilistic exposure assessment model to estimate aseptic-UHT product failure rate.
Pujol, Laure; Albert, Isabelle; Magras, Catherine; Johnson, Nicholas Brian; Membré, Jeanne-Marie
2015-01-02
Aseptic-Ultra-High-Temperature (UHT) products are manufactured to be free of microorganisms capable of growing in the food at normal non-refrigerated conditions at which the food is likely to be held during manufacture, distribution and storage. Two important phases within the process are widely recognised as critical in controlling microbial contamination: the sterilisation steps and the following aseptic steps. Of the microbial hazards, the pathogen spore formers Clostridium botulinum and Bacillus cereus are deemed the most pertinent to be controlled. In addition, due to a relatively high thermal resistance, Geobacillus stearothermophilus spores are considered a concern for spoilage of low acid aseptic-UHT products. A probabilistic exposure assessment model has been developed in order to assess the aseptic-UHT product failure rate associated with these three bacteria. It was a Modular Process Risk Model, based on nine modules. They described: i) the microbial contamination introduced by the raw materials, either from the product (i.e. milk, cocoa and dextrose powders and water) or the packaging (i.e. bottle and sealing component), ii) the sterilisation processes, of either the product or the packaging material, iii) the possible recontamination during subsequent processing of both product and packaging. The Sterility Failure Rate (SFR) was defined as the sum of bottles contaminated for each batch, divided by the total number of bottles produced per process line run (10(6) batches simulated per process line). The SFR associated with the three bacteria was estimated at the last step of the process (i.e. after Module 9) but also after each module, allowing for the identification of modules, and responsible contamination pathways, with higher or lower intermediate SFR. The model contained 42 controlled settings associated with factory environment, process line or product formulation, and more than 55 probabilistic inputs corresponding to inputs with variability conditional to a mean uncertainty. It was developed in @Risk and run through Monte Carlo simulations. Overall, the highest SFR was associated with G. stearothermophilus (380000 bottles contaminated in 10(11) bottles produced) and the lowest to C. botulinum (3 bottles contaminated in 10(11) bottles produced). Unsurprisingly, SFR due to G. stearothermophilus was due to its ability to survive the UHT treatment. More interestingly, it was identified that SFR due to B. cereus (17000 bottles contaminated in 10(11) bottles produced) was due to an airborne recontamination of the aseptic tank (49%) and a post-sterilisation packaging contamination (33%). A deeper analysis (sensitivity and scenario analyses) was done to investigate how the SFR due to B. cereus could be reduced by changing the process settings related to potential air recontamination source. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of Hyperbaric Carbon Dioxide on Spores and Vegetative Cells of Bacillus stearothermophilus
1994-05-01
BACILLUS STEAROTHERMOPHILUS DTIC ELECTE JUN131994 D By Chester T. Roskey* Anthony Sikes *Framingham State College Framingham, MA 01701 94-18004...Spores and Vegetative Cells of Bacillus Stearothermophilus 6. AUTHOR(S) Dr. Chester T. Roskey* & Dr. Anthony Sikes 5 FUNDING NUMBERS PR: TB040...SUBJECT TERMS BACILLUS STEAROTHERMOPHILUS THERM0PHILIC BACTERIA THERM0PHILIC SPOILAGE 15. NUMBER OF PAGES 39 16 PRICE CODE 17. SECURITY
Mosley, Gregg A; Gillis, John R; Krushefski, Garrett
2005-01-01
Bacterial endospores from six different species of bacteria were exposed to a spectrum of ethylene oxide (EtO) sterilizing conditions. Temperature was varied from 40 to 60 degrees C and the ethylene oxide concentration was varied from 300 to 750 mg/L. Relative humidity was maintained at 60+/-10% RH. The fraction negative procedure was used to determine the D value for each of the test conditions. Bacterial species tested included Bacillus atrophaeus ATCC # 9372, Bacillus smithii ATCC # 51232, Bacillus subtilis "5230" ATCC # 35021, Bacillus subtilis, DSM # 4181, Bacillus pumilus ATCC # 27142, and Geobacillus stearothermophilus ATCC # 7953. All spore preparations were inoculated on filter paper strips packaged in blue, sterilizable glassine pouches. G. stearothermophilus was the least resistant organism tested. The most resistant organisms tested were B. atrophaeus and B. subtilis "5230". The B. subtilis "5230" strain was slightly more resistant than B. atrophaeus at conditions of 54C and EtO concentrations of 400, 600, and 750 mg/L, as well as at 60C/750mg/L EtO. The other species were between these extremes. This empirical data allowed the application of the recently published formula for converting D values from one set of conditions to another and evaluations of accuracy. The measured D values also allowed the determination of Z values based on temperature variations. These formulae, when applied to process temperatures independent of gas concentration, result in a Z value of approximately 32 degrees C that appears to be similar for all species tested. These data support the application of the previously published formulae 1-6 and allow the same approach to integrated lethality for ethylene oxide processes as is commonly applied to steam sterilization. A review of steam sterilization and related principles was conducted for comparison of integrated lethality for these two methods of sterilization. Errors associated with D values, Z values, extrapolation, and integrated lethality for both methods of sterilization are discussed.
Reineke, Kai; Schottroff, Felix; Meneses, Nicolas; Knorr, Dietrich
2015-01-01
The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm(-1)), skim milk (0.3% fat; 5.3 mS cm(-1)) and fresh prepared carrot juice (7.73 mS cm(-1)). The combination of moderate preheating (70-90°C) and an insulated PEF-chamber, combined with a holding tube (65 cm) and a heat exchanger for cooling, enabled a rapid heat up to 105-140°C (measured above the PEF chamber) within 92.2-368.9 μs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using computational fluid dynamics (CFD). A preheating of saline water to 70°C with a flow rate of 5 l h(-1), a frequency of 150 Hz and an energy input of 226.5 kJ kg(-1), resulted in a measured outlet temperature of 117°C and a 4.67 log10 inactivation of B. subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for G. stearothermophilus spores in saline water. A preheating to 95°C and an energy input of 144 kJ kg(-1) resulted in an outlet temperature of 126°C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10) was achieved during the thermal treatment. Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring inhomogeneous temperature fields.
Complete genome sequences of Geobacillus sp. WCH70, a thermophilic strain isolated from wood compost
Brumm, Phillip; Land, Miriam L.; Mead, David
2016-04-27
Geobacillus sp. WCH70 was one of several thermophilic organisms isolated from hot composts in the Middleton, WI area. Comparison of 16 S rRNA sequences showed the strain may be a new species, and is most closely related to G. galactosidasius and G. toebii. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2009 (CP001638). The genome of Geobacillus species WCH70 consists of one circular chromosome of 3,893,306 bp with an average G + C content of 43 %, and two circular plasmids of 33,899 and 10,287 bp with anmore » average G + C content of 40 %. Among sequenced organisms, Geobacillus sp. WCH70 shares highest Average Nucleotide Identity (86 %) with G. thermoglucosidasius strains, as well as similar genome organization. Geobacillus sp. WCH70 appears to be a highly adaptable organism, with an exceptionally high 125 annotated transposons in the genome. The organism also possesses four predicted restriction-modification systems not found in other Geobacillus species.« less
Brumm, Phillip; Land, Miriam L; Hauser, Loren J; Jeffries, Cynthia D; Chang, Yun-Juan; Mead, David A
2015-01-01
Geobacillus sp. Y412MC52 was isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. The genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid of 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Transport and utilization clusters are also present for other carbohydrates including starch, cellobiose, and α- and β-galactooligosaccharides.
Brumm, Phillip; Land, Miriam L.; Hauser, Loren J.; ...
2015-10-19
We isolated geobacillus sp. Y412MC52 from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. Moreover, te genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid ofmore » 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Finally, we present transport and utilization clusters for other carbohydrates including starch, cellobiose, and - and -galactooligosaccharides.« less
Complete genome sequences of Geobacillus sp. WCH70, a thermophilic strain isolated from wood compost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumm, Phillip; Land, Miriam L.; Mead, David
Geobacillus sp. WCH70 was one of several thermophilic organisms isolated from hot composts in the Middleton, WI area. Comparison of 16 S rRNA sequences showed the strain may be a new species, and is most closely related to G. galactosidasius and G. toebii. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2009 (CP001638). The genome of Geobacillus species WCH70 consists of one circular chromosome of 3,893,306 bp with an average G + C content of 43 %, and two circular plasmids of 33,899 and 10,287 bp with anmore » average G + C content of 40 %. Among sequenced organisms, Geobacillus sp. WCH70 shares highest Average Nucleotide Identity (86 %) with G. thermoglucosidasius strains, as well as similar genome organization. Geobacillus sp. WCH70 appears to be a highly adaptable organism, with an exceptionally high 125 annotated transposons in the genome. The organism also possesses four predicted restriction-modification systems not found in other Geobacillus species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumm, Phillip; Land, Miriam L.; Hauser, Loren J.
We isolated geobacillus sp. Y412MC52 from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. Moreover, te genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid ofmore » 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Finally, we present transport and utilization clusters for other carbohydrates including starch, cellobiose, and - and -galactooligosaccharides.« less
Thermophilic Gram-Positive Biocatalysts for Biomass Conversion to Ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanmugam, K.T.; Ingram, L.O.; Maupin-Furlow, J.A.
2003-12-01
Production of energy from renewable sources is receiving increased attention due to the finite nature of fossil fuels and the environmental impact associated with the continued large scale use of fossil energy sources. Biomass, a CO2-neutral abundant resource, is an attractive alternate source of energy. Biomass-derived sugars, such as glucose, xylose, and other minor sugars, can be readily fermented to fuel ethanol and commodity chemicals. Extracellular cellulases produced by fungi are commercially developed for depolymerization of cellulose in biomass to glucose for fermentation by appropriate biocatalysts in a simultaneous saccharification and fermentation (SSF) process. Due to the differences in themore » optimum conditions for the activity of the fungal cellulases and the growth and fermentation characteristics of the current industrial biocatalysts, SSF of cellulose is envisioned at conditions that are not optimal for the fungal cellulase activity leading to higher than required cost of cellulase in SSF. We have isolated bacterial biocatalysts whose growth and fermentation requirements match the optimum conditions for commercial fungal cellulase activity (pH 5.0 and 50 deg. C). These isolates fermented both glucose and xylose, major components of cellulose and hemicellulose, respectively, to L(+)-lactic acid. Xylose was metabolized through the pentose-phosphate pathway by these organisms as evidenced by the fermentation profile and analysis of the fermentation products of 13C1-xylose by NMR. As expected for the metabolism of xylose by the pentose-phosphate pathway, 13C-lactate accounted for more than 90% of the total 13C-labeled products. All three strains fermented crystalline cellulose to lactic acid with the addition of fungal cellulase (Spezyme CE) (SSF) at an optimum of about 10 FPU/g cellulose. These isolates also fermented cellulose and sugar cane bagasse hemicellulose acid hydrolysate simultaneously. Based on fatty acid profile and 16S rRNA sequence, these isolates cluster with Bacillus coagulans although B. coagulans type strain, ATCC 7050, failed to utilize xylose as a carbon source. For successful production of ethanol from pyruvate, both pyruvate decarboxylase (PDC) and alcohol dehydrogenase (AHD) need to be produced at optimal levels in these biocatalysts. A plasmid containing the S. ventriculi pdc gene and the adh gene from geobacillus stearothermophilus was constructed using plasmid pWH1520 that was successfully used for expression of pdc in B. megaterium. The resulting portable ethanol (PET) plasmid, pJAM423, was transformed into B. megaterium. After xylose induction, a significant fraction of cell cytoplasm was composed of the S. ventriculi PDC and G. stearothermophilus ADH proteins. In preliminary experiments, the amount of ethanol produced by b. megaterium with plasmid pJAM423 was about twice (20 mM) of the bacterium without the plasmid. These results show that the PET operon is functional in B. megaterium but high level ethanol production needs further genetic and metabolic engineering. A genetic transfer system for the second generation biocatalysts needs to be developed for transferring the plasmid pJAM423 and its derivatives for engineering these organisms for ethanol production from biomass derived sugars and cellulose to ethanol. One of the new biocatalysts, strain P4-102B was found to be transformable with plasmids and the method for introducing plasmid pJAM423 into this strain and expression of the encoded DNA is being optimized. These new second generation biocatalysts have the potential to reduce the cost of SSF by minimizing the amount of fungal cellulases, a significant cost component in the use of biomass as a renewable resource for production of fuels and chemicals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gainullina, S.M.; Gumanova, A.V.; Vinogradova, N.A.
1978-01-01
The effects of DNA-attacking agents on thermophilic microorganisms were investigated. Bacillus stearothermophilus were treated with N-nitroso-N-methylurea, ultraviolet radiation or gamma radiation. Survival curves were plotted.
NASA Astrophysics Data System (ADS)
Okawa, H.; Akitsu, T.
2018-05-01
Plasma sterilization attracts an increasing attention as an alternative method for chemical sterilization. In this study, we investigate plasma sterilization for practical applications, particularly in dentistry and oral surgery [1]. Helium-diluted oxygen was excited by a dielectric barrier electrode at normal atmospheric pressure. Control of the neutral gas temperature was performed under the plasma sterilization. The relation between the intensity of the spectral emission from the excited oxygen atoms and bactericidal effect was investigated using Bacillus stearothermophilus and opportunistic infection bacterium. A comparison is performed with a low-frequency wide-gap discharge. Degradation and material conformity were investigated using the Tyvek unwoven fabric for the sterile package and soft-silicone resin, methyl-methacrylate powder filler used in the dental surgery.
Kim, Hye-Jung; Oh, Deok-Kun
2005-11-04
The araA gene, encoding l-arabinose isomerase (AI), from the thermophilic bacterium Geobacillus thermodenitrificans was cloned and expressed in Escherichia coli. Recombinant AI was isolated with a final purity of about 97% and a final specific activity of 2.10 U/mg. The molecular mass of the purified AI was estimated to be about 230 kDa to be a tetramer composed of identical subunits. The AI exhibited maximum activity at 70 degrees C and pH 8.5 in the presence of Mn2+. The enzyme was stable at temperatures below 60 degrees C and within the pH range 7.5-8.0. d-Galactose and l-arabinose as substrate were isomerized with high activities. Ribitol was the strongest competitive inhibitor of AI with a Ki of 5.5mM. The apparent Km and Vmax for L-arabinose were 142 mM and 86 U/mg, respectively, whereas those for d-galactose were 408 mM and 6.9 U/mg, respectively. The catalytic efficiency (kcat/Km) was 48 mM(-1)min(-1) for L-arabinose and 0.5mM(-1)min(-1) for D-galactose. Mn2+ was a competitive activator and increased the thermal stability of the AI. The D-tagatose yield produced by AI from d-galactose was 46% without the addition of Mn2+ and 48% with Mn2+ after 300 min at 65 degrees C.
Chamkha, Mohamed; Mnif, Sami; Sayadi, Sami
2008-06-01
An aerobic, thermophilic, halotolerant and Gram-positive bacterium, designated strain C5, was isolated from a high-temperature oil field, located in Sfax, Tunisia, after enrichment on tyrosol. Strain C5 grew between 25 and 70 degrees C and optimally at 50 degrees C. It grew in the presence of 0-12% (w/v) NaCl, with optimum growth at 3% (w/v) NaCl. Strain C5 was able to degrade tyrosol aerobically, in the presence of 30 g L(-1) NaCl and under warm conditions (55 degrees C). The degradation of tyrosol proceeded via p-hydroxyphenylacetic and 3,4-dihydroxyphenylacetic acids. The products were confirmed by HPLC and GC-MS analyses. Strain C5 was also found to degrde a wide range of other aromatic compounds, including benzoic, p-hydroxybenzoic, protocatechuic, vanillic, p-hydroxyphenylacetic, 3,4-dihydroxyphenylacetic, cinnamic and ferulic acids, phenol and m-cresol. Moreover, strain C5 was grown on diesel and crude oil as sole carbon and energy sources. Strain C5 was also able to utilize several carbohydrates. Phenotypic characteristics and phylogenetic analysis of the 16S rRNA gene sequence of strain C5 revealed that it was related to members of the genus Geobacillus, being most closely related to the type strain of G. pallidus (99% sequence similarity). In addition, we report on growth of the type strain of G. pallidus on different aromatic compounds and hydrocarbons.
Grande Burgos, María José; Pulido, Rubén Pérez; Del Carmen López Aguayo, María; Gálvez, Antonio; Lucas, Rosario
2014-12-08
Enterocin AS-48 is a circular bacteriocin produced by Enterococcus. It contains a 70 amino acid-residue chain circularized by a head-to-tail peptide bond. The conformation of enterocin AS-48 is arranged into five alpha-helices with a compact globular structure. Enterocin AS-48 has a wide inhibitory spectrum on Gram-positive bacteria. Sensitivity of Gram-negative bacteria increases in combination with outer-membrane permeabilizing treatments. Eukaryotic cells are bacteriocin-resistant. This cationic peptide inserts into bacterial membranes and causes membrane permeabilization, leading ultimately to cell death. Microarray analysis revealed sets of up-regulated and down-regulated genes in Bacillus cereus cells treated with sublethal bacteriocin concentration. Enterocin AS-48 can be purified in two steps or prepared as lyophilized powder from cultures in whey-based substrates. The potential applications of enterocin AS-48 as a food biopreservative have been corroborated against foodborne pathogens and/or toxigenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enterica) and spoilage bacteria (Alicyclobacillus acidoterrestris, Bacillus spp., Paenibacillus spp., Geobacillus stearothermophilus, Brochothrix thermosphacta, Staphylococcus carnosus, Lactobacillus sakei and other spoilage lactic acid bacteria). The efficacy of enterocin AS-48 in food systems increases greatly in combination with chemical preservatives, essential oils, phenolic compounds, and physico-chemical treatments such as sublethal heat, high-intensity pulsed-electric fields or high hydrostatic pressure.
Grande Burgos, María José; Pérez Pulido, Rubén; López Aguayo, María del Carmen; Gálvez, Antonio; Lucas, Rosario
2014-01-01
Enterocin AS-48 is a circular bacteriocin produced by Enterococcus. It contains a 70 amino acid-residue chain circularized by a head-to-tail peptide bond. The conformation of enterocin AS-48 is arranged into five alpha-helices with a compact globular structure. Enterocin AS-48 has a wide inhibitory spectrum on Gram-positive bacteria. Sensitivity of Gram-negative bacteria increases in combination with outer-membrane permeabilizing treatments. Eukaryotic cells are bacteriocin-resistant. This cationic peptide inserts into bacterial membranes and causes membrane permeabilization, leading ultimately to cell death. Microarray analysis revealed sets of up-regulated and down-regulated genes in Bacillus cereus cells treated with sublethal bacteriocin concentration. Enterocin AS-48 can be purified in two steps or prepared as lyophilized powder from cultures in whey-based substrates. The potential applications of enterocin AS-48 as a food biopreservative have been corroborated against foodborne pathogens and/or toxigenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enterica) and spoilage bacteria (Alicyclobacillus acidoterrestris, Bacillus spp., Paenibacillus spp., Geobacillus stearothermophilus, Brochothrix thermosphacta, Staphylococcus carnosus, Lactobacillus sakei and other spoilage lactic acid bacteria). The efficacy of enterocin AS-48 in food systems increases greatly in combination with chemical preservatives, essential oils, phenolic compounds, and physico-chemical treatments such as sublethal heat, high-intensity pulsed-electric fields or high hydrostatic pressure. PMID:25493478
Dlugokenski, Regina E F; Sella, Sandra R B R; Guizelini, Belquis P; Vandenberghe, Luciana P S; Woiciechowski, Adenise L; Soccol, Carlos R; Minozzo, João C
2011-04-01
A novel low-cost medium was developed from by-products and wastes from the ethanol agro-industry to replace commercial media in the production of a steam sterilization biological indicator (BI). Various recovery media were developed using soybean or sugarcane molasses and vinasse to prepare a self-contained BI. Media performance was evaluated by viability and heat resistance (D(121 °C) value) according to regulatory standards. A medium produced with a soybean vinasse ratio of 1:70 (1.4%) (w/v) produced the results, with D(121 °C)=2.9±0.5 min and Usk=12.7±2.1 min. The addition of 0.8% (w/v) yeast extract improved the germination of heat-damaged spores. The pH variation from 6.0 to 7.3 resulted in a gradual increase in the D(121 °C) value. The absence of calcium chloride resulted in a decrease in germination, while no significant differences were observed with starch addition. Soybean vinasses may thus be used as the main component of a culture medium to substitute for commercial media in the production of self-contained biological indicators. The use of ethanol production waste in this biotechnological process realized a reliable performance, minimized the environmental impact, and decreased BI production costs while producing a high quality product. © Springer-Verlag 2011
Improvement of Vivarium Biodecontamination through Data-acquisition Systems and Automation.
Devan, Shakthi Rk; Vasu, Suresh; Mallikarjuna, Yogesha; Ponraj, Ramkumar; Kamath, Gireesh; Poosala, Suresh
2018-03-01
Biodecontamination is important for eliminating pathogens at research animal facilities, thereby preventing contamination within barrier systems. We enhanced our facility's standard biodecontamination method to replace the traditional foggers, and the new system was used effectively after creating bypass ducts in HVAC units so that individual rooms could be isolated. The entire system was controlled by inhouse-developed supervisory control and data-acquisition software that supported multiple cycles of decontamination by equipment, which had different decontamination capacities, operated in parallel, and used different agents, including H2O2 vapor and ClO2 gas. The process was validated according to facility mapping, and effectiveness was assessed by using biologic (Geobacillus stearothermophilus) and chemical indicator strips, which were positioned before decontamination, and by sampling contact plates after the completion of each cycle. The results of biologic indicators showed 6-log reduction in microbial counts after successful decontamination cycles for both agents and found to be compatible with clean-room panels including commonly used materials in vivarium such as racks, cages, trolleys, cage changing stations, biosafety cabinets, refrigerators and other equipment in both procedure and animal rooms. In conclusion, the automated process enabled users to perform effective decontamination through multiple cycles with realtime documentation and provided additional capability to deal with potential outbreaks. Enabling software integration of automation improved quality-control systems in our vivarium.
Sumida, Yosuke; Iwai, Sachio; Nishiya, Yoshiaki; Kumagai, Shinya; Yamada, Toshihide; Azuma, Masayuki
2018-03-01
d-Amino acids are important building blocks for various compounds, such as pharmaceuticals and agrochemicals. A more cost-effective enzymatic method for d-amino acid production is needed in the industry. We improved a one-pot enzymatic method for d-amino acid production by the dynamic kinetic resolution of N-succinyl amino acids using two enzymes: d-succinylase (DSA) from Cupriavidus sp. P4-10-C, which hydrolyzes N-succinyl-d-amino acids enantioselectively to their corresponding d-amino acid, and N-succinyl amino acid racemase (NSAR, EC.4.2.1.113) from Geobacillus stearothermophilus NCA1503. In this study, DSA and NSAR were purified and their properties were investigated. The optimum temperature of DSA was 50°C and it was stable up to 55°C. The optimum pH of DSA and NSAR was around 7.5. In d-phenylalanine production, the optical purity of product was improved to 91.6% ee from the examination about enzyme concentration. Moreover, 100 mM N-succinyl-dl-tryptophan was converted to d-tryptophan at 81.8% yield with 94.7% ee. This enzymatic method could be useful for the industrial production of various d-amino acids. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
2004-11-17
Bacillus stearothermophilus spores, a species considered extremely resistant to peroxide sterilants . As seen for Decon GreenTM Classic, New Decon...Additional data is given for Bacillus anthracis and Bacillus stearothermophilus demonstrating that Decon GreenTM is also effective against bio...GreenTM retains excellent bio decon efficacy. TABLE 4. Decontamination of Bacillus stearothermophilus by New Decon GreenTM Challenge CFU Recovered
Disinfection of Wastewater by Microwaves.
1980-01-01
used. Thermophilic B. stearothermophilus cells were used to try to determine if the mechanism of destruction was thermal. The microwave oven was set at...curve for E. coli B cells heated in a microwave oven temperature programed for 600 C ...... ............ 8 7. Survivor curve for B. stearothermophilus ...ATCC 12980 cells heated in a microwave oven temperature programed for 600 C. 98. Survivor curve for B. stearothermophilus AICC 12980 ........ 9 9
Evolutionary engineering of Geobacillus thermoglucosidasius for improved ethanol production.
Zhou, Jiewen; Wu, Kang; Rao, Christopher V
2016-10-01
The ability to grow at high temperatures makes thermophiles attractive for many fermentation processes. In this work, we used evolutionary engineering to increase ethanol production in the thermophile Geobacillus thermoglucosidasius. This bacterium is a facultative anaerobe, grows at an optimal temperature of 60°C, and can ferment diverse carbohydrates. However, it natively performs mixed-acid fermentation. To improve ethanol productivity, we first eliminated lactate and formate production in two strains of G. thermoglucosidasius, 95A1 and C56-YS93. These deletion strains were generated by selection on spectinomycin, which represents, to the best of our knowledge, the first time this antibiotic has been shown to work with thermophiles. Both knockout strains, however, were unable to grow under microaerobic conditions. We were able to recover growth in G. thermoglucosidasius 95A1 by serial adaptation in the presence of acetic acid. The evolved 95A1 strain was able to efficiently produce ethanol during growth on glucose or cellobiose. Genome sequencing identified loss-of-function mutations in adenine phosphoribosyltransferase (aprt) and the stage III sporulation protein AA (spoIIIAA). Disruption of both genes improved ethanol production in the unadapted strains: however, the increase was significant only when aprt was deleted. In conclusion, we were able to engineer a strain of G. thermoglucosidasius to efficiently produce ethanol from glucose and cellobiose using a combination of metabolic engineering and evolutionary strategies. This work further establishes this thermophile as a platform organism for fuel and chemical production. Biotechnol. Bioeng. 2016;113: 2156-2167. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sterilization of liquid foods by pulsed electric fields–an innovative ultra-high temperature process
Reineke, Kai; Schottroff, Felix; Meneses, Nicolas; Knorr, Dietrich
2015-01-01
The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm−1), skim milk (0.3% fat; 5.3 mS cm−1) and fresh prepared carrot juice (7.73 mS cm−1). The combination of moderate preheating (70–90°C) and an insulated PEF-chamber, combined with a holding tube (65 cm) and a heat exchanger for cooling, enabled a rapid heat up to 105–140°C (measured above the PEF chamber) within 92.2–368.9 μs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using computational fluid dynamics (CFD). A preheating of saline water to 70°C with a flow rate of 5 l h−1, a frequency of 150 Hz and an energy input of 226.5 kJ kg−1, resulted in a measured outlet temperature of 117°C and a 4.67 log10 inactivation of B. subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for G. stearothermophilus spores in saline water. A preheating to 95°C and an energy input of 144 kJ kg−1 resulted in an outlet temperature of 126°C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10) was achieved during the thermal treatment. Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring inhomogeneous temperature fields. PMID:25999930
Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations.
Rozali, Siti N M; Milani, Elham A; Deed, Rebecca C; Silva, Filipa V M
2017-12-18
Spores are the most resistant form of microbial cells, thus difficult to inactivate. The pathogenic or food spoilage effects of certain spore-forming microorganisms have been the primary basis of sterilization and pasteurization processes. Thermal sterilization is the most common method to inactivate spores present on medical equipment and foods. High pressure processing (HPP) is an emerging and commercial non-thermal food pasteurization technique. Although previous studies demonstrated the effectiveness of thermal and non-thermal spore inactivation, the in-depth mechanisms of spore inactivation are as yet unclear. Live and dead forms of two food spoilage bacteria, a mould and a yeast were examined using scanning electron microscopy before and after the inactivation treatment. Alicyclobacillus acidoterrestris and Geobacillus stearothermophilus bacteria are indicators of acidic foods pasteurization and sterilization processes, respectively. Neosartorya fischeri is a phyto-pathogenic mould attacking fruits. Saccharomyces cerevisiae is a yeast with various applications for winemaking, brewing, baking and the production of biofuel from crops (e.g. sugar cane). Spores of the four microbial species were thermally inactivated. Spores of S. cerevisiae were observed in the ascus and free form after thermal and HPP treatments. Different forms of damage and cell destruction were observed for each microbial spore. Thermal treatment inactivated bacterial spores of A. acidoterrestris and G. stearothermophilus by attacking the inner core of the spore. The heat first altered the membrane permeability allowing the release of intracellular components. Subsequently, hydration of spores, physicochemical modifications of proteins, flattening and formation of indentations occurred, with subsequent spore death. Regarding N. fischeri, thermal inactivation caused cell destruction and leakage of intracellular components. Both thermal and HPP treatments of S. cerevisiae free spores attacked the inner membrane, altering its permeability, and allowing in final stages the transfer of intracellular components to the outside. The spore destruction caused by thermal treatment was more severe than HPP, as HPP had less effect on the spore core. All injured spores have undergone irreversible volume and shape changes. While some of the leakage of spore contents is visible around the deformed but fully shaped spore, other spores exhibited large indentations and were completely deformed, apparently without any contents inside. This current study contributed to the understanding of spore inactivation by thermal and non-thermal processes. Copyright © 2017 Elsevier B.V. All rights reserved.
Yuliana, Tri; Ebihara, Kyota; Suzuki, Mio; Shimonaka, Chie; Amachi, Seigo
2015-12-01
Alphaproteobacterium strain Q-1 produces an extracellular multicopper oxidase (IOX), which catalyzes iodide (I-) oxidation to form molecular iodine (I2). In this study, the antimicrobial activity of the IOX/iodide system was determined. Both Gram-positive and Gram-negative bacteria tested were killed completely within 5 min by 50 mU mL(-1) of IOX and 10 mM iodide. The sporicidal activity of the system was also tested and compared with a common iodophor, povidone-iodine (PVP-I). IOX (300 mU mL(-1)) killed Bacillus cereus, B. subtilis, and Geobacillus stearothermophilus spores with decimal reduction times of 2.58, 7.62, and 40.9 min, respectively. However, 0.1% PVP-I killed these spores with much longer decimal reduction times of 5.46, 38.0, and 260 min, respectively. To evaluate the more superior sporicidal activity of the IOX system over PVP-I, the amount of free iodine (non-complexed I2) was determined by an equilibrium dialysis technique. The IOX system included more than 40 mg L(-1) of free iodine, while PVP-I included at most 25 mg L(-1) free iodine. Our results suggest that the new enzyme-based antimicrobial system is effective against a wide variety of microorganisms and bacterial spores, and that its strong biocidal activity is due to its high free iodine content, which is probably maintained by re-oxidation of iodide released after oxidation of cell components by I2.
Prakash, Heena; Chauhan, Prakram Singh; General, Thiyam; Sharma, A K
2018-07-01
Conversion of agro-industrial wastes to energy is an innovative approach for waste valorization and management which also mitigates environmental pollution. In this view, present study investigated the feasibility of producing bioethanol from banana peels using cocktail of depolymerizing enzyme/s. We isolated Geobacillus stearothermophilus HPA19 from natural resource which produces cocktail of thermo-alkali-stable xylano-pectino-cellulolytic enzyme/s using wheat bran within 24 h. The optimal temperature and pH for xylanase, filter paper cellulase and pectinase were 80, 70 and 80 °C, and 9.0, 8.0 and 9.0, respectively. Cocktail enzymes showed stability at high temperature (80 °C) and pH (10.0). Ni 2+ and Zn 2+ promoted the relative activity of xylanase and FPase, whereas Na + , Ca 2+ and K + promoted pectinase activity. Cocktail was assessed in saccharification of banana peel. Reducing sugar obtained (37.06 mg ml -1 ) after one variable at a time (OVAT) method is greatly influenced by enzyme dose. Further, response surface methodology was used to optimize saccharification leading to twofold increase in reducing sugar. Maximum ethanol production (21.1 gl -1 ) was achieved through fermentation giving the efficiency of 76.5% within 30 h. Hence utilization of waste biomass for production of value-added products through biotechnological intervention not only helps to combat environmental pollution but also contributes significantly to the economy.
Creation of metal-independent hyperthermophilic L-arabinose isomerase by homologous recombination.
Hong, Young-Ho; Lee, Dong-Woo; Pyun, Yu-Ryang; Lee, Sung Haeng
2011-12-28
Hyperthermophilic L-arabinose isomerases (AIs) are useful in the commercial production of D-tagatose as a low-calorie bulk sweetener. Their catalysis and thermostability are highly dependent on metals, which is a major drawback in food applications. To study the role of metal ions in the thermostability and catalysis of hyperthermophilic AI, four enzyme chimeras were generated by PCR-based hybridization to replace the variable N- and C-terminal regions of hyperthermophilic Thermotoga maritima AI (TMAI) and thermophilic Geobacillus stearothermophilus AI (GSAI) with those of the homologous mesophilic Bacillus halodurans AI (BHAI). Unlike Mn(2+)-dependent TMAI, the GSAI- and TMAI-based hybrids with the 72 C-terminal residues of BHAI were not metal-dependent for catalytic activity. By contrast, the catalytic activities of the TMAI- and GSAI-based hybrids containing the N-terminus (residues 1-89) of BHAI were significantly enhanced by metals, but their thermostabilities were poor even in the presence of Mn(2+), indicating that the effects of metals on catalysis and thermostability involve different structural regions. Moreover, in contrast to the C-terminal truncate (Δ20 residues) of GSAI, the N-terminal truncate (Δ7 residues) exhibited no activity due to loss of its native structure. The data thus strongly suggest that the metal dependence of the catalysis and thermostability of hyperthermophilic AIs evolved separately to optimize their activity and thermostability at elevated temperatures. This may provide effective target regions for engineering, thereby meeting industrial demands for the production of d-tagatose.
Orthodontic instrument sterilization with microwave irradiation.
Yezdani, Arif; Mahalakshmi, Krishnan; Padmavathy, Kesavaram
2015-04-01
This study was designed to evaluate the efficiency of microwave sterilization of orthodontic instruments and molar bands immersed in plain distilled water with and without oral rinse, and to ascertain the minimum time of exposure required to sterilize. The orthodontic instruments (hinged and nonhinged), molar bands and mouth mirrorsused in the patient 's mouth were selected for the study. The instruments were divided into two groups - Group I with oral rinse-set A (0.01% chlorhexidine gluconate) and set B (0.025% betadine) and Group II (included sets C and D without oral rinse). The instruments of set A, B and C were microwaved at 2,450 MHz, 800 W for 5 min, whereas, set D was microwaved for 10 min at the same above mentioned specifications. The efficacy of sterilization was assessed by stab inoculation of the instruments onto trypticase soya agar plates. The plates were checked for bacterial growth following incubation at 37 °C for 24 h. For sterility control,Geobacillus stearothermophilus (MTCC 1518) was included. No growth was observed in the plates that were inoculated with the microwaved orthodontic instruments of sets A, B and D, whereas scanty bacterial growth was observed in the plates inoculatedwith the microwaved set C instruments. Effective sterilization was achieved when the orthodontic instruments and molar bands were immersed in distilled water without oral rinse and microwaved for 10 min as also for those that were immersed in distilled water with oral rinse and microwaved for 5 min.
Sterilization of rotary NiTi instruments within endodontic sponges.
Chan, H W A; Tan, K H; Dashper, S G; Reynolds, E C; Parashos, P
2015-08-17
To determine whether the following can be sterilized by autoclaving - endodontic sponges, rotary nickel-titanium (NiTi) instruments within endodontic sponges, and rotary NiTi instruments with rubber stoppers. Sixty-four samples of eight different endodontic sponges (n = 512) were placed into brain heart infusion broth (BHI) for 72 h. An aliquot of this was then spread onto horse blood agar and cultured aerobically and anaerobically to test sterility at purchase. Bacterial suspensions of Enterococcus faecalis, Porphyromonas gingivalis and Geobacillus stearothermophilus in BHI were used to contaminate sterile sponges and rotary NiTi instruments (with and without rubber stoppers) inserted into sponges. The various samples were autoclaved and then cultured aerobically and anaerobically. Success of sterilization was measured qualitatively as no growth. The experiment was repeated with clinically used rotary NiTi instruments (n = 512). All experiments were conducted in quadruplicate. No sponges on purchase had microbial growth when anaerobically cultured but some did when aerobically cultured. All autoclaved sponges and instruments (within or without sponges, and with or without rubber stoppers) were associated with no microbial growth. All nonautoclaved positive control samples showed microbial growth. Autoclaving was effective in the sterilization of sponges and endodontic instruments. Endodontic sponges should be autoclaved before clinical use. For clinical efficiency and cost-effectiveness, rotary NiTi instruments can be sterilized in endodontic sponges without removal of rubber stoppers. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Orthodontic instrument sterilization with microwave irradiation
Yezdani, Arif; Mahalakshmi, Krishnan; Padmavathy, Kesavaram
2015-01-01
Objective: This study was designed to evaluate the efficiency of microwave sterilization of orthodontic instruments and molar bands immersed in plain distilled water with and without oral rinse, and to ascertain the minimum time of exposure required to sterilize. Materials and Methods: The orthodontic instruments (hinged and nonhinged), molar bands and mouth mirrorsused in the patient 's mouth were selected for the study. The instruments were divided into two groups – Group I with oral rinse-set A (0.01% chlorhexidine gluconate) and set B (0.025% betadine) and Group II (included sets C and D without oral rinse). The instruments of set A, B and C were microwaved at 2,450 MHz, 800 W for 5 min, whereas, set D was microwaved for 10 min at the same above mentioned specifications. The efficacy of sterilization was assessed by stab inoculation of the instruments onto trypticase soya agar plates. The plates were checked for bacterial growth following incubation at 37 °C for 24 h. For sterility control,Geobacillus stearothermophilus (MTCC 1518) was included. Results: No growth was observed in the plates that were inoculated with the microwaved orthodontic instruments of sets A, B and D, whereas scanty bacterial growth was observed in the plates inoculatedwith the microwaved set C instruments. Conclusion: Effective sterilization was achieved when the orthodontic instruments and molar bands were immersed in distilled water without oral rinse and microwaved for 10 min as also for those that were immersed in distilled water with oral rinse and microwaved for 5 min. PMID:26015686
Sterilization Effect of Wet Oxygen Plasma in the Bubbling Method.
Tamazawa, Kaoru; Shintani, Hideharu; Tamazawa, Yoshinori; Shimauchi, Hidetoshi
2015-01-01
A new low-temperature sterilization method to replace the ethylene oxide gas sterilization is needed. Strong bactericidal effects of OH and O2H radicals are well known. The purpose of this study was to evaluate the sterilization effect of wet oxygen ("O2+H2O") plasma in the bubbling method, confirming the effect of humidity. Sterility assurance was confirmed by using a biological indicator (Geobacillus stearothermophilus ATCC7953, Namsa, USA). One hundred and eight samples (10(5) spores/carrier) were divided into three groups of 36 in each for treatment with a different type of gas (O2, O2+H2O, Air+H2O). Plasma processing was conducted using a plasma ashing apparatus (13.56 MHz, PACK-3(®), Y. A. C., Japan) under various gas pressures (13, 25, 50 Pa) and gas flows (50, 100, 200 sccm). Fixed plasma treatment parameters were power at 150 W, temperature of 60 ℃, treatment time of 10 min. The samples after treatment were incubated in trypticase soy broth at 58 ℃ for 72 h. The negative culture rate in the "O2+H2O" group was significantly (Mantel-Haenszel procedure, p<0.001) higher than in the other gas groups. It is suggested that the significant sterilization effect of the "O2+H2O" group depends on the bubbling method which is the method of introducing vapor into the chamber. The bubbling method seems able to generate OH and O2H radicals in a stable way.
Wendling, Morgan; Richter, William; Lastivka, Andrew; Mickelsen, Leroy
2016-01-01
The primary goal of this study was to determine the conditions required for the effective inactivation of Bacillus anthracis spores on materials by using methyl bromide (MeBr) gas. Another objective was to obtain comparative decontamination efficacy data with three avirulent microorganisms to assess their potential for use as surrogates for B. anthracis Ames. Decontamination tests were conducted with spores of B. anthracis Ames and Geobacillus stearothermophilus, B. anthracis NNR1Δ1, and B. anthracis Sterne inoculated onto six different materials. Experimental variables included temperature, relative humidity (RH), MeBr concentration, and contact time. MeBr was found to be an effective decontaminant under a number of conditions. This study highlights the important role that RH has when fumigation is performed with MeBr. There were no tests in which a ≥6-log10 reduction (LR) of B. anthracis Ames was achieved on all materials when fumigation was done at 45% RH. At 75% RH, an increase in the temperature, the MeBr concentration, or contact time generally improved the efficacy of fumigation with MeBr. This study provides new information for the effective use of MeBr at temperatures and RH levels lower than those that have been recommended previously. The study also provides data to assist with the selection of an avirulent surrogate for B. anthracis Ames spores when additional tests with MeBr are conducted. PMID:26801580
Zinc-binding Domain of the Bacteriophage T7 DNA Primase Modulates Binding to the DNA Template*
Lee, Seung-Joo; Zhu, Bin; Akabayov, Barak; Richardson, Charles C.
2012-01-01
The zinc-binding domain (ZBD) of prokaryotic DNA primases has been postulated to be crucial for recognition of specific sequences in the single-stranded DNA template. To determine the molecular basis for this role in recognition, we carried out homolog-scanning mutagenesis of the zinc-binding domain of DNA primase of bacteriophage T7 using a bacterial homolog from Geobacillus stearothermophilus. The ability of T7 DNA primase to catalyze template-directed oligoribonucleotide synthesis is eliminated by substitution of any five-amino acid residue-long segment within the ZBD. The most significant defect occurs upon substitution of a region (Pro-16 to Cys-20) spanning two cysteines that coordinate the zinc ion. The role of this region in primase function was further investigated by generating a protein library composed of multiple amino acid substitutions for Pro-16, Asp-18, and Asn-19 followed by genetic screening for functional proteins. Examination of proteins selected from the screening reveals no change in sequence-specific recognition. However, the more positively charged residues in the region facilitate DNA binding, leading to more efficient oligoribonucleotide synthesis on short templates. The results suggest that the zinc-binding mode alone is not responsible for sequence recognition, but rather its interaction with the RNA polymerase domain is critical for DNA binding and for sequence recognition. Consequently, any alteration in the ZBD that disturbs its conformation leads to loss of DNA-dependent oligoribonucleotide synthesis. PMID:23024359
Sterility Testing of Prototype Plastic Aseptic Docking Tubes
1982-09-01
Bacillus stearothermophilus CL21. AmerRACT (Coat~e- aeids uIf 8" niev teIi by block n"Unbee) Fifty-nine pairs of sterile docking tabs, manufactured...of Bacillus stearothermophilus , _J sealed, and flushed with sterile culture medium. Twenty five percent of the LA_.. seals failed because of...were similarly attached to sterile tubes of Becton Dickenson supplemented peptone broth. A 25 ul aliquot of Bacillus stearothermophilus spores (Ix]O
Spicher, G; Peters, J; Borchers, U
1999-02-01
For the spores of Bacillus subtilis and Bacillus stearothermophilus as well as for spore earth (acc. DIN 58,946 Part 4 of August 1982), the dependence of resistance on the superheating of the steam used to kill germs was determined. A material (glass fibre fleece) was used as the germ carrier which does not superheat on contact with steam. The temperature of the saturated steam was 100 degrees C (B. subtilis) and 120 degrees C (B. stearothermophilus and spore earth). The yardstick for the resistance of the spores or bioindicators was the exposure period of the saturated or superheated steam at which 50% of the treated test objects no longer showed any viable test germs. The spores of Bacillus subtilis were far more sensitive to superheating of steam and reacted far more than the spores of Bacillus stearothermophilus and the germs in the spore earth. When superheating by 4 Kelvin the spores of Bacillus subtilis were approximately 2.5 times more resistant than they were to saturated steam. The resistance of Bacillus stearothermophilus and spore earth was only slightly higher up to superheating by 10 Kelvin. The spores of Bacillus subtilis had the highest resistance during superheating by 29 Kelvin; they were 119 times more resistant than they were to saturated steam. The resistance maximum of the spores of Bacillus stearothermophilus was at an superheating by around 22 Kelvin. However, the spores were only 4.1 times more resistant than they were to saturated steam. When using steam to kill germs, we must expect superheated steam. This raises the question whether the spores of Bacillus stearothermophilus, with their weaker reaction to the superheating of steam, are suitable as test germs for sterilisation with steam in all cases.
Somerton, Ben; Flint, Steve; Palmer, Jon; Brooks, John; Lindsay, Denise
2013-07-01
Preconditioning of Anoxybacillus flavithermus E16 and Geobacillus sp. strain F75 with cations prior to attachment often significantly increased (P ≤ 0.05) the number of viable cells that attached to stainless steel (by up to 1.5 log CFU/cm(2)) compared with unconditioned bacteria. It is proposed that the transition of A. flavithermus and Geobacillus spp. from milk formulations to stainless steel product contact surfaces in milk powder manufacturing plants is mediated predominantly by bacterial physiological factors (e.g., surface-exposed adhesins) rather than the concentrations of cations in milk formulations surrounding bacteria.
Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry.
Kirpekar, F; Douthwaite, S; Roepstorff, P
2000-02-01
We present a method to screen RNA for posttranscriptional modifications based on Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). After the RNA is digested to completion with a nucleotide-specific RNase, the fragments are analyzed by mass spectrometry. A comparison of the observed mass data with the data predicted from the gene sequence identifies fragments harboring modified nucleotides. Fragments larger than dinucleotides were valuable for the identification of posttranscriptional modifications. A more refined mapping of RNA modifications can be obtained by using two RNases in parallel combined with further fragmentation by Post Source Decay (PSD). This approach allows fast and sensitive screening of a purified RNA for posttranscriptional modification, and has been applied on 5S rRNA from two thermophilic microorganisms, the bacterium Bacillus stearothermophilus and the archaeon Sulfolobus acidocaldarius, as well as the halophile archaea Halobacterium halobium and Haloarcula marismortui. One S. acidocaldarius posttranscriptional modification was identified and was further characterized by PSD as a methylation of cytidine32. The modified C is located in a region that is clearly conserved with respect to both sequence and position in B. stearothermophilus and H. halobium and to some degree also in H. marismortui. However, no analogous modification was identified in the latter three organisms. We further find that the 5' end of H. halobium 5S rRNA is dephosphorylated, in contrast to the other 5S rRNA species investigated. The method additionally gives an immediate indication of whether the expected RNA sequence is in agreement with the observed fragment masses. Discrepancies with two of the published 5S rRNA sequences were identified and are reported here.
Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry.
Kirpekar, F; Douthwaite, S; Roepstorff, P
2000-01-01
We present a method to screen RNA for posttranscriptional modifications based on Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). After the RNA is digested to completion with a nucleotide-specific RNase, the fragments are analyzed by mass spectrometry. A comparison of the observed mass data with the data predicted from the gene sequence identifies fragments harboring modified nucleotides. Fragments larger than dinucleotides were valuable for the identification of posttranscriptional modifications. A more refined mapping of RNA modifications can be obtained by using two RNases in parallel combined with further fragmentation by Post Source Decay (PSD). This approach allows fast and sensitive screening of a purified RNA for posttranscriptional modification, and has been applied on 5S rRNA from two thermophilic microorganisms, the bacterium Bacillus stearothermophilus and the archaeon Sulfolobus acidocaldarius, as well as the halophile archaea Halobacterium halobium and Haloarcula marismortui. One S. acidocaldarius posttranscriptional modification was identified and was further characterized by PSD as a methylation of cytidine32. The modified C is located in a region that is clearly conserved with respect to both sequence and position in B. stearothermophilus and H. halobium and to some degree also in H. marismortui. However, no analogous modification was identified in the latter three organisms. We further find that the 5' end of H. halobium 5S rRNA is dephosphorylated, in contrast to the other 5S rRNA species investigated. The method additionally gives an immediate indication of whether the expected RNA sequence is in agreement with the observed fragment masses. Discrepancies with two of the published 5S rRNA sequences were identified and are reported here. PMID:10688367
Koike-Takeshita, A; Koyama, T; Ogura, K
1997-05-09
We recently described the isolation and sequence analysis of a DNA region containing the genes of Bacillus stearothermophilus heptaprenyl diphosphate synthase, which catalyzes the synthesis of the prenyl side chain of menaquinone-7 of this bacterium. Sequence analyses revealed the presence of three open reading frames (ORFs), designated as ORF-1, ORF-2, and ORF-3, and the structural genes of the heptaprenyl diphosphate synthase were proved to consist of ORF-1 (heps-1) and ORF-3 (heps-2) (Koike-Takeshita, A., Koyama, T., Obata, S., and Ogura, K. (1995) J. Biol. Chem. 270, 18396-18400). The predicted amino acid sequence of ORF-2 (234 amino acids) contains a methyltransferase consensus sequence and shows a 22% identity with UbiG of Escherichia coli, which catalyzes S-adenosyl-L-methionine-dependent methylation of 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone. These pieces of information led us to identify the ORF-2 gene product. The cell-free homogenate of the transformant of E. coli with an expression vector of ORF-2 catalyzed the incorporation of S-adenosyl-L-methionine into menaquinone-8, indicating that ORF-2 encodes 2-heptaprenyl-1,4-naphthoquinone methyltransferase, which participates in the terminal step of the menaquinone biosynthesis. Thus it is concluded that the ORF-1, ORF-2, and ORF-3 genes, designated heps-1, menG, and heps-2, respectively, form another cluster involved in menaquinone biosynthesis in addition to the cluster of menB, menC, menD, and menE already identified in the Bacillus subtilis and E. coli chromosomes.
Flint, Steve; Palmer, Jon; Brooks, John; Lindsay, Denise
2013-01-01
Preconditioning of Anoxybacillus flavithermus E16 and Geobacillus sp. strain F75 with cations prior to attachment often significantly increased (P ≤ 0.05) the number of viable cells that attached to stainless steel (by up to 1.5 log CFU/cm2) compared with unconditioned bacteria. It is proposed that the transition of A. flavithermus and Geobacillus spp. from milk formulations to stainless steel product contact surfaces in milk powder manufacturing plants is mediated predominantly by bacterial physiological factors (e.g., surface-exposed adhesins) rather than the concentrations of cations in milk formulations surrounding bacteria. PMID:23645192
Sielaff, Hendrik; Martin, James; Singh, Dhirendra; Biuković, Goran; Grüber, Gerhard; Frasch, Wayne D.
2016-01-01
The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A3B3DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α3β3γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A3B3DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A3B3DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits. PMID:27729450
Omrane Benmrad, Maroua; Moujehed, Emna; Ben Elhoul, Mouna; Zaraî Jaouadi, Nadia; Mechri, Sondes; Rekik, Hatem; Kourdali, Sidali; El Hattab, Mohamed; Badis, Abdelmalek; Sayadi, Sami; Bejar, Samir; Jaouadi, Bassem
2016-10-01
A protease-producing fungus was isolated from an alkaline wastewater of chemical industries and identified as Trametes cingulata strain CTM10101 on the basis of the ITS rDNA gene-sequencing. It was observed that the fungus strongly produce extracellular protease grown at 30°C in potato-dextrose-broth (PDB) optimized media (13500U/ml). The pure serine protease isolated by Trametes cingulata (designated SPTC) was purified by ammonium sulfate precipitation-dialysis followed by heat-treatment and UNO S-1 FPLC cation-exchange chromatography. The chemical characterization carried on include phisico-chemical determination and spectroscopie analysis. The MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 31405.16-Da. The enzyme had an NH2-terminal sequence of ALTTQTEAPWALGTVSHKGQAST, thus sharing high homology with those of fungal-proteases. The optimum pH and temperature values of its proteolytic activity were pH 9 and 60°C, respectively, and its half-life times at 60 and 70°C were 9 and 5-h, respectively. It was completely inhibited by PMSF and DFP, which strongly suggested its belonging to the serine protease family. Compared to Flavourzyme(®)500L from Aspergillus oryzae and Thermolysin typeX from Geobacillus stearothermophilus, SPTC displayed higher levels of hydrolysis, substrate specificity, and catalytic efficiency as well as elevated organic solvent tolerance and considerable detergent stability. Finally, SPTC could potentially be used in peptide synthesis and detergent formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
McDonnell, Gerald; Ehrman, Michele; Kiess, Sara
2016-06-01
A troubling number of health care-acquired infection outbreaks and transmission events, some involving highly resistant microbial pathogens and resulting in serious patient outcomes, have been traced to reusable, high-level disinfected duodenoscopes in the United States. The Food and Drug Administration (FDA) requested a study be conducted to verify liquid chemical sterilization efficacy of SYSTEM 1E(®) Liquid Chemical Sterilant Processing System (STERIS Corporation, Mentor, OH) with varied duodenoscope designs under especially arduous conditions. Here, we describe the system's performance under worst case SYSTEM 1E(®) processing conditions. The test protocol challenged the system's performance by running a fractional cycle to evaluate reduction of recoverable test spores from heavily contaminated endoscopes, including all channels and each distal tip, under worst case SYSTEM 1E(®) processing conditions. All devices were successfully liquid chemically sterilized, showing greater than a 6 log10 reduction of Geobacillus stearothermophilus spores at every inoculation site of each duodenoscope tested, in less than half the exposure time of the standard cycle. The successful outcome of the additional efficacy testing reported here indicates that the SYSTEM 1E(®) is an effective low-temperature liquid chemical sterilization method for duodenoscopes and other critical and semicritical devices. It offers a fast, safe, convenient processing alternative while providing the assurance of a system expressly tested and cleared to achieve liquid chemical sterilization of specific validated duodenoscope models. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chon, Hyongi; Matsumura, Hiroyoshi; Koga, Yuichi
2005-03-01
A thermostable ribonuclease HIII from B. stearothermophilus (Bst RNase HIII) was crystallized and preliminary crystallographic studies were performed. Plate-like overlapping polycrystals were grown by the sitting-drop vapour-diffusion method at 283 K.
Berendsen, Erwin M.; Wells-Bennik, Marjon H. J.; Krawczyk, Antonina O.; de Jong, Anne; van Heel, Auke; Holsappel, Siger; Eijlander, Robyn T.
2016-01-01
Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria. PMID:27151781
Sirisinha, Stitaya; Allen, Peter Z.
1965-01-01
Sirishinha, Stitaya (University of Rochester School of Medicine and Dentistry, Rochester, N.Y.), and Peter Z. Allen. Immunochemical studies on α-amylase. III. Immunochemical relationships among amylases from various microorganisms. J. Bacteriol. 90:1120–1128. 1965.—Immunochemical relationships among amylases obtained from a selected group of microorganisms were examined, and a cross-reaction was detected between the α-amylases of Bacillus stearothermophilus and B. subtilis. Immunodiffusion and quantitative precipitin studies, as well as cross-neutralization tests, indicate that B. stearothermophilus α-amylase reacts with a portion of antibody present in antisera to crystalline B. subtilis α-amylase. Amylases from these two species thus have some aspects of structure in common. Limited data obtained by immunodiffusion suggest that groupings which confer cross-reactivity to the B. stearothermophilus enzyme are lost after exposure to mercaptoethanol in the presence of ethylenediamine-tetraacetate, followed by treatment with iodoacetamide. With the antisera employed and within the concentration range examined, no immunochemical cross-reaction was observed among amylases from Aspergillus oryzae, B. subtilis, B. polymyxa, B. macerans, Pseudomonas saccharophila, and Euglena sanguinis. Immunoelectrophoresis of partially purified B. stearothermophilus α-amylase by use of antiserum to the crude enzyme, together with localization of amylase activity in immunoelectrophoretic plates, suggests that B. stearothermophilus α-amylase is antigenic in the rabbit. Images PMID:5847799
Ribonucleic Acid and Ribosomes of Bacillus stearothermophilus1
Saunders, Grady F.; Campbell, L. Leon
1966-01-01
Saunders, Grady F. (University of Illinois, Urbana), and L. Leon Campbell. Ribonucleic acid and ribosomes of Bacillus stearothermophilus. J. Bacteriol. 91:332–339. 1966.—The ability of some thermophilic bacteria to grow at temperatures as high as 76 C emphasizes the remarkable thermal stability of their crucial macromolecules. An investigation of the ribonucleic acid (RNA) and ribosomes of Bacillus stearothermophilus was conducted. Washed log-phase cells were disrupted either by sonic treatment or by alumina grinding in 10−2m MgCl2–10−2m tris-(hydroxymethyl)aminomethane buffer, pH 7.4 (TM buffer). Ultracentrifugal analysis revealed peaks at 72.5S, 101S, and 135S, with the 101S peak being the most prominent. By lowering the Mg++ concentration to 10−3m, the ribosome preparation was dissociated to give 40S, 31S, and 54S peaks. These in turn were reassociated in the presence of 10−2m Mg++ to give the larger 73S and 135S particles. When heated in TM buffer, Escherichia coli ribosomes began a gradual dissociation at 58 C, and at 70 C underwent a large hyperchromic shift with a Tm at 72.8 C. In contrast, B. stearothermophilus ribosomes did not show a hyperchromic shift below 70 C; they had a Tm of 77.9 C. The thermal denaturation curves of the 4S, 16S, and 23S RNA from both organisms were virtually identical. The gross amino acid composition of B. stearothermophilus ribosomes showed no marked differences from that reported for E. coli ribosomes. These data suggest that the unusual thermal stability of B. stearothermophilus ribosomes may reflect either an unusual packing arrangement of the protein to the RNA or differences in the primary structure of the ribosomal proteins. Images PMID:5903099
Genetic map of the Bacillus stearothermophilus NUB36 chromosome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallier, H.; Welker, N.E.
1990-02-01
A circular genetic map of Bacillus stearothermophilus NUB36 was constructed by transduction with bacteriophage TP-42C and protoplast fusion. Sixty-four genes were tentatively assigned a cognate Bacillus subtilis gene based on growth response to intermediates or end products of metabolism, cross-feeding, accumulation of intermediates, or their relative order in a linkage group. Although the relative position of many genes on the Bacillus subtilis genetic map appears to be similar, some differences were detected. The tentative order of the genes in the Bacillus stearothermophilus aro region is aspB-aroBAFEC-tyra-hisH-(trp), whereas it is aspB-aroE-tyrA-hisH-(trp)-aroHBF in Bacillus subtilis. The aroA, aroC, and aroG genes inmore » Bacillus subtilis are located in another region. The tentative order of genes in the trp operon of Bacillus stearothermophilus is trpFCDABE, whereas it is trpABFCDE in Bacillus subtilis.« less
21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture...
21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture...
21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false α-Amylase enzyme preparation from Bacillus... Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture filtrate that results from a pure...
21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture...
21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture...
Comparison of the efficacy of steam sterilization indicators.
Lee, C H; Montville, T J; Sinskey, A J
1979-01-01
Twenty-one commercially available chemical steam sterilization indicators were processed in an empty autoclave for various times at temperatures between 240 and 270 degrees F (ca. 116 and 132 degrees C). The time required to reach a sterilized reading at each temperature was plotted on a semilogarithmic time-temperature plot and compared with the time-temperature sterilization curve for Bacillus stearothermophilus. Five of the indicators had time-temperature kinetics similar to those of B. stearothermophilus, but three of these overestimated the effect of processing. Two of the indicators overestimated the effect of processing and were less sensitive to temperature changes when was B. stearothermophilus. Thirteen of the indicators had time-temperature curves that crossed the B. stearothermophilus plot. One indicator produced such ambiguous results that no determinations could be made with it. Out of 21 indicators tested, only 2 appear to be capable of accurately integrating the time-temperature effect at temperatures between 240 and 270 degrees F. The other indicators should be used only after careful analysis of their suitability for use at a given temperature. PMID:485144
Ugwuanyi, J Obeta; Harvey, L M; McNeil, B
2007-01-01
Thermophilic Bacillus spp. isolated from thermophilic aerobic digestion (TAD) of model agricultural slurry were screened for ability to secret linamarase activity and degrade linamarin, a cyanogenic glycoside toxin abundant in cassava. Screening was performed by both linamarin - picrate assay and by p-nitrophenyl beta-D-glucoside (PNPG) degradation, and results of both assays were related. Linamarase positive isolates were identified as Bacillus coagulans, Bacillus licheniformis and Bacillus stearothermophilus. Enzyme production was growth related and peak production was reached in 48 h in B. coagulans and 36 h in B. stearothermophilus. B. coagulans produced over 40 times greater activity than B. stearothermophilus. Enzyme productivity in shake flask was not strictly related to screening assay result. Crude enzyme of B. coagulans was optimally active at 75 degrees C while that of B. stearothermophilus was optimally active at 80 degrees C and both had optimum activity at pH 8.0. The thermophilic and neutrophilic- to marginally alkaline activity of the crude enzymes could be very useful in the detoxification and reprocessing of cyanogens containing cassava wastes by TAD for use in animal nutrition.
Kim, Young-Kee; Bae, Jin-Hye; Oh, Byung-Keun; Lee, Won Hong; Choi, Jeong-Woo
2002-04-01
Proteolysis is one of the main enzymatic reactions involved in waste activated sludge (WAS) digestion. In this study, proteases excreted from Bacillus stearothermophilus (ATCC 31197) were classified, and an enhancement of protease activity was achieved using economical chemical additives for WAS digestion. Proteases excreted from B. stearothermophilus were classified into two families: serine and metallo-proteases. Various metal ions were investigated as additives which could potentially enhance protease activity. It was observed that Ca2+ and Fe2+ could markedly activate these enzymes. These results were applied to thermophilic aerobic digestion (TAD) of industrial WAS using B. stearothermophilus. The addition of these divalent ions enhanced the degradation performance of the TAD process in terms of reducing the total suspended solids (TSSs), the dissolved organic carbon (DOC) content, and the intracellular and extracellular protein concentrations. The best result, with respect to protein reduction in a digestion experiment, was obtained by the addition of 2 mM Ca2+. Therefore, a proposed TAD process activated by calcium addition can be successfully used for industrial and municipal WAS digestion to the upgrading of TAD process performance.
Lee, Chang Woo; Park, Sun-Ha; Lee, Sung Gu; Shin, Seung Chul; Han, Se Jong; Kim, Han-Woo; Park, Hyun Ho; Kim, Sunghwan; Kim, Hak Jun; Park, Hyun; Park, HaJeung; Lee, Jun Hyuck
2017-06-01
The two-component phosphorelay system is the most prevalent mechanism for sensing and transducing environmental signals in bacteria. Spore formation, which relies on the two-component phosphorelay system, enables the long-term survival of the glacial bacterium Paenisporosarcina sp. TG-14 in the extreme cold environment. Spo0A is a key response regulator of the phosphorelay system in the early stage of spore formation. The protein is composed of a regulatory N-terminal phospho-receiver domain and a DNA-binding C-terminal activator domain. We solved the three-dimensional structure of the unphosphorylated (inactive) form of the receiver domain of Spo0A (PaSpo0A-R) from Paenisporosarcina sp. TG-14. A structural comparison with phosphorylated (active form) Spo0A from Bacillus stearothermophilus (BsSpo0A) showed minor notable differences. A molecular dynamics study of a model of the active form and the crystal structures revealed significant differences in the α4 helix and the preceding loop region where phosphorylation occurs. Although an oligomerization study of PaSpo0A-R by analytical ultracentrifugation (AUC) has shown that the protein is in a monomeric state in solution, both crosslinking and crystal-packing analyses indicate the possibility of weak dimer formation by a previously undocumented mechanism. Collectively, these observations provide insight into the mechanism of phosphorylation-dependent activation unique to Spo0A.
Mazzola, Priscila Gava; Penna, Thereza Christina Vessoni; da S Martins, Alzira M
2003-01-01
Background Prior to the selection of disinfectants for low, intermediate and high (sterilizing) levels, the decimal reduction time, D-value, for the most common and persistent bacteria identified at a health care facility should be determined. Methods The D-value was determined by inoculating 100 mL of disinfecting solution with 1 mL of a bacterial suspension (104 – 105 CFU/mL for vegetative and spore forms). At regular intervals, 1 mL aliquots of this mixture were transferred to 8 mL of growth media containing a neutralizing agent, and incubated at optimal conditions for the microorganism. Results The highest D-values for various bacteria were determined for the following solutions: (i) 0.1% sodium dichloroisocyanurate (pH 7.0) – E. coli and A. calcoaceticus (D = 5.9 min); (ii) sodium hypochlorite (pH 7.0) at 0.025% for B. stearothermophilus (D = 24 min), E. coli and E. cloacae (D = 7.5 min); at 0.05% for B. stearothermophilus (D = 9.4 min) and E. coli (D = 6.1 min) and 0.1% for B. stearothermophilus (D = 3.5 min) and B. subtilis (D = 3.2 min); (iii) 2.0% glutaraldehyde (pH 7.4) – B. stearothermophilus, B. subtilis (D = 25 min) and E. coli (D = 7.1 min); (iv) 0.5% formaldehyde (pH 6.5) – B. subtilis (D = 11.8 min), B. stearothermophilus (D = 10.9 min) and A. calcoaceticus (D = 5.2 min); (v) 2.0% chlorhexidine (pH 6.2) – B. stearothermophilus (D = 9.1 min), and at 0.4% for E. cloacae (D = 8.3 min); (vi) 1.0% Minncare® (peracetic acid and hydrogen peroxide, pH 2.3) – B. stearothermophilus (D = 9.1 min) and E. coli (D = 6.7 min). Conclusions The suspension studies were an indication of the disinfectant efficacy on a surface. The data in this study reflect the formulations used and may vary from product to product. The expected effectiveness from the studied formulations showed that the tested agents can be recommended for surface disinfection as stated in present guidelines and emphasizes the importance and need to develop routine and novel programs to evaluate product utility. PMID:14563217
Destruction of Spores on Building Decontamination Residue in a Commercial Autoclave▿
Lemieux, P.; Sieber, R.; Osborne, A.; Woodard, A.
2006-01-01
The U.S. Environmental Protection Agency conducted an experiment to evaluate the effectiveness of a commercial autoclave for treating simulated building decontamination residue (BDR). The BDR was intended to simulate porous materials removed from a building deliberately contaminated with biological agents such as Bacillus anthracis (anthrax) in a terrorist attack. The purpose of the tests was to assess whether the standard operating procedure for a commercial autoclave provided sufficiently robust conditions to adequately destroy bacterial spores bound to the BDR. In this study we investigated the effects of several variables related to autoclaving BDR, including time, temperature, pressure, item type, moisture content, packing density, packing orientation, autoclave bag integrity, and autoclave process sequence. The test team created simulated BDR from wallboard, ceiling tiles, carpet, and upholstered furniture, and embedded in the BDR were Geobacillus stearothermophilus biological indicator (BI) strips containing 106 spores and thermocouples to obtain time and temperature profile data associated with each BI strip. The results indicated that a single standard autoclave cycle did not effectively decontaminate the BDR. Autoclave cycles consisting of 120 min at 31.5 lb/in2 and 275°F and 75 min at 45 lb/in2 and 292°F effectively decontaminated the BDR material. Two sequential standard autoclave cycles consisting of 40 min at 31.5 lb/in2 and 275°F proved to be particularly effective, probably because the second cycle's evacuation step pulled the condensed water out of the pores of the materials, allowing better steam penetration. The results also indicated that the packing density and material type of the BDR in the autoclave could have a significant impact on the effectiveness of the decontamination process. PMID:17012597
Voundi, Stève Olugu; Nyegue, Maximilienne; Lazar, Iuliana; Raducanu, Dumitra; Ndoye, Florentine Foe; Marius, Stamate; Etoa, François-Xavier
2015-06-01
The use of essential oils as a food preservative has increased due to their capacity to inhibit vegetative growth of some bacteria. However, only limited data are available on their effect on bacterial spores. The aim of the present study was to evaluate the effect of some essential oils on the growth and germination of three Bacillus species and Geobacillus stearothermophilus. Essential oils were chemically analyzed using gas chromatography and gas chromatography coupled to mass spectrometry. The minimal inhibitory and bactericidal concentrations of vegetative growth and spore germination were assessed using the macrodilution method. Germination inhibitory effect of treated spores with essential oils was evaluated on solid medium, while kinetic growth was followed using spectrophotometry in the presence of essential oils. Essential oil from Drypetes gossweileri mainly composed of benzyl isothiocyanate (86.7%) was the most potent, with minimal inhibitory concentrations ranging from 0.0048 to 0.0097 mg/mL on vegetative cells and 0.001 to 0.002 mg/mL on spore germination. Furthermore, essential oil from D. gossweileri reduced 50% of spore germination after treatment at 1.25 mg/mL, and its combination with other oils improved both bacteriostatic and bactericidal activities with additive or synergistic effects. Concerning the other essential oils, the minimal inhibitory concentration ranged from 5 to 0.63 mg/mL on vegetative growth and from 0.75 to 0.09 mg/mL on the germination of spores. Spectrophotometric evaluation showed an inhibitory effect of essential oils on both germination and outgrowth. From these results, it is concluded that some of the essential oils tested might be a valuable tool for bacteriological control in food industries. Therefore, further research regarding their use as food preservatives should be carried out.
Jindal, Shivali; Anand, Sanjeev; Huang, Kang; Goddard, Julie; Metzger, Lloyd; Amamcharla, Jayendra
2016-12-01
The development of bacterial biofilms on stainless steel (SS) surfaces poses a great threat to the quality of milk and other dairy products as the biofilm-embedded bacteria can survive thermal processing. Established biofilms offer cleaning challenges because they are resistant to most of the regular cleaning protocols. Sporeforming thermoduric organisms entrapped within biofilm matrix can also form heat-resistant spores, and may result in a long-term persistent contamination. The main objective of this study was to evaluate the efficacy of different nonfouling coatings [AMC 18 (Advanced Materials Components Express, Lemont, PA), Dursan (SilcoTek Corporation, Bellefonte, PA), Ni-P-polytetrafluoroethylene (PTFE, Avtec Finishing Systems, New Hope, MN), and Lectrofluor 641 (General Magnaplate Corporation, Linden, NJ)] on SS plate heat exchanger surfaces, to resist the formation of bacterial biofilms. It was hypothesized that modified SS surfaces would promote a lesser amount of deposit buildup and bacterial adhesion as compared with the native SS surface. Vegetative cells of aerobic sporeformers, Geobacillus stearothermophilus (ATCC 15952), Bacillus licheniformis (ATCC 6634), and Bacillus sporothermodurans (DSM 10599), were used to study biofilm development on the modified and native SS surfaces. The adherence of these organisms, though influenced by surface energy and hydrophobicity, exhibited no apparent relation with surface roughness. The Ni-P-PTFE coating exhibited the least bacterial attachment and milk solid deposition, and hence, was the most resistant to biofilm formation. Scanning electron microscopy, which was used to visualize the extent of biofilm formation on modified and native SS surfaces, also revealed lower bacterial attachment on the Ni-P-PTFE as compared with the native SS surface. This study thus provides evidence of reduced biofilm formation on the modified SS surfaces. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sielaff, Hendrik; Martin, James; Singh, Dhirendra; Biuković, Goran; Grüber, Gerhard; Frasch, Wayne D
2016-12-02
The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A 3 B 3 DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α 3 β 3 γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A 3 B 3 DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A 3 B 3 DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Kumar, Ashok; Zhang, Shaowei; Wu, Gaobing; Wu, Cheng Chao; Chen, JunPeng; Baskaran, R; Liu, Ziduo
2015-12-01
A cbd gene was cloned into the C-terminal region of a lip gene from Geobacillus stearothermophilus. The native lipase (43.5 kDa) and CBD-Lip fusion protein (60.2 kDa) were purified to homogeneity by SDS-PAGE. A highly stable cellulosic nanogel was prepared by controlled hydrolysis of microcrystalline cellulose onto which the CBD-lip fusion protein was immobilized through bio-affinity based binding. The nanogel-bound lipase showed optimum activity at 55 °C, and it remains stable and active at pH 10-10.5. Furthermore, the immobilized lipase showed an over two-fold increase of relative activity in the presence of DMSO, isopropanol, isoamyl alcohol and n-butanol, but a mild activity decrease at a low concentration of methanol and ethanol. The immobilized biocatalyst retained ~50% activity after eight repetitive hydrolytic cycles. Enzyme kinetic studies of the immobilized lipase showed a 1.24 fold increase in Vmax and 5.25 fold increase in kcat towards p-NPP hydrolysis. Additionally, the nanogel bound lipase was tested to synthesize a biodiesel ester, ethyl oleate in DMSO. Kinetic analysis showed the km 100.5 ± 4.3 mmol and Vmax 0.19 ± 0.015 mmolmin(-1) at varied oleic acid concentration. Also, the values of km and Vmax at varying concentration of ethanol were observed to be 95.9 ± 13.9 mmol and 0.22 ± 0.013 mmolmin(-1) respectively. The maximum yield of ethyl oleate 111.2 ± 1.24 mM was obtained under optimized reaction conditions in organic medium. These results suggest that this immobilized biocatalyst can be used as an efficient tool for the biotransformation reactions on an industrial scale. Copyright © 2015 Elsevier B.V. All rights reserved.
Vapor Hydrogen Peroxide Sterilization Certification
NASA Astrophysics Data System (ADS)
Chen, Fei; Chung, Shirley; Barengoltz, Jack
For interplanetary missions landing on a planet of potential biological interest, United States NASA planetary protection currently requires that the flight system must be assembled, tested and ultimately launched with the intent of minimizing the bioload taken to and deposited on the planet. Currently the only NASA approved microbial reduction method is dry heat sterilization process. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements. The VHP sterilization technology is widely used by the medical industry, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal of our study is determine the minimum VHP process conditions for PP acceptable microbial reduction levels. A series of experiments were conducted using Geobacillus stearothermophilus to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters -hydrogen peroxide concentration, number of pulses, and exposure duration -the investigation also considered the possible effect of environmental pa-rameters. Temperature, relative humidity, and material substrate effects on lethality were also studied. Based on the results, a most conservative D value was recommended. This recom-mended D value was also validated using VHP "hardy" strains that were isolated from clean-rooms and environmental populations collected from spacecraft relevant areas. The efficiency of VHP at ambient condition as well as VHP material compatibility will also be presented.
Effect of Dielectric and Liquid on Plasma Sterilization Using Dielectric Barrier Discharge Plasma
Mastanaiah, Navya; Johnson, Judith A.; Roy, Subrata
2013-01-01
Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C–66°C (for FR4) and 20°C–49°C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves. PMID:23951023
Vapor hydrogen peroxide as alternative to dry heat microbial reduction
NASA Astrophysics Data System (ADS)
Chung, S.; Kern, R.; Koukol, R.; Barengoltz, J.; Cash, H.
2008-09-01
The Jet Propulsion Laboratory (JPL), in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal was to include this technique, with an appropriate specification, in NASA Procedural Requirements 8020.12 as a low-temperature complementary technique to the dry heat sterilization process. The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal for this study was to determine the minimum VHP process conditions for planetary protection acceptable microbial reduction levels. Experiments were conducted by the STERIS Corporation, under contract to JPL, to evaluate the effectiveness of vapor hydrogen peroxide for the inactivation of the standard spore challenge, Geobacillus stearothermophilus. VHP process parameters were determined that provide significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters of interest: hydrogen peroxide concentration, number of injection cycles, and exposure duration, the investigation also considered the possible effect on lethality of environmental parameters: temperature, absolute humidity, and material substrate. This study delineated a range of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D-value may be imposed, a process humidity range for which the worst case D-value may be imposed, and the dependence on selected spacecraft material substrates. The derivation of D-values from the lethality data permitted conservative planetary protection recommendations.
Sterilization of bacterial spores by using supercritical carbon dioxide and hydrogen peroxide.
Hemmer, Jason D; Drews, Michael J; LaBerge, Martine; Matthews, Michael A
2007-02-01
It was hypothesized that supercritical carbon dioxide (SC-CO(2)) treatment could serve as an alternative sterilization method at various temperatures (40-105 degrees C), CO(2) pressures (200-680 atm), and treatment times (25 min to 6 h), and with or without the use of a passive additive (distilled water, dH(2)O) or an active additive (hydrogen peroxide, H(2)O(2)). While previous researchers have shown that SC-CO(2) possesses antimicrobial properties, sterilization effectiveness has not been shown at sufficiently low treatment temperatures and cycle times, using resistant bacterial spores. Experiments were conducted using Geobacillus stearothermophilus and Bacillus atrophaeus spores. Spore strips were exposed to SC-CO(2) in commercially available supercritical fluid extraction and reaction systems, at varying temperatures, pressures, treatment times, and with or without the use of a passive additive, such as dH(2)O, or an active additive, such as H(2)O(2). Treatment parameters were varied from 40 to 105 degrees C, 200-680 atm, and from 25 min to 6 h. At 105 degrees C without H(2)O(2), both spore types were completely deactivated at 300 atm in 25 min, a shorter treatment cycle than is obtained with methods in use today. On the other hand, with added H(2)O(2) (<100 ppm), 6 log populations of both spore types were completely deactivated using SC-CO(2) in 1 h at 40 degrees C. It was concluded from the data that large populations of resistant bacterial spores can be deactivated with SC-CO(2) with added H(2)O(2)at lower temperatures and potentially shorter treatment cycles than in most sterilization methods in use today. (c) 2006 Wiley Periodicals, Inc.
Izumi, Masamitsu; Fujifuru, Masato; Okada, Aki; Takai, Katsuya; Takahashi, Kazuhiro; Udagawa, Takeshi; Miyake, Makoto; Naruyama, Shintaro; Tokuda, Hiroshi; Nishioka, Goro; Yoden, Hikaru; Aoki, Mitsuo
2016-01-01
In the production of large-volume parenterals in Japan, equipment and devices such as tanks, pipework, and filters used in production processes are exhaustively cleaned and sterilized, and the cleanliness of water for injection, drug materials, packaging materials, and manufacturing areas is well controlled. In this environment, the bioburden is relatively low, and less heat resistant compared with microorganisms frequently used as biological indicators such as Geobacillus stearothermophilus (ATCC 7953) and Bacillus subtilis 5230 (ATCC 35021). Consequently, the majority of large-volume parenteral solutions in Japan are manufactured under low-heat sterilization conditions of F0 <2 min, so that loss of clarity of solutions and formation of degradation products of constituents are minimized. Bacillus oleronius (ATCC 700005) is listed as a biological indicator in "Guidance on the Manufacture of Sterile Pharmaceutical Products Produced by Terminal Sterilization" (guidance in Japan, issued in 2012). In this study, we investigated whether B. oleronius is an appropriate biological indicator of the efficacy of low-heat, moist-heat sterilization of large-volume parenterals. Specifically, we investigated the spore-forming ability of this microorganism in various cultivation media and measured the D-values and z-values as parameters of heat resistance. The D-values and z-values changed depending on the constituents of large-volume parenteral products. Also, the spores from B. oleronius showed a moist-heat resistance that was similar to or greater than many of the spore-forming organisms isolated from Japanese parenteral manufacturing processes. Taken together, these results indicate that B. oleronius is suitable as a biological indicator for sterility assurance of large-volume parenteral solutions subjected to low-heat, moist-heat terminal sterilization. © PDA, Inc. 2016.
Effect of dielectric and liquid on plasma sterilization using dielectric barrier discharge plasma.
Mastanaiah, Navya; Johnson, Judith A; Roy, Subrata
2013-01-01
Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥ 6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥ 6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C-66 °C (for FR4) and 20 °C-49 °C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves.
Splint sterilization--a potential registration hazard in computer-assisted surgery.
Figl, Michael; Weber, Christoph; Assadian, Ojan; Toma, Cyril D; Traxler, Hannes; Seemann, Rudolf; Guevara-Rojas, Godoberto; Pöschl, Wolfgang P; Ewers, Rolf; Schicho, Kurt
2012-04-01
Registration of preoperative targeting information for the intraoperative situation is a crucial step in computer-assisted surgical interventions. Point-to-point registration using acrylic splints is among the most frequently used procedures. There are, however, no generally accepted recommendations for sterilization of the splint. An appropriate method for the thermolabile splint would be hydrogen peroxide-based plasma sterilization. This study evaluated the potential deformation of the splint undergoing such sterilization. Deformation was quantified using image-processing methods applied to computed tomographic (CT) volumes before and after sterilization. An acrylic navigation splint was used as the study object. Eight metallic markers placed in the splint were used for registration. Six steel spheres in the mouthpiece were used as targets. Two CT volumes of the splint were acquired before and after 5 sterilization cycles using a hydrogen peroxide sterilizer. Point-to-point registration was applied, and fiducial and target registration errors were computed. Surfaces were extracted from CT scans and Hausdorff distances were derived. Effectiveness of sterilization was determined using Geobacillus stearothermophilus. Fiducial-based registration of CT scans before and after sterilization resulted in a mean fiducial registration error of 0.74 mm; the target registration error in the mouthpiece was 0.15 mm. The Hausdorff distance, describing the maximal deformation of the splint, was 2.51 mm. Ninety percent of point-surface distances were shorter than 0.61 mm, and 95% were shorter than 0.73 mm. No bacterial growth was found after the sterilization process. Hydrogen peroxide-based low-temperature plasma sterilization does not deform the splint, which is the base for correct computer-navigated surgery. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Mathew, Sindhu; Karlsson, Eva Nordberg; Adlercreutz, Patrick
2017-10-20
The enzymatic, ecofriendly pretreatment of wheat bran with α-amylase from Bacillus amyloliquifaciens or B. licheniformis at 90°C for 1.5h followed by Neutrase at 50°C for 4h, aqueous liquefaction at 121°C for 15h and ethanol precipitation enabled the production of soluble arabinoxylan (AX) with purity of 70.9% and 68.4% (w/w) respectively. Process alternatives tried, to simplify the process and curtail the cost resulted in AX products with different purities, yields and arabinose to xylose ratio (A/X). Among the two glycoside hydrolase (GH) family endoxylanases evaluated, GH10 family hydrolysed soluble AX more efficiently with xylanase from Geobacillus stearothermophilus T-6 (GsXyn10A) producing maximum amount of quantifiable short xylo-oligosaccharides (XOS) and arabinoxylo-oligosaccharides (AXOS) (53% w/w) followed by the catalytic module of Rhodothermus marinus Xyn10A (RmXyn10A-CM) with 37% (w/w) conversion. The GH11 family endoxylanases, from Thermomyces lanuginosus (Pentopan Mono BG™) and Neocallimastix patriciarum (NpXyn11A) gave conversions of 21% and 22% (w/w) of the soluble AX, respectively (major AXOS products were not quantified). In addition to the XOS formed such as X 2 , X 3 and X 4 , the AXOS products identified were A 3 X and A 2 XX in the case of GsXyn10A and RmXyn10A-CM while Pentopan Mono BG and NpXyn11A produced XA 3 XX as the major AXOS product. Copyright © 2017 Elsevier B.V. All rights reserved.
Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum
Ferguson, Scott A.; Cook, Gregory M.; Montgomery, Martin G.; Leslie, Andrew G. W.
2016-01-01
The crystal structure has been determined of the F1-catalytic domain of the F-ATPase from Caldalkalibacillus thermarum, which hydrolyzes adenosine triphosphate (ATP) poorly. It is very similar to those of active mitochondrial and bacterial F1-ATPases. In the F-ATPase from Geobacillus stearothermophilus, conformational changes in the ε-subunit are influenced by intracellular ATP concentration and membrane potential. When ATP is plentiful, the ε-subunit assumes a “down” state, with an ATP molecule bound to its two C-terminal α-helices; when ATP is scarce, the α-helices are proposed to inhibit ATP hydrolysis by assuming an “up” state, where the α-helices, devoid of ATP, enter the α3β3-catalytic region. However, in the Escherichia coli enzyme, there is no evidence that such ATP binding to the ε-subunit is mechanistically important for modulating the enzyme’s hydrolytic activity. In the structure of the F1-ATPase from C. thermarum, ATP and a magnesium ion are bound to the α-helices in the down state. In a form with a mutated ε-subunit unable to bind ATP, the enzyme remains inactive and the ε-subunit is down. Therefore, neither the γ-subunit nor the regulatory ATP bound to the ε-subunit is involved in the inhibitory mechanism of this particular enzyme. The structure of the α3β3-catalytic domain is likewise closely similar to those of active F1-ATPases. However, although the βE-catalytic site is in the usual “open” conformation, it is occupied by the unique combination of an ADP molecule with no magnesium ion and a phosphate ion. These bound hydrolytic products are likely to be the basis of inhibition of ATP hydrolysis. PMID:27621435
Destruction of spores on building decontamination residue in a commercial autoclave.
Lemieux, P; Sieber, R; Osborne, A; Woodard, A
2006-12-01
The U.S. Environmental Protection Agency conducted an experiment to evaluate the effectiveness of a commercial autoclave for treating simulated building decontamination residue (BDR). The BDR was intended to simulate porous materials removed from a building deliberately contaminated with biological agents such as Bacillus anthracis (anthrax) in a terrorist attack. The purpose of the tests was to assess whether the standard operating procedure for a commercial autoclave provided sufficiently robust conditions to adequately destroy bacterial spores bound to the BDR. In this study we investigated the effects of several variables related to autoclaving BDR, including time, temperature, pressure, item type, moisture content, packing density, packing orientation, autoclave bag integrity, and autoclave process sequence. The test team created simulated BDR from wallboard, ceiling tiles, carpet, and upholstered furniture, and embedded in the BDR were Geobacillus stearothermophilus biological indicator (BI) strips containing 10(6) spores and thermocouples to obtain time and temperature profile data associated with each BI strip. The results indicated that a single standard autoclave cycle did not effectively decontaminate the BDR. Autoclave cycles consisting of 120 min at 31.5 lb/in2 and 275 degrees F and 75 min at 45 lb/in2 and 292 degrees F effectively decontaminated the BDR material. Two sequential standard autoclave cycles consisting of 40 min at 31.5 lb/in2 and 275 degrees F proved to be particularly effective, probably because the second cycle's evacuation step pulled the condensed water out of the pores of the materials, allowing better steam penetration. The results also indicated that the packing density and material type of the BDR in the autoclave could have a significant impact on the effectiveness of the decontamination process.
Gimpel, Matthias; Maiwald, Caroline; Wiedemann, Christoph; Görlach, Matthias; Brantl, Sabine
2017-08-01
Small regulatory RNAs (sRNAs) are the most prominent post-transcriptional regulators in all kingdoms of life. A few of them, e.g. SR1 from Bacillus subtilis, are dual-function sRNAs. SR1 acts as a base-pairing sRNA in arginine catabolism and as an mRNA encoding the small peptide SR1P in RNA degradation. Both functions of SR1 are highly conserved among 23 species of Bacillales. Here, we investigate the interaction between SR1P and GapA by a combination of in vivo and in vitro methods. De novo prediction of the structure of SR1P yielded five models, one of which was consistent with experimental circular dichroism spectroscopy data of a purified, synthetic peptide. Based on this model structure and a comparison between the 23 SR1P homologues, a series of SR1P mutants was constructed and analysed by Northern blotting and co-elution experiments. The known crystal structure of Geobacillus stearothermophilus GapA was used to model SR1P onto this structure. The hypothetical SR1P binding pocket, composed of two α-helices at both termini of GapA, was investigated by constructing and assaying a number of GapA mutants in the presence and absence of wild-type or mutated SR1P. Almost all residues of SR1P located in the two highly conserved motifs are implicated in the interaction with GapA. A critical lysine residue (K332) in the C-terminal α-helix 14 of GapA corroborated the predicted binding pocket.
Ojima, Teruyo; Aizawa, Kenta; Saburi, Wataru; Yamamoto, Takeshi
2012-06-01
6-Gingerol [(S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)decan-3-one] is a biologically active compound and is abundant in the rhizomes of ginger (Zingiber officinale). It has some beneficial functions in healthcare, but its use is limited because of its insolubility in water and its heat-instability. To improve these physical properties, the glucosylation of 6-gingerol was investigated using α-glucosidases (EC. 3.2.1.20) from Aspergillus niger, Aspergillus nidulans ABPU1, Acremonium strictum, Halomonas sp. H11, and Saccharomyces cerevisiae, and cyclodextrin glucanotransferases (CGTase, EC. 2.4.1.19) from Bacillus coagulans, Bacillus sp. No. 38-2, Bacillus clarkii 7364, and Geobacillus stearothermophilus. Among these, only α-glucosidase from Halomonas sp. H11 (HaG) transferred a glucosyl moiety to 6-gingerol, and produced glucosylated compounds. The chemical structure of the reaction product, determined by nuclear magnetic resonance spectroscopy and mass spectrometry, was (S)-5-(O-α-D-glucopyranosyl)-1-(4-hydroxy-3-methoxyphenyl)decan-3-one (5-α-Glc-gingerol). Notably, the regioisomer formed by glucosylation of the phenolic OH was not observed at all, indicating that HaG specifically transferred the glucose moiety to the 5-OH of the β-hydroxy keto group in 6-gingerol. Almost 60% of the original 6-gingerol was converted into 5-α-Glc-gingerol by the reaction. In contrast to 6-gingerol, 5-α-Glc-gingerol, in the form of an orange powder prepared by freeze-drying, was water-soluble and stable at room temperature. It was also more stable than 6-gingerol under acidic conditions and to heat. Copyright © 2012 Elsevier Ltd. All rights reserved.
2006-11-01
spores of B. stearothermophilus . For all of the test organisms, conditions were found that effected sterilization (6-log kill of contaminating...kill 106 E. coli, L. monocytogenes, S. aureus, and bacterial spores of B. atrophaeus and B. stearothermophilus and to sterilize high-grade...Portable Chemical Sterilizer for Microbial Decontamination of
Effect of calcium in assay medium on D value of Bacillus stearothermophilus ATCC 7953 spores.
Sasaki, K; Shintani, H; Itoh, J; Kamogawa, T; Kajihara, Y
2000-12-01
The D value of commercial biological indicator spore strips using Bacillus stearothermophilus ATCC 7953 was increased by higher calcium concentrations in assay media. The calcium concentration in assay media varied among the manufacturers. The calcium concentration in assay media is an important factor to consider to minimize the variation of D value.
An improved agar medium for growth of Geobacillus thermoglucosidarius strains.
Javed, M; Baghaei-Yazdi, N; Qin, W; Amartey, S
2017-01-01
Geobacillus species have potential applications in many biotechnological processes. They are fastidious in their vitamin and amino acid requirements. A new semi-defined agar medium (SDM) was developed which gave consistently high viable cell counts of various G. thermoglucosidasius strains (5×10 8 -6×10 8 cfu/ml) under aerobic conditions at 70°C. Copyright © 2016 Elsevier B.V. All rights reserved.
Draft Genome Sequence of Geobacillus kaustophilus GBlys, a Lysogenic Strain with Bacteriophage ϕOH2
Mori, Kazuki; Martono, Hindra; Nagayoshi, Yuko; Fujino, Yasuhiro; Tashiro, Kosuke; Kuhara, Satoru; Ohshima, Toshihisa
2013-01-01
Geobacillus kaustophilus strain GBlys was isolated along with the bacteriophage ϕOH2, which infects G. kaustophilus NBRC 102445T. Here we present a draft sequence of this strain’s genome, which consists of 216 contigs for a total of 3,541,481 bp, 3,679 predicted coding sequences, and a G+C content of 52.1%. PMID:23950135
Effect of Calcium in Assay Medium on D Value of Bacillus stearothermophilus ATCC 7953 Spores
Sasaki, Koichi; Shintani, Hideharu; Itoh, Junpei; Kamogawa, Takuji; Kajihara, Yousei
2000-01-01
The D value of commercial biological indicator spore strips using Bacillus stearothermophilus ATCC 7953 was increased by higher calcium concentrations in assay media. The calcium concentration in assay media varied among the manufacturers. The calcium concentration in assay media is an important factor to consider to minimize the variation of D value. PMID:11097939
Characterization of a Thermophilic Bacteriophage for Bacillus stearothermophilus1
Saunders, Grady F.; Campbell, L. Leon
1966-01-01
Saunders, Grady F. (University of Illinois, Urbana), and L. Leon Campbell. Characterization of a thermophilic bacteriophage for Bacillus stearothermophilus. J. Bacteriol. 91:340–348. 1965.—The biological and physical-chemical properties of the thermophilic bacteriophage TP-84 were investigated. TP-84 was shown to be lytic for 3 of 24 strains of Bacillus stearothermophilus tested over the temperature range of 43 to 76 C. The latent period of TP-84 on B. stearothermophilus strain 10 was 22 to 24 min. TP-84 has a hexagonal head, 53 mμ in diameter and 30 mμ on a side; its tail is 130 mμ long and 3 to 5 mμ wide. The phage has an S5020,w of 436, and bands at a density of 1.508 g/cc in CsCl (pH 8.5). The diffusion coefficient of TP-84 was calculated to be 6.19 × 10−8 cm2/sec. From the sedimentation and diffusion data, a particle molecular weight of 50 million daltons was calculated for TP-84. The phage DNA has a base composition of 42% guanine + cytosine, deduced from buoyant density and melting temperature measurements. Images PMID:5903101
Lipid composition of thermophilic Geobacillus sp. strain GWE1, isolated from sterilization oven.
Shah, Siddharth P; Jansen, Susan A; Taylor, Leeandrew Jacques-Asa; Chong, Parkson Lee-Gau; Correa-Llantén, Daniela N; Blamey, Jenny M
2014-05-01
GWE1 strain is an example of anthropogenic thermophilic bacterium, recently isolated from dark crusty material from sterilization ovens by Correa-Llantén et al. (Kor. J. Microb. Biotechnol. 2013. 41(3):278-283). Thermostability is likely to arise from the adaptation of macromolecules such as proteins, lipids and nucleic acids. Complex lipid arrangement and/or type in the cell membrane are known to affect thermostability of microorganisms and efforts were made to understand the chemical nature of the polar lipids of membrane. In this work, we extracted total lipids from GWE1 cell membrane, separated them by TLC into various fractions and characterize the lipid structures of certain fractions with analytical tools such as (1)H, (13)C, (31)P and 2D NMR spectroscopy, ATR-FTIR spectroscopy and MS(n) spectrometry. We were able to identify glycerophosphoethanolamine, glycerophosphate, glycerophosphocholine, glycerophosphoglycerol and cardiolipin lipid classes and an unknown glycerophospholipid class with novel MS/MS spectra pattern. We have also noticed the presence of saturated iso-branched fatty acids with NMR spectra in individual lipid classes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Saw, Jimmy H; Mountain, Bruce W; Feng, Lu; Omelchenko, Marina V; Hou, Shaobin; Saito, Jennifer A; Stott, Matthew B; Li, Dan; Zhao, Guang; Wu, Junli; Galperin, Michael Y; Koonin, Eugene V; Makarova, Kira S; Wolf, Yuri I; Rigden, Daniel J; Dunfield, Peter F; Wang, Lei; Alam, Maqsudul
2008-01-01
Background Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. Results We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Conclusions Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli. PMID:19014707
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saw, Jimmy H; Mountain, Bruce W; Feng, Lu
Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from themore » waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.« less
Konishi, Masa-aki; Fukuoka, Tokuma; Shimane, Yasuhiro; Mori, Kozue; Nagano, Yuriko; Ohta, Yukari; Kitamoto, Dai; Hatada, Yuji
2011-01-01
To explore a novel glycolipid, we performed biochemical reactions using a recombinant α-glucosidase from Geobacillus sp. which shows excellent transglycosylation reaction to hydroxyl groups in a variety of compounds. Two different glycolipids (GL-1 and GL-2) were prepared from ricinoleic acid using a recombinant α-glucosidase from Geobacillus sp. The molecular structure of GL-1 was confirmed as 12-O-α-D-glucopyranosyl-9-hexadecenoic acid by 1D and 2D NMR analyses. According to MALDI-TOF/MS, GL-1 and GL-2 showed single major peaks at m/z 483.82 and 645.97, respectively. The peaks corresponded to the [M + Na](+) ions of the glycolipids. GL-2 was estimated as 12-O-α-D-glucopyranosyl-(4'-O-α-glucopyranosyl)-9-hexadecenoic acid. Light polarization microscopy revealed that GL-2 easily formed self-assembled vesicles in aqueous solution.
Microbial ecology of two hot springs of Sikkim: Predominate population and geochemistry.
Najar, Ishfaq Nabi; Sherpa, Mingma Thundu; Das, Sayak; Das, Saurav; Thakur, Nagendra
2018-10-01
Northeastern regions of India are known for their floral and faunal biodiversity. Especially the state of Sikkim lies in the eastern Himalayan ecological hotspot region. The state harbors many sulfur rich hot springs which have therapeutic and spiritual values. However, these hot springs are yet to be explored for their microbial ecology. The development of neo generation techniques such as metagenomics has provided an opportunity for inclusive study of microbial community of different environment. The present study describes the microbial diversity in two hot springs of Sikkim that is Polok and Borong with the assist of culture dependent and culture independent approaches. The culture independent techniques used in this study were next generation sequencing (NGS) and Phospholipid Fatty Acid Analysis (PLFA). Having relatively distinct geochemistry both the hot springs are thermophilic environments with the temperature range of 50-77 °C and pH range of 5-8. Metagenomic data revealed the dominance of bacteria over archaea. The most abundant phyla were Proteobacteria and Bacteroidetes although other phyla were also present such as Acidobacteria, Nitrospirae, Firmicutes, Proteobacteria, Parcubacteria and Spirochaetes. The PLFA studies have shown the abundance of Gram Positive bacteria followed by Gram negative bacteria. The culture dependent technique was correlative with PLFA studies. Most abundant bacteria as isolated and identified were Gram-positive genus Geobacillus and Anoxybacillus. The genus Geobacillus has been reported for the first time in North-Eastern states of India. The Geobacillus species obtained from the concerned hot springs were Geobacillus toebii, Geobacillus lituanicus, Geobacillus Kaustophillus and the Anoxybacillus species includes Anoxybacillus gonensis and Anoxybacillus Caldiproteolyticus. The distribution of major genera and their statistical correlation analyses with the geochemistry of the springs predicted that the temperature, pH, alkalinity, Ca 2+ , Mg 2+ , Cl 2+ , and sulfur were main environmental variables influencing the microbial community composition and diversity. Also the piper diagram suggested that the water of both the hot springs are Ca-HCO 3- type and can be predicted as shallow fresh ground waters. This study has provided an insight into the ecological interaction of the diverse microbial communities and associated physicochemical parameters, which will help in determining the future studies on different biogeochemical pathways in these hot springs. Copyright © 2018. Published by Elsevier B.V.
Sporicidal activity of a new low-temperature sterilization technology: the Sterrad 50 sterilizer.
Rutala, W A; Gergen, M F; Weber, D J
1999-07-01
This study was undertaken to evaluate the efficacy of a new low-temperature sterilization system that recently has been cleared by the Food and Drug Administration, the Sterrad 50. Flat stainless steel carriers were inoculated with approximately 10(6) Bacillus stearothermophilus spores. These carriers were placed aseptically in the middle of 40-cm-long stainless steel-lumened test units of varying diameters (1 mm, 2 mm, and 3 mm). After inoculation, the test units were processed in the Sterrad 50. After sterilization, the carriers were assayed for growth of the B. stearothermophilus spores. Our data demonstrated that the Sterrad 50 was highly effective in killing the B. stearothermophilus spores (no positive carriers with 30 tests of each lumen-diameter test unit). The Sterrad 50 is likely to be clinically useful for the sterilization of heat-sensitive medical equipment.
Vesley, Donald; Langholz, Ann C.; Rohlfing, Stephen R.; Foltz, William E.
1992-01-01
A biological indicator based on fluorimetric detection within 60 min of a Bacillus stearothermophilus spore-bound enzyme, α-d-glucosidase, has been developed. Results indicate that the enzyme survived slightly longer than spores observed after 24 h of incubation. The new system shows promise for evaluating flash sterilization cycles within 60 min compared with conventional 24-h systems. PMID:16348654
Field Evaluation of Whole Airliner Decontamination Technologies for Narrow-Body Aircraft
2008-01-01
eight Apex 6 log G. Stearothermophilus biological indicators (BIs) were placed throughout the cabin for the formal evaluation; 20 were placed in...Twenty-eight 6 log G. Stearothermophilus biological indicators (BIs) were placed throughout the cabin, and all of these were deactivated, except in...Corporation has indicated to the authors of this report that STERIS makes no label claims for Vaprox® sterilant , STERIS’s brand of 35% liquid hydrogen
Curran, Harold R.; Pallansch, Michael J.
1963-01-01
Curran, Harold R. (U.S. Department of Agriculture, Washington, D.C.), and Michael J. Pallansch. Incipient germination in heavy suspensions of spores of Bacillus stearothermophilus at subminimal growth temperatures. J. Bacteriol. 86:911–918. 1963.—By use of spore (plate) counts and permeability to stain, labilization was followed periodically in heavy suspensions of washed Bacillus stearothermophilus 1518 spores incubated at different temperatures. Although vegetative proliferation did not occur below 38 C, incipient germination was rapid down to 20 C and much slower and incomplete at 14 C. Dilution of the suspension materially reduced the degree and rate of labilization. The degree of washing and use of deionized water had no appreciable influence upon early development of the spores. The results are discussed from the point of view of the possible origin and nature of the germination stimulant. Images PMID:14080801
Spicher, G; Peters, J
1997-02-01
Biological indicators used to test sterilisation procedures for their efficacy consist of a so-called germ carrier to which the microorganisms used as test organisms adhere. In previous papers we demonstrated that carriers made of filter paper on contact with saturated steam show superheating while carriers made of glass fibre fleece as well as wetted filter paper do not. Using spores of Bacillus subtilis and Bacillus stearothermophilus as test organisms we have now investigated whether and to what extent carrier superheating affects the characteristic values (t50%) of these biological indicators. The indicators were exposed to saturated steam at 100 degrees C (B. subtilis) or 120 degrees C (B. stearothermophilus) under three different exposure conditions: 1. dry (i.e. conditioned to 45% relative humidity before introduction into the sterilising chamber), freely accessible; 2. dry with a substratum and a cover of filter card-board; 3. wet (moistened with twice distilled water before introduction into the sterilising chamber), freely accessible. For previously selected exposure periods, the incidence of indicators with surviving test organisms was determined. The reaction pattern of bioindicators with spores of B. stearothermophilus was different from that of bioindicators with spores of B. subtilis. For B. subtilis, the incidence of bioindicators exhibiting surviving test organisms depended on the nature of the carries as well as on the exposure conditions. On filter paper carriers, t50% increased in the order "wet, freely accessible", "dry, freely accessible", "dry, between filter card-board". On dry and wetted glass fibre fleece, resistance was approximately the same; when the indicators were sandwiched between layers of filter card-board, t50% increased. For B. stearothermophilus, t50% was largely dependent on the carrier material alone. The values obtained for filter paper were invariably much lower than those for glass fibre fleece. As the results show, using spores of B. subtilis it is possible to detect superheating, but the steam resistance of the spores is relatively low. Spores of B. stearothermophilus are of high steam resistance but they are practically unsuitable for detecting superheating. It is imperative to search for a test organism the resistance of which against steam is sufficiently high and which at the same time is capable of reacting to superheating (equivalent to reduced humidity) by a sufficiently large increase in resistance.
Kida, N; Mochizuki, Y; Taguchi, F
2004-01-01
To develop a sporicidal reagent which shows potent activity against bacterial spores not only at ambient temperatures but also at low temperatures. Suspension tests on spores of Bacillus and Geobacillus were conducted with the reagent based on a previously reported agent (N. Kida, Y. Mochizuki and F. Taguchi, Microbiology and Immunology 2003; 47: 279-283). The modified reagent (tentatively designated as the KMT reagent) was composed of 50 mmol l(-1) EDTA-2Na, 50 mmol l(-1) ferric chloride hexahydrate (FeCl(3).6H(2)O), 50 mmol l(-1) potassium iodide (KI) and 50% ethanol in 0.85% NaCl solution at pH 0.3. The KMT reagent showed significant sporicidal activity against three species of Bacillus and Geobacillus spores over a wide range of temperature. The KMT reagent had many practical advantages, i.e. activity was much less affected by organic substances than was sodium hypochlorite, it did not generate any harmful gas and it was stable for a long period at ambient temperatures. The mechanism(s) of sporicidal activity of the KMT reagent was considered to be based on active iodine species penetrating the spores with enhanced permeability of the spore cortex by a synergistic effect of acid, ethanol and generated active oxygen. The data suggest that the KMT reagent shows potent sporicidal activity over a wide range temperatures and possesses many advantages for practical applications. The results indicate development of a highly applicable sporicidal reagent against Bacillus and Geobacillus spores.
Kitagawa, Wataru; Kimura, Nobutada; Kamagata, Yoichi
2004-01-01
p-Nitrophenol (4-NP) is recognized as an environmental contaminant; it is used primarily for manufacturing medicines and pesticides. To date, several 4-NP-degrading bacteria have been isolated; however, the genetic information remains very limited. In this study, a novel 4-NP degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101, was identified and characterized. The deduced amino acid sequences of npcB, npcA, and npcC showed identity with phenol 2-hydroxylase component B (reductase, PheA2) of Geobacillus thermoglucosidasius A7 (32%), with 2,4,6-trichlorophenol monooxygenase (TcpA) of Ralstonia eutropha JMP134 (44%), and with hydroxyquinol 1,2-dioxygenase (ORF2) of Arthrobacter sp. strain BA-5-17 (76%), respectively. The npcB, npcA, and npcC genes were cloned into pET-17b to construct the respective expression vectors pETnpcB, pETnpcA, and pETnpcC. Conversion of 4-NP was observed when a mixture of crude cell extracts of Escherichia coli containing pETnpcB and pETnpcA was used in the experiment. The mixture converted 4-NP to hydroxyquinol and also converted 4-nitrocatechol (4-NCA) to hydroxyquinol. Furthermore, the crude cell extract of E. coli containing pETnpcC converted hydroxyquinol to maleylacetate. These results suggested that npcB and npcA encode the two-component 4-NP/4-NCA monooxygenase and that npcC encodes hydroxyquinol 1,2-dioxygenase. The npcA and npcC mutant strains, SDA1 and SDC1, completely lost the ability to grow on 4-NP as the sole carbon source. These results clearly indicated that the cloned npc genes play an essential role in 4-NP mineralization in R. opacus SAO101. PMID:15262926
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, R.S.; Bushell, D.; Leak, D.J.
1994-06-05
Continuous fermentation with cell recycle proved very effective in increasing the ethanol volumetric productivity of the thermophilic facultative anaerobe, Bacillus stearothermophilus strain LLD-15, on sucrose at 70 C. When complete cell recycle was used, cell viability decreased after a few residence times and sucrose consumption was reduced. Operation using a constant bleed rate resulted in greater stability and higher ethanol volumetric productivities. A mathematical model based on maintenance energy requirements provided an adequate description of the system.
Arndt, E; Scholzen, T; Krömer, W; Hatakeyama, T; Kimura, M
1991-06-01
Approximately 40 ribosomal proteins from each Halobacterium marismortui and Bacillus stearothermophilus have been sequenced either by direct protein sequence analysis or by DNA sequence analysis of the appropriate genes. The comparison of the amino acid sequences from the archaebacterium H marismortui with the available ribosomal proteins from the eubacterial and eukaryotic kingdoms revealed four different groups of proteins: 24 proteins are related to both eubacterial as well as eukaryotic proteins. Eleven proteins are exclusively related to eukaryotic counterparts. For three proteins only eubacterial relatives-and for another three proteins no counterpart-could be found. The similarities of the halobacterial ribosomal proteins are in general somewhat higher to their eukaryotic than to their eubacterial counterparts. The comparison of B stearothermophilus proteins with their E coli homologues showed that the proteins evolved at different rates. Some proteins are highly conserved with 64-76% identity, others are poorly conserved with only 25-34% identical amino acid residues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapetaniou, Evangelia G.; Kotsifaki, Dina; Providaki, Mary
2007-01-01
The DNA methyltransferase M.BseCI from B. stearothermophilus was crystallized as a complex with its cognate DNA. Crystals belong to space group P6 and diffract to 2.5 Å resolution at a synchrotron source. The DNA methyltransferase M.BseCI from Bacillus stearothermophilus (EC 2.1.1.72), a 579-amino-acid enzyme, methylates the N6 atom of the 3′ adenine in the sequence 5′-ATCGAT-3′. M.BseCI was crystallized in complex with its cognate DNA. The crystals were found to belong to the hexagonal space group P6, with unit-cell parameters a = b = 87.0, c = 156.1 Å, β = 120.0° and one molecule in the asymmetric unit. Twomore » complete data sets were collected at wavelengths of 1.1 and 2.0 Å to 2.5 and 2.8 Å resolution, respectively, using synchrotron radiation at 100 K.« less
Panosyan, Hovik; Di Donato, Paola; Poli, Annarita; Nicolaus, Barbara
2018-05-19
The thermal ecosystems, including geothermal springs, are proving to be source of thermophiles able to produce extracellular polysaccharides (EPSs). Among the sixteen thermophilic bacilli isolated from sediment sampled from Arzakan geothermal spring, Armenia, two best EPSs producer strains were identified based on 16S rRNA gene sequence analysis and phenotypic characteristics, and designated as Geobacillus thermodenitrificans ArzA-6 and Geobacillus toebii ArzA-8 strains. EPSs production was investigated under different time, temperature and culture media's composition. The highest specific EPSs production yield (0.27 g g -1 dry cells and 0.22 g g -1 dry cells for strains G. thermodenitrificans ArzA-6 and G. toebii ArzA-8, respectively) was observed after 24 h when fructose was used as sole carbon source at 65 °C and pH 7.0. Purified EPSs displayed a high molecular mass: 5 × 10 5 Da for G. thermodenitrificans ArzA-6 and 6 × 10 5 Da for G. toebii ArzA-8. Chemical composition and structure of the biopolymers, determined by GC-MS, HPAE-PAD and NMR, showed that both the two EPSs are heteropolymers composed by mannose as major monomer unit. Optical rotation values [α] D 25 °C of the two EPSs (2 mg ml -1 H 2 O) were - 142,135 and - 128,645 for G. thermodenitrificans ArzA-6 and G. toebii ArzA-8, respectively.
Ploss, Tina N; Reilman, Ewoud; Monteferrante, Carmine G; Denham, Emma L; Piersma, Sjouke; Lingner, Anja; Vehmaanperä, Jari; Lorenz, Patrick; van Dijl, Jan Maarten
2016-03-29
Bacillus subtilis is an important cell factory for the biotechnological industry due to its ability to secrete commercially relevant proteins in large amounts directly into the growth medium. However, hyper-secretion of proteins, such as α-amylases, leads to induction of the secretion stress-responsive CssR-CssS regulatory system, resulting in up-regulation of the HtrA and HtrB proteases. These proteases degrade misfolded proteins secreted via the Sec pathway, resulting in a loss of product. The aim of this study was to investigate the secretion stress response in B. subtilis 168 cells overproducing the industrially relevant α-amylase AmyM from Geobacillus stearothermophilus, which was expressed from the strong promoter P(amyQ)-M. Here we show that activity of the htrB promoter as induced by overproduction of AmyM was "noisy", which is indicative for heterogeneous activation of the secretion stress pathway. Plasmids were constructed to allow real-time analysis of P(amyQ)-M promoter activity and AmyM production by, respectively, transcriptional and out-of-frame translationally coupled fusions with gfpmut3. Our results show the emergence of distinct sub-populations of high- and low-level AmyM-producing cells, reflecting heterogeneity in the activity of P(amyQ)-M. This most likely explains the heterogeneous secretion stress response. Importantly, more homogenous cell populations with regard to P(amyQ)-M activity were observed for the B. subtilis mutant strain 168degUhy32, and the wild-type strain 168 under optimized growth conditions. Expression heterogeneity of secretory proteins in B. subtilis can be suppressed by degU mutation and optimized growth conditions. Further, the out-of-frame translational fusion of a gene for a secreted target protein and gfp represents a versatile tool for real-time monitoring of protein production and opens novel avenues for Bacillus production strain improvement.
Sarre, Aili; Ökvist, Mats; Klar, Tobias; Hall, David R; Smalås, Arne O; McSweeney, Sean; Timmins, Joanna; Moe, Elin
2015-08-01
While most bacteria possess a single gene encoding the bifunctional DNA glycosylase Endonuclease III (EndoIII) in their genomes, Deinococcus radiodurans possesses three: DR2438 (DrEndoIII1), DR0289 (DrEndoIII2) and DR0982 (DrEndoIII3). Here we have determined the crystal structures of DrEndoIII1 and an N-terminally truncated form of DrEndoIII3 (DrEndoIII3Δ76). We have also generated a homology model of DrEndoIII2 and measured activity of the three enzymes. All three structures consist of two all α-helical domains, one of which exhibits a [4Fe-4S] cluster and the other a HhH-motif, separated by a DNA binding cleft, similar to previously determined structures of endonuclease III from Escherichia coli and Geobacillus stearothermophilus. However, both DrEndoIII1 and DrEndoIII3 possess an extended HhH motif with extra helical features and an altered electrostatic surface potential. In addition, the DNA binding cleft of DrEndoIII3 seems to be less accessible for DNA interactions, while in DrEndoIII1 it seems to be more open. Analysis of the enzyme activities shows that DrEndoIII2 is most similar to the previously studied enzymes, while DrEndoIII1 seems to be more distant with a weaker activity towards substrate DNA containing either thymine glycol or an abasic site. DrEndoIII3 is the most distantly related enzyme and displays no detectable activity towards these substrates even though the suggested catalytic residues are conserved. Based on a comparative structural analysis, we suggest that the altered surface potential, shape of the substrate-binding pockets and specific amino acid substitutions close to the active site and in the DNA interacting loops may underlie the unexpected differences in activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Alfa, M J; Nemes, R; Olson, N; Mulaire, A
2006-08-01
Most reusable biopsy forceps and all of the currently available single-use biopsy forceps do not have a port that allows fluid flow down the inner tubular shaft of the device. Reusable biopsy forceps are widely used and reprocessed in healthcare facilities, and single-use biopsy forceps are reprocessed either in-house (eg, in Canada and Japan) or by third-party reprocessors (eg, in the United States). The objective of this study was to determine the cleaning efficacy of automated narrow-lumen sonic irrigation cleaning, sonication-only cleaning, and manual cleaning for biopsy forceps. A simulated-use study was performed by inoculating the inner channel of single-use biopsy forceps with artificial test soil containing both Enterococcus faecalis and Geobacillus stearothermophilus at concentrations of 10(6) colony-forming units per milliliter. The cleaning methods evaluated were manual cleaning, sonication-only cleaning, and "retroflush" cleaning by an automated narrow-lumen irrigator. Bioburden and organic soil reduction after washing was evaluated. Forceps used in biopsies of patients were also tested to determine the worst-case soiling levels. Only retroflush irrigation cleaning could effectively remove material from within the shaft portion of the biopsy forceps: it achieved an average reduction of more than 95% in levels of protein, hemoglobin, carbohydrate, and endotoxin. However, even this method of cleaning was not totally effective, as only a 2 log10 reduction in bioburden could be achieved, and there were low residual levels of hemoglobin and carbohydrate. The data from this evaluation indicate that manual and sonication-only cleaning methods for biopsy forceps were totally ineffective in removing material from within the biopsy forceps. Even the use of retroflush cleaning was not totally effective. These findings suggest that in-hospital reprocessing of biopsy forceps with currently available equipment and cleaning methods is suboptimal.
Using high-temperature formaldehyde sterilization as a model for studying gaseous sterilization.
Mosley, Gregg A
2008-01-01
This study uses the high-temperature formaldehyde sterilization system provided by the Harvey Chemiclave, manufactured by Barnstead Thermolyne Corporation (Dubuque, IA), as a model to investigate certain phenomena associated with gaseous chemical sterilization systems. Although formaldehyde sterilization presents some unique and complex system attributes, the current studies provide helpful insights into general sterilization methods by chemicals in the gaseous state. Both population recovery and fraction negative (FN) techniques were used to assay surviving populations from biological indicators of the organism Geobacillus stearothermophilus following exposure to incremental Chemiclave cycles. Models 5500 and 6000 of the Barnstead/Thermolyne Chemiclave were used in the study. Reusable instruments such as scalers, explorers, and various hinged pieces were tested in minimum versus maximum load studies. Population recovery study results demonstrated that lethality rates increase with time throughout the Chemiclave sterilization process and that there are significant variations in lethality according to load location. The population recovery data in conjunction with the FN studies and temperature data confirm that one-half the full-cycle time is not a good estimator of one-half the full-cycle lethality because lethality curves are concave downward and lethality varies by load location. This conclusion can also be applied to other types of gaseous, chemical sterilization such as ethylene oxide. The work outlined in this study was a result of investigations into the parameters affecting formaldehyde chemical vapor sterilization with the Harvey Chemiclave sterilizer. During these studies, it became apparent that results clearly depicted the effects of continued acceleration of the rate of microbial lethality, as well as variations in delivered lethality as a function of position in the sterilizer load. This publication focuses on these observations because they are important considerations for understanding general concepts of sterilization efficacy in process applications. Erroneous conclusions can be drawn when one evaluates sterilization without a thorough understanding of affecting variables.
Fu, T Y; Gent, P; Kumar, V
2012-03-01
This was a head-to-head comparison of two hydrogen-peroxide-based room decontamination systems. To compare the efficacy, efficiency and safety of hydrogen peroxide vapour (HPV; Clarus R, Bioquell, Andover, U.K.) and aerosolized hydrogen peroxide (aHP; SR2, Sterinis, now supplied as Glosair, Advanced Sterilization Products (ASP), Johnson & Johnson Medical Ltd, Wokingham, U.K.) room disinfection systems. Efficacy was tested using 4- and 6-log Geobacillus stearothermophilus biological indicators (BIs) and in-house prepared test discs containing approximately 10(6) meticillin-resistant Staphylococcus aureus (MRSA), Clostridium difficile and Acinetobacter baumannii. Safety was assessed by detecting leakage of hydrogen peroxide using a hand-held detector. Efficiency was assessed by measuring the level of hydrogen peroxide using a hand-held sensor at three locations inside the room, 2 h after the start of the cycles. HPV generally achieved a 6-log reduction, whereas aHP generally achieved less than a 4-log reduction on the BIs and in-house prepared test discs. Uneven distribution was evident for the aHP system but not the HPV system. Hydrogen peroxide leakage during aHP cycles with the door unsealed, as per the manufacturer's operating manual, exceeded the short-term exposure limit (2 ppm) for more than 2 h. When the door was sealed with tape, as per the HPV system, hydrogen peroxide leakage was <1 ppm for both systems. The mean concentration of hydrogen peroxide in the room 2 h after the cycle started was 1.3 [standard deviation (SD) 0.4] ppm and 2.8 (SD 0.8) ppm for the four HPV and aHP cycles, respectively. None of the readings were <2 ppm for the aHP cycles. The HPV system was safer, faster and more effective for biological inactivation. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Peng, Tao; Free, Paul; Fernig, David G.; Lim, Sierin; Tomczak, Nikodem
2016-01-01
Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages’ pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages’ core and low non-specific binding to the cages’ outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage’s core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of currently available approaches and provides a new route to design tailored and well-controlled hybrid nanoparticles. PMID:27622533
Oh, Hyo-Jung; Kim, Hye-Jung; Oh, Deok-Kun
2006-02-01
Among single-site mutations of L-arabinose isomerase derived from Geobacillus thermodenitrificans, two mutants were produced having the lowest and highest activities of D-tagatose production. Site-directed mutagenesis at these sites showed that the aromatic ring at amino acid 164 and the size of amino acid 475 were important for D-tagatose production. Among double-site mutations, one mutant converted D-galactose into D-tagatose with a yield of 58% whereas the wild type gave 46% D-tagatose conversion after 300 min at 65 degrees C.
Wright, A M; Hoxey, E V; Soper, C J; Davies, D J
1995-10-01
Preliminary screening was carried out on spores of 29 strains of Bacillus stearothermophilus to determine their potential as biological indicator organisms for low temperature steam and formaldehyde sterilization. Each strain was sporulated on four chemically defined media. Fourteen strains produced satisfactory sporulation on one or more of the media but there was considerable variation in the extent of sporulation. The growth index of the spores, which was dependent on both the strain of organism and the sporulation medium, ranged from 1% to 90%. The spores were appraised on the basis of their resistance to inactivation by 0.5% w/v formaldehyde in aqueous solution at 70 degrees C. The survivor curves obtained could be characterized into five types on the basis of the shape of the curve. Only five strains of Bacillus stearothermophilus produced spores with the characteristics of high resistance, linear semi-logarithmic survivor curve and high growth index that would be required of a potential biological indicator organism.
Sasaki, K; Honda, W; Miyake, Y
1998-01-01
The high-temperature and short-time sterilization by microwave heating with a continuous microwave sterilizer (MWS) was evaluated. The evaluation were performed with respect to: [1] lethal effect against microorganisms corresponding to F-value, and [2] reliability of MWS sterilization process. Bacillus stearothermophilus ATCC 7953 spores were used as the biological indicator and the heat-resistance of spores was evaluated with conventional heating method (121-129 degrees C). In MWS sterilization (125-135 degrees C), the actual lethal effect against B. stearothermophilus spores was almost in agreement with the F-value and the survival curve against the F-value was quite consistent with that for the autoclave. These results suggest that the actual lethal effect could be estimated by the F-value with heat-resistance parameters of spores from lower than actual temperatures and that there was no nonthermal effect of the microwave on B. stearothermophilus spores. The reliability of sterilization with the MWS was confirmed using more than 25,000 test ampules containing biological indicators. All biological indicators were killed, thus the present study shows that the MWS was completely reliable for all ampules.
Crystallization and preliminary X-ray analysis of pyruvate kinase from Bacillus stearothermophilus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Kenichiro; Ito, Sohei; Shimizu-Ibuka, Akiko
2005-08-01
This report describes the crystallization and X-ray diffraction data collection of three types (wild-type, W416F/V435W and C9S/C268S) of B. stearothermophilus. Crystals of C9S/C268S belonged to space group P6{sub 2}22 and diffracted to a resolution of 2.4 Å. Pyruvate kinase (PK) from a moderate thermophile, Bacillus stearothermophilus (BstPK), is an allosteric enzyme activated by AMP and ribose 5-phosphate but not by fructose 1,6-bisphosphate (FBP). However, almost all other PKs are activated by FBP. The wild-type and W416F/V435W mutant BstPKs were crystallized by the hanging-drop vapour-diffusion method. However, they were unsuitable for structural analysis because their data sets exhibited low completeness. Amore » crystal suitable for structural analysis was obtained using C9S/C268S enzyme. The crystal belonged to space group P6{sub 2}22, with unit-cell parameters a = b = 145.97, c = 118.03 Å.« less
Balan, Anuradha; Ibrahim, Darah; Abdul Rahim, Rashidah; Ahmad Rashid, Fatimah Azzahra
2012-01-01
Thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was purified and characterized. The production of thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was carried out in a shake-flask system at 65°C in cultivation medium containing; glucose 1.0% (w/v); yeast extract 1.25% (w/v); NaCl 0.45% (w/v) olive oil 0.1% (v/v) with agitation of 200 rpm for 24 hours. The extracted extracellular crude thermostable lipase was purified to homogeneity by using ultrafiltration, Heparin-affinity chromatography, and Sephadex G-100 gel-filtration chromatography by 34 times with a final yield of 9%. The molecular weight of the purified enzyme was estimated to be 30 kDa after SDS-PAGE analysis. The optimal temperature for thermostable lipase was 65°C and it retained its initial activity for 3 hours. Thermostable lipase activity was highest at pH 7.0 and stable for 16 hours at this pH at 65°C. Thermostable lipase showed elevated activity when pretreated with BaCl2, CaCl2, and KCl with 112%, 108%, and 106%, respectively. Lipase hydrolyzed tripalmitin (C16) and olive oil with optimal activity (100%) compared to other substrates. PMID:23198138
Thebti, Wajdi; Riahi, Yosra; Gharsalli, Rawand; Belhadj, Omrane
2016-01-01
As part of the contribution to the global efforts in research of thermostable enzymes being of industrial interest, we focus on the isolation of thermophilic bacteria from Tunisian hot springs. Among the collection of 161 strains of thermophilic Bacillus isolated from different samples of thermal water in Tunisia, 20% are capable of growing at 100°C and the rest grow at 70°C or above. Preliminary activity tests on media supplemented with enzyme-substrates confirmed that 35 strains produced amylases, 37 - proteases, 43 - cellulases, 31 - xylanases and 37 - mannanases. The study of the effect of temperature on enzyme activity led to determination of the optimal temperatures of activities that vary between 60 and 100°C. Several enzymes were active at high temperatures (80, 90 and 100°C) and kept their activity even at 110°C. Several isolated strains producing enzymes with high optimal temperatures of activity were described for the first time in this study. Both strains B62 and B120 are producers of amylase, protease, cellulase, xylanase, and mannanase. The sequencing of 16S DNA identified isolated strains as Geobacillus kaustophillus, Aeribacillus pallidus, Geobacillus galactosidasus and Geobacillus toebii.
Daas, Martinus J A; Nijsse, Bart; van de Weijer, Antonius H P; Groenendaal, Bart W A J; Janssen, Fons; van der Oost, John; van Kranenburg, Richard
2018-06-27
Consolidated bioprocessing (CBP) is a cost-effective approach for the conversion of lignocellulosic biomass to biofuels and biochemicals. The enzymatic conversion of cellulose to glucose requires the synergistic action of three types of enzymes: exoglucanases, endoglucanases and β-glucosidases. The thermophilic, hemicellulolytic Geobacillus thermodenitrificans T12 was shown to harbor desired features for CBP, although it lacks the desired endo and exoglucanases required for the conversion of cellulose. Here, we report the expression of both endoglucanase and exoglucanase encoding genes by G. thermodenitrificans T12, in an initial attempt to express cellulolytic enzymes that complement the enzymatic machinery of this strain. A metagenome screen was performed on 73 G. thermodenitrificans strains using HMM profiles of all known CAZy families that contain endo and/or exoglucanases. Two putative endoglucanases, GE39 and GE40, belonging to glucoside hydrolase family 5 (GH5) were isolated and expressed in both E. coli and G. thermodenitrificans T12. Structure modeling of GE39 revealed a folding similar to a GH5 exo-1,3-β-glucanase from S. cerevisiae. However, we determined GE39 to be a β-xylosidase having pronounced activity towards p-nitrophenyl-β-D-xylopyranoside. Structure modelling of GE40 revealed its protein architecture to be similar to a GH5 endoglucanase from B. halodurans, and its endoglucanase activity was confirmed by enzymatic activity against 2-hydroxyethylcellulose, carboxymethylcellulose and barley β-glucan. Additionally, we introduced expression constructs into T12 containing Geobacillus sp. 70PC53 endoglucanase gene celA and both endoglucanase genes (M1 and M2) from Geobacillus sp. WSUCF1. Finally, we introduced expression constructs into T12 containing the C. thermocellum exoglucanases celK and celS genes and the endoglucanase celC gene. We identified a novel G. thermodenitrificans β-xylosidase (GE39) and a novel endoglucanase (GE40) using a metagenome screen based on multiple HMM profiles. We successfully expressed both genes in E. coli and functionally expressed the GE40 endoglucanase in G. thermodenitrificans T12. Additionally, the heterologous production of active CelK, a C. thermocellum derived exoglucanase, and CelA, a Geobacillus derived endoglucanase, was demonstrated with strain T12. The native hemicellulolytic activity and the heterologous cellulolytic activity described in this research provide a good basis for the further development of G. thermodenitrificans T12 as a host for consolidated bioprocessing.
Rubio, S L; Moldenhauer, J E
1995-01-01
Bacillus stearothermophilus spores (liquid suspension) were inoculated onto rubber stoppers and exposed to sublethal steam sterilization cycles at 120 degrees C. The D-values were determined using the fraction-negative method. An increase in heat resistance (D-value) of 200%-400% was observed when the spore suspension was inoculated onto rubber stoppers. The D-values ranged from 4.90-6.96 minutes 120 degrees C. No significant effect was seen when different preservatives were added to the stoppers nor when hot or cold rinse water temperatures were used after processing.
Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies
NASA Technical Reports Server (NTRS)
Rossler, D.; Ludwig, W.; Schleifer, K. H.; Lin, C.; McGill, T. J.; Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.
1991-01-01
Comparative sequence analysis of 16S ribosomal (r)RNAs or DNAs of Bacillus alvei, B. laterosporus, B. macerans, B. macquariensis, B. polymyxa and B. stearothermophilus revealed the phylogenetic diversity of the genus Bacillus. Based on the presently available data set of 16S rRNA sequences from bacilli and relatives at least four major "Bacillus clusters" can be defined: a "Bacillus subtilis cluster" including B. stearothermophilus, a "B. brevis cluster" including B. laterosporus, a "B. alvei cluster" including B. macerans, B. maquariensis and B. polymyxa and a "B. cycloheptanicus branch".
Degradation of lignocelluloses in rice straw by BMC-9, a composite microbial system.
Zhao, Hongyan; Yu, Hairu; Yuan, Xufeng; Piao, Renzhe; Li, Hulin; Wang, Xiaofen; Cui, Zongjun
2014-05-01
To evaluate the potential utility of pretreatment of raw biomass with a complex microbial system, we investigated the degradation of rice straw by BMC-9, a lignocellulose decomposition strain obtained from a biogas slurry compost environment. The degradation characteristics and corresponding changes in the bacterial community were assessed. The results showed that rapid degradation occurred from day 0 to day 9, with a peak total biomass bacterium concentration of 3.3 × 10(8) copies/ml on day 1. The pH of the fermentation broth declined initially and then increased, and the mass of rice straw decreased steadily. The highest concentrations of volatile fatty acid contents (0.291 mg/l lactic acid, 0.31 mg/l formic acid, 1.93 mg/l acetic acid, and 0.73 mg/l propionic acid) as well as the highest xylanse activity (1.79 U/ml) and carboxymethyl cellulase activity (0.37 U/ml) occurred on day 9. The greatest diversity among the microbial community also occurred on day 9, with the presence of bacteria belonging to Clostridium sp., Bacillus sp., and Geobacillus sp. Together, our results indicate that BMC-9 has a strong ability to rapidly degrade the lignocelluloses of rice straw under relatively inexpensive conditions, and the optimum fermentation time is 9 days.
Growth inhibition of foodborne pathogens and food spoilage organisms by select raw honeys.
Mundo, Melissa A; Padilla-Zakour, Olga I; Worobo, Randy W
2004-12-01
Twenty-seven honey samples from different floral sources and geographical locations were evaluated for their ability to inhibit the growth of seven food spoilage organisms (Alcaligenes faecalis, Aspergillus niger, Bacillus stearothermophilus, Geotrichum candidum, Lactobacillus acidophilus, Penicillium expansum, Pseudomonas fluorescens) and five foodborne pathogens (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica Ser. Typhimurium, and Staphylococcus aureus) using an overlay inhibition assay. They were also tested for specific activity against S. aureus 9144 and B. stearothermophilus using the equivalent percent phenol test--a well diffusion assay corresponding to a dilute phenol standard curve. Honey inhibited bacterial growth due to high sugar concentration (reduced water activity), hydrogen peroxide generation, and proteinaceous compounds present in the honey. Some antibacterial activity was due to other unidentified components. The ability of honey to inhibit the growth of microorganisms varies widely, and could not be attributed to a specific floral source or demographic region produced in this study. Antibacterially active samples in this study included Montana buckwheat, tarweed, manuka, melaleuca, and saw palmetto. Furthermore, the bacteria were not uniformly affected by honey. Varying sensitivities to the antimicrobial properties were observed with four strains of S. aureus thus emphasizing the variability in the antibacterial effect of honey samples. Mold growth was not inhibited by any of the honeys tested. B. stearothermophilus, a heat-resistant spoilage bacteria, was shown to be highly sensitive to honey in both the overlay and well diffusion assays; other sensitive bacteria included A. faecalis and L. acidophilus. Non-peroxide antibacterial activity was observed in both assays; the highest instance was observed in the specific activity assay against B. stearothermophilus. Further research could indicate whether honey has potential as a preservative in minimally processed foods.
Yang, Mu; Wang, Ganggang
2016-09-15
The DnaB helicase from Bacillus stearothermophilus (DnaBBst) was a model protein for studying the bacterial DNA replication. In this work, a non-radioactive method for measuring ATPase activity of DnaBBst helicase was described. The working parameters and conditions were optimized. Furthermore, this method was applied to investigate effects of DnaG primase, ssDNA and helicase loader protein (DnaI) on ATPase activity of DnaBBst. Our results showed this method was sensitive and efficient. Moreover, it is suitable for the investigation of functional interaction between DnaB and related factors. Copyright © 2016 Elsevier Inc. All rights reserved.
Structure of the Apo Form of Bacillus stearothermophilus Phosphofructokinase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosser, Rockann; Reddy, Manchi C.M.; Bruning, John B.
2012-02-08
The crystal structure of the unliganded form of Bacillus stearothermophilus phosphofructokinase (BsPFK) was determined using molecular replacement to 2.8 {angstrom} resolution (Protein Data Bank entry 3U39). The apo BsPFK structure serves as the basis for the interpretation of any structural changes seen in the binary or ternary complexes. When the apo BsPFK structure is compared with the previously published liganded structures of BsPFK, the structural impact that the binding of the ligands produces is revealed. This comparison shows that the apo form of BsPFK resembles the substrate-bound form of BsPFK, a finding that differs from previous predictions.
Koike-Takeshita, A; Koyama, T; Obata, S; Ogura, K
1995-08-04
The genes encoding two dissociable components essential for Bacillus stearothermophilus heptaprenyl diphosphate synthase (all-trans-hexparenyl-diphosphate:isopentenyl-diphosphate hexaprenyl-trans-transferase, EC 2.5.1.30) were cloned, and their nucleotide sequences were determined. Sequence analyses revealed the presence of three open reading frames within 2,350 base pairs, designated as ORF-1, ORF-2, and ORF-3 in order of nucleotide sequence, which encode proteins of 220, 234, and 323 amino acids, respectively. Deletion experiments have shown that expression of the enzymatic activity requires the presence of ORF-1 and ORF-3, but ORF-2 is not essential. As a result, this enzyme was proved genetically to consist of two different protein compounds with molecular masses of 25 kDa (Component I) and 36 kDa (Component II), encoded by two of the three tandem genes. The protein encoded by ORF-1 has no similarity to any protein so far registered. However, the protein encoded by ORF-3 shows a 32% similarity to the farnesyl diphosphate synthase of the same bacterium and has seven highly conserved regions that have been shown typical in prenyltransferases (Koyama, T., Obata, S., Osabe, M., Takeshita, A., Yokoyama, K., Uchida, M., Nishino, T., and Ogura, K. (1993) J. Biochem. (Tokyo) 113, 355-363).
Brumm, Phillip; Land, Miriam L.; Hauser, Loren John; ...
2015-02-10
Geobacillus thermoglucosidasius Y4.1MC1 was isolated from a boiling spring in the lower geyser basin of Yellowstone National Park. We present this species is of interest because of its metabolic versatility. The genome consists of one circular chromosome of 3,840,330 bp and a circular plasmid of 71,617 bp with an average GC content of 44.01%. The genome is available in the GenBank database (NC_014650.1 and NC_014651.1). In addition to the expected metabolic pathways for sugars and amino acids, the Y4.1MC1 genome codes for two separate carbon monoxide utilization pathways, an aerobic oxidation pathway and an anaerobic reductive acetyl CoA (Wood-Ljungdahl) pathway.more » This is the first report of a nonanaerobic organism with the Wood-Ljungdahl pathway. Also, this anaerobic pathway permits the strain to utilize H 2 and fix CO 2 present in the hot spring environment. Y4.1MC1 and its related species may play a significant role in carbon capture and sequestration in thermophilic ecosystems and may open up new routes to produce biofuels and chemicals from CO, H 2, and CO 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumm, Phillip; Land, Miriam L.; Hauser, Loren John
Geobacillus thermoglucosidasius Y4.1MC1 was isolated from a boiling spring in the lower geyser basin of Yellowstone National Park. We present this species is of interest because of its metabolic versatility. The genome consists of one circular chromosome of 3,840,330 bp and a circular plasmid of 71,617 bp with an average GC content of 44.01%. The genome is available in the GenBank database (NC_014650.1 and NC_014651.1). In addition to the expected metabolic pathways for sugars and amino acids, the Y4.1MC1 genome codes for two separate carbon monoxide utilization pathways, an aerobic oxidation pathway and an anaerobic reductive acetyl CoA (Wood-Ljungdahl) pathway.more » This is the first report of a nonanaerobic organism with the Wood-Ljungdahl pathway. Also, this anaerobic pathway permits the strain to utilize H 2 and fix CO 2 present in the hot spring environment. Y4.1MC1 and its related species may play a significant role in carbon capture and sequestration in thermophilic ecosystems and may open up new routes to produce biofuels and chemicals from CO, H 2, and CO 2.« less
Genetic analysis of Bacillus stearothermophilus by protoplast fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z.; Wojcik, S.F.; Welker, N.E.
1986-03-01
Efficient and reliable protoplasting, regeneration, and fusion techniques were established for the prototrophic strain Bacillus stearothermophilus NUB36. Auxotrophic mutants were isolated, and protoplast fusion was used to construct isogenic mutant strains and for chromosomal mapping. Markers were mapped using two-, three-, and four-factor crosses. The order of the markers was hom-1-thr-1-his-1-(gly-1 or gly-2)-pur-1-pur-2. These markers may be analogous to hom, thrA, hisA, glyC, and purA markers on the Bacillus subtilis chromosome. No analogous pur-1 marker has been reported in B. subtilis. The relative order of three of the markers (hom-1-thr-1-gly-1) was independently confirmed by transduction.
Growth kinetics of Bacillus stearothermophilus BR219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worden, R.M.; Subramanian, R.; Bly, M.J.
1991-12-31
Bacillus stearothermophilus BR219, a phenol-resistant thermophile, can convert phenol to the specialty chemical catechol. The growth kinetics of this organism were studied in batch, continuous, and immobilized-cell culture. Batch growth was insensitive to pH between 6.0 and 8.0, but little growth occurred at 5.5. In continuous culture on a dilute medium supplemented with 10 mM phenol, several steady states were achieved between dilution rates of 0.25 and 1.3 h{sup -1}. Phenol degradation was found to be uncoupled from growth. Immobilized cells grew rapidly in a rich medium, but cell viability plummeted following a switch to a dilute medium supplemented withmore » 5 mM phenol.« less
Lee, S J; Kim, J C; Kim, M J; Kitaoka, M; Park, C S; Lee, S Y; Ra, M J; Moon, T W; Robyt, J F; Park, K H
1999-09-01
Naringin, a bitter compound in citrus fruits, was transglycosylated by Bacillus stearothermophilus maltogenic amylase reaction with maltotriose to give a series of mono-, di-, and triglycosylnaringins. Glycosylation products of naringin were observed by TLC and HPLC. The major glycosylation product was purified by using a Sephadex LH-20 column. The sturcture was determined by using MALDI-TOF MS, methylation analysis, and (1)H and (13)C NMR. The major transglycosylation product was maltosylnaringin, in which the maltose unit was attached by an alpha-1-->6 glycosidic linkage to the D-glucose moiety of naringin. This product was 250 times more soluble in water and 10 times less bitter than naringin.
NASA Astrophysics Data System (ADS)
Nik Raikhan, N. H.
2018-05-01
Geranyl butyrate has been synthesized successfully using our locally isolated lipase Geobacillus thermodenitrificans nr68 (LGT) as the fragrance ester with aim to be used in a nanotechnology fragrance application. We have used and modified few parameters from the previous research and then, continued with optimization of the synthesis by looking into degree of esterification and water content in the system. Butyric acid (C4), stearic acid (C18: 0), caprylic acid (C8), linolenic acid (C18: 3), myristic acid (C14), linoleic acid (C18: 2) and oleic acid (C18: 1) were used in the substrate selection. The yield of geranyl butyrate before the optimization was 31.68±0.01%. The optimum parameters for the synthesis of geranyl butyrate were recorded as temperature of 65°C, shaking rate at 200 rpm, 5.0 ml of geraniol and 0.40 ml of butyric acid and 4.0 ml of n-butanol and 0.40 ml of oleic acid. After the optimization, geranyl butyrate synthesis was increased by 297% as to compare with the value before the parameters were optimized. We also have significantly reduced water content as a byproduct of the esterification and managed to run the system a success. The ability thermotolerant lipase from Geobacillus thermodenitrificans (LGT) in this synthesis is novel to Malaysian fragrance industry.
Wei, Dahai; Zhang, Xiaobo
2010-01-01
The virus-host interaction is essential to understanding the role that viruses play in ecological and geochemical processes in deep-sea vent ecosystems. Virus-induced changes in cellular gene expression and host physiology have been studied extensively. However, the molecular mechanism of interaction between a bacteriophage and its host at high temperature remains poorly understood. In the present study, the virus-induced gene expression profile of Geobacillus sp. E263, a thermophile isolated from a deep-sea hydrothermal ecosystem, was characterized. Based on proteomic analysis and random arbitrarily primed PCR (RAP-PCR) of Geobacillus sp. E263 cultured under non-bacteriophage GVE2 infection and GVE2 infection conditions, there were two types of protein/gene profiles in response to GVE2 infection. Twenty differentially expressed genes and proteins were revealed that could be grouped into 3 different categories based on cellular function, suggesting a coordinated response to infection. These differentially expressed genes and proteins were further confirmed by Northern blot analysis. To characterize the host proteins in response to virus infection, aspartate aminotransferase (AST) was inactivated to construct the AST mutant of Geobacillus sp. E263. The results showed that the AST protein was essential in virus infection. Thus, transcriptional and proteomic analyses and functional analysis revealed previously unknown host responses to deep-sea thermophilic virus infection. PMID:20015994
Mohtar, Nur Syazwani; Abdul Rahman, Mohd Basyaruddin; Raja Abd Rahman, Raja Noor Zaliha; Leow, Thean Chor; Salleh, Abu Bakar; Mat Isa, Mohd Noor
2016-01-01
The glycogen branching enzyme (EC 2.4.1.18), which catalyses the formation of α -1,6-glycosidic branch points in glycogen structure, is often used to enhance the nutritional value and quality of food and beverages. In order to be applicable in industries, enzymes that are stable and active at high temperature are much desired. Using genome mining, the nucleotide sequence of the branching enzyme gene ( glgB ) was extracted from the Geobacillus mahadia Geo-05 genome sequence provided by the Malaysia Genome Institute. The size of the gene is 2013 bp, and the theoretical molecular weight of the protein is 78.43 kDa. The gene sequence was then used to predict the thermostability, function and the three dimensional structure of the enzyme. The gene was cloned and overexpressed in E. coli to verify the predicted result experimentally. The purified enzyme was used to study the effect of temperature and pH on enzyme activity and stability, and the inhibitory effect by metal ion on enzyme activity. This thermostable glycogen branching enzyme was found to be most active at 55 °C, and the half-life at 60 °C and 70 °C was 24 h and 5 h, respectively. From this research, a thermostable glycogen branching enzyme was successfully isolated from Geobacillus mahadia Geo-05 by genome mining together with molecular biology technique.
Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste
NASA Technical Reports Server (NTRS)
Hummerick, Mary P.; Strayer, Richard F.; McCoy, Lashelle E.; Richards, Jeffrey T.; Ruby, Anna Maria; Wheeler, Ray; Fisher, John
2013-01-01
One of the technologies being tested at Ames Research Center as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste to reduce volume, remove water and render a biologically stable and safe product. Studies at Kennedy Space Center have focused on the efficacy of the heat melt compaction process for killing microorganisms in waste and specific compacter operation protocols, i.e., time and temperature required to achieve a sterile, stable product. The work. reported here includes a controlled study to examine the survival and potential re-growth of specific microorganisms over a 6-month period of storage after heating and compaction. Before heating and compaction, ersatz solid wastes were inoculated with Bacillus amyloliquefaciens and Rhodotorula mucilaginosa, previously isolated from recovered space shuttle mission food and packaging waste. Compacted HMC tiles were sampled for microbiological analysis at time points between 0 and 180 days of storage in a controlled environment chamber. In addition, biological indicator strips containing spores of Bacillus atrophaeus and Geobacillus stearothermophilus were imbedded in trash to assess the efficacy of the HMC process to achieve sterilization. Analysis of several tiles compacted at 180deg C for times of 40 minutes to over 2 hours detected organisms in all tile samples with the exception of one exposed to 180deg C for approximately 2 hours. Neither of the inoculated organisms was recovered, and the biological indicator strips were negative for growth in all tiles indicating at least local sterilization of tile areas. The findings suggest that minimum time/temperature combination is required for complete sterilization. Microbial analysis of tiles processed at lower temperatures from 130deg C-150deg C at varying times will be discussed, as well as analysis of the bacteria and fungi present on the compactor hardware as a result of exposure to the waste and the surrounding environment. The two organisms inoculated into the waste were among those isolated and identified from the HMC surfaces indicating the possibility of cross contamination.
A Novel Alkaliphilic Bacillus Esterase Belongs to the 13th Bacterial Lipolytic Enzyme Family
Rao, Lang; Xue, Yanfen; Zheng, Yingying; Lu, Jian R.; Ma, Yanhe
2013-01-01
Background Microbial derived lipolytic hydrolysts are an important class of biocatalysts because of their huge abundance and ability to display bioactivities under extreme conditions. In spite of recent advances, our understanding of these enzymes remains rudimentary. The aim of our research is to advance our understanding by seeking for more unusual lipid hydrolysts and revealing their molecular structure and bioactivities. Methodology/Principal Findings Bacillus. pseudofirmus OF4 is an extreme alkaliphile with tolerance of pH up to 11. In this work we successfully undertook a heterologous expression of a gene estof4 from the alkaliphilic B. pseudofirmus sp OF4. The recombinant protein called EstOF4 was purified into a homologous product by Ni-NTA affinity and gel filtration. The purified EstOF4 was active as dimer with the molecular weight of 64 KDa. It hydrolyzed a wide range of substrates including p-nitrophenyl esters (C2–C12) and triglycerides (C2–C6). Its optimal performance occurred at pH 8.5 and 50°C towards p-nitrophenyl caproate and triacetin. Sequence alignment revealed that EstOF4 shared 71% identity to esterase Est30 from Geobacillus stearothermophilus with a typical lipase pentapeptide motif G91LS93LG95. A structural model developed from homology modeling revealed that EstOF4 possessed a typical esterase 6α/7β hydrolase fold and a cap domain. Site-directed mutagenesis and inhibition studies confirmed the putative catalytic triad Ser93, Asp190 and His220. Conclusion EstOF4 is a new bacterial esterase with a preference to short chain ester substrates. With a high sequence identity towards esterase Est30 and several others, EstOF4 was classified into the same bacterial lipolytic family, Family XIII. All the members in this family originate from the same bacterial genus, bacillus and display optimal activities from neutral pH to alkaline conditions with short and middle chain length substrates. However, with roughly 70% sequence identity, these enzymes showed hugely different thermal stabilities, indicating their diverse thermal adaptations via just changing a few amino acid residues. PMID:23577139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Ricardo W.; Markillie, Lye Meng; Colotelo, Alison HA
Telemetry is frequently used to examine the behavior of fish, and the transmitters used are normally surgically implanted into the coelom of fish. Implantation requires the use of surgical tools such as scalpels, forceps, needle holders, and sutures. When several fish are implanted consecutively for large telemetry studies, it is common for surgical tools to be sterilized or, at minimum, disinfected between each use so that pathogens that may be present are not spread among fish. However, autoclaving tools can take a long period of time, and chemical sterilants or disinfectants can be harmful to both humans and fish andmore » have varied effectiveness. Ultraviolet (UV) radiation is commonly used to disinfect water in aquaculture facilities. However, this technology has not been widely used to sterilize tools for surgical implantation of transmitters in fish. To determine its efficacy for this application, Pacific Northwest National Laboratory researchers used UV radiation to disinfect surgical tools (i.e., forceps, needle holder, stab scalpel, and suture) that were exposed to one of four aquatic organisms that typically lead to negative health issues for salmonids. These organisms included Aeromonas salmonicida, Flavobacterium psychrophilum, Renibacterium salmoninarum, and Saprolegnia parasitica. Surgical tools were exposed to the bacteria by dipping them into a confluent suspension of three varying concentrations (i.e., low, medium, high). After exposure to the bacterial culture, tools were placed into a mobile Millipore UV sterilization apparatus. The tools were then exposed for three different time periods—2, 5, or 15 min. S. parasitica, a water mold, was tested using an agar plate method and forceps-pinch method. UV light exposures of 5 and 15 min were effective at killing all four organisms. UV light was also effective at killing Geobacillus stearothermophilus, the organism used as a biological indicator to verify effectiveness of steam sterilizers. These techniques appear to provide a quick alternative disinfection technique for some surgical tools that is less harmful to both humans and fish while not producing chemical waste. However, we do not recommend using these methods with tools that have overlapping parts or other structures that cannot be directly exposed to UV light such as needle holders.« less
Does incineration turn infectious waste aseptic?
Kanemitsu, K; Inden, K; Kunishima, H; Ueno, K; Hatta, M; Gunji, Y; Watanabe, I; Kaku, M
2005-08-01
Incineration of infectious waste is considered to be biologically safe. We performed basic experiments to confirm that bacillus spores are killed by incineration in a muffle furnace. Biological samples containing 10(6) spores of Bacillus stearothermophilus were placed in stainless steel Petri dishes and then into hot furnaces. The furnace temperature and duration of incineration were 300 degrees C for 15 min, 300 degrees C for 30 min, 500 degrees C for 15 min, 500 degrees C for 30 min and 1100 degrees C for 3 min. We confirmed that all spores of B. stearothermophilus were killed at each of these settings. The effect of incineration seems to be equivalent to that of sterilization, based on the satisfactory sterilization assurance level of 10(-6).
Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.
2012-01-01
We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowler, C.; Inze, D.; Van Camp, W.
1990-03-01
Recombinant clones containing the manganese superoxide dismutase (MnSOD) gene of Bacillus stearothermophilus were isolated with an oligonucleotide probe designed to match a part of the previously determined amino acid sequence. Complementation analyses, performed by introducing each plasmid into a superoxide dismutase-deficient mutant of Escherichia coli, allowed us to define the region of DNA which encodes the MnSOD structural gene and to identify a promoter region immediately upstream from the gene. These data were subsequently confirmed by DNA sequencing. Since MnSOD is normally restricted to the mitochondria in eucaryotes, we were interested (i) in determining whether B. stearothermophilus MnSOD could functionmore » in eucaryotic cytosol and (ii) in determining whether MnSOD could replace the structurally unrelated copper/zinc superoxide dismutase (Cu/ZnSOD) which is normally found there. To test this, the sequence encoding bacterial MnSOD was cloned into a yeast expression vector and subsequently introduced into a Cu/ZnSOD-deficient mutant of the yeast Saccharomyces cerevisiae. Functional expression of the protein was demonstrated, and complementation tests revealed that the protein was able to provide tolerance at wild-type levels to conditions which are normally restrictive for this mutant. Thus, in spite of the evolutionary unrelatedness of these two enzymes, Cu/ZnSOD can be functionally replaced by MnSOD in yeast cytosol.« less
Chander, M; Setlow, P; Lamani, E; Jedrzejas, M J
1999-06-15
Phosphoglycerate mutase (PGM), an important enzyme in the glycolytic pathway, catalyzes the transfer of a phosphate group between the 2 and the 3 positions of glyceric acid. The gene coding for the 2, 3-diphosphoglycerate independent monomeric PGM from Bacillus stearothermophilus (57 kDa), whose activity is extremely pH sensitive and has an absolute and specific requirement for Mn2+, has been cloned and the enzyme overexpressed and purified to homogeneity. Circular dichroism studies showed at most only small secondary structure changes in the enzyme upon binding to Mn2+ or its 3-phosphoglycerate substrate, but thermal unfolding analyses revealed that Mn2+ but not 3-phosphoglycerate caused a large increase in the enzyme's stability. Diffraction-quality crystals of the enzyme were obtained at neutral pH in the presence of 3-phosphoglyceric acid with ammonium sulfate as the precipitating agent; these crystals diffract X rays to beyond 2.5-A resolution and belong to the orthorhombic space group C2221 with unit cell dimensions, a = 58.42, b = 206.08, c = 124.87 A, and alpha = beta = gamma = 90.0 degrees. The selenomethionyl version of the B. stearothermophilus protein has also been overexpressed, purified, and crystallized. Employing these crystals, the determination of the three-dimensional structure of this PGM by the multiwavelength anomalous dispersion method is in progress. Copyright 1999 Academic Press.
Cheng, Lifang; Mu, Wanmeng; Jiang, Bo
2010-06-01
D-Tagatose, as one of the rare sugars, has been found to be a natural and safe low-calorie sweetener in food products and is classified as a GRAS substance. L-Arabinose isomerase (L-AI, EC 5.3.1.4), catalysing the isomerisations of L-arabinose and D-galactose to L-ribulose and D-tagatose respectively, is considered to be the most promising enzyme for the production of D-tagatose. The araA gene encoding an L-AI from Bacillus stearothermophilus IAM 11001 was cloned, sequenced and overexpressed in Escherichia coli. The gene is composed of 1491 bp nucleotides and codes for a protein of 496 amino acid residues. The recombinant L-AI was purified to electrophoretical homogeneity by affinity chromatography. The purified enzyme was optimally active at 65 degrees C and pH 7.5 and had an absolute requirement for the divalent metal ion Mn(2+) for both catalytic activity and thermostability. The enzyme was relatively active and stable at acidic pH of 6. The bioconversion yield of D-galactose to D-tagatose by the purified L-AI after 12 h at 65 degrees C reached 36%. The purified L-AI from B. stearothermophilus IAM 11001 was characterised and shown to be a good candidate for potential application in D-tagatose production. Copyright (c) 2010 Society of Chemical Industry.
Jiang, Tao; Cai, Menghao; Huang, Mengmeng; He, Hao; Lu, Jian; Zhou, Xiangshan; Zhang, Yuanxing
2015-10-01
A deep-sea thermophile, Geobacillus sp. 4j, was identified to grow on starch and produce thermostable amylase. N-terminally truncated form of Geobacillus sp. 4j α-amylase (Gs4j-amyA) was fused at its N-terminal end with the signal peptide of outer membrane protein A (OmpA) of Escherichia coli. The enzyme was over-expressed in E. coli BL21 with a maximum extracellular production of 130U/ml in shake flask. The yield of the transformant increased 22-fold as compared with that of the wild strain. The recombinant enzyme purified to apparent homogeneity by metal-affinity chromatography, exhibited a molecular mass of 62kDa. It displayed the maximal activity at 60-65°C and pH 5.5. Its half-life (t1/2) at 80°C was 4.25h with a temperature deactivation energy of 166.3kJ/mol. Compared to three commonly used commercial α-amylases, the Gs4j-amyA exhibited similar thermostable performance to BLA but better than BAA and BSA. It also showed a universally efficient raw starch hydrolysis performance superior to commercial α-amylases at an acidic pH approaching nature of starch slurry. As a new acidic-resistant thermostable α-amylase, it has the potential to bypass the industrial gelatinization step in raw starch hydrolysis. Copyright © 2015 Elsevier Inc. All rights reserved.
Jia, Xianbo; Chen, Jichen; Lin, Chenqiang; Lin, Xinjian
2016-01-01
Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and K m of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications.
2016-01-01
Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and K m of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications. PMID:27579320
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mead, David; Lucas, Susan; Copeland, A
2012-01-01
Paenibacillus speciesY412MC10 was one of a number of organisms initially isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA. The isolate Y412MC10 was initially classified as a Geobacillus sp. based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species and not Geobacillus; the 16S rRNA analysis indicated the organism was a strain of Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute.more » The genome of Paenibacillus lautus strain Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. The Paenibacillus sp.Y412MC10 genome sequence was deposited at the NCBI in October 2009 (NC{_}013406). Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other Paenibacilli. Over 25% of the proteins predicted by the Y412MC10 genome share no identity with the closest sequenced Paenibacillus species; most of these are predicted hypothetical proteins and their specific function in the environment is unknown.« less
Effect of Soybean Casein Digest Agar Lot on Number of Bacillus stearothermophilus Spores Recovered †
Pflug, I. J.; Smith, Geraldine M.; Christensen, Ronald
1981-01-01
In recent years it has become increasingly apparent that Bacillus stearothermophilus spores are affected by various environmental factors that influence the performance of the spores as biological indicators. One environmental factor is the recovery medium. The effect of different lots of commercial soybean casein digest agar on the number of colony-forming units per plate was examined in two series of experiments: (i) several lots of medium from two manufacturers were compared in single experiments, and (ii) paired media experiments with four lots of medium were carried out and yielded three-point survivor curves. The results demonstrate that commercial soybean casein digest agar is variable on a lot-to-lot basis. The variation was lowest when recovering unheated or minimally heated spores and increased greatly with the severity of heating. PMID:16345822
Kimura, M; Kimura, J; Hatakeyama, T
1988-11-21
The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45-49%) than to the eubacterial counterparts (35%).
Ece, Selin; Evran, Serap; Janda, Jan-Oliver; Merkl, Rainer; Sterner, Reinhard
2015-06-01
Neopullulanase, a glycosyl hydrolase from Bacillus stearothermophilus (bsNpl), is a potentially valuable enzyme for starch and detergent industries. However, as the protein is not active at elevated temperatures and high surfactant concentrations, we aimed to increase its stability by rational enzyme design. Nine potentially destabilizing cavities were identified in the crystal structure of the enzyme. Based on computational predictions, these cavities were filled by residues with bulkier side chains. The five Asp46Glu, Val239Leu, Val404Leu, Ser407Thr and Ala566Leu exchanges resulted in a drastic stabilization of bsNpl against inactivation by heat and detergents. The catalytic activity of the variants was identical to the wild-type enzyme. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Welker, N. E.
1971-01-01
The mode of action of a bacteriophage lytic enzyme on cell walls of Bacillus stearothermophilus (NCA 1503-4R) has been investigated. The enzyme is an endopeptidase which catalyzes the hydrolysis of the l-alanyl-d-glutamyl linkage in peptide subunits of the cell wall peptidoglycan. Preliminary studies on the soluble components in lytic cell wall digests indicate that the glycan moiety is composed of alternating glucosamine and muramic acid; one half of the muramic acid residues contain the tripeptide, l-alanyl-d-glutamyldiaminopimelic acid, and the remaining residues contain the tetrapeptide, l-alanyl-d-glutamyldiaminopimeyl-d-alanine. Almost one half of the peptide subunits are involved in cross-linkages of chemotype I. A structure for the cell wall peptidoglycan is proposed in the light of these findings. PMID:4255338
Wright, A M; Hoxey, E V; Soper, C J; Davies, D J
1996-03-01
Five strains of Bacillus stearothermophilus have been studied to identify a spore strain to be used as a biological indicator organism for low temperature steam and formaldehyde sterilization. Three strains gave poor reproducibility of batch size and growth index and were discarded. The other two strains gave good reproducibility with a high growth index and gave rise to linear survivor curves when exposed to 5% aqueous formaldehyde. However, only NCIMB 8224 sporulates on a simpler medium and as it was the most resistant to formaldehyde, it was further studied. Tests were carried out in a modified miniclave and factors studied included temperature of the steam and formaldehyde concentration. All studies confirmed the suitability of this strain as a biological indicator organism.
Ugwuanyi, J Obeta
2008-05-01
Bacillus spp. responsible for thermophilic aerobic digestion (TAD) of agricultural wastes were studied for their growth rate, yield and protein quality (amino acid profile) under conditions that approximate full-scale waste digestion as pointers to the capacity of TAD to achieve protein enrichment of wastes for reuse in animal feeding. Specific growth rates of the thermophiles varied with temperature and aeration rates. For Bacillus coagulans, the highest specific growth rate was 1.98 muh(-1); for Bacillus licheniformis 2.56 muh(-1) and for Bacillus stearothermophilus 2.63 muh(-1). Molar yield of B. stearothermophilus on glucose increased with temperature to a peak of 0.404 g g(-1) at 50 degrees C before declining. Peak concentration of overflow metabolite (acetate) increased from 10 mmol at 45 degrees C to 34 mmol at 65 degrees C before declining. Accumulation of biomass in all three isolates decreased with increase in temperature while protein content of biomass increased. Highest biomass protein (79%) was obtained in B. stearothermophilus at 70 degrees C. Content of most essential amino acids of the biomass improved with temperature. Amino acid profile of the biomass was comparable to or superior to the FAO standard for SCP intended for use in animal feeding. Culture condition (waste digestion condition) may be manipulated to optimize protein yield and quality of waste digested by TAD for recycling in animal feed.
Zhao, Y; Kumar, M; Caspers, M P M; Nierop Groot, M N; van der Vossen, J M B M; Abee, T
2018-02-01
Thermophilic bacilli such as Anoxybacillus and Geobacillus are important contaminants in dairy powder products. Remarkably, one of the common contaminants, Geobacillus thermoglucosidans, showed poor growth in skim milk, whereas significant growth of G. thermoglucosidans was observed in the presence of an Anoxybacillus flavithermus dairy isolate. In the present study, we investigated the underlying reason for this growth dependence of G. thermoglucosidans. Whole-genome sequences of 4 A. flavithermus strains and 4 G. thermoglucosidans strains were acquired, with special attention given to carbohydrate utilization clusters and proteolytic enzymes. Focusing on traits relevant for dairy environments, comparative genomic analysis revealed that all G. thermoglucosidans strains lacked the genes necessary for lactose transport and metabolism, showed poor growth in skim milk, and produced white colonies on X-gal plates, indicating the lack of β-galactosidase activity. The A. flavithermus isolates scored positive in these tests, consistent with the presence of a putative lactose utilization gene cluster. All tested isolates from both species showed proteolytic activity on milk plate count agar plates. Adding glucose or galactose to liquid skim milk supported growth of G. thermoglucosidans isolates, in line with the presence of the respective monosaccharide utilization gene clusters in the genomes. Analysis by HPLC of A. flavithermus TNO-09.006 culture filtrate indicated that the previously described growth dependence of G. thermoglucosidans in skim milk was based on the supply of glucose and galactose by A. flavithermus TNO-09.006. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Spore populations among bulk tank raw milk and dairy powders are significantly different.
Miller, Rachel A; Kent, David J; Watterson, Matthew J; Boor, Kathryn J; Martin, Nicole H; Wiedmann, Martin
2015-12-01
To accommodate stringent spore limits mandated for the export of dairy powders, a more thorough understanding of the spore species present will be necessary to develop prospective strategies to identify and reduce sources (i.e., raw materials or in-plant) of contamination. We characterized 1,523 spore isolates obtained from bulk tank raw milk (n=33 farms) and samples collected from 4 different dairy powder-processing plants producing acid whey, nonfat dry milk, sweet whey, or whey protein concentrate 80. The spores isolated comprised 12 genera, at least 44 species, and 216 rpoB allelic types. Bacillus and Geobacillus represented the most commonly isolated spore genera (approximately 68.9 and 12.1%, respectively, of all spore isolates). Whereas Bacillus licheniformis was isolated from samples collected from all plants and farms, Geobacillus spp. were isolated from samples from 3 out of 4 plants and just 1 out of 33 farms. We found significant differences between the spore population isolated from bulk tank raw milk and those isolated from dairy powder plant samples, except samples from the plant producing acid whey. A comparison of spore species isolated from raw materials and finished powders showed that although certain species, such as B. licheniformis, were found in both raw and finished product samples, other species, such as Geobacillus spp. and Anoxybacillus spp., were more frequently isolated from finished powders. Importantly, we found that 8 out of 12 genera were isolated from at least 2 different spore count methods, suggesting that some spore count methods may provide redundant information if used in parallel. Together, our results suggest that (1) Bacillus and Geobacillus are the predominant spore contaminants in a variety of dairy powders, implying that future research efforts targeted at elucidating approaches to reduce levels of spores in dairy powders should focus on controlling levels of spore isolates from these genera; and (2) the spore populations isolated from bulk tank raw milk and some dairy powder products are significantly different, suggesting that targeting in-plant sources of contamination may be important for achieving low spore counts in the finished product. These data provide important insight regarding the diversity of spore populations isolated from dairy powders and bulk tank raw milk, and demonstrate that several spore genera are detected by multiple spore count methods. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Characterization of Thermostable Cellulases Produced by Bacillus and Geobacillus Strains
USDA-ARS?s Scientific Manuscript database
Bacterial community composition of thermophilic (60 deg C) mixed cellulose-enrichment cultures was examined by constructing a 16S rDNA clone library which demonstrated major lineages affiliated to Actinobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, and Proteobacteria. A tot...
Microbiological evaluation of the steam sterilization of assembled laparoscopic instruments.
Camargo, Tamara Carolina de; Graziano, Kazuko Uchikawa; Almeida, Alda Graciele Claudio Dos Santos; Suzuki, Karina; Silva, Cely Barreto da; Pinto, Flávia Morais Gomes
2016-11-21
assess the safety of steam sterilization of assembled laparoscopic instruments with challenge contamination. a laboratory experimental study, using as test samples trocars and laparoscopic graspers. Geobacillus stearothermophillus ATCC-7953 was used, with a microbial population of 106UFC/Filter paper substrate, removed from the biological indicator. Three of them were introduced into each instrument at the time of assembly, and sterilized at pressurized saturated steam, 134oC for 5 minutes. After sterilization, the instrument was disassembled and each filter paper substrate was inoculated in soybean casein culture and incubated at 56oC for 21 days. In case of absence of growth, they were subjected to heat shock of 80oC, for 20 minutes and re-incubated for 72 hours. Sample size: 185 graspers and 185 trocars, with 95% power. We paired the experiments with comparative negative control groups (5 graspers and 5 trocars with challenge contamination, sterilized disassembled) and positive control (30 filter paper supports, unsterilized), subject to the same incubation procedures. there was no microbial growth in experimental and negative control. The results of the positive control were satisfactory. this study provided strong scientific evidence to support the safety of steam sterilizing of the assembled laparoscopic instrument. avaliar a segurança da esterilização a vapor, do instrumental laparoscópico montado com desafio da contaminação. estudo experimental laboratorial, cujo corpo de prova foram trocarte e pinça laparoscópica. Utilizou-se esporos Geobacillus stearothermophillus ATCC-7953, com população microbiana de 106UFC/suporte de papel filtro, removidos do indicador biológico. Três deles foram introduzidos no interior de cada instrumento, no momento da montagem, sendo esterilizados a vapor saturado sob pressão, 134oC por 5 minutos. Depois da esterilização, o instrumental foi desmontado, e cada suporte de papel filtro foi inoculado em meio de cultura de caseína soja, incubado a 56oC por 21 dias. Não havendo crescimento, foram submetidos a um choque térmico de 80oC, por 20 minutos e reincubados por 72 horas. Tamanho da amostra, 185 pinças e 185 trocartes, com poder de 95%. Os experimentos foram acompanhados dos grupos controle negativo comparativo (5 pinças e 5 trocartes com contaminação desafio, esterilizados desmontados) e positivo (30 suportes de papel filtro, não esterilizados), submetidos aos mesmos procedimentos de incubação. não houve nenhum crescimento microbiano nos grupos experimental e controle negativo. Os resultados do controle positivo foram satisfatórios. este estudo forneceu fortes evidências científicas para sustentar a segurança da prática de esterilização a vapor do instrumental laparoscópico montado. evaluar la seguridad de la esterilización a través de vapor, de instrumental laparoscópico previamente montado con desafío de contaminación. estudio experimental en laboratorio, cuyo cuerpo de prueba fueron trócarte y pinza laparoscópica. Se utilizó esporas Geobacillus stearothermophilus ATCC-7953, con población microbiana de 106UFC/soporte de papel filtro, removidos del indicador biológico. Tres de ellos fueron introducidos en el interior de cada instrumento, en el momento del montaje, los que fueron esterilizados a vapor saturado bajo presión, 134oC por 5 minutos. Después de la esterilización, el instrumental fue desmontado y cada soporte de papel filtro fue inoculado en medio de una cultura de caseína y soya, incubado a 56oC por 21 días. No habiendo crecimiento, fueron sometidos a un choque térmico de 80oC, por 20 minutos y nuevamente incubados por 72 horas. La muestra estuvo constituida por 185 pinzas y 185 trócartes, con poder de 95%. Los experimentos fueron acompañados en los grupos: control negativo comparativo (5 pinzas y 5 trócartes con contaminación desafío, esterilizados desmontados) y positivo (30 soportes de papel filtro, no esterilizados), sometidos a los mismos procedimientos de incubación. no se encontró crecimiento microbiano en los grupos experimental y control negativo. Los resultados del control positivo fueron satisfactorios. este estudio suministra fuertes evidencias científicas para sustentar que la práctica, de esterilización a vapor del instrumental laparoscópico montado, es segura.
Selection of biological indicator for validating microwave heating sterilization.
Sasaki, K; Mori, Y; Honda, W; Miyake, Y
1998-01-01
For the purpose of selecting an appropriate biological indicator for evaluation of the effects of microwave heating sterilization, we examined aerobic bacterial spores to determine whether microwaves have non-thermal sterilization effects. After microwave irradiation on dry bacterial spores (three species), none of the bacterial spores were killed. The survival rate of the spores after microwave irradiation of spore suspensions (twelve species) was compared with that after heating by a conventional method. The order of heat resistance in the bacterial species was similar between the two heating methods. Bacillus stearothermophilus spores were the most heat-resistant. These results suggest that microwaves have no non-thermal sterilization effects on bacterial spores, the specific resistant spores to microwave heating, and microwave heating sterilization can be evaluated in the same way as for conventional heating sterilization. As a biological indicator for evaluation of overkill sterilization, B. stearothermophilus spores may be appropriate for microwave heating sterilization as well as steam sterilization.
Problems in the disinfection of class 1 microbiology safety cabinets.
Everall, P H; Morris, C A; Oliver, P R; Becker, J F
1982-01-01
Microbiology safety cabinet disinfection procedures using formaldehyde have been tested. Tubercle bacilli were killed by concentrations of formaldehyde obtained by heating commercial formalin irrespective of whether the bacilli were in the cabinet free space or above the prefilters. However, Bacillus stearothermophilus spore papers for for the testing of low temperature steam/formaldehyde sterilisers were almost never sterilised and a strain of Staphylococcus epidermidis (NCTC 7944) showed a resistance intermediate between the B stearothermophilus spores and the tubercle bacilli. Tests using a vaccine strain of poliovirus type 3 indicated a considerable degree of resistance of the virus to the action of formaldehyde. No such resistance was demonstrated by vaccinia virus or echovirus 14. Chemical and biological evidence is presented which indicates that filter paper discs are an unsuitable carrier material for a challenge organism in testing the efficiency of any formaldehyde sterilising process. Recommendations are made towards developing a satisfactory test procedure. PMID:7047573
Rhimi, Moez; Aghajari, Nushin; Juy, Michel; Chouayekh, Hichem; Maguin, Emmanuelle; Haser, Richard; Bejar, Samir
2009-05-01
L-arabinose isomerases catalyze the bioconversion of D-galactose into D-tagatose. With the aim of producing an enzyme optimized for D-tagatose production, three Bacillus stearothermophilus US100 L-arabinose isomerase mutants were constructed, purified and characterized. Our results indicate that mutant Q268K was significantly more acidotolerant and more stable at acidic pH than the wild-type enzyme. The N175H mutant has a broad optimal temperature range from 50 to 65 degrees C. With the aim of constructing an acidotolerant mutant working at relatively low temperatures we generated the Q268K/N175H construct. This double mutant displays an optimal pH in the range 6.0-7.0 and an optimal activity around 50-65 degrees C, temperatures at which the enzyme was stable without addition of metal ions.
An evaluation of sterilization of endodontic instruments in artificial sponges.
Vélez, A E; Thomas, D D; del Río, C E
1998-01-01
The ability to sterilize endodontic files inserted into synthetic sponges was tested. Sponges were subjected to 5 cycles of either dry heat (Driclave) or steam under pressure (autoclave) sterilization. Sterilization was corroborated by microbiological tests. The sponges and files were pre-sterilized separately using steam under pressure. One hundred eighty files contaminated with Bacillus stearothermophilus spores (experimental and positive control) and 60 noncontaminated files (negative control), were inserted into 60 sponges. After each cycle, each file and a portion of sponge surrounding the file were transferred aseptically to tubes containing trypticase soy broth culture medium for bacteriological analysis. None of the tubes containing files and portions of sponges that were subjected to autoclave grew Bacillus stearothermophilus spores. Two of 60 (3.33%) of the tubes that were subjected to sterilization by Driclave demonstrated bacterial growth. Although the sponges tolerated the dry heat cycles well physically, sterilization was achieved in only 96.67% of the cases.
Guo, Zheng; Wang, Fengbin; Shen, Tiantian; Huang, Jing; Wang, Yuandong; Ji, Chaoneng
2014-05-01
Thermostable p-nitrophenylphosphatase from Bacillus Stearothermophilus (Bs-TpNPPase) is involved in the Mg(2+)-dependent hydrolysis of the phosphoenzyme at an optimum reaction temperature of 55°C. Bs-TpNPPase has been cloned and overexpressed in the E.coli M15 strain. Based on the conserved active sites, the protein was suggested to be a member of the haloalkanoate dehalogenase (HAD) superfamily. Two site-specific point mutants of Bs-TpNPPase were prepared by changing the catalytic Asp10 and Thr43 to Ala10 and Ala43, respectively. The activity of the two mutants further confirms Bs-TpNPPase as a member of the HAD superfamily. HAD superfamily can be divided into the four subfamilies and play several biochemical roles such as DNA repair, signal transduction and secondary metabolism. To understand the relationship between structure and thermostability in HAD superfamily, Bs-TpNPPase from Bacillus Stearothermophilus was selected. The X-ray crystal structure of Bs-TpNPPase was determined at 1.5A resolution using the molecular replacement phasing method. The structure of Bs-TpNPPase has been deposited and the PDB code is 4KN8. Compared with Bsp, a mesophilic prokaryotic putative p-nitrophenyl phosphatase from Bacillus Subtilis, Bs- TpNPPase showed highly homology but variations in the level of leucine content, aromatic clusters, cation-Pi and hydrophobic interaction. These differences may affect the thermal stability of the protein. The crystal structure of Bs-TpNPPase described herein may serve as a guide to better understand the mechanism of thermostability and provide insights for further mutation work.
[Characterization of a thermophilic Geobacillus strain DM-2 degrading hydrocarbons].
Liu, Qing-kun; Wang, Jun; Li, Guo-qiang; Ma, Ting; Liang, Feng-lai; Liu, Ru-lin
2008-12-01
A thermophilic Geobacillus strain DM-2 from a deep-subsurface oil reservoir was investigated on its capability of degrading crude oil under various conditions as well as its characters on degrading hydrocarbons in optimal conditions. The results showed that Geobacillus strain DM-2 was able to degrade crude oil under anoxic wide-range conditions with pH ranging from 4.0 to 10.0, high temperature in the range of 45-70 degrees C and saline concentration ranging from 0.2% to 3.0%. Furthermore, the optimal temperature and pH value for utilizing hydrocarbons by the strain were 60 degrees C and 7.0, respectively. Under such optimal conditions, the strain utilized liquid paraffine emulsified by itself as its carbon source for growth; further analysis by gas chromatography (GC) and infrared absorption spectroscopy demonstrated that it was able to degrade n-alkanes (C14-C30), branched-chain alkanes and aromatic hydrocarbons in crude oil and could also utilize long-chain n-alkanes from C16 to C36, among of which the degradation efficiency of C28 was the highest, up to 88.95%. One metabolite of the strain oxidizing alkanes is fatty acid.While utilizing C16 as carbon source for 5 d, only one fatty acid-acetic acid was detected by HPLC and MS as the product, with the amount of 0.312 g/L, which indicated that it degraded n-alkanes with pathway of inferior terminal oxidation,and then followed by a beta-oxidation pathway. Due to its characters of efficient emulsification, high-performance degradation of hydrocarbons and fatty-acid production under high temperature and anoxic condition, the strain DM-2 may be potentially applied to oil-waste treatment and microbial enhanced heavy oil recovery in extreme conditions.
Rutala, W A; Gergen, M F; Weber, D J
1998-08-01
This study was undertaken to evaluate the efficacy of 4 new low-temperature sterilization technologies: ethylene oxide with hydrochlorofluorocarbons, a liquid peracetic acid immersion system (Steris System 1 Processor), and 2 plasma sterilization processes that use vaporized hydrogen peroxide (Sterrad 100 and the Sterrad 100S). The Sterrad 100S system potentially improves sterilizer efficacy by using 2 cycles of a diffusion stage and a plasma stage per sterilization cycle. Flat stainless steel carriers were inoculated with approximately 10(6) Bacillus stearothermophilus spores. These carriers were aseptically placed in the middle of 40 cm long stainless steel lumens (hollow tubes). Two types of lumen were used:(1) a lumen test unit with a removable 5 cm center piece (1.2 cm diameter) of stainless steel sealed to the narrower steel tubing by hard rubber septums and (2) a straight lumen. Three different diameters of the lumen test unit (1, 2, and 3 mm) and a single diameter of the straight lumen (3 mm) were studied. At least 40 replicates were performed for each type of lumen and sterilization method. After inoculation, the test unit was evaluated in 1 of the low-temperature sterilization technologies. After sterilization, the carriers were cultured in trypticase soy broth for 14 days at 55 degrees C and assessed for growth of B stearothermophilus spores. Our results demonstrated that ethylene oxide with hydrochlorofluorocarbons, the Sterrad 100s, and the Sterrad 100S half cycle were highly effective in killing approximately 10(6) B stearothermophilus spores present in the center of narrow-lumen stainless steel tubes. As the lumen diameter decreased with the lumen test unit, the Sterrad 100 demonstrated reduced ability to kill B stearothermophilus spores present on the carrier. At the smallest diameter tested (1 mm), the Sterrad 100 system failed 74% of the time. The Steris System 1 was not effective in completely eliminating the 10(6) inoculum under test conditions. The Sterrad 100S was significantly superior to the Sterrad 100 system and equivalent to ethylene oxide with hydrochlorofluorocarbons. Introduction of this new Sterrad 100S system should improve the margin of safety and reduce processing costs by its use of a shorter cycle time. The Steris System 1 is limited by diffusion of the chemical sterilant into the interior of the lumen test unit.
Chang, David F; Hurley, Nikki; Mamalis, Nick; Whitman, Jeffrey
2018-03-27
The common practice of short-cycle sterilization for ophthalmic surgical instrumentation has come under increased regulatory scrutiny. This study was undertaken to evaluate the efficacy of short-cycle sterilization processing for consecutive same-day cataract procedures. Testing of specific sterilization processing methods by an independent medical device validation testing laboratory. Phaco handpieces from 3 separate manufacturers were tested along with appropriate biologic indicators and controls using 2 common steam sterilizers. A STATIM 2000 sterilizer (SciCan, Canonsburg, PA) with the STATIM metal cassette, and an AMSCO Century V116 pre-vacuum sterilizer (STERIS, Mentor, OH) using a Case Medical SteriTite container (Case Medical, South Hackensack, NJ) rigid container were tested using phaco tips and handpieces from 3 different manufacturers. Biological indicators were inoculated with highly resistant Geobacillus stearothermophilus, and each sterility verification test was performed in triplicate. Both wrapped and contained loads were tested with full dry cycles and a 7-day storage time to simulate prolonged storage. In adherence with the manufacturers' instructions for use (IFU), short cycles (3.0-3.5-minute exposure times) for unwrapped and contained loads were also tested after only 1 minute of dry time to simulate use on a consecutive case. Additional studies were performed to demonstrate whether any moisture present in the load containing phaco handpieces postprocessing was sterile and would affect the sterility of the contents after a 3-minute transit/storage time. This approximated the upper limit of time needed to transfer a containment device to the operating room. Presence or absence of microbial growth from cultured test samples. All inoculated test samples from both sterilizers were negative for growth of the target organism whether the full dry phase was interrupted or not. Pipetted postprocessing moisture samples and swabs of the handpieces were also negative for growth after a 3-minute transit/storage time. These studies support the use of unwrapped, short-cycle sterilization that adheres to the IFU of these 2 popular Food and Drug Administration-cleared sterilizers for sequential same-day cataract surgeries. A full drying phase is not necessary when the instruments are kept within the covered sterilizer containment device for prompt use on a sequential case. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Pujol, Laure; Albert, Isabelle; Magras, Catherine; Johnson, Nicholas Brian; Membré, Jeanne-Marie
2015-11-20
In a previous study, a modular process risk model, from the raw material reception to the final product storage, was built to estimate the risk of a UHT-aseptic line of not complying with commercial sterility (Pujol et al., 2015). This present study was focused on demonstrating how the model (updated version with uncertainty and variability separated and 2(nd) order Monte Carlo procedure run) could be used to assess quantitatively the influence of management options. This assessment was done in three steps: pinpoint which process step had the highest influence on the risk, identify which management option(s) could be the most effective to control and/or reduce the risk, and finally evaluate quantitatively the influence of changing process setting(s) on the risk. For Bacillus cereus, it was identified that during post-process storage in an aseptic tank, there was potentially an air re-contamination due to filter efficiency loss (efficiency loss due to successive in-place sterilizations after cleaning operations), followed by B. cereus growth. Two options were then evaluated: i) reducing by one fifth of the number of filter sterilizations before renewing the filters, ii) designing new UHT-aseptic lines without an aseptic tank, i.e. without a storage period after the thermal process and before filling. Considering the uncertainty in the model, it was not possible to confirm whether these options had a significant influence on the risk associated with B. cereus. On the other hand, for Geobacillus stearothermophilus, combinations of heat-treatment time and temperature enabling the control or reduction in risk by a factor of ca. 100 were determined; for ease of operational implementation, they were presented graphically in the form of iso-risk curves. For instance, it was established that a heat treatment of 138°C for 31s (instead of 138°C for 25s) enabled a reduction in risk to 18×10(-8) (95% CI=[10; 34]×10(-8)), instead of 578×10(-8) (95% CI=[429; 754]×10(-8)) initially. In conclusion, a modular risk model, as the one exemplified here with a UHT-aseptic line, is a valuable tool in process design and operation, bringing definitive quantitative elements into the decision making process. Copyright © 2015 Elsevier B.V. All rights reserved.
The Procuring and Processing of Human Cadaveric Bone Marrow
1990-01-01
in all packs, along with a tube containing Bacillus stearothermophilus spores. At the completion of the sterilization cycle the indicator strips are...5 Sterilizer Quality Control............................................... 5 Operating Room Cultures...9 The Preparation of Sterile Tables and Trays................................. 9 Sterile linen supplies
Mattes, Theodoric A; Escalante-Semerena, Jorge C
2017-01-01
5,6-Dimethylbenzimidazolyl-(DMB)-α-ribotide [α-ribazole-5'-phosphate (α-RP)] is an intermediate in the biosynthesis of adenosylcobalamin (AdoCbl) in many prokaryotes. In such microbes, α-RP is synthesized by nicotinate mononucleotide (NaMN):DMB phosphoribosyltransferases (CobT in Salmonella enterica), in a reaction that is considered to be the canonical step for the activation of the base of the nucleotide present in adenosylcobamides. Some Firmicutes lack CobT-type enzymes but have a two-protein system comprised of a transporter (i.e., CblT) and a kinase (i.e., CblS) that can salvage exogenous α-ribazole (α-R) from the environment using CblT to take up α-R, followed by α-R phosphorylation by CblS. We report that Geobacillus kaustophilus CblT and CblS proteins restore α-RP synthesis in S. enterica lacking the CobT enzyme. We also show that a S. enterica cobT strain that synthesizes GkCblS ectopically makes only AdoCbl, even under growth conditions where the synthesis of pseudoCbl is favored. Our results indicate that S. enterica synthesizes α-R, a metabolite that had not been detected in this bacterium and that GkCblS has a strong preference for DMB-ribose over adenine-ribose as substrate. We propose that in some Firmicutes DMB is activated to α-RP via α-R using an as-yet-unknown route to convert DMB to α-R and CblS to convert α-R to α-RP. © 2016 John Wiley & Sons Ltd.
Highly thermostable GH39 ß-xylosidase from a Geobacillus sp. strain WSUCF1
USDA-ARS?s Scientific Manuscript database
Background Complete enzymatic hydrolysis of xylan to xylose requires the action of endoxylanase and ß-xylosidase. ß-xylosidases play an important part in hydrolyzing xylo-oligosaccharides to xylose. Thermostable ß-xylosidases have been a focus of attention as industrially important enzymes due to th...
Albert, H; Davies, D J; Woodson, L P; Soper, C J
1998-11-01
The alpha-glucosidase enzyme was isolated from vegetative cells and spores of Bacillus stearothermophilus, ATCC 7953. Spore-associated enzyme had a molecular weight of approximately 92,700, a temperature optimum of 60 degrees C, and a pH optimum of 7.0-7.5. The enzyme in crude aqueous spore extract was stable for 30 min up to a temperature of 65 degrees C, above which the enzyme was rapidly denatured. The optimal pH for stability of the enzyme was approximately 7.2. The alpha-glucosidase in crude vegetative cell extract had similar characteristics to the spore-associated enzyme but its molecular weight was 86,700. The vegetative cell and spore-associated enzymes were cross-reactive. The enzymes are postulated to derive from a single gene product, which undergoes modification to produce the spore-associated form. The location of alpha-glucosidase in the spore coats (outside the spore protoplast) is consistent with the location of most enzymes involved in activation, germination and outgrowth.
Kanemitsu, Keiji; Imasaka, Takayuki; Ishikawa, Shiho; Kunishima, Hiroyuki; Harigae, Hideo; Ueno, Kumi; Takemura, Hiromu; Hirayama, Yoshihiro; Kaku, Mitsuo
2005-05-01
To compare the efficacies of ethylene oxide gas (EOG), hydrogen peroxide gas plasma (PLASMA), and low-temperature steam formaldehyde (LTSF) sterilization methods. The efficacies of EOG, PLASMA, and LTSF sterilization were tested using metal and plastic plates, common medical instruments, and three process challenge devices with narrow lumens. All items were contaminated with Bacillus stearothermophilus spores or used a standard biological indicator. EOG and LTSF demonstrated effective killing of B. stearothermophilus spores, with or without serum, on plates, on instruments, and in process challenge devices. PLASMA failed to adequately sterilize materials on multiple trials in several experiments, including two of three plates, two of three instruments, and all process challenge devices. Our results suggest that PLASMA sterilization may be unsuccessful under certain conditions, particularly when used for items with complex shapes and narrow lumens. Alternatively, LTSF sterilization demonstrates excellent efficacy and is comparable to EOG sterilization. LTSF could potentially act as a substitute if EOG becomes unavailable due to environmental concerns.
Kalinina, N M; Shilova, S V; Motina, G L; Chaĭkovskaia, S M
1982-02-01
Thermostability of the spores of Bac. stearothermophilus in ampoules and capillaries in concentrations of 10(9), 10(8) and 10(6) cells per 1 ml of sodium chloride isotonic solution was determined at 119 to 124 degrees C with an interval of 1 degree C and an exposure time of 5, 10, 15, 20, 25, 30, 35 and 40 minutes. The results were used for plotting the survival curves. The time of the microbial death in the ampoules and capillaries at all the temperatures was the same and the ampoules were chosen as the bioindicator vehicle because of their availability and convenience in exploitation. The survival curves may be used for determination of the optimal sterilization conditions. The spore concentration of the thermostable culture in the bioindicator should be equal or exceed the level of the object microbial contamination. In the present study the concentration of the test microbe spores in the bioindicator was 10(6)--10(8) cells/ml.
Shull, James J.; Ernst, Robert R.
1962-01-01
The thermal death curve of dried spores of Bacillus stearothermophilus in saturated steam was characterized by three phases: (i) a sharp initial rise in viable count; (ii) a low rate of death which gradually increased; and (iii) logarithmic death at maximal rate. The first phase was a reflection of inadequate heat activation of the spore population. The second and third phases represented the characteristic thermal death curve of the spores in saturated steam. A jacketed steam sterilizer, equipped with a system for initial evacuation of the chamber, was examined for superheat during normal operation. Measurements of spore inactivation and temperature revealed superheat in surface layers of fabrics being processed in steam at 121 C. The high temperature of the fabric surfaces was attributed to absorption of excess heat energy from superheated steam. The superheated steam was produced at the beginning of the normal sterilizing cycle by transfer of heat from the steam-heated jacket to saturated steam entering the vessel. PMID:13988774
Parashar, Deepak; Satyanarayana, T
2016-04-01
The α-amylase (Ba-amy) of Bacillus acidicola was fused with DNA fragments encoding partial N- and C-terminal region of thermostable α-amylase gene of Geobacillus thermoleovorans (Gt-amy). The chimeric enzyme (Ba-Gt-amy) expressed in Escherichia coli displays marked increase in catalytic efficiency [K cat: 4 × 10(4) s(-1) and K cat/K m: 5 × 10(4) mL(-1) mg(-1) s(-1)] and higher thermostability than Ba-amy. The melting temperature (T m) of Ba-Gt-amy (73.8 °C) is also higher than Ba-amy (62 °C), and the CD spectrum analysis revealed the stability of the former, despite minor alteration in secondary structure. Langmuir-Hinshelwood kinetic analysis suggests that the adsorption of Ba-Gt-amy onto raw starch is more favourable than Ba-amy. Ba-Gt-amy is thus a suitable biocatalyst for raw starch saccharification at sub-gelatinization temperatures because of its acid stability, thermostability and Ca(2+) independence, and better than the other known bacterial acidic α-amylases.
Özdemir, Sadin; Kilinç, Ersin; Okumuş, Veysi; Poli, Annarita; Nicolaus, Barbara; Romano, Ida
2016-02-01
Thermophilic bacteria, Geobacillus galactosidasius sp nov. was loaded on γ-Fe2O3 magnetic nanoparticle for the preconcentrations of Pb and Cd by solid phase extraction before ICP-OES. pH and flow rate of the solution, amounts of biosorbent and magnetic nanoparticle, volume of sample solution, effects of the possible interferic ions were investigated in details. Linear calibration curves were constructed in the concentration ranges of 1.0-60ngmL(-1) for Pb and Cd. The RSDs of the method were lower than 2.8% for Pb and 3.8% for Cd. Certified and standard reference samples of fortified water, wastewater, poplar leaves, and simulated fresh water were used to accurate the method. LOD values were found as 0.07 and 0.06ngmL(-1) respectively for Pb and Cd. The biosorption capacities were found as 34.3mgg(-1) for Pb and 37.1mgg(-1) for Cd. Pb and Cd concentrations in foods were determined. Surface microstructure was investigated by SEM-EDX. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Di Donato, Paola; Romano, Ida; Mastascusa, Vincenza; Poli, Annarita; Orlando, Pierangelo; Pugliese, Mariagabriella; Nicolaus, Barbara
2018-03-01
Astrobiology studies the origin and evolution of life on Earth and in the universe. According to the panspermia theory, life on Earth could have emerged from bacterial species transported by meteorites, that were able to adapt and proliferate on our planet. Therefore, the study of extremophiles, i.e. bacterial species able to live in extreme terrestrial environments, can be relevant to Astrobiology studies. In this work we described the ability of the thermophilic species Geobacillus thermantarcticus to survive after exposition to simulated spatial conditions including temperature's variation, desiccation, X-rays and UVC irradiation. The response to the exposition to the space conditions was assessed at a molecular level by studying the changes in the morphology, the lipid and protein patterns, the nucleic acids. G. thermantarcticus survived to the exposition to all the stressing conditions examined, since it was able to restart cellular growth in comparable levels to control experiments carried out in the optimal growth conditions. Survival was elicited by changing proteins and lipids distribution, and by protecting the DNA's integrity.
Sporicidal activity of chemical and physical tissue fixation methods.
Vardaxis, N J; Hoogeveen, M M; Boon, M E; Hair, C G
1997-01-01
AIMS: The effects of alcohol based fixation and microwave stimulated alcohol fixation were investigated on spores of Bacillus stearothermophilus and Bacillus subtilis (var. niger). METHODS: Spores were exposed to 10% formalin, or different concentrations of various alcohol containing fixatives (Kryofix/Spuitfix). Adequate controls were also set up in conjunction with the test solutions. The spores were immersed with and without adjunctive microwave stimulation in the various solutions tested. Possible surviving spores were recovered in revival broth and after incubation, and Gram staining viable counts were performed. RESULTS: Alcohol based fixatives did not have a sporicidal effect on B stearothermophilus or B subtilis (var. niger) spores, and microwave stimulated alcohol fixation at 450 W and up to 75 degrees C did not have a sporicidal effect. CONCLUSIONS: When alcohol based fixatives are used for fixation, precautions should be taken with the material thus treated, as it may contain viable spores or other pathogens, which are destroyed after 24 hours of formalin treatment. Of the physicochemical methods tested involving microwaving, none was successful in eliminating viable spores from the test material. PMID:9215128
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faraci, W.S.; Walsh, C.T.
1988-05-03
Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L ..-->.. D and D..-->.. L directions for all three enzymes to assess the degree to which abstraction of the ..cap alpha..-proton or protonation of substratemore » PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of ..cap alpha..-/sup 3/H from substrate to product and solvent exchange/substrate conversion experiments in /sup 3/H/sub 2/O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis.« less
Shin, Kyung-Chul; Sim, Dong-Hyun; Seo, Min-Ju; Oh, Deok-Kun
2016-11-02
The generally recognized as safe microorganism Corynebacterium glutamicum expressing Geobacillus thermodenitrificans d-galactose isomerase (d-GaI) was an efficient host for the production of d-tagatose, a functional sweetener. The d-tagatose production at 500 g/L d-galactose by the host was 1.4-fold higher than that by Escherichia coli expressing d-GaI. The d-tagatose-producing activity of permeabilized C. glutamicum (PCG) cells treated with 1% (w/v) Triton X-100 was 2.1-fold higher than that of untreated cells. Permeabilized and immobilized C. glutamicum (PICG) cells in 3% (w/v) alginate showed a 3.1-fold longer half-life at 50 °C and 3.1-fold higher total d-tagatose concentration in repeated batch reactions than PCG cells. PICG cells, which produced 165 g/L d-tagatose after 3 h, with a conversion of 55% (w/w) and a productivity of 55 g/L/h, showed significantly higher d-tagatose productivity than that reported for other cells. Thus, d-tagatose production by PICG cells may be an economical process to produce food-grade d-tagatose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohman, Ali; Oosterwijk, Niels van; Kralj, Slavko
2007-11-01
The β-xylosidase was crystallized using PEG 6000 as precipitant. 5% PEG 6000 yielded bipyramid-shaped tetragonal crystals diffracting to 1.55 Å resolution, and 13% PEG 6000 gave rectangular monoclinic crystals diffracting to 1.80 Å resolution. The main enzymes involved in xylan-backbone hydrolysis are endo-1,4-β-xylanase and β-xylosidase. β-Xylosidase converts the xylo-oligosaccharides produced by endo-1,4-β-xylanase into xylose monomers. The β-xylosidase from the thermophilic Geobacillus thermoleovorans IT-08, a member of glycoside hydrolase family 43, was crystallized at room temperature using the hanging-drop vapour-diffusion method. Two crystal forms were observed. Bipyramid-shaped crystals belonging to space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = bmore » = 62.53, c = 277.4 Å diffracted to 1.55 Å resolution. The rectangular crystals belonged to space group P2{sub 1}, with unit-cell parameters a = 57.94, b = 142.1, c = 153.9 Å, β = 90.5°, and diffracted to 1.80 Å resolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holliday, Michael; Zhang, Fengli; Isern, Nancy G.
2014-04-01
Cyclophilins catalyze the reversible peptidyl-prolyl isomerization of their substrates and are present across all kingdoms of life from humans to bacteria. Although numerous biological roles have now been discovered for cyclophilins, their function was initially ascribed to their chaperone-like activity in protein folding where they catalyze the often rate-limiting step of proline isomerization. This chaperone-like activity may be especially important under extreme conditions where cyclophilins are often over expressed, such as in tumors for human cyclophilins {Lee, 2010 #1167}, but also in organisms that thrive under extreme conditions, such as theromophilic bacteria. Moreover, the reversible nature of the peptidyl-prolyl isomerizationmore » reaction catalyzed by cyclophilins has allowed these enzymes to serve as model systems for probing the role of conformational changes during catalytic turnover {Eisenmesser, 2002 #20;Eisenmesser, 2005 #203}. Thus, we present here the resonance assignments of a thermophilic cyclophilin from Geobacillus kaustophilus derived from deep-sea sediment {Takami, 2004 #1384}. This thermophilic cyclophilin may now be studied at a variety of temperatures to provide insight into the comparative structure, dynamics, and catalytic mechanism of cyclophilins.« less
Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans.
Chatterjee, S K; Bhattacharjee, I; Chandra, G
2010-03-15
The metal binding capacity of the thermophilic bacteria Geobacillus thermodenitrificans isolated from Damodar river, India was assessed using synthetic metal solutions and industrial waste water. Biosorption preference of dead biomass of G. thermodenitrificans for the synthetic metal solutions was in the following order Fe(+3)>Cr(+3)>Co(+2)>Cu(+2)>Zn(+2)>Cd(+2)>Ag(+)>Pb(+2). It reduced the concentration of Fe(+3) (91.31%), Cr(+3) (80.80%), Co(+2) (79.71%), Cu(+2) (57.14%), Zn(+2) (55.14%), Cd(+2) (49.02%), Ag(+) (43.25%) and Pb(+2) (36.86%) at different optimum pH within 720 min. When this strain was applied in the industrial waste water biosorption preference was in the following order Fe(+3)>Cr(+3)>Cd(+2)>Pb(+2)>Cu(+2)>Co(+2)>Zn(+2)>Ag(+) and concentrations reduced up to 43.94% for Fe(+3), 39.2% for Cr(+3), 35.88% for Cd(+2), 18.22% for Pb(+2), 13.03% for Cu(+2), 11.43% for Co(+2), 9.02% for Zn(+2) and 7.65% for Ag(+) within 120 min. (c) 2009 Elsevier B.V. All rights reserved.
Choi, Jin Myung; Lee, Yong-Jik; Cao, Thinh-Phat; Shin, Sun-Mi; Park, Min-Kyu; Lee, Han-Seung; di Luccio, Eric; Kim, Seong-Bo; Lee, Sang-Jae; Lee, Sang Jun; Lee, Sung Haeng; Lee, Dong-Woo
2016-04-15
Thermophilic l-arabinose isomerase (AI), which catalyzes the interconversion of l-arabinose and l-ribulose, can be used to produce d-tagatose, a sugar substitute, from d-galactose. Unlike mesophilic AIs, thermophilic AIs are highly dependent on divalent metal ions for their catalytic activity and thermostability at elevated temperatures. However, the molecular basis underlying the substrate preferences and metal requirements of multimeric AIs remains unclear. Here we report the first crystal structure of the apo and holo forms of thermophilic Geobacillus kaustophilus AI (GKAI) in hexamer form. The structures, including those of GKAI in complex with l-arabitol, and biochemical analyses revealed not only how the substrate-binding site of GKAI is formed through displacement of residues at the intersubunit interface when it is bound to Mn(2+), but also revealed the water-mediated H-bonding networks that contribute to the structural integrity of GKAI during catalysis. These observations suggest metal-mediated isomerization reactions brought about by intersubunit interactions at elevated temperatures are responsible for the distinct active site features that promote the substrate specificity and thermostability of thermophilic AIs. Copyright © 2016 Elsevier Inc. All rights reserved.
Jiang, Tao; Huang, Mengmeng; He, Hao; Lu, Jian; Zhou, Xiangshan; Cai, Menghao; Zhang, Yuanxing
2016-08-17
Geobacillus sp. 4j, a deep-sea high-salt thermophile, was found to produce thermostable α-amylase. In this work, culture medium and conditions were first optimized to enhance the production of thermostable α-amylase by statistical methodologies. The resulting extracellular production was increased by five times and reached 6.40 U/ml. Then, a high-temperature batch culture of the thermophile in a 15 l in-house-designed bioreactor was studied. The results showed that a relatively high dissolved oxygen (600 rpm and 15 l/min) and culture temperature of 60°C facilitated both cell growth and α-amylase production. Thus, an efficient fermentation process was established with initial medium of pH 6.0, culture temperature of 60°C, and dissolved oxygen above 20%. It gave an α-amylase production of 79 U/ml and productivity of 19804 U/l·hr, which were 10.8 and 208 times higher than those in shake flask, respectively. This work is useful for deep-sea high-salt thermophile culture, where efforts are lacking presently.
Judging The Efficacy of Anthrax Fumigations
2003-11-20
FUMIGATIONS IN RESPONSE TO 2001 ANTHRAX ATTACKS Most fumigations modeled after biomedical sterilization processes, with established ranges for process...exposure to VHP All BIs recovered aseptically negative for growth of B. stearothermophilus Positive control BIs (5% of BIs) demonstrate growth Negative...of 10 zones was re-fumigated; second fumigation met all requirements HISTORICAL CRITERIA FOR SUCCESSFUL TREATMENT Biomedical sterilizations – FDA
Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain
2012-01-01
Background Acetoin and 2,3-butanediol are two important biorefinery platform chemicals. They are currently fermented below 40°C using mesophilic strains, but the processes often suffer from bacterial contamination. Results This work reports the isolation and identification of a novel aerobic Geobacillus strain XT15 capable of producing both of these chemicals under elevated temperatures, thus reducing the risk of bacterial contamination. The optimum growth temperature was found to be between 45 and 55°C and the medium initial pH to be 8.0. In addition to glucose, galactose, mannitol, arabionose, and xylose were all acceptable substrates, enabling the potential use of cellulosic biomass as the feedstock. XT15 preferred organic nitrogen sources including corn steep liquor powder, a cheap by-product from corn wet-milling. At 55°C, 7.7 g/L of acetoin and 14.5 g/L of 2,3-butanediol could be obtained using corn steep liquor powder as a nitrogen source. Thirteen volatile products from the cultivation broth of XT15 were identified by gas chromatography–mass spectrometry. Acetoin, 2,3-butanediol, and their derivatives including a novel metabolite 2,3-dihydroxy-3-methylheptan-4-one, accounted for a total of about 96% of all the volatile products. In contrast, organic acids and other products were minor by-products. α-Acetolactate decarboxylase and acetoin:2,6-dichlorophenolindophenol oxidoreductase in XT15, the two key enzymes in acetoin metabolic pathway, were found to be both moderately thermophilic with the identical optimum temperature of 45°C. Conclusions Geobacillus sp. XT15 is the first naturally occurring thermophile excreting acetoin and/or 2,3-butanediol. This work has demonstrated the attractive prospect of developing it as an industrial strain in the thermophilic fermentation of acetoin and 2,3-butanediol with improved anti-contamination performance. The novel metabolites and enzymes identified in XT15 also indicated its strong promise as a precious biological resource. Thermophilic fermentation also offers great prospect for improving its yields and efficiencies. This remains a core aim for future work. PMID:23217110
Ottesen, Andrea; Ramachandran, Padmini; Reed, Elizabeth; White, James R; Hasan, Nur; Subramanian, Poorani; Ryan, Gina; Jarvis, Karen; Grim, Christopher; Daquiqan, Ninalynn; Hanes, Darcy; Allard, Marc; Colwell, Rita; Brown, Eric; Chen, Yi
2016-11-16
Microbiota that co-enrich during efforts to recover pathogens from foodborne outbreaks interfere with efficient detection and recovery. Here, dynamics of co-enriching microbiota during recovery of Listeria monocytogenes from naturally contaminated ice cream samples linked to an outbreak are described for three different initial enrichment formulations used by the Food and Drug Administration (FDA), the International Organization of Standardization (ISO), and the United States Department of Agriculture (USDA). Enrichment cultures were analyzed using DNA extraction and sequencing from samples taken every 4 h throughout 48 h of enrichment. Resphera Insight and CosmosID analysis tools were employed for high-resolution profiling of 16S rRNA amplicons and whole genome shotgun data, respectively. During enrichment, other bacterial taxa were identified, including Anoxybacillus, Geobacillus, Serratia, Pseudomonas, Erwinia, and Streptococcus spp. Surprisingly, incidence of L. monocytogenes was proportionally greater at hour 0 than when tested 4, 8, and 12 h later with all three enrichment schemes. The corresponding increase in Anoxybacillus and Geobacillus spp.indicated these taxa co-enriched in competition with L. monocytogenes during early enrichment hours. L. monocytogenes became dominant after 24 h in all three enrichments. DNA sequences obtained from shotgun metagenomic data of Listeria monocytogenes at 48 h were assembled to produce a consensus draft genome which appeared to have a similar tracking utility to pure culture isolates of L. monocytogenes. All three methods performed equally well for enrichment of Listeria monocytogenes. The observation of potential competitive exclusion of L. mono by Anoxybacillus and Geobacillus in early enrichment hours provided novel information that may be used to further optimize enrichment formulations. Application of Resphera Insight for high-resolution analysis of 16S amplicon sequences accurately identified L. monocytogenes. Both shotgun and 16S rRNA data supported the presence of three slightly variable genomes of L. monocytogenes. Moreover, the draft assembly of a consensus genome of L. monocytogenes from shotgun metagenomic data demonstrated the potential utility of this approach to expedite trace-back of outbreak-associated strains, although further validation will be needed to confirm this utility.
[Thermophilic endospores in the environment of a sugar mill in Jujuy].
Carrillo, L
2000-01-01
Twenty six samples from green and scorched sugarcane stems and leaves, sugarmill air dust and raw sugar were analyzed. Thirty nine thermophilic bacilli strains were isolated. Physiological and morphological examinations were carried out according to Bergey's Manual. The strains were identified as B. licheniformis (66.7%), B. coagulans (17.9%), B. stearothermophilus (10.3%) y B. subtilis (5.1%).
The sterility of hospital-prepared Soffban bandages.
Wood, E V; Fenwick, H; Manning, M P; Mobbs, P
2005-11-01
An evaluation of the sterility of hospital-prepared Soffban bandages was undertaken. Discs of Bacillus stearothermophilus were inserted into the bandage rolls, prior to sterilization in "porous load" autoclaves. The discs were subsequently removed and placed in culture media, with growth of the organism indicating failure of sterilization. It was demonstrated that Soffban could not be sterilized reliably using standard hospital autoclave techniques.
Pennacchio, Angela; Rossi, Mosè; Raia, Carlo A
2013-07-01
The synthesis of the aroma chemical cinnamyl alcohol (CMO) by means of enzymatic reduction of cinnamaldehyde (CMA) was investigated using NADH-dependent alcohol dehydrogenase from Bacillus stearothermophilus both as an isolated enzyme, and in recombinant Escherichia coli whole cells. The influence of parameters such as reaction time and cofactor, substrate, co-substrate 2-propanol and biocatalyst concentrations on the bioreduction reaction was investigated and an efficient and sustainable one-phase system developed. The reduction of CMA (0.5 g/L, 3.8 mmol/L) by the isolated enzyme occurred in 3 h at 50 °C with 97% conversion, and yielded high purity CMO (≥98%) with a yield of 88% and a productivity of 50 g/genzyme. The reduction of 12.5 g/L (94 mmol/L) CMA by whole cells in 6 h, at 37 °C and no requirement of external cofactor occurred with 97% conversion, 82% yield of 98% pure alcohol and a productivity of 34 mg/gwet cell weight. The results demonstrate the microbial system as a practical and efficient method for larger-scale synthesis of CMO.
Effects of steam sterilization on thermogelling chitosan-based gels.
Jarry, C; Chaput, C; Chenite, A; Renaud, M A; Buschmann, M; Leroux, J C
2001-01-01
A new thermogelling chitosan-glycerophosphate system has been recently proposed for biomedical applications such as drug and cell delivery. The objectives of this work were to characterize the effect of steam sterilization on the in vitro and in vivo end performances of the gel and to develop a filtration-based method to assess its sterility. Autoclaving 2% (w/v) chitosan solutions for as short as 10 min resulted in a 30% decrease in molecular weight, 3-5-fold decrease in dynamic viscosity, and substantial loss of mechanical properties of the resulting gel. However, sterilization did not impair the ability of the system to form a gel at 37 degrees C. The antimicrobial activity of chitosan against several microorganisms was evaluated after inoculation of chitosan solutions and removal of the cells by filtration. It was found that, although chitosan was bacteriostatic against the heat sterilization bioindicator Bacillus stearothermophilus, the bacteria could rapidly grow after separation from the chitosan solution by filtration. This indicated that B. stearothermophilus is an adequate strain to validate a heat sterilization method on chitosan preparations, and accordingly this strain was used to assess the sterility of chitosan solution following a 10 min autoclaving time. Copyright 2001 John Wiley & Sons, Inc.
Toxicity of methoprene as assessed by the use of a model microorganism.
Monteiro, J P; Jurado, A S; Moreno, A J M; Madeira, V M C
2005-10-01
Methoprene is an insect juvenile growth hormone mimic, commonly used as a pesticide. Although widely used for the control of several pests, toxic effects on organisms of different phyla have been reported. These events triggered studies to clarify the mechanisms of toxicity of this insecticide putatively involved in ecological issues. Here we show the effect of methoprene on the normal cell growth and viability of a strain of the thermophilic eubacterium Bacillus stearothermophilus, previously used as a model for toxicological evaluation of other environment pollutants. Respiration studies were also carried out attempting to identify a putative target for the cytotoxic action of methoprene. Cell growth was affected and a decrease of the number of viable cells was observed as a result of the addition of methoprene to the growth medium, an effect reverted by the presence of Ca(2+). Methoprene also inhibited the redox flow of B. stearothermophilus protoplasts before the cytochrome oxidase segment, an effect further studied by individually assessing the enzymatic activities of the respiratory complexes. This study suggests that methoprene membrane interaction and perturbation of cell bioenergetics may underlie the mechanism of toxicity of this compound in non-target organisms.
Extremophilic Enzymatic Response: Role of Proteins in Controlling Selenium Nanoparticle Synthesis
2014-11-28
Thermophiles ; Regensburg, Germany. September 2013. 2.- “Identification of one enzyme Involved in selenium nanoparticles Biosynthesis in Geobacillus...Objective To study the role of at least one protein ( enzyme ) from E1 (GWE1) on the synthesis of nano-Se particles. Note: This project...To identify protein(s) or enzyme (s) involved in nanoparticles formation. To identify the proteins or enzyme (s) involved in nanoparticles formation
Nisha, M; Satyanarayana, T
2015-05-01
The far-UV CD spectroscopic analysis of the secondary structure in the temperature range between 30 and 90°C revealed a compact and thermally stable structure of C-terminal truncated amylopullulanase of Geobacillus thermoleovorans NP33 (gt-apuΔC) with a higher melting temperature [58°C] than G. thermoleovorans NP33 amylopullulanase (gt-apu) [50°C] and the N-terminal truncated amylopullulanase from G. thermoleovorans NP33 (gt-apuΔN) [55°C]. A significant decline in random coils in gt-apuΔC and gt-apuΔN suggested an improvement in conformational stability, and thus, an enhancement in their thermal stability. The improvement in the thermostability of gt-apuΔC was corroborated by the thermodynamic parameters for enzyme inactivation. The Trp fluorescence emission (335 nm) and the acrylamide quenching constant (22.69 M(-1)) of gt-apuΔC indicated that the C-terminal truncation increases the conformational stability of the protein with the deeply buried tryptophan residues. The 8-Anilino Naphthalene Sulfonic acid (ANS) fluorescence experiments indicated the unfolding of gt-apu to expose its hydrophobic surface to a greater extent than the gt-apuΔC and gt-apuΔN. Copyright © 2015 Elsevier B.V. All rights reserved.
Alkane inducible proteins in Geobacillus thermoleovorans B23
2009-01-01
Background Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution. Results An extremely thermophilic and alkane degrading Geobacillus thermoleovorans B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21) and superoxide dismutase (P24) whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane. Conclusion We first suggested that peroxisomal β-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes. PMID:19320977
Abol Fotouh, Deyaa M; Bayoumi, Reda A; Hassan, Mohamed A
2016-01-01
Thermophilic and alkaliphilic lipases are meeting a growing global attention as their increased importance in several industrial fields. Over 23 bacterial strains, novel strain with high lipolytic activity was isolated from Southern Sinai, Egypt, and it was identified as Geobacillus thermoleovorans DA2 using 16S rRNA as well as morphological and biochemical features. The lipase was produced in presence of fatty restaurant wastes as an inducing substrate. The optimized conditions for lipase production were recorded to be temperature 60°C, pH 10, and incubation time for 48 hrs. Enzymatic production increased when the organism was grown in a medium containing galactose as carbon source and ammonium phosphate as nitrogen source at concentrations of 1 and 0.5% (w/v), respectively. Moreover, the optimum conditions for lipase production such as substrate concentration, inoculum size, and agitation rate were found to be 10% (w/v), 4% (v/v), and 120 rpm, respectively. The TA lipase with Triton X-100 had the best degreasing agent by lowering the total lipid content to 2.6% as compared to kerosene (7.5%) or the sole crude enzyme (8.9%). It can be concluded that the chemical leather process can be substituted with TA lipase for boosting the quality of leather and reducing the environmental hazards.
Guidelines for Water Quality Laboratory Operations.
1985-07-01
Semiannually sample cell pressure gauge Autoclaves and Check sterilization effectiveness Daily sterilizers (e.g., B. stearothermophilus , color-indicator...container should have been previously cleaned with chromic acid solution as described previously. Treat the container caps similarly. C. Sterilization . For...microbiological analyses, sterilize the container and its stopper/cap by autoclaving at 121*C for 15 min or by dry heat at 180C for 2 hr. Heat-sensitive
Monitor for Sterilization Procedures
2001-10-25
were tested using ampules of Bacillus stearothermophilus spores commercially manufactured by Barnstead/Thermolyne for testing sterilization procedures...Monitor for Sterilization Procedures F. Cleary1,2, H.-Y. Mason2, C. Estes2, A. Duncan2, W. Ellis, Jr.2 and L. Powers2 1Moses Brown High School...accurate determination of the efficacy of sterilization procedures is demonstrated using a hand-held instrument based on the intrinsic fluorescence of
Recirculating Thermocatalytic Air Purifier for Collective Protection
2006-01-01
stearothermophilus (Bs) spores, which are generally accepted to be more heat resistant than anthrax spores. The results for the Bg and Bs spore...7 who performed thermal deactivation tests using Bg spores in a different reactor geometry. Shankle’s data imply complete sterilization of Bg...400 CFM Catalytic Air Purifier Model, Book 2: Effects of Heat Transfer and Flow on Thermal Sterilization . CB-67-2738-12.2, Physical Protection
2007-08-01
Aluminum - +- - - Viton + + + _ . Silicone .... Polyimide (Kapton) + . _ . 81 - Apex .... B1 - Stens .... 21 3.5.5 Enumerated Coupon Results. The first...Vaporous Hydrogen Peroxide mVHP B. anthracis Silicone G. stearothermophilus CARC Metal 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER OF 19a...aircraft, vehicles, protective- and sensitive-equipment that encompass a variety of material properties, compositions and porosities. The test
2003-11-08
Bacillus anthracis BA0068 Ames Sterne SPS 97.13.213 Bacillus cereus Bacillus coagulans Bacillus licheniformis Bacillus macerans Bacillus ...megaterium Bacillus polymyxa Bacillus sphaericus Bacillus stearothermophilus Bacillus subtilis subsp. niger Bacillus thuringiensis Bacillus popilliae...varicella- zoster virus, and Bacillus anthracis DNA by LightCycler polymerase chain reaction after autoclaving:
NASA Astrophysics Data System (ADS)
Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.
2003-08-01
A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman-Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.
NASA Astrophysics Data System (ADS)
Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.
2004-03-01
A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman- Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.
Duan, Xuguo
2017-01-01
The maltohexaose-forming, Ca2+-independent α-amylase gene from Bacillus stearothermophilus (AmyMH) was efficiently expressed in Brevibacillus choshinensis SP3. To improve the production of AmyMH in B. choshinensis SP3, the temperature and initial pH of culture medium were optimized. In addition, single-factor and response surface methodologies were pursued to optimize culture medium. Addition of proline to the culture medium significantly improved the production of recombinant α-amylase in B. choshinensis SP3. This improvement may result from improved cellular integrity of recombinant B. choshinensis SP3 in existence of proline. Culture medium optimization resulted in an 8-fold improvement in α-amylase yield, which reached 1.72 × 104 U·mL−1. The recombinant α-amylase was applied to the production of maltose on a laboratory scale. A maltose content of 90.72%, which could be classified as an extremely high maltose syrup, could be achieved using 15% (m/v) corn starch as the substrate. This study demonstrated that the B. choshinensis SP3 expression system was able to produce substantial quantities of recombinant α-amylase that has potential application in the starch industry. PMID:29250543
Koike-Takeshita, A; Koyama, T; Ogura, K
1998-10-01
Among prenyltransferases that catalyze the sequential condensation of isopentenyl diphosphate with allylic diphosphate to produce prenyl diphosphates with various chain lengths and stereochemistries, medium-chain prenyl diphosphate synthases are exceptional in that they comprise two dissociable heteromeric protein components. These components exist without binding with each other under physiological conditions, and neither of them has any prenyltransferase activity by itself. In order to elucidate the precise molecular mechanism underlying expression of the catalytic function by such a unique two-component system, we examined the possibility of forming a hybrid between two of the components of three different medium-chain prenyl diphosphate synthases, components I and II of heptaprenyl diphosphate synthase from Bacillus subtilis, components I' and II' of heptaprenyl diphosphate synthase from Bacillus stearothermophilus, and components A and B of hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26. As a result, only the hybrid-type combination of component I and component II' gave distinct prenyltransferase activity. The hybrid-type enzyme catalyzed the synthesis of heptaprenyl diphosphate and showed moderate heat stability, which lay between those of the natural enzymes from B. subtilis and B. stearothermophilus. There is no possibility of forming a hybrid between the heptaprenyl and hexaprenyl diphosphate synthases.
Nisha, M; Satyanarayana, T
2013-07-01
A gene encoding amylopullulanase (gt-apu) of the extremely thermophilic Geobacillus thermoleovorans NP33 was cloned and expressed in Escherichia coli. The gene has an open reading frame of 4,965 bp that encodes a protein of 1,655 amino acids with molecular mass of 182 kDa. The six conserved regions, characteristic of GH13 family, have been detected in gt-apu. The recombinant enzyme has only one active site for α-amylase and pullulanase activities based on the enzyme kinetic analyses in a system that contains starch as well as pullulan as competing substrates and response to inhibitors. The end-product analysis confirmed that this is an endoacting enzyme. The specific enzyme activities for α-amylase and pullulanase of the truncated amylopullulanase (gt-apuT) are higher than gt-apu. Both enzymes exhibited similar temperature (60 °C) and pH (7.0) optima, although gt-apuT possessed a higher thermostability than gt-apu. The overall catalytic efficiency (K(cat)/K(m)) of gt-apuT is greater than that of gt-apu, with almost similar substrate specificities. The C-terminal region of gt-apu appeared to be non-essential, and furthermore, it negatively affects the substrate binding and stability of the enzyme.
NASA Astrophysics Data System (ADS)
Nik Him, N. R.; Ibrahim, D.
2018-05-01
In our previous work, a new lipase enzyme has been purified from a species identified as a Gram negative Geobacillus thermodenitrificans nr68, isolated from a hot spring in Malaysia with growth temperature of 48°C. This new lipase, called Lip.nr-68 has been characterized as a hyperthermotolerant protein with high stability at 65°C and has been showing excellent characteristics that are very much comparable yet better than some of those of well-known industrially-used lipases. It shows high activity against long-chain triglycerides with molecular weight of the purified enzyme estimated to be 33.5 kDa using SDS-PAGE analysis. This paper is focusing on hyperthermotolerant Lip.nr-68 performance in promoting for enantioselectivity activities towards three secondary racemic alcohols namely 1-phenylethanol, 1-cyclohexilethanol and 1-(naft-2-il) ethanol by acetylation with vinyl acetate. Lip.nr-68 has been confirmed to show high and usual enantioselectivitiy according to the Kazlauskas Rule towards all secondary racemic alcohols and has significantly approved as an enantiomer selective biocatalyst towards 1-phenylethanol and 1-cyclohexylethanol at 65°C. Lip.nr-68 has showed a reduction of (R) and (S) enantiomers as well as the production of 68-98% ee and almost 94% yield of 3-4 mg/ml for 1-cyclohexilethanol.
Abol Fotouh, Deyaa M.; Bayoumi, Reda A.; Hassan, Mohamed A.
2016-01-01
Thermophilic and alkaliphilic lipases are meeting a growing global attention as their increased importance in several industrial fields. Over 23 bacterial strains, novel strain with high lipolytic activity was isolated from Southern Sinai, Egypt, and it was identified as Geobacillus thermoleovorans DA2 using 16S rRNA as well as morphological and biochemical features. The lipase was produced in presence of fatty restaurant wastes as an inducing substrate. The optimized conditions for lipase production were recorded to be temperature 60°C, pH 10, and incubation time for 48 hrs. Enzymatic production increased when the organism was grown in a medium containing galactose as carbon source and ammonium phosphate as nitrogen source at concentrations of 1 and 0.5% (w/v), respectively. Moreover, the optimum conditions for lipase production such as substrate concentration, inoculum size, and agitation rate were found to be 10% (w/v), 4% (v/v), and 120 rpm, respectively. The TA lipase with Triton X-100 had the best degreasing agent by lowering the total lipid content to 2.6% as compared to kerosene (7.5%) or the sole crude enzyme (8.9%). It can be concluded that the chemical leather process can be substituted with TA lipase for boosting the quality of leather and reducing the environmental hazards. PMID:26881066
would (a) require less time and (b) not destroy vitamins. Feed contaminated with Bacillus stearothermophilus and B. subtilis was sterilized in high...The study was designed to develop a method for sterilizing vitamin-fortified commercial diets for feeding germ-free and defined-flora rodents that...high-prevacuum autoclaves makes possible a reduction in the time required to sterilize autoclavable, commercial diets. Previous methods have required
The HPr Proteins from the Thermophile Bacillus stearothermophilus Can Form Domain-swapped Dimers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Sudharsan; Razvi, Abbas; Scholtz, J. Martin
2010-07-20
The study of proteins from extremophilic organisms continues to generate interest in the field of protein folding because paradigms explaining the enhanced stability of these proteins still elude us and such studies have the potential to further our knowledge of the forces stabilizing proteins. We have undertaken such a study with our model protein HPr from a mesophile, Bacillus subtilis, and a thermophile, Bacillus stearothermophilus. We report here the high-resolution structures of the wild-type HPr protein from the thermophile and a variant, F29W. The variant proved to crystallize in two forms: a monomeric form with a structure very similar tomore » the wild-type protein as well as a domain-swapped dimer. Interestingly, the structure of the domain-swapped dimer for HPr is very different from that observed for a homologous protein, Crh, from B. subtilis. The existence of a domain-swapped dimer has implications for amyloid formation and is consistent with recent results showing that the HPr proteins can form amyloid fibrils. We also characterized the conformational stability of the thermophilic HPr proteins using thermal and solvent denaturation methods and have used the high-resolution structures in an attempt to explain the differences in stability between the different HPr proteins. Finally, we present a detailed analysis of the solution properties of the HPr proteins using a variety of biochemical and biophysical methods.« less
Mead, David A.; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Cheng, Jan-Feng; Bruce, David C.; Goodwin, Lynne A.; Pitluck, Sam; Chertkov, Olga; Zhang, Xiaojing; Detter, John C.; Han, Cliff S.; Tapia, Roxanne; Land, Miriam; Hauser, Loren J.; Chang, Yun-juan; Kyrpides, Nikos C.; Ivanova, Natalia N.; Ovchinnikova, Galina; Woyke, Tanja; Brumm, Catherine; Hochstein, Rebecca; Schoenfeld, Thomas; Brumm, Phillip
2012-01-01
Paenibacillus sp.Y412MC10 was one of a number of organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The isolate was initially classified as a Geobacillus sp. Y412MC10 based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species, and the organism was most closely related to Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute. The genome sequence was deposited at the NCBI in October 2009 (NC_013406). The genome of Paenibacillus sp. Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other paenibacilli. The Y412MC10 genome shows a high level of synteny and homology to the draft sequence of Paenibacillus sp. HGF5, an organism from the Human Microbiome Project (HMP) Reference Genomes. This, combined with genomic CAZyme analysis, suggests an intestinal, rather than environmental origin for Y412MC10. PMID:23408395
Mead, David A; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Cheng, Jan-Feng; Bruce, David C; Goodwin, Lynne A; Pitluck, Sam; Chertkov, Olga; Zhang, Xiaojing; Detter, John C; Han, Cliff S; Tapia, Roxanne; Land, Miriam; Hauser, Loren J; Chang, Yun-Juan; Kyrpides, Nikos C; Ivanova, Natalia N; Ovchinnikova, Galina; Woyke, Tanja; Brumm, Catherine; Hochstein, Rebecca; Schoenfeld, Thomas; Brumm, Phillip
2012-07-30
Paenibacillus sp.Y412MC10 was one of a number of organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The isolate was initially classified as a Geobacillus sp. Y412MC10 based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species, and the organism was most closely related to Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute. The genome sequence was deposited at the NCBI in October 2009 (NC_013406). The genome of Paenibacillus sp. Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other paenibacilli. The Y412MC10 genome shows a high level of synteny and homology to the draft sequence of Paenibacillus sp. HGF5, an organism from the Human Microbiome Project (HMP) Reference Genomes. This, combined with genomic CAZyme analysis, suggests an intestinal, rather than environmental origin for Y412MC10.
The sterilization of endodontic hand files.
Hurtt, C A; Rossman, L E
1996-06-01
Several different methods of file sterilization were analyzed to determine the best method of providing complete file sterility, including the metal shaft and plastic handle. Six test groups of 15 files were studied using Bacillus stearothermophilus as the test organism. Groups were "sterilized" by glutaraldehyde immersion, steam autoclaving, and various techniques of salt sterilization. Only proper steam autoclaving reliably produced completely sterile instruments. Salt sterilization and glutaraldehyde solutions may not be adequate sterilization methods for endodontic hand files and should not be relied on to provide completely sterile instruments.
Decontamination of laboratory microbiological waste by steam sterilization.
Rutala, W A; Stiegel, M M; Sarubbi, F A
1982-01-01
A steam sterilizer (autoclave) was tested to determine the operating parameters that affected sterilization of microbiological waste. Tests involved standardized loads (5, 10 ad 15 lb [ca. 2.27, 4.54, and 6.80 kg, respectively]) contaminated petri plates in autoclave bags placed in polypropylene or stainless steel containers. Thermal and biological data were obtained by using a digital potentiometer and a biological indicator containing spores of Bacillus stearothermophilus, respectively. The transfer of heat was more efficient when smaller loads of microbiological waste were tested and stainless steel rather than polypropylene containers were used. A single bag with the sides rolled down to expose the top layer of petri plates allowed heat to pass better than did a single bag with the top constricted by a twist-tie. The presence of water in the autoclave bag did not significantly improve heat-up time in stainless steel or polypropylene containers. The results of biological tests substantiated the temperature data. When 10 or 15 lb of microbiological waste was exposed to various test conditions, the only condition that ensured the destruction of B. stearothermophilus involved the use of a stainless steel container (with or without water) for 90 min. Autoclaving for 45 min resulted in the destruction of bacteria included in 10 lb (136 +/- 3 plates) or 15 lb (205 +/- 6 plates) of microbiological waste when stainless steel containers with or without water or polypropylene containers with water used, whereas 60 min was required to kill all bacteria if polypropylene containers without water were used. PMID:7103486
Kobayashi, Jyumpei; Wada, Keisuke; Furukawa, Megumi; Doi, Katsumi
2014-01-01
Thermostability is an important property of enzymes utilized for practical applications because it allows long-term storage and use as catalysts. In this study, we constructed an error-prone strain of the thermophile Geobacillus kaustophilus HTA426 and investigated thermoadaptation-directed enzyme evolution using the strain. A mutation frequency assay using the antibiotics rifampin and streptomycin revealed that G. kaustophilus had substantially higher mutability than Escherichia coli and Bacillus subtilis. The predominant mutations in G. kaustophilus were A · T→G · C and C · G→T · A transitions, implying that the high mutability of G. kaustophilus was attributable in part to high-temperature-associated DNA damage during growth. Among the genes that may be involved in DNA repair in G. kaustophilus, deletions of the mutSL, mutY, ung, and mfd genes markedly enhanced mutability. These genes were subsequently deleted to construct an error-prone thermophile that showed much higher (700- to 9,000-fold) mutability than the parent strain. The error-prone strain was auxotrophic for uracil owing to the fact that the strain was deficient in the intrinsic pyrF gene. Although the strain harboring Bacillus subtilis pyrF was also essentially auxotrophic, cells became prototrophic after 2 days of culture under uracil starvation, generating B. subtilis PyrF variants with an enhanced half-denaturation temperature of >10°C. These data suggest that this error-prone strain is a promising host for thermoadaptation-directed evolution to generate thermostable variants from thermolabile enzymes. PMID:25326311
Suzuki, Hirokazu; Kobayashi, Jyumpei; Wada, Keisuke; Furukawa, Megumi; Doi, Katsumi
2015-01-01
Thermostability is an important property of enzymes utilized for practical applications because it allows long-term storage and use as catalysts. In this study, we constructed an error-prone strain of the thermophile Geobacillus kaustophilus HTA426 and investigated thermoadaptation-directed enzyme evolution using the strain. A mutation frequency assay using the antibiotics rifampin and streptomycin revealed that G. kaustophilus had substantially higher mutability than Escherichia coli and Bacillus subtilis. The predominant mutations in G. kaustophilus were A · T→G · C and C · G→T · A transitions, implying that the high mutability of G. kaustophilus was attributable in part to high-temperature-associated DNA damage during growth. Among the genes that may be involved in DNA repair in G. kaustophilus, deletions of the mutSL, mutY, ung, and mfd genes markedly enhanced mutability. These genes were subsequently deleted to construct an error-prone thermophile that showed much higher (700- to 9,000-fold) mutability than the parent strain. The error-prone strain was auxotrophic for uracil owing to the fact that the strain was deficient in the intrinsic pyrF gene. Although the strain harboring Bacillus subtilis pyrF was also essentially auxotrophic, cells became prototrophic after 2 days of culture under uracil starvation, generating B. subtilis PyrF variants with an enhanced half-denaturation temperature of >10°C. These data suggest that this error-prone strain is a promising host for thermoadaptation-directed evolution to generate thermostable variants from thermolabile enzymes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yen-Chen; Naveen, Vankadari; Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
During DNA replication, bacterial helicase is recruited as a complex in association with loader proteins to unwind the parental duplex. Previous structural studies have reported saturated 6:6 helicase-loader complexes with different conformations. However, structural information on the sub-stoichiometric conformations of these previously-documented helicase-loader complexes remains elusive. Here, with the aid of single particle electron-microscopy (EM) image reconstruction, we present the Geobacillus kaustophilus HTA426 helicase-loader (DnaC-DnaI) complex with a 6:2 binding stoichiometry in the presence of ATPγS. In the 19 Å resolution EM map, the undistorted and unopened helicase ring holds a robust loader density above the C-terminal RecA-like domain. Meanwhile, themore » path of the central DNA binding channel appears to be obstructed by the reconstructed loader density, implying its potential role as a checkpoint conformation to prevent the loading of immature complex onto DNA. Our data also reveals that the bound nucleotides and the consequently induced conformational changes in the helicase hexamer are essential for active association with loader proteins. These observations provide fundamental insights into the formation of the helicase-loader complex in bacteria that regulates the DNA replication process. - Highlights: • Helicase-loader complex structure with 6:2 sub-stoichiometry is resolved by EM. • Helicase hexamer in 6:2 sub-stoichiometry is constricted and un-opened. • 6:2 binding ratio of helicase-loader complex could act as a DNA loading checkpoint. • Nucleotides stabilize helicase-loader complex at low protein concentrations.« less
Fujii, Kenta; Tominaga, Yurie; Okunaka, Jyumpei; Yagi, Hisashi; Ohshiro, Takashi; Suzuki, Hirokazu
2018-06-01
Seaweeds are a nonlignocellulosic biomass, but they are often abundant in unique polysaccharides that common microbes can hardly utilize; therefore, polysaccharide degradation is key for the full utilization of seaweed biomass. Here, we isolated 13 thermophiles from seaweed homogenates that had been incubated at high temperature. All of the isolates were Gram-positive and preferentially grew at 60-70 °C. Most formed endospores and were tolerant to seawater salinity. Despite different sources, all isolates were identical regarding 16S rRNA gene sequences and were categorized as Geobacillus thermodenitrificans. Their growth occurred on seaweed polysaccharides with different profiles but required amino acids and/or vitamins, implying that they existed as proliferative cells by utilizing nutrients on seaweed viscous surfaces. Among 13 isolates, strain OS27 was further characterized to show that it can utilize a diverse range of seaweed polysaccharides and hemicelluloses. Notably, strain OS27 degraded raw seaweeds while releasing soluble saccharides. The degradation seemed to depend on enzymes that were extracellularly produced in an inducible manner. The strain could be genetically modified to produce heterologous endoglucanase, providing a transformant that degrades more diverse seaweeds with higher efficiency. The draft sequences of the OS27 genome contained 3766 coding sequences, which included intact genes for 28 glycoside hydrolases and many hypothetical proteins unusual among G. thermodenitrificans. These results suggest that G. thermodenitrificans OS27 serves as a genetic resource for thermostable enzymes to degrade seaweeds and potentially as a microbial platform for high temperature seaweed biorefinery via genetic modification.
Analysis of etiology and drug resistance of biliary infections.
Wang, Xin; Li, Qiu; Zou, Shengquan; Sun, Ziyong; Zhu, Feng
2004-01-01
The bile was collected from fro patients with biliary infections, with the bacterium isolated to study the sensitivity of each kind of the bacterium to several antibiotics in common use. Except G- bacterium, we also found some kinds of G+ bacterium in infection bile. G- bacterium were not sensitive to Clindamycin, G+ bacterium were sensitive to Ciprofloxacin. Escherichia coli, Xanthomonas maltophilia, Enterobacter cloacae, Pseudomonas aeruginosa were sensitive to Ampicillin. G+ bacterium were not sensitive to Azactam. Enterococcus faecalis, Enterococcus faecium, Enterobacter cloacae were not sensitive to Ceftazidime. Enterococcus faecalis, Staphylococcus coagulase negative, Staphylococcus epidermidis, Pseudomonas aeruginosa were not sensitive to Ceftriaxone Sodium. We didn't found any bacterium resistance Imipenem. The possibility of the existence of G+ bacterium as well as drug resistance should be considered n patients with biliary infections. The value of susceptibility test should be respected to avoid drug abuse of antibiotics.
Sakoda, H; Imanaka, T
1992-02-01
Using Bacillus subtilis as a host and pTB524 as a vector plasmid, we cloned the thermostable alcohol dehydrogenase (ADH-T) gene (adhT) from Bacillus stearothermophilus NCA1503 and determined its nucleotide sequence. The deduced amino acid sequence (337 amino acids) was compared with the sequences of ADHs from four different origins. The amino acid residues responsible for the catalytic activity of horse liver ADH had been clarified on the basis of three-dimensional structure. Since those catalytic amino acid residues were fairly conserved in ADH-T and other ADHs, ADH-T was inferred to have basically the same proton release system as horse liver ADH. The putative proton release system of ADH-T was elucidated by introducing point mutations at the catalytic amino acid residues, Cys-38 (cysteine at position 38), Thr-40, and His-43, with site-directed mutagenesis. The mutant enzyme Thr-40-Ser (Thr-40 was replaced by serine) showed a little lower level of activity than wild-type ADH-T did. The result indicates that the OH group of serine instead of threonine can also be used for the catalytic activity. To change the pKa value of the putative system, His-43 was replaced by the more basic amino acid arginine. As a result, the optimum pH of the mutant enzyme His-43-Arg was shifted from 7.8 (wild-type enzyme) to 9.0. His-43-Arg exhibited a higher level of activity than wild-type enzyme at the optimum pH.
Sakoda, H; Imanaka, T
1992-01-01
Using Bacillus subtilis as a host and pTB524 as a vector plasmid, we cloned the thermostable alcohol dehydrogenase (ADH-T) gene (adhT) from Bacillus stearothermophilus NCA1503 and determined its nucleotide sequence. The deduced amino acid sequence (337 amino acids) was compared with the sequences of ADHs from four different origins. The amino acid residues responsible for the catalytic activity of horse liver ADH had been clarified on the basis of three-dimensional structure. Since those catalytic amino acid residues were fairly conserved in ADH-T and other ADHs, ADH-T was inferred to have basically the same proton release system as horse liver ADH. The putative proton release system of ADH-T was elucidated by introducing point mutations at the catalytic amino acid residues, Cys-38 (cysteine at position 38), Thr-40, and His-43, with site-directed mutagenesis. The mutant enzyme Thr-40-Ser (Thr-40 was replaced by serine) showed a little lower level of activity than wild-type ADH-T did. The result indicates that the OH group of serine instead of threonine can also be used for the catalytic activity. To change the pKa value of the putative system, His-43 was replaced by the more basic amino acid arginine. As a result, the optimum pH of the mutant enzyme His-43-Arg was shifted from 7.8 (wild-type enzyme) to 9.0. His-43-Arg exhibited a higher level of activity than wild-type enzyme at the optimum pH. Images PMID:1735726
Bacillus stearothermophilus sporulation response to different composition media.
Penna, T C; Machoshvili, I A; Taqueda, M E; Ferraz, C A
1998-01-01
To evaluate the effectiveness of 11 commonly used ingredients to improve Bacillus stearothermophilus ATCC 7953 sporulation, with high spore yields in a short period of incubation, 32 composition media were set up by a fractional factorial 2IV11-6 design at two levels: D-glucose (0.018-0.25%), L-glutamic acid (0.040-0.10%), yeast extract (0.050-0.40%), peptone (0.30-0.50%), sodium chloride (0.001-1.0%), magnesium sulfate (0.001-0.20%), ammonium phosphate (0.010-0.035%), potassium phosphate monobasic (0.050-0.25%), calcium chloride (0.001-0.05%), ferrous sulfate (0.0003-0.002%), manganese sulfate (0.001-0.50%). The largest variation on Log10 CFU response took place due to sodium chloride main effect, by changing it from low to high levels. Magnesium sulfate, calcium chloride, and ferrous sulfate were split and exerted no detectable main effect influence on sporulation. Setting up two 16 runs for sodium chloride effect, in each of which the remainder levels were kept constant, other components contribution was studied. At low sodium chloride, best average 7.25 Log10 CFU yielded by fastening yeast extract and peptone at high level, and remainders at low level. Considering high level of sodium chloride, peptone, yeast extract and ammonium phosphate kept at high level and remainders at low level confirmed the best sporulation yield. Adjusted models evidenced a strong influence of joint yeast/peptone effect, associated to ammonium phosphate contributing positively. The reduced incubation period from 15 days to 3-6 days at 62 degrees C was attained for all 32 experimental runs.
Serp, D; von Stockar, U; Marison, I W
2002-07-01
Spores of Bacillus subtilis ATCC 6051 and Bacillus stearothermophilus NCTC 10003 were immobilized in monodisperse alginate beads (diameter, 550 microm +/- 5%), and the capacity of the immobilized bioindicators to provide accurate and reliable F-values for sterilization processes was studied. The resistance of the beads to abrasion and heat was strong enough to ensure total retention of the bioindicators in the beads in a sterilization cycle. D- and z-values for free spores were identical to those for immobilized spores, which shows that immobilization does not modify the thermal resistance of the bioindicators. A D(100 degrees C) value of 1.5 min was found for free and immobilized B. subtilis spores heated in demineralized water, skimmed milk, and milk containing 4% fat, suggesting that a lipid concentration as low as 4% does not alter the thermal resistance of B. subtilis spores. Providing that the pH range is kept between 3.4 to 10 and that sufficiently low concentrations of Ca2+ competitors or complexants are present in the medium, immobilized bioindicators may serve as an efficient, accurate, and reliable tool with which to validate the efficiency of any sterilization process. The environmental factors (pH, media composition) affecting the thermoresistance of native contaminants are intrinsically reflected in the F-value, allowing for a sharper adjustment of the sterilization process. Immobilized spores of B. stearothermophilus were successfully used to validate a resonance and interference microwave system that is believed to offer a convenient alternative for the sterilization of temperature-sensitive products and medical wastes.
Bounoure, Frederic; Fiquet, Herve; Arnaud, Philippe
2006-03-01
The efficacy of hydrogen peroxide and peracetic acid as isolator sterilization agents was compared. Sterilization and efficacy tests were conducted in a flexible 0.8-m3 transfer isolator using a standard load of glass bottles and sterile medical devices in their packing paper. Bacillus stearothermophilus spores were placed in six critical locations of the isolator and incubated at 55 degrees C in a culture medium for 14 days. Sterilization by 4.25 mL/m3 of 33% vapor-phase hydrogen peroxide and 12.5 mL/m3 of 3.5% peracetic acid was tested in triplicate. Sterility was validated for hydrogen peroxide and peracetic acid at 60, 90, 120, and 180 minutes and at 90, 120, 150, 180, 210, and 240 minutes, respectively. In an efficacy test conducted with an empty isolator, the sterilization time required to destroy B. stearothermophilus spores was 90 minutes for both sterilants, indicating that they have comparable bactericidal properties. During the validation test with a standard load, the sterilization time using hydrogen peroxide was 150 minutes versus 120 minutes with peracetic acid. The glove cuff was particularly difficult for hydrogen peroxide to sterilize, likely due to its slower diffusion time than that of peracetic acid. Hydrogen peroxide is an environmentally safer agent than peracetic acid; however, its bacteriostatic properties, lack of odor, and poor diffusion time may limit its use in sterilizing some materials. Hydrogen peroxide is a useful alternative to peracetic acid for isolator sterilization in a hospital pharmacy or parenteral nutrition preparation unit.
Single Upconversion Nanoparticle-Bacterium Cotrapping for Single-Bacterium Labeling and Analysis.
Xin, Hongbao; Li, Yuchao; Xu, Dekang; Zhang, Yueli; Chen, Chia-Hung; Li, Baojun
2017-04-01
Detecting and analyzing pathogenic bacteria in an effective and reliable manner is crucial for the diagnosis of acute bacterial infection and initial antibiotic therapy. However, the precise labeling and analysis of bacteria at the single-bacterium level are a technical challenge but very important to reveal important details about the heterogeneity of cells and responds to environment. This study demonstrates an optical strategy for single-bacterium labeling and analysis by the cotrapping of single upconversion nanoparticles (UCNPs) and bacteria together. A single UCNP with an average size of ≈120 nm is first optically trapped. Both ends of a single bacterium are then trapped and labeled with single UCNPs emitting green light. The labeled bacterium can be flexibly moved to designated locations for further analysis. Signals from bacteria of different sizes are detected in real time for single-bacterium analysis. This cotrapping method provides a new approach for single-pathogenic-bacterium labeling, detection, and real-time analysis at the single-particle and single-bacterium level. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarkar, Vinod B.; Kimani, Serah W.; Cowan, Donald A.
2006-12-01
The amidase from G. pallidus RAPc8, a moderate thermophile, converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned, expressed and purified, and then crystallized using the hanging-drop vapour-diffusion method. The amidase from Geobacillus pallidus RAPc8, a moderate thermophile, is a member of the nitrilase enzyme superfamily. It converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned and functionally expressed in Escherichia coli and has been purified by heat treatment and a number of chromatographic steps. The enzyme wasmore » crystallized using the hanging-drop vapour-diffusion method. Crystals produced in the presence of 1.2 M sodium citrate, 400 mM NaCl, 100 mM sodium acetate pH 5.6 were selected for X-ray diffraction studies. A data set having acceptable statistics to 1.96 Å resolution was collected under cryoconditions using an in-house X-ray source. The space group was determined to be primitive cubic P4{sub 2}32, with unit-cell parameter a = 130.49 (±0.05) Å. The structure was solved by molecular replacement using the backbone of the hypothetical protein PH0642 from Pyrococcus horikoshii (PDB code 1j31) with all non-identical side chains substituted with alanine as a probe. There is one subunit per asymmetric unit. The subunits are packed as trimers of dimers with D3 point-group symmetry around the threefold axis in such a way that the dimer interface seen in the homologues is preserved.« less
Uma Maheswar Rao, J L; Satyanarayana, T
2004-01-01
Effect of polyamines and their biosynthesis inhibitors on the production of hyperthermostable and Ca2+ -independent alpha-amylase by Geobacillus thermoleovorans MTCC 4220. The alpha-amylase was produced in starch-yeast extract-tryptone (SYT) broth with different polyamines (PA) and polyamine biosynthesis inhibitors, methylglyoxal-bis-guanylhydrazone (MGBG) and cyclohexylammonium sulphate (CHA) at 70 degrees C. The bacterial pellets were obtained after growing G. thermoleovorans at different temperatures, and used in determining total PA. The cell-free culture filtrates were used in alpha-amylase assays. During growth, total polyamines in biomass increased till 2 h, and thereafter, decreased gradually. The total polyamine content was very high in the biomass cultivated at 55 degrees C when compared with that of higher temperatures. Enzyme titre enhanced up to 70 degrees C, and thereafter declined. Extracellular enzyme and protein levels declined in the presence of exogenously added PA. The intracellular enzyme titres, however, were higher in putrescine (put) and spermidine (spd) than in spermine (spm). Polyamine biosynthesis inhibitor, MGBG enhanced secretion of alpha-amylase in a laboratory fermentor as well as shake flasks, although CHA did not affect it. The intracellular accumulation of put in the presence of MGBG appeared to enhance synthesis and secretion of alpha-amylase. Extracellular enzyme and protein levels were low in the presence of exogenously added PA, but their intracellular levels, however, were higher in put and spd than in spm. A substantial increase in the synthesis and secretion of alpha-amylase was attained in G. thermoleovorans in the presence of polyamine biosynthesis inhibitor MGBG.
Hatakeyama, T; Hatakeyama, T
1990-07-06
The complete amino acid sequences of the ribosomal proteins HL30 and HmaL5 from the archaebacterium Halobacterium marismortui were determined. Protein HL30 was found to be acetylated at its N-terminal amino acid and shows homology to the eukaryotic ribosomal proteins YL34 from yeast and RL31 from rat. Protein HmaL5 was homologous to the protein L5 from Escherichia coli and Bacillus stearothermophilus as well as to YL16 from yeast. HmaL5 shows more similarities to its eukaryotic counterpart than to eubacterial ones.
NASA Technical Reports Server (NTRS)
Pflug, I. J.
1973-01-01
The mechanistic basis of the synergetic effect of combined heat and radiation on microbial destruction was analyzed and results show that radiation intensity, temperature, and relative humidity are the determining factors. Dry heat resistance evaluation for selected bacterial spore crops indicates that different strains of Bacillus stearothermophilus demonstrate marked differences in resistance. Preliminary work to determine the effects of storage time, suspending medium, storage temperature and spore crop cleaning procedures on dry heat survival characteristics of Bacillus subtilis var. Niger, and dry heat resistance of natural microflora in soil particles is also reported.
NREL Researchers Discover How a Bacterium, Clostridium thermocellum,
containing the bacterium actually promotes the growth of C. thermocellum, yet its mechanistic details remained a puzzle. This enhanced growth implied the bacterium had the ability to use CO2 and prompted NREL researchers to investigate the phenomena enhancing the bacterium's growth. "It took us by surprise that
Wu, Qing; Zhao, Xinhua; Yu, Qing; Li, Jun
2008-07-01
To understand the corrosion of different material water supply pipelines and bacterium in drinking water and biofilms. A pilot distribution network was built and water quality detection was made on popular pipelines of galvanized iron pipe, PPR and ABS plastic pipes by ESEM (environmental scanning electron microscopy). Bacterium in drinking water and biofilms were identified by API Bacteria Identification System 10s and 20E (Biomerieux, France), and pathogenicity of bacterium were estimated. Galvanized zinc pipes were seriously corroded; there were thin layers on inner face of PPR and ABS plastic pipes. 10 bacterium (got from water samples) were identified by API10S, in which 7 bacterium were opportunistic pathogens. 21 bacterium (got from water and biofilms samples) were identified by API20E, in which 5 bacterium were pathogens and 11 bacterium were opportunistic pathogens and 5 bacteria were not reported for their pathogenicities to human beings. The bacterial water quality of drinking water distribution networks were not good. Most bacterium in drinking water and biofilms on the inner face of pipeline of the drinking water distribution network were opportunistic pathogens, it could cause serious water supply accident, if bacteria spread in suitable conditions. In the aspect of pipe material, old pipelines should be changed by new material pipes.
Biofilm Formation by a Metabolically Versatile Bacterium
2009-03-19
ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium that has good potential as a biocatalyst for the production ofhydrogen gas, a biofuel...Biofilm formation by a metabolically versatile bacterium: final report Report Title ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium...agricultural waste. We characterized five new Rhodopseudomonas genome sequences and isolated and described R. palustris mutant strains that produce
Kelly-Wintenberg, K; Montie, T C; Brickman, C; Roth, J R; Carr, A K; Sorge, K; Wadsworth, L C; Tsai, P P
1998-01-01
We report the results of an interdisciplinary collaboration formed to assess the sterilizing capabilities of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). This newly-invented source of glow discharge plasma (the fourth state of matter) is capable of operating at atmospheric pressure in air and other gases, and of providing antimicrobial active species to surfaces and workpieces at room temperature as judged by viable plate counts. OAUGDP exposures have reduced log numbers of bacteria, Staphylococcus aureus and Escherichia coli, and endospores from Bacillus stearothermophilus and Bacillus subtilis on seeded solid surfaces, fabrics, filter paper, and powdered culture media at room temperature. Initial experimental data showed a two-log10 CFU reduction of bacteria when 2 x 10(2) cells were seeded on filter paper. Results showed > or = 3 log10 CFU reduction when polypropylene samples seeded with E. coli (5 x 10(4)) were exposed, while a 30 s exposure time was required for similar killing with S. aureus-seeded polypropylene samples. The exposure times required to effect > or = 6 log10 CFU reduction of E. coli and S. aureus on polypropylene samples were no longer than 30 s. Experiments with seeded samples in sealed commercial sterilization bags showed little or no differences in exposure times compared to unwrapped samples. Plasma exposure times of less than 5 min generated > or = 5 log10 CFU reduction of commercially prepared Bacillus subtilis spores (1 x 10(5)); 7 min OAUGDP exposures were required to generate a > or = 3 log10 CFU reduction for Bacillus stearothermophilus spores. For all microorganisms tested, a biphasic curve was generated when the number of survivors vs time was plotted in dose-response cures. Several proposed mechanisms of killing at room temperature by the OAUGDP are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beddows, C.G.; Gil, M.H.; Guthrie, J.T.
1986-01-01
Poly(maleic anhydride styrene) graft copolymers of cellulose, pectin polygalacturonic acid salt, calcium polygalacturonate, and starch were prepared and used to immobilize proteins. The cellulose grafts coupled quite appreciable quantities of acid phosphatase, glucose oxidase, and trypsin. However, the general retention of activity was somewhat disappointing. Further investigation with acid phosphatase showed that the amount of enzyme immobilized increased as the amount of anhydride in the graft copolymer increased but no such relationship existed for the enzymic activity. The cellulose graft copolymers were hydrolyzed and it appeared that the carboxyl group aided adsorption of the enzyme. Attempts to couple acid phosphatasemore » using CMC through the free carboxyl groups, created by hydrolysis, gave only a small increase in the extent of protein coupling. However, the unhydrolyzed system gave a useful degree of immobilization of cells of Bacillus stearothermophilus, as did a poly(maleic anhydride/styrene)-cocellulose system. Attempts to improve the activity by using grafts based on other polysaccharide supports met with mixed success. Pectin products were soluble. Polygalacturonic acid products were partially soluble and extremely high levels of enzymic activity were obtained. This was probably due in part to the hydrophilic nature of the system, which also encouraged absorption of the enzyme. Attempts were made to reduce the solubility by using the calcium pectinate salt. Immobilization of acid phosphatase and trypsin resulted in increased protein coupling but relatively poor activities were attained. Calcium polygalacturonate was used to prepare an insoluble graft copolymeric system containing acrylonitrile-comaleic anhydride. The resulting gels gave excellent coupling with acid phosphatase which had a very good retention of activity.« less
Bergmann, U; Wittmann-Liebold, B
1993-03-23
50S ribosomal subunits from the extreme halophilic archaebacterium Haloarcula marismortui were treated with the homobifunctional protein-protein cross-linking reagents diepoxybutane (4 A) and dithiobis(succinimidyl propionate) (12 A). The dominant product with both cross-linking reagents was identified on the protein level as HmaL23-HmaL29, which is homologous to the protein pair L23-L29 from Escherichia coli [Walleczek, J., Martin, T., Redl, B., Stöffler-Meilicke, M., & Stöffler, G. (1989) Biochemistry 28, 4099-4105] and from Bacillus stearothermophilus [Brockmöller, J., & Kamp, R. M. (1986) Biol. Chem. Hoppe-Seyler 367, 925-935]. To reveal the exact cross-linking site in HmaL23-HmaL29, the cross-linked complex was purified on a preparative scale by conventional and high-performance liquid chromatography. After endoproteolytic fragmentation of the protein pair, the amino acids engaged in cross-link formation were unambiguously identified by N-terminal sequence analysis and mass spectrometry of the cross-linked peptides. The cross-link is formed between lysine-57 in the C-terminal region of HmaL29 and the alpha-amino group of the N-terminal serine in protein HmaL23, irrespective of the cross-linking reagent. This result demonstrates that the N-terminal region of protein HmaL23 and the C-terminal domain of HmaL29 are highly flexible so that the distance between the two polypeptide chains can vary by at least 8 A. Comparison of our cross-linking results with those obtained with B. stearothermophilus revealed that the fine structure within this ribosomal domain is at least partially conserved.
Ben Bacha, Abir; Moubayed, Nadine M S; Abid, Islam
2015-04-01
Lipases are the enzymes of choice for laundry detergent industries, owing to their triglyceride removing ability from the soiled fabric, which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In this study, a novel thermo-alkaline lipase-producing strain identified as Bacillus stearothermophilus was isolated from the soil samples of olive oil mill. Enhanced lipase production was observed at 55 degrees C, pH 11 and after 48 h of incubation. Among the substrates tested, xylose (a carbon source), peptone (a nitrogen source) and olive oil at a concentration of 1% were suitable substrates for enhancing lipase production. MgSO4 and Tween-80 were suitable substrates for maximizing lipase production. The enzyme was purified to homogeneity by a single CM-Sephadex column chromatography and revealed molecular mass of 67 kDa. The enzyme (BL1) was active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 11.0, exhibited maximal activity at 55 degreesC and retained more than 70% of its activity after incubation at 70 degrees C or pH 13 for 0.5 h or 24 h, respectively. The enzyme hydrolyzed both short and long-chain triacylglycerols at comparable rates. BL1 was studied in a preliminary evaluation for use in detergent formulation solutions. This novel lipase showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40 degrees C, and good stability towards oxidizing agents. Additionally, the enzyme showed excellent stability and compatibility with various commercial detergents, suggesting its potential as an additive in detergent formulations.
NASA Astrophysics Data System (ADS)
Arfah, R. A.; Ahmad, A.; Dali, S.; Djide, M. N.; Mahdalia; Arif, A. R.
2018-03-01
The dried sago flour derived from Palopo contains 28.80% amylose and 91.23% total carbohydrate. Based on the data, sago starch has the potential to become an alternative raw material for themaltodextrin production. Maltodextrin is one of the starch derivative products produced by hydrolysis process using the α-amylase enzyme with amaximum DE (dextrose equivalent) value of 20. The use of maltodextrin for food and pharmaceutical industries is increasing because of maltodextrin is widely used as thickener filler, surfactant and sugar substitute in milk powder. The aims of this study are to optimize the addition of enzyme concentration and hydrolysis time of α -amylase enzyme to obtain high quality ofmaltodextrin This study also aimed to characterization the obtained maltodextrin. The first step was isolation and purification α-amylase from the isolate of Bacillus stearothermophilus RSAII1B, followed by determination of the α-amylase concentration (0.05%, 0.07% and 0.09%) in 2.0% starch substrate, and the hydrolysis time ofα-amilase (60, 90, 120, 240 minutes). Maltodextrin characters observed were dextrose equivalent (DE), reducing sugar, moisture content, pH changes, color, solubility, viscosity, and total plate count (TPC). The results showed that the value of DE was 12.31, reducing sugar was 11.4%; water content was 10.92%; pH was 4.85; The color of maltodextrin powder was white bone color; solubility was 153.2 g/L; Viscositywas 210-240 cps, TPCwas 380 cfu/g. Maltodextrins produced from sago starch using the α-amylase enzyme from B.stearothermophillus RSAIIm met the quality requirements of SNI 7599: 2010.
NASA Astrophysics Data System (ADS)
Stan-Lotter, Helga; Fendrihan, Sergiu; Dornmayr-Pfaffenhuemer, Marion; Holzinger, Anita; Polacsek, Tatjana K.; Legat, Andrea; Grösbacher, Michael; Weigl, Andreas
2010-05-01
Background: The search for extraterrestrial life has been declared as a goal for the 21th century by several space agencies. Potential candidates are microorganisms on or in the surface of moons and planets, such as Mars. Extremely halophilic archaea (haloarchaea) are of astrobiological interest since viable strains have been isolated from million years old salt deposits (1) and halite has been found in Martian meteorites and in surface pools. Therefore, haloarchaeal responses to simulated and real space conditions were explored. Immuno assays for a potential Life Marker Chip experiment were developed with antisera against the universal enzyme ATP synthase. Methods: The focus of these studies was on the application of fluorescent probes since they provide strong signals, and detection devices are suitable for miniaturization. Viability of haloarchaeal strains (Halococcus dombrowskii and Halobacterium salinarum NRC-1) was probed with the LIVE/DEAD BacLight™ kit and the BacLight™ Bacterial Membrane Potential kit. Cyclobutane pyrimidine dimers (CPD) in the DNA, following exposure to simulated and real space conditions (UV irradiation from 200 - 400 nm; 18 months exposure on the International Space Station [ISS] within the ADAPT experiment by Dr. P. Rettberg), were detected with fluorescent Alexa-Fluor-488-coupled antibodies. Immuno assays with antisera against the A-ATPase subunits from Halorubrum saccharovorum were carried out with the highly sensitive Immun-Star ™ WesternC ™ chemiluminescent kit (Bio-Rad). Results: Using the LIVE/DEAD BacLight™ kit, the D37 (dose of 37% survival) for Hcc. dombrowskii and Hbt. salinarum NRC-1, following exposure to UV (200-400 nm) was about 400 kJ/m2, when cells were embedded in halite and about 1 kJ/m2, when cells were in liquid cultures. Fluorescent staining indicated a slightly higher cellular activity than that which was derived from the determination of colony forming units. Assessment of viability with the BacLight™ Bacterial Membrane Potential kit gave strong signals with Hcc. dombrowskii and the control microorganism E. coli; as expected, the uncoupler CCCP diminished the membrane potential. Reaction times were generally longer with Hcc. dombrowskii than with E. coli. Hcc. dombrowskii from the ISS experiment showed > 80% viable cells when judged with the LIVE/DEAD kit. CPD formation was detectable in about 3-5 % of the total cells. It is not yet known if growing cells of Hcc. dombrowskii were recovered from the ISS. ATPase subunits were detected in crude membrane preparations, in whole haloarchaeal and bacterial cells, and even in spores (from Geobacillus stearothermophilus), suggesting the usefulness of the ATP synthase as a molecular target for life detection. Conclusions: Fluorescent dyes provide strong signals, which are suitable for remote detection and are compatible with high ionic strength. The advantages of staining with fluorescent dyes are rapid results on membrane intactness, membrane potential, and the presence of certain biomolecules. But more data are needed for a better correlation to cellular viability. (1) Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int System Evol Microbiol 52, 1807-1814.
Three-dimensional crystals of ribosomes and their subunits from eu- and archaebacteria.
Glotz, C; Müssig, J; Gewitz, H S; Makowski, I; Arad, T; Yonath, A; Wittmann, H G
1987-11-01
Ordered three-dimensional crystals of 70S ribosomes as well as of 30S and 50S ribosomal subunits from various bacteria (E. coli, Bacillus stearothermophilus, Thermus thermophilus and Halobacterium marismortui) have been grown by vapour diffusion in hanging drops using mono- and polyalcohols. A new compact crystal form of 50S subunits has been obtained, and it is suitable for crystallographic studies at medium resolution. In addition, from one crystal form large crystals could be grown in X-ray capillaries. In all cases the crystals were obtained from functionally active ribosomal particles, and the particles from dissolved crystals retained their integrity and biological activity.
Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components
NASA Technical Reports Server (NTRS)
Reyes, A. L.; Campbell, J. E.
1978-01-01
The experiments conducted to determine the heat resistance of Bacillus megaterium ATCC 6458 at 90 and 100 C were completed. Estimates from replicate experiments at eight percent relative humidities (less than 0.001 to 100% RH) for each temperature were computed. A Bacillus cereus strain with high heat resistance was cultured and the resistance determined in phosphate buffer (D sub 121.1 = 2.16 min and z = 8.7 C). The profile of the dry heat resistance of B. megaterium is summarized and the most resistant condition to the three spores (Bacillus subtilis var. niger, ATCC 29669, and Bacillus stearothermophilus, strain 1518) is compared.
Detection of Salmonella bacterium in drinking water using microring resonator.
Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha
2016-01-01
A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.
Fukatsu, Takema; Hosokawa, Takahiro
2002-01-01
The Japanese common plataspid stinkbug, Megacopta punctatissima, deposits small brown particles, or symbiont capsules, on the underside of the egg mass for the purpose of transmission of symbiotic bacteria to the offspring. We investigated the microbiological aspects of the bacteria contained in the capsule, such as microbial diversity, phylogenetic placement, localization in vivo, and fitness effects on the host insect. Restriction fragment length polymorphism analysis of 16S ribosomal DNA clones revealed that a single bacterial species dominates the microbiota in the capsule. The bacterium was not detected in the eggs but in the capsules, which unequivocally demonstrated that the bacterium is transmitted to the offspring of the insect orally rather than transovarially, through probing of the capsule content. Molecular phylogenetic analysis showed that the bacterium belongs to the γ-subdivision of the Proteobacteria. In adult insects the bacterium was localized in the posterior section of the midgut. Deprivation of the bacterium from the nymphs resulted in retarded development, arrested growth, abnormal body coloration, and other symptoms, suggesting that the bacterium is essential for normal development and growth of the host insect. PMID:11772649
Huang, Bing; Zhang, Shi-Ling; Zhang, Jiang-Hong; Ao, Yong; Shi, Zhe
2011-07-01
A group of removing SO2 bacterium was obtained from the oxidation ditch of city sewage treatment plant by inductive domestication over 6 d with low concentration SO2 gas, and they have an ability with biodegradation rate of 888 mg x (L x h)(-1) and a degradation efficiency of 85% during 1.5 h for SO2 dissolved in water with their synergy. The clone library and two phylogenetic trees of the removing SO2 bacterium communities were obtained based on 16S rRNA DNA comparison by DNA extraction of the sample and in situ polymerase chain reaction (PCR). The phylogenetic analysis showed that 8 dominant desulfuration bacterium occupy about 69% of all removing SO2 bacterium, and some of them have a kindred with discovered desulfuration bacterium but not homogeneity, and there are four belong to alpha-Proteobacteria, another four belong to beta-Proteobacteria in them. The gene information about 16S rRNA sequence of the dominant desulfuration bacteria and domestication method provide a basic of looking for or domesticating removing SO2 bacterium for development microbial desulfurization technology of contained SO2 tail gas.
Bockrath, Richard; Person, Stanley; Funk, Fred
1968-01-01
Transmutation of the radioisotope tritium occurs with the production of a low energy electron, having a range in biological material similar to the dimensions of a bacterium. A computer program was written to determine the radiation dose distributions which may be expected within a bacterium as a result of tritium decay, when the isotope has been incorporated into specific regions of the bacterium. A nonspherical model bacterium was used, represented by a cylinder with hemispherical ends. The energy distributions resulting from a wide variety of simulated labeled regions were determined; the results suggested that the nuclear region of a bacterium receives on the average significantly different per decay doses, if the labeled regions were those conceivably produced by the incorporation of thymidine-3H, uracil-3H, or 3H-amino acids. Energy distributions in the model bacterium were also calculated for the decay of incorporated 14carbon, 35sulfur, and 32phosphorous. PMID:5678319
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozbial, Piotr; Xu, Qingping; Chiu, Hsiu-Ju
2009-08-28
To extend the structural coverage of proteins with unknown functions, we targeted a novel protein family (Pfam accession number PF08807, DUF1798) for which we proposed and determined the structures of two representative members. The MW1337R gene of Staphylococcus aureus subsp. aureus Rosenbach (Wood 46) encodes a protein with a molecular weight of 13.8 kDa (residues 1-116) and a calculated isoelectric point of 5.15. The lin2004 gene of the nonspore-forming bacterium Listeria innocua Clip11262 encodes a protein with a molecular weight of 14.6 kDa (residues 1-121) and a calculated isoelectric point of 5.45. MW1337R and lin2004, as well as their homologs,more » which, so far, have been found only in Bacillus, Staphylococcus, Listeria, and related genera (Geobacillus, Exiguobacterium, and Oceanobacillus), have unknown functions and are annotated as hypothetical proteins. The genomic contexts of MW1337R and lin2004 are similar and conserved in related species. In prokaryotic genomes, most often, functionally interacting proteins are coded by genes, which are colocated in conserved operons. Proteins from the same operon as MW1337R and lin2004 either have unknown functions (i.e., belong to DUF1273, Pfam accession number PF06908) or are similar to ypsB from Bacillus subtilis. The function of ypsB is unclear, although it has a strong similarity to the N-terminal region of DivIVA, which was characterized as a bifunctional protein with distinct roles during vegetative growth and sporulation. In addition, members of the DUF1273 family display distant sequence similarity with the DprA/Smf protein, which acts downstream of the DNA uptake machinery, possibly in conjunction with RecA. The RecA activities in Bacillus subtilis are modulated by RecU Holliday-junction resolvase. In all analyzed cases, the gene coding for RecU is in the vicinity of MW1337R, lin2004, or their orthologs, but on a different operon located in the complementary DNA strand. Here, we report the crystal structures of MW1337R and lin2004, which were determined using the semiautomated, high-throughput pipeline of the Joint Center for Structural Genomics (JCSG), part of the National Institute of General Medical Sciences Protein Structure Initiative.« less
Effect of dielectrophoretic force on swimming bacteria.
Tran, Ngoc Phu; Marcos
2015-07-01
Dielectrophoresis (DEP) has been applied widely in bacterial manipulation such as separating, concentrating, and focusing. Previous studies primarily focused on the collective effects of DEP force on the bacterial population. However, the influence of DEP force on the swimming of a single bacterium had not been investigated. In this study, we present a model to analyze the effect of DEP force on a swimming helically flagellated bacterium, particularly on its swimming direction and velocity. We consider a simple DEP force that acts along the X-direction, and its strength as well as direction varies with the X- and Y-positions. Resistive force theory is employed to compute the hydrodynamic force on the bacterium's flagellar bundle, and the effects of both DEP force and rotational diffusion on the swimming of the bacterium are simultaneously taken into consideration using the Fokker-Planck equation. We show the mechanism of how DEP force alters the orientation and velocity of the bacterium. In most cases, the DEP force dominantly influences the orientation of the swimming bacterium; however, when the DEP force strongly varies along the Y-direction, the rotational diffusion is also responsible for determining the bacterium's reorientation. More interestingly, the variance of DEP force along the Y-direction causes the bacterium to experience a translational velocity perpendicular to its primary axis, and this phenomenon could be utilized to focus the bacteria. Finally, we show the feasibility of applying our findings to achieve bacterial focusing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Johnson, M A; Primack, P D; Loushine, R J; Craft, D W
1997-01-01
Ninety-two new endodontic files were randomly assigned to five groups with varying parameters of contamination, cleaning method, and sterilization (steam or chemical). Files were instrumented in bovine teeth to accumulate debris and a known contaminant, Bacillus stearothermophilus. Positive controls produced growth on both T-soy agar plates and in T-soy broth. Negative controls and experimental files (some with heavy debris) failed to produce growth. The results showed that there was no significant difference between contaminated files that were not cleaned before sterilization and contaminated files that were cleaned before sterilization. Bioburden present on endodontic files does not appear to affect the sterilization process.
Miniature microwave powered steam sterilization chamber
NASA Astrophysics Data System (ADS)
Atwater, James E.; Dahl, Roger W.; Garmon, Frank C.; Lunsford, Teddie D.; Michalek, William F.; Wheeler, Richard R., Jr.; Sauer, Richard L.
1997-10-01
A small device for the rapid ultrahigh temperature sterilization of surfaces is described. Microwave power generated by a 2.45 GHz magnetron is delivered via coaxial cable to a silicon carbide block housed within the chamber. Small quantities of water or aqueous hydrogen peroxide are introduced into the chamber. Upon application of power, the liquid flashes to vapor and superheats producing temperatures to 300 °C. The hot vapor permeates the enclosed space and contacts all exposed surfaces. Complete microbial kill of >10 6 colony forming units of the spore forming thermophile, Bacillus stearothermophilus, has been demonstrated using a variety of temperatures and exposure times in both steady state and thermal pulse modes of operation.
Recent research advances on Chromobacterium violaceum.
Kothari, Vijay; Sharma, Sakshi; Padia, Divya
2017-08-01
Chromobacterium violaceum is a gram-negative bacterium, which has been used widely in microbiology labs involved in quorum sensing (QS) research. Among the QS-regulated traits of this bacterium, violacein production has received the maximum attention. Violacein production in this organism, however is not under sole control of QS machinery, and other QS-regulated traits of this bacterium also need to be investigated in better detail. Though not often involved in human infections, this bacterium is being viewed as an emerging pathogen. This review attempts to highlight the recent research advances on C. violaceum, with respect to violacein biosynthesis, development of various applications of this bacterium and its bioactive metabolite violacein, and its pathogenicity. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Characterization of the cellulose-degrading bacterium NCIMB 10462
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dees, C.; Scott, T.C.; Phelps, T.J.
The gram-negative cellulase-producing bacterium NCIMB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulose. Because of renewed interest in cellulose-degrading bacteria for use in the bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its true metabolic potential. Metabolic and physical characterization of NCIMB 10462 revealed that this is an alkalophilic, non-fermentative, gram-negative, oxidase-positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium has few characteristics consistent with a classification of P. fluorescens and a very low probability match with the genus Sphingomonas. However, total lipid analysismore » did not reveal that any sphingolipid bases are produced by this bacterium. NCIMB 10462 grows best aerobically, but also grows well in complex media under reducing conditions. NCIMB 10462 grows slowly under anaerobic conditions on complex media, but growth on cellulosic media occurred only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIMB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is its ability to degrade cellulose, we suggest that it be called Pseudomonas cellulosa.« less
Davies, Keith G
2009-01-01
Pasteuria penetrans is an endospore-forming bacterium, which is a hyperparasite of root-knot nematodes Meloidogyne spp. that are economically important pests of a wide range of crops. The life cycle of the bacterium and nematode are described with emphasis on the bacterium's potential as a biocontrol agent. Two aspects that currently prohibit the commercial development of the bacterium as a biocontrol agent are the inability to culture it outside its host and its host specificity. Vegetative growth of the bacterium is possible in vitro; however, getting the vegetative stages of the bacterium to enter sporogenesis has been problematic. Insights from genomic survey sequences regarding the role of cation concentration and the phosphorylation of Spo0F have proved useful in inducing vegetative bacteria to sporulate. Similarly, genomic data have also proved useful in understanding the attachment of endospores to the cuticle of infective nematode juveniles, and a Velcro-like model of spore attachment is proposed that involves collagen-like fibres on the surface of the endospore interacting with mucins on the nematode cuticle. Ecological studies of the interactions between Daphnia and Pasteuria ramosa are examined and similarities are drawn between the co-evolution of virulence in the Daphnia system and that of plant-parasitic nematodes.
Shin, Doyun; Nam, Kyoungphile
2012-02-20
The present study was conducted to investigate the performance and feasibility of a self-dying reporter bacterium to visualize and quantify phenanthrene bioavailability in soil. The self-dying reporter bacterium was designed to die on the initiation of phenanthrene biodegradation. The viability of the reporter bacterium was determined by a fluorescence live/dead cell staining method and visualized by confocal laser scanning microscopic observation. Phenanthrene was spiked into four types of model solids and a sandy loam. The bioavailability of phenanthrene to the reporter bacterium was remarkably declined with the hydrophobicity of the model solids: essentially no phenanthrene was biodegraded in the presence of 9-nm pores and about 35.8% of initial phenanthrene was biodegraded without pores. Decrease in bioavailability was not evident in the nonporous hydrophilic bead, but a small decrease was observed in the porous hydrophilic bead at 1000 mg/kg of phenanthrene. The fluorescence intensity was commensurate with the extent of phenanthrene biodegradation by the reporter bacterium at the concentration range from 50 to 500 mg/kg. Such a quantitative relationship was also confirmed with a sandy loam spiked up to 1000 mg/kg of phenanthrene. This reporter bacterium may be a useful means to determine phenanthrene bioavailability in soil. Copyright © 2011 Elsevier B.V. All rights reserved.
Charbonneau, David M; Meddeb-Mouelhi, Fatma; Boissinot, Maurice; Sirois, Marc; Beauregard, Marc
2012-03-01
Ten thermophilic bacterial strains were isolated from manure compost. Phylogenetic analysis based on 16S rRNA genes and biochemical characterization allowed identification of four different species belonging to four genera: Geobacillus thermodenitrificans, Bacillus smithii, Ureibacillus suwonensis and Aneurinibacillus thermoaerophilus. PCR-RFLP profiles of the 16S-ITS-23S rRNA region allowed us to distinguish two subgroups among the G. thermodenitrificans isolates. Isolates were screened for thermotolerant hydrolytic activities (60-65°C). Thermotolerant lipolytic activities were detected for G. thermodenitrificans, A. thermoaerophilus and B. smithii. Thermotolerant protease, α-amylase and xylanase activities were also observed in the G. thermodenitrificans group. These species represent a source of potential novel thermostable enzymes for industrial applications.
76 FR 8603 - Citrus Seed Imports; Citrus Greening and Citrus Variegated Chlorosis
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... strain of the bacterium Xylella fastidiosa, CVC causes severe chlorosis between veins on the leaves of...\\ ARS researchers did note, however, that the bacterium causing HLB remained at a very low titer in... these 769 seedlings tested positive for the disease. However, titer levels of the bacterium were low...
USDA-ARS?s Scientific Manuscript database
Bacillus mojavensis is an endophytic bacterium patented for control of fungal diseases in maize and other plants. Culture extracts and filtrates from this bacterium were antagonistic to the pathogenic and mycotoxic fungus Fusarium verticillioides. However, the identity of the inhibitory substance ...
Brum, Felipe Lopes; Catta-Preta, Carolina Moura Costa; de Souza, Wanderley; Schenkman, Sergio; Elias, Maria Carolina; Motta, Maria Cristina Machado
2014-02-01
Strigomonas culicis (previously referred to as Blastocrithidia culicis) is a monoxenic trypanosomatid harboring a symbiotic bacterium, which maintains an obligatory relationship with the host protozoan. Investigations of the cell cycle in symbiont harboring trypanosomatids suggest that the bacterium divides in coordination with other host cell structures, particularly the nucleus. In this study we used light and electron microscopy followed by three-dimensional reconstruction to characterize the symbiont division during the cell cycle of S. culicis. We observed that during this process, the symbiotic bacterium presents different forms and is found at different positions in relationship to the host cell structures. At the G1/S phase of the protozoan cell cycle, the endosymbiont exhibits a constricted form that appears to elongate, resulting in the bacterium division, which occurs before kinetoplast and nucleus segregation. During cytokinesis, the symbionts are positioned close to each nucleus to ensure that each daughter cell will inherit a single copy of the bacterium. These observations indicated that the association of the bacterium with the protozoan nucleus coordinates the cell cycle in both organisms.
Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte
Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth
2013-01-01
Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270
Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dees, C.; Ringleberg, D.; Scott, T.C.
The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescensmore » with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.« less
Sun, Jinchun; Jin, Jinshan; Beger, Richard D.; Cerniglia, Carl E.; Yang, Maocheng; Chen, Huizhong
2017-01-01
The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the argininenitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine. PMID:27480511
Sun, Jinchun; Jin, Jinshan; Beger, Richard D; Cerniglia, Carl E; Yang, Maocheng; Chen, Huizhong
2016-10-01
The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the arginine-nitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine. Published by Elsevier Ltd.
Brehm, Sylvia P.; Welker, N. E.
1974-01-01
Phage TP-8 lysates of Bacillus stearothermophilus 4S or 4S(8) contain lytic activity exhibiting two pH optima, one at pH 6.5 and the other at pH 7.5. Using a variety of fractionation procedures, the two lytic activities could not be separated. At pH 7.5 the lytic enzyme is an endopeptidase which hydrolyzes the l-alanyl-d-glutamyl linkage in the peptide subunits of the cell wall peptidoglycan and at pH 6.5 it exhibits N-acetylmuramidase activity. Endopeptidase activity is inhibited by NaCl and neither lytic activity was significantly affected by divalent cations or ethylenediaminetetraacetic acid. Crude lysates contain 2.5 to 3.0 times more endopeptidase activity than N-acetylmuramidase activity. The ratio of the two lytic activities (endopeptidase/N-acetylmuramidase) changes to 1.3 to 1.7 during the course of purification, to 1.0 after isoelectric focusing, and 3.9 and 6.00 after exposure for 2 h at 60 and 65 C, respectively. We conclude that the two lytic activities may be associated with a single protein or a lytic enzyme complex composed of two enzymes. Lytic activity at pH 7.5 is more effective in solubilizing cells or cell walls than the lytic activity at pH 6.5. LiCl extracts of 4S and 4S(8) cells contain lytic activity exhibiting endopeptidase activity at pH 7.5 and N-acetylmuramidase activity at pH 6.5. Lytic activity in these LiCl extracts also has a number of other properties in common with those in lysates of phage TP-8. We proposed that the lytic enzyme(s) are not coded for by the phage genome but are part of the host autolytic system. PMID:4218232
Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
Heyne, R I; de Vrij, W; Crielaard, W; Konings, W N
1991-01-01
Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (Kt = 1.0 mM) and L-leucine (Kt = 0.4 mM). In contrast, the Na(+)-H(+)-L-glutamate transport system has a high affinity for sodium ions (Kt less than 5.5 microM). Lithium ions, but no other cations tested, can replace sodium ions in neutral amino acid transport. The stimulatory effect of monensin on the steady-state accumulation level of these amino acids and the absence of transport in the presence of nonactin indicate that these amino acids are translocated by a Na+ symport mechanism. This is confirmed by the observation that an artificial delta psi and delta mu Na+/F but not a delta pH can act as a driving force for uptake. The transport system for L-alanine is rather specific. L-Serine, but not L-glycine or other amino acids tested, was found to be a competitive inhibitor of L-alanine uptake. On the other hand, the transport carrier for L-leucine also translocates the amino acids L-isoleucine and L-valine. The initial rates of L-glutamate and L-alanine uptake are strongly dependent on the medium pH. The uptake rates of both amino acids are highest at low external pH (5.5 to 6.0) and decline with increasing pH. The pH allosterically affects the L-glutamate and L-alanine transport systems. The maximal rate of L-glutamate uptake (Vmax) is independent of the external pH between pH 5.5 and 8.5, whereas the affinity constant (Kt) increases with increasing pH. A specific transport system for the basic amino acids L-lysine and L-arginine in the membrane vesicles has also been observed. Transport of these amino acids occurs most likely by a uniport mechanism. PMID:1670936
Disinfection/sterilization of extracted teeth for dental student use.
Dominici, J T; Eleazer, P D; Clark, S J; Staat, R H; Scheetz, J P
2001-11-01
Extracted human teeth are used in many preclinical courses. While there has been no report of disease transmission with extracted teeth, sterilization of teeth used in the teaching laboratory should be a concern. The purpose of this study was to determine the effectiveness of different sterilization/disinfection methods of extracted human teeth using Bacillus stearothermophilus, a bacteria resistant to heat and frequently used to test sterilizers. In this study, 110 extracted molars with no carious lesions were collected and stored in buffered saline. An endodontic occlusal access preparation was cut into the pulp chamber of each tooth. Pulp tissue in the chamber was removed with a broach. Approximately 1 x 10(5) B. stearothermophilus endospores in culture medium were injected into the pulp chamber, sealed with Cavit G, and then placed in sterile saline for twelve hours. Ten teeth were placed into each of eleven groups. Seven groups were immersed for one week in one of the following solutions: a) sterile saline (control group), b) 5.25% NaOCl, c) 2.6% NaOCl, d) 1% NaOCl, e) 10% buffered formalin, f) 2% gluteraldehyde, g) 0.28% quaternary ammonium. Four additional groups were treated by h) 10% formalin for two days, i) 10% formalin for four days, j) autoclaving at 240 degrees F and 20 psi for twenty minutes, and k) autoclaving at 240 degrees F and twenty psi for forty minutes. Each tooth was then aseptically split and placed in an individual test tube with growth medium. Samples were examined for evidence of growth (turbidity) at forty-eight hours. Only autoclaving for forty minutes at 240 degrees F and 20 psi or soaking in 10 percent formalin for one week were 100 percent effective in preventing growth. A chi-square analysis of the data indicates these two methods were significantly better than all other methods (p<0.001).
The Glucuronic Acid Utilization Gene Cluster from Bacillus stearothermophilus T-6
Shulami, Smadar; Gat, Orit; Sonenshein, Abraham L.; Shoham, Yuval
1999-01-01
A λ-EMBL3 genomic library of Bacillus stearothermophilus T-6 was screened for hemicellulolytic activities, and five independent clones exhibiting β-xylosidase activity were isolated. The clones overlap each other and together represent a 23.5-kb chromosomal segment. The segment contains a cluster of xylan utilization genes, which are organized in at least three transcriptional units. These include the gene for the extracellular xylanase, xylanase T-6; part of an operon coding for an intracellular xylanase and a β-xylosidase; and a putative 15.5-kb-long transcriptional unit, consisting of 12 genes involved in the utilization of α-d-glucuronic acid (GlcUA). The first four genes in the potential GlcUA operon (orf1, -2, -3, and -4) code for a putative sugar transport system with characteristic components of the binding-protein-dependent transport systems. The most likely natural substrate for this transport system is aldotetraouronic acid [2-O-α-(4-O-methyl-α-d-glucuronosyl)-xylotriose] (MeGlcUAXyl3). The following two genes code for an intracellular α-glucuronidase (aguA) and a β-xylosidase (xynB). Five more genes (kdgK, kdgA, uxaC, uxuA, and uxuB) encode proteins that are homologous to enzymes involved in galacturonate and glucuronate catabolism. The gene cluster also includes a potential regulatory gene, uxuR, the product of which resembles repressors of the GntR family. The apparent transcriptional start point of the cluster was determined by primer extension analysis and is located 349 bp from the initial ATG codon. The potential operator site is a perfect 12-bp inverted repeat located downstream from the promoter between nucleotides +170 and +181. Gel retardation assays indicated that UxuR binds specifically to this sequence and that this binding is efficiently prevented in vitro by MeGlcUAXyl3, the most likely molecular inducer. PMID:10368143
Sára, Margit; Dekitsch, Christine; Mayer, Harald F.; Egelseer, Eva M.; Sleytr, Uwe B.
1998-01-01
The high-molecular-weight secondary cell wall polymer (SCWP) from Bacillus stearothermophilus PV72/p2 is mainly composed of N-acetylglucosamine (GlcNAc) and N-acetylmannosamine (ManNAc) and is involved in anchoring the S-layer protein via its N-terminal region to the rigid cell wall layer. In addition to this binding function, the SCWP was found to inhibit the formation of self-assembly products during dialysis of the guanidine hydrochloride (GHCl)-extracted S-layer protein. The degree of assembly (DA; percent assembled from total S-layer protein) that could be achieved strongly depended on the amount of SCWP added to the GHCl-extracted S-layer protein and decreased from 90 to 10% when the concentration of the SCWP was increased from 10 to 120 μg/mg of S-layer protein. The SCWP kept the S-layer protein in the water-soluble state and favored its recrystallization on solid supports such as poly-l-lysine-coated electron microscopy grids. Derived from the orientation of the base vectors of the oblique S-layer lattice, the subunits had bound with their charge-neutral outer face, leaving the N-terminal region with the polymer binding domain exposed to the ambient environment. From cell wall fragments about half of the S-layer protein could be extracted with 1 M GlcNAc, indicating that the linkage type between the S-layer protein and the SCWP could be related to that of the lectin-polysaccharide type. Interestingly, GlcNAc had an effect on the in vitro self-assembly and recrystallization properties of the S-layer protein that was similar to that of the isolated SCWP. The SCWP generally enhanced the stability of the S-layer protein against endoproteinase Glu-C attack and specifically protected a potential cleavage site in position 138 of the mature S-layer protein. PMID:9696762
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... use commercially available, freeze-dried marine bacterium, Vibrio fisheri, NRRL B-11177, for experimental use at the Crary Science and Engineering Center (CSEC) at McMurdo Station. This bacterium is used... bacterium is used with a reconstituting reagent to determine toxicity levels. All laboratory plastic-ware...
Vermaas, Willem F J.
2014-06-17
Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-28
... available, freeze- dried marine bacterium, Vibrio fisher, NRRL B-11177, for experimental use at the McMurdo Station Crary Science and Engineering Center (CSEC). This bacterium is used as one of the reagents for the Microtox toxicity analyzer, Azur Environmental model 500, 0073486. The bacterium are used with a...
Draft Genome Sequence of the Cellulolytic Bacterium Clostridium papyrosolvens C7 (ATCC 700395).
Zepeda, Veronica; Dassa, Bareket; Borovok, Ilya; Lamed, Raphael; Bayer, Edward A; Cate, Jamie H D
2013-09-12
We report the draft genome sequence of the cellulose-degrading bacterium Clostridium papyrosolvens C7, originally isolated from mud collected below a freshwater pond in Massachusetts. This Gram-positive bacterium grows in a mesophilic anaerobic environment with filter paper as the only carbon source, and it has a simple cellulosome system with multiple carbohydrate-degrading enzymes.
Draft Genome Sequence of the Cellulolytic Bacterium Clostridium papyrosolvens C7 (ATCC 700395)
Zepeda, Veronica; Dassa, Bareket; Borovok, Ilya; Lamed, Raphael; Bayer, Edward A.
2013-01-01
We report the draft genome sequence of the cellulose-degrading bacterium Clostridium papyrosolvens C7, originally isolated from mud collected below a freshwater pond in Massachusetts. This Gram-positive bacterium grows in a mesophilic anaerobic environment with filter paper as the only carbon source, and it has a simple cellulosome system with multiple carbohydrate-degrading enzymes. PMID:24029755
Oxidation of Ethylene Glycol by a Salt-Requiring Bacterium
Caskey, William H.; Taber, Willard A.
1981-01-01
Bacterium T-52, cultured on ethylene glycol, readily oxidized glycolate and glyoxylate and exhibited elevated activities of ethylene glycol dehydrogenase and glycolate oxidase. Labeled glyoxylate was identified in reaction mixtures containing [14C]-ethylene glycol, but no glycolate was detected. The most likely pathway of ethylene glycol catabolism by bacterium T-52 is sequential oxidation to glycolate and glyoxylate. PMID:16345810
Dassa, Bareket; Utturkar, Sagar M.; Hurt, Richard A.; ...
2015-09-24
We report the single-contig genome sequence of the anaerobic, mesophilic, cellulolytic bacterium, Bacteroides cellulosolvens. The bacterium produces a particularly elaborate cellulosome system, whereas the types of cohesin-dockerin interactions are opposite of other known cellulosome systems: cell-surface attachment is thus mediated via type-I interactions whereas enzymes are integrated via type-II interactions.
Biomolecular Architectures Molecular Biology
2013-08-31
when the Salmonella beacon (13 nM) was tested in the presence of 800 ng bacterial genomic DNA in chicken broth (33%) (data not shown). Since it was...bacterium, Bacillus thuringiensis, transgenic tobacco containing the transgene, Bt cry1Ac, the Gram-negative bacterium, Salmonella Typhimurium, and the Gram... Salmonella Typhimurium, and the Gram-positive bacterium, Listeria monocytogenes, were monitored for detection by coupling molecular beacon (MB
Fraiberg, Milana; Borovok, Ilya; Bayer, Edward A.; Weiner, Ronald M.; Lamed, Raphael
2011-01-01
The complex polysaccharide-degrading marine bacterium Saccharophagus degradans strain 2-40 produces putative proteins that contain numerous cadherin and cadherin-like domains involved in intercellular contact interactions. The current study reveals that both domain types exhibit reversible calcium-dependent binding to different complex polysaccharides which serve as growth substrates for the bacterium. PMID:21036994
Insect symbiotic bacteria harbour viral pathogens for transovarial transmission.
Jia, Dongsheng; Mao, Qianzhuo; Chen, Yong; Liu, Yuyan; Chen, Qian; Wu, Wei; Zhang, Xiaofeng; Chen, Hongyan; Li, Yi; Wei, Taiyun
2017-03-06
Many insects, including mosquitoes, planthoppers, aphids and leafhoppers, are the hosts of bacterial symbionts and the vectors for transmitting viral pathogens 1-3 . In general, symbiotic bacteria can indirectly affect viral transmission by enhancing immunity and resistance to viruses in insects 3-5 . Whether symbiotic bacteria can directly interact with the virus and mediate its transmission has been unknown. Here, we show that an insect symbiotic bacterium directly harbours a viral pathogen and mediates its transovarial transmission to offspring. We observe rice dwarf virus (a plant reovirus) binding to the envelopes of the bacterium Sulcia, a common obligate symbiont of leafhoppers 6-8 , allowing the virus to exploit the ancient oocyte entry path of Sulcia in rice leafhopper vectors. Such virus-bacterium binding is mediated by the specific interaction of the viral capsid protein and the Sulcia outer membrane protein. Treatment with antibiotics or antibodies against Sulcia outer membrane protein interferes with this interaction and strongly prevents viral transmission to insect offspring. This newly discovered virus-bacterium interaction represents the first evidence that a viral pathogen can directly exploit a symbiotic bacterium for its transmission. We believe that such a model of virus-bacterium communication is a common phenomenon in nature.
Li, Chunyan; Yue, Zhenlei; Feng, Fengzhao; Xi, Chuanwu; Zang, Hailian; An, Xuejiao; Liu, Keran
2016-10-01
There is a great need for efficient acetonitrile removal technology in wastewater treatment to reduce the discharge of this pollutant in untreated wastewater. In this study, a nitrilase gene (nit) isolated from a nitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was cloned and transformed into a biofilm-forming bacterium (Bacillus subtilis N4) that expressed the recombinant protein upon isopropylthio-β-galactoside (IPTG) induction. The recombinant bacterium (B. subtilis N4-pHT01-nit) formed strong biofilms and had nitrile-degrading capability. Further testing demonstrated that biofilms formed by B. subtilis N4-pHT01-nit were highly resistant to loading shock from acetonitrile and almost completely degraded the initial concentration of acetonitrile (800 mg L(-1)) within 24 h in a moving bed biofilm reactor (MBBR) after operation for 35 d. The bacterial composition of the biofilm, identified by high-throughput sequencing, in a reactor in which the B. subtilis N4-pHT01-nit bacterium was introduced indicated that the engineered bacterium was successfully immobilized in the reactor and became dominant genus. This work demonstrates that an engineered bacterium with nitrile-degrading and biofilm-forming capacity can improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing the biological oxidation of toxic pollutants in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of oxygen radicals in low-pressure surface-wave plasma on sterilization
NASA Astrophysics Data System (ADS)
Nagatsu, Masaaki; Terashita, Fumie; Nonaka, Hiroyuki; Xu, Lei; Nagata, Toshi; Koide, Yukio
2005-05-01
The effects of oxygen radicals on sterilization were studied using a 2.45GHz surface-wave oxygen plasma. A population of 1.5×106 Bacillus stearothermophilus spores was irradiated for 3min or more with oxygen plasma, generated at pressures between 6 and 14Pa. The decimal reduction value (D value), a measure of the effectiveness of sterilization, was determined to be about 15-25s. Using only oxygen radicals, excluding all charged particles, the 1.5×106 spores were sterilized with a D value of 30-45s after 5min or more of irradiation. On scanning electron microscopy, the length and width of the spores changed significantly due to chemical etching by oxygen radicals.
NASA Astrophysics Data System (ADS)
Delboni, L. F.; Iulek, J.; Burger, R.; da Silva, A. C. R.; Moreno, A.
2002-02-01
The expression, purification, crystallization, and characterization by X-ray diffraction of α-amylase are described here. Dynamic and static light scattering methods with a temperature controller was used to optimize the crystallization conditions of α-amylase from Bacillus stearothermophilus an important enzyme in many fields of industrial activity. After applying thermal gradients for growing crystals, X-ray cryo-crystallographic methods were employed for the data collection. Crystals grown by these thermal-gradients diffracted up to a maximum resolution of 3.8 Å, which allowed the determination of the unit cell constants as follows: a=61.7 Å, b=86.7 Å, c=92.2 Å and space group C222 (or C222 1).
Evaluation of cellulose-binding domain fused to a lipase for the lipase immobilization.
Hwang, Sangpill; Ahn, Jungoh; Lee, Sumin; Lee, Tai Gyu; Haam, Seungjoo; Lee, Kangtaek; Ahn, Ik-Sung; Jung, Joon-Ki
2004-04-01
A cellulose-binding domain (CBD) fragment of a cellulase gene of Trichoderma hazianum was fused to a lipase gene of Bacillus stearothermophilus L1 to make a gene cluster for CBD-BSL lipase. The specific activity of CBD-BSL lipase for oil hydrolysis increased by 33% after being immobilized on Avicel (microcrystalline cellulose), whereas those of CBD-BSL lipase and BSL lipase decreased by 16% and 54%, respectively, after being immobilized on silica gel. Although the loss of activity of an enzyme immobilized by adsorption has been reported previously, the loss of activity of the CBD-BSL lipase immobilized on Avicel was less than 3% after 12 h due to the irreversible binding of CBD to Avicel.
Pennacchio, Angela; Giordano, Assunta; Esposito, Luciana; Langella, Emma; Rossi, Mosè; Raia, Carlo A
2010-04-01
The stereochemistry of the hydride transfer in reactions catalyzed by NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus HB27 was determined by means of (1)H-NMR spectroscopy. The enzyme transfers the pro-S hydrogen of [4R-(2)H]NADH and exhibits Prelog specificity. Enzyme-substrate docking calculations provided structural details about the enantioselectivity of this thermophilic enzyme. These results give additional insights into the diverse active site architectures of the largely versatile short-chain dehydrogenase superfamily enzymes. A feasible protocol for the synthesis of [4R-(2)H]NADH with high yield was also set up by enzymatic oxidation of 2-propanol-d(8) catalyzed by Bacillus stearothermophilus alcohol dehydrogenase.
Lee, Sang-Jae; Lee, Yong-Jik; Park, Gun-Seok; Kim, Byoung-Chan; Lee, Sang Jun; Shin, Jae-Ho
2013-01-01
Caldanaerobacter yonseiensis is a strictly anaerobic, thermophilic, spore-forming bacterium, which was isolated from a geothermal hot stream in Indonesia. This bacterium utilizes xylose and produces a variety of proteases. Here, we report the draft genome sequence of C. yonseiensis, which reveals insights into the pentose phosphate pathway and protein degradation metabolism in thermophilic microorganisms. PMID:24201201
Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard
2013-01-01
We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682
Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard
2013-06-01
We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Gary; Dalin, Eileen; Tice, Hope
Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.
[Treatment of Flue Gas from Sludge Drying Process by A Thermophilic Biofilter].
Chen, Wen-he; Deng, Ming-jia; Luo, Hui; Ding, Wen-iie; Li, Lin; Lin, Jian; Liu, Jun-xin
2016-01-15
A thermophilic biofilter was employed to treat the flue gas generated from sludge drying process, and the performance in both the start period and the stationary phase was studied under the gas flow rate of 2 700-3 100 m3 x h(-1) and retention time of 21.88-25.10 s. The results showed that the thermophilic biofilter could effectively treat gases containing sulfur dioxide, ammonia and volatile organic compounds (VOC). The removal efficiencies could reach 100%, 93.61% and 87.01%, respectively. Microbial analysis indicated that most of the population belonged to thermophilic bacteria. Paenibacillus sp., Chelatococcus sp., Bacillus sp., Clostridium thermosuccinogenes, Pseudoxanthomonas sp. and Geobacillus debilis which were abundant in the thermophilic biofilter, had the abilities of denitrification, desulfurization and degradation of volatile organic compounds.
Kucera, Dan; Pernicová, Iva; Kovalcik, Adriana; Koller, Martin; Mullerova, Lucie; Sedlacek, Petr; Mravec, Filip; Nebesarova, Jana; Kalina, Michal; Marova, Ivana; Krzyzanek, Vladislav; Obruca, Stanislav
2018-05-01
This work explores molecular, morphological as well as biotechnological features of the highly promising polyhydroxyalkanoates (PHA) producer Halomonas halophila. Unlike many other halophiles, this bacterium does not require expensive complex media components and it is capable to accumulate high intracellular poly(3-hydroxybutyrate) (PHB) fractions up to 82% of cell dry mass. Most remarkably, regulating the concentration of NaCl apart from PHB yields influences also the polymer's molecular mass and polydispersity. The bacterium metabolizes various carbohydrates including sugars predominant in lignocelluloses and other inexpensive substrates. Therefore, the bacterium was employed for PHB production on hydrolysates of cheese whey, spent coffee grounds, sawdust and corn stover, which were hydrolyzed by HCl; required salinity of cultivation media was set up during neutralization by NaOH. The bacterium was capable to use all the tested hydrolysates as well as sugar beet molasses for PHB biosynthesis, indicating its potential for industrial PHB production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Direct measurement of interaction forces between a single bacterium and a flat plate.
Klein, Jonah D; Clapp, Aaron R; Dickinson, Richard B
2003-05-15
A technique for precisely measuring the equilibrium and viscous interaction forces between a single bacterium and a flat surface as functions of separation distance is described. A single-beam gradient optical trap was used to micromanipulate the bacterium against a flat surface while evanescent wave light scattering was used to measure separation distances. Calibrating the optical trap far from the surface allowed the trapped bacterium to be used as a force probe. Equilibrium force-distance profiles were determined by measuring the deflection of the cell from the center of the optical trap at various trap positions. Simultaneously, viscous forces were determined by measuring the relaxation time for the fluctuating bacterium. Absolute distances were determined using a best-fit approximation to the theoretical prediction for the hindered mobility of a diffusing sphere near a wall. Using this approach, forces in the range from 0.01 to 4 pN were measured at near-nanometer resolution between Staphylococcus aureus and glass that was bare or coated with adsorbed protein.
Kikuchi, Yo; Umekage, So
2018-02-01
Extracellular nucleic acids of high molecular weight are detected ubiquitously in seawater. Recent studies have indicated that these nucleic acids are, at least in part, derived from active production by some bacteria. The marine bacterium Rhodovulum sulfidophilum is one of those bacteria. Rhodovulumsulfidophilum is a non-sulfur phototrophic marine bacterium that is known to form structured communities of cells called flocs, and to produce extracellular nucleic acids in culture media. Recently, it has been revealed that this bacterium produces gene transfer agent-like particles and that this particle production may be related to the extracellular nucleic acid production mechanism. This review provides a summary of recent physiological and genetic studies of these phenomena and also introduces a new method for extracellular production of artificial and biologically functional RNAs using this bacterium. In addition, artificial RNA production using Escherichia coli, which is related to this topic, will also be described. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
El Kafsi, Hela; Binesse, Johan; Loux, Valentin; Buratti, Julien; Boudebbouze, Samira; Dervyn, Rozenn; Hammani, Amal; Maguin, Emmanuelle; van de Guchte, Maarten
2014-07-17
Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain. Copyright © 2014 El Kafsi et al.
Tan, Li; Grewal, Parwinder S.
2001-01-01
Moraxella osloensis, a gram-negative bacterium, is associated with Phasmarhabditis hermaphrodita, a nematode parasite of slugs. This bacterium-feeding nematode has potential for the biological control of slugs, especially the grey garden slug, Deroceras reticulatum. Infective juveniles of P. hermaphrodita invade the shell cavity of the slug, develop into self-fertilizing hermaphrodites, and produce progeny, resulting in host death. However, the role of the associated bacterium in the pathogenicity of the nematode to the slug is unknown. We discovered that M. osloensis alone is pathogenic to D. reticulatum after injection into the shell cavity or hemocoel of the slug. The bacteria from 60-h cultures were more pathogenic than the bacteria from 40-h cultures, as indicated by the higher and more rapid mortality of the slugs injected with the former. Coinjection of penicillin and streptomycin with the 60-h bacterial culture reduced its pathogenicity to the slug. Further work suggested that the reduction and loss of pathogenicity of the aged infective juveniles of P. hermaphrodita to D. reticulatum result from the loss of M. osloensis from the aged nematodes. Also, axenic J1/J2 nematodes were nonpathogenic after injection into the shell cavity. Therefore, we conclude that the bacterium is the sole killing agent of D. reticulatum in the nematode-bacterium complex and that P. hermaphrodita acts only as a vector to transport the bacterium into the shell cavity of the slug. The identification of the toxic metabolites produced by M. osloensis is being pursued. PMID:11679319
Tan, L; Grewal, P S
2001-11-01
Moraxella osloensis, a gram-negative bacterium, is associated with Phasmarhabditis hermaphrodita, a nematode parasite of slugs. This bacterium-feeding nematode has potential for the biological control of slugs, especially the grey garden slug, Deroceras reticulatum. Infective juveniles of P. hermaphrodita invade the shell cavity of the slug, develop into self-fertilizing hermaphrodites, and produce progeny, resulting in host death. However, the role of the associated bacterium in the pathogenicity of the nematode to the slug is unknown. We discovered that M. osloensis alone is pathogenic to D. reticulatum after injection into the shell cavity or hemocoel of the slug. The bacteria from 60-h cultures were more pathogenic than the bacteria from 40-h cultures, as indicated by the higher and more rapid mortality of the slugs injected with the former. Coinjection of penicillin and streptomycin with the 60-h bacterial culture reduced its pathogenicity to the slug. Further work suggested that the reduction and loss of pathogenicity of the aged infective juveniles of P. hermaphrodita to D. reticulatum result from the loss of M. osloensis from the aged nematodes. Also, axenic J1/J2 nematodes were nonpathogenic after injection into the shell cavity. Therefore, we conclude that the bacterium is the sole killing agent of D. reticulatum in the nematode-bacterium complex and that P. hermaphrodita acts only as a vector to transport the bacterium into the shell cavity of the slug. The identification of the toxic metabolites produced by M. osloensis is being pursued.
Yang, Gui-Di; Xie, Wan-Ying; Zhu, Xi; Huang, Yi; Yang, Xiao-Jun; Qiu, Zong-Qing; Lv, Zhen-Mao; Wang, Wen-Na; Lin, Wen-Xiong
2015-10-01
Arsenite [As (III)] oxidation can be accelerated by bacterial catalysis, but the effects of the accelerated oxidation on arsenic toxicity and translocation in rice plants are poorly understood. Herein we investigated how an arsenite-oxidizing bacterium, namely Brevibacillus laterosporus, influences As (III) toxicity and translocation in rice plants. Rice seedlings of four cultivars, namely Guangyou Ming 118 (GM), Teyou Hang II (TH), Shanyou 63 (SY) and Minghui 63 (MH), inoculated with or without the bacterium were grown hydroponically with As (III) to investigate its effects on arsenic toxicity and translocation in the plants. Percentages of As (III) oxidation in the solutions with the bacterium (100%) were all significantly higher than those without (30-72%). The addition of the bacterium significantly decreased As (III) concentrations in SY root, GM root and shoot, while increased the As (III) concentrations in the shoot of SY, MH and TH and in the root of MH. Furthermore, the As (III) concentrations in the root and shoot of SY were both the lowest among the treatments with the bacterium. On the other hand, its addition significantly alleviated the As (III) toxicity on four rice cultivars. Among the treatments amended with B. laterosporus, the bacterium showed the best remediation on SY seedlings, with respect to the subdued As (III) toxicity and decreased As (III) concentration in its roots. These results indicated that As (III) oxidation accelerated by B. laterosporus could be an effective method to alleviate As (III) toxicity on rice seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.
1982-08-01
002 I. - Nematode Studies I nt roduc t io n: Nematodes are multicellular animals that, like insects, have evolved to occupy nearly every biological...hoemocoel, the nematodes release an associated bacterium from their intestinal lumen into the hemolymph . The bacterium multiplies rapidly, causing a...with members of either the Neoaplectana or Heterothabditis. The relationship between the nematode and its associated bacterium, Xenorhabdus
Gkorezis, Panagiotis; Bottos, Eric M; Van Hamme, Jonathan D; Thijs, Sofie; Rineau, Francois; Franzetti, Andrea; Balseiro-Romero, Maria; Weyens, Nele; Vangronsveld, Jaco
2015-12-23
We report here the 4.7-Mb draft genome of Arthrobacter sp. SPG23, a hydrocarbonoclastic Gram-positive bacterium belonging to the Actinobacteria, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain SPG23 is a potent plant growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. Copyright © 2015 Gkorezis et al.
Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter; Vangronsveld, Jaco
2016-06-23
We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. Copyright © 2016 Gkorezis et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhee, Mun Su; Moritz, Brelan E.; Xie, Gary
Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strainmore » 36D1, is presented and discussed.« less
Methods for dispersing hydrocarbons using autoclaved bacteria
Tyndall, Richard L.
1996-01-01
A method of dispersing a hydrocarbon includes the steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; autoclaving the bacterium to derive a dispersant solution therefrom; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; and autoclaving the bacterium to derive a dispersant solution therefrom.
Methods for dispersing hydrocarbons using autoclaved bacteria
Tyndall, R.L.
1996-11-26
A method of dispersing a hydrocarbon includes the following steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; autoclaving the bacterium to derive a dispersant solution; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; and autoclaving the bacterium to derive a dispersant solution.
Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.
2011-01-01
Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583
[Study on anti-bacterium activity of ginkgolic acids and their momomers].
Yang, Xiaoming; Zhu, Wei; Chen, Jun; Qian, Zhiyu; Xie, Jimin
2004-09-01
Ginkgolic acids and their three monomers were separated from ginkgo sarcotestas. The anti-bacterium activity of ginkgolic acids were tested. The relation between the anti-bacterium activity and side chain of ginkgolic acid were studied. The MIC of ginkgolic acids and their three monomers and salicylic acid were tested. Ginkgolic acid has strong inhibitive effect on G+-bacterium. Salicylic acid has no side chain, so no anti-bacterial activity. When the length of gingkolic acid side chain is C13:0, it has the strongest anti-bacterial activity in three monomers. The side chain of ginkgolic acid is the key functional group that possessed anti-bacterial activity. The length of Ginkgolic acid was the main effective factor of anti-bacterial activity.
Code of Federal Regulations, 2011 CFR
2011-01-01
... sugarcane which is caused by the highly infectious bacterium, Xanthomonas vasculorum (Cobb) Dowson, and... infectious bacterium, Xanthomonas albilineans (Ashby) Dowson, and which is not widely prevalent or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... sugarcane which is caused by the highly infectious bacterium, Xanthomonas vasculorum (Cobb) Dowson, and... infectious bacterium, Xanthomonas albilineans (Ashby) Dowson, and which is not widely prevalent or...
Code of Federal Regulations, 2012 CFR
2012-01-01
... sugarcane which is caused by the highly infectious bacterium, Xanthomonas vasculorum (Cobb) Dowson, and... infectious bacterium, Xanthomonas albilineans (Ashby) Dowson, and which is not widely prevalent or...
21 CFR 866.3010 - Acinetobacter calcoaceticus serological reagents.
Code of Federal Regulations, 2011 CFR
2011-04-01
... this bacterium from cultured isolates derived from clinical specimens. The identification aids in the diagnosis of disease caused by the bacterium Acinetobacter calcoaceticus and provides epidemiological...
21 CFR 866.3010 - Acinetobacter calcoaceticus serological reagents.
Code of Federal Regulations, 2010 CFR
2010-04-01
... this bacterium from cultured isolates derived from clinical specimens. The identification aids in the diagnosis of disease caused by the bacterium Acinetobacter calcoaceticus and provides epidemiological...
Aragón-Sánchez, Javier; Lázaro-Martínez, Jose Luis; Hernández-Herrero, María José; Quintana-Marrero, Yurena; Cabrera-Galván, Juan J
2010-01-01
Coagulase-negative staphylococci are considered as microorganisms with little virulence and usually as contaminants. In order to establish the role of Staphylococcus epidermidis as a pathogen in diabetic foot osteomyelitis, in addition to the isolation of the sole bacterium from the bone it will be necessary to demonstrate the histopathological changes caused by the infection. A consecutive series of 222 diabetic patients with foot osteomyelitis treated surgically in the Diabetic Foot Unit at La Paloma Hospital (Las Palmas de Gran Canaria, Canary Islands, Spain) between 1 October 2002 and 31 October 2008. From the entire series including 213 bone cultures with 241 isolated organisms, we have analyzed only the 139 cases where Staphylococci were found. We analyzed several variables between the two groups: Staphylococcus aureus versus Staphylococcus epidermidis. Of the 134 patients included in this study, Staphlylococcus epidermidis was found as the sole bacterium isolated in 11 cases and accompanied by other bacteria in 12 cases. Staphlylococcus aureus was found as the sole bacterium isolated in 72 cases and accompanied by other bacteria in 39 cases. Histopathological changes were found in the cases of osteomyelitis where Staphylococcus epidermidis was the sole bacterium isolated. Acute osteomyelitis was found to a lesser extent when Staphylococcus epidermidis was the sole bacterium isolated but without significant differences with the cases where Staphylococcus aureus was the sole bacterium isolated. Staphylococcus epidermidis should be considered as a real pathogen, not only a contaminant, in diabetic patients with foot osteomyelitis when the bacterium is isolated from the bone. No differences in the outcomes of surgical treatment have been found with cases which Staphlylococcus aureus was isolated.
Aragón-Sánchez, Javier; Lázaro-Martínez, Jose Luis; Hernández-Herrero, María José; Quintana-Marrero, Yurena; Cabrera-Galván, Juan J.
2010-01-01
Introduction Coagulase-negative staphylococci are considered as microorganisms with little virulence and usually as contaminants. In order to establish the role of Staphylococcus epidermidis as a pathogen in diabetic foot osteomyelitis, in addition to the isolation of the sole bacterium from the bone it will be necessary to demonstrate the histopathological changes caused by the infection. Methods A consecutive series of 222 diabetic patients with foot osteomyelitis treated surgically in the Diabetic Foot Unit at La Paloma Hospital (Las Palmas de Gran Canaria, Canary Islands, Spain) between 1 October 2002 and 31 October 2008. From the entire series including 213 bone cultures with 241 isolated organisms, we have analyzed only the 139 cases where Staphylococci were found. We analyzed several variables between the two groups: Staphylococcus aureus versus Staphylococcus epidermidis. Results Of the 134 patients included in this study, Staphlylococcus epidermidis was found as the sole bacterium isolated in 11 cases and accompanied by other bacteria in 12 cases. Staphlylococcus aureus was found as the sole bacterium isolated in 72 cases and accompanied by other bacteria in 39 cases. Histopathological changes were found in the cases of osteomyelitis where Staphylococcus epidermidis was the sole bacterium isolated. Acute osteomyelitis was found to a lesser extent when Staphylococcus epidermidis was the sole bacterium isolated but without significant differences with the cases where Staphylococcus aureus was the sole bacterium isolated. Conclusion Staphylococcus epidermidis should be considered as a real pathogen, not only a contaminant, in diabetic patients with foot osteomyelitis when the bacterium is isolated from the bone. No differences in the outcomes of surgical treatment have been found with cases which Staphlylococcus aureus was isolated. PMID:22396808
Complete Genome Sequence of the p-Nitrophenol-Degrading Bacterium Pseudomonas putida DLL-E4
Hu, Xiaojun; Wang, Jue; Wang, Fei; Chen, Qiongzhen; Huang, Yan
2014-01-01
The first complete genome sequence of a p-nitrophenol (PNP)-degrading bacterium is reported here. Pseudomonas putida DLL-E4, a Gram-negative bacterium isolated from methyl-parathion-polluted soil, can utilize PNP as the sole carbon and nitrogen source. P. putida DLL-E4 has a 6,484,062 bp circular chromosome that contains 5,894 genes, with a G+C content of 62.46%. PMID:24948765
... is closely related to the bacterium that causes syphilis, but this form of the bacterium is not ... test for yaws. However, the blood test for syphilis is often positive in people with yaws because ...
Vibrio vulnificus: death on the half shell. A personal journey with the pathogen and its ecology.
Oliver, James D
2013-05-01
Vibrio vulnificus is an estuarine bacterium which occurs in high numbers in filter-feeding molluscan shellfish, such as oysters. In individuals with certain underlying diseases, ingestion of the bacterium, e.g., in raw or undercooked oysters, can lead to a rapid and extremely fatal infection. Indeed, this one bacterium is responsible for 95 % of all seafood-borne deaths. In addition, the bacterium is capable of entering a preexisting lesion or cut obtained during coastal recreational activities, resulting in potentially fatal wound infections. This brief review, which comprised a presentation made at the Gordon Research Conference on "Oceans and Human Health," reflects over 35 years of research on this bacterium in the author's laboratory. It describes some of the known virulence factors and why males account for ca 85 % of all V. vulnificus cases. It notes the two genotypes now known to exist and how this pathogen enters a dormant, "viable but nonculturable" state during the winter months. Finally, the review discusses how global warming may be causing worldwide increases in the frequency and geographical extent of Vibrio infections.
7 CFR 319.37-5 - Special foreign inspection and certification requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... necrosis agent. (xxxiv) Flavescence-doree agent. (xxxv) Black wood agent (bois-noir). (xxxvi) Grapevine infectious necrosis bacterium. (xxxvii) Grapevine yellows disease bacterium. (xxxviii) Xanthomonas ampelina...
7 CFR 319.37-5 - Special foreign inspection and certification requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... necrosis agent. (xxxiv) Flavescence-doree agent. (xxxv) Black wood agent (bois-noir). (xxxvi) Grapevine infectious necrosis bacterium. (xxxvii) Grapevine yellows disease bacterium. (xxxviii) Xanthomonas ampelina...
7 CFR 319.37-5 - Special foreign inspection and certification requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... necrosis agent. (xxxiv) Flavescence-doree agent. (xxxv) Black wood agent (bois-noir). (xxxvi) Grapevine infectious necrosis bacterium. (xxxvii) Grapevine yellows disease bacterium. (xxxviii) Xanthomonas ampelina...
Wong, P P; Stenberg, N E; Edgar, L
1980-03-01
A bacterium with the taxonomic characteristics of the genus Azospirillum was isolated from celluloytic N2-fixing mixed cultures. Its characteristics fit the descriptions of both Azopirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. It may be a variant strain of A. lipoferum. In mixed cultures with cellulolytic organisms, the bacterium grew and fixed N2 with cellelose as a sole source of energy and carbon. The mixed cultures used cellulose from leaves of wheat (Triticum aestivum L.), corn (Zea mays L.), and big bluestem grass (Andropogon gerardii Vitm). Microaerophilic N2-fixing bacteria of the genus Azospirillum, such as the bacterium we isolated, may be important contributors of fixed N2 in soil with partial anaerobiosis and cellulose decomposition.
Post-Translational Modification of Bionanoparticles as a Modular Platform for Biosensor Assembly.
Sun, Qing; Chen, Qi; Blackstock, Daniel; Chen, Wilfred
2015-08-25
Context driven biosensor assembly with modular targeting and detection moieties is gaining significant attentions. Although protein-based nanoparticles have emerged as an excellent platform for biosensor assembly, current strategies of decorating bionanoparticles with targeting and detection moieties often suffer from unfavorable spacing and orientation as well as bionanoparticle aggregation. Herein, we report a highly modular post-translational modification approach for biosensor assembly based on sortase A-mediated ligation. This approach enables the simultaneous modifications of the Bacillus stearothermophilus E2 nanoparticles with different functional moieties for antibody, enzyme, DNA aptamer, and dye decoration. The resulting easy-purification platform offers a high degree of targeting and detection modularity with signal amplification. This flexibility is demonstrated for the detection of both immobilized antigens and cancer cells.
Effects of oxygen radicals in low-pressure surface-wave plasma on sterilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagatsu, Masaaki; Terashita, Fumie; Nonaka, Hiroyuki
2005-05-23
The effects of oxygen radicals on sterilization were studied using a 2.45 GHz surface-wave oxygen plasma. A population of 1.5x10{sup 6} Bacillus stearothermophilus spores was irradiated for 3 min or more with oxygen plasma, generated at pressures between 6 and 14 Pa. The decimal reduction value (D value), a measure of the effectiveness of sterilization, was determined to be about 15-25 s. Using only oxygen radicals, excluding all charged particles, the 1.5x10{sup 6} spores were sterilized with a D value of 30-45 s after 5 min or more of irradiation. On scanning electron microscopy, the length and width of themore » spores changed significantly due to chemical etching by oxygen radicals.« less
Ethanologenic bacteria with increased resistance to furfural
Miller, Elliot Norman; Jarboe, Laura R.; Yomano, Lorraine P.; York, Sean W.; Shanmugam, Keelnatham; Ingram, Lonnie O'Neal
2015-10-06
The invention relates to bacterium that have increased resistance to furfural and methods of preparation. The invention also relates to methods of producing ethanol using the bacterium and corresponding kits.
2005-02-01
vector contained the ampicillin resistance gene , only transformed colonies should grow on the plates and since the inserted DNA should have knocked...flava 340 209 203 69 2422 Nitrogen-fixing bacterium MI753 340 209 203 69 2571 Pseudomonas spinosa 340 209 203 217 2458 Xylophilus ampelinus 340 209...277 203 198 2767 Unidentified bacterium 340 277 203 198 2674 Type 0803 filamentous bacterium 340 277 203 198 2581 Xylophilus ampelinus 340 209 203 217
Holst, Helle; Hartmann-Petersen, Susanna; Dargis, Rimtas; Andresen, Keld; Christensen, Jens Jørgen; Kemp, Michael
2007-05-28
Chancroid is caused by the bacterium Haemophilus ducreyi. It is a sexually transmitted disease causing a soft chancre with a necrotic base and purulent exudate. The incidence of this illness is very low in Denmark and is probably underestimated. The bacterium is very fragile in transport, and culture is often negative. The chance of demonstrating the bacterium is greatly enhanced by the use of molecular techniques. In this case, we report on a specific PCR test for H. ducreyi that was used to establish the diagnosis in a 40-year-old male.
Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi
2016-05-10
Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Strambini, G B; Gabellieri, E; Gonnelli, M; Rahuel-Clermont, S; Branlant, G
1998-01-01
Tyrosine is known to quench the phosphorescence of free tryptophan derivatives in solution, but the interaction between tryptophan residues in proteins and neighboring tyrosine side chains has not yet been demonstrated. This report examines the potential role of Y283 in quenching the phosphorescence emission of W310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus by comparing the phosphorescence characteristics of the wild-type enzyme to that of appositely designed mutants in which either the second tryptophan residue, W84, is replaced with phenylalanine or Y283 is replaced by valine. Phosphorescence spectra and lifetimes in polyol/buffer low-temperature glasses demonstrate that W310, in both wild-type and W84F (Trp84-->Phe) mutant proteins, is already quenched in viscous low-temperature solutions, before the onset of major structural fluctuations in the macromolecule, an anomalous quenching that is abolished with the mutation Y283V (Tyr283-->Val). In buffer at ambient temperature, the effect of replacing Y283 with valine on the phosphorescence of W310 is to lengthen its lifetime from 50 micros to 2.5 ms, a 50-fold enhancement that again emphasizes how W310 emission is dominated by the local interaction with Y283. Tyr quenching of W310 exhibits a strong temperature dependence, with a rate constant kq = 0.1 s(-1) at 140 K and 2 x 10(4) s(-1) at 293 K. Comparison between thermal quenching profiles of the W84F mutant in solution and in the dry state, where protein flexibility is drastically reduced, shows that the activation energy of the quenching reaction is rather small, Ea < or = 0.17 kcal mol(-1), and that, on the contrary, structural fluctuations play an important role on the effectiveness of Tyr quenching. Various putative quenching mechanisms are examined, and the conclusion, based on the present results as well as on the phosphorescence characteristics of other protein systems, is that Tyr quenching occurs through the formation of an excited-state triplet exciplex. PMID:9635769
Panchal, Mitesh B; Upadhyay, Sanjay H
2014-09-01
In this study, the feasibility of single walled boron nitride nanotube (SWBNNT)-based biosensors has been ensured considering the continuum modelling-based simulation approach, for mass-based detection of various bacterium/viruses. Various types of bacterium or viruses have been taken into consideration at the free-end of the cantilevered configuration of the SWBNNT, as a biosensor. Resonant frequency shift-based analysis has been performed with the adsorption of various bacterium/viruses considered as additional mass to the SWBNNT-based sensor system. The continuum mechanics-based analytical approach, considering effective wall thickness has been considered to validate the finite element method (FEM)-based simulation results, based on continuum volume-based modelling of the SWBNNT. As a systematic analysis approach, the FEM-based simulation results are found in excellent agreement with the analytical results, to analyse the SWBNNTs for their wide range of applications such as nanoresonators, biosensors, gas-sensors, transducers and so on. The obtained results suggest that by using the SWBNNT of smaller size the sensitivity of the sensor system can be enhanced and detection of the bacterium/virus having mass of 4.28 × 10⁻²⁴ kg can be effectively performed.
[Partial biological characteristics and algicidal activity of an algicidal bacterium].
Li, San-Hua; Zhang, Qi-Ya
2013-02-01
An algicidal bacterium was isolated from freshwater (Lake Donghu in Wuhan) and coded as A01. The morphology of the algicidal bacterium was observed using optical microscope and electron microscopes, the results showed that A01 was rod-shaped, approximately 1.5 microm in length and 0.45 microm in width and with no flagella structure. A01 was Gram-negative and belongs to the family Acinetobacter sp. though identification by Gram's staining and 16S rDNA gene analysis. A01 exhibited strong algicidal activity on the bloom-forming cyanobacterium Anabaena eucompacta under laboratory conditions. The removal rate of chlorophyll a after 7-day incubation with the culture supernatant of A01 and thalli were 77% and 61%, respectively. Microscopic observation showed that almost all cyanobacterial cells were destroyed within 3 d of co-incubation with the supernatant of algicidal bacterium, but a mass of the cyanobacterial cell lysis was observed only after 5 d of co-incubation with the thalli of algicidal bacterium. These results indicated that the main algicidal component of A01 was in its culture supernatant. In other words, the strain A01 could secrete algicidal component against Anabaena eucompacta.
Zhilina, T N; Zavarzina, D G; Kolganova, T V; Turova, T P; Zavarzin, G A
2005-01-01
From the silty sediments of the Khadyn soda lake (Tuva), a binary sulfidogenic bacterial association capable of syntrophic acetate oxidation at pH 10.0 was isolated. An obligately syntrophic, gram-positive, spore-forming alkaliphilic rod-shaped bacterium performs acetate oxidation in a syntrophic association with a hydrogenotrophic, alkaliphilic sulfate-reducing bacterium; the latter organism was previously isolated and characterized as the new species Desulfonatronum cooperativum. Other sulfate-reducing bacteria of the genera Desulfonatronum and Desulfonatronovibrio can also act as the hydrogenotrophic partner. Apart from acetate, the syntrophic culture can oxidize ethanol, propanol, isopropanol, serine, fructose, and isobutyric acid. Selective amplification of 16S rRNA gene fragments of the acetate-utilizing syntrophic component of the binary culture was performed; it was found to cluster with clones of uncultured gram-positive bacteria within the family Syntrophomonadaceae. The acetate-oxidizing bacterium is thus the first representative of this cluster obtained in a laboratory culture. Based on its phylogenetic position, the new acetate-oxidizing syntrophic bacterium is proposed to be assigned, in a Candidate status, to a new genus and species: "Candidatus Contubernalis alkalaceticum."
... aerobic spore-forming bacterium that causes disease in humans and animals. The bacteria is found in two forms: cutaneous anthrax and inhalation anthrax. Cutaneous anthrax is an infection of the skin caused by direct contact with the bacterium. Inhalation ...
Revival and Identification of Bacterial Spores in 25- to 40-Million-Year-Old Dominican Amber
NASA Astrophysics Data System (ADS)
Cano, Raul J.; Borucki, Monica K.
1995-05-01
A bacterial spore was revived, cultured, and identified from the abdominal contents of extinct bees preserved for 25 to 40 million years in buried Dominican amber. Rigorous surface decontamination of the amber and aseptic procedures were used during the recovery of the bacterium. Several lines of evidence indicated that the isolated bacterium was of ancient origin and not an extant contaminant. The characteristic enzymatic, biochemical, and 16S ribosomal DNA profiles indicated that the ancient bacterium is most closely related to extant Bacillus sphaericus.
Single Bacterium Detection Using Sers
NASA Astrophysics Data System (ADS)
Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.
2016-02-01
This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.
Isolation of Bartonella capreoli from elk
Bai, Y.; Cross, P.C.; Malania, L.; Kosoy, M.
2011-01-01
The aim of the present study was to investigate the presence of Bartonella infections in elk populations. We report the isolation of four Bartonella strains from 55 elk blood samples. Sequencing analysis demonstrated that all four strains belong to Bartonella capreoli, a bacterium that was originally described in the wild roe deer of Europe. Our finding first time demonstrated that B. capreoli has a wide geographic range, and that elk may be another host for this bacterium. Further investigations are needed to determine the impact of this bacterium on wildlife.
Description of a bacterium associated with redmouth disease of rainbow trout (Salmo gairdneri)
Ross, A.J.; Rucker, R.R.; Ewing, W.H.
1966-01-01
A description was given of a gram-negative, peritrichously flagellated, fermentative bacterium that was isolated on numerous occasions from kidney tissues of rainbow trout (Salmo gairdneri) afflicted with redmouth disease. Although the bacteria apparently were members of the family Enterobacteriaceae, it was impossible to determine their taxonomic position within the family with certainty. Hence it was recommended that their taxonomic position remain sub judice for the present. As a temporary designation RM bacterium was used. Redmouth disease was transmitted from infected to normal fish through the medium of water.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
..., the false spider mite Tenuipalpus punicae, and the bacterium Xanthomonas axonopodis pv. punicae; If... spider mite Tenuipalpus punicae, and the bacterium Xanthomonas axonopodis pv. punicae; and The fresh...