Sample records for bacterium zymomonas mobilis

  1. Isolation of noninhibitory strains of Zymomonas mobilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haffie, T.L.; Louie, P.W.; Khachatourians, G.G.

    1985-04-01

    Wild-type Zymomonas mobilis strains inhibit the growth of Escherichia coli. The authors report the first isolation of noninhibitory strains, called Zymomonas inhibition negative (Zin/sup -/), after treatment with N-methyl-N'-nitro-N-nitrosoguanidine. A standardized soft-agar overlay procedure for detecting E. coli growth inhibition was also developed.

  2. Can Zymomonas mobilis Substitute Saccharomyces cerevisiae in Cereal Dough Leavening?

    PubMed Central

    Musatti, Alida; Mapelli, Chiara

    2018-01-01

    Baker’s yeast intolerance is rising among Western populations, where Saccharomyces cerevisiae is spread in fermented food and food components. Zymomonas mobilis is a bacterium commonly used in tropical areas to produce alcoholic beverages, and it has only rarely been considered for dough leavening probably because it only ferments glucose, fructose and sucrose, which are scarcely present in flour. However, through alcoholic fermentation, similarly to S. cerevisiae, it provides an equimolar mixture of ethanol and CO2 that can rise a dough. Here, we propose Z. mobilis as a new leavening agent, as an alternative to S. cerevisiae, overcoming its technological limit with different strategies: (1) adding glucose to the dough formulation; and (2) exploiting the maltose hydrolytic activity of Lactobacillus sanfranciscensis associated with Z. mobilis. CO2 production, dough volume increase, pH value, microbial counts, sugars consumption and ethanol production were monitored. Results suggest that glucose addition to the dough lets Z. mobilis efficiently leaven a dough, while glucose released by L. sanfranciscensis is not so well fermented by Z. mobilis, probably due to the strong acidification. Nevertheless, the use of Z. mobilis as a leavening agent could contribute to increasing the variety of baked goods alternative to those leavened by S. cerevisiae. PMID:29659515

  3. Recombinant Zymomonas mobilis with improved xylose utilization

    DOEpatents

    Zhang, Min

    2003-05-20

    A strain derived from Zymomonas mobilis ATCC31821 or its derivative capable of producing ethanol upon fermentation of a carbohydrate medium containing xylose to provide enhanced xylose utilization and enhanced ethanol process yield, the strain or its derivative comprising exogenous genes encoding xylose isornerase, xylulokinase, transaldolase and transketolase, the genes are fused to at least one promotor recognized by Zymomonas which regulates the expression of at least one of the genes.

  4. N 2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis

    DOE PAGES

    Kremer, Timothy A.; LaSarre, Breah; Posto, Amanda L.; ...

    2015-02-02

    A nascent cellulosic ethanol industry is struggling to become cost-competitive against corn ethanol and gasoline. Millions of dollars are spent on nitrogen supplements to make up for the low nitrogen content of the cellulosic feedstock. In this paper, we show for the first time to our knowledge that the ethanol-producing bacterium, Zymomonas mobilis, can use N 2 gas in lieu of traditional nitrogen supplements. Despite being an electron-intensive process, N 2 fixation by Z. mobilis did not divert electrons away from ethanol production, as the ethanol yield was greater than 97% of the theoretical maximum. In a defined medium, Z.more » mobilis produced ethanol 50% faster per cell and generated half the unwanted biomass when supplied N 2 instead of ammonium. In a cellulosic feedstock-derived medium, Z. mobilis achieved a similar cell density and a slightly higher ethanol yield when supplied N 2 instead of the industrial nitrogen supplement, corn steep liquor. Finally, we estimate that N 2-utilizing Z. mobilis could save a cellulosic ethanol production facility more than $1 million/y.« less

  5. N2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis

    PubMed Central

    Kremer, Timothy A.; LaSarre, Breah; Posto, Amanda L.; McKinlay, James B.

    2015-01-01

    A nascent cellulosic ethanol industry is struggling to become cost-competitive against corn ethanol and gasoline. Millions of dollars are spent on nitrogen supplements to make up for the low nitrogen content of the cellulosic feedstock. Here we show for the first time to our knowledge that the ethanol-producing bacterium, Zymomonas mobilis, can use N2 gas in lieu of traditional nitrogen supplements. Despite being an electron-intensive process, N2 fixation by Z. mobilis did not divert electrons away from ethanol production, as the ethanol yield was greater than 97% of the theoretical maximum. In a defined medium, Z. mobilis produced ethanol 50% faster per cell and generated half the unwanted biomass when supplied N2 instead of ammonium. In a cellulosic feedstock-derived medium, Z. mobilis achieved a similar cell density and a slightly higher ethanol yield when supplied N2 instead of the industrial nitrogen supplement, corn steep liquor. We estimate that N2-utilizing Z. mobilis could save a cellulosic ethanol production facility more than $1 million/y. PMID:25646422

  6. Continuous production of ethanol with Zymomonas mobilis growing on Jerusalem artichoke juice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allais, J.J.; Torres, E.F.; Baratti, J.

    1987-04-01

    Recent work from the authors laboratory has shown that, compared to yeasts, much higher ethanol productivity and yield can be obtained in batch or continuous cultures using the bacterium Zymomonas mobilis grown on fructose media. In batch culture, hydrolyzed Jerusalem artichoke juice with sugar concentrations ranging from 100 to 250 g/L can be converted efficiently to ethanol. The present work describes the conversion of the hydrolyzed juice to ethanol in continuous culture. The extraction and enzymatic hydrolysis of inulin from the tubers of Jerusalem artichoke is also reported.

  7. Continuous production of ethanol by use of flocculent zymomonas mobilis

    DOEpatents

    Arcuri, Edward J.; Donaldson, Terrence L.

    1983-01-01

    Ethanol is produced by means of a floc-forming strain of Zymomonas mobilis bacteria. Gas is vented along the length of a column containing the flocculent bacteria to preclude disruption of liquid flow.

  8. Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4.

    PubMed

    Cao, Qing-Hua; Shao, Huan-Huan; Qiu, Hui; Li, Tao; Zhang, Yi-Zheng; Tan, Xue-Mei

    2017-03-01

    The CRISPR/Cas system can be used to simply and efficiently edit the genomes of various species, including animals, plants, and microbes. Zymomonas mobilis ZM4 is a highly efficient, ethanol-producing bacterium that contains five native plasmids. Here, we constructed the pSUZM2a-Cas9 plasmid and a single-guide RNA expression plasmid. The pSUZM2a-Cas9 plasmid was used to express the Cas9 gene cloned from Streptococcus pyogenes CICC 10464. The single-guide RNA expression plasmid pUC-T7sgRNA, with a T7 promoter, can be used for the in vitro synthesis of single-guide RNAs. This system was successfully employed to knockout the upp gene of Escherichia coli and the replicase genes of native Z. mobilis plasmids. This is the first study to apply the CRISPR/Cas9 system of S. pyogenes to eliminate native plasmids in Z. mobilis. It provides a new method for plasmid curing and paves the way for the genomic engineering of Z. mobilis.

  9. Stable zymomonas mobilis xylose and arabinose fermenting strains

    DOEpatents

    Zhang, Min [Lakewood, CO; Chou, Yat-Chen [Taipei, TW

    2008-04-08

    The present invention briefly includes a transposon for stable insertion of foreign genes into a bacterial genome, comprising at least one operon having structural genes encoding enzymes selected from the group consisting of xylAxylB, araBAD and tal/tkt, and at least one promoter for expression of the structural genes in the bacterium, a pair of inverted insertion sequences, the operons contained inside the insertion sequences, and a transposase gene located outside of the insertion sequences. A plasmid shuttle vector for transformation of foreign genes into a bacterial genome, comprising at least one operon having structural genes encoding enzymes selected from the group consisting of xylAxylB, araBAD and tal/tkt, at least one promoter for expression of the structural genes in the bacterium, and at least two DNA fragments having homology with a gene in the bacterial genome to be transformed, is also provided.The transposon and shuttle vectors are useful in constructing significantly different Zymomonas mobilis strains, according to the present invention, which are useful in the conversion of the cellulose derived pentose sugars into fuels and chemicals, using traditional fermentation technology, because they are stable for expression in a non-selection medium.

  10. Transcriptome profiling of Zymomonas mobilis under furfural stress.

    PubMed

    He, Ming-xiong; Wu, Bo; Shui, Zong-xia; Hu, Qi-chun; Wang, Wen-guo; Tan, Fu-rong; Tang, Xiao-yu; Zhu, Qi-li; Pan, Ke; Li, Qing; Su, Xiao-hong

    2012-07-01

    Furfural from lignocellulosic hydrolysates is the prevalent inhibitor to microorganisms during cellulosic ethanol production, but the molecular mechanisms of tolerance to this inhibitor in Zymomonas mobilis are still unclear. In this study, genome-wide transcriptional responses to furfural were investigated in Z. mobilis using microarray analysis. We found that 433 genes were differentially expressed in response to furfural. Furfural up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. However, furfural has a subtle negative effect on Entner-Doudoroff pathway mRNAs. Our results revealed that furfural had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to furfural. This research has provided insights into the molecular response to furfural in Z. mobilis, and it will be helpful to construct more furfural-resistant strains for cellulosic ethanol production.

  11. Zymomonas mobilis: a novel platform for future biorefineries

    PubMed Central

    2014-01-01

    Biosynthesis of liquid fuels and biomass-based building block chemicals from microorganisms have been regarded as a competitive alternative route to traditional. Zymomonas mobilis possesses a number of desirable characteristics for its special Entner-Doudoroff pathway, which makes it an ideal platform for both metabolic engineering and commercial-scale production of desirable bio-products as the same as Escherichia coli and Saccharomyces cerevisiae based on consideration of future biomass biorefinery. Z. mobilis has been studied extensively on both fundamental and applied level, which will provide a basis for industrial biotechnology in the future. Furthermore, metabolic engineering of Z. mobilis for enhancing bio-ethanol production from biomass resources has been significantly promoted by different methods (i.e. mutagenesis, adaptive laboratory evolution, specific gene knock-out, and metabolic engineering). In addition, the feasibility of representative metabolites, i.e. sorbitol, bionic acid, levan, succinic acid, isobutanol, and isobutanol produced by Z. mobilis and the strategies for strain improvements are also discussed or highlighted in this paper. Moreover, this review will present some guidelines for future developments in the bio-based chemical production using Z. mobilis as a novel industrial platform for future biofineries. PMID:25024744

  12. Zymomonas mobilis: a novel platform for future biorefineries.

    PubMed

    He, Ming Xiong; Wu, Bo; Qin, Han; Ruan, Zhi Yong; Tan, Fu Rong; Wang, Jing Li; Shui, Zong Xia; Dai, Li Chun; Zhu, Qi Li; Pan, Ke; Tang, Xiao Yu; Wang, Wen Guo; Hu, Qi Chun

    2014-01-01

    Biosynthesis of liquid fuels and biomass-based building block chemicals from microorganisms have been regarded as a competitive alternative route to traditional. Zymomonas mobilis possesses a number of desirable characteristics for its special Entner-Doudoroff pathway, which makes it an ideal platform for both metabolic engineering and commercial-scale production of desirable bio-products as the same as Escherichia coli and Saccharomyces cerevisiae based on consideration of future biomass biorefinery. Z. mobilis has been studied extensively on both fundamental and applied level, which will provide a basis for industrial biotechnology in the future. Furthermore, metabolic engineering of Z. mobilis for enhancing bio-ethanol production from biomass resources has been significantly promoted by different methods (i.e. mutagenesis, adaptive laboratory evolution, specific gene knock-out, and metabolic engineering). In addition, the feasibility of representative metabolites, i.e. sorbitol, bionic acid, levan, succinic acid, isobutanol, and isobutanol produced by Z. mobilis and the strategies for strain improvements are also discussed or highlighted in this paper. Moreover, this review will present some guidelines for future developments in the bio-based chemical production using Z. mobilis as a novel industrial platform for future biofineries.

  13. Zymomonas mobilis as a model system for production of biofuels and biochemicals

    DOE PAGES

    Yang, Shihui; Fei, Qiang; Zhang, Yaoping; ...

    2016-09-15

    Zymomonas mobilis is a natural ethanologen with many desirable industrial biocatalyst characteristics. In this review, we will discuss work to develop Z. mobilis as a model system for biofuel production from the perspectives of substrate utilization, development for industrial robustness, potential product spectrum, strain evaluation and fermentation strategies. Lastly, this review also encompasses perspectives related to classical genetic tools and emerging technologies in this context.

  14. Zymomonas mobilis as a model system for production of biofuels and biochemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shihui; Fei, Qiang; Zhang, Yaoping

    Zymomonas mobilis is a natural ethanologen with many desirable industrial biocatalyst characteristics. In this review, we will discuss work to develop Z. mobilis as a model system for biofuel production from the perspectives of substrate utilization, development for industrial robustness, potential product spectrum, strain evaluation and fermentation strategies. Lastly, this review also encompasses perspectives related to classical genetic tools and emerging technologies in this context.

  15. Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis

    DOEpatents

    Ingram, Lonnie O.; Conway, Tyrrell

    1992-01-01

    The alcohol dehydrogenase II gene from Zymomonas mobilis has been cloned and sequenced. This gene can be expressed at high levels in other organisms to produce acetaldehyde or to convert acetaldehyde to ethanol.

  16. Systems Biology Analysis of Zymomonas mobilis ZM4 Ethanol Stress Responses

    PubMed Central

    Yang, Shihui; Pan, Chongle; Tschaplinski, Timothy J.; Hurst, Gregory B.; Engle, Nancy L.; Zhou, Wen; Dam, PhuongAn; Xu, Ying; Rodriguez, Miguel; Dice, Lezlee; Johnson, Courtney M.; Davison, Brian H.; Brown, Steven D.

    2013-01-01

    Background Zymomonas mobilis ZM4 is a capable ethanologenic bacterium with high ethanol productivity and ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of its ethanol stress response have not been elucidated fully. Methodology/Principal Findings In this study, ethanol stress responses were investigated using systems biology approaches. Medium supplementation with an initial 47 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 55% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated that the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Transcriptomic data were used to update Z. mobilis ZM4 operon models. Furthermore, correlations among the transcriptomic, proteomic and metabolic data were examined. Among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. Conclusions Our study has provided insights into the responses of Z. mobilis to ethanol stress through an integrated “omics” approach for the first time. This systems biology study elucidated key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to ethanol stress. PMID:23874800

  17. Single Zymomonas mobilis strain for xylose and arabinose fermentation

    DOEpatents

    Zhang, M.; Chou, Y.C.; Picataggio, S.K.; Finkelstein, M.

    1998-12-01

    This invention relates to single microorganisms which normally do not ferment pentose sugars which are genetically altered to ferment the pentose sugars, xylose and arabinose, to produce ethanol, and a fermentation process utilizing the same. Examples include Zymomonas mobilis which has been transformed with a combination of E. coli genes for xylose isomerase, xylulokinase, L-arabinose isomerase, L-ribulokinase, L-ribulose 5-phosphate 4-epimerase, transaldolase and transketolase. Expression of added genes are under the control of Z. mobilis promoters. These newly created microorganisms are useful for fermenting glucose, xylose and arabinose, produced by hydrolysis of hemicellulose and cellulose or starch, to produce ethanol. 6 figs.

  18. Single zymomonas mobilis strain for xylose and arabinose fermentation

    DOEpatents

    Zhang, Min; Chou, Yat-Chen; Picataggio, Stephen K.; Finkelstein, Mark

    1998-01-01

    This invention relates to single microorganisms which normally do not ferment pentose sugars which are genetically altered to ferment the pentose sugars, xylose and arabinose, to produce ethanol, and a fermentation process utilizing the same. Examples include Zymomonas mobilis which has been transformed with a combination of E. coli genes for xylose isomerase, xylulokinase, L-arabinose isomerase, L-ribulokinase, L-ribulose 5-phosphate 4-epimerase, transaldolase and transketolase. Expression of added genes are under the control of Z. mobilis promoters. These newly created microorganisms are useful for fermenting glucose, xylose and arabinose, produced by hydrolysis of hemicellulose and cellulose or starch, to produce ethanol.

  19. Xylose utilizing Zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    DOEpatents

    Caimi, Perry G; Hitz, William D; Viitanen, Paul V; Stieglitz, Barry

    2013-10-29

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  20. Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    DOEpatents

    Caimi, Perry G; Hitz, William D; Stieglitz, Barry; Viitanen, Paul V

    2013-07-02

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  1. Fermentable metabolite of Zymomonas mobilis controls collagen reduction in photoaging skin by improving TGF-beta/Smad signaling suppression.

    PubMed

    Tanaka, Hiroshi; Yamaba, Hiroyuki; Kosugi, Nobuhiko; Mizutani, Hiroshi; Nakata, Satoru

    2008-04-01

    Solar ultraviolet (UV) irradiation causes damages on human skin and premature skin aging (photoaging). UV-induced reduction of type I collagen in dermis is widely considered primarily induction of wrinkled appearance of photoaging skin. Type I procollagen synthesis is reduced under UV irradiation by blocking transforming growth factor-beta (TGF-beta)/Smad signaling; more specifically, it is down-regulation of TGF-beta type II receptor (T beta RII). Therefore, preventing UV-induced loss of T beta RII results decreased type I collagen reduction in photoaging skin. Zymomonas mobilis is an alcohol fermentable, gram-negative facultative anaerobic bacterium whose effect on skin tissue is scarcely studied. We investigated the protective effects of fermentable metabolite of Z. mobilis (FM of Z. mobilis) against reduction of type I procollagen synthesis of UV-induced down-regulation of T beta RII in human dermal fibroblasts FM of Z. mobilis was obtained from lyophilization of bacterium culture supernatant. The levels of T beta RII and type I procollagen mRNA in human dermal fibroblasts were measured by quantitative real-time RT-PCR, and T beta RII protein levels were assayed by western blotting. T beta RII, type I procollagen, and type I collagen proteins in human dermal fibroblasts or hairless mouse skin were detected by immunostaining. FM of Z. mobilis inhibited down regulation of T beta RII mRNA, and protein levels in UVB irradiated human dermal fibroblasts consequently recover reduced type I procollagen synthesis. These results indicate UVB irradiation inhibits type I procollagen synthesis by suppression of TGF-beta/Smad signaling pathway, and FM of Z. mobilis has inhibitory effect on UVB-induced reduction of type I procollagen synthesis. While short period UVB irradiation decreased both T beta RII and type I procollagen protein levels in hairless mouse skin, topical application of FM of Z. mobilis prevented this decrease. Wrinkle formation in hairless mouse skin

  2. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shihui; Pelletier, Dale A; Lu, Tse-Yuan

    Zymomonas mobilis produces near theoretical yields of ethanol and recombinant strains are candidate industrial microorganisms. To date, few studies have examined its responses to various stresses at the gene level. Hfq is a conserved bacterial member of the Sm-like family of RNA-binding proteins, coordinating a broad array of responses including multiple stress responses. In a previous study, we observed Z. mobilis ZM4 gene ZMO0347 showed higher expression under anaerobic, stationary phase compared to that of aerobic, stationary conditions. We have shown the utility of the pKNOCK suicide plasmid for mutant construction in Z. mobilis, and constructed a Gateway compatible expressionmore » plasmid for use in Z. mobilis for the first time. We have also used genetics to show Z. mobilis Hfq and S. cerevisiae Lsm proteins play important roles in resisting multiple, important industrially relevant inhibitors. The conserved nature of this global regulator offers the potential to apply insights from these fundamental studies for further industrial strain development.« less

  3. Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth

    USDA-ARS?s Scientific Manuscript database

    Furfural (furan-2-carboxaldehyde), formed during dilute acid hydrolysis of biomass, is an inhibitor of growth and ethanol production by Zymomonas mobilis. The present study used a biological pre-treatment to reduce that amount of furfural in a model biofuel fermentation broth. The pre-treatment in...

  4. Recombinant zymomonas for pentose fermentation

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.; Finkelstein, Mark

    1996-01-01

    The invention relates to microorganisms which normally do not ferment a pentose sugar and which are genetically altered to ferment this pentose to produce ethanol. A representative example is Zymomonas mobilis which has been transformed with E. coli xylose isomerase, xylulokinase, transaldolase and transketolase genes. Expression of the added genes are under the control of Zymomonas mobilis promoters. This newly created microorganism is useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  5. Recombinant Zymomonas for pentose fermentation

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Eddy, C.K.; Deanda, K.A.; Finkelstein, M.

    1996-05-07

    The invention relates to microorganisms which normally do not ferment a pentose sugar and which are genetically altered to ferment this pentose to produce ethanol. A representative example is Zymomonas mobilis which has been transformed with E. coli xylose isomerase, xylulokinase, transaldolase and transketolase genes. Expression of the added genes are under the control of Zymomonas mobilis promoters. This newly created microorganism is useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol. 2 figs.

  6. Cloning, sequencing, and expression of the Zymomonas mobilis phosphoglycerate mutase gene (pgm) in Escherichia coli.

    PubMed Central

    Yomano, L P; Scopes, R K; Ingram, L O

    1993-01-01

    Phosphoglycerate mutase is an essential glycolytic enzyme for Zymomonas mobilis, catalyzing the reversible interconversion of 3-phosphoglycerate and 2-phosphoglycerate. The pgm gene encoding this enzyme was cloned on a 5.2-kbp DNA fragment and expressed in Escherichia coli. Recombinants were identified by using antibodies directed against purified Z. mobilis phosphoglycerate mutase. The pgm gene contains a canonical ribosome-binding site, a biased pattern of codon usage, a long upstream untranslated region, and four promoters which share sequence homology. Interestingly, adhA and a D-specific 2-hydroxyacid dehydrogenase were found on the same DNA fragment and appear to form a cluster of genes which function in central metabolism. The translated sequence for Z. mobilis pgm was in full agreement with the 40 N-terminal amino acid residues determined by protein sequencing. The primary structure of the translated sequence is highly conserved (52 to 60% identity with other phosphoglycerate mutases) and also shares extensive homology with bisphosphoglycerate mutases (51 to 59% identity). Since Southern blots indicated the presence of only a single copy of pgm in the Z. mobilis chromosome, it is likely that the cloned pgm gene functions to provide both activities. Z. mobilis phosphoglycerate mutase is unusual in that it lacks the flexible tail and lysines at the carboxy terminus which are present in the enzyme isolated from all other organisms examined. Images PMID:8320209

  7. Crystal structure of cbbF from Zymomonas mobilis and its functional implication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Hyo-Jeong; Park, Suk-Youl; Kim, Jeong-Sun, E-mail: jsunkim@chonnam.ac.kr

    2014-02-28

    Highlights: • The crystal structure of one cbbF from Zymomonas mobilis was revealed. • Scores of residues form two secondary structures with a non-polar protruded residue. • It exists as a dimeric form in solution. - Abstract: A phosphate group at the C1-atom of inositol-monophosphate (IMP) and fructose-1,6-bisphosphate (FBP) is hydrolyzed by a phosphatase IMPase and FBPase in a metal-dependent way, respectively. The two enzymes are almost indiscernible from each other because of their highly similar sequences and structures. Metal ions are bound to residues on the β1- and β2-strands and one mobile loop. However, FBP has another phosphate andmore » FBPases exist as a higher oligomeric state, which may discriminate FBPases from IMPases. There are three genes annotated as FBPases in Zymomonas mobilis, termed also cbbF (ZmcbbF). The revealed crystal structure of one ZmcbbF shows a globular structure formed by five stacked layers. Twenty-five residues in the middle of the sequence form an α-helix and a β-strand, which occupy one side of the catalytic site. A non-polar Leu residue among them is protruded to the active site, pointing out unfavorable access of a bulky charged group to this side. In vitro assays have shown its dimeric form in solution. Interestingly, two β-strands of β1 and β2 are disordered in the ZmcbbF structure. These data indicate that ZmcbbF might structurally belong to IMPase, and imply that its active site would be reorganized in a yet unreported way.« less

  8. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein.

    PubMed

    Tan, Fu-Rong; Dai, Li-Chun; Wu, Bo; Qin, Han; Shui, Zong-Xia; Wang, Jing-Li; Zhu, Qi-Li; Hu, Qi-Chun; Ruan, Zhi-Yong; He, Ming-Xiong

    2015-06-01

    Furfural from lignocellulosic hydrolysates is the key inhibitor for bio-ethanol fermentation. In this study, we report a strategy of improving the furfural tolerance in Zymomonas mobilis on the transcriptional level by engineering its global transcription sigma factor (σ(70), RpoD) protein. Three furfural tolerance RpoD mutants (ZM4-MF1, ZM4-MF2, and ZM4-MF3) were identified from error-prone PCR libraries. The best furfural-tolerance strain ZM4-MF2 reached to the maximal cell density (OD600) about 2.0 after approximately 30 h, while control strain ZM4-rpoD reached its highest cell density of about 1.3 under the same conditions. ZM4-MF2 also consumed glucose faster and yield higher ethanol; expression levels and key Entner-Doudoroff (ED) pathway enzymatic activities were also compared to control strain under furfural stress condition. Our results suggest that global transcription machinery engineering could potentially be used to improve stress tolerance and ethanol production in Z. mobilis.

  9. Recombinant Zymomonas for pentose fermentation

    DOEpatents

    Picataggio, S.K.; Min Zhang; Eddy, C.K.; Deanda, K.A.

    1998-03-10

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol. 7 figs.

  10. Pentose fermentation by recombinant Zymomonas

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Eddy, C.K.; Deanda, K.A.; Finkelstein, M.; Mohagheghi, A.; Newman, M.M.; McMillan, J.D.

    1998-01-27

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose 5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol. 7 figs.

  11. Pentose fermentation by recombinant zymomonas

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.; Finkelstein, Mark; Mohagheghi, Ali; Newman, Mildred M.; McMillan, James D.

    1998-01-01

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose 5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  12. Recombinant Zymomonas for pentose fermentation

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.

    1998-01-01

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  13. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass.

    PubMed

    Zhao, Ning; Bai, Yun; Liu, Chen-Guang; Zhao, Xin-Qing; Xu, Jian-Feng; Bai, Feng-Wu

    2014-03-01

    Whereas Saccharomyces cerevisiae uses the Embden-Meyerhof-Parnas pathway to metabolize glucose, Zymomonas mobilis uses the Entner-Doudoroff (ED) pathway. Employing the ED pathway, 50% less ATP is produced, which could lead to less biomass being accumulated during fermentation and an improved yield of ethanol. Moreover, Z. mobilis cells, which have a high specific surface area, consume glucose faster than S. cerevisiae, which could improve ethanol productivity. We performed ethanol fermentations using these two species under comparable conditions to validate these speculations. Increases of 3.5 and 3.3% in ethanol yield, and 58.1 and 77.8% in ethanol productivity, were observed in ethanol fermentations using Z. mobilis ZM4 in media containing ∼100 and 200 g/L glucose, respectively. Furthermore, ethanol fermentation bythe flocculating Z. mobilis ZM401 was explored. Although no significant difference was observed in ethanol yield and productivity, the flocculation of the bacterial species enabled biomass recovery by cost-effective sedimentation, instead of centrifugation with intensive capital investment and energy consumption. In addition, tolerance to inhibitory byproducts released during biomass pretreatment, particularly acetic acid and vanillin, was improved. These experimental results indicate that Z. mobilis, particularly its flocculating strain, is superior to S. cerevisiae as a host to be engineered for fuel ethanol production from lignocellulosic biomass. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase.

    PubMed

    Balodite, Elina; Strazdina, Inese; Galinina, Nina; McLean, Samantha; Rutkis, Reinis; Poole, Robert K; Kalnenieks, Uldis

    2014-09-01

    The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase. © 2014 The Authors.

  15. Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates

    PubMed Central

    2013-01-01

    Background During the pretreatment of biomass feedstocks and subsequent conditioning prior to saccharification, many toxic compounds are produced or introduced which inhibit microbial growth and in many cases, production of ethanol. An understanding of the toxic effects of compounds found in hydrolysate is critical to improving sugar utilization and ethanol yields in the fermentation process. In this study, we established a useful tool for surveying hydrolysate toxicity by measuring growth rates in the presence of toxic compounds, and examined the effects of selected model inhibitors of aldehydes, organic and inorganic acids (along with various cations), and alcohols on growth of Zymomonas mobilis 8b (a ZM4 derivative) using glucose or xylose as the carbon source. Results Toxicity strongly correlated to hydrophobicity in Z. mobilis, which has been observed in Escherichia coli and Saccharomyces cerevisiae for aldehydes and with some exceptions, organic acids. We observed Z. mobilis 8b to be more tolerant to organic acids than previously reported, although the carbon source and growth conditions play a role in tolerance. Growth in xylose was profoundly inhibited by monocarboxylic organic acids compared to growth in glucose, whereas dicarboxylic acids demonstrated little or no effects on growth rate in either substrate. Furthermore, cations can be ranked in order of their toxicity, Ca++ > > Na+ > NH4+ > K+. HMF (5-hydroxymethylfurfural), furfural and acetate, which were observed to contribute to inhibition of Z. mobilis growth in dilute acid pretreated corn stover hydrolysate, do not interact in a synergistic manner in combination. We provide further evidence that Z. mobilis 8b is capable of converting the aldehydes furfural, vanillin, 4-hydroxybenzaldehyde and to some extent syringaldehyde to their alcohol forms (furfuryl, vanillyl, 4-hydroxybenzyl and syringyl alcohol) during fermentation. Conclusions Several key findings in this report provide a

  16. Improvement of ethanol productivity and energy efficiency by degradation of inhibitors using recombinant Zymomonas mobilis (pHW20a-fdh).

    PubMed

    Dong, Hong-Wei; Fan, Li-Qiang; Luo, Zichen; Zhong, Jian-Jiang; Ryu, Dewey D Y; Bao, Jie

    2013-09-01

    Toxic compounds, such as formic acid, furfural, and hydroxymethylfurfural (HMF) generated during pretreatment of corn stover (CS) at high temperature and low pH, inhibit growth of Zymomonas mobilis and lower the conversion efficiency of CS to biofuel and other products. The inhibition of toxic compounds is considered as one of the major technical barriers in the lignocellulose bioconversion. In order to detoxify and/or degrade these toxic compounds by the model ethanologenic strain Z. mobilis itself in situ the fermentation medium, we constructed a recombinant Z. mobilis ZM4 (pHW20a-fdh) strain that is capable of degrading toxic inhibitor, formate. This is accomplished by cloning heterologous formate dehydrogenase gene (fdh) from Saccharomyces cerevisiae and by coupling this reaction of NADH regeneration reaction system with furfural and HMF degradation in the recombinant Z. mobilis strain. The NADH regeneration reaction also improved both the energy efficiency and cell physiological activity of the recombinant organism, which were definitely confirmed by the improved cell growth, ethanol yield, and ethanol productivity during fermentation with CS hydrolysate. Copyright © 2013 Wiley Periodicals, Inc.

  17. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    PubMed

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.

  18. Fermentation of Soybean Meal Hydrolyzates with Saccharomyces cerevisiae and Zymomonas mobilis for Ethanol Production.

    PubMed

    Luján-Rhenals, Deivis E; Morawicki, Rubén O; Gbur, Edward E; Ricke, Steven C

    2015-07-01

    Most of the ethanol currently produced by fermentation is derived from sugar cane, corn, or beets. However, it makes good ecological and economic sense to use the carbohydrates contained in by-products and coproducts of the food processing industry for ethanol production. Soybean meal, a co-product of the production of soybean oil, has a relatively high carbohydrate content that could be a reasonable substrate for ethanol production after fermentable sugars are released via hydrolysis. In this research, the capability of Saccharomyces cerevisiae NRRL Y-2233 and Zymomonas mobilis subsp. mobilis NRRL B-4286 to produce ethanol was evaluated using soybean meal hydrolyzates as substrates for the fermentation. These substrates were produced from the dilute-acid hydrolysis of soybean meal at 135 °C for 45 min with 0, 0.5%, 1.25%, and 2% H2 SO4 and at 120 °C for 30 min with 1.25% H2 SO4 . Kinetic parameters of the fermentation were estimated using the logistic model. Ethanol production using S. cerevisiae was highest with the substrates obtained at 135 °C, 45 min, and 0.5% H2 SO4 and fermented for 8 h, 8 g/L (4 g ethanol/100 g fresh SBM), while Z. mobilis reached its maximum ethanol production, 9.2 g/L (4.6 g ethanol/100 g fresh SBM) in the first 20 h of fermentation with the same hydrolyzate. © 2015 Institute of Food Technologists®

  19. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars

    DOE PAGES

    Yang, Shihui; Mohagheghi, Ali; Franden, Mary Ann; ...

    2016-09-02

    To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks formore » high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. In conclusion, this study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.« less

  20. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shihui; Mohagheghi, Ali; Franden, Mary Ann

    To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks formore » high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. In conclusion, this study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.« less

  1. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    PubMed

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  2. Impact of expression of EMP enzymes on glucose metabolism in Zymomonas mobilis.

    PubMed

    Chen, Rachel Ruizhen; Agrawal, Manoj; Mao, Zichao

    2013-06-01

    Zymomonas mobilis is the only known microorganism that utilizes the Entner-Doudoroff (ED) pathway anaerobically. In this work, we investigated whether the overexpression of a phosphofructokinase (PFK), the only missing Embden-Meyerhof-Parnas (EMP) pathway enzyme, could establish the pathway in this organism. Introduction of a pyrophosphate-dependent PFK, along with co-expression of homologous fructose-1,6-bisphosphate aldolase and triosephosphate isomerase, did not result in an EMP flux to any appreciable level. However, the metabolism of glucose was impacted significantly. Eight percent of glucose was metabolized to form a new metabolite, dihydroxyacetone. Reducing flux through the ED pathway by as much as 40 % through antisense of a key enzyme, ED aldolase, did not result in a fully functional EMP pathway, suggesting that the ED pathway, especially the lower arm, downstream from glyceraldehyde-3-phosphate, is very rigid, possibly due to redox balance.

  3. Evaluation and optimization of ethanol production from carob pod extract by Zymomonas mobilis using response surface methodology.

    PubMed

    Vaheed, Hossein; Shojaosadati, Seyed Abbas; Galip, Hasan

    2011-01-01

    In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett-Burman (P-B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g(-1) initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g(-1) initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.

  4. Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate

    DOE PAGES

    Mohagheghi, Ali; Linger, Jeffrey G.; Yang, Shihui; ...

    2015-03-31

    Complete conversion of the major sugars of biomass including both the C 5 and C 6 sugars is critical for biofuel production processes. Several inhibitory compounds like acetate, hydroxymethylfurfural (HMF), and furfural are produced from the biomass pretreatment process leading to ‘hydrolysate toxicity,’ a major problem for microorganisms to achieve complete sugar utilization. Therefore, development of more robust microorganisms to utilize the sugars released from biomass under toxic environment is critical. In this study, we use continuous culture methodologies to evolve and adapt the ethanologenic bacterium Zymomonas mobilis to improve its ethanol productivity using corn stover hydrolysate. The results aremore » the following: A turbidostat was used to adapt the Z. mobilis strain 8b in the pretreated corn stover liquor. The adaptation was initiated using pure sugar (glucose and xylose) followed by feeding neutralized liquor at different dilution rates. Once the turbidostat reached 60% liquor content, the cells began washing out and the adaptation was stopped. Several ‘sub-strains’ were isolated, and one of them, SS3 (sub-strain 3), had 59% higher xylose utilization than the parent strain 8b when evaluated on 55% neutralized PCS (pretreated corn stover) liquor. Using saccharified PCS slurry generated by enzymatic hydrolysis from 25% solids loading, SS3 generated an ethanol yield of 75.5% compared to 64% for parent strain 8b. Furthermore, the total xylose utilization was 57.7% for SS3 versus 27.4% for strain 8b. To determine the underlying genotypes in these new sub-strains, we conducted genomic resequencing and identified numerous single-nucleotide mutations (SNPs) that had arisen in SS3. We further performed quantitative reverse transcription PCR (qRT-PCR) on genes potentially affected by these SNPs and identified significant down-regulation of two genes, ZMO0153 and ZMO0776, in SS3 suggesting potential genetic mechanisms behind SS3’s improved

  5. Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohagheghi, Ali; Linger, Jeffrey G.; Yang, Shihui

    Complete conversion of the major sugars of biomass including both the C 5 and C 6 sugars is critical for biofuel production processes. Several inhibitory compounds like acetate, hydroxymethylfurfural (HMF), and furfural are produced from the biomass pretreatment process leading to ‘hydrolysate toxicity,’ a major problem for microorganisms to achieve complete sugar utilization. Therefore, development of more robust microorganisms to utilize the sugars released from biomass under toxic environment is critical. In this study, we use continuous culture methodologies to evolve and adapt the ethanologenic bacterium Zymomonas mobilis to improve its ethanol productivity using corn stover hydrolysate. The results aremore » the following: A turbidostat was used to adapt the Z. mobilis strain 8b in the pretreated corn stover liquor. The adaptation was initiated using pure sugar (glucose and xylose) followed by feeding neutralized liquor at different dilution rates. Once the turbidostat reached 60% liquor content, the cells began washing out and the adaptation was stopped. Several ‘sub-strains’ were isolated, and one of them, SS3 (sub-strain 3), had 59% higher xylose utilization than the parent strain 8b when evaluated on 55% neutralized PCS (pretreated corn stover) liquor. Using saccharified PCS slurry generated by enzymatic hydrolysis from 25% solids loading, SS3 generated an ethanol yield of 75.5% compared to 64% for parent strain 8b. Furthermore, the total xylose utilization was 57.7% for SS3 versus 27.4% for strain 8b. To determine the underlying genotypes in these new sub-strains, we conducted genomic resequencing and identified numerous single-nucleotide mutations (SNPs) that had arisen in SS3. We further performed quantitative reverse transcription PCR (qRT-PCR) on genes potentially affected by these SNPs and identified significant down-regulation of two genes, ZMO0153 and ZMO0776, in SS3 suggesting potential genetic mechanisms behind SS3’s improved

  6. Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth.

    PubMed

    Hunter, William J; Manter, Daniel K

    2014-10-01

    Furfural is an inhibitor of growth and ethanol production by Zymomonas mobilis. This study used a naturally occurring (not GMO) biological pre-treatment to reduce that amount of furfural in a model fermentation broth. Pre-treatment involved inoculating and incubating the fermentation broth with strains of Leuconostoc mesenteroides or Leuconostoc pseudomesenteroides. The Leuconostoc strains converted furfural to furfuryl alcohol without consuming large amounts of dextrose in the process. Coupling this pre-treatment to ethanolic fermentation reduced furfural in the broth and improved growth, dextrose uptake and ethanol formation. Pre-treatment permitted ethanol formation in the presence of 5.2 g L(-1) furfural, which was otherwise inhibitive. The pre-treatment and presence of the Leuconostoc strains in the fermentation broth did not interfere with Z. mobilis ethanolic fermentation or the amounts of ethanol produced. The method suggests a possible technique for reducing the effect that furfural has on the production of ethanol for use as a biofuel. Published by Elsevier Ltd.

  7. High expression Zymomonas promoters

    DOEpatents

    Viitanen, Paul V [West Chester, PA; Tao, Luan [Havertown, PA; Zhang, Yuying [New Hope, PA; Caimi, Perry G [Kennett Square, PA; McCole, Laura : Zhang, Min; Chou, Yat-Chen [Lakewood, CO; McCutchen, Carol M [Wilmington, DE; Franden, Mary Ann [Centennial, CO

    2011-08-02

    Identified are mutants of the promoter of the Z. mobilis glyceraldehyde-3-phosphate dehydrogenase gene, which direct improved expression levels of operably linked heterologous nucleic acids. These are high expression promoters useful for expression of chimeric genes in Zymomonas, Zymobacter, and other related bacteria.

  8. Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, Kazuyoshi; Beall, D.S.; Mejia, J.P.

    1991-04-01

    Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high levels of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose tomore » ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).« less

  9. Detrimental effect of increasing sugar concentrations on ethanol production from maize or decorticated sorghum mashes fermented with Saccharomyces cerevisiae or Zymomonas mobilis: biofuels and environmental biotechnology.

    PubMed

    Pérez-Carrillo, Esther; Luisa Cortés-Callejas, M; Sabillón-Galeas, Luis E; Montalvo-Villarreal, Jorge L; Canizo, Jesica R; Georgina Moreno-Zepeda, M; Serna-Saldivar, Sergio O

    2011-02-01

    The efficiency of ethanol fermentation, as affected by grain source (maize and decorticated red sorghum), total sugar concentration (13 or 20° Plato) and type of microorganism (Saccharomyces cerevisiae or Zymomonas mobilis) was studied. Maize mashes yielded 0.32 l ethanol kg(-1) ground grain whereas mashes prepared with decorticated red sorghum produced 0.28 l ethanol kg(-1). Both microorganisms yielded similar amounts of ethanol. However, high-gravity mashes (20° Plato) yielded lower amounts of ethanol compared to counterparts adjusted to 13° Plato (0.28 vs. 0.22 l ethanol kg(-1) ground grains). In decorticated sorghum mashes adjusted to 20° P, Z. mobilis produced 40 ml kg(-1) more ethanol compared to S. cerevisiae. In addition, Z. mobilis had a lower dependency on nitrogenous compounds.

  10. Purification, crystallization and X-ray crystallographic analysis of a putative exopolyphosphatase from Zymomonas mobilis

    PubMed Central

    Zhang, Aili; Guo, Erhong; Qian, Lanfang; Tang, Nga-Yeung; Watt, Rory M.; Bartlam, Mark

    2016-01-01

    Exopolyphosphatase (PPX) enzymes degrade inorganic polyphosphate (poly-P), which is essential for the survival of microbial cells in response to external stresses. In this study, a putative exopolyphosphatase from Zymomonas mobilis (ZmPPX) was crystallized. Crystals of the wild-type enzyme diffracted to 3.3 Å resolution and could not be optimized further. The truncation of 29 amino acids from the N-terminus resulted in crystals that diffracted to 1.8 Å resolution. The crystals belonged to space group C2, with unit-cell parameters a = 122.0, b = 47.1, c = 89.5 Å, α = γ = 90, β = 124.5°. An active-site mutant that crystallized in the same space group and with similar unit-cell parameters diffracted to 1.56 Å resolution. One molecule was identified per asymmetric unit. Analytical ultracentrifugation confirmed that ZmPPX forms a dimer in solution. It was confirmed that ZmPPX possesses exopolyphosphatase activity against a synthetic poly-P substrate. PMID:26919520

  11. Purification, crystallization and X-ray crystallographic analysis of a putative exopolyphosphatase from Zymomonas mobilis.

    PubMed

    Zhang, Aili; Guo, Erhong; Qian, Lanfang; Tang, Nga-Yeung; Watt, Rory M; Bartlam, Mark

    2016-03-01

    Exopolyphosphatase (PPX) enzymes degrade inorganic polyphosphate (poly-P), which is essential for the survival of microbial cells in response to external stresses. In this study, a putative exopolyphosphatase from Zymomonas mobilis (ZmPPX) was crystallized. Crystals of the wild-type enzyme diffracted to 3.3 Å resolution and could not be optimized further. The truncation of 29 amino acids from the N-terminus resulted in crystals that diffracted to 1.8 Å resolution. The crystals belonged to space group C2, with unit-cell parameters a = 122.0, b = 47.1, c = 89.5 Å, α = γ = 90, β = 124.5°. An active-site mutant that crystallized in the same space group and with similar unit-cell parameters diffracted to 1.56 Å resolution. One molecule was identified per asymmetric unit. Analytical ultracentrifugation confirmed that ZmPPX forms a dimer in solution. It was confirmed that ZmPPX possesses exopolyphosphatase activity against a synthetic poly-P substrate.

  12. Zymomonas with improved xylose utilization

    DOEpatents

    Viitanen, Paul V [West Chester, PA; Tao, Luan [Havertown, PA; Zhang, Yuying [New Hope, PA; Caimi, Perry G [Kennett Square, PA; McCutchen, Carol M [Wilmington, DE; McCole, Laura [East Fallowfield, PA; Zhang, Min [Lakewood, CO; Chou, Yat-Chen [Lakewood, CO; Franden, Mary Ann [Centennial, CO

    2011-08-16

    Strains of Zymomonas were engineered by introducing a chimeric xylose isomerase gene that contains a mutant promoter of the Z. mobilis glyceraldehyde-3-phosphate dehydrogenase gene. The promoter directs increased expression of xylose isomerase, and when the strain is in addition engineered for expression of xylulokinase, transaldolase and transketolase, improved utilization of xylose is obtained.

  13. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation.

    PubMed

    Liu, Yu-Fan; Hsieh, Chia-Wen; Chang, Yao-Sheng; Wung, Being-Sun

    2017-08-01

    Acetic acid is a predominant by-product of lignocellulosic biofuel process, which inhibits microbial biocatalysts. Development of bacterial strains that are tolerant to acetic acid is challenging due to poor understanding of the underlying molecular mechanisms. In this study, we generated and characterized two acetic acid-tolerant strains of Zymomonas mobilis using N-methyl-N'-nitro-N-nitrosoguanidine (NTG)-acetate adaptive breeding. Two mutants, ZMA-142 and ZMA-167, were obtained, showing a significant growth rate at a concentration of 244 mM sodium acetate, while the growth of Z. mobilis ATCC 31823 were completely inhibited in presence of 195 mM sodium acetate. Our data showed that acetate-tolerance of ZMA-167 was attributed to a co-transcription of nhaA from ZMO0117, whereas the co-transcription was absent in ATCC 31823 and ZMA-142. Moreover, ZMA-142 and ZMA-167 exhibited a converstion rate (practical ethanol yield to theorical ethanol yield) of 90.16% and 86% at 195 mM acetate-pH 5 stress condition, respectively. We showed that acid adaptation of ZMA-142 and ZMA-167 to 146 mM acetate increased ZMA-142 and ZMA-167 resulted in an increase in ethanol yield by 32.21% and 21.16% under 195 mM acetate-pH 5 stress condition, respectively. The results indicate the acetate-adaptive seed culture of acetate-tolerant strains, ZMA-142 and ZMA-167, could enhance the ethanol production during fermentation.

  14. Furfural-tolerant Zymomonas mobilis derived from error-prone PCR-based whole genome shuffling and their tolerant mechanism.

    PubMed

    Huang, Suzhen; Xue, Tingli; Wang, Zhiquan; Ma, Yuanyuan; He, Xueting; Hong, Jiefang; Zou, Shaolan; Song, Hao; Zhang, Minhua

    2018-04-01

    Furfural-tolerant strain is essential for the fermentative production of biofuels or chemicals from lignocellulosic biomass. In this study, Zymomonas mobilis CP4 was for the first time subjected to error-prone PCR-based whole genome shuffling, and the resulting mutants F211 and F27 that could tolerate 3 g/L furfural were obtained. The mutant F211 under various furfural stress conditions could rapidly grow when the furfural concentration reduced to 1 g/L. Meanwhile, the two mutants also showed higher tolerance to high concentration of glucose than the control strain CP4. Genome resequencing revealed that the F211 and F27 had 12 and 13 single-nucleotide polymorphisms. The activity assay demonstrated that the activity of NADH-dependent furfural reductase in mutant F211 and CP4 was all increased under furfural stress, and the activity peaked earlier in mutant than in control. Also, furfural level in the culture of F211 was also more rapidly decreased. These indicate that the increase in furfural tolerance of the mutants may be resulted from the enhanced NADH-dependent furfural reductase activity during early log phase, which could lead to an accelerated furfural detoxification process in mutants. In all, we obtained Z. mobilis mutants with enhanced furfural and high concentration of glucose tolerance, and provided valuable clues for the mechanism of furfural tolerance and strain development.

  15. Method of inactivation of an end product of energy metabolism in Zymomonas mobilis

    DOEpatents

    Zhang, Min [Lakewood, CO; Chou, Yat-Chen [Lakewood, CO

    2008-05-20

    The present invention briefly provides a method of site-specific insertion in Zymomonas, comprising, providing a Zymomonas gene fragment, interrupting a DNA sequence the fragment, and transforming the Zymomonas through homologous recombination with the interrupted fragment.

  16. Zymomonas pentose-sugar fermenting strains and uses thereof

    DOEpatents

    Zhang, Min [Lakewood, CO; Chou, Yat-Chen [Golden, CO; Howe, William [Golden, CO; Eddy, Christine [Golden, CO; Evans, Kent [Littleton, CO; Mohagheghi, Ali [Northglenn, CO

    2007-05-29

    Disclosed in the present invention is a Zymomonas integrant and derivatives of these integrants that posses the ability to ferment pentose into ethanol. The genetic sequences encoding for the pentose-fermenting enzymes are integrated into the Zymomonas in a two-integration event of homologous recombination and transposition. Each operon includes more than one pentose-reducing enzyme encoding sequence. The integrant in some embodiments includes enzyme sequences encoding xylose isomerase, xylulokinase, transketolase and transketolase. The Zymomonas integrants are highly stable, and retain activity for producing the pentose-fermenting enzyme for between 80 to 160 generations. The integrants are also resistant to acetate inhibition, as the integrants demonstrate efficient ethanol production even in the presence of 8 up to 16 grams acetate per liter media. These stably integrated sequences provide a unique Zymomonas that may then be used for the efficient conversion of pentose sugars (xylose, arabinose) to ethanol. Method of using the Zymomonas integrants and derivatives thereof in production of ethanol from cellulosic feedstock is also disclosed. The invention also provides a method for preparing a Zymomonas integrant as part of the present invention. The host Zymomonas strain found particularly useful in the creation of these compositions and methods is Zymomonas mobilis 31821.

  17. Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses

    PubMed Central

    2013-01-01

    Background Current methods of ethanol production from lignocelluloses generate a mixture of sugars, primarily glucose and xylose; the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions that affect their growth and productivity. Stress-tolerant strains capable of using both glucose and xylose to produce ethanol with high yield are highly desirable. Results A recombinant Zymomonas mobilis (Z. mobilis) designated as HYMX was constructed by integrating seven genes (Pfu-sHSP, yfdZ, metB, xylA, xylB, tktA and talB) into the genome of Z. mobilis CP4 (CP4) via Tn5 transposon in the present study. The small heat shock protein gene (Pfu-sHSP) from Pyrococcus furious (P. furious) was used to increase the heat-tolerance, the yfdZ and metB genes from E. coli were used to decrease the nutritional requirement. To overcome the bottleneck of CP4 being unable to use pentose, xylose catabolic genes (xylA, xylB, tktA and talB) from E. coli were integrated into CP4 also for construction of the xylose utilizing metabolic pathway. Conclusions The genomic integration confers on Z. mobilis the ability to grow in medium containing xylose as the only carbon source, and to grow in simple chemical defined medium without addition of amino acid. The HYMX demonstrated not only the high tolerance to unfavorable stresses like high temperature and low nutrient, but also the capability of converting both glucose and xylose to ethanol with high yield at high temperature. What’s more, these genetic characteristics were stable up to 100 generations on nonselective medium. Although significant improvements were achieved, yeast extract is needed for ethanol production. PMID:23635356

  18. Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnell, W.O.; Kyung Cheol Yi; Conway, T.

    1990-12-01

    The Zymomonas mobilis genes that encode glucose-6-phosphate dehydrogenase (zwf), 6-phosphogluconate dehydratase (edd), and glucokinase (glk) were cloned independently by genetic complementation of specific defects in Escherichia coli metabolism. The identify of these cloned genes was confirmed by various biochemical means. Nucleotide sequence analysis established that these three genes are clustered on the genome and revealed an additional open reading frame in this region that has significant amino acid identity to the E.coli xylose-proton symporter and the human glucose transporter. On the basis of this evidence and structural analysis of the deduced primary amino acid sequence, this gene is believed tomore » encode the Z. mobilis glucose-facilitated diffusion protein, glf. The four genes in the 6-kb cluster are organized in the order glf, zwf, edd, glk. The glf and zwf genes are separated by 146 bp. The zwf and edd genes overlap by 8 bp, and their expression may be translationally coupled. The edd and glk genes are separated by 203 bp. The glk gene is followed by tandem transcriptional terminators. The four genes appear to be organized in an operon. Such an arrangement of the genes that govern glucose uptake and the first three steps of the Entner-Doudoroff glycolytic pathway provides the organism with a mechanism for carefully regulating the levels of the enzymes that control carbon flux into the pathway.« less

  19. Effect of Brönsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride on growth and co-fermentation of glucose, xylose and arabinose by Zymomonas mobilis AX101.

    PubMed

    Gyamerah, M; Ampaw-Asiedu, M; Mackey, J; Menezes, B; Woldesenbet, S

    2018-06-01

    The potential of large-scale lignocellulosic biomass hydrolysis to fermentable sugars using ionic liquids has increased interest in this green chemistry route to fermentation for fuel-ethanol production. The ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride compared to other reported ionic liquids has the advantage of hydrolysing lignocellulosic biomass to reducing sugars at catalytic concentrations (≤0·032 mol l -1 ) in a single step. However, effects of this ionic liquid on co-fermentation of glucose, xylose and arabinose to ethanol by recombinant Zymomonas mobilisAX101 has not been studied. Authentic glucose, xylose and arabinose were used to formulate fermentation media at varying catalytic 1-(1-propylsulfonic)-3-methylimidazolium chloride concentrations for batch co-fermentation of the sugars using Z. mobilisAX101. The results showed that at 0·008, 0·016 and 0·032 mol l -1 ionic liquid in the culture medium, cell growth decreased by 10, 27 and 67% respectively compared to the control. Ethanol yields were 62·6, 61·8, 50·5 and 23·1% for the control, 0·008, 0·016 and 0·032 mol l -1 ionic liquid respectively. The results indicate that lignocellulosic biomass hydrolysed using 0·008 mol l -1 of 1-(1-propylsulfonic)-3-methylimidazolium chloride would eliminate an additional separation step and provide a ready to use fermentation substrate. This is the first reported study of the effect of the Brönsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride on growth and co-fermentation of glucose, xylose and arabinose by Zymomonas mobilisAX101 in batch culture. Growth on and co-fermentation of the sugars by Z. mobilisAX 101 with no significant inhibition by the ionic liquid at the same catalytic amounts of 0·008 mol l -1 used to hydrolyse lignocellulosic biomass to reducing sugars overcome two major hurdles that adversely affect the process economics of large-scale industrial cellulosic fuel ethanol production

  20. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis.

    PubMed

    Ma, Kedong; Ruan, Zhiyong; Shui, Zongxia; Wang, Yanwei; Hu, Guoquan; He, Mingxiong

    2016-03-01

    The aim of present study was to develop a process for open ethanol fermentation from food waste using an acid-tolerant mutant of Zymomonas mobilis (ZMA7-2). The mutant showed strong tolerance to acid condition of food waste hydrolysate and high ethanol production performance. By optimizing fermentation parameters, ethanol fermentation with initial glucose concentration of 200 g/L, pH value around 4.0, inoculum size of 10% and without nutrient addition was considered as best conditions. Moreover, the potential of bench scales fermentation and cell reusability was also examined. The fermentation in bench scales (44 h) was faster than flask scale (48 h), and the maximum ethanol concentration and ethanol yield (99.78 g/L, 0.50 g/g) higher than that of flask scale (98.31 g/L, 0.49 g/g). In addition, the stable cell growth and ethanol production profile in five cycles successive fermentation was observed, indicating the mutant was suitable for industrial ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes

    DOEpatents

    Ingram, Lonnie O.; Conway, Tyrrell; Alterthum, Flavio

    1991-01-01

    A novel operon and plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase activities of Zymomonas mobilis are described. Also disclosed are methods for increasing the growth of microorganisms or eukaryotic cells and methods for reducing the accumulation of undesirable metabolic products in the growth medium of microorganisms or cells.

  2. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.

    PubMed

    Lawford, Hugh G; Rousseau, Joyce D

    2002-01-01

    IOGEN Corporation of Ottawa, Canada, has recently built a 40t/d biomass-to-ethanol demonstration plant adjacent to its enzyme production facility. It has partnered with the University of Toronto to test the C6/C5 cofermenta-tion performance characteristics of the National Renewable Energy Labora-tory's metabolically engineered Zymomonas mobilis using various biomass hydrolysates. IOGEN's feedstocks are primarily agricultural wastes such as corn stover and wheat straw. Integrated recombinant Z. mobilis strain AX101 grows on D-xylose and/or L-arabinose as the sole carbon/energy sources and ferments these pentose sugars to ethanol in high yield. Strain AX101 lacks the tetracycline resistance gene that was a common feature of other recombinant Zm constructs. Genomic integration provides reliable cofermentation performance in the absence of antibiotics, another characteristic making strain AX101 attractive for industrial cellulosic ethanol production. In this work, IOGEN's biomass hydrolysate was simulated by a pure sugar medium containing 6% (w/v) glucose, 3% xylose, and 0.35% arabinose. At a level of 3 g/L (dry solids), corn steep liquor with inorganic nitrogen (0.8 g/L of ammonium chloride or 1.2 g/L of diammonium phosphate) was a cost-effective nutritional supplement. In the absence of acetic acid, the maximum volumetric ethanol productivity of a continuous fermentation at pH 5.0 was 3.54 g/L x h. During prolonged continuous fermentation, the efficiency of sugar-to-ethanol conversion (based on total sugar load) was maintained at >85%. At a level of 0.25% (w/v) acetic acid, the productivity decreased to 1.17 g/L x h at pH 5.5. Unlike integrated, xylose-utilizing rec Zm strain C25, strain AX101 produces less lactic acid as byproduct, owing to the fact that the Escherichia coli arabinose genes are inserted into a region of the host chromosome tentatively assigned to the gene for D-lactic acid dehydrogenase. In pH-controlled batch fermentations with sugar mixtures, the

  3. Genetic engineering and improvement of a Zymomonas mobilis for arabinose utilization and its performance on pretreated corn stover hydrolyzate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Yat -Chen; Linger, Jeffrey; Yang, Shihui

    In this paper, a glucose, xylose and arabinose utilizing Zymomonas mobilis strain was constructed by incorporating arabinose catabolic pathway genes, araBAD encoding L-ribulokinase, L-arabinose isomerase and L-ribulose-5-phosphate- 4-epimerase in a glucose, xylose co-fermenting host, 8b, using a transposition integration approach. Further improvement on this arabinose-capable integrant, 33C was achieved by applying a second transposition to create a genomic knockout (KO) mutant library. Using arabinose as a sole carbon source and a selection pressure, the KO library was subjected to a growth-enrichment process involving continuous sub-culturing for over 120 generations. Strain 13-1-17, isolated from such process demonstrated significant improvement in metabolizingmore » arabinose in a dilute acid pretreated, saccharified corn stover slurry. Through Next Generation Sequencing (NGS) analysis, integration sites of the transposons were identified. Furthermore, multiple additional point mutations (SNPs: Single Nucleotide Polymorphisms) were discovered in 13-1-17, affecting genes araB and RpiB in the genome. Finally, we speculate that these mutations may have impacted the expression of the enzymes coded by these genes, ribulokinase and Ribose 5-P-isomerase, thus attributing to the improvement of the arabinose utilization.« less

  4. Genetic engineering and improvement of a Zymomonas mobilis for arabinose utilization and its performance on pretreated corn stover hydrolyzate

    DOE PAGES

    Chou, Yat -Chen; Linger, Jeffrey; Yang, Shihui; ...

    2015-04-28

    In this paper, a glucose, xylose and arabinose utilizing Zymomonas mobilis strain was constructed by incorporating arabinose catabolic pathway genes, araBAD encoding L-ribulokinase, L-arabinose isomerase and L-ribulose-5-phosphate- 4-epimerase in a glucose, xylose co-fermenting host, 8b, using a transposition integration approach. Further improvement on this arabinose-capable integrant, 33C was achieved by applying a second transposition to create a genomic knockout (KO) mutant library. Using arabinose as a sole carbon source and a selection pressure, the KO library was subjected to a growth-enrichment process involving continuous sub-culturing for over 120 generations. Strain 13-1-17, isolated from such process demonstrated significant improvement in metabolizingmore » arabinose in a dilute acid pretreated, saccharified corn stover slurry. Through Next Generation Sequencing (NGS) analysis, integration sites of the transposons were identified. Furthermore, multiple additional point mutations (SNPs: Single Nucleotide Polymorphisms) were discovered in 13-1-17, affecting genes araB and RpiB in the genome. Finally, we speculate that these mutations may have impacted the expression of the enzymes coded by these genes, ribulokinase and Ribose 5-P-isomerase, thus attributing to the improvement of the arabinose utilization.« less

  5. Development of corn silk as a biocarrier for Zymomonas mobilis biofilms in ethanol production from rice straw.

    PubMed

    Todhanakasem, Tatsaporn; Tiwari, Rashmi; Thanonkeo, Pornthap

    2016-01-01

    Z. mobilis cell immobilization has been proposed as an effective means of improving ethanol production. In this work, polystyrene and corn silk were used as biofilm developmental matrices for Z. mobilis ethanol production with rice straw hydrolysate as a substrate. Rice straw was hydrolyzed by dilute sulfuric acid (H2SO4) and enzymatic hydrolysis. The final hydrolysate contained furfural (271.95 ± 76.30 ppm), 5-hydroxymethyl furfural (0.07 ± 0.00 ppm), vanillin (1.81 ± 0.00 ppm), syringaldehyde (5.07 ± 0.83 ppm), 4-hydroxybenzaldehyde (4-HB) (2.39 ± 1.20 ppm) and acetic acid (0.26 ± 0.08%). Bacterial attachment or biofilm formation of Z. mobilis strain TISTR 551 on polystyrene and delignified corn silk carrier provided significant ethanol yields. Results showed up to 0.40 ± 0.15 g ethanol produced/g glucose consumed when Z. mobilis was immobilized on a polystyrene carrier and 0.51 ± 0.13 g ethanol produced/g glucose consumed when immobilized on delignified corn silk carrier under batch fermentation by Z. mobilis TISTR 551 biofilm. The higher ethanol yield from immobilized, rather than free living, Z. mobilis could possibly be explained by a higher cell density, better control of anaerobic conditions and higher toxic tolerance of Z. mobilis biofilms over free cells.

  6. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032.

    PubMed

    Yang, Shihui; Vera, Jessica M; Grass, Jeff; Savvakis, Giannis; Moskvin, Oleg V; Yang, Yongfu; McIlwain, Sean J; Lyu, Yucai; Zinonos, Irene; Hebert, Alexander S; Coon, Joshua J; Bates, Donna M; Sato, Trey K; Brown, Steven D; Himmel, Michael E; Zhang, Min; Landick, Robert; Pappas, Katherine M; Zhang, Yaoping

    2018-01-01

    Zymomonas mobilis is a natural ethanologen being developed and deployed as an industrial biofuel producer. To date, eight Z. mobilis strains have been completely sequenced and found to contain 2-8 native plasmids. However, systematic verification of predicted Z. mobilis plasmid genes and their contribution to cell fitness has not been hitherto addressed. Moreover, the precise number and identities of plasmids in Z. mobilis model strain ZM4 have been unclear. The lack of functional information about plasmid genes in ZM4 impedes ongoing studies for this model biofuel-producing strain. In this study, we determined the complete chromosome and plasmid sequences of ZM4 and its engineered xylose-utilizing derivatives 2032 and 8b. Compared to previously published and revised ZM4 chromosome sequences, the ZM4 chromosome sequence reported here contains 65 nucleotide sequence variations as well as a 2400-bp insertion. Four plasmids were identified in all three strains, with 150 plasmid genes predicted in strain ZM4 and 2032, and 153 plasmid genes predicted in strain 8b due to the insertion of heterologous DNA for expanded substrate utilization. Plasmid genes were then annotated using Blast2GO, InterProScan, and systems biology data analyses, and most genes were found to have apparent orthologs in other organisms or identifiable conserved domains. To verify plasmid gene prediction, RNA-Seq was used to map transcripts and also compare relative gene expression under various growth conditions, including anaerobic and aerobic conditions, or growth in different concentrations of biomass hydrolysates. Overall, plasmid genes were more responsive to varying hydrolysate concentrations than to oxygen availability. Additionally, our results indicated that although all plasmids were present in low copy number (about 1-2 per cell), the copy number of some plasmids varied under specific growth conditions or due to heterologous gene insertion. The complete genome of ZM4 and two xylose

  7. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shihui; Vera, Jessica M.; Grass, Jeff

    Zymomonas mobilis is a natural ethanologen being developed and deployed as an industrial biofuel producer. To date, eight Z. mobilis strains have been completely sequenced and found to contain 2-8 native plasmids. However, systematic verification of predicted Z. mobilis plasmid genes and their contribution to cell fitness has not been hitherto addressed. Moreover, the precise number and identities of plasmids in Z. mobilis model strain ZM4 have been unclear. The lack of functional information about plasmid genes in ZM4 impedes ongoing studies for this model biofuel-producing strain. In this study, we determined the complete chromosome and plasmid sequences of ZM4more » and its engineered xylose-utilizing derivatives 2032 and 8b. Compared to previously published and revised ZM4 chromosome sequences, the ZM4 chromosome sequence reported here contains 65 nucleotide sequence variations as well as a 2400-bp insertion. Four plasmids were identified in all three strains, with 150 plasmid genes predicted in strain ZM4 and 2032, and 153 plasmid genes predicted in strain 8b due to the insertion of heterologous DNA for expanded substrate utilization. Plasmid genes were then annotated using Blast2GO, InterProScan, and systems biology data analyses, and most genes were found to have apparent orthologs in other organisms or identifiable conserved domains. To verify plasmid gene prediction, RNA-Seq was used to map transcripts and also compare relative gene expression under various growth conditions, including anaerobic and aerobic conditions, or growth in different concentrations of biomass hydrolysates. Overall, plasmid genes were more responsive to varying hydrolysate concentrations than to oxygen availability. Additionally, our results indicated that although all plasmids were present in low copy number (about 1-2 per cell), the copy number of some plasmids varied under specific growth conditions or due to heterologous gene insertion. The complete genome of ZM4 and two

  8. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032

    DOE PAGES

    Yang, Shihui; Vera, Jessica M.; Grass, Jeff; ...

    2018-05-02

    Zymomonas mobilis is a natural ethanologen being developed and deployed as an industrial biofuel producer. To date, eight Z. mobilis strains have been completely sequenced and found to contain 2-8 native plasmids. However, systematic verification of predicted Z. mobilis plasmid genes and their contribution to cell fitness has not been hitherto addressed. Moreover, the precise number and identities of plasmids in Z. mobilis model strain ZM4 have been unclear. The lack of functional information about plasmid genes in ZM4 impedes ongoing studies for this model biofuel-producing strain. In this study, we determined the complete chromosome and plasmid sequences of ZM4more » and its engineered xylose-utilizing derivatives 2032 and 8b. Compared to previously published and revised ZM4 chromosome sequences, the ZM4 chromosome sequence reported here contains 65 nucleotide sequence variations as well as a 2400-bp insertion. Four plasmids were identified in all three strains, with 150 plasmid genes predicted in strain ZM4 and 2032, and 153 plasmid genes predicted in strain 8b due to the insertion of heterologous DNA for expanded substrate utilization. Plasmid genes were then annotated using Blast2GO, InterProScan, and systems biology data analyses, and most genes were found to have apparent orthologs in other organisms or identifiable conserved domains. To verify plasmid gene prediction, RNA-Seq was used to map transcripts and also compare relative gene expression under various growth conditions, including anaerobic and aerobic conditions, or growth in different concentrations of biomass hydrolysates. Overall, plasmid genes were more responsive to varying hydrolysate concentrations than to oxygen availability. Additionally, our results indicated that although all plasmids were present in low copy number (about 1-2 per cell), the copy number of some plasmids varied under specific growth conditions or due to heterologous gene insertion. The complete genome of ZM4 and two

  9. Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis.

    PubMed

    Franden, Mary Ann; Pienkos, Philip T; Zhang, Min

    2009-12-01

    Overcoming the effects of hydrolysate toxicity towards ethanologens is a key technical barrier in the biochemical conversion process for biomass feedstocks to ethanol. Despite its importance, the complexity of the hydrolysate toxicity phenomena and the lack of systematic studies, analysis and tools surrounding this issue have blocked a full understanding of relationships involving toxic compounds in hydrolysates and their effects on ethanologen growth and fermentation. In this study, we developed a quantitative, high-throughput biological growth assay using an automated turbidometer to obtain detailed inhibitory kinetics for individual compounds present in lignocellulosic biomass hydrolysate. Information about prolonged lag time and final cell densities can also be obtained. The effects of furfural, hydroxymethylfurfural (HMF), acetate and ethanol on growth rate and final cell densities of Zymomonas mobilis 8b on glucose are presented. This method was also shown to be of value in toxicity studies of hydrolysate itself, despite the highly colored nature of this material. Using this approach, we can generate comprehensive inhibitory profiles with many individual compounds and develop models that predict and examine toxic effects in the complex mixture of hydrolysates, leading to the development of improved pretreatment and conditioning processes as well as fermentation organisms.

  10. Biotransformation of pineapple juice sugars into dietetic derivatives by using a cell free oxidoreductase from Zymomonas mobilis together with commercial invertase.

    PubMed

    Aziz, M G; Michlmayr, H; Kulbe, K D; Del Hierro, A M

    2011-01-05

    An easy procedure for cell free biotransformation of pineapple juice sugars into dietetic derivatives was accomplished using a commercial invertase and an oxidoreductase from Zymomonas mobilis. First, pineapple juice sucrose was quantitatively converted into glucose and fructose by invertase, thus increasing the concentration of each monosaccharide in the original juice to almost twice. In a second step, glucose-fructose oxidoreductase (GFOR) transformed glucose into gluconolactone, and fructose into the low calorie sweetener sorbitol. The advantage of using GFOR is simultaneous reduction of fructose and oxidation of glucose, allowing the continuous regeneration of the essential coenzyme NADP(H), that is tightly bound to the enzyme. The yield of GFOR catalyzed sugar conversion depends on initial pH and control of pH during the reaction. At optimal conditions (pH control at 6.2) a maximum of 80% (w/v) sugar conversion was obtained. Without pH control, GFOR is inactivated rapidly due to gluconic acid formation. Therefore, conversion yields are relatively low at the natural pH of pineapple juice. The application of this process might be more advantageous on juices of other tropical fruits (papaya, jackfruit, mango) due to their naturally given higher pH. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Identification of yeast and bacteria involved in the mezcal fermentation of Agave salmiana.

    PubMed

    Escalante-Minakata, P; Blaschek, H P; Barba de la Rosa, A P; Santos, L; De León-Rodríguez, A

    2008-06-01

    To identify the yeast and bacteria present in the mezcal fermentation from Agave salmiana. The restriction and sequence analysis of the amplified region, between 18S and 28S rDNA and 16S rDNA genes, were used for the identification of yeast and bacteria, respectively. Eleven different micro-organisms were identified in the mezcal fermentation. Three of them were the following yeast: Clavispora lusitaniae, Pichia fermentans and Kluyveromyces marxianus. The bacteria found were Zymomonas mobilis subsp. mobilis and Zymomonas mobilis subsp. pomaceae, Weissella cibaria, Weissella paramesenteroides, Lactobacillus pontis, Lactobacillus kefiri, Lactobacillus plantarum and Lactobacillus farraginis. The phylogenetic analysis of 16S rDNA and ITS sequences showed that microbial diversity present in mezcal is dominated by bacteria, mainly lactic acid bacteria species and Zymomonas mobilis. Pichia fermentans and K. marxianus could be micro-organisms with high potential for the production of some volatile compounds in mezcal. We identified the community of bacteria and yeast present in mezcal fermentation from Agave salmiana.

  12. From lin-benzoguanines to lin-benzohypoxanthines as ligands for Zymomonas mobilis tRNA-guanine transglycosylase: replacement of protein-ligand hydrogen bonding by importing water clusters.

    PubMed

    Barandun, Luzi Jakob; Immekus, Florian; Kohler, Philipp C; Tonazzi, Sandro; Wagner, Björn; Wendelspiess, Severin; Ritschel, Tina; Heine, Andreas; Kansy, Manfred; Klebe, Gerhard; Diederich, François

    2012-07-23

    The foodborne illness shigellosis is caused by Shigella bacteria that secrete the highly cytotoxic Shiga toxin, which is also formed by the closely related enterohemorrhagic Escherichia coli (EHEC). It has been shown that tRNA-guanine transglycosylase (TGT) is essential for the pathogenicity of Shigella flexneri. Herein, the molecular recognition properties of a guanine binding pocket in Zymomonas mobilis TGT are investigated with a series of lin-benzohypoxanthine- and lin-benzoguanine-based inhibitors that bear substituents to occupy either the ribose-33 or the ribose-34 pocket. The three inhibitor scaffolds differ by the substituent at C(6) being H, NH(2), or NH-alkyl. These differences lead to major changes in the inhibition constants, pK(a) values, and binding modes. Compared to the lin-benzoguanines, with an exocyclic NH(2) at C(6), the lin-benzohypoxanthines without an exocyclic NH(2) group have a weaker affinity as several ionic protein-ligand hydrogen bonds are lost. X-ray cocrystal structure analysis reveals that a new water cluster is imported into the space vacated by the lacking NH(2) group and by a conformational shift of the side chain of catalytic Asp102. In the presence of an N-alkyl group at C(6) in lin-benzoguanine ligands, this water cluster is largely maintained but replacement of one of the water molecules in the cluster leads to a substantial loss in binding affinity. This study provides new insight into the role of water clusters at enzyme active sites and their challenging substitution by ligand parts, a topic of general interest in contemporary structure-based drug design. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production

    PubMed Central

    2010-01-01

    Background Fermentations using Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST), and Zymomonas mobilis AX101 are compared side-by-side on corn steep liquor (CSL) media and the water extract and enzymatic hydrolysate from ammonia fiber expansion (AFEX)-pretreated corn stover. Results The three ethanologens are able produce ethanol from a CSL-supplemented co-fermentation at a metabolic yield, final concentration and rate greater than 0.42 g/g consumed sugars, 40 g/L and 0.7 g/L/h (0-48 h), respectively. Xylose-only fermentation of the tested ethanologenic bacteria are five to eight times faster than 424A(LNH-ST) in the CSL fermentation. All tested strains grow and co-ferment sugars at 15% w/v solids loading equivalent of ammonia fiber explosion (AFEX)-pretreated corn stover water extract. However, both KO11 and 424A(LNH-ST) exhibit higher growth robustness than AX101. In 18% w/w solids loading lignocellulosic hydrolysate from AFEX pretreatment, complete glucose fermentations can be achieved at a rate greater than 0.77 g/L/h. In contrast to results from fermentation in CSL, S. cerevisiae 424A(LNH-ST) consumed xylose at the greatest extent and rate in the hydrolysate compared to the bacteria tested. Conclusions Our results confirm that glucose fermentations among the tested strains are effective even at high solids loading (18% by weight). However, xylose consumption in the lignocellulosic hydrolysate is the major bottleneck affecting overall yield, titer or rate of the process. In comparison, Saccharomyces cerevisiae 424A(LNH-ST) is the most relevant strains for industrial production for its ability to ferment both glucose and xylose from undetoxified and unsupplemented hydrolysate from AFEX-pretreated corn stover at high yield. PMID:20507563

  14. Isolation, characterization, and primary structure of rubredoxin from the photosynthetic bacterium, Heliobacillus mobilis

    NASA Technical Reports Server (NTRS)

    Lee, W. Y.; Brune, D. C.; LoBrutto, R.; Blankenship, R. E.

    1995-01-01

    Rubredoxin is a small nonheme iron protein that serves as an electron carrier in bacterial systems. Rubredoxin has now been isolated and characterized from the strictly anaerobic phototroph, Heliobacillus mobilis. THe molecular mass (5671.3 Da from the amino acid sequence) was confirmed and partial formylation of the N-terminal methionyl residue was established by matrix-assisted laser desorption mass spectroscopy. The complete 52-amino-acid sequence was determined by a combination of N-terminal sequencing by Edman degradation and C-terminal sequencing by a novel method using carboxypeptidase treatment in conjunction with amino acid analysis and laser desorption time of flight mass spectrometry. The molar absorption coefficient of Hc. mobilis rubredoxin at 490 nm is 6.9 mM-1 cm-1 and the midpoint redox potential at pH 8.0 is -46 mV. The EPR spectrum of the oxidized form shows resonances at g = 9.66 and 4.30 due to a high-spin ferric iron. The amino acid sequence is homologous to those of rubredoxins from other species, in particular, the gram-positive bacteria, and the phototrophic green sulfur bacteria, and the evolutionary implications of this are discussed.

  15. Pantothenic acid biosynthesis in zymomonas

    DOEpatents

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  16. Alcanivorax mobilis sp. nov., a new hydrocarbon-degrading bacterium isolated from deep-sea sediment.

    PubMed

    Yang, Shuo; Li, Meiqing; Lai, Qiliang; Li, Guizhen; Shao, Zongze

    2018-05-01

    A taxonomic study was carried out on strain MT13131 T , which was isolated from deep-sea sediment of the Indian Ocean during the screening of oil-degrading bacteria. The chain length range of n-alkanes (C8 to C32) oxidized by strain MT13131 T was determined in this study. The bacterium was Gram-negative, oxidase- and catalase-positive, single rod shaped, and motile by peritrichous flagella. Growth was observed at salinities of 1-12 % and at temperatures of 10-42 °C. The isolate was capable of Tween 20, 40 and 80 hydrolysis, but incapable of gelatin, cellulose or starch hydrolysis. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MT13131 T belonged to the genus Alcanivorax, with highest sequence similarity to Alcanivorax marinus R8-12 T (96.92 %), other species of genus Alcanivorax shared 92.96-96.69 % sequence similarity. The principal fatty acids were summed feature 3 (C16 : 1ω6c/ω7c), summed feature 8 (C18 : 1ω7c/ω6c), C16 : 0 and C12 : 0 3OH. The G+C content of the chromosomal DNA was 64.2 mol%. Phosphatidylglycerol, phosphatidylethanolamine, three aminolipids and three phospholipids were present. The combined genotypic and phenotypic data showed that strain MT13131 T represents a novel species within the genus Alcanivorax, for which the name Alcanivorax mobilis sp. nov. is proposed, with the type strain MT13131 T (=MCCC 1A11581 T =KCTC 52985 T ).

  17. Optical mapping and sequencing of the Escherichia coli KO11 genome reveal extensive chromosomal rearrangements, and multiple tandem copies of the Zymomonas mobilis pdc and adhB genes.

    PubMed

    Turner, Peter C; Yomano, Lorraine P; Jarboe, Laura R; York, Sean W; Baggett, Christy L; Moritz, Brélan E; Zentz, Emily B; Shanmugam, K T; Ingram, Lonnie O

    2012-04-01

    Escherichia coli KO11 (ATCC 55124) was engineered in 1990 to produce ethanol by chromosomal insertion of the Zymomonas mobilis pdc and adhB genes into E. coli W (ATCC 9637). KO11FL, our current laboratory version of KO11, and its parent E. coli W were sequenced, and contigs assembled into genomic sequences using optical NcoI restriction maps as templates. E. coli W contained plasmids pRK1 (102.5 kb) and pRK2 (5.4 kb), but KO11FL only contained pRK2. KO11FL optical maps made with AflII and with BamHI showed a tandem repeat region, consisting of at least 20 copies of a 10-kb unit. The repeat region was located at the insertion site for the pdc, adhB, and chloramphenicol-resistance genes. Sequence coverage of these genes was about 25-fold higher than average, consistent with amplification of the foreign genes that were inserted as circularized DNA. Selection for higher levels of chloramphenicol resistance originally produced strains with higher pdc and adhB expression, and hence improved fermentation performance, by increasing the gene copy number. Sequence data for an earlier version of KO11, ATCC 55124, indicated that multiple copies of pdc adhB were present. Comparison of the W and KO11FL genomes showed large inversions and deletions in KO11FL, mostly enabled by IS10, which is absent from W but present at 30 sites in KO11FL. The early KO11 strain ATCC 55124 had no rearrangements, contained only one IS10, and lacked most accumulated single nucleotide polymorphisms (SNPs) present in KO11FL. Despite rearrangements and SNPs in KO11FL, fermentation performance was equal to that of ATCC 55124.

  18. Zymomonas with improved xylose utilization in stress conditions

    DOEpatents

    Caimi, Perry G; Emptage, Mark; Li, Xu; Viitanen, Paul V; Chou, Yat-Chen; Franden, Mary Ann; Zhang, Min

    2013-06-18

    Strains of xylose utilizing Zymomonas with improved xylose utilization and ethanol production during fermentation in stress conditions were obtained using an adaptation method. The adaptation involved continuously growing xylose utilizing Zymomonas in media containing high sugars, acetic acid, ammonia, and ethanol.

  19. Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate

    DOEpatents

    Caimi, Perry G.; Chou, Yat-Chen; Franden, Mary Ann; Knoke, Kyle; Tao, Luan; Viitanen, Paul V.; Zhang, Min; Zhang, Yuying

    2010-09-28

    Through screening of a Zymomonas mutant library the himA gene was found to be involved in the inhibitory effect of acetate on Zymomonas performance. Xylose-utilizing Zymomonas further engineered to reduce activity of the himA gene were found to have increased ethanol production in comparison to a parental strain, when cultured in medium comprising xylose and acetate.

  20. Towards an informative mutant phenotype for every bacterial gene

    DOE PAGES

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; ...

    2014-08-11

    Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, inmore » Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.

    Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, inmore » Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness.« less

  2. Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate

    DOEpatents

    Caimi, Perry G [Kennett Square, PA; Chou, Yat-Chen [Lakewood, CO; Franden, Mary Ann [Centennial, CO; Knoke, Kyle [Newark, DE; Tao, Luan [Havertown, PA; Viitanen, Paul V [West Chester, PA; Zhang, Min [Lakewood, CO; Zhang, Yuying [New Hope, PA

    2011-03-01

    Through screening of a Zymomonas mutant library the himA gene was found to be involved in the inhibitory effect of acetate on Zymomonas performance. Xylose-utilizing Zymomonas strains further engineered to reduce activity of the himA gene were found to have increased ethanol production in comparison to a parental strain, when cultured in mixed-sugars medium comprising xylose, and, in particular, in the presence of acetate.

  3. Xylose utilization in recombinant zymomonas

    DOEpatents

    Caimi, Perry G; McCole, Laura; Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V

    2014-03-25

    Xylose-utilizing Zymomonas strains studied were found to accumulate ribulose when grown in xylose-containing media. Engineering these strains to increase ribose-5-phosphate isomerase activity led to reduced ribulose accumulation, improved growth, improved xylose utilization, and increased ethanol production.

  4. Xylose utilization in recombinant Zymomonas

    DOEpatents

    Kahsay, Robel Y; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun

    2013-01-07

    Zymomonas expressing xylose isomerase from A. missouriensis was found to have improved xylose utilization, growth, and ethanol production when grown in media containing xylose. Xylose isomerases related to that of A. missouriensis were identified structurally through molecular phylogenetic and Profile Hidden Markov Model analyses, providing xylose isomerases that may be used to improve xylose utilization.

  5. Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, T.; Ingram, L.O.

    1989-07-01

    The gene that encodes 1,2-propanediol oxidoreductase (fucO) from Escherichia coli was sequenced. The reading frame specified a protein of 383 amino acids (including the N-terminal methionine), with an aggregate molecular weight of 40,642. The induction of fucO transcription, which occurred in the presence of fucose, was confirmed by Northern blot analysis. In E. coli, the primary fucO transcript was approximately 2.1 kilobases in length. The 5{prime} end of the transcript began more than 0.7 kilobase upstream of the fucO start codon within or beyond the fucA gene. Propanediol oxidoreductase exhibited 41.7% identity with the iron-containing alcohol dehydrogenase II from Zymomonasmore » mobilis and 39.5% identity with ADH4 from Saccharomyces cerevisiae. These three proteins did not share homology with either short-chain or long-chain zinc-containing alcohol dehydrogenase enzymes. We propose that these three unusual alcohol dehydrogenases define a new family of enzymes.« less

  6. Ethanol production in recombinant hosts

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D.

    2005-02-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  7. Ethanol production in gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D. F.

    1999-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  8. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D. F.

    1996-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  9. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1999-06-29

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  10. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1996-01-09

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  11. Global occurrence and heterogeneity of the Roseobacter-clade species Ruegeria mobilis

    PubMed Central

    Sonnenschein, Eva C; Nielsen, Kristian F; D'Alvise, Paul; Porsby, Cisse H; Melchiorsen, Jette; Heilmann, Jens; Kalatzis, Panos G; López-Pérez, Mario; Bunk, Boyke; Spröer, Cathrin; Middelboe, Mathias; Gram, Lone

    2017-01-01

    Tropodithietic acid (TDA)-producing Ruegeria mobilis strains of the Roseobacter clade have primarily been isolated from marine aquaculture and have probiotic potential due to inhibition of fish pathogens. We hypothesized that TDA producers with additional novel features are present in the oceanic environment. We isolated 42 TDA-producing R. mobilis strains during a global marine research cruise. While highly similar on the 16S ribosomal RNA gene level (99–100% identity), the strains separated into four sub-clusters in a multilocus sequence analysis. They were further differentiated to the strain level by average nucleotide identity using pairwise genome comparison. The four sub-clusters could not be associated with a specific environmental niche, however, correlated with the pattern of sub-typing using co-isolated phages, the number of prophages in the genomes and the distribution in ocean provinces. Major genomic differences within the sub-clusters include prophages and toxin-antitoxin systems. In general, the genome of R. mobilis revealed adaptation to a particle-associated life style and querying TARA ocean data confirmed that R. mobilis is more abundant in the particle-associated fraction than in the free-living fraction occurring in 40% and 6% of the samples, respectively. Our data and the TARA data, although lacking sufficient data from the polar regions, demonstrate that R. mobilis is a globally distributed marine bacterial species found primarily in the upper open oceans. It has preserved key phenotypic behaviors such as the production of TDA, but contains diverse sub-clusters, which could provide new capabilities for utilization in aquaculture. PMID:27552638

  12. Bacterial supersystem for alginate import/metabolism and its environmental and bioenergy applications.

    PubMed

    Hashimoto, Wataru; Kawai, Shigeyuki; Murata, Kousaku

    2010-01-01

    Distinct from most alginate-assimilating bacteria that secrete polysaccharide lyases extracellularly, a gram-negative bacterium, Sphingomonas sp. A1 (strain A1), can directly incorporate alginate into its cytoplasm, without degradation, through a "superchannel" consisting of a mouth-like pit on the cell surface, periplasmic binding proteins, and a cytoplasmic membrane-bound ATP-binding cassette transporter. Flagellin homologues function as cell surface alginate receptors essential for expressing the superchannel. Cytoplasmic alginate lyases with different substrate specificities and action modes degrade the polysaccharide to its constituent monosaccharides. The resultant monosaccharides, α-keto acids, are converted to a reduced form by NADPH-dependent reductase, and are finally metabolized in the TCA cycle. Transplantation of the strain A1 superchannel to xenobiotic-degrading sphingomonads enhances bioremediation through the propagation of bacteria with an elevated transport activity. Furthermore, strain A1 cells transformed with Zymomonas mobilis genes for pyruvate decarboxylase and alcohol dehydrogenase II produce considerable amounts of biofuel ethanol from alginate when grown statically. © 2010 Landes Bioscience

  13. Biological conversion system

    DOEpatents

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  14. Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production.

    PubMed

    Kannuchamy, Saranyah; Mukund, Nisha; Saleena, Lilly M

    2016-05-11

    The twin problem of shortage in fossil fuel and increase in environmental pollution can be partly addressed by blending of ethanol with transport fuel. Increasing the ethanol production for this purpose without affecting the food security of the countries would require the use of cellulosic plant materials as substrate. Clostridium thermocellum is an anaerobic thermophilic bacterium with cellulolytic property and the ability to produce ethanol. But its application as biocatalyst for ethanol production is limited because pyruvate ferredoxin oxidoreductase, which diverts pyruvate to ethanol production pathway, has low affinity to the substrate. Therefore, the present study was undertaken to genetically modify C. thermocellum for enhancing its ethanol production capacity by transferring pyruvate carboxylase (pdc) and alcohol dehydrogenase (adh) genes of the homoethanol pathway from Zymomonas mobilis. The pdc and adh genes from Z. mobilis were cloned in pNW33N, and transformed to Clostridium thermocellum DSM 1313 by electroporation to generate recombinant CTH-pdc, CTH-adh and CTH-pdc-adh strains that carried heterologous pdc, adh, and both genes, respectively. The plasmids were stably maintained in the recombinant strains. Though both pdc and adh were functional in C. thermocellum, the presence of adh severely limited the growth of the recombinant strains, irrespective of the presence or absence of the pdc gene. The recombinant CTH-pdc strain showed two-fold increase in pyruvate carboxylase activity and ethanol production when compared with the wild type strain. Pyruvate decarboxylase gene of the homoethanol pathway from Z mobilis was functional in recombinant C. thermocellum strain and enhanced its ability to produced ethanol. Strain improvement and bioprocess optimizations may further increase the ethanol production from this recombinant strain.

  15. A Highly Active Endo-Levanase BT1760 of a Dominant Mammalian Gut Commensal Bacteroides thetaiotaomicron Cleaves Not Only Various Bacterial Levans, but Also Levan of Timothy Grass

    PubMed Central

    Vija, Heiki; Aasamets, Anneli; Viigand, Katrin

    2017-01-01

    Bacteroides thetaiotaomicron, an abundant commensal of the human gut, degrades numerous complex carbohydrates. Recently, it was reported to grow on a β-2,6-linked polyfructan levan produced by Zymomonas mobilis degrading the polymer into fructooligosaccharides (FOS) with a cell surface bound endo-levanase BT1760. The FOS are consumed by B. thetaiotaomicron, but also by other gut bacteria, including health-promoting bifidobacteria and lactobacilli. Here we characterize biochemical properties of BT1760, including the activity of BT1760 on six bacterial levans synthesized by the levansucrase Lsc3 of Pseudomonas syringae pv. tomato, its mutant Asp300Asn, levansucrases of Zymomonas mobilis, Erwinia herbicola, Halomonas smyrnensis as well as on levan isolated from timothy grass. For the first time a plant levan is shown as a perfect substrate for an endo-fructanase of a human gut bacterium. BT1760 degraded levans to FOS with degree of polymerization from 2 to 13. At optimal reaction conditions up to 1 g of FOS were produced per 1 mg of BT1760 protein. Low molecular weight (<60 kDa) levans, including timothy grass levan and levan synthesized from sucrose by the Lsc3Asp300Asn, were degraded most rapidly whilst levan produced by Lsc3 from raffinose least rapidly. BT1760 catalyzed finely at human body temperature (37°C) and in moderately acidic environment (pH 5–6) that is typical for the gut lumen. According to differential scanning fluorimetry, the Tm of the endo-levanase was 51.5°C. All tested levans were sufficiently stable in acidic conditions (pH 2.0) simulating the gastric environment. Therefore, levans of both bacterial and plant origin may serve as a prebiotic fiber for B. thetaiotaomicron and contribute to short-chain fatty acids synthesis by gut microbiota. In the genome of Bacteroides xylanisolvens of human origin a putative levan degradation locus was disclosed. PMID:28103254

  16. A Highly Active Endo-Levanase BT1760 of a Dominant Mammalian Gut Commensal Bacteroides thetaiotaomicron Cleaves Not Only Various Bacterial Levans, but Also Levan of Timothy Grass.

    PubMed

    Mardo, Karin; Visnapuu, Triinu; Vija, Heiki; Aasamets, Anneli; Viigand, Katrin; Alamäe, Tiina

    2017-01-01

    Bacteroides thetaiotaomicron, an abundant commensal of the human gut, degrades numerous complex carbohydrates. Recently, it was reported to grow on a β-2,6-linked polyfructan levan produced by Zymomonas mobilis degrading the polymer into fructooligosaccharides (FOS) with a cell surface bound endo-levanase BT1760. The FOS are consumed by B. thetaiotaomicron, but also by other gut bacteria, including health-promoting bifidobacteria and lactobacilli. Here we characterize biochemical properties of BT1760, including the activity of BT1760 on six bacterial levans synthesized by the levansucrase Lsc3 of Pseudomonas syringae pv. tomato, its mutant Asp300Asn, levansucrases of Zymomonas mobilis, Erwinia herbicola, Halomonas smyrnensis as well as on levan isolated from timothy grass. For the first time a plant levan is shown as a perfect substrate for an endo-fructanase of a human gut bacterium. BT1760 degraded levans to FOS with degree of polymerization from 2 to 13. At optimal reaction conditions up to 1 g of FOS were produced per 1 mg of BT1760 protein. Low molecular weight (<60 kDa) levans, including timothy grass levan and levan synthesized from sucrose by the Lsc3Asp300Asn, were degraded most rapidly whilst levan produced by Lsc3 from raffinose least rapidly. BT1760 catalyzed finely at human body temperature (37°C) and in moderately acidic environment (pH 5-6) that is typical for the gut lumen. According to differential scanning fluorimetry, the Tm of the endo-levanase was 51.5°C. All tested levans were sufficiently stable in acidic conditions (pH 2.0) simulating the gastric environment. Therefore, levans of both bacterial and plant origin may serve as a prebiotic fiber for B. thetaiotaomicron and contribute to short-chain fatty acids synthesis by gut microbiota. In the genome of Bacteroides xylanisolvens of human origin a putative levan degradation locus was disclosed.

  17. Ethanol production using xylitol synthesis mutant of xylose-utilizing zymomonas

    DOEpatents

    Viitanen, Paul V.; McCutchen, Carol M.; Emptage, Mark; Caimi, Perry G.; Zhang, Min; Chou, Yat-Chen

    2010-06-22

    Production of ethanol using a strain of xylose-utilizing Zymomonas with a genetic modification of the glucose-fructose oxidoreductase gene was found to be improved due to greatly reduced production of xylitol, a detrimental by-product of xylose metabolism synthesized during fermentation.

  18. Comparative fermentation behaviour and chemical characteristics of Saccharomyces and Zymomonas fermented culled apple juice.

    PubMed

    Sandhu, D K; Joshi, V K

    1994-12-01

    Ethanol production from culled apple juice showed that fermentability of the juice could be enhanced by addition of DAHP or ammonium sulphate in Saccharomyces and DAHP in Zymomonas fermentation. Addition of trace elements inhibited both the fermentations and ethanol, consequently. With respect to by-products of fermentation, no clear advantage of Zymomnas fermentation of culled apple juice could be observed. Differences in physico-chemical characteristics of the fermented apple juice were also noted. Saccharomyces cerevisiae proved to be better than Zymomonas in most of the parameters and is preferrable from handling and spoilage point of view.

  19. OptSSeq: High-throughput sequencing readout of growth enrichment defines optimal gene expression elements for homoethanologenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Indro Neil; Landick, Robert

    The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosomebinding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate tomore » ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe 2+-dependent AdhB and Zn 2+- dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. Furthermore, OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.« less

  20. OptSSeq: High-throughput sequencing readout of growth enrichment defines optimal gene expression elements for homoethanologenesis

    DOE PAGES

    Ghosh, Indro Neil; Landick, Robert

    2016-07-16

    The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosomebinding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate tomore » ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe 2+-dependent AdhB and Zn 2+- dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. Furthermore, OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.« less

  1. Bioethanol production by heterologous expression of Pdc and AdhII in Streptomyces lividans.

    PubMed

    Lee, Jae Sun; Chi, Won-Jae; Hong, Soon-Kwang; Yang, Ji-Won; Chang, Yong Keun

    2013-07-01

    Two genes from Zymomonas mobilis that are responsible for ethanol production, pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhII), were heterologously expressed in the Gram-positive bacterium Streptomyces lividans TK24. An examination of carbon distribution revealed that a significant portion of carbon metabolism was switched from biomass and organic acid biosynthesis to ethanol production upon the expression of pdc and adhII. The recombinant S. lividans TK24 produced ethanol from glucose with a yield of 23.7% based on the carbohydrate consumed. The recombinant was able to produce ethanol from xylose, L-arabinose, mannose, L-rhamnose, galactose, ribose, and cellobiose with yields of 16.0, 25.6, 21.5, 33.6, 30.6, 14.6, and 33.3%, respectively. Polymeric substances such as starch and xylan were directly converted to ethanol by the recombinant with ethanol yields of 18.9 and 8.8%, respectively. The recombinant S. lividans TK24/Tpet developed in this study is potentially a useful microbial resource for ethanol production from various sources of biomasses, especially microalgae.

  2. Purification and characterization of an oxygen-labile, NAD-dependent alcohol dehydrogenase from Desulfovibrio gigas.

    PubMed Central

    Hensgens, C M; Vonck, J; Van Beeumen, J; van Bruggen, E F; Hansen, T A

    1993-01-01

    A NAD-dependent, oxygen-labile alcohol dehydrogenase was purified from Desulfovibrio gigas. It was decameric, with subunits of M(r) 43,000. The best substrates were ethanol (Km, 0.15 mM) and 1-propanol (Km, 0.28 mM). N-terminal amino acid sequence analysis showed that the enzyme belongs to the same family of alcohol dehydrogenases as Zymomonas mobilis ADH2 and Bacillus methanolicus MDH. Images PMID:8491707

  3. Xylitol synthesis mutant of xylose-utilizing zymomonas for ethanol production

    DOEpatents

    Viitanen, Paul V.; Chou, Yat-Chen; McCutchen, Carol M.; Zhang, Min

    2010-06-22

    A strain of xylose-utilizing Zymomonas was engineered with a genetic modification to the glucose-fructose oxidoreductase gene resulting in reduced expression of GFOR enzyme activity. The engineered strain exhibits reduced production of xylitol, a detrimental by-product of xylose metabolism. It also consumes more xylose and produces more ethanol during mixed sugar fermentation under process-relevant conditions.

  4. Pnp gene modification for improved xylose utilization in Zymomonas

    DOEpatents

    Caimi, Perry G G; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun

    2014-12-16

    The endogenous pnp gene encoding polynucleotide phosphorylase in the Zymomonas genome was identified as a target for modification to provide improved xylose utilizing cells for ethanol production. The cells are in addition genetically modified to have increased expression of ribose-5-phosphate isomerase (RPI) activity, as compared to cells without this genetic modification, and are not limited in xylose isomerase activity in the absence of the pnp modification.

  5. Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland

    DOE PAGES

    Susanti, Dwi; Johnson, Eric F.; Lapidus, Alla; ...

    2016-01-13

    Our report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H 2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H 2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilizationmore » systems also exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.« less

  6. Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland.

    PubMed

    Susanti, Dwi; Johnson, Eric F; Lapidus, Alla; Han, James; Reddy, T B K; Pilay, Manoj; Ivanova, Natalia N; Markowitz, Victor M; Woyke, Tanja; Kyrpides, Nikos C; Mukhopadhyay, Biswarup

    2016-01-01

    This report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilization systems also exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.

  7. Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susanti, Dwi; Johnson, Eric F.; Lapidus, Alla

    Our report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H 2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H 2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilizationmore » systems also exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.« less

  8. Fine structure and ecdysis of mandibular sensilla associated with the lacinia mobilis in Neomysis integer (Leach, 1814) (Crustacea, Malacostraca, Peracarida).

    PubMed

    Geiselbrecht, Hannes; Melzer, Roland R

    2014-05-01

    The external and internal structures of adult Neomysis integer mandibles were studied using light and electron microscopy with special reference to the lacinia mobilis, a highly specialized appendage on the gnathal edge of many crustaceans. The right and left lacinia mobilis are equipped with ciliary primary sensory cells revealing that both laciniae are also mechanosensory organs in addition to their mechanical function during mastication. A detailed character analyses indicated that the right lacinia is probably a highly derived sensory seta, whereas two alternative interpretations are considered for the left lacinia; it could be a sensillar appendage equipped with two mechanosensory units, or it could be a movable appendage of the incisor process containing two sensilla deprived of external appendages. The ecdysis of the lacinia mobilis corresponds very well to type I sensillar ecdysis, suggesting classification as a sensillar appendage. These features support a possible homology of the right lacinia mobilis in Peracarida and Decapoda, tracing them to an origin as a member of the setal row. Whether the left lacinia mobilis is a sensillum or an appendage with sensilla cannot be resolved presently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates

    PubMed Central

    Skerker, Jeffrey M; Leon, Dacia; Price, Morgan N; Mar, Jordan S; Tarjan, Daniel R; Wetmore, Kelly M; Deutschbauer, Adam M; Baumohl, Jason K; Bauer, Stefan; Ibáñez, Ana B; Mitchell, Valerie D; Wu, Cindy H; Hu, Ping; Hazen, Terry; Arkin, Adam P

    2013-01-01

    The efficient production of biofuels from cellulosic feedstocks will require the efficient fermentation of the sugars in hydrolyzed plant material. Unfortunately, plant hydrolysates also contain many compounds that inhibit microbial growth and fermentation. We used DNA-barcoded mutant libraries to identify genes that are important for hydrolysate tolerance in both Zymomonas mobilis (44 genes) and Saccharomyces cerevisiae (99 genes). Overexpression of a Z. mobilis tolerance gene of unknown function (ZMO1875) improved its specific ethanol productivity 2.4-fold in the presence of miscanthus hydrolysate. However, a mixture of 37 hydrolysate-derived inhibitors was not sufficient to explain the fitness profile of plant hydrolysate. To deconstruct the fitness profile of hydrolysate, we profiled the 37 inhibitors against a library of Z. mobilis mutants and we modeled fitness in hydrolysate as a mixture of fitness in its components. By examining outliers in this model, we identified methylglyoxal as a previously unknown component of hydrolysate. Our work provides a general strategy to dissect how microbes respond to a complex chemical stress and should enable further engineering of hydrolysate tolerance. PMID:23774757

  10. Bio-based extraction and stabilization of anthocyanins.

    PubMed

    Roy, Anirban; Mukherjee, Rudra Palash; Howard, Luke; Beitle, Robert

    2016-05-01

    This work reports a novel method of recovering anthocyanin compounds from highly-pigmented grapes via a fermentation based approach. It was hypothesized that batch growth of Zymomonas mobilis on simple medium would produce both ethanol and enzymes/biomass-acting materials, the combination of which will provide a superior extraction when compared to simple alcohol extraction. To examine this hypothesis, Z. mobilis was fermented in a batch consisting of mashed Vitis vinifera and glucose, and the recovered anthocyanin pool was compared to that recovered via extraction with ethanol. Data indicated higher amounts of anthocyanins were recovered when compared to simple solvent addition. Additionally, the percent polymeric form of the anthocyanins could be manipulated by the level of aeration maintained in the fermentation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:601-605, 2016. © 2016 American Institute of Chemical Engineers.

  11. Fuel alcohol biosynthesis by Zymomonas anaerobia: optimization studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosaric, N.; Ong, S.L.; Davnjak, Z.

    1982-03-01

    The optimum operating conditions for growth and ethanol production of Zymomonas anaerobia ATCC 29501 were established. The optimum pH range and temperature were found to be 5.0-6.0 and 35/sup 0/C, respectively. Based on the results obtained from the temperature optimization study, an Arrhenius-type temperature relationship for the specific growth rate was developed. The growth and ethanol production of this microbe also have been optimized in terms of concentrations of glucose, essential nutrients, and minerals. With optimum medium and operating conditions, an ethanol concentration of 96 g/L was obtained in 23h. Both growth and ethanol yield coefficients in dependence on initialmore » glucose concentrations were determined.« less

  12. Fuel alcohol biosynthesis by Zymomonas anaerobia: optimization studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosaric, N.; Ong, S.L.; Duvnjak, Z.

    1982-03-01

    The optimum operating conditions for growth and ethanol production of Zymomonas anaerobia ATCC 29501 were established. The optimum pH range and temperature were found to be 5.0-6.0 and 35 degrees C, respectively. Based on the results obtained from the temperature optimization study, an Arrhenius-type temperature relationship for the specific growth rate was developed. The growth and ethanol production of this microbe also have been optimized in terms of concentrations of glucose, essential nutrients, and minerals. With optimum medium and operating conditions, an ethanol concentration of 96 g/L was obtained in 23 hours. Both growth and ethanol yield coefficients in dependencemore » on initial glucose concentrations were determined. (Refs. 16).« less

  13. Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) share the same nomenclatural type (ATCC 13048) on the Approved Lists and are homotypic synonyms, with consequences for the name Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980).

    PubMed

    Tindall, B J; Sutton, G; Garrity, G M

    2017-02-01

    Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) were placed on the Approved Lists of Bacterial Names and were based on the same nomenclatural type, ATCC 13048. Consequently they are to be treated as homotypic synonyms. However, the names of homotypic synonyms at the rank of species normally are based on the same epithet. Examination of the Rules of the International Code of Nomenclature of Bacteria in force at the time indicates that the epithet mobilis in Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) was illegitimate at the time the Approved Lists were published and according to the Rules of the current International Code of Nomenclature of Prokaryotes continues to be illegitimate.

  14. Exometabolomics Assisted Design and Validation of Synthetic Obligate Mutualism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosina, Suzanne M.; Danielewicz, Megan A.; Mohammed, Mujahid

    Synthetic microbial ecology has the potential to enhance the productivity and resiliency of biotechnology processes compared to approaches using single isolates. Engineering microbial consortia is challenging; however, one approach that has attracted significant attention is the creation of synthetic obligate mutualism using auxotrophic mutants that depend on each other for exchange or cross-feeding of metabolites. In this paper, we describe the integration of mutant library fitness profiling with mass spectrometry based exometabolomics as a method for constructing synthetic mutualism based on cross-feeding. Two industrially important species lacking known ecological interactions, Zymomonas mobilis and Escherichia coli, were selected as the testmore » species. Amino acid exometabolites identified in the spent medium of Z. mobilis were used to select three corresponding E. coli auxotrophs (proA, pheA and IlvA), as potential E. coli counterparts for the coculture. A pooled mutant fitness assay with a Z. mobilis transposon mutant library was used to identify mutants with improved growth in the presence of E. coli. An auxotroph mutant in a gene (ZMO0748) with sequence similarity to cysteine synthase A (cysK), was selected as the Z. mobilis counterpart for the coculture. Exometabolomic analysis of spent E. coli medium identified glutathione related metabolites as potentially available for rescue of the Z. mobilis cysteine synthase mutant. Three sets of cocultures between the Z. mobilis auxotroph and each of the three E. coli auxotrophs were monitored by optical density for growth and analyzed by flow cytometry to confirm high cell counts for each species. Taken together, our methods provide a technological framework for creating synthetic mutualisms combining existing screening based methods and exometabolomics for both the selection of obligate mutualism partners and elucidation of metabolites involved in auxotroph rescue.« less

  15. Exometabolomics Assisted Design and Validation of Synthetic Obligate Mutualism.

    PubMed

    Kosina, Suzanne M; Danielewicz, Megan A; Mohammed, Mujahid; Ray, Jayashree; Suh, Yumi; Yilmaz, Suzan; Singh, Anup K; Arkin, Adam P; Deutschbauer, Adam M; Northen, Trent R

    2016-07-15

    Synthetic microbial ecology has the potential to enhance the productivity and resiliency of biotechnology processes compared to approaches using single isolates. Engineering microbial consortia is challenging; however, one approach that has attracted significant attention is the creation of synthetic obligate mutualism using auxotrophic mutants that depend on each other for exchange or cross-feeding of metabolites. Here, we describe the integration of mutant library fitness profiling with mass spectrometry based exometabolomics as a method for constructing synthetic mutualism based on cross-feeding. Two industrially important species lacking known ecological interactions, Zymomonas mobilis and Escherichia coli, were selected as the test species. Amino acid exometabolites identified in the spent medium of Z. mobilis were used to select three corresponding E. coli auxotrophs (proA, pheA and IlvA), as potential E. coli counterparts for the coculture. A pooled mutant fitness assay with a Z. mobilis transposon mutant library was used to identify mutants with improved growth in the presence of E. coli. An auxotroph mutant in a gene (ZMO0748) with sequence similarity to cysteine synthase A (cysK), was selected as the Z. mobilis counterpart for the coculture. Exometabolomic analysis of spent E. coli medium identified glutathione related metabolites as potentially available for rescue of the Z. mobilis cysteine synthase mutant. Three sets of cocultures between the Z. mobilis auxotroph and each of the three E. coli auxotrophs were monitored by optical density for growth and analyzed by flow cytometry to confirm high cell counts for each species. Taken together, our methods provide a technological framework for creating synthetic mutualisms combining existing screening based methods and exometabolomics for both the selection of obligate mutualism partners and elucidation of metabolites involved in auxotroph rescue.

  16. Exometabolomics Assisted Design and Validation of Synthetic Obligate Mutualism

    DOE PAGES

    Kosina, Suzanne M.; Danielewicz, Megan A.; Mohammed, Mujahid; ...

    2016-02-17

    Synthetic microbial ecology has the potential to enhance the productivity and resiliency of biotechnology processes compared to approaches using single isolates. Engineering microbial consortia is challenging; however, one approach that has attracted significant attention is the creation of synthetic obligate mutualism using auxotrophic mutants that depend on each other for exchange or cross-feeding of metabolites. In this paper, we describe the integration of mutant library fitness profiling with mass spectrometry based exometabolomics as a method for constructing synthetic mutualism based on cross-feeding. Two industrially important species lacking known ecological interactions, Zymomonas mobilis and Escherichia coli, were selected as the testmore » species. Amino acid exometabolites identified in the spent medium of Z. mobilis were used to select three corresponding E. coli auxotrophs (proA, pheA and IlvA), as potential E. coli counterparts for the coculture. A pooled mutant fitness assay with a Z. mobilis transposon mutant library was used to identify mutants with improved growth in the presence of E. coli. An auxotroph mutant in a gene (ZMO0748) with sequence similarity to cysteine synthase A (cysK), was selected as the Z. mobilis counterpart for the coculture. Exometabolomic analysis of spent E. coli medium identified glutathione related metabolites as potentially available for rescue of the Z. mobilis cysteine synthase mutant. Three sets of cocultures between the Z. mobilis auxotroph and each of the three E. coli auxotrophs were monitored by optical density for growth and analyzed by flow cytometry to confirm high cell counts for each species. Taken together, our methods provide a technological framework for creating synthetic mutualisms combining existing screening based methods and exometabolomics for both the selection of obligate mutualism partners and elucidation of metabolites involved in auxotroph rescue.« less

  17. Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels

    PubMed Central

    Jung, Sang-Kyu; Parisutham, Vinuselvi; Jeong, Seong Hun; Lee, Sung Kuk

    2012-01-01

    A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies. PMID:22911272

  18. Bioethanol Production From Banana Stem By Using Simultaneous Saccharification and Fermentation (SSF)

    NASA Astrophysics Data System (ADS)

    Kusmiyati; Mustofa, A.; Jumarmi

    2018-05-01

    The rapid growth and development of industries in the world result in a greater energy needs. Some studies show that ethanol can be used as an alternative energy. However, bioethanol production from food raw materials such as sugar and starch has drawback that cause the food crisis. This aim of this study was to convert banana stem into bioethanol. Banana stem contained of 44.6% cellulose, 36.0% hemicellulose and 19.4% lignin. After banana stems were pretreated with acid (H2SO4) and alkaline (NaOH) at a concentration of 2% w/v at 121 °C for 30 minutes, then subsequently the simultaneous saccharification and fermentation (SSF) were carried out by using mixed cultures of Aspergillus niger, Trichoderma reesei and Zymomonas mobilis at various enzymes ratios of (1:1:1), (1:2:1), (1:2:2), (1:1:2) and various pH (4, 5 and 6) with SSF time for 144 hours and temperature of 30°C. The results show that acid pretreatment showed better results than the alkali pretreatment. After acid pretreatment and alkali pretreatment, lignin content of pretreted banana stem reduced to 15.92% and 16.34%, respectively, cellulose increased to 52.11% and 50.6% respectively, hemicellulose reduced to 28.45% and 28.83%, respectively The SSF showed that pH 5 gave the highest bioethanol. The highest concentration of bioethanol (8.51 g/L) was achieved at the SSF process at pH 5 with a ratio Aspergillus niger, Trichoderma reesei and Zymomonas mobilis enzymes of (1:1:2).

  19. Bioethanol production from leafy biomass of mango (Mangifera indica) involving naturally isolated and recombinant enzymes.

    PubMed

    Das, Saprativ P; Ravindran, Rajeev; Deka, Deepmoni; Jawed, Mohammad; Das, Debasish; Goyal, Arun

    2013-01-01

    The present study describes the usage of dried leafy biomass of mango (Mangifera indica) containing 26.3% (w/w) cellulose, 54.4% (w/w) hemicellulose, and 16.9% (w/w) lignin, as a substrate for bioethanol production from Zymomonas mobilis and Candida shehatae. The substrate was subjected to two different pretreatment strategies, namely, wet oxidation and an organosolv process. An ethanol concentration (1.21 g/L) was obtained with Z. mobilis in a shake-flask simultaneous saccharification and fermentation (SSF) trial using 1% (w/v) wet oxidation pretreated mango leaves along with mixed enzymatic consortium of Bacillus subtilis cellulase and recombinant hemicellulase (GH43), whereas C. shehatae gave a slightly higher (8%) ethanol titer of 1.31 g/L. Employing 1% (w/v) organosolv pretreated mango leaves and using Z. mobilis and C. shehatae separately in the SSF, the ethanol titers of 1.33 g/L and 1.52 g/L, respectively, were obtained. The SSF experiments performed with 5% (w/v) organosolv-pretreated substrate along with C. shehatae as fermentative organism gave a significantly enhanced ethanol titer value of 8.11 g/L using the shake flask and 12.33 g/L at the bioreactor level. From the bioreactor, 94.4% (v/v) ethanol was recovered by rotary evaporator with 21% purification efficiency.

  20. Enabling Unbalanced Fermentations by Using Engineered Electrode-Interfaced Bacteria

    PubMed Central

    Flynn, Jeffrey M.; Ross, Daniel E.; Hunt, Kristopher A.; Bond, Daniel R.; Gralnick, Jeffrey A.

    2010-01-01

    Cellular metabolism is a series of tightly linked oxidations and reductions that must be balanced. Recycling of intracellular electron carriers during fermentation often requires substrate conversion to undesired products, while respiration demands constant addition of electron acceptors. The use of electrode-based electron acceptors to balance biotransformations may overcome these constraints. To test this hypothesis, the metal-reducing bacterium Shewanella oneidensis was engineered to stoichiometrically convert glycerol into ethanol, a biotransformation that will not occur unless two electrons are removed via an external reaction, such as electrode reduction. Multiple modules were combined into a single plasmid to alter S. oneidensis metabolism: a glycerol module, consisting of glpF, glpK, glpD, and tpiA from Escherichia coli, and an ethanol module containing pdc and adh from Zymomonas mobilis. A further increase in product yields was accomplished through knockout of pta, encoding phosphate acetyltransferase, shifting flux toward ethanol and away from acetate production. In this first-generation demonstration, conversion of glycerol to ethanol required the presence of an electrode to balance the reaction, and electrode-linked rates were on par with volumetric conversion rates observed in engineered E. coli. Linking microbial biocatalysis to current production can eliminate redox constraints by shifting other unbalanced reactions to yield pure products and serve as a new platform for next-generation bioproduction strategies. PMID:21060736

  1. Pulque production from fermented agave sap as a dietary supplement in Prehispanic Mesoamerica.

    PubMed

    Correa-Ascencio, Marisol; Robertson, Ian G; Cabrera-Cortés, Oralia; Cabrera-Castro, Rubén; Evershed, Richard P

    2014-09-30

    Although in modern societies fermented beverages are associated with socializing, celebration, and ritual, in ancient times they were also importa`nt sources of essential nutrients and potable water. In Mesoamerica, pulque, an alcoholic beverage produced from the fermented sap of several species of maguey plants (Agavaceae; Fig. 1) is hypothesized to have been used as a dietary supplement and risk-buffering food in ancient Teotihuacan (150 B.C. to A.D. 650). Although direct archaeological evidence of pulque production is lacking, organic residue analysis of pottery vessels offers a new avenue of investigation. However, the chemical components of alcoholic beverages are water-soluble, greatly limiting their survival over archaeological timescales compared with hydrophobic lipids widely preserved in food residues. Hence, we apply a novel lipid biomarker approach that considers detection of bacteriohopanoids derived from the ethanol-producing bacterium Zymomonas mobilis for identifying pulque production/consumption in pottery vessels. Gas chromatography-mass spectrometry selected ion monitoring (m/z 191) of lipid extracts of >300 potsherds revealed characteristic bacteriohopanoid distributions in a subset of 14 potsherds. This hopanoid biomarker approach offers a new means of identifying commonly occurring bacterially fermented alcoholic beverages worldwide, including palm wine, beer, cider, perry, and other plant sap- or fruit-derived beverages [Swings J, De Ley J (1977) Bacteriol Rev 41(1):1-46].

  2. Pulque production from fermented agave sap as a dietary supplement in Prehispanic Mesoamerica

    PubMed Central

    Correa-Ascencio, Marisol; Robertson, Ian G.; Cabrera-Cortés, Oralia; Cabrera-Castro, Rubén; Evershed, Richard P.

    2014-01-01

    Although in modern societies fermented beverages are associated with socializing, celebration, and ritual, in ancient times they were also importa`nt sources of essential nutrients and potable water. In Mesoamerica, pulque, an alcoholic beverage produced from the fermented sap of several species of maguey plants (Agavaceae; Fig. 1) is hypothesized to have been used as a dietary supplement and risk-buffering food in ancient Teotihuacan (150 B.C. to A.D. 650). Although direct archaeological evidence of pulque production is lacking, organic residue analysis of pottery vessels offers a new avenue of investigation. However, the chemical components of alcoholic beverages are water-soluble, greatly limiting their survival over archaeological timescales compared with hydrophobic lipids widely preserved in food residues. Hence, we apply a novel lipid biomarker approach that considers detection of bacteriohopanoids derived from the ethanol-producing bacterium Zymomonas mobilis for identifying pulque production/consumption in pottery vessels. Gas chromatography–mass spectrometry selected ion monitoring (m/z 191) of lipid extracts of >300 potsherds revealed characteristic bacteriohopanoid distributions in a subset of 14 potsherds. This hopanoid biomarker approach offers a new means of identifying commonly occurring bacterially fermented alcoholic beverages worldwide, including palm wine, beer, cider, perry, and other plant sap- or fruit-derived beverages [Swings J, De Ley J (1977) Bacteriol Rev 41(1):1–46]. PMID:25225408

  3. Novel reaction for new fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clyde, R.A.

    Independent investigators have found that sugar can be fermented to alcohol for gasohol in 15 minutes by immobilizing organisms such as Zymomonas mobilis on rotating fibers. Half a pound of Celite has the surface area of a football field and it can be entrapped in the fibers to hold many cells. Many others take several hours. In another design, methanol can be dissociated to CO and H{sub 2} and 30% more energy obtained because waste heat is utilized. When one mol goes to three there is an expansion, and this is provided for. Both these designs result in clean fuelsmore » and are covered by U.S. patents.« less

  4. Importance of stability study of continuous systems for ethanol production.

    PubMed

    Paz Astudillo, Isabel Cristina; Cardona Alzate, Carlos Ariel

    2011-01-10

    Fuel ethanol industry presents different problems during bioreactors operation. One of them is the unexpected variation in the output ethanol concentration from the bioreactor or a drastic fall in the productivity. In this paper, a compilation of concepts and relevant results of several experimental and theoretical studies about dynamic behavior of fermentation systems for bioethanol production with Saccharomyces cerevisiae and Zymomonas mobilis is done with the purpose of understanding the stability phenomena that could affect the productivity of industries producing fuel ethanol. It is shown that the design of high scale biochemical processes for fuel ethanol production must be done based on stability studies. © 2010 Elsevier B.V. All rights reserved.

  5. Ultrastructure of the enteromonad flagellate Caviomonas mobilis.

    PubMed

    Brugerolle, G; Regnault, J P

    2001-08-01

    Caviomonas mobilis was collected from the caecum of mice harbouring a controlled fauna. Phase contrast and immunofluorescence microscopy using an anti-tubulin antibody and electron microscopy demonstrated the presence of one basal body bearing a flagellum and a second barren basal body, both inserted in the face of two cup-like depressions in the nuclear surface, as in other enteromonad/diplomonad genera. Three microtubular fibres arise close to the main basal body: the first, composed of three microtubules cross-linked with a dense structure, lies within a groove above the nuclear surface; the second is oriented antero-dorsally and corresponds to the peristyle as observed by light microscopy; and the third is situated ventrally, below the proximal part of the recurrent flagellum, and corresponds to the funis. There is no mitochondrion, no Golgi body, the endoplasmic reticulum is reduced, there is no cytostome, the cell feeds by pinocytosis and phagocytosis and the division spindle is intranuclear. The cytological characters of Caviomonas are homologous to those of genera which comprise the enteromonad/diplomonad evolutionary lineage, as previously presumed.

  6. Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, A.; York, S.W.; Yomano, L.P.

    1999-10-01

    Previous studies have shown an unexpectedly high nutrient requirement for efficient ethanol production by ethanologenic recombinants of Escherichia coli B such as LY01 which contain chromosomally integrated Zymomonas mobilis genes (pdc, adhB) encoding the ethanol pathway. The basis for this requirement has been identified as a media-dependent effect on the expression of the Z. mobilis genes rather than a nutritional limitation. Ethanol production was substantially increased without additional nutrients simply by increasing the level of pyruvate decarboxylase activity. This was accomplished by adding a multicopy plasmid containing pdc alone (but not adhB alone) to strain LY01, and by adding multicopymore » plasmids which express pdc and adhB from strong promoters. New strong promoters were isolated from random fragments of Z. mobilis DNA and characterized but were not used to construct integrated biocatalysts. These promoters contained regions resembling recognition sites for 3 different E. coli sigma factors: {sigma}{sup 70}, {sigma}{sup 38}, and {sigma}{sup 28}. The most effective plasmid-based promoters for fermentation were recognized by multiple sigma factors, expressed both pdc and adhB at high levels, and produced ethanol efficiently while allowing up to 80% reduction in complex nutrients as compared to LY01. The ability to utilize multiple sigma factors may be advantageous to maintain the high levels of PDC and ADH needed for efficient ethanol production throughout batch fermentation.« less

  7. Single Upconversion Nanoparticle-Bacterium Cotrapping for Single-Bacterium Labeling and Analysis.

    PubMed

    Xin, Hongbao; Li, Yuchao; Xu, Dekang; Zhang, Yueli; Chen, Chia-Hung; Li, Baojun

    2017-04-01

    Detecting and analyzing pathogenic bacteria in an effective and reliable manner is crucial for the diagnosis of acute bacterial infection and initial antibiotic therapy. However, the precise labeling and analysis of bacteria at the single-bacterium level are a technical challenge but very important to reveal important details about the heterogeneity of cells and responds to environment. This study demonstrates an optical strategy for single-bacterium labeling and analysis by the cotrapping of single upconversion nanoparticles (UCNPs) and bacteria together. A single UCNP with an average size of ≈120 nm is first optically trapped. Both ends of a single bacterium are then trapped and labeled with single UCNPs emitting green light. The labeled bacterium can be flexibly moved to designated locations for further analysis. Signals from bacteria of different sizes are detected in real time for single-bacterium analysis. This cotrapping method provides a new approach for single-pathogenic-bacterium labeling, detection, and real-time analysis at the single-particle and single-bacterium level. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin.

    PubMed

    Chionis, Kostas; Krikorian, Dimitrios; Koukkou, Anna-Irini; Sakarellos-Daitsiotis, Maria; Panou-Pomonis, Eugenia

    2016-11-01

    Anoplin is a short natural cationic antimicrobial peptide which is derived from the venom sac of the solitary wasp, Anoplius samariensis. Due to its short sequence G 1 LLKR 5 IKT 8 LL-NH 2 , it is ideal for research tests. In this study, novel analogs of anoplin were prepared and examined for their antimicrobial, hemolytic activity, and proteolytic stability. Specific substitutions were introduced in amino acids Gly 1 , Arg 5 , and Thr 8 and lipophilic groups with different lengths in the N-terminus in order to investigate how these modifications affect their antimicrobial activity. These cationic analogs exhibited higher antimicrobial activity than the native peptide; they are also nontoxic at their minimum inhibitory concentration (MIC) values and resistant to enzymatic degradation. The substituted peptide GLLKF 5 IKK 8 LL-NH 2 exhibited high activity against Gram-negative bacterium Zymomonas mobilis (MIC = 7 µg/ml), and the insertion of octanoic, decanoic, and dodecanoic acid residues in its N-terminus increased the antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC = 5 µg/ml). The conformational characteristics of the peptide analogs were studied by circular dichroism. Structure activity studies revealed that the substitution of specific amino acids and the incorporation of lipophilic groups enhanced the amphipathic α-helical conformation inducing better antimicrobial effects. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  9. Insights into Acetate Toxicity in Zymomonas mobilis 8b using Different Substrates

    DOE PAGES

    Yang, Shihui; Franden, M. A.; Brown, S. D.; ...

    2014-09-30

    The lignocellulosic biomass is a promising renewable feedstock for biofuel production. Acetate is one of the major inhibitors liberated from hemicelluloses during hydrolysis. Likewise, an understanding of the toxic effects of acetate on the fermentation microorganism and the efficient utilization of mixed sugars of glucose and xylose in the presence of hydrolysate inhibitors is crucial for economic biofuel production.

  10. Starch saccharification and fermentation of uncooked sweet potato roots for fuel ethanol production.

    PubMed

    Zhang, Peng; Chen, Caifa; Shen, Yanhu; Ding, Tielin; Ma, Daifu; Hua, Zichun; Sun, Dongxu

    2013-01-01

    An energy-saving ethanol fermentation technology was developed using uncooked fresh sweet potato as raw material. A mutant strain of Aspergillus niger isolated from mildewed sweet potato was used to produce abundant raw starch saccharification enzymes for treating uncooked sweet potato storage roots. The viscosity of the fermentation paste of uncooked sweet potato roots was lower than that of the cooked roots. The ethanol fermentation was carried out by Zymomonas mobilis, and 14.4 g of ethanol (87.2% of the theoretical yield) was produced from 100g of fresh sweet potato storage roots. Based on this method, an energy-saving, high efficient and environment-friendly technology can be developed for large-scale production of fuel ethanol from sweet potato roots. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Inhibition of microbial biofuel production in drought-stressed switchgrass hydrolysate

    DOE PAGES

    Ong, Rebecca Garlock; Higbee, Alan; Bottoms, Scott; ...

    2016-11-08

    Here, interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013). All feedstocks were AFEX (ammonia fiber expansion)-pretreated, enzymatically hydrolyzed, and the hydrolysates separately fermented using xylose-utilizing strainsmore » of Saccharomyces cerevisiae and Zymomonas mobilis. As a result, a chemical genomics approach was also used to evaluate the growth of yeast mutants in the hydrolysates.« less

  12. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    1998-01-01

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  13. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2000-08-22

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  14. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, L.O.; Ohta, Kazuyoshi; Wood, B.E.

    1998-10-13

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol. 13 figs.

  15. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schell, Daniel J.; Dowe, Nancy; Chapeaux, Alexandre

    This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose–xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan tomore » ethanol and ethanol titers of 63 g/L and 69 g/L, respectively. In the future, these techniques, including the TEA results, will be applied to fully integrated pilot-scale runs.« less

  16. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass

    DOE PAGES

    Schell, Daniel J.; Dowe, Nancy; Chapeaux, Alexandre; ...

    2016-01-19

    This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose–xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan tomore » ethanol and ethanol titers of 63 g/L and 69 g/L, respectively. In the future, these techniques, including the TEA results, will be applied to fully integrated pilot-scale runs.« less

  17. Mathematical modeling of ethanol production in solid-state fermentation based on solid medium' dry weight variation.

    PubMed

    Mazaheri, Davood; Shojaosadati, Seyed Abbas; Zamir, Seyed Morteza; Mousavi, Seyyed Mohammad

    2018-04-21

    In this work, mathematical modeling of ethanol production in solid-state fermentation (SSF) has been done based on the variation in the dry weight of solid medium. This method was previously used for mathematical modeling of enzyme production; however, the model should be modified to predict the production of a volatile compound like ethanol. The experimental results of bioethanol production from the mixture of carob pods and wheat bran by Zymomonas mobilis in SSF were used for the model validation. Exponential and logistic kinetic models were used for modeling the growth of microorganism. In both cases, the model predictions matched well with the experimental results during the exponential growth phase, indicating the good ability of solid medium weight variation method for modeling a volatile product formation in solid-state fermentation. In addition, using logistic model, better predictions were obtained.

  18. Recombinant cells that highly express chromosomally-integrated heterologous gene

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  19. Metabolic characterization and transformation of the non-dairy Lactococcus lactis strain KF147, for production of ethanol from xylose.

    PubMed

    Petersen, Kia Vest; Liu, Jianming; Chen, Jun; Martinussen, Jan; Jensen, Peter Ruhdal; Solem, Christian

    2017-08-01

    The non-dairy lactic acid bacterium Lactococcus lactis KF147 can utilize xylose as the sole energy source. To assess whether KF147 could serve as a platform organism for converting second generation sugars into useful chemicals, the authors characterized growth and product formation for KF147 when grown on xylose. In a defined medium KF147 was found to co-metabolize xylose and arginine, resulting in bi-phasic growth. Especially at low xylose concentrations, arginine significantly improved growth rate. To facilitate further studies of the xylose metabolism, the authors eliminated arginine catabolism by deleting the arcA gene encoding the arginine deiminase. The fermentation product profile suggested two routes for xylose degradation, the phosphoketolase pathway and the pentose phosphate pathway. Inactivation of the phosphoketolase pathway redirected the entire flux through the pentose phosphate pathway whereas over-expression of phosphoketolase increased the flux through the phosphoketolase pathway. In general, significant amounts of the mixed-acid products, including lactate, formate, acetate and ethanol, were formed irrespective of xylose concentrations. To demonstrate the potential of KF147 for converting xylose into useful chemicals the authors chose to redirect metabolism towards ethanol production. A synthetic promoter library was used to drive the expression of codon-optimized versions of the Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase, and the outcome was a strain producing ethanol as the sole fermentation product with a high yield corresponding to 83% of the theoretical maximum. The results clearly indicate the great potential of using the more metabolically diverse non-dairy L. lactis strains for bio-production based on xylose containing feedstocks. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  1. Technique of ethanol food grade production with batch distillation and dehydration using starch-based adsorbent

    NASA Astrophysics Data System (ADS)

    Widjaja, Tri; Altway, Ali; Ni'mah, Hikmatun; Tedji, Namira; Rofiqah, Umi

    2015-12-01

    Development and innovation of ethanol food grade production are becoming the reasearch priority to increase economy growth. Moreover, the government of Indonesia has established regulation for increasing the renewable energy as primary energy. Sorghum is cerealia plant that contains 11-16% sugar that is optimum for fermentation process, it is potential to be cultivated, especially at barren area in Indonesia. The purpose of this experiment is to learn about the effect of microorganisms in fermentation process. Fermentation process was carried out batchwise in bioreactor and used 150g/L initial sugar concentration. Microorganisms used in this experiment are Zymomonas mobilis mutation (A3), Saccharomyces cerevisiae and mixed of Pichia stipitis. The yield of ethanol can be obtained from this experiment. For ethanol purification result, distillation process from fermentation process has been done to search the best operation condition for efficiency energy consumption. The experiment for purification was divided into two parts, which are distillation with structured packing steel wool and adsorption (dehydration) sequencely. In distillation part, parameters evaluation (HETP and pressure drop) of distillation column that can be used for scale up are needed. The experiment was operated at pressure of 1 atm. The distillation stage was carried out at 85 °C and reflux ratio of 0.92 with variety porosities of 20%, 40%, and 60%. Then the adsorption process was done at 120°C and two types of adsorbent, which are starch - based adsorbent with ingredient of cassava and molecular sieve 3A, were used. The adsorption process was then continued to purify the ethanol from impurities by using activated carbon. This research shows that the batch fermentation process with Zymomonas mobilis A3 obtain higher % yield of ethanol of 40,92%. In addition to that, for purification process, the best operation condition is by using 40% of porosity of stuctured packing steel wool in distillation

  2. Semicontinuous production of ethanol from agricultural wastes by immobilised coculture in a two stage bioreactor.

    PubMed

    Dey, Sabita

    2002-10-01

    The seed testing laboratories of Maharashtra discard 10 tonnes of grains and oil seeds treated with pesticides per annum. These agricultural wastes could be converted to reducing sugar and ethanol in a two stage semicontinuous fluidised bed bioreactor containing immobilised, Bacillus sp. and Zymomonas mobilis in the 1st stage and Saccharomyces diastaticus and S. cerevisae in the 2nd stage. The optimum temperature and pH for fermentation in both the stages were 30 degrees C and 7.2 respectively. In this process 600 g (approximately 400 g starch) waste seeds could yield 402 g of reducing sugar in the 1st stage after 20 h and 205 g ethanol in the 2nd stage after 40 h incubation with a yield factor 0.51. Using these system 10 tonnes of agricultural wastes could be converted to 3.4 x 107 g of ethanol.

  3. Biofilm Formation by a Metabolically Versatile Bacterium

    DTIC Science & Technology

    2009-03-19

    ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium that has good potential as a biocatalyst for the production ofhydrogen gas, a biofuel...Biofilm formation by a metabolically versatile bacterium: final report Report Title ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium...agricultural waste. We characterized five new Rhodopseudomonas genome sequences and isolated and described R. palustris mutant strains that produce

  4. Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review.

    PubMed

    Chen, Yanli

    2011-05-01

    This article reviews current co-culture systems for fermenting mixtures of glucose and xylose to ethanol. Thirty-five co-culture systems that ferment either synthetic glucose and xylose mixture or various biomass hydrolysates are examined. Strain combinations, fermentation modes and conditions, and fermentation performance for these co-culture systems are compared and discussed. It is noted that the combination of Pichia stipitis with Saccharomyces cerevisiae or its respiratory-deficient mutant is most commonly used. One of the best results for fermentation of glucose and xylose mixture is achieved by using co-culture of immobilized Zymomonas mobilis and free cells of P. stipitis, giving volumetric ethanol production of 1.277 g/l/h and ethanol yield of 0.49-0.50 g/g. The review discloses that, as a strategy for efficient conversion of glucose and xylose, co-culture fermentation for ethanol production from lignocellulosic biomass can increase ethanol yield and production rate, shorten fermentation time, and reduce process costs, and it is a promising technology although immature.

  5. Simultaneous saccharification and cofermentation of peracetic acid-pretreated biomass.

    PubMed

    Teixeira, L C; Linden, J C; Schroeder, H A

    2000-01-01

    Previous work in our laboratories has demonstrated the effectiveness of peracetic acid for improving enzymatic digestibility of lignocellulosic materials. The use of dilute alkali solutions as a pre-pretreatment prior to peracetic acid lignin oxidation increased carbohydrate hydrolysis yields in a synergistic as opposed to additive manner. Deacetylation of xylan is easily achieved using dilute alkali solutions under mild conditions. In this article, we evaluate the effectiveness of peracetic acid combined with an alkaline pre-pretreatment through simultaneous saccharification and cofermentation (SSCF) of pretreated hybrid poplar wood and sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% of theoretical are achieved using 6% NaOH/15% peracetic acid-pretreated substrates and recombinant Zymomonas mobilis CP4/pZB5. Reduction of acetyl groups of the lignocellulosic materials is demonstrated following alkaline pre-pretreatments. Such processing may be helpful in reducing peracetic acid requirements. The influence of deacetylation is more significant in combined pretreatments using lower peracetic acid loadings.

  6. Single-species microbial biofilm screening for industrial applications.

    PubMed

    Li, Xuan Zhong; Hauer, Bernhard; Rosche, Bettina

    2007-10-01

    While natural microbial biofilms often consist of multiple species, single-species biofilms are of great interest to biotechnology. The current study evaluates biofilm formation for common industrial and laboratory microorganisms. A total of 68 species of biosafety level one bacteria and yeasts from over 40 different genera and five phyla were screened by growing them in microtiter plates and estimating attached biomass by crystal violet staining. Most organisms showed biofilm formation on surfaces of polystyrene within 24 h. By changing a few simple conditions such as substratum characteristics, inoculum and nutrient availability, 66 strains (97%) demonstrated biofilm formation under at least one of the experimental conditions and over half of these strains were classified as strong biofilm formers, potentially suitable as catalysts in biofilm applications. Many non-motile bacteria were also strong biofilm formers. Biofilm morphologies were visualized for selected strains. A model organism, Zymomonas mobilis, easily established itself as a biofilm on various reactor packing materials, including stainless steel.

  7. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass.

    PubMed

    Kim, Jae-Han; Block, David E; Mills, David A

    2010-11-01

    Lignocellulosic biomass is an attractive carbon source for bio-based fuel and chemical production; however, its compositional heterogeneity hinders its commercial use. Since most microbes possess carbon catabolite repression (CCR), mixed sugars derived from the lignocellulose are consumed sequentially, reducing the efficacy of the overall process. To overcome this barrier, microbes that exhibit the simultaneous consumption of mixed sugars have been isolated and/or developed and evaluated for the lignocellulosic biomass utilization. Specific strains of Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis have been engineered for simultaneous glucose and xylose utilization via mutagenesis or introduction of a xylose metabolic pathway. Other microbes, such as Lactobacillus brevis, Lactobacillus buchneri, and Candida shehatae possess a relaxed CCR mechanism, showing simultaneous consumption of glucose and xylose. By exploiting CCR-negative phenotypes, various integrated processes have been developed that incorporate both enzyme hydrolysis of lignocellulosic material and mixed sugar fermentation, thereby enabling greater productivity and fermentation efficacy.

  8. Conceptual design of cost-effective and environmentally-friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis.

    PubMed

    Sánchez, Óscar J; Cardona, Carlos A

    2012-01-01

    In this work, the hierarchical decomposition methodology was used to conceptually design the production of fuel ethanol from sugarcane. The decomposition of the process into six levels of analysis was carried out. Several options of technological configurations were assessed in each level considering economic and environmental criteria. The most promising alternatives were chosen rejecting the ones with a least favorable performance. Aspen Plus was employed for simulation of each one of the technological configurations studied. Aspen Icarus was used for economic evaluation of each configuration, and WAR algorithm was utilized for calculation of the environmental criterion. The results obtained showed that the most suitable synthesized flowsheet involves the continuous cultivation of Zymomonas mobilis with cane juice as substrate and including cell recycling and the ethanol dehydration by molecular sieves. The proposed strategy demonstrated to be a powerful tool for conceptual design of biotechnological processes considering both techno-economic and environmental indicators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. De novo Biosynthesis of Biodiesel by Escherichia coli in Optimized Fed-Batch Cultivation

    PubMed Central

    Cai, Ke; Tan, Xiaoming; Lu, Xuefeng

    2011-01-01

    Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs) and fatty acid ethyl esters (FAEEs), and is currently produced through the transesterification reaction of methanol (or ethanol) and triacylglycerols (TAGs). TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L−1 FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate. PMID:21629774

  10. Simultaneous saccharification of inulin and starch using commercial glucoamylase and the subsequent bioconversion to high titer sorbitol and gluconic acid.

    PubMed

    An, Kehong; Hu, Fengxian; Bao, Jie

    2013-12-01

    A new bioprocess for production of sorbitol and gluconic acid from two low-cost feedstocks, inulin and cassava starch, using a commercially available enzyme was proposed in this study. The commercial glucoamylase GA-L NEW from Genencor was found to demonstrate a high inulinase activity for hydrolysis of inulin into fructose and glucose. The glucoamylase was used to replace the expensive and not commercially available inulinase enzyme for simultaneous saccharification of inulin and starch into high titer glucose and fructose hydrolysate. The glucose and fructose in the hydrolysate were converted into sorbitol and gluconic acid using immobilized whole cells of the recombinant Zymomonas mobilis strain. The high gluconic acid concentration of 193 g/L and sorbitol concentration of 180 g/L with the overall yield of 97.3 % were obtained in the batch operations. The present study provided a practical production method of sorbitol and gluconic acid from low cost feedstocks and enzymes.

  11. [Optimization of fuel ethanol production from kitchen waste by Plackett-Burman design].

    PubMed

    Ma, Hong-Zhi; Gong, Li-Juan; Wang, Qun-Hui; Zhang, Wen-Yu; Xu, Wen-Long

    2008-05-01

    Kitchen garbage was chosen to produce ethanol through simultaneous saccharification and fermentation (SSF) by Zymomonas mobilis. Plackett-Burman design was employed to screen affecting parameters during SSF process. The parameters were divided into two parts, enzymes and nutritions. None of the nutritions added showed significant effect during the experiment, which demonstrated that the kitchen garbage could meet the requirement of the microorganism without extra supplementation. Protease and glucoamylase were determined to be affecting factors for ethanol production. Single factor experiment showed that the optimum usage of these two enzymes were both 100 U/g and the corresponding maximum ethanol was determined to be 53 g/L. The ethanol yield could be as high as 44%. The utilization of kitchen garbage to produce ethanol could reduce threaten of waste as well as improve the protein content of the spent. This method could save the ethanol production cost and benefit for the recycle of kitchen garbage.

  12. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass

    PubMed Central

    Kim, Jae-Han; Block, David E.

    2010-01-01

    Lignocellulosic biomass is an attractive carbon source for bio-based fuel and chemical production; however, its compositional heterogeneity hinders its commercial use. Since most microbes possess carbon catabolite repression (CCR), mixed sugars derived from the lignocellulose are consumed sequentially, reducing the efficacy of the overall process. To overcome this barrier, microbes that exhibit the simultaneous consumption of mixed sugars have been isolated and/or developed and evaluated for the lignocellulosic biomass utilization. Specific strains of Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis have been engineered for simultaneous glucose and xylose utilization via mutagenesis or introduction of a xylose metabolic pathway. Other microbes, such as Lactobacillus brevis, Lactobacillus buchneri, and Candida shehatae possess a relaxed CCR mechanism, showing simultaneous consumption of glucose and xylose. By exploiting CCR-negative phenotypes, various integrated processes have been developed that incorporate both enzyme hydrolysis of lignocellulosic material and mixed sugar fermentation, thereby enabling greater productivity and fermentation efficacy. PMID:20838789

  13. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    PubMed

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. NREL Researchers Discover How a Bacterium, Clostridium thermocellum,

    Science.gov Websites

    containing the bacterium actually promotes the growth of C. thermocellum, yet its mechanistic details remained a puzzle. This enhanced growth implied the bacterium had the ability to use CO2 and prompted NREL researchers to investigate the phenomena enhancing the bacterium's growth. "It took us by surprise that

  15. Increase in furfural tolerance in ethanologenic Escherichia coli LY180 by plasmid-based expression of thyA.

    PubMed

    Zheng, Huabao; Wang, Xuan; Yomano, Lorraine P; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2012-06-01

    Furfural is an inhibitory side product formed during the depolymerization of hemicellulose by mineral acids. Genomic libraries from three different bacteria (Bacillus subtilis YB886, Escherichia coli NC3, and Zymomonas mobilis CP4) were screened for genes that conferred furfural resistance on plates. Beneficial plasmids containing the thyA gene (coding for thymidylate synthase) were recovered from all three organisms. Expression of this key gene in the de novo pathway for dTMP biosynthesis improved furfural resistance on plates and during fermentation. A similar benefit was observed by supplementation with thymine, thymidine, or the combination of tetrahydrofolate and serine (precursors for 5,10-methylenetetrahydrofolate, the methyl donor for ThyA). Supplementation with deoxyuridine provided a small benefit, and deoxyribose was of no benefit for furfural tolerance. A combination of thymidine and plasmid expression of thyA was no more effective than either alone. Together, these results demonstrate that furfural tolerance is increased by approaches that increase the supply of pyrimidine deoxyribonucleotides. However, ThyA activity was not directly affected by the addition of furfural. Furfural has been previously shown to damage DNA in E. coli and to activate a cellular response to oxidative damage in yeast. The added burden of repairing furfural-damaged DNA in E. coli would be expected to increase the cellular requirement for dTMP. Increased expression of thyA (E. coli, B. subtilis, or Z. mobilis), supplementation of cultures with thymidine, and supplementation with precursors for 5,10-methylenetetrahydrofolate (methyl donor) are each proposed to increase furfural tolerance by increasing the availability of dTMP for DNA repair.

  16. Mobilisporobacter senegalensis gen. nov., sp. nov., an anaerobic bacterium isolated from tropical shea cake.

    PubMed

    Mbengue, Malick; Thioye, Abdoulaye; Labat, Marc; Casalot, Laurence; Joseph, Manon; Samb, Abdoulaye; Ben Ali Gam, Zouhaier

    2016-03-01

    A Gram-stain positive, endospore-forming, strictly anaerobic bacterium, designated strain Gal1 T , was isolated from shea cake, a waste material from the production of shea butter, originating from Saraya, Senegal. The cells were rod-shaped, slightly curved, and motile with peritrichous flagella. The strain was oxidase-negative and catalase-negative. Growth was observed at temperatures ranging from 15 to 45 °C (optimum 30 °C) and at pH 6.5-9.3 (optimum pH 7.8). The salinity range for growth was 0-3.5 % NaCl (optimum 1 %). Yeast extract was required for growth. Strain Gal1 T fermented various carbohydrates such as mannose, mannitol, arabinose, cellobiose, fructose, glucose, maltose, sucrose, trehalose and lactose and the major end-products were ethanol and acetate. The only major cellular fatty acid was C16 : 0 (19.6 %). The DNA base G+C content of strain Gal1 T was 33.8 mol%. Analysis of the 16S rRNA gene sequence of the isolate indicated that this strain was related to Mobilitalea sibirica DSM 26468 T with 94.27 % similarity, Clostridium populeti ATTC 35295 T with 93.94 % similarity, and Clostridium aminovalericum DSM 1283 T and Anaerosporobacter mobilis DSM 15930 T with 93.63 % similarity. On the basis of phenotypic characteristics, phylogenetic analysis and the results of biochemical and physiological tests, strain Gal1 T was clearly distinguished from closely related genera, and strain Gal1 T can be assigned to a novel species of a new genus for which the name Mobilisporobacter senegalensis gen. nov., sp. nov. is proposed. The type strain is Gal1 T ( = DSM 26537 T  = JCM 18753 T ).

  17. Characterization of the cellulose-degrading bacterium NCIMB 10462

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, C.; Scott, T.C.; Phelps, T.J.

    The gram-negative cellulase-producing bacterium NCIMB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulose. Because of renewed interest in cellulose-degrading bacteria for use in the bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its true metabolic potential. Metabolic and physical characterization of NCIMB 10462 revealed that this is an alkalophilic, non-fermentative, gram-negative, oxidase-positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium has few characteristics consistent with a classification of P. fluorescens and a very low probability match with the genus Sphingomonas. However, total lipid analysismore » did not reveal that any sphingolipid bases are produced by this bacterium. NCIMB 10462 grows best aerobically, but also grows well in complex media under reducing conditions. NCIMB 10462 grows slowly under anaerobic conditions on complex media, but growth on cellulosic media occurred only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIMB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is its ability to degrade cellulose, we suggest that it be called Pseudomonas cellulosa.« less

  18. Single Bacterium Detection Using Sers

    NASA Astrophysics Data System (ADS)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  19. Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions.

    PubMed

    Choi, Donggeon; Lee, Sae Bom; Kim, Sohyun; Min, Byoungnam; Choi, In-Geol; Chang, In Seop

    2014-02-01

    Comparative genome analysis of Shewanella strains predicted that the strains metabolize preferably two- and three-carbon carbohydrates as carbon/electron source because many Shewanella genomes are deficient of the key enzymes in glycolysis (e.g., glucokinase). In addition, all Shewanella genomes are known to have only one set of genes associated with the phosphotransferase system required to uptake sugars. To engineer Shewanella strains that can utilize five- and six-carbon carbohydrates, we constructed glucose-utilizing Shewanella oneidensis MR-1 by introducing the glucose facilitator (glf; ZMO0366) and glucokinase (glk; ZMO0369) genes of Zymomonas mobilis. The engineered MR-1 strain was able to grow on glucose as a sole carbon/electron source under anaerobic conditions. The glucose affinity (Ks) and glucokinase activity in the engineered MR-1 strain were 299.46 mM and 0.259 ± 0.034 U/g proteins. The engineered strain was successfully applied to a microbial fuel cell system and exhibited current generation using glucose as the electron source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Three immobilized-cell columnar bioreactors for enhanced production of commodity chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, B.H.; Scott, C.D.; Kaufman, E.N.

    1993-12-31

    Immobilized-cell fluidized-bed bioreactors (FBRs) can be used with a variety of fermentations to increase production of fuels, solvents, organic acids, and other fermentation products. Part of the increased rates and yields are due to the immobilization of the biocatalyst at high concentrations. This FBR system with immobilized Zymomonas mobilis increased ethanol productivity more than tenfold with 99% conversion and near stoichiometric yields. FBRs also offer several additional modes of operation for simultaneous fermentation and separation to further increase production by removing the inhibitory products directly from the continuous fermentation. The production of lactic acid by immobilized Lactobacillus was augmented withmore » the addition and removal of solid adsorbent particles to the FBR. An immiscible organic extractant also was used to extract butanol from the acetone-butanol fermentation by Clostridium acetobutylicum. Demonstrations with these FBR systems have already shown definite advantages by improved overall product yields (decreasing feed costs) and by increased rates (decreasing capital and operating costs). Further demonstration and scale-up continue.« less

  1. Bioethanol production from fermentable sugar juice.

    PubMed

    Zabed, Hossain; Faruq, Golam; Sahu, Jaya Narayan; Azirun, Mohd Sofian; Hashim, Rosli; Boyce, Amru Nasrulhaq

    2014-01-01

    Bioethanol production from renewable sources to be used in transportation is now an increasing demand worldwide due to continuous depletion of fossil fuels, economic and political crises, and growing concern on environmental safety. Mainly, three types of raw materials, that is, sugar juice, starchy crops, and lignocellulosic materials, are being used for this purpose. This paper will investigate ethanol production from free sugar containing juices obtained from some energy crops such as sugarcane, sugar beet, and sweet sorghum that are the most attractive choice because of their cost-effectiveness and feasibility to use. Three types of fermentation process (batch, fed-batch, and continuous) are employed in ethanol production from these sugar juices. The most common microorganism used in fermentation from its history is the yeast, especially, Saccharomyces cerevisiae, though the bacterial species Zymomonas mobilis is also potentially used nowadays for this purpose. A number of factors related to the fermentation greatly influences the process and their optimization is the key point for efficient ethanol production from these feedstocks.

  2. Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks.

    PubMed

    Yang, Mingfeng; Li, Xuefeng; Bu, Chunya; Wang, Hui; Shi, Guanglu; Yang, Xiushan; Hu, Yong; Wang, Xiaoqin

    2014-11-01

    Pyruvate decarboxylase and alcohol dehydrogenase are efficient enzymes for ethanol production in Zymomonas mobilis. These two enzymes were over-expressed in Escherichia coli, a promising candidate for industrial ethanol production, resulting in high ethanol production in the engineered E. coli. To investigate the intracellular changes to the enzyme overexpression for homoethanol production, 2-DE and LC-MS/MS were performed. More than 1,000 protein spots were reproducibly detected in the gel by image analysis. Compared to the wild-type, 99 protein spots showed significant changes in abundance in the recombinant E. coli, in which 46 were down-regulated and 53 were up-regulated. Most proteins related to tricarboxylic acid cycle, glycerol metabolism and other energy metabolism were up-regulated, whereas proteins involved in glycolysis and glyoxylate pathway were down-regulated, indicating the rewired metabolism in the engineered E. coli. As glycolysis is the main pathway for ethanol production, and it was inhibited significantly in engineered E. coli, further efforts should be directed at minimizing the repression of glycolysis to optimize metabolism network for higher yields of ethanol production.

  3. Bioethanol Production from Fermentable Sugar Juice

    PubMed Central

    Zabed, Hossain; Faruq, Golam; Sahu, Jaya Narayan; Azirun, Mohd Sofian; Hashim, Rosli; Nasrulhaq Boyce, Amru

    2014-01-01

    Bioethanol production from renewable sources to be used in transportation is now an increasing demand worldwide due to continuous depletion of fossil fuels, economic and political crises, and growing concern on environmental safety. Mainly, three types of raw materials, that is, sugar juice, starchy crops, and lignocellulosic materials, are being used for this purpose. This paper will investigate ethanol production from free sugar containing juices obtained from some energy crops such as sugarcane, sugar beet, and sweet sorghum that are the most attractive choice because of their cost-effectiveness and feasibility to use. Three types of fermentation process (batch, fed-batch, and continuous) are employed in ethanol production from these sugar juices. The most common microorganism used in fermentation from its history is the yeast, especially, Saccharomyces cerevisiae, though the bacterial species Zymomonas mobilis is also potentially used nowadays for this purpose. A number of factors related to the fermentation greatly influences the process and their optimization is the key point for efficient ethanol production from these feedstocks. PMID:24715820

  4. Enhancement of expression and apparent secretion of Erwinia chrysanthemi endoglucanase (encoded by celZ) in Escherichia coli B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S.; Yomano, L.P.; Saleh, A.Z.

    1999-06-01

    Escherichia coli B has been engineered as a biocatalyst for the conversion of lignocellulose into ethanol. Previous research has demonstrated that derivatives of E. coli B can produce high levels of Erwinia chrysanthemi endoglucanase (encoded by celZ) as a periplasmic product and that this enzyme can function with commercial fungal cellulase to increase ethanol production. In this study, the authors have demonstrated two methods that improve celZ expression in E. coli B. Initially, with a low-copy-number vector, two E. coli glycolytic gene promoters (gap and eno) were tested and found to be less effective than the original celZ promoter. Bymore » screening 18,000 random fragments of Zymomonas mobilis DNA, a surrogate promoter was identified which increased celZ expression up to sixfold. With this promoter, large polar inclusion bodies were clearly evident in the periplasmic space. Sequencing revealed that the most active surrogate promoter is derived from five Sau3A1 fragments, one of which was previously sequenced in Z. mobilis. Visual inspection indicated that this DNA fragment contains at least five putative promoter regions, two of which were confirmed by primer extension analysis. Addition of the out genes from E. chrysanthemi EC16 caused a further increase in the production of active enzyme and facilitated secretion or release of over half of the activity into the extracellular environment. With the most active construct, of a total of 13,000 IU of active enzyme per liter of culture, 7,800 IU was in the supernatant. The total active endoglucanase was estimated to represent 4 to 6% of cellular protein.« less

  5. Increase in Furfural Tolerance in Ethanologenic Escherichia coli LY180 by Plasmid-Based Expression of thyA

    PubMed Central

    Zheng, Huabao; Wang, Xuan; Yomano, Lorraine P.; Shanmugam, Keelnatham T.

    2012-01-01

    Furfural is an inhibitory side product formed during the depolymerization of hemicellulose by mineral acids. Genomic libraries from three different bacteria (Bacillus subtilis YB886, Escherichia coli NC3, and Zymomonas mobilis CP4) were screened for genes that conferred furfural resistance on plates. Beneficial plasmids containing the thyA gene (coding for thymidylate synthase) were recovered from all three organisms. Expression of this key gene in the de novo pathway for dTMP biosynthesis improved furfural resistance on plates and during fermentation. A similar benefit was observed by supplementation with thymine, thymidine, or the combination of tetrahydrofolate and serine (precursors for 5,10-methylenetetrahydrofolate, the methyl donor for ThyA). Supplementation with deoxyuridine provided a small benefit, and deoxyribose was of no benefit for furfural tolerance. A combination of thymidine and plasmid expression of thyA was no more effective than either alone. Together, these results demonstrate that furfural tolerance is increased by approaches that increase the supply of pyrimidine deoxyribonucleotides. However, ThyA activity was not directly affected by the addition of furfural. Furfural has been previously shown to damage DNA in E. coli and to activate a cellular response to oxidative damage in yeast. The added burden of repairing furfural-damaged DNA in E. coli would be expected to increase the cellular requirement for dTMP. Increased expression of thyA (E. coli, B. subtilis, or Z. mobilis), supplementation of cultures with thymidine, and supplementation with precursors for 5,10-methylenetetrahydrofolate (methyl donor) are each proposed to increase furfural tolerance by increasing the availability of dTMP for DNA repair. PMID:22504824

  6. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.

  7. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, C.; Ringleberg, D.; Scott, T.C.

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescensmore » with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.« less

  8. Influence of the presence of Zymomonas anaerobia on the conversion of cellobiose, glucose, and xylose to ethanol by Clostridium saccharolyticum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asther, M.; Khan, A.W.

    1984-01-01

    To convert sugar mixtures containing cellobiose, glucose, and xylose to ethanol in a single step, the possibility of using a coculture consisting of Clostridium saccharolyticum and Zymomonas anaerobia was studied. In monoculture, C. saccharolyticum utilized all three sugars; however, it preferentially utilized glucose and produced acetic acid in addition to ethanol. The formation of acetic acid from the metabolism of glucose inhibited the growth of C. saccharolyticum and, consequently, the utilization of cellobiose and xylose. In monoculture, Z. anaerobia utilized glucose at a rate of 50 g/L day, but it did not ferment cellobiose or xylose. In coculture, Z. anaerobiamore » converted most of the glucose to ethanol during the lag phase of growth of C. saccharolyticum, which then converted cellobiose and xylose to ethanol. The use of this coculture increased both the rate and the efficiency of the conversion of these three sugars to ethanol, and produced relatively small amounts of acetic acid.« less

  9. Host and symbiont intraspecific variability: The case of Paramecium calkinsi and "Candidatus Trichorickettsia mobilis".

    PubMed

    Sabaneyeva, E; Castelli, M; Szokoli, F; Benken, K; Lebedeva, N; Salvetti, A; Schweikert, M; Fokin, S; Petroni, G

    2018-02-01

    Newly isolated strains of the ciliate Paramecium calkinsi and their cytoplasmic bacterial endosymbionts were characterized by a multidisciplinary approach, including live observation, ultrastructural investigation, and molecular analysis. Despite morphological resemblance, the characterized P. calkinsi strains showed a significant molecular divergence compared to conspecifics, possibly hinting for a cryptic speciation. The endosymbionts were clearly found to be affiliated to the species "Candidatus Trichorickettsia mobilis" (Rickettsiales, Rickettsiaceae), currently encompassing only bacteria retrieved in an obligate intracellular association with other ciliates. However, a relatively high degree of intraspecific divergence was observed as well, thus it was possible to split "Candidatus Trichorickettsia" into three subspecies, one of which represented so far only by the newly characterized endosymbionts of P. calkinsi. Other features distinguished the members of each different subspecies. In particular, the endosymbionts of P. calkinsi resided in the cytoplasm and possessed numerous peritrichous flagella, although no motility was evidenced, whereas their conspecifics in other hosts were either cytoplasmic and devoid of flagella, or macronuclear, displaying flagellar-driven motility. Moreover, contrarily to previously analyzed "Candidatus Trichorickettsia" hosts, infected P. calkinsi cells frequently became amicronucleate and demonstrated abnormal cell division, eventually leading to decline of the laboratory culture. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Investigation of potential of agro-industrial residues for ethanol production by using Candida tropicalis and Zymomonas mobilis

    NASA Astrophysics Data System (ADS)

    Patle, Sonali

    India is becoming more susceptible regarding energy security with increasing world prices of crude oil and increasing dependence on imports. Based on experiments by the Indian Institute of Petroleum, a 10% ethanol blend with gasoline is being considered for use in vehicles in at least one state and it will be mandatory for all oil companies to blend petrol with 10% ethanol from October 2008. In view of the above, the Government has already started supply of 5% ethanol blended petrol from 2003 in nine states and four contiguous Union Territories. Currently, fuel ethanol is produced mainly from molasses, corn, wheat and sugar beets. The production cost of ethanol from these agro-feedstocks is more than twice the price of gasoline. The high feedstock cost poses a major obstacle to large scale implementation of ethanol as a transportation fuel. Molasses could be in short supply due to the implementation of 10% blending norm. A reduction in import duty for industrial alcohol from7.5% to 5% has been suggested. The use of lignocellulosic energy crops, and particularly low cost biomass residues, offers excellent perspectives for application of ethanol in transportation fuels (Ridder, 2000). These materials will increase the ethanol production capacity and reduce the production cost to a competitive level. There is a huge demand (500 million litres) of ethanol to meet the 5% blending in India. With the present infrastructure, only 90 million litres of ethanol was produced till November 2006 and could reach up to 140 million litres (around) till October 2007. Bioethanol from these materials provides a highly cost effective option for CO2 emission reduction in the transportation sector. The aim of the present investigation was to evaluate the potential of biomass as feedstock for ethanol production. The dedicated energy crops would require thorough support as well as planning efforts such as assessing resources, availability and utilization. Furthermore, applied research is needed to develop environmentally and socially acceptable low-cost, high quality crops and cropping systems for producing sufficient quantities of value added biomass feedstock on substantially larger areas. This would require taking a look at environmental implications and economic assessments as over 70% of Indian population directly or indirectly depends on agricultural income sources. In other words, a long term strategy of intensive research would be required to get the desired level of acceptance both by the researchers and the farmers. This would mean long term field trials with the newly developed energy crops, awareness creation, and demonstration of visual benefits to farmers leading to change in mind-set towards greater flexibility for cropping patterns. This holds enormous promising research and development opportunities, but substantially longer period might be required to achieve these goals. The petroleum industry is now committed to the use of ethanol as fuel, as it is expected to benefit sugarcane farmers as well as the oil industry in the long run. Production of ethanol from agricultural and biodegradable wastes provides a viable solution to multiple environmental problems simultaneously creating a sink for waste and renewable energy production as well. Using ethanol-blended fuels for automobiles can significantly reduce petroleum use. Ethanol is one of the best tools to fight vehicular pollution, contains more oxygen that helps complete combustion of fuel and thus reduces harmful tailpipe emissions. It also reduces particulate emissions that pose a health hazard. Currently, fuel grade ethanol is produced from sugarcane, corn, wheat and sugar beets but the ethanol production cost from these substrates is very high as compared to gasoline. This high feedstock cost is the biggest hindrance in large scale implementation of ethanol as a transportation fuel. To counter the high feedstock costs, use of lignocellulosic materials, such as crop residues, grasses, sawdust, wood chips etc., can be promoted, which presents an inexpensive and abundant renewable source for ethanol production. Also there is an enormous production of fruits and vegetables in India and a very huge amount goes waste due to post-harvest losses and a large quantity of unused portion is also generated from processing industries. These substrates can be used as a potential source for ethanol production. These substrates are complex and are required to be broken down into simple sugars by acid, alkaline or enzymatic treatment. Two common methods for converting complex substrates to fermentable sugars are dilute acid hydrolysis and concentrated acid hydrolysis, both of which use either HCl or H2 So4. Since, acid hydrolysis has few disadvantages enzymatic hydrolysis was explored and found to be a better and more economic option. After substrate selection and its hydrolysis, it is very important to optimize the fermentation parameters and scale up the process. Different agro-industrial substrates were explored for this process. (Abstract shortened by UMI.)

  11. Oxidation of Ethylene Glycol by a Salt-Requiring Bacterium

    PubMed Central

    Caskey, William H.; Taber, Willard A.

    1981-01-01

    Bacterium T-52, cultured on ethylene glycol, readily oxidized glycolate and glyoxylate and exhibited elevated activities of ethylene glycol dehydrogenase and glycolate oxidase. Labeled glyoxylate was identified in reaction mixtures containing [14C]-ethylene glycol, but no glycolate was detected. The most likely pathway of ethylene glycol catabolism by bacterium T-52 is sequential oxidation to glycolate and glyoxylate. PMID:16345810

  12. Fermentation of D-xylose and L-arabinose to ethanol by Erwinia chrysanthemi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolan, J.S.; Finn, R.K.

    1987-09-01

    Erwinia spp. are gram-negative facultative anaerobes within the family Enterobacteriacae which possess several desirable traits for the conversion of pentose sugars to ethanol, such as the ability to ferment a broad range of carbohydrates and the ease with which they can be genetically modified. Twenty-eight strains of Erwinia carotovora and E. chrysanthemi were screened for the ability to ferment D-xylose to ethanol. E. chrysanthemi B374 was chosen for further study on the basis of its superior (4%) ethanol tolerance. They have characterized the fermentation of D-xylose and L-arabinose by the wild type and mutants which bear plasmids containing the pyruvatemore » decarboxylase gene from Zymomonas mobilis. Expression of the gene markedly increased the yields of ethanol (from 0.7 up to 1.45 mol/mol of xylose) and decreased the yields of formate, acetate, and lactate. However, the cells with pyruvate decarboxylase grew only one-fourth as fast as the wild type and tolerated only 2% ethanol. Alcohol tolerance was stimulated by the addition of yeast extract to the growth medium. Xylose catabolism was characterized by a high saturation constant K/sub s/ (4.5 mM).« less

  13. Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol.

    PubMed

    Jennings, Edward W; Schell, Daniel J

    2011-01-01

    Dilute-acid pretreatment of lignocellulosic biomass enhances the ability of enzymes to hydrolyze cellulose to glucose, but produces many toxic compounds that inhibit fermentation of sugars to ethanol. The objective of this study was to compare the effectiveness of treating hydrolysate liquor with Ca(OH)2 and NH4OH for improving ethanol yields. Corn stover was pretreated in a pilot-scale reactor and then the liquor fraction (hydrolysate) was extracted and treated with various amounts of Ca(OH)2 or NH4OH at several temperatures. Glucose and xylose in the treated liquor were fermented to ethanol using a glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. Sugar losses up to 10% occurred during treatment with Ca(OH)2, but these losses were two to fourfold lower with NH4OH treatment. Ethanol yields for NH4OH-treated hydrolysate were 33% greater than those achieved in Ca(OH)2-treated hydrolysate and pH adjustment to either 6.0 or 8.5 with NH4OH prior to fermentation produced equivalent ethanol yields. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Capsule-Transmitted Gut Symbiotic Bacterium of the Japanese Common Plataspid Stinkbug, Megacopta punctatissima

    PubMed Central

    Fukatsu, Takema; Hosokawa, Takahiro

    2002-01-01

    The Japanese common plataspid stinkbug, Megacopta punctatissima, deposits small brown particles, or symbiont capsules, on the underside of the egg mass for the purpose of transmission of symbiotic bacteria to the offspring. We investigated the microbiological aspects of the bacteria contained in the capsule, such as microbial diversity, phylogenetic placement, localization in vivo, and fitness effects on the host insect. Restriction fragment length polymorphism analysis of 16S ribosomal DNA clones revealed that a single bacterial species dominates the microbiota in the capsule. The bacterium was not detected in the eggs but in the capsules, which unequivocally demonstrated that the bacterium is transmitted to the offspring of the insect orally rather than transovarially, through probing of the capsule content. Molecular phylogenetic analysis showed that the bacterium belongs to the γ-subdivision of the Proteobacteria. In adult insects the bacterium was localized in the posterior section of the midgut. Deprivation of the bacterium from the nymphs resulted in retarded development, arrested growth, abnormal body coloration, and other symptoms, suggesting that the bacterium is essential for normal development and growth of the host insect. PMID:11772649

  15. Swimming efficiency of bacterium Escherichia coli

    PubMed Central

    Chattopadhyay, Suddhashil; Moldovan, Radu; Yeung, Chuck; Wu, X. L.

    2006-01-01

    We use measurements of swimming bacteria in an optical trap to determine fundamental properties of bacterial propulsion. In particular, we directly measure the force required to hold the bacterium in the optical trap and determine the propulsion matrix, which relates the translational and angular velocity of the flagellum to the torques and forces propelling the bacterium. From the propulsion matrix, dynamical properties such as torques, swimming speed, and power can be obtained by measuring the angular velocity of the motor. We find significant heterogeneities among different individuals even though all bacteria started from a single colony. The propulsive efficiency, defined as the ratio of the propulsive power output to the rotary power input provided by the motors, is found to be ≈2%, which is consistent with the efficiency predicted theoretically for a rigid helical coil. PMID:16954194

  16. Coiled to diffuse: Brownian motion of a helical bacterium.

    PubMed

    Butenko, Alexander V; Mogilko, Emma; Amitai, Lee; Pokroy, Boaz; Sloutskin, Eli

    2012-09-11

    We employ real-time three-dimensional confocal microscopy to follow the Brownian motion of a fixed helically shaped Leptospira interrogans (LI) bacterium. We extract from our measurements the translational and the rotational diffusion coefficients of this bacterium. A simple theoretical model is suggested, perfectly reproducing the experimental diffusion coefficients, with no tunable parameters. An older theoretical model, where edge effects are neglected, dramatically underestimates the observed rates of translation. Interestingly, the coiling of LI increases its rotational diffusion coefficient by a factor of 5, compared to a (hypothetical) rectified bacterium of the same contour length. Moreover, the translational diffusion coefficients would have decreased by a factor of ~1.5, if LI were rectified. This suggests that the spiral shape of the spirochaete bacteria, in addition to being employed for their active twisting motion, may also increase the ability of these bacteria to explore the surrounding fluid by passive Brownian diffusion.

  17. [Partial biological characteristics and algicidal activity of an algicidal bacterium].

    PubMed

    Li, San-Hua; Zhang, Qi-Ya

    2013-02-01

    An algicidal bacterium was isolated from freshwater (Lake Donghu in Wuhan) and coded as A01. The morphology of the algicidal bacterium was observed using optical microscope and electron microscopes, the results showed that A01 was rod-shaped, approximately 1.5 microm in length and 0.45 microm in width and with no flagella structure. A01 was Gram-negative and belongs to the family Acinetobacter sp. though identification by Gram's staining and 16S rDNA gene analysis. A01 exhibited strong algicidal activity on the bloom-forming cyanobacterium Anabaena eucompacta under laboratory conditions. The removal rate of chlorophyll a after 7-day incubation with the culture supernatant of A01 and thalli were 77% and 61%, respectively. Microscopic observation showed that almost all cyanobacterial cells were destroyed within 3 d of co-incubation with the supernatant of algicidal bacterium, but a mass of the cyanobacterial cell lysis was observed only after 5 d of co-incubation with the thalli of algicidal bacterium. These results indicated that the main algicidal component of A01 was in its culture supernatant. In other words, the strain A01 could secrete algicidal component against Anabaena eucompacta.

  18. Replacing process water and nitrogen sources with biogas slurry during cellulosic ethanol production.

    PubMed

    You, Yang; Wu, Bo; Yang, Yi-Wei; Wang, Yan-Wei; Liu, Song; Zhu, Qi-Li; Qin, Han; Tan, Fu-Rong; Ruan, Zhi-Yong; Ma, Ke-Dong; Dai, Li-Chun; Zhang, Min; Hu, Guo-Quan; He, Ming-Xiong

    2017-01-01

    Environmental issues, such as the fossil energy crisis, have resulted in increased public attention to use bioethanol as an alternative renewable energy. For ethanol production, water and nutrient consumption has become increasingly important factors being considered by the bioethanol industry as reducing the consumption of these resources would decrease the overall cost of ethanol production. Biogas slurry contains not only large amounts of wastewater, but also the nutrients required for microbial growth, e.g., nitrogen, ammonia, phosphate, and potassium. Therefore, biogas slurry is an attractive potential resource for bioethanol production that could serve as an alternative to process water and nitrogen sources. In this study, we propose a method that replaces the process water and nitrogen sources needed for cellulosic ethanol production by Zymomonas mobilis with biogas slurry. To test the efficacy of these methods, corn straw degradation following pretreatment with diluted NaOH and enzymatic hydrolysis in the absence of fresh water was evaluated. Then, ethanol fermentation using the ethanologenic bacterial strain Z. mobilis ZMT2 was conducted without supplementing with additional nitrogen sources. After pretreatment with 1.34% NaOH (w/v) diluted in 100% biogas slurry and continuous enzymatic hydrolysis for 144 h, 29.19 g/L glucose and 12.76 g/L xylose were generated from 30 g dry corn straw. The maximum ethanol concentration acquired was 13.75 g/L, which was a yield of 72.63% ethanol from the hydrolysate medium. Nearly 94.87% of the ammonia nitrogen was depleted and no nitrate nitrogen remained after ethanol fermentation. The use of biogas slurry as an alternative to process water and nitrogen sources may decrease the cost of cellulosic ethanol production by 10.0-20.0%. By combining pretreatment with NaOH diluted in biogas slurry, enzymatic hydrolysis, and ethanol fermentation, 56.3 kg of ethanol was produced by Z. mobilis ZMT-2 through fermentation of

  19. Gut bacterium of Dendrobaena veneta (Annelida: Oligochaeta) possesses antimycobacterial activity.

    PubMed

    Fiołka, Marta J; Zagaja, Mirosław P; Piersiak, Tomasz D; Wróbel, Marek; Pawelec, Jarosław

    2010-09-01

    The new bacterial strain with antimycobacterial activity has been isolated from the midgut of Dendrobaena veneta (Annelida). Biochemical and molecular characterization of isolates from 18 individuals identified all as Raoultella ornithinolytica genus with 99% similarity. The bacterium is a possible symbiont of the earthworm D. veneta. The isolated microorganism has shown the activity against four strains of fast-growing mycobacteria: Mycobacterium butiricum, Mycobacterium jucho, Mycobacterium smegmatis and Mycobacterium phlei. The multiplication of the gut bacterium on plates with Sauton medium containing mycobacteria has caused a lytic effect. After the incubation of the cell free extract prepared from the gut bacterium with four strains of mycobacteria in liquid Sauton medium, the cells of all tested strains were deformed and divided to small oval forms and sometimes created long filaments. The effect was observed by the use of light, transmission and scanning microscopy. Viability of all examined species of mycobacteria was significantly decreased. The antimycobacterial effect was probably the result of the antibiotic action produced by the gut bacterium of the earthworm. The application of ultrafiltration procedure allowed to demonstrate that antimicrobial substance with strong antimycobacterial activity from bacterial culture supernatant, is a protein with the molecular mass above 100 kDa. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila.

    PubMed

    Kucera, Dan; Pernicová, Iva; Kovalcik, Adriana; Koller, Martin; Mullerova, Lucie; Sedlacek, Petr; Mravec, Filip; Nebesarova, Jana; Kalina, Michal; Marova, Ivana; Krzyzanek, Vladislav; Obruca, Stanislav

    2018-05-01

    This work explores molecular, morphological as well as biotechnological features of the highly promising polyhydroxyalkanoates (PHA) producer Halomonas halophila. Unlike many other halophiles, this bacterium does not require expensive complex media components and it is capable to accumulate high intracellular poly(3-hydroxybutyrate) (PHB) fractions up to 82% of cell dry mass. Most remarkably, regulating the concentration of NaCl apart from PHB yields influences also the polymer's molecular mass and polydispersity. The bacterium metabolizes various carbohydrates including sugars predominant in lignocelluloses and other inexpensive substrates. Therefore, the bacterium was employed for PHB production on hydrolysates of cheese whey, spent coffee grounds, sawdust and corn stover, which were hydrolyzed by HCl; required salinity of cultivation media was set up during neutralization by NaOH. The bacterium was capable to use all the tested hydrolysates as well as sugar beet molasses for PHB biosynthesis, indicating its potential for industrial PHB production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. [Study on anti-bacterium activity of ginkgolic acids and their momomers].

    PubMed

    Yang, Xiaoming; Zhu, Wei; Chen, Jun; Qian, Zhiyu; Xie, Jimin

    2004-09-01

    Ginkgolic acids and their three monomers were separated from ginkgo sarcotestas. The anti-bacterium activity of ginkgolic acids were tested. The relation between the anti-bacterium activity and side chain of ginkgolic acid were studied. The MIC of ginkgolic acids and their three monomers and salicylic acid were tested. Ginkgolic acid has strong inhibitive effect on G+-bacterium. Salicylic acid has no side chain, so no anti-bacterial activity. When the length of gingkolic acid side chain is C13:0, it has the strongest anti-bacterial activity in three monomers. The side chain of ginkgolic acid is the key functional group that possessed anti-bacterial activity. The length of Ginkgolic acid was the main effective factor of anti-bacterial activity.

  2. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  3. An in vivo, label-free quick assay for xylose transport in Escherichia coli.

    PubMed

    Chen, Tingjian; Zhang, Jingqing; Liang, Ling; Yang, Rong; Lin, Zhanglin

    2009-07-01

    Efficient use of xylose is necessary for economic production of biochemicals and biofuels from lignocellulosic materials. Current studies on xylose uptake for various microorganisms have been hampered by the lack of a facile assay for xylose transport. In this work, a rapid in vivo, label-free method for measuring xylose transport in Escherichia coli was developed by taking advantage of the Bacillus pumilus xylosidase (XynB), which cleaved a commercially available xylose analog, p-nitrophenyl-beta-d-xylopyranoside (pNPX), to release a chromogenic group, p-nitrophenol (pNP). XynB was expressed alone or in conjunction with a Zymomonas mobilis glucose facilitator protein (Glf) capable of transporting xylose. This XynB-mediated transport assay was demonstrated in test tubes and 96-well plates with submicromolar concentrations of pNPX. Kinetic inhibition experiments validated that pNPX and xylose were competitive substrates for the transport process, and the addition of glucose (20 g/L) in the culture medium clearly diminished the transmembrane transport of pNPX and, thus, mimicked its inhibitory action on xylose uptake. This method should be useful for engineering of the xylose transport process in E. coli, and similar assay schemes can be extended to other microorganisms.

  4. Classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. in rRNA superfamily IV.

    PubMed

    van Bruggen, A H; Jochimsen, K N; Steinberger, E M; Segers, P; Gillis, M

    1993-01-01

    Thermal melting profiles of hybrids between 3H-labeled rRNA of Rhizomonas suberifaciens, the causal agent of corky root of lettuce, and chromosomal DNAs from 27 species of gram-negative bacteria indicated that the genus Rhizomonas belongs to superfamily IV of De Ley. On the basis of the melting temperatures of DNA hybrids with rRNAs from the type strains of R. suberifaciens, Sphingomonas paucimobilis, and Sphingomonas capsulata, Rhizomonas strains constitute a separate branch in superfamily IV, which is closely related to but separate from branches containing Zymomonas mobilis, Sphingomonas spp., and S. capsulata. Sphingomonas yanoikuyae and Rhizomonas sp. strain WI4 are located toward the base of the Rhizomonas rRNA branch. DNA-DNA hybridization indicated that S. yanoikuyae is equidistant from Rhizomonas sp. strain WI4 and S. paucimobilis. Sequences of 270 bp of 16S ribosomal DNAs from eight strains of Rhizomonas spp., eight strains of Sphingomonas spp., and Agrobacterium tumefaciens indicated that S. yanoikuyae and Rhizomonas sp. strains WI4 and CA16 are genetically more closely related to R. suberifaciens than to Sphingomonas spp. Thus, S. yanoikuyae may need to be transferred to the genus Rhizomonas on the basis of the results of further study.

  5. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.

    PubMed

    Ou, Mark S; Mohammed, Nazimuddin; Ingram, L O; Shanmugam, K T

    2009-05-01

    Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g(-1) cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g(-1) cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.

  6. Direct measurement of interaction forces between a single bacterium and a flat plate.

    PubMed

    Klein, Jonah D; Clapp, Aaron R; Dickinson, Richard B

    2003-05-15

    A technique for precisely measuring the equilibrium and viscous interaction forces between a single bacterium and a flat surface as functions of separation distance is described. A single-beam gradient optical trap was used to micromanipulate the bacterium against a flat surface while evanescent wave light scattering was used to measure separation distances. Calibrating the optical trap far from the surface allowed the trapped bacterium to be used as a force probe. Equilibrium force-distance profiles were determined by measuring the deflection of the cell from the center of the optical trap at various trap positions. Simultaneously, viscous forces were determined by measuring the relaxation time for the fluctuating bacterium. Absolute distances were determined using a best-fit approximation to the theoretical prediction for the hindered mobility of a diffusing sphere near a wall. Using this approach, forces in the range from 0.01 to 4 pN were measured at near-nanometer resolution between Staphylococcus aureus and glass that was bare or coated with adsorbed protein.

  7. The construction of an engineered bacterium to remove cadmium from wastewater.

    PubMed

    Chang, S; Shu, H

    2014-01-01

    The removal of cadmium (Cd) from wastewater before it is released from factories is important for protecting human health. Although some researchers have developed engineered bacteria, the resistance of these engineered bacteria to Cd have not been improved. In this study, two key genes involved in glutathione synthesis (gshA and gshB), a serine acetyltransferase gene (cysE), a Thlaspi caerulescens phytochelatin synthase gene (TcPCS1), and a heavy metal ATPase gene (TcHMA3) were transformed into Escherichia coli BL21. The resistance of the engineered bacterium to Cd was significantly greater than that of the initial bacterium and the Cd accumulation in the engineered bacterium was much higher than in the initial bacterium. In addition, the Cd resistance of the bacteria harboring gshB, gshA, cysE, and TcPCS1 was higher than that of the bacteria harboring gshA, cysE, and TcPCS1. This finding demonstrated that gshB played an important role in glutathione synthesis and that the reaction catalyzed by glutathione synthase was the limiting step for producing phytochelatins. Furthermore, TcPCS1 had a greater specificity and a higher capacity for removing Cd than SpPCS1, and TcHMA3 not only played a role in T. caerulescens but also functioned in E. coli.

  8. Metabolomics evaluation of the impact of smokeless tobacco exposure on the oral bacterium Capnocytophaga sputigena

    PubMed Central

    Sun, Jinchun; Jin, Jinshan; Beger, Richard D.; Cerniglia, Carl E.; Yang, Maocheng; Chen, Huizhong

    2017-01-01

    The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the argininenitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine. PMID:27480511

  9. Metabolomics evaluation of the impact of smokeless tobacco exposure on the oral bacterium Capnocytophaga sputigena.

    PubMed

    Sun, Jinchun; Jin, Jinshan; Beger, Richard D; Cerniglia, Carl E; Yang, Maocheng; Chen, Huizhong

    2016-10-01

    The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the arginine-nitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine. Published by Elsevier Ltd.

  10. Near-complete genome sequence of the cellulolytic Bacterium Bacteroides ( Pseudobacteroides) cellulosolvens ATCC 35603

    DOE PAGES

    Dassa, Bareket; Utturkar, Sagar M.; Hurt, Richard A.; ...

    2015-09-24

    We report the single-contig genome sequence of the anaerobic, mesophilic, cellulolytic bacterium, Bacteroides cellulosolvens. The bacterium produces a particularly elaborate cellulosome system, whereas the types of cohesin-dockerin interactions are opposite of other known cellulosome systems: cell-surface attachment is thus mediated via type-I interactions whereas enzymes are integrated via type-II interactions.

  11. [A rarely isolated bacterium in microbiology laboratories: Streptococcus uberis].

    PubMed

    Eryıldız, Canan; Bukavaz, Şebnem; Gürcan, Şaban; Hatipoğlu, Osman

    2017-04-01

    Streptococcus uberis is a gram-positive bacterium that is mostly responsible for mastitis in cattle. The bacterium rarely has been associated with human infections. Conventional phenotyphic methods can be inadequate for the identification of S.uberis; and in microbiology laboratories S.uberis is confused with the other streptococci and enterococci isolates. Recently, molecular methods are recommended for the accurate identification of S.uberis isolates. The aim of this report is to present a lower respiratory tract infection case caused by S.uberis and the microbiological methods for identification of this bacterium. A 66-year-old male patient with squamous cell lung cancer who received radiotherapy was admitted in our hospital for the control. According to the chest X-Ray, patient was hospitalized with the prediagnosis of ''cavitary tumor, pulmonary abscess''. In the first day of the hospitalization, blood and sputum cultures were drawn. Blood culture was negative, however, Candida albicans was isolated in the sputum culture and it was estimated to be due to oral lesions. After two weeks from the hospitalization, sputum sample was taken from the patient since he had abnormal respiratory sounds and cough complaint. In the Gram stained smear of the sputum there were abundant leucocytes and gram-positive cocci, and S.uberis was isolated in both 5% sheep blood and chocolate agar media. Bacterial identification and antibiotic susceptibility tests were performed by VITEK 2 (Biomerieux, France) and also, the bacterium was identified by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) based VITEK MS system as S.uberis. The isolate was determined susceptible to ampicillin, erythromycin, clindamycin, levofloxacin, linezolid, penicillin, cefotaxime, ceftriaxone, tetracycline and vancomycin. 16S, 23S ribosomal RNA and 16S-23S intergenic spacer gene regions were amplified with specific primers and partial DNA sequence analysis of 16S

  12. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium

    PubMed Central

    Little, C. Deane; Palumbo, Anthony V.; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine the rate, methane dependence, and mechanism of TCE biodegradation. TCE biodegradation by strain 46-1 appears to be a cometabolic process that occurs when the organism is actively metabolizing a suitable growth substrate such as methane or methanol. It is proposed that TCE biodegradation by methanotrophs occurs by formation of TCE epoxide, which breaks down spontaneously in water to form dichloroacetic and glyoxylic acids and one-carbon products. Images PMID:16347616

  13. Draft Genome Sequence of the Cellulolytic Bacterium Clostridium papyrosolvens C7 (ATCC 700395).

    PubMed

    Zepeda, Veronica; Dassa, Bareket; Borovok, Ilya; Lamed, Raphael; Bayer, Edward A; Cate, Jamie H D

    2013-09-12

    We report the draft genome sequence of the cellulose-degrading bacterium Clostridium papyrosolvens C7, originally isolated from mud collected below a freshwater pond in Massachusetts. This Gram-positive bacterium grows in a mesophilic anaerobic environment with filter paper as the only carbon source, and it has a simple cellulosome system with multiple carbohydrate-degrading enzymes.

  14. Draft Genome Sequence of the Cellulolytic Bacterium Clostridium papyrosolvens C7 (ATCC 700395)

    PubMed Central

    Zepeda, Veronica; Dassa, Bareket; Borovok, Ilya; Lamed, Raphael; Bayer, Edward A.

    2013-01-01

    We report the draft genome sequence of the cellulose-degrading bacterium Clostridium papyrosolvens C7, originally isolated from mud collected below a freshwater pond in Massachusetts. This Gram-positive bacterium grows in a mesophilic anaerobic environment with filter paper as the only carbon source, and it has a simple cellulosome system with multiple carbohydrate-degrading enzymes. PMID:24029755

  15. Overproduction of Hydrogen From an Anaerobic Bacterium

    DTIC Science & Technology

    2008-12-01

    fixation of nitrogen ( Haber - Bosch process), mostly to produce fertilizer. Nitrogenase provides a catalytic alternative to the commercial fixation of...the culture and suggests a uniquely simple hydrogen reactor design based on renewable feedstocks. 1. INTRODUCTION Hydrogen is an ideal... renewable feedstocks. Clostridium phytofermentans is a recently- discovered anaerobic bacterium, reported to possess cellulase enzymes that degrade

  16. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment

    USDA-ARS?s Scientific Manuscript database

    Background: Phenolic aldehydes generated from lignocellulose pretreatment exhibited severe toxic inhibitions on microbial growth and fermentation. Numerous tolerance studies against furfural, 5-hydroxymethyl-2-furaldehyde (HMF), acetate, and ethanol were reported, but studies on inhibition of phenol...

  17. Determination of phenanthrene bioavailability by using a self-dying reporter bacterium: test with model solids and soil.

    PubMed

    Shin, Doyun; Nam, Kyoungphile

    2012-02-20

    The present study was conducted to investigate the performance and feasibility of a self-dying reporter bacterium to visualize and quantify phenanthrene bioavailability in soil. The self-dying reporter bacterium was designed to die on the initiation of phenanthrene biodegradation. The viability of the reporter bacterium was determined by a fluorescence live/dead cell staining method and visualized by confocal laser scanning microscopic observation. Phenanthrene was spiked into four types of model solids and a sandy loam. The bioavailability of phenanthrene to the reporter bacterium was remarkably declined with the hydrophobicity of the model solids: essentially no phenanthrene was biodegraded in the presence of 9-nm pores and about 35.8% of initial phenanthrene was biodegraded without pores. Decrease in bioavailability was not evident in the nonporous hydrophilic bead, but a small decrease was observed in the porous hydrophilic bead at 1000 mg/kg of phenanthrene. The fluorescence intensity was commensurate with the extent of phenanthrene biodegradation by the reporter bacterium at the concentration range from 50 to 500 mg/kg. Such a quantitative relationship was also confirmed with a sandy loam spiked up to 1000 mg/kg of phenanthrene. This reporter bacterium may be a useful means to determine phenanthrene bioavailability in soil. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    PubMed Central

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  19. [Diversity analysis of desulfuration bacterium from the oxidation ditch of city sewage treatment plant with SO2 gas].

    PubMed

    Huang, Bing; Zhang, Shi-Ling; Zhang, Jiang-Hong; Ao, Yong; Shi, Zhe

    2011-07-01

    A group of removing SO2 bacterium was obtained from the oxidation ditch of city sewage treatment plant by inductive domestication over 6 d with low concentration SO2 gas, and they have an ability with biodegradation rate of 888 mg x (L x h)(-1) and a degradation efficiency of 85% during 1.5 h for SO2 dissolved in water with their synergy. The clone library and two phylogenetic trees of the removing SO2 bacterium communities were obtained based on 16S rRNA DNA comparison by DNA extraction of the sample and in situ polymerase chain reaction (PCR). The phylogenetic analysis showed that 8 dominant desulfuration bacterium occupy about 69% of all removing SO2 bacterium, and some of them have a kindred with discovered desulfuration bacterium but not homogeneity, and there are four belong to alpha-Proteobacteria, another four belong to beta-Proteobacteria in them. The gene information about 16S rRNA sequence of the dominant desulfuration bacteria and domestication method provide a basic of looking for or domesticating removing SO2 bacterium for development microbial desulfurization technology of contained SO2 tail gas.

  20. Characterization of a bacterium of the genus Azospirillum from cellulolytic nitrogen-fixing mixed cultures.

    PubMed

    Wong, P P; Stenberg, N E; Edgar, L

    1980-03-01

    A bacterium with the taxonomic characteristics of the genus Azospirillum was isolated from celluloytic N2-fixing mixed cultures. Its characteristics fit the descriptions of both Azopirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. It may be a variant strain of A. lipoferum. In mixed cultures with cellulolytic organisms, the bacterium grew and fixed N2 with cellelose as a sole source of energy and carbon. The mixed cultures used cellulose from leaves of wheat (Triticum aestivum L.), corn (Zea mays L.), and big bluestem grass (Andropogon gerardii Vitm). Microaerophilic N2-fixing bacteria of the genus Azospirillum, such as the bacterium we isolated, may be important contributors of fixed N2 in soil with partial anaerobiosis and cellulose decomposition.

  1. Biofilm Formation by a Metabolically Versatile Bacterium

    DTIC Science & Technology

    2005-10-02

    Rhodopseudomonas palustris is a photosynthetic bacterium that has good potential to be developed as a biocatalyst for the production of hydrogen, a...A for none) Samanta, S. K and C. S. Harwood. 2005. Use of the Rhodopseudomonas palustris genome to identify a single amino acid that contributes to...operon from Rhodopseudomonas palustris mediates dicarboxylic acid degradation and participates in anaerobic benzoate degradation. Microbiology 151

  2. Boron nitride nanotube-based biosensing of various bacterium/viruses: continuum modelling-based simulation approach.

    PubMed

    Panchal, Mitesh B; Upadhyay, Sanjay H

    2014-09-01

    In this study, the feasibility of single walled boron nitride nanotube (SWBNNT)-based biosensors has been ensured considering the continuum modelling-based simulation approach, for mass-based detection of various bacterium/viruses. Various types of bacterium or viruses have been taken into consideration at the free-end of the cantilevered configuration of the SWBNNT, as a biosensor. Resonant frequency shift-based analysis has been performed with the adsorption of various bacterium/viruses considered as additional mass to the SWBNNT-based sensor system. The continuum mechanics-based analytical approach, considering effective wall thickness has been considered to validate the finite element method (FEM)-based simulation results, based on continuum volume-based modelling of the SWBNNT. As a systematic analysis approach, the FEM-based simulation results are found in excellent agreement with the analytical results, to analyse the SWBNNTs for their wide range of applications such as nanoresonators, biosensors, gas-sensors, transducers and so on. The obtained results suggest that by using the SWBNNT of smaller size the sensitivity of the sensor system can be enhanced and detection of the bacterium/virus having mass of 4.28 × 10⁻²⁴ kg can be effectively performed.

  3. Fermentation of xylose to ethanol by genetically modified enteric bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolan, J.S.

    1987-01-01

    This thesis describes the fermentation of D-xylose by wild type and recombinant Klebsiella planticola ATCC 33531 and Erwinia chrysanthemi B374. The recombinant strains bear multi-copy plasmids containing the pdc gene inserted from Zymomonas mobilis. Expression of the gene in K. planticola markedly increased the yield of ethanol, up to 1.3 mole/mole xylose, or 25.1 g/L. Concurrently, there were significant decreases in the yields of formation acetate, lactate, and butanediol. Transconjugant Klebsiella grew almost as fast as the wild type and tolerated up to 4% ethanol. The plasmid was retained by the cells during at least one batch culture, even inmore » the absence of selective pressure by antibiotics to maintain the plasmid. The cells produced 31.6 g/L ethanol from 79.6 g/L of a D-glucose-D-xylose-L-arabinose mixture designed to simulate hydrolyzed hemicellulose. The physiology of the wild type K. planticola is described in more detail than in the original report of its isolation. E. chrysanthemi PDC transconjugants also produced ethanol in high yield (up to 1.45 mole/mole xylose). However, transconjugant E. chrysanthemi grew only 1/4 as rapidly as the wild type and tolerated only 2% ethanol. The plasmid PZM15 apparently exhibits pleiotropic effects when inserted into K. planticola and into E. chrysanthemi.« less

  4. Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments.

    PubMed

    Wiechert, W; de Graaf, A A

    1997-07-05

    The extension of metabolite balancing with carbon labeling experiments, as described by Marx et al. (Biotechnol. Bioeng. 49: 11-29), results in a much more detailed stationary metabolic flux analysis. As opposed to basic metabolite flux balancing alone, this method enables both flux directions of bidirectional reaction steps to be quantitated. However, the mathematical treatment of carbon labeling systems is much more complicated, because it requires the solution of numerous balance equations that are bilinear with respect to fluxes and fractional labeling. In this study, a universal modeling framework is presented for describing the metabolite and carbon atom flux in a metabolic network. Bidirectional reaction steps are extensively treated and their impact on the system's labeling state is investigated. Various kinds of modeling assumptions, as usually made for metabolic fluxes, are expressed by linear constraint equations. A numerical algorithm for the solution of the resulting linear constrained set of nonlinear equations is developed. The numerical stability problems caused by large bidirectional fluxes are solved by a specially developed transformation method. Finally, the simulation of carbon labeling experiments is facilitated by a flexible software tool for network synthesis. An illustrative simulation study on flux identifiability from available flux and labeling measurements in the cyclic pentose phosphate pathway of a recombinant strain of Zymomonas mobilis concludes this contribution.

  5. Effect of arsenite-oxidizing bacterium B. laterosporus on arsenite toxicity and arsenic translocation in rice seedlings.

    PubMed

    Yang, Gui-Di; Xie, Wan-Ying; Zhu, Xi; Huang, Yi; Yang, Xiao-Jun; Qiu, Zong-Qing; Lv, Zhen-Mao; Wang, Wen-Na; Lin, Wen-Xiong

    2015-10-01

    Arsenite [As (III)] oxidation can be accelerated by bacterial catalysis, but the effects of the accelerated oxidation on arsenic toxicity and translocation in rice plants are poorly understood. Herein we investigated how an arsenite-oxidizing bacterium, namely Brevibacillus laterosporus, influences As (III) toxicity and translocation in rice plants. Rice seedlings of four cultivars, namely Guangyou Ming 118 (GM), Teyou Hang II (TH), Shanyou 63 (SY) and Minghui 63 (MH), inoculated with or without the bacterium were grown hydroponically with As (III) to investigate its effects on arsenic toxicity and translocation in the plants. Percentages of As (III) oxidation in the solutions with the bacterium (100%) were all significantly higher than those without (30-72%). The addition of the bacterium significantly decreased As (III) concentrations in SY root, GM root and shoot, while increased the As (III) concentrations in the shoot of SY, MH and TH and in the root of MH. Furthermore, the As (III) concentrations in the root and shoot of SY were both the lowest among the treatments with the bacterium. On the other hand, its addition significantly alleviated the As (III) toxicity on four rice cultivars. Among the treatments amended with B. laterosporus, the bacterium showed the best remediation on SY seedlings, with respect to the subdued As (III) toxicity and decreased As (III) concentration in its roots. These results indicated that As (III) oxidation accelerated by B. laterosporus could be an effective method to alleviate As (III) toxicity on rice seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. An economic comparison of different fermentation configurations to convert corn stover to ethanol using Z. mobilis and Saccharomyces.

    PubMed

    Dutta, Abhijit; Dowe, Nancy; Ibsen, Kelly N; Schell, Daniel J; Aden, Andy

    2010-01-01

    Numerous routes are being explored to lower the cost of cellulosic ethanol production and enable large-scale production. One critical area is the development of robust cofermentative organisms to convert the multiple, mixed sugars found in biomass feedstocks to ethanol at high yields and titers without the need for processing to remove inhibitors. Until such microorganisms are commercialized, the challenge is to design processes that exploit the current microorganisms' strengths. This study explored various process configurations tailored to take advantage of the specific capabilities of three microorganisms, Z. mobilis 8b, S. cerevisiae, and S. pastorianus. A technoeconomic study, based on bench-scale experimental data generated by integrated process testing, was completed to understand the resulting costs of the different process configurations. The configurations included whole slurry fermentation with a coculture, and separate cellulose simultaneous saccharification and fermentation (SSF) and xylose fermentations with none, some or all of the water to the SSF replaced with the fermented liquor from the xylose fermentation. The difference between the highest and lowest ethanol cost for the different experimental process configurations studied was $0.27 per gallon ethanol. Separate fermentation of solid and liquor streams with recycle of fermented liquor to dilute the solids gave the lowest ethanol cost, primarily because this option achieved the highest concentrations of ethanol after fermentation. Further studies, using methods similar to ones employed here, can help understand and improve the performance and hence the economics of integrated processes involving enzymes and fermentative microorganisms.

  7. Characterization of a novel extremely alkalophilic bacterium

    NASA Technical Reports Server (NTRS)

    Souza, K. A.; Deal, P. H.

    1977-01-01

    A new alkalophilic bacterium, isolated from a natural spring of high pH is characterized. It is a Gram-positive, non-sporulating, motile rod requiring aerobic and alkaline conditions for growth. The characteristics of this organism resemble those of the coryneform group of bacteria; however, there are no accepted genera within this group with which this organism can be closely matched. Therefore, a new genus may be warranted.

  8. Extracellular nucleic acids of the marine bacterium Rhodovulum sulfidophilum and recombinant RNA production technology using bacteria.

    PubMed

    Kikuchi, Yo; Umekage, So

    2018-02-01

    Extracellular nucleic acids of high molecular weight are detected ubiquitously in seawater. Recent studies have indicated that these nucleic acids are, at least in part, derived from active production by some bacteria. The marine bacterium Rhodovulum sulfidophilum is one of those bacteria. Rhodovulumsulfidophilum is a non-sulfur phototrophic marine bacterium that is known to form structured communities of cells called flocs, and to produce extracellular nucleic acids in culture media. Recently, it has been revealed that this bacterium produces gene transfer agent-like particles and that this particle production may be related to the extracellular nucleic acid production mechanism. This review provides a summary of recent physiological and genetic studies of these phenomena and also introduces a new method for extracellular production of artificial and biologically functional RNAs using this bacterium. In addition, artificial RNA production using Escherichia coli, which is related to this topic, will also be described. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Complete Genome Sequence of the p-Nitrophenol-Degrading Bacterium Pseudomonas putida DLL-E4

    PubMed Central

    Hu, Xiaojun; Wang, Jue; Wang, Fei; Chen, Qiongzhen; Huang, Yan

    2014-01-01

    The first complete genome sequence of a p-nitrophenol (PNP)-degrading bacterium is reported here. Pseudomonas putida DLL-E4, a Gram-negative bacterium isolated from methyl-parathion-polluted soil, can utilize PNP as the sole carbon and nitrogen source. P. putida DLL-E4 has a 6,484,062 bp circular chromosome that contains 5,894 genes, with a G+C content of 62.46%. PMID:24948765

  10. Pathogenicity of Moraxella osloensis, a bacterium associated with the nematode Phasmarhabditis hermaphrodita, to the slug Deroceras reticulatum.

    PubMed

    Tan, L; Grewal, P S

    2001-11-01

    Moraxella osloensis, a gram-negative bacterium, is associated with Phasmarhabditis hermaphrodita, a nematode parasite of slugs. This bacterium-feeding nematode has potential for the biological control of slugs, especially the grey garden slug, Deroceras reticulatum. Infective juveniles of P. hermaphrodita invade the shell cavity of the slug, develop into self-fertilizing hermaphrodites, and produce progeny, resulting in host death. However, the role of the associated bacterium in the pathogenicity of the nematode to the slug is unknown. We discovered that M. osloensis alone is pathogenic to D. reticulatum after injection into the shell cavity or hemocoel of the slug. The bacteria from 60-h cultures were more pathogenic than the bacteria from 40-h cultures, as indicated by the higher and more rapid mortality of the slugs injected with the former. Coinjection of penicillin and streptomycin with the 60-h bacterial culture reduced its pathogenicity to the slug. Further work suggested that the reduction and loss of pathogenicity of the aged infective juveniles of P. hermaphrodita to D. reticulatum result from the loss of M. osloensis from the aged nematodes. Also, axenic J1/J2 nematodes were nonpathogenic after injection into the shell cavity. Therefore, we conclude that the bacterium is the sole killing agent of D. reticulatum in the nematode-bacterium complex and that P. hermaphrodita acts only as a vector to transport the bacterium into the shell cavity of the slug. The identification of the toxic metabolites produced by M. osloensis is being pursued.

  11. Halomonas maura is a physiologically versatile bacterium of both ecological and biotechnological interest.

    PubMed

    Llamas, Inmaculada; del Moral, Ana; Martínez-Checa, Fernando; Arco, Yolanda; Arias, Soledad; Quesada, Emilia

    2006-01-01

    Halomonas maura is a bacterium of great metabolic versatility. We summarise in this work some of the properties that make it a very interesting microorganism both from an ecological and biotechnological point of view. It plays an active role in the nitrogen cycle, is capable of anaerobic respiration in the presence of nitrate and has recently been identified as a diazotrophic bacterium. Of equal interest is mauran, the exopolysaccharide produced by H. maura, which contributes to the formation of biofilms and thus affords the bacterium advantages in the colonisation of its saline niches. Mauran is highly viscous, shows thixotropic and pseudoplastic behaviour, has the capacity to capture heavy metals and exerts a certain immunomodulator effect in medicine. All these attributes have prompted us to make further investigations into its molecular characteristics. To date we have described 15 open reading frames (ORF's) related to exopolysaccharide production, nitrogen fixation and nitrate reductase activity among others.

  12. Deinococcus mumbaiensis sp. nov., a radiation-resistant pleomorphic bacterium isolated from Mumbai, India.

    PubMed

    Shashidhar, Ravindranath; Bandekar, Jayant R

    2006-01-01

    A radiation-resistant, Gram-negative and pleomorphic bacterium (CON-1) was isolated from a contaminated tryptone glucose yeast extract agar plate in the laboratory. It was red pigmented, nonmotile, nonsporulating, and aerobic, and contained MK-8 as respiratory quinone. The cell wall of this bacterium contained ornithine. The major fatty acids were C16:0, C16:1, C17:0, C18:1 and iso C18:0. The DNA of CON-1 had a G+C content of 70 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that CON-1 exhibited a maximum similarity (94.72%) with Deinococcus grandis. Based on the genotypic, phenotypic and chemotaxonomic characteristics, the bacterium CON-1 was identified as a new species of the genus Deinococcus, for which the name Deinococcus mumbaiensis sp. nov. is proposed. The type strain of D. mumbaiensis is CON-1 (MTCC 7297(T)=DSM 17424(T)).

  13. From Genome to Function: Systematic Analysis of the Soil Bacterium Bacillus Subtilis

    PubMed Central

    Crawshaw, Samuel G.; Wipat, Anil

    2001-01-01

    Bacillus subtilis is a sporulating Gram-positive bacterium that lives primarily in the soil and associated water sources. Whilst this bacterium has been studied extensively in the laboratory, relatively few studies have been undertaken to study its activity in natural environments. The publication of the B. subtilis genome sequence and subsequent systematic functional analysis programme have provided an opportunity to develop tools for analysing the role and expression of Bacillus genes in situ. In this paper we discuss analytical approaches that are being developed to relate genes to function in environments such as the rhizosphere. PMID:18628943

  14. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Gary; Dalin, Eileen; Tice, Hope

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  15. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711

    PubMed Central

    Shoemaker, William R.; Muscarella, Mario E.

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments. PMID:26089434

  16. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    USGS Publications Warehouse

    Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.

    1990-01-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.

  17. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    PubMed

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  18. Pathogenicity of Moraxella osloensis, a Bacterium Associated with the Nematode Phasmarhabditis hermaphrodita, to the Slug Deroceras reticulatum

    PubMed Central

    Tan, Li; Grewal, Parwinder S.

    2001-01-01

    Moraxella osloensis, a gram-negative bacterium, is associated with Phasmarhabditis hermaphrodita, a nematode parasite of slugs. This bacterium-feeding nematode has potential for the biological control of slugs, especially the grey garden slug, Deroceras reticulatum. Infective juveniles of P. hermaphrodita invade the shell cavity of the slug, develop into self-fertilizing hermaphrodites, and produce progeny, resulting in host death. However, the role of the associated bacterium in the pathogenicity of the nematode to the slug is unknown. We discovered that M. osloensis alone is pathogenic to D. reticulatum after injection into the shell cavity or hemocoel of the slug. The bacteria from 60-h cultures were more pathogenic than the bacteria from 40-h cultures, as indicated by the higher and more rapid mortality of the slugs injected with the former. Coinjection of penicillin and streptomycin with the 60-h bacterial culture reduced its pathogenicity to the slug. Further work suggested that the reduction and loss of pathogenicity of the aged infective juveniles of P. hermaphrodita to D. reticulatum result from the loss of M. osloensis from the aged nematodes. Also, axenic J1/J2 nematodes were nonpathogenic after injection into the shell cavity. Therefore, we conclude that the bacterium is the sole killing agent of D. reticulatum in the nematode-bacterium complex and that P. hermaphrodita acts only as a vector to transport the bacterium into the shell cavity of the slug. The identification of the toxic metabolites produced by M. osloensis is being pursued. PMID:11679319

  19. Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp.

    PubMed

    Davies, Keith G

    2009-01-01

    Pasteuria penetrans is an endospore-forming bacterium, which is a hyperparasite of root-knot nematodes Meloidogyne spp. that are economically important pests of a wide range of crops. The life cycle of the bacterium and nematode are described with emphasis on the bacterium's potential as a biocontrol agent. Two aspects that currently prohibit the commercial development of the bacterium as a biocontrol agent are the inability to culture it outside its host and its host specificity. Vegetative growth of the bacterium is possible in vitro; however, getting the vegetative stages of the bacterium to enter sporogenesis has been problematic. Insights from genomic survey sequences regarding the role of cation concentration and the phosphorylation of Spo0F have proved useful in inducing vegetative bacteria to sporulate. Similarly, genomic data have also proved useful in understanding the attachment of endospores to the cuticle of infective nematode juveniles, and a Velcro-like model of spore attachment is proposed that involves collagen-like fibres on the surface of the endospore interacting with mucins on the nematode cuticle. Ecological studies of the interactions between Daphnia and Pasteuria ramosa are examined and similarities are drawn between the co-evolution of virulence in the Daphnia system and that of plant-parasitic nematodes.

  20. Description of a bacterium associated with redmouth disease of rainbow trout (Salmo gairdneri)

    USGS Publications Warehouse

    Ross, A.J.; Rucker, R.R.; Ewing, W.H.

    1966-01-01

    A description was given of a gram-negative, peritrichously flagellated, fermentative bacterium that was isolated on numerous occasions from kidney tissues of rainbow trout (Salmo gairdneri) afflicted with redmouth disease. Although the bacteria apparently were members of the family Enterobacteriaceae, it was impossible to determine their taxonomic position within the family with certainty. Hence it was recommended that their taxonomic position remain sub judice for the present. As a temporary designation RM bacterium was used. Redmouth disease was transmitted from infected to normal fish through the medium of water.

  1. Cadherin Domains in the Polysaccharide-Degrading Marine Bacterium Saccharophagus degradans 2-40 Are Carbohydrate-Binding Modules▿

    PubMed Central

    Fraiberg, Milana; Borovok, Ilya; Bayer, Edward A.; Weiner, Ronald M.; Lamed, Raphael

    2011-01-01

    The complex polysaccharide-degrading marine bacterium Saccharophagus degradans strain 2-40 produces putative proteins that contain numerous cadherin and cadherin-like domains involved in intercellular contact interactions. The current study reveals that both domain types exhibit reversible calcium-dependent binding to different complex polysaccharides which serve as growth substrates for the bacterium. PMID:21036994

  2. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhee, Mun Su; Moritz, Brelan E.; Xie, Gary

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strainmore » 36D1, is presented and discussed.« less

  3. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    PubMed Central

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  4. Paradigms: examples from the bacterium Xylella fastidiosa.

    PubMed

    Purcell, Alexander

    2013-01-01

    The history of advances in research on Xylella fastidiosa provides excellent examples of how paradigms both advance and limit our scientific understanding of plant pathogens and the plant diseases they cause. I describe this from a personal perspective, having been directly involved with many persons who made paradigm-changing discoveries, beginning with the discovery that a bacterium, not a virus, causes Pierce's disease of grape and other plant diseases in numerous plant species, including important crop and forest species.

  5. A novel strategy for acetonitrile wastewater treatment by using a recombinant bacterium with biofilm-forming and nitrile-degrading capability.

    PubMed

    Li, Chunyan; Yue, Zhenlei; Feng, Fengzhao; Xi, Chuanwu; Zang, Hailian; An, Xuejiao; Liu, Keran

    2016-10-01

    There is a great need for efficient acetonitrile removal technology in wastewater treatment to reduce the discharge of this pollutant in untreated wastewater. In this study, a nitrilase gene (nit) isolated from a nitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was cloned and transformed into a biofilm-forming bacterium (Bacillus subtilis N4) that expressed the recombinant protein upon isopropylthio-β-galactoside (IPTG) induction. The recombinant bacterium (B. subtilis N4-pHT01-nit) formed strong biofilms and had nitrile-degrading capability. Further testing demonstrated that biofilms formed by B. subtilis N4-pHT01-nit were highly resistant to loading shock from acetonitrile and almost completely degraded the initial concentration of acetonitrile (800 mg L(-1)) within 24 h in a moving bed biofilm reactor (MBBR) after operation for 35 d. The bacterial composition of the biofilm, identified by high-throughput sequencing, in a reactor in which the B. subtilis N4-pHT01-nit bacterium was introduced indicated that the engineered bacterium was successfully immobilized in the reactor and became dominant genus. This work demonstrates that an engineered bacterium with nitrile-degrading and biofilm-forming capacity can improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing the biological oxidation of toxic pollutants in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Genome Sequence of Lactobacillus delbrueckii subsp. lactis CNRZ327, a Dairy Bacterium with Anti-Inflammatory Properties.

    PubMed

    El Kafsi, Hela; Binesse, Johan; Loux, Valentin; Buratti, Julien; Boudebbouze, Samira; Dervyn, Rozenn; Hammani, Amal; Maguin, Emmanuelle; van de Guchte, Maarten

    2014-07-17

    Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain. Copyright © 2014 El Kafsi et al.

  7. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A

  8. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    PubMed

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  9. Complete genome of Martelella sp. AD-3, a moderately halophilic polycyclic aromatic hydrocarbons-degrading bacterium.

    PubMed

    Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi

    2016-05-10

    Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7

    USDA-ARS?s Scientific Manuscript database

    Ruminococcus albus 7 is a highly cellulolytic rumen bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome for this microbe. This genome will be useful for rumen microbiology, cellulosome biology, and in biofuel production, as one of its major fermentation product...

  11. Draft Genome Sequence of an Anaerobic and Extremophilic Bacterium, Caldanaerobacter yonseiensis, Isolated from a Geothermal Hot Stream

    PubMed Central

    Lee, Sang-Jae; Lee, Yong-Jik; Park, Gun-Seok; Kim, Byoung-Chan; Lee, Sang Jun; Shin, Jae-Ho

    2013-01-01

    Caldanaerobacter yonseiensis is a strictly anaerobic, thermophilic, spore-forming bacterium, which was isolated from a geothermal hot stream in Indonesia. This bacterium utilizes xylose and produces a variety of proteases. Here, we report the draft genome sequence of C. yonseiensis, which reveals insights into the pentose phosphate pathway and protein degradation metabolism in thermophilic microorganisms. PMID:24201201

  12. Fine Structure and Host-Virus Relationship of a Marine Bacterium and Its Bacteriophage

    PubMed Central

    Valentine, Artrice F.; Chapman, George B.

    1966-01-01

    Valentine, Artrice F. (Georgetown University, Washington, D.C.), and George B. Chapman. Fine structure and host-virus relationship of a marine bacterium and its bacteriophage. J. Bacteriol. 92:1535–1554. 1966.—The fine structure of a gram-negative marine bacterium, Cytophaga marinoflava sp. n., has been revealed by ultrathin sectioning and electron microscopy. Stages in the morphogenesis of the bacterial virus NCMB 385, which has been shown to be highly specific for this organism, were also demonstrated in bacterial cells fixed according to the Kellenberger technique. The bacterium possessed a cell wall, cytoplasmic membrane, and nuclear and cytoplasmic regions typical of bacterial cells. Both the cell wall and the cytoplasmic membrane showed a tripartite structure, i.e., each was composed of two dense layers separated by a low-density zone. Intracytoplasmic membrane systems were also observed, especially in dividing cells and in cells in which new viruses were being formed. As many as 18 hexagonally shaped, empty phage heads (membranes only) were observed in untreated, infected bacterial cells. Phage heads, intermediate in density to empty heads and fully condensed ones, possibly representing stages in the morphological development of the virus, were also seen. Images PMID:5924277

  13. Complete genome sequence of the haloalkaliphilic, hydrogen-producing bacterium Halanaerobium hydrogeniformans.

    PubMed

    Brown, Steven D; Begemann, Matthew B; Mormile, Melanie R; Wall, Judy D; Han, Cliff S; Goodwin, Lynne A; Pitluck, Samuel; Land, Miriam L; Hauser, Loren J; Elias, Dwayne A

    2011-07-01

    Halanaerobium hydrogenoformans is an alkaliphilic bacterium capable of biohydrogen production at pH 11 and 7% (wt/vol) salt. We present the 2.6-Mb genome sequence to provide insights into its physiology and potential for bioenergy applications.

  14. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Pan, Hongmiao; Yue, Haidong; Song, Tao; Zhao, Yong; Chen, Guanjun; Wu, Longfei; Xiao, Tian

    2006-12-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in diameter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gram stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  15. Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol.

    PubMed

    Mohagheghi, Ali; Schell, Daniel J

    2010-04-01

    Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. (c) 2009 Wiley Periodicals, Inc.

  16. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Jeffrey G.

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  17. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE PAGES

    Gardner, Jeffrey G.

    2016-06-04

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  18. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis.

    PubMed

    Hadad, D; Geresh, S; Sivan, A

    2005-01-01

    To select a polyethylene-degrading micro-organism and to study the factors affecting its biodegrading activity. A thermophilic bacterium Brevibaccillus borstelensis strain 707 (isolated from soil) utilized branched low-density polyethylene as the sole carbon source and degraded it. Incubation of polyethylene with B. borstelensis (30 days, 50 degrees C) reduced its gravimetric and molecular weights by 11 and 30% respectively. Brevibaccillus borstelensis also degraded polyethylene in the presence of mannitol. Biodegradation of u.v. photo-oxidized polyethylene increased with increasing irradiation time. Fourier Transform Infra-Red (FTIR) analysis of photo-oxidized polyethylene revealed a reduction in carbonyl groups after incubation with the bacteria. This study demonstrates that polyethylene--considered to be inert--can be biodegraded if the right microbial strain is isolated. Enrichment culture methods were effective for isolating a thermophilic bacterium capable of utilizing polyethylene as the sole carbon and energy source. Maximal biodegradation was obtained in combination with photo-oxidation, which showed that carbonyl residues formed by photo-oxidation play a role in biodegradation. Brevibaccillus borstelensis also degraded the CH2 backbone of nonirradiated polyethylene. Biodegradation of polyethylene by a single bacterial strain contributes to our understanding of the process and the factors affecting polyethylene biodegradation.

  19. Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge

    NASA Astrophysics Data System (ADS)

    Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.

    2006-12-01

    Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only

  20. Thermostable purified endoglucanase from thermophilic bacterium acidothermus cellulolyticus

    DOEpatents

    Tucker, Melvin P.; Grohmann, Karel; Himmel, Michael E.; Mohagheghi, Ali

    1992-01-01

    A substantially purified high molecular weight cellulase enzyme having a molecular weight of between about 156,000 to about 203,400 daltons isolated from the bacterium Acidothermus cellulolyticus (ATCC 43068) and a method of producing it are disclosed. The enzyme is water soluble, possesses both C.sub.1 and C.sub.x types of enzymatic activity, has a high degree of stability toward heat and exhibits both a high optimum temperature activity and high inactivation characteristics.

  1. Genome sequence of the algicidal bacterium Kordia algicida OT-1.

    PubMed

    Lee, Hyun Sook; Kang, Sung Gyun; Kwon, Kae Kyoung; Lee, Jung-Hyun; Kim, Sang-Jin

    2011-08-01

    Kordia algicida OT-1 is an algicidal bacterium against the bloom-forming microalgae. The genome sequence of K. algicida revealed a number of interesting features, including the degradation of macromolecules, the biosynthesis of carotenoid pigment and secondary metabolites, and the capacity for gliding motility, which might facilitate the understanding of algicidal mechanisms.

  2. Evidence of carbon fixation pathway in a bacterium from candidate phylum SBR1093 revealed with genomic analysis.

    PubMed

    Wang, Zhiping; Guo, Feng; Liu, Lili; Zhang, Tong

    2014-01-01

    Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB) cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere.

  3. Characterization of a potentially novel 'blown pack' spoilage bacterium isolated from bovine hide.

    PubMed

    Moschonas, G; Bolton, D J

    2013-03-01

    To characterize a psychrotrophic bacterium, designated TC1, previously isolated from a cattle hide in Ireland, and to investigate the ability of this strain to cause 'blown pack' spoilage (BPS) of vacuum-packaged beef primals. TC1 was characterized using a combination of phenotypic, chemotaxonomic and genotypic analyses and was assessed for its ability to spoil vacuum-packaged beef at refrigerated temperatures. TC1 was Gram-positive and formed elliptical subterminal endospores. The strain was able to grow between 0 and 33 °C, with optimal growth between 23 and 24 °C. TC1 could be differentiated from its phylogenetically closest neighbour (Clostridium lituseburense DSM 797(T)) by 16S rRNA gene sequencing, pulsed-field gel electrophoresis and cellular fatty acid composition. TC1 spoiled (BPS) beef within 42 days when inoculated in cold-stored (1 °C) vacuum-packed beef. The phenotypic, chemotaxonomic and genotypic characterization indicated that TC1 may represent a potentially novel, cold-tolerant, gas-producing bacterium of considerable economic significance to the beef industry. This study reports and characterizes an emerging BPS bacterium, which should be considered in future activities designed to minimize the psychrophilic and psychrotrophic spoilage of vacuum-packaged beef. © 2012 The Society for Applied Microbiology.

  4. The gene transfer agent-like particle of the marine phototrophic bacterium Rhodovulum sulfidophilum.

    PubMed

    Nagao, Nobuyoshi; Yamamoto, Junya; Komatsu, Hiroyuki; Suzuki, Hiromichi; Hirose, Yuu; Umekage, So; Ohyama, Takashi; Kikuchi, Yo

    2015-12-01

    Gene transfer agents (GTAs) are shaped like bacteriophage particles but have many properties that distinguish them from bacteriophages. GTAs play a role in horizontal gene transfer in nature and thus affect the evolution of prokaryotic genomes. In the course of studies on the extracellular production of designed RNAs using the marine bacterium Rhodovulum sulfidophilum , we found that this bacterium produces a GTA-like particle. The particle contains DNA fragments of 4.5 kb, which consist of randomly fragmented genomic DNA from the bacterium. This 4.5-kb DNA production was prevented while quorum sensing was inhibited. Direct observation of the particle by transmission electron microscopy revealed that the particle resembles a tailed phage and has a head diameter of about 40 nm and a tail length of about 60 nm. We also identified the structural genes for the GTA in the genome. Translated amino acid sequences and gene positions are closely related to those of the genes that encode the Rhodobacter capsulatus GTA. This is the first report of a GTA-like particle from the genus Rhodovulum . However, gene transfer activity of this particle has not yet been confirmed. The differences between this particle and other GTAs are discussed.

  5. Chitin Utilization by the Insect-Transmitted Bacterium Xylella fastidiosa▿ †

    PubMed Central

    Killiny, Nabil; Prado, Simone S.; Almeida, Rodrigo P. P.

    2010-01-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa. PMID:20656858

  6. Investigations of Iron Minerals Formed by Dissimilatory Alkaliphilic Bacterium with 57Fe Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chistyakova, N. I.; Rusakov, V. S.; Shapkin, A. A.; Zhilina, T. N.; Zavarzina, D. G.; Lančok, A.; Kohout, J.

    2010-07-01

    Anaerobic alkaliphilic bacterium of Geoalkalibacter ferrihydriticus type (strain Z-0531), isolated from a bottom sediment sample from the weakly mineralized soda Lake Khadyn, have been analyzed. The strain uses the amorphous Fe(III)-hydroxide (AFH) as an electron acceptor and acetate CH3COO- as an electron donor. Mössbauer investigations of solid phase samples obtained during the process of the bacterium growth were carried out at room temperature, 77.8 K, 4.2 K without and with the presence of an external magnetic field (6 T) applied perpendicular to the γ-bebam.

  7. Studying the Symbiotic Bacterium Xenorhabdus nematophila in Individual, Living Steinernema carpocapsae Nematodes Using Microfluidic Systems.

    PubMed

    Stilwell, Matthew D; Cao, Mengyi; Goodrich-Blair, Heidi; Weibel, Douglas B

    2018-01-01

    Animal-microbe symbioses are ubiquitous in nature and scientifically important in diverse areas, including ecology, medicine, and agriculture. Steinernema nematodes and Xenorhabdus bacteria compose an established, successful model system for investigating microbial pathogenesis and mutualism. The bacterium Xenorhabdus nematophila is a species-specific mutualist of insect-infecting Steinernema carpocapsae nematodes. The bacterium colonizes a specialized intestinal pocket within the infective stage of the nematode, which transports the bacteria between insects that are killed and consumed by the pair for reproduction. Current understanding of the interaction between the infective-stage nematode and its bacterial colonizers is based largely on population-level, snapshot time point studies on these organisms. This limitation arises because investigating temporal dynamics of the bacterium within the nematode is impeded by the difficulty of isolating and maintaining individual living nematodes and tracking colonizing bacterial cells over time. To overcome this challenge, we developed a microfluidic system that enables us to spatially isolate and microscopically observe individual, living Steinernema nematodes and monitor the growth and development of the associated X. nematophila bacterial communities-starting from a single cell or a few cells-over weeks. Our data demonstrate, to our knowledge, the first direct, temporal, in vivo visual analysis of a symbiosis system and the application of this system to reveal continuous dynamics of the symbiont population in the living host animal. IMPORTANCE This paper describes an experimental system for directly investigating population dynamics of a symbiotic bacterium, Xenorhabdus nematophila , in its host-the infective stage of the entomopathogenic nematode Steinernema carpocapsae . Tracking individual and groups of bacteria in individual host nematodes over days and weeks yielded insight into dynamic growth and topology changes

  8. Tyrosine sulfation in a Gram-negative bacterium

    PubMed Central

    Han, Sang-Wook; Lee, Sang-Won; Bahar, Ofir; Schwessinger, Benjamin; Robinson, Michelle R.; Shaw, Jared B.; Madsen, James A.; Brodbelt, Jennifer S.; Ronald, Pamela C.

    2015-01-01

    Tyrosine sulfation, a well-characterized post-translation modification in eukaryotes, has not previously been reported in prokaryotes. Here we demonstrate that the RaxST protein from the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae, is a tyrosine sulfotransferase. We used a newly developed sulfotransferase assay and ultraviolet photodissociation mass spectrometry (UVPD) to demonstrate that RaxST catalyzes sulfation of tyrosine 22 of the Xoo Ax21 (activator of XA21-mediated immunity). These results demonstrate a previously undescribed post-translational modification in a prokaryotic species with implications extending to host immune response and bacterial cell-cell communication system. PMID:23093190

  9. Partial proteome of the corynetoxin-producing Gram-positive bacterium, Rathayibacter toxicus

    USDA-ARS?s Scientific Manuscript database

    Rathayibacter toxicus is a Gram-positive bacterium that is the causative agent of annual ryegrass toxicity (ARGT), a disease that causes devastating losses in the Australian livestock industry. R. toxicus exhibits a complex life cycle, using the nematode Anguina funesta as a physical vector to carry...

  10. Application of agglomerative clustering for analyzing phylogenetically on bacterium of saliva

    NASA Astrophysics Data System (ADS)

    Bustamam, A.; Fitria, I.; Umam, K.

    2017-07-01

    Analyzing population of Streptococcus bacteria is important since these species can cause dental caries, periodontal, halitosis (bad breath) and more problems. This paper will discuss the phylogenetically relation between the bacterium Streptococcus in saliva using a phylogenetic tree of agglomerative clustering methods. Starting with the bacterium Streptococcus DNA sequence obtained from the GenBank, then performed characteristic extraction of DNA sequences. The characteristic extraction result is matrix form, then performed normalization using min-max normalization and calculate genetic distance using Manhattan distance. Agglomerative clustering technique consisting of single linkage, complete linkage and average linkage. In this agglomerative algorithm number of group is started with the number of individual species. The most similar species is grouped until the similarity decreases and then formed a single group. Results of grouping is a phylogenetic tree and branches that join an established level of distance, that the smaller the distance the more the similarity of the larger species implementation is using R, an open source program.

  11. Melanin from the Nitrogen-Fixing Bacterium Azotobacter chroococcum: A Spectroscopic Characterization

    PubMed Central

    Banerjee, Raja

    2014-01-01

    Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state 13C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation. PMID:24416247

  12. Draft Genome Sequence of Arthrobacter sp. Strain SPG23, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium.

    PubMed

    Gkorezis, Panagiotis; Bottos, Eric M; Van Hamme, Jonathan D; Thijs, Sofie; Rineau, Francois; Franzetti, Andrea; Balseiro-Romero, Maria; Weyens, Nele; Vangronsveld, Jaco

    2015-12-23

    We report here the 4.7-Mb draft genome of Arthrobacter sp. SPG23, a hydrocarbonoclastic Gram-positive bacterium belonging to the Actinobacteria, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain SPG23 is a potent plant growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. Copyright © 2015 Gkorezis et al.

  13. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium.

    PubMed

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter; Vangronsveld, Jaco

    2016-06-23

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. Copyright © 2016 Gkorezis et al.

  14. ["Candidatus contubernalis alkalaceticum," an obligately syntrophic alkaliphilic bacterium capable of anaerobic acetate oxidation in a coculture with Desulfonatronum cooperativum].

    PubMed

    Zhilina, T N; Zavarzina, D G; Kolganova, T V; Turova, T P; Zavarzin, G A

    2005-01-01

    From the silty sediments of the Khadyn soda lake (Tuva), a binary sulfidogenic bacterial association capable of syntrophic acetate oxidation at pH 10.0 was isolated. An obligately syntrophic, gram-positive, spore-forming alkaliphilic rod-shaped bacterium performs acetate oxidation in a syntrophic association with a hydrogenotrophic, alkaliphilic sulfate-reducing bacterium; the latter organism was previously isolated and characterized as the new species Desulfonatronum cooperativum. Other sulfate-reducing bacteria of the genera Desulfonatronum and Desulfonatronovibrio can also act as the hydrogenotrophic partner. Apart from acetate, the syntrophic culture can oxidize ethanol, propanol, isopropanol, serine, fructose, and isobutyric acid. Selective amplification of 16S rRNA gene fragments of the acetate-utilizing syntrophic component of the binary culture was performed; it was found to cluster with clones of uncultured gram-positive bacteria within the family Syntrophomonadaceae. The acetate-oxidizing bacterium is thus the first representative of this cluster obtained in a laboratory culture. Based on its phylogenetic position, the new acetate-oxidizing syntrophic bacterium is proposed to be assigned, in a Candidate status, to a new genus and species: "Candidatus Contubernalis alkalaceticum."

  15. Isolation and characterization of Leu[7]-Surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Bacillus mojavensis is an endophytic bacterium patented for control of fungal diseases in maize and other plants. Culture extracts and filtrates from this bacterium were antagonistic to the pathogenic and mycotoxic fungus Fusarium verticillioides. However, the identity of the inhibitory substance ...

  16. Stress of algicidal substances from a bacterium Exiguobacterium sp. h10 on Microcystis aeruginosa.

    PubMed

    Li, Y; Liu, L; Xu, Y; Li, P; Zhang, K; Jiang, X; Zheng, T; Wang, H

    2017-01-01

    Microcystis aeruginosa is a cyanobacterial bloom-causing species and is considered a serious threat to human health and biological safety. In this study, the algicidal bacterium h10 showed high algicidal effects on M. aeruginosa 7820, and strain h10 was confirmed to belong to the genus Exiguobacterium, for which the name Exiguobacterium sp. h10 is proposed. Algicidal activity and mode analysis revealed that the supernatant, rather than the bacterial cells, was responsible for the algicidal activity, indicating that the algicidal mode of strain h10 is by indirect attack through the production of algicidal substances. Analysis of the algicidal substance characteristics showed a molecular weight of <1000 Da and that algicidal substances exhibit high thermal stability and pH instability, and the characteristic functional groups of the algicidal substance mainly included carbonyl, amino and hydroxyl groups. Under the effects of the algicidal substance, the cellular pigment content was significantly decreased, and the algal cell structure and morphology were seriously damaged. The results indicate that the algicidal bacterium Exiguobacterium sp. h10 could be a potential bio-agent for controlling cyanobacterial blooms of M. aeruginosa. In this study, the effects of algicidal substances from an algicidal bacterium Exiguobacterium sp. h10 on the toxic cyanobacterium, Microcystis aeruginosa 7820, were first investigated. The algicidal mode of action was confirmed as an indirect attack through the production of algicidal substances. The characteristics of the algicidal substance were determined, especially the functional groups analysis that confirmed the algicidal substances were glycolipid mixtures. With the stress of algicidal substances, the algal chlorophyll a synthesis, cell structure and morphology were seriously damaged. This study proved that algicidal bacteria are promising sources of potential cyanobacterial bloom-control, and provided good procedures for the

  17. Biodegradation of Ethylene Glycol by a Salt-Requiring Bacterium1

    PubMed Central

    Gonzalez, Carlos F.; Taber, Willard A.; Zeitoun, M. A.

    1972-01-01

    A gram-negative nonmotile rod which was capable of using 1,2-14C-ethylene glycol as a sole carbon source for growth was isolated from a brine pond, Great Salt Lake, Utah. The bacterium (ATCC 27042) required at least 0.85% NaCl for growth and, although the chloride ion was replaceable by sulfate ion, the sodium ion was not replaceable by potassium ion. The maximal concentration of salt tolerated for growth was approximately 12%. The bacterium was oxidase-negative when N,N-dimethyl-p-phenylenediamine was used and weakly positive when N,N,N′,N′-tetramethyl-p-phenylenediamine was used. It grows on many sugars but does not ferment them, it does not have an exogenous vitamin requirement, and it possesses a guanine plus cytosine ratio of 64.3%. Incorporation of ethylene glycol carbon into cell and respired CO2 was quantitated by use of radioactive ethylene glycol and a force-aerated fermentor. Glucose suppressed ethylene glycol metabolism. Cells grown on ethylene and propylene glycol respired ethylene glycol in a Warburg respirometer more rapidly than cells grown on glucose. Spectrophotometric evidence was obtained for oxidation of glycolate to glyoxylate by a dialyzed cell extract. PMID:4568254

  18. Chromatin organization and radio resistance in the bacterium Gemmata obscuriglobus.

    PubMed

    Lieber, Arnon; Leis, Andrew; Kushmaro, Ariel; Minsky, Abraham; Medalia, Ohad

    2009-03-01

    The organization of chromatin has a major impact on cellular activities, such as gene expression. For bacteria, it was suggested that the spatial organization of the genetic material correlates with transcriptional levels, implying a specific architecture of the chromosome within the cytoplasm. Accordingly, recent technological advances have emphasized the organization of the genetic material within nucleoid structures. Gemmata obscuriglobus, a member of the phylum Planctomycetes, exhibits a distinctive nucleoid structure in which chromatin is encapsulated within a discrete membrane-bound compartment. Here, we show that this soil and freshwater bacterium tolerates high doses of UV and ionizing radiation. Cryoelectron tomography of frozen hydrated sections and electron microscopy of freeze-substituted cells have indicated a more highly ordered condensed-chromatin organization in actively dividing and stationary-phase G. obscuriglobus cells. These three-dimensional analyses revealed a complex network of double membranes that engulf the condensed DNA. Bioinformatics analysis has revealed the existence of a putative component involved in nonhomologous DNA end joining that presumably plays a role in maintaining chromatin integrity within the bacterium. Thus, our observations further support the notion that packed chromatin organization enhances radiation tolerance.

  19. Isolation of a New Polysaccharide-Digesting Bacterium from a Salt Marsh

    PubMed Central

    Andrykovitch, George; Marx, Irene

    1988-01-01

    A new marine bacterium that digested a variety of storage and structural polysaccharides, including agar, was isolated. Strain 2-40 is a nonfermentative gram-negative, polarly flagellated rod that sometimes grew as a filamentous helix and secreted a melaninlike pigment. Its characteristics conform to those of no previously described species. PMID:16347602

  20. An Endohyphal Bacterium (Chitinophaga, Bacteroidetes) Alters Carbon Source Use by Fusarium keratoplasticum (F. solani Species Complex, Nectriaceae)

    PubMed Central

    Shaffer, Justin P.; U'Ren, Jana M.; Gallery, Rachel E.; Baltrus, David A.; Arnold, A. Elizabeth

    2017-01-01

    Bacterial endosymbionts occur in diverse fungi, including members of many lineages of Ascomycota that inhabit living plants. These endosymbiotic bacteria (endohyphal bacteria, EHB) often can be removed from living fungi by antibiotic treatment, providing an opportunity to assess their effects on functional traits of their fungal hosts. We examined the effects of an endohyphal bacterium (Chitinophaga sp., Bacteroidetes) on substrate use by its host, a seed-associated strain of the fungus Fusarium keratoplasticum, by comparing growth between naturally infected and cured fungal strains across 95 carbon sources with a Biolog® phenotypic microarray. Across the majority of substrates (62%), the strain harboring the bacterium significantly outperformed the cured strain as measured by respiration and hyphal density. These substrates included many that are important for plant- and seed-fungus interactions, such as D-trehalose, myo-inositol, and sucrose, highlighting the potential influence of EHB on the breadth and efficiency of substrate use by an important Fusarium species. Cases in which the cured strain outperformed the strain harboring the bacterium were observed in only 5% of substrates. We propose that additive or synergistic substrate use by the fungus-bacterium pair enhances fungal growth in this association. More generally, alteration of the breadth or efficiency of substrate use by dispensable EHB may change fungal niches in short timeframes, potentially shaping fungal ecology and the outcomes of fungal-host interactions. PMID:28382021

  1. Effects of an equol-producing bacterium isolated from human faeces on isoflavone and lignan metabolism in mice.

    PubMed

    Tamura, Motoi; Hori, Sachiko; Nakagawa, Hiroyuki; Yamauchi, Satoshi; Sugahara, Takuya

    2016-07-01

    Equol is a metabolite of daidzein that is produced by intestinal microbiota. The oestrogenic activity of equol is stronger than daidzein. Equol-producing bacteria are believed to play an important role in the gut. The rod-shaped and Gram-positive anaerobic equol-producing intestinal bacterium Slackia TM-30 was isolated from healthy human faeces and its effects on urinary phyto-oestrogen, plasma and faecal lipids were assessed in adult mice. The urinary amounts of equol in urine were significantly higher in mice receiving the equol-producing bacterium TM-30 (BAC) group than in the control (CO) group (P < 0.05). However, no significant differences were observed between the urinary amounts of daidzein, dihydrodaidzein, enterodiol, and enterolactone between the BAC and CO groups. No significant differences in the plasma lipids were observed between the two groups. The lipid content (% dry weight) in the faeces sampled on the final day of the experiment tended to be higher in the BAC group than in the CO group (P = 0.07). Administration of equol-producing bacterium TM-30 affected the urinary amounts of phyto-oestrogens and the faecal lipid contents of mice. The equol-producing bacterium TM-30 likely influences the metabolism of phyto-oestrogen via changes in the gastrointestinal environment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Hochstein, L. I.

    1976-01-01

    The previously described extremely halophilic bacterium, strain M6, metabolizes a variety of carbohydrates with the production of acid. In addition, the organism produces nitrite (but no gas) from nitrate, is motile, and grows most rapidly at about 50 C. These characteristics distinguish it from all previously described halophilic bacteria in the genus Halobacterium. It is suggested that it be designated as a new species, Halobacterium saccharovorum.

  3. Draft genome sequence of a strictly anaerobic dichloromethane-degrading bacterium

    DOE PAGES

    Kleindienst, Sara; Higgins, Steven A.; Tsementzi, Despina; ...

    2016-03-03

    Here, an anaerobic, dichloromethane-degrading bacterium affiliated with novel Peptococcaceae was maintained in a microbial consortium. The organism originated from pristine freshwater sediment collected from Rio Mameyes in Luquillo, Puerto Rico, in October 2009 (latitude 18°21'43.9", longitude –65°46'8.4"). The draft genome sequence is 2.1 Mb and has a G+C content of 43.5%.

  4. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping.

    PubMed

    Johnson, Ethan T; Baron, Daniel B; Naranjo, Belén; Bond, Daniel R; Schmidt-Dannert, Claudia; Gralnick, Jeffrey A

    2010-07-01

    Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments.

  5. Genome Sequence of the Algicidal Bacterium Kordia algicida OT-1 ▿

    PubMed Central

    Lee, Hyun Sook; Kang, Sung Gyun; Kwon, Kae Kyoung; Lee, Jung-Hyun; Kim, Sang-Jin

    2011-01-01

    Kordia algicida OT-1 is an algicidal bacterium against the bloom-forming microalgae. The genome sequence of K. algicida revealed a number of interesting features, including the degradation of macromolecules, the biosynthesis of carotenoid pigment and secondary metabolites, and the capacity for gliding motility, which might facilitate the understanding of algicidal mechanisms. PMID:21622754

  6. Physiological characterization of strain DCB-1, a unique dehalogenating sulfidogenic bacterium.

    PubMed Central

    Stevens, T O; Linkfield, T G; Tiedje, J M

    1988-01-01

    Strain DCB-1 is an obligately anaerobic bacterium which carries out the reductive dehalogenation of halobenzoates and was previously known to grow only on pyruvate plus 20% ruminal fluid. When various electron acceptors were supplied, thiosulfate and sulfite were found to stimulate growth. Sulfide was produced from thiosulfate. Cytochrome c and desulfoviridin were detected. The mol% G+C was 49 (at the thermal denaturation temperature). Of 55 carbon sources tested, only pyruvate supported growth as the sole carbon source in mineral medium. Lactate, acetate, L- and D-malate, glycerol, and L- and D-arabinose stimulated growth when supplemented with 10% ruminal fluid and 20 mM thiosulfate. In mineral medium, pyruvate was converted to acetate and lactate, with small amounts of succinate and fumarate accumulating transiently. During growth with thiosulfate, all of these products accumulated transiently. Addition of excess hydrogen to pyruvate-grown cultures resulted in diversion of carbon to formate, lactate, and butyrate, which caused a decrease in cell yield. We conclude that strain DCB-1 is a new type of sulfidogenic bacterium. PMID:3223760

  7. A novel marine bacterium algicidal to the toxic dinoflagellate Alexandrium tamarense.

    PubMed

    Wang, B X; Zhou, Y Y; Bai, S J; Su, J Q; Tian, Y; Zheng, T L; Yang, X R

    2010-11-01

    This work is aiming at investigating algicidal characterization of a bacterium isolate DHQ25 against harmful alga Alexandrium tamarense. 16S rDNA sequence analysis showed that the most probable affiliation of DHQ25 belongs to the γ-proteobacteria subclass and the genus Vibrio. Bacterial isolate DHQ25 showed algicidal activity through an indirect attack. Xenic culture of A. tamarense was susceptible to the culture filtrate of DHQ25 by algicidal activity assay. Algicidal process demonstrated that the alga cell lysed and cellular substances released under the visual field of microscope. DHQ25 was a challenge controller of A. tamarense by the above characterizations of algicidal activity assay and algicidal process. Interactions between bacteria and harmful algal bloom (HAB) species proved to be an important factor regulating the population of these algae. This is the first report of a Vibrio sp. bacterium algicidal to the toxic dinoflagellate A. tamarense. The findings increase our knowledge of the role of bacteria in algal-bacterial interaction. © 2010 The Authors. © 2010 The Society for Applied Microbiology.

  8. Draft Genome Sequence of the Algicidal Bacterium Mangrovimonas yunxiaonensis Strain LY01

    PubMed Central

    Li, Yi; Zhu, Hong; Li, Chongping; Zhang, Huajun; Chen, Zhangran; Zheng, Wei

    2014-01-01

    Mangrovimonas yunxiaonensis LY01, a novel bacterium isolated from mangrove sediment, showed high algicidal effects on harmful algal blooms of Alexandrium tamarense. Here, we present the first draft genome sequence of this strain to further understanding of the functional genes related to algicidal activity. PMID:25428978

  9. Robinsoniella peoriensis: A model anaerobic commensal bacterium for acquisition of antibiotic resistance?

    USDA-ARS?s Scientific Manuscript database

    Background: R. peoriensis was characterized in our laboratories from swine manure and feces as a Gram-positive, anaerobic bacterium. Since then strains of this species have been identified from a variety of mammalian and other gastrointestinal (GI) tracts, suggesting it is a member of the commensal ...

  10. Sexual Transmission of a Plant Pathogenic Bacterium, Candidatus Liberibacter asiaticus, between Conspecific Insect Vectors during Mating

    PubMed Central

    Mann, Rajinder S.; Pelz-Stelinski, Kirsten; Hermann, Sara L.; Tiwari, Siddharth; Stelinski, Lukasz L.

    2011-01-01

    Candidatus Liberibacter asiaticus is a fastidious, phloem-inhabiting, gram-negative bacterium transmitted by Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae). The bacterium is the presumed causal agent of huanglongbing (HLB), one of the most destructive and economically important diseases of citrus. We investigated whether Las is transmitted between infected and uninfected D. citri adults during courtship. Our results indicate that Las was sexually transmitted from Las-infected male D. citri to uninfected females at a low rate (<4%) during mating. Sexual transmission was not observed following mating of infected females and uninfected males or among adult pairs of the same sex. Las was detected in genitalia of both sexes and also in eggs of infected females. A latent period of 7 days or more was required to detect the bacterium in recipient females. Rod shaped as well as spherical structures resembling Las were observed in ovaries of Las-infected females with transmission electron microscopy, but were absent in ovaries from uninfected D. citri females. The size of the rod shaped structures varied from 0.39 to 0.67 µm in length and 0.19 to 0.39 µm in width. The spherical structures measured from 0.61 to 0.80 µm in diameter. This investigation provides convincing evidence that a plant pathogenic bacterium is sexually transmitted from male to female insects during courtship and established evidence that bacteria persist in reproductive organs. Moreover, these findings provide an alternative sexually horizontal mechanism for the spread of Las within populations of D. citri, even in the absence of infected host trees. PMID:22216209

  11. Isolation and Characterization of a Novel, Highly Selective Astaxanthin-Producing Marine Bacterium.

    PubMed

    Asker, Dalal

    2017-10-18

    A high-throughput screening approach for astaxanthin-producing bacteria led to the discovery of a novel, highly selective astaxanthin-producing marine bacterium (strain N-5). Phylogenetic analysis based on partial 16S rRNA gene and phenotypic metabolic testing indicated it belongs to the genus Brevundimonas. Therefore, it was designated as Brevundimonas sp. strain N-5. To identify and quantify carotenoids produced by strain N-5, HPLC-DAD and HPLC-MS methods were used. The culture conditions including media, shaking, and time had significant effects on cell growth and carotenoids production including astaxanthin. The total carotenoids were ∼601.2 μg g -1 dry cells including a remarkable amount (364.6 μg g -1 dry cells) of optically pure astaxanthin (3S, 3'S) isomer, with high selectivity (∼60.6%) under medium aeration conditions. Notably, increasing the culture aeration enhanced astaxanthin production up to 85% of total carotenoids. This is the first report that describes a natural, highly selective astaxanthin-producing marine bacterium.

  12. IN SITU RT-PCR WITH A SULFATE-REDUCING BACTERIUM ISOLATED FROM SEAGRASS ROOTS

    EPA Science Inventory

    Bacteria considered to be obligate anaerobes internally colonize roots of the submerged macrophyte Halodule wrightii. A sulfate reducing bacterium, Summer lac 1, was isolated on lactate from H. wrightii roots. The isolate has physiological characteristics typical of Desulfovibri...

  13. The chemical formula of a magnetotactic bacterium.

    PubMed

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life. Copyright © 2011 Wiley Periodicals, Inc.

  14. Five new amicoumacins isolated from a marine-derived bacterium Bacillus subtilis.

    PubMed

    Li, Yongxin; Xu, Ying; Liu, Lingli; Han, Zhuang; Lai, Pok Yui; Guo, Xiangrong; Zhang, Xixiang; Lin, Wenhan; Qian, Pei-Yuan

    2012-02-01

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature.

  15. Draft Genome Sequence of Sphingobium fuliginis OMI, a Bacterium That Degrades Alkylphenols and Bisphenols

    PubMed Central

    Ogata, Yuka; Yahara, Tatsuya; Yokoyama, Takashi; Ishizawa, Hidehiro; Takada, Kazuki; Inoue, Daisuke; Sei, Kazunari

    2017-01-01

    ABSTRACT Sphingobium fuliginis OMI is a bacterium that can degrade a variety of recalcitrant alkylphenols and bisphenols. This study reports the draft genome sequence of S. fuliginis OMI. PMID:29167253

  16. A pathway closely related to the (D)-tagatose pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis.

    PubMed

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard

    2013-06-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  17. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    PubMed

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain.

  18. Bacterium-Induced CXCL10 Secretion by Osteoblasts Can Be Mediated in Part through Toll-Like Receptor 4

    PubMed Central

    Gasper, Nancy A.; Petty, Cynthia C.; Schrum, Laura W.; Marriott, Ian; Bost, Kenneth L.

    2002-01-01

    Two common pathogens known to cause bone infection, Salmonella and Staphylococcus aureus, were investigated to determine their abilities to induce chemokine expression in cultured mouse and human osteoblasts. While these cells are responsible for bone formation, we were surprised to find that they could respond to bacterial infection by upregulating expression of the chemokine CXCL10 (IP-10). However, there were significant differences in the abilities of the gram-negative bacterium Salmonella and the gram-positive bacterium S. aureus to induce expression of CXCL10. Reverse transcription-PCR and enzyme-linked immunosorbent assay analyses showed high levels of Salmonella-induced CXCL10 mRNA and protein expression, respectively, whereas the osteoblast response to S. aureus was significantly less. Consistent with these findings, Salmonella-derived lipopolysaccharide (LPS), but not S. aureus-derived peptidoglycan, could induce expression of CXCL10. An antibody against toll-like receptor 4 (TLR4) could block the LPS-induced CXCL10 production, demonstrating the functional expression of TLR4 by osteoblasts. Despite the inducible nature of TLR2 mRNA expression by bacterium-infected osteoblasts, peptidoglycan failed to stimulate CXCL10 secretion. Immunofluorescent staining of bacterium-infected calvaria (i.e., skull bone) demonstrated the presence of CXCL10 in osteoblasts. The fact that osteoblasts did not express CXCR3 mRNA, whereas T lymphocytes can express high levels of this receptor, suggests that osteoblast-derived CXCL10 may recruit T lymphocytes to the sites of bone infections. PMID:12117914

  19. Diversity in bacterium-host interactions within the species Helicobacter heilmannii sensu stricto

    PubMed Central

    2013-01-01

    Helicobacter (H.) heilmannii sensu stricto (s.s.) is a zoonotic bacterium that naturally colonizes the stomach of dogs and cats. In humans, this microorganism has been associated with gastritis, peptic ulcer disease and mucosa associated lymphoid tissue (MALT) lymphoma. Little information is available about the pathogenesis of H. heilmannii s.s. infections in humans and it is unknown whether differences in virulence exist within this species. Therefore, a Mongolian gerbil model was used to study bacterium-host interactions of 9 H. heilmannii s.s. strains. The colonization ability of the strains, the intensity of gastritis and gene expression of various inflammatory cytokines in the stomach were determined at 9 weeks after experimental infection. The induction of an antrum-dominant chronic active gastritis with formation of lymphocytic aggregates was shown for 7 strains. High-level antral colonization was seen for 4 strains, while colonization of 4 other strains was more restricted and one strain was not detected in the stomach at 9 weeks post infection. All strains inducing a chronic active gastritis caused an up-regulation of the pro-inflammatory cytokine IL-1β in the antrum. A reduced antral expression of H+/K+ ATPase was seen in the stomach after infection with 3 highly colonizing strains and 2 highly colonizing strains caused an increased gastrin expression in the fundus. In none of the H. heilmannii s.s.-infected groups, IFN-γ expression was up-regulated. This study demonstrates diversity in bacterium-host interactions within the species H. heilmannii s.s. and that the pathogenesis of gastric infections with this microorganism is not identical to that of an H. pylori infection. PMID:23895283

  20. Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403.

    PubMed

    Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna

    2017-10-01

    Brown seaweed Anthophycus longifolius (Turner) Kützing (family Sargassaceae) associated heterotrophic bacterium Bacillus subtilis MTCC 10403 was found to be a potent isolate with broad range of antibacterial activity against important perceptive food pathogens Vibrio parahaemolyticus, V. vulnificus, and Aeromonas hydrophila. This bacterium was positive for polyketide synthetase gene (KC589397), and therefore, was selected to bioprospect specialized metabolites bearing polyketide backbone. Bioactivity-guided chromatographic fractionation of the ethyl acetate extract of the seaweed-associated bacterium segregated four homologous polyketide furanoterpenoids with potential antibacterial activities against clinically important pathogens. The minimum inhibitory concentration (MIC) assay showed that the referral antibiotics tetracycline and ampicillin were active at 25 μg/mL against the test pathogens, whereas the previously undescribed (4E)-methyl 13-((16-(furan-2-yl) ethyl)-octahydro-7-hydroxy-4-((E)-23-methylbut-21-enyl)-2H-chromen-6-yl)-4-methylpent-4-enoate (compound 1) and methyl 3-(hexahydro-9-((E)-3-methylpent-1-enyl)-4H-furo[3,2-g]isochromen-6-yl) propanoate (compound 3) displayed antibacterial activities against the test pathogens at a lesser concentration (MIC < 7 μg/mL). The title compounds were characterized by comprehensive nuclear magnetic resonance and mass spectroscopic experiments. Polyketide synthase catalyzed putative biosynthetic mechanism additionally corroborated the structural ascriptions of the hitherto undescribed furanoterpenoids from seaweed-associated bacterial symbiont. The electronic and hydrophobic parameters appeared to hold a conspicuous part in directing the antibacterial properties of the compounds. Seaweed-associated B. subtilis MTCC 10403 demonstrated to represent a potential source of antimicrobial polyketides for pharmaceutical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A comparison of simple rheological parameters and simulation data for Zymomonas mobilis fermentation broths with high substrate loading in a 3-L bioreactor.

    PubMed

    Um, Byung-Hwan; Hanley, Thomas R

    2008-03-01

    Traditionally, as much as 80% or more of an ethanol fermentation broth is water that must be removed. This mixture is not only costly to separate but also produces a large aqueous stream that must then be disposed of or recycled. Integrative approaches to water reduction include increasing the biomass concentration during fermentation. In this paper, experimental results are presented for the rheological behavior of high-solids enzymatic cellulose hydrolysis and ethanol fermentation for biomass conversion using Solka Floc as the model feedstock. The experimental determination of the viscosity, shear stress, and shear rate relationships of the 10 to 20% slurry concentrations with constant enzyme concentrations are performed with a variable speed rotational viscometer (2.0 to 200 rpm) at 40 degrees C. The viscosities of enzymatic suspension observed were in range of 0.0418 to 0.0144, 0.233 to 0.0348, and 0.292 to 0.0447 Pa s for shear rates up to 100 reciprocal seconds at 10, 15, and 20% initial solids (w/v), respectively. Computational fluid dynamics analysis of bioreactor mixing demonstrates the change in bioreactor mixing with increasing biomass concentration. The portion-loading method is shown to be effective for processing high-solids slurries.

  2. A Comparison of Simple Rheological Parameters and Simulation Data for Zymomonas mobilis Fermentation Broths with High Substrate Loading in a 3-L Bioreactor

    NASA Astrophysics Data System (ADS)

    Um, Byung-Hwan; Hanley, Thomas R.

    Traditionally, as much as 80% or more of an ethanol fermentation broth is water that must be removed. This mixture is not only costly to separate but also produces a large aqueous stream that must then be disposed of or recycled. Integrative approaches to water reduction include increasing the biomass concentration during fermentation. In this paper, experimental results are presented for the rheological behavior of high-solids enzymatic cellulose hydrolysis and ethanol fermentation for biomass conversion using Solka Floc as the model feedstock. The experimental determination of the viscosity, shear stress, and shear rate relationships of the 10 to 20% slurry concentrations with constant enzyme concentrations are performed with a variable speed rotational viscometer (2.0 to 200 rpm) at 40 °C. The viscosities of enzymatic suspension observed were in range of 0.0418 to 0.0144, 0.233 to 0.0348, and 0.292 to 0.0447 Pa s for shear rates up to 100 reciprocal seconds at 10, 15, and 20% initial solids (w/v), respectively. Computational fluid dynamics analysis of bioreactor mixing demonstrates the change in bioreactor mixing with increasing biomass concentration. The portion-loading method is shown to be effective for processing highsolids slurries.

  3. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  4. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium

    USGS Publications Warehouse

    Caccavo, F.; Coates, J.D.; Rossello-Mora, R. A.; Ludwig, W.; Schleifer, K.H.; Lovley, D.R.; McInerney, M.J.

    1996-01-01

    A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAI-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAI-1 differs from all other described bacteria, and represents the type strain of a new genus and species. Geovibrio ferrireducens.

  5. Draft Genome Sequence of the Algicidal Bacterium Mangrovimonas yunxiaonensis Strain LY01.

    PubMed

    Li, Yi; Zhu, Hong; Li, Chongping; Zhang, Huajun; Chen, Zhangran; Zheng, Wei; Xu, Hong; Zheng, Tianling

    2014-11-26

    Mangrovimonas yunxiaonensis LY01, a novel bacterium isolated from mangrove sediment, showed high algicidal effects on harmful algal blooms of Alexandrium tamarense. Here, we present the first draft genome sequence of this strain to further understanding of the functional genes related to algicidal activity. Copyright © 2014 Li et al.

  6. Aerobic mineralization of vinyl chlorides by a bacterium of the order Actinomycetales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, T.J.; Malachowsky, K.; Schram, R.M.

    1991-04-01

    A gram-positive branched bacterium isolated from a trichloroethylene-degrading consortium mineralized vinyl chloride in growing cultures and cell suspensions. Greater than 67% of the (1,2-{sup 14}C)vinyl chloride was mineralized to carbon dioxide, with approximately 10% of the radioactivity appearing in {sup 14}C-aqueous-phase products.

  7. Draft Genome Sequence of Sphingobium fuliginis OMI, a Bacterium That Degrades Alkylphenols and Bisphenols.

    PubMed

    Kuroda, Masashi; Ogata, Yuka; Yahara, Tatsuya; Yokoyama, Takashi; Ishizawa, Hidehiro; Takada, Kazuki; Inoue, Daisuke; Sei, Kazunari; Ike, Michihiko

    2017-11-22

    Sphingobium fuliginis OMI is a bacterium that can degrade a variety of recalcitrant alkylphenols and bisphenols. This study reports the draft genome sequence of S. fuliginis OMI. Copyright © 2017 Kuroda et al.

  8. Novel Xylose Dehydrogenase in the Halophilic Archaeon Haloarcula marismortui†

    PubMed Central

    Johnsen, Ulrike; Schönheit, Peter

    2004-01-01

    During growth of the halophilic archaeon Haloarcula marismortui on d-xylose, a specific d-xylose dehydrogenase was induced. The enzyme was purified to homogeneity. It constitutes a homotetramer of about 175 kDa and catalyzed the oxidation of xylose with both NADP+ and NAD+ as cosubstrates with 10-fold higher affinity for NADP+. In addition to d-xylose, d-ribose was oxidized at similar kinetic constants, whereas d-glucose was used with about 70-fold lower catalytic efficiency (kcat/Km). With the N-terminal amino acid sequence of the subunit, an open reading frame (ORF)—coding for a 39.9-kDA protein—was identified in the partially sequenced genome of H. marismortui. The function of the ORF as the gene designated xdh and coding for xylose dehydrogenase was proven by its functional overexpression in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies following solubilization in urea and refolding in the presence of salts, reduced and oxidized glutathione, and substrates. Xylose dehydrogenase showed the highest sequence similarity to glucose-fructose oxidoreductase from Zymomonas mobilis and other putative bacterial and archaeal oxidoreductases. Activities of xylose isomerase and xylulose kinase, the initial reactions of xylose catabolism of most bacteria, could not be detected in xylose-grown cells of H. marismortui, and the genes that encode them, xylA and xylB, were not found in the genome of H. marismortui. Thus, we propose that this first characterized archaeal xylose dehydrogenase catalyzes the initial step in xylose degradation by H. marismortui. PMID:15342590

  9. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.

    PubMed

    Chen, Xiaoyan; Xu, Jingliang; Yang, Liu; Yuan, Zhenhong; Xiao, Shiyuan; Zhang, Yu; Liang, Cuiyi; He, Minchao; Guo, Ying

    2015-11-01

    Higher alcohols, longer chain alcohols, contain more than 3 carbon atoms, showed close energy advantages as gasoline, and were considered as the next generation substitution for chemical fuels. Higher alcohol biosynthesis by native microorganisms mainly needs gene expression of heterologous keto acid decarboxylase and alcohol dehydrogenases. In the present study, branched-chain α-keto acid decarboxylase gene from Lactococcus lactis subsp. lactis CICC 6246 (Kivd) and alcohol dehydrogenases gene from Zymomonas mobilis CICC 41465 (AdhB) were transformed into Escherichia coli for higher alcohol production. SDS-PAGE results showed these two proteins were expressed in the recombinant strains. The resulting strain was incubated in LB medium at 37 °C in Erlenmeyer flasks and much more 3-methyl-1-butanol (104 mg/L) than isobutanol (24 mg/L) was produced. However, in 5 g/L glucose-containing medium, the production of two alcohols was similar, 156 and 161 mg/L for C4 (isobutanol) and C5 (3-methyl-1-butanol) alcohol, respectively. Effects of fermentation factors including temperature, glucose content, and α-keto acid on alcohol production were also investigated. The increase of glucose content and the adding of α-keto acids facilitated the production of C4 and C5 alcohols. The enzyme activities of pure Kivd on α-ketoisovalerate and α-ketoisocaproate were 26.77 and 21.24 μmol min(-1) mg(-1), respectively. Due to its ability on decarboxylation of α-ketoisovalerate and α-ketoisocaproate, the recombinant E. coli strain showed potential application on isoamyl alcohol and isobutanol production.

  10. Isolation of Bacteriophages of the Marine Bacterium Beneckea natriegens from Coastal Salt Marshes1

    PubMed Central

    Zachary, Arthur

    1974-01-01

    Bacteriophages of the marine bacterium Beneckea natriegens were isolated from coastal marshes where they were limited to brackish and marine waters. The phages were widely distributed and morphologically diverse in the marshes. Images PMID:4133830

  11. Enhancement of Survival and Electricity Production in an Engineered Bacterium by Light-Driven Proton Pumping▿ †

    PubMed Central

    Johnson, Ethan T.; Baron, Daniel B.; Naranjo, Belén; Bond, Daniel R.; Schmidt-Dannert, Claudia; Gralnick, Jeffrey A.

    2010-01-01

    Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments. PMID:20453141

  12. Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhupathiraju, V.K.; Sharma, P.K.; Tanner, R.S.

    A strictly anaerobic, moderately halophilic, gram-negative bacterium was isolated from a highly saline oil field brine. The bacterium was a non-spore-forming, nonmotile rod, appearing singly, in pairs, or occasionally as long chains, and measured 0.3 to 0.4 by 2.6 to 4 {micro}m. The bacterium had a specific requirement for NaCl and grew at NaCl concentrations of between 6 and 24%, with optimal growth at 9% NaCl. The isolate grew at temperatures of between 22 and 51 C and pH values of between 5.6 and 8.0. The doubling time in a complex medium containing 10% NaCl was 9 h. Growth wasmore » inhibited by chloramphenicol, tetracycline, and penicillin but not by cycloheximide or azide. Fermentable substrates were predominantly carbohydrates. The end products of glucose fermentation were acetate, ethanol, CO{sub 2}, and H{sub 2}. The major components of the cellular fatty acids were C{sub 14:0}, C{sub 16:0}, C{sub 16:1}, and C{sub 17:0 cyc} acids. The DNA base composition of the isolate was 34 mol% G+C. Oligonucleotide catalog and sequence analyses of the 16S rRNA showed that strain VS-752{sup T} was most closely related to Haloanaerobium praevalens GSL{sup T} (ATCC 33744), the sole member of the genus Haloanaerobium. The authors propose that strain VS-752 (ATCC 51327) by established as the type strain of a new species, Haloanaerobium salsugo, in the genus Haloanaerobium. 40 refs., 3 figs, 5 tabs.« less

  13. Genome Sequence of Sphingobium indicum B90A, a Hexachlorocyclohexane-Degrading Bacterium

    PubMed Central

    Anand, Shailly; Sangwan, Naseer; Lata, Pushp; Kaur, Jasvinder; Dua, Ankita; Singh, Amit Kumar; Verma, Mansi; Kaur, Jaspreet; Khurana, Jitendra P.; Khurana, Paramjit; Mathur, Saloni

    2012-01-01

    Sphingobium indicum B90A, an efficient degrader of hexachlorocyclohexane (HCH) isomers, was isolated in 1990 from sugarcane rhizosphere soil in Cuttack, India. Here we report the draft genome sequence of this bacterium, which has now become a model system for understanding the genetics, biochemistry, and physiology of HCH degradation. PMID:22843598

  14. Ammonificins C and D, Hydroxyethylamine Chromene Derivatives from a Cultured Marine Hydrothermal Vent Bacterium, Thermovibrio ammonificans

    PubMed Central

    Andrianasolo, Eric H.; Haramaty, Liti; Rosario-Passapera, Richard; Vetriani, Costantino; Falkowski, Paul; White, Eileen; Lutz, Richard

    2012-01-01

    Chemical and biological investigation of the cultured marine hydrothermal vent bacterium, Thermovibrio ammonifican led to the isolation of two hydroxyethylamine chromene derivatives, ammonificins C and D. Their structures were elucidated using combination of NMR and mass spectrometry. Absolute stereochemistry was ascertained by comparison of experimental and calculated CD spectra. Biological evaluation and assessment were determined using the patented ApopScreen cell-based screen for apoptosis-induction. Ammonificins C and D induce apoptosis in micromolar concentrations. To our knowledge, this finding is the first report of chemical compounds that induce apoptosis from the cultured deep-sea marine organism, hydrothermal vent bacterium, Thermovibrio ammonificans. PMID:23170085

  15. Vector potential of houseflies for the bacterium Aeromonas caviae.

    PubMed

    Nayduch, D; Noblet, G Pittman; Stutzenberger, F J

    2002-06-01

    Houseflies, Musca domestica Linnaeus (Diptera: Muscidae), have been implicated as vectors or transporters of numerous gastrointestinal pathogens encountered during feeding and ovipositing on faeces. The putative enteropathogen Aeromonas caviae (Proteobacteria: Aeromonadaceae) may be present in faeces of humans and livestock. Recently A. caviae was detected in houseflies by PCR and isolated by culture methods. In this study, we assessed the vector potential of houseflies for A. caviae relative to multiplication and persistence of the bacterium in the fly and to contamination of other flies and food materials. In experimentally fed houseflies, the number of bacteria increased up to 2 days post-ingestion (d PI) and then decreased significantly 3 d PI. A large number of bacteria was detected in the vomitus and faeces of infected flies at 2-3 d PI. The bacteria persisted in flies for up to 8 d PI, but numbers were low. Experimentally infected flies transmitted A. caviae to chicken meat, and transmissibility was directly correlated with exposure time. Flies contaminated the meat for up to 7 d PI; however, a significant decrease in contamination was observed 2-3 d PI. In the fly-to-fly transmission experiments, the transmission of A. caviae was observed and was apparently mediated by flies sharing food. These results support houseflies as potential vectors for A. caviae because the bacterium multiplied, persisted in flies for up to 8 d PI, and could be transmitted to human food items.

  16. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036.

    PubMed

    Choi, Sun Young; Gong, Gyeongtaek; Park, Hong-Sil; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2015-01-10

    Detoxification process of cellular inhibitors including furfural is essential for production of bio-based chemicals from lignocellulosic biomass. Here we isolated an extreme furfural-tolerant bacterium Enterobacter cloacae GGT036 from soil sample collected in Mt. Gwanak, Republic of Korea. Among isolated bacteria, only E. cloacae GGT036 showed cell growth with 35 mM furfural under aerobic culture. Compared to the maximal half inhibitory concentration (IC50) of well-known industrial strains Escherichia coli (24.9 mM furfural) and Corynebacterium glutamicum (10 mM furfural) based on the cell density, IC50 of E. cloacae GGT036 (47.7 mM) was significantly higher after 24 h, compared to E. coli and C. glutamicum. Since bacterial cell growth was exponentially inhibited depending on linearly increased furfural concentrations in the medium, we concluded that E. cloacae GGT036 is an extreme furfural-tolerant bacterium. Recently, the complete genome sequence of E. cloacae GGT036 was announced and this could provide an insight for engineering of E. cloacae GGT036 itself or other industrially relevant bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater

    USDA-ARS?s Scientific Manuscript database

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50**T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rDNA sequences revealed that the novel isolate represented...

  18. Catalytic Biomineralization of Fluorescent Calcite by the Thermophilic Bacterium Geobacillus thermoglucosidasius▿

    PubMed Central

    Yoshida, Naoto; Higashimura, Eiji; Saeki, Yuichi

    2010-01-01

    The thermophilic Geobacillus bacterium catalyzed the formation of 100-μm hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate. PMID:20851984

  19. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    PubMed

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading. Copyright © 2016, American Association for the Advancement of Science.

  20. Draft Genome Sequence of the Deinococcus-Thermus Bacterium Meiothermus ruber Strain A

    DOE PAGES

    Thiel, Vera; Tomsho, Lynn P.; Burhans, Richard; ...

    2015-03-26

    The draft genome sequence of the Deinococcus-Thermus group bacterium Meiothermus ruber strain A, isolated from a cyanobacterial enrichment culture obtained from Octopus Spring (Yellowstone National Park, WY), comprises 2,968,099 bp in 170 contigs. It is predicted to contain 2,895 protein-coding genes, 44 tRNA-coding genes, and 2 rRNA operons.

  1. Aerobic mineralization of vinyl chloride by a bacterium of the order Actinomycetales.

    PubMed Central

    Phelps, T J; Malachowsky, K; Schram, R M; White, D C

    1991-01-01

    A gram-positive branched bacterium isolated from a trichloroethylene-degrading consortium mineralized vinyl chloride in growing cultures and cell suspensions. Greater than 67% of the [1,2-14C]vinyl chloride was mineralized to carbon dioxide, with approximately 10% of the radioactivity appearing in cell biomass and another 10% appearing in 14C-aqueous-phase products. PMID:1905522

  2. Isolation and characterization of a novel simazine-degrading bacterium from agricultural soil of central Chile, Pseudomonas sp. MHP41.

    PubMed

    Hernández, Marcela; Villalobos, Patricio; Morgante, Verónica; González, Myriam; Reiff, Caroline; Moore, Edward; Seeger, Michael

    2008-09-01

    s-Triazine herbicides are used extensively in South America in agriculture and forestry. In this study, a bacterium designated as strain MHP41, capable of degrading simazine and atrazine, was isolated from agricultural soil in the Quillota valley, central Chile. Strain MHP41 is able to grow in minimal medium, using simazine as the sole nitrogen source. In this medium, the bacterium exhibited a growth rate of mu=0.10 h(-1), yielding a high biomass of 4.2 x 10(8) CFU mL(-1). Resting cells of strain MHP41 degrade more than 80% of simazine within 60 min. The atzA, atzB, atzC, atzD, atzE and atzF genes encoding the enzymes of the simazine upper and lower pathways were detected in strain MHP41. The motile Gram-negative bacterium was identified as a Pseudomonas sp., based on the Biolog microplate system and comparative sequence analyses of the 16S rRNA gene. Amplified ribosomal DNA restriction analysis allowed the differentiation of strain MHP41 from Pseudomonas sp. ADP. The comparative 16S rRNA gene sequence analyses suggested that strain MHP41 is closely related to Pseudomonas nitroreducens and Pseudomonas multiresinovorans. This is the first s-triazine-degrading bacterium isolated in South America. Strain MHP41 is a potential biocatalyst for the remediation of s-triazine-contaminated environments.

  3. Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus.

    PubMed

    König, Claudia C; Scherlach, Kirstin; Schroeckh, Volker; Horn, Fabian; Nietzsche, Sandor; Brakhage, Axel A; Hertweck, Christian

    2013-05-27

    Stimulating encounter: The intimate, physical interaction between the soil-derived bacterium Streptomyces rapamycinicus and the human pathogenic fungus Aspergillus fumigatus led to the activation of an otherwise silent polyketide synthase (PKS) gene cluster coding for an unusual prenylated polyphenol (fumicycline A). The meroterpenoid pathway is regulated by a pathway-specific activator gene as well as by epigenetic factors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides

    NASA Astrophysics Data System (ADS)

    Devendran, Saravanan; Abdel-Hamid, Ahmed M.; Evans, Anton F.; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I.; Cann, Isaac

    2016-10-01

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  5. A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps.

    PubMed

    Zchori-Fein, E; Gottlieb, Y; Kelly, S E; Brown, J K; Wilson, J M; Karr, T L; Hunter, M S

    2001-10-23

    The symbiotic bacterium Wolbachia pipientis has been considered unique in its ability to cause multiple reproductive anomalies in its arthropod hosts. Here we report that an undescribed bacterium is vertically transmitted and associated with thelytokous parthenogenetic reproduction in Encarsia, a genus of parasitoid wasps. Although Wolbachia was found in only one of seven parthenogenetic Encarsia populations examined, the "Encarsia bacterium" (EB) was found in the other six. Among seven sexually reproducing populations screened, EB was present in one, and none harbored Wolbachia. Antibiotic treatment did not induce male production in Encarsia pergandiella but changed the oviposition behavior of females. Cured females accepted one host type at the same rate as control females but parasitized significantly fewer of the other host type. Phylogenetic analysis based on the 16S rDNA gene sequence places the EB in a unique clade within the Cytophaga-Flexibacter-Bacteroid group and shows EB is unrelated to the Proteobacteria, where Wolbachia and most other insect symbionts are found. These results imply evolution of the induction of parthenogenesis in a lineage other than Wolbachia. Importantly, these results also suggest that EB may modify the behavior of its wasp carrier in a way that enhances its transmission.

  6. Experimental study of the quasi 1d motion of a ``robot bacterium'' within a tube

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Jiao, Yusheng; Li, Shutong; Ding, Yang; Xu, Xinliang; Complex Fluids Team

    2017-11-01

    Understanding how solid boundary influences the motion of a micro-swimmer can be quite important. Here we experimentally study the problem with a system of centi-meter size ``robot bacterium'' immersed in the solvent silicon oil. Equipped with build-in battery and motor, the robot mimics a free swimmer and the overall Reynolds number of the system is kept very small as we use silicon oil with very high viscosity. The motion of centi-meter size ``robot bacterium'' within cylindrical tube is experimentally studied in detail. Our results show that robot bacteria with different shapes respond very different to the solid boundary. For certain shapes the swimmers actually swim much faster within a tube, when compared to their motions without any confinement, in good agreement with our numerical evaluations of the hydrodynamics of the system.

  7. Complete Genome Sequence of the Endophytic Bacterium Burkholderia sp. Strain KJ006

    PubMed Central

    Kwak, Min-Jung; Song, Ju Yeon; Kim, Seon-Young; Jeong, Haeyoung; Kang, Sung Gyun; Kim, Byung Kwon; Kwon, Soon-Kyeong; Lee, Choong Hoon; Yu, Dong Su

    2012-01-01

    Endophytes live inside plant tissues without causing any harm and may even benefit plants. Here, we provide the high-quality genome sequence of Burkholderia sp. strain KJ006, an endophytic bacterium of rice with antifungal activity. The 6.6-Mb genome, consisting of three chromosomes and a single plasmid, contains genes related to plant growth promotion or degradation of aromatic compounds. PMID:22843575

  8. Nematode-bacterium symbioses--cooperation and conflict revealed in the "omics" age.

    PubMed

    Murfin, Kristen E; Dillman, Adler R; Foster, Jeremy M; Bulgheresi, Silvia; Slatko, Barton E; Sternberg, Paul W; Goodrich-Blair, Heidi

    2012-08-01

    Nematodes are ubiquitous organisms that have a significant global impact on ecosystems, economies, agriculture, and human health. The applied importance of nematodes and the experimental tractability of many species have promoted their use as models in various research areas, including developmental biology, evolutionary biology, ecology, and animal-bacterium interactions. Nematodes are particularly well suited for the investigation of host associations with bacteria because all nematodes have interacted with bacteria during their evolutionary history and engage in a variety of association types. Interactions between nematodes and bacteria can be positive (mutualistic) or negative (pathogenic/parasitic) and may be transient or stably maintained (symbiotic). Furthermore, since many mechanistic aspects of nematode-bacterium interactions are conserved, their study can provide broader insights into other types of associations, including those relevant to human diseases. Recently, genome-scale studies have been applied to diverse nematode-bacterial interactions and have helped reveal mechanisms of communication and exchange between the associated partners. In addition to providing specific information about the system under investigation, these studies also have helped inform our understanding of genome evolution, mutualism, and innate immunity. In this review we discuss the importance and diversity of nematodes, "omics"' studies in nematode-bacterial systems, and the wider implications of the findings.

  9. Nematode-Bacterium Symbioses - Cooperation and Conflict Revealed in the 'Omics' Age

    PubMed Central

    Murfin, Kristen E.; Dillman, Adler R.; Foster, Jeremy M.; Bulgheresi, Silvia; Slatko, Barton E.; Sternberg, Paul W.; Goodrich-Blair, Heidi

    2012-01-01

    Nematodes are ubiquitous organisms that have a significant global impact on ecosystems, economies, agriculture, and human health. The applied importance of nematodes and the experimental tractability of many species have promoted their use as models in various research areas, including developmental biology, evolutionary biology, ecology, and animal-bacterium interactions. Nematodes are particularly well suited for investigating host associations with bacteria because all nematodes have interacted with bacteria during their evolutionary history and engage in a diversity of association types. Interactions between nematodes and bacteria can be positive (mutualistic) or negative (pathogenic/parasitic) and may be transient or stably maintained (symbiotic). Furthermore, since many mechanistic aspects of nematode-bacterium interactions are conserved their study can provide broader insights into other types of associations, including those relevant to human diseases. Recently, genome-scale studies have been applied to diverse nematode-bacterial interactions, and have helped reveal mechanisms of communication and exchange between the associated partners. In addition to providing specific information about the system under investigation, these studies also have helped inform our understanding of genome evolution, mutualism, and innate immunity. In this review we will discuss the importance and diversity of nematodes, 'omics' studies in nematode-bacterial systems, and the wider implications of the findings. PMID:22983035

  10. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides

    PubMed Central

    Brown, Alfred E.; Gilbert, Carl W.; Guy, Rachel; Arntzen, Charles J.

    1984-01-01

    The photoaffinity herbicide azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine) selectively labels the L subunit of the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Herbicide-resistant mutants retain the L subunit and have altered binding properties for methylthio- and chloro-substituted triazines as well as altered equilibrium constants for electron transfer between primary and secondary electron acceptors. We suggest that a subtle alteration in the L subunit is responsible for herbicide resistance and that the L subunit is the functional analog of the 32-kDa QB protein of chloroplast membranes. Images PMID:16593520

  11. Studies of the Extracellular Glycocalyx of the Anaerobic Cellulolytic Bacterium Ruminococcus albus 7▿

    PubMed Central

    Weimer, Paul J.; Price, Neil P. J.; Kroukamp, Otini; Joubert, Lydia-Marie; Wolfaardt, Gideon M.; Van Zyl, Willem H.

    2006-01-01

    Anaerobic cellulolytic bacteria are thought to adhere to cellulose via several mechanisms, including production of a glycocalyx containing extracellular polymeric substances (EPS). As the compositions and structures of these glycocalyces have not been elucidated, variable-pressure scanning electron microscopy (VP-SEM) and chemical analysis were used to characterize the glycocalyx of the ruminal bacterium Ruminococcus albus strain 7. VP-SEM revealed that growth of this strain was accompanied by the formation of thin cellular extensions that allowed the bacterium to adhere to cellulose, followed by formation of a ramifying network that interconnected individual cells to one another and to the unraveling cellulose microfibrils. Extraction of 48-h-old whole-culture pellets (bacterial cells plus glycocalyx [G] plus residual cellulose [C]) with 0.1 N NaOH released carbohydrate and protein in a ratio of 1:5. Boiling of the cellulose fermentation residue in a neutral detergent solution removed almost all of the adherent cells and protein while retaining a residual network of adhering noncellular material. Trifluoroacetic acid hydrolysis of this residue (G plus C) released primarily glucose, along with substantial amounts of xylose and mannose, but only traces of galactose, the most abundant sugar in most characterized bacterial exopolysaccharides. Linkage analysis and characterization by nuclear magnetic resonance suggested that most of the glucosyl units were not present as partially degraded cellulose. Calculations suggested that the energy demand for synthesis of the nonprotein fraction of EPS by this organism represents only a small fraction (<4%) of the anabolic ATP expenditure of the bacterium. PMID:17028224

  12. Characterization of a Neochlamydia-like Bacterium Associated with Epitheliocystis in Cultured Artic Char Salvelinus alpinus

    USDA-ARS?s Scientific Manuscript database

    Infections of branchial epithelium by intracellular gram-negative bacteria, termed epitheliocystis, have limited culture of Arctic char (Salvelinus alpinus). To characterize a bacterium associated with epitheliocystis in cultured char, gills were sampled for histopathologic examination, conventional...

  13. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  14. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  15. Soil-Bacterium Compatibility Model as a Decision-Making Tool for Soil Bioremediation.

    PubMed

    Horemans, Benjamin; Breugelmans, Philip; Saeys, Wouter; Springael, Dirk

    2017-02-07

    Bioremediation of organic pollutant contaminated soil involving bioaugmentation with dedicated bacteria specialized in degrading the pollutant is suggested as a green and economically sound alternative to physico-chemical treatment. However, intrinsic soil characteristics impact the success of bioaugmentation. The feasibility of using partial least-squares regression (PLSR) to predict the success of bioaugmentation in contaminated soil based on the intrinsic physico-chemical soil characteristics and, hence, to improve the success of bioaugmentation, was examined. As a proof of principle, PLSR was used to build soil-bacterium compatibility models to predict the bioaugmentation success of the phenanthrene-degrading Novosphingobium sp. LH128. The survival and biodegradation activity of strain LH128 were measured in 20 soils and correlated with the soil characteristics. PLSR was able to predict the strain's survival using 12 variables or less while the PAH-degrading activity of strain LH128 in soils that show survival was predicted using 9 variables. A three-step approach using the developed soil-bacterium compatibility models is proposed as a decision making tool and first estimation to select compatible soils and organisms and increase the chance of success of bioaugmentation.

  16. Isolation of a thermophilic bacterium capable of low-molecular-weight polyethylene degradation.

    PubMed

    Jeon, Hyun Jeong; Kim, Mal Nam

    2013-02-01

    A thermophilic bacterium capable of low-molecular-weight polyethylene (LMWPE) degradation was isolated from a compost sample, and was identified as Chelatococcus sp. E1, through sequencing of the 16S rRNA gene. LMWPE was prepared by thermal degradation of commercial PE in a strict nitrogen atmosphere. LMWPE with a weight-average-molecular-weight (Mw) in the range of 1,700-23,700 was noticeably mineralized into CO(2) by the bacterium. The biodegradability of LMWPE decreased as the Mw increased. The low molecular weight fraction of LMWPE decreased significantly as a result of the degradation process, and thereby both the number-average-molecular-weight and Mw increased after biodegradation. The polydispersity of LMWPE was either narrowed or widened, depending on the initial Mw of LMWPE, due to the preferential elimination of the low molecular weight fraction, in comparison to the high molecular weight portion. LMWPE free from an extremely low molecular weight fraction was also mineralized by the strain at a remarkable rate, and FTIR peaks assignable to C-O stretching appeared as a result of microbial action. The FTIR peaks corresponding to alkenes also became more intense, indicating that dehydrogenations occurred concomitantly with microbial induced oxidation.

  17. A highly infective plant-associated bacterium influences reproductive rates in pea aphids

    PubMed Central

    Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.

    2016-01-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  18. A highly infective plant-associated bacterium influences reproductive rates in pea aphids.

    PubMed

    Hendry, Tory A; Clark, Kelley J; Baltrus, David A

    2016-02-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction.

  19. Novel insights into the algicidal bacterium DH77-1 killing the toxic dinoflagellate Alexandrium tamarense.

    PubMed

    Yang, Xiaoru; Li, Xinyi; Zhou, Yanyan; Zheng, Wei; Yu, Changping; Zheng, Tianling

    2014-06-01

    Algicidal bacteria may play a major role in controlling harmful algal blooms (HABs) dynamics. Bacterium DH77-1 was isolated with high algicidal activity against the toxic dinoflagellate Alexandrium tamarense and identified as Joostella sp. DH77-1. The results showed that DH77-1 exhibited algicidal activity through indirect attack, which excreted active substance into the filtrate. It had a relatively wide host range and the active substance of DH77-1 was relatively stable since temperature, pH and storage condition had no obvious effect on the algicidal activity. The algicidal compound from bacterium DH77-1 was isolated based on activity-guided bioassay and the molecular weight was determined to be 125.88 by MALDI-TOF mass spectrometer, however further identification via nuclear magnetic resonance (NMR) spectra is ongoing. The physiological responses of algal cells after exposure to the DH77-1 algicidal substances were as follows: the antioxidant system of A. tamarense responded positively in self-defense; total protein content decreased significantly as did the photosynthetic pigment content; superoxide dismutase, peroxidase enzyme and malondialdehyde content increased extraordinarily and algal cell nucleic acid leaked seriously ultimately inducing cell death. Furthermore, DH77-1 is the first record of a Joostella sp. bacterium being algicidal to the harmful dinoflagellate A. tamarense, and the bacterial culture and the active compounds might be potentially used as a bio-agent for controlling harmful algal blooms. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Purification and Characterization of Haloalkaline, Organic Solvent Stable Xylanase from Newly Isolated Halophilic Bacterium-OKH

    PubMed Central

    Sanghvi, Gaurav; Jivrajani, Mehul; Patel, Nirav; Jivrajani, Heta; Bhaskara, Govinal Badiger; Patel, Shivani

    2014-01-01

    A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.0 and 37°C temperature in the medium containing 15% NaCl and 1% (w/v) corn cobs. Sugarcane bagasse and wheat straw also induce xylanase production when used as carbon source. The enzyme was active over a range of 0–25% sodium chloride examined in culture broth. The optimum xylanase activity was observed at 5% sodium chloride. Xylanase was purified with 25.81%-fold purification and 17.1% yield. Kinetic properties such as Km and Vmax were 4.2 mg/mL and 0.31 μmol/min/mL, respectively. The enzyme was stable at pH 6.0 and 50°C with 60% activity after 8 hours of incubation. Enzyme activity was enhanced by Ca2+, Mn2+, and Mg2+ but strongly inhibited by heavy metals such as Hg2+, Fe3+, Ni2+, and Zn2+. Xylanase was found to be stable in organic solvents like glutaraldehyde and isopropanol. The purified enzyme hydrolysed lignocellulosic substrates. Xylanase, purified from the halophilic bacterium-OKH, has potential biotechnological applications. PMID:27350996

  1. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    PubMed

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. Copyright © 2015, Watts et al.

  2. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome

    PubMed Central

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E.; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert. PMID:26294639

  3. In vitro antiplasmodial activity of bacterium RJAUTHB 14 associated with marine sponge Haliclona Grant against Plasmodium falciparum.

    PubMed

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram

    2012-06-01

    Malaria is the most important parasitic disease, leading to annual death of about one million people, and the Plasmodium falciparum develops resistance to well-established antimalarial drugs. The newest antiplasmodial drug from a marine microorganism helps in addressing this problem. In the present study, Haliclona Grant were collected and subjected for enumeration and isolation of associated bacteria. The count of bacterial isolates was maximum in November 2007 (18 × 10(4) colony-forming units (CFU) g(-1), and the average count was maximum during the monsoon season (117 × 10(3) CFU g(-1)). Thirty-three morphologically different bacterial isolates were isolated from Haliclona Grant, and the extracellular ethyl acetate extracts were screened for antiplasmodial activity against P. falciparum. The antiplasmodial activity of bacterium RJAUTHB 14 (11.98 μg[Symbol: see text]ml(-1)) is highly comparable with the positive control chloroquine (IC(50) 19.59 μg[Symbol: see text]ml(-1)), but the other 21 bacterial extracts showed an IC(50) value of more than 100 μg[Symbol: see text]ml(-1). Statistical analysis reveals that significant in vitro antiplasmodial activity (P < 0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes showed no morphological changes in erythrocytes by the ethyl acetate extract of bacterial isolates after 48 h of incubation. The in vitro antiplasmodial activity might be due to the presence of reducing sugars and alkaloids in the ethyl acetate extracts of bacterium RJAUTHB 14. The 16S rRNA gene partial sequence of bacterium RJAUTHB 14 is deposited in NCBI (GenBank accession no. GU269569). It is concluded from the present study that the ethyl acetate extracts of bacterium RJAUTHB 14 possess lead compounds for the development of antiplasmodial drugs.

  4. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    PubMed

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  5. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    PubMed

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project.

  6. Massilia sp. BS-1, a novel violacein-producing bacterium isolated from soil.

    PubMed

    Agematu, Hitosi; Suzuki, Kazuya; Tsuya, Hiroaki

    2011-01-01

    A novel bacterium, Massilia sp. BS-1, producing violacein and deoxyviolacein was isolated from a soil sample collected from Akita Prefecture, Japan. The 16S ribosomal DNA of strain BS-1 displayed 93% homology with its nearest violacein-producing neighbor, Janthinobacterium lividum. Strain BS-1 grew well in a synthetic medium, but required both L-tryptophan and a small amount of L-histidine to produce violacein.

  7. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    PubMed

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  8. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium

    PubMed Central

    Tago, Damian; Meyer, Damien F.

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria. PMID:27610355

  9. (Per)chlorate Reduction by the Thermophilic Bacterium Moorella perchloratireducens sp. nov., Isolated from Underground Gas Storage▿

    PubMed Central

    Balk, Melike; van Gelder, Ton; Weelink, Sander A.; Stams, Alfons J. M.

    2008-01-01

    A thermophilic bacterium, strain An10, was isolated from underground gas storage with methanol as a substrate and perchlorate as an electron acceptor. Cells were gram-positive straight rods, 0.4 to 0.6 μm in diameter and 2 to 8 μm in length, growing as single cells or in pairs. Spores were terminal with a bulged sporangium. The temperature range for growth was 40 to 70°C, with an optimum at 55 to 60°C. The pH optimum was around 7. The salinity range for growth was between 0 and 40 g NaCl liter−1 with an optimum at 10 g liter−1. Strain An10 was able to grow on CO, methanol, pyruvate, glucose, fructose, cellobiose, mannose, xylose, and pectin. The isolate was able to respire with (per)chlorate, nitrate, thiosulfate, neutralized Fe(III) complexes, and anthraquinone-2,6-disulfonate. The G+C content of the DNA was 57.6 mol%. On the basis of 16S rRNA analysis, strain An10 was most closely related to Moorella thermoacetica and Moorella thermoautotrophica. The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell extracts. Strain An10 is the first thermophilic and gram-positive bacterium with the ability to use (per)chlorate as a terminal electron acceptor. PMID:17981952

  10. Isolation and Characterization of a Human Intestinal Bacterium Eggerthella sp. AUH-JLD49s for the Conversion of (-)-3'-Desmethylarctigenin.

    PubMed

    Wang, Ye; Yu, Fei; Liu, Ming-Yue; Zhao, Yi-Kai; Wang, Dong-Ming; Hao, Qing-Hong; Wang, Xiu-Ling

    2017-05-24

    Arctiin is the most abundant bioactive compound contained in the Arctium lappa plant. In our previous study, we isolated one single bacterium capable of bioconverting arctigenin, an aglycone of arctiin, to 3'-desmethylarctigenin (3'-DMAG) solely. However, to date, a specific bacterium capable of producing other arctiin metabolites has not been reported. In this study, we isolated one single bacterium, which we named Eggerthella sp. AUH-JLD49s, capable of bioconverting 3'-DMAG under anaerobic conditions. The metabolite of 3'-DMAG by strain AUH-JLD49s was identified as 3'-desmethyl-4'-dehydroxyarctigenin (DMDH-AG) based on electrospray ionization mass spectrometry (ESI-MS) and 1 H and 13 C nuclear magnetic resonance spectroscopy. The bioconversion kinetics and bioconversion capacity of strain AUH-JLD49s were investigated. In addition, the metabolite DMDH-AG showed an inhibitory effect on cell growth of human colon cancer cell line HCT116 and human breast cancer cell line MDA-MB-231.

  11. Genome Sequence of Lysinibacillus sphaericus, a Lignin-Degrading Bacterium Isolated from Municipal Solid Waste Soil.

    PubMed

    Persinoti, Gabriela F; Paixão, Douglas A A; Bugg, Timothy D H; Squina, Fabio M

    2018-05-03

    We report here the draft genome sequence of Lysinibacillus sphaericus strain A1, a potential lignin-degrading bacterium isolated from municipal solid waste (MSW) soil and capable of enhancing gas release from lignocellulose-containing soil. Copyright © 2018 Persinoti et al.

  12. Draft genome sequence of ‘Candidatus Phytoplasma pruni’ strain CX, a plant pathogenic bacterium

    USDA-ARS?s Scientific Manuscript database

    ‘Candidatus Phytoplasma pruni’ strain CX, belonging to subgroup 16SrIII-A, is a plant pathogenic bacterium causing economically important diseases in many fruit crops. Here we report the draft genome sequence that consists of 598,508 bases, with a G+C content of 27.21 mol%. ...

  13. Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40T

    PubMed Central

    Weiner, Ronald M.; Taylor, Larry E.; Henrissat, Bernard; Hauser, Loren; Land, Miriam; Coutinho, Pedro M.; Rancurel, Corinne; Saunders, Elizabeth H.; Longmire, Atkinson G.; Zhang, Haitao; Bayer, Edward A.; Gilbert, Harry J.; Larimer, Frank; Zhulin, Igor B.; Ekborg, Nathan A.; Lamed, Raphael; Richardson, Paul M.; Borovok, Ilya; Hutcheson, Steven

    2008-01-01

    The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment. PMID:18516288

  14. 'Cand. Actinochlamydia clariae' gen. nov., sp. nov., a unique intracellular bacterium causing epitheliocystis in catfish (Clarias gariepinus) in Uganda.

    PubMed

    Steigen, Andreas; Nylund, Are; Karlsbakk, Egil; Akoll, Peter; Fiksdal, Ingrid U; Nylund, Stian; Odong, Robinson; Plarre, Heidrun; Semyalo, Ronald; Skår, Cecilie; Watanabe, Kuninori

    2013-01-01

    Epitheliocystis, caused by bacteria infecting gill epithelial cells in fish, is common among a large range of fish species in both fresh- and seawater. The aquaculture industry considers epitheliocystis an important problem. It affects the welfare of the fish and the resulting gill disease may lead to mortalities. In a culture facility in Kampala, Uganda, juveniles of the African sharptooth catfish (Clarias gariepinus) was observed swimming in the surface, sometimes belly up, showing signs of respiratory problems. Histological examination of gill tissues from this fish revealed large amounts of epitheliocysts, and also presence of a few Ichthyobodo sp. and Trichodina sp. Sequencing of the epitheliocystis bacterium 16S rRNA gene shows 86.3% similarity with Candidatus Piscichlamydia salmonis causing epitheliocystis in Atlantic salmon (Salmo salar). Transmission electron microscopy showed that the morphology of the developmental stages of the bacterium is similar to that of members of the family Chlamydiaceae. The similarity of the bacterium rRNA gene sequences compared with other chlamydia-like bacteria ranged between 80.5% and 86.3%. Inclusions containing this new bacterium have tubules/channels (termed actinae) that are radiating from the inclusion membrane and opening on the cell surface or in neighbouring cells. Radiation of tubules/channels (actinae) from the inclusion membrane has never been described in any of the other members of Chlamydiales. It seems to be a completely new character and an apomorphy. We propose the name Candidatus Actinochlamydia clariae gen. nov., sp. nov. (Actinochlamydiaceae fam. nov., order Chlamydiales, phylum Chlamydiae) for this new agent causing epitheliocystis in African sharptooth catfish.

  15. Isolation of an unidentified pink-pigmented bacterium in a clinical specimen.

    PubMed Central

    Odugbemi, T; Nwofor, C; Joiner, K T

    1988-01-01

    An unidentified pink-pigmented bacterium isolated from a clinical specimen is reported. The organism was oxidase, urease, and catalase positive; it grew on Thayer-Martin and MacConkey media. The isolate is possibly similar to an unnamed taxon (G.L. Gilardi and Y.C. Faur, J. Clin. Microbiol. 20:626-629, 1984); however, it had unique characteristics of nonmotility with no flagellum detectable and was a gram-negative coccoid with a few rods in pairs and negative for starch hydrolysis. PMID:3384903

  16. Isolation of an unidentified pink-pigmented bacterium in a clinical specimen.

    PubMed

    Odugbemi, T; Nwofor, C; Joiner, K T

    1988-05-01

    An unidentified pink-pigmented bacterium isolated from a clinical specimen is reported. The organism was oxidase, urease, and catalase positive; it grew on Thayer-Martin and MacConkey media. The isolate is possibly similar to an unnamed taxon (G.L. Gilardi and Y.C. Faur, J. Clin. Microbiol. 20:626-629, 1984); however, it had unique characteristics of nonmotility with no flagellum detectable and was a gram-negative coccoid with a few rods in pairs and negative for starch hydrolysis.

  17. Complete Genome Sequence of the Thermophilic Bacterium Geobacillus thermoleovorans CCB_US3_UF5

    PubMed Central

    Abdul Rahman, Ahmad Yamin; Saito, Jennifer A.; Hou, Shaobin

    2012-01-01

    Geobacillus thermoleovorans CCB_US3_UF5 is a thermophilic bacterium isolated from a hot spring in Malaysia. Here, we report the complete genome of G. thermoleovorans CCB_US3_UF5, which shows high similarity to the genome of Geobacillus kaustophilus HTA 426 in terms of synteny and orthologous genes. PMID:22328744

  18. Draft Genome Sequence of the Efficient Bioflocculant-Producing Bacterium Paenibacillus sp. Strain A9

    PubMed Central

    Liu, Jin-liang; Hu, Xiao-min

    2013-01-01

    Paenibacillus sp. strain A9 is an important bioflocculant-producing bacterium, isolated from a soil sample, and is pale pink-pigmented, aerobic, and Gram-positive. Here, we report the draft genome sequence and the initial findings from a preliminary analysis of strain A9, which is a novel species of Paenibacillus. PMID:23618713

  19. Sucrose dependent mineral phosphate solubilization in Enterobacter asburiae PSI3 by heterologous overexpression of periplasmic invertases.

    PubMed

    Kumar, Chanchal; Wagh, Jitendra; Archana, G; Naresh Kumar, G

    2016-12-01

    Enterobacter asburiae PSI3 solubilizes mineral phosphates in the presence of glucose by the secretion of gluconic acid generated by the action of a periplasmic pyrroloquinoline quinone dependent glucose dehydrogenase. In order to achieve mineral phosphate solubilization phenotype in the presence of sucrose, plasmids pCNK4 and pCNK5 containing genes encoding the invertase enzyme of Zymomonas mobilis (invB) and of Saccharomyces cerevisiae (suc2) under constitutive promoters were constructed with malE signal sequence (in case of invB alone as the suc2 is secreted natively). When introduced into E. asburiae PSI3, E. a. (pCNK4) and E. a. (pCNK5) transformants secreted 21.65 ± 0.94 and 22 ± 1.3 mM gluconic acid, respectively, in the presence of 75 mM sucrose and they also solubilized 180 ± 4.3 and 438 ± 7.3 µM P from the rock phosphate. In the presence of a mixture of 50 mM sucrose and 25 mM glucose, E. a. (pCNK5) secreted 34 ± 2.3 mM gluconic acid and released 479 ± 8.1 µM P. Moreover, in the presence of a mixture of eight sugars (10 mM each) in the medium, E. a. (pCNK5) released 414 ± 5.3 µM P in the buffered medium. Thus, this study demonstrates incorporation of periplasmic invertase imparted P solubilization ability to E. asburiae PSI3 in the presence of sucrose and mixture of sugars.

  20. The domestication of the probiotic bacterium Lactobacillus acidophilus

    PubMed Central

    Bull, Matthew J.; Jolley, Keith A.; Bray, James E.; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C. J.; Marchesi, Julian R.; Mahenthiralingam, Eshwar

    2014-01-01

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population. PMID:25425319

  1. The domestication of the probiotic bacterium Lactobacillus acidophilus.

    PubMed

    Bull, Matthew J; Jolley, Keith A; Bray, James E; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C J; Marchesi, Julian R; Mahenthiralingam, Eshwar

    2014-11-26

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population.

  2. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium.

    PubMed

    Kao, An-Chieh; Chu, Yu-Ju; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2013-12-01

    Arsenic (As) contamination of groundwater is a significant public health concern. In this study, the removal of arsenic from groundwater using biological processes was investigated. The efficiency of arsenite (As(III)) bacterial oxidation and subsequent arsenate (As(V)) removal from contaminated groundwater using bacterial biomass was examined. A novel As(III)-oxidizing bacterium (As7325) was isolated from the aquifer in the blackfoot disease (BFD) endemic area in Taiwan. As7325 oxidized 2300μg/l As(III) using in situ As(III)-contaminated groundwater under aerobic conditions within 1d. After the oxidation of As(III) to As(V), As(V) removal was further examined using As7325 cell pellets. The results showed that As(V) could be adsorbed efficiently by lyophilized As7325 cell pellets, the efficiency of which was related to lyophilized cell pellet concentration. Our study conducted the examination of an alternative technology for the removal of As(III) and As(V) from groundwater, indicating that the oxidation of As(III)-contaminated groundwater by native isolated bacterium, followed by As(V) removal using bacterial biomass is a potentially effective technology for the treatment of As(III)-contaminated groundwater. © 2013.

  3. NH4+ transport system of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1.

    PubMed

    Chou, M; Matsunaga, T; Takada, Y; Fukunaga, N

    1999-05-01

    NH4(+) transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3+) into the intact cells. 14CH3NH3+ uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3+ as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3+ completely inhibited 14CH3NH3+ uptake. These results indicate that 14CH3NH3+ uptake in this bacterium is mediated via an NH4+ transport system and not by a specific carrier for CH3NH3+. The respiratory substrate succinate was required to drive 14CH3NH3+ uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3+ uptake. The 14CH3NH3+ uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0 degrees and 15 degrees C, and the apparent Km value for CH3NH3+ of the uptake did not change significantly over the temperature range from 0 degrees to 25 degrees C. Thus, the NH4+ transport system of this bacterium was highly active at low temperatures.

  4. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    PubMed

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Lytic and Chemotactic Features of the Plaque-Forming Bacterium KD531 on Phaeodactylum tricornutum

    PubMed Central

    Chen, Zhangran; Zheng, Wei; Yang, Luxi; Boughner, Lisa A.; Tian, Yun; Zheng, Tianling; Xu, Hong

    2017-01-01

    Phaeodactylum tricornutum is a dominant bloom forming species and potential biofuel feedstock. To control P. tricornutum bloom or to release lipids from P. tricornutum, we previously screened and identified the lytic bacterium Labrenzia sp. KD531 toward P. tricornutum. In the present study, we evaluated the lytic activity of Labrenzia sp. KD531 on microalgae and investigated its lytic mechanism. The results indicated that the lytic activity of KD531 was temperature- and pH-dependent, but light-independent. In addition to P. tricornutum, KD531 also showed lytic activity against other algal species, especially green algae. A quantitative analysis of algal cellular protein, carbohydrate and lipid content together with measurements of dry weight after exposure to bacteria-infected algal lysate indicated that the bacterium KD531 influenced the algal biomass by disrupting the algal cells. Both chemotactic analysis and microscopic observations of subsamples from different regions of formed plaques showed that KD531 could move toward and then directly contact algal cells. Direct contact between P. tricornutum and KD531 cells was essential for the lytic process. PMID:29312256

  6. Structural characterization and anticancer activity of extracellular polysaccharides from ascidian symbiotic bacterium Bacillus thuringiensis.

    PubMed

    Ramamoorthy, Sathishkumar; Gnanakan, Ananthan; S Lakshmana, Senthil; Meivelu, Moovendhan; Jeganathan, Arun

    2018-06-15

    In the present study, extracellular polysaccharides (EPS) producing bacterium Bacillus thuringiensis RSK CAS4 was isolated from ascidian Didemnum granulatum and its production was optimized by response surface methodology. Fructose and galactose were found as the major monosaccharides in the EPS from the strain RSK CAS4. Functional groups and structural characteristics of the EPS were characterized with FT-IR and 1 HNMR. The purified EPS showed potent antioxidant properties in investigation against DPPH, hydroxyl, superoxide free radicals. In vitro anticancer activity of purified EPS was evaluated on HEp-2 cells, A549 and Vero cell lines. Growth of cancer cells was inhibited by the EPS in a dose-dependent manner and maximum anticancer activity was found to be 76% against liver cancer at 1000 μg/ml. The antioxidant and anticancer potentials of theEPS from marine bacterium Bacillusthuringiensis RSK CAS4 suggests it as a potential natural source and its scopeas an alternative to synthetics for pharmaceutical application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Enhanced biosynthesis of dihydrodaidzein and dihydrogenistein by a newly isolated bovine rumen anaerobic bacterium.

    PubMed

    Wang, Xiu-Ling; Shin, Kwang-Hee; Hur, Hor-Gil; Kim, Su-Il

    2005-02-09

    A rod-shaped and Gram-positive anaerobic bacterium, named Niu-O16, which was isolated from bovine rumen contents, was found to be capable of anaerobically converting isoflavones daidzein and genistein to dihydrodaidzein (DHD) and dihydrogenistein (DHG), respectively. The metabolites DHD and DHG were identified using EI-MS and NMR spectrometric analyses. Stereoisomeric metabolites, which were separated on chiral stationary phase HPLC, were formed in equal amounts by the strain Niu-O16. Tautomerization reaction occurred on the B-ring of DHD and DHG seems to be attributed to the equal production of stereoisomeric metabolites. For the synthesis of DHD, the strain Niu-O16 showed an optimal pH range from 6.0 to 7.0 and completely reduced up to 800 microM of daidzein to DHD with the initial OD600nm=1.0 and pH 7.0 for 3 days incubation. The strain Niu-O16, showed relatively faster reduction activity toward daidzein to produce DHD than the previously isolated human intestinal bacterium Clostridium sp. HGH6.

  8. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis.

    PubMed

    Neumann, Sarah; Wessels, Hans J C T; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Kartal, Boran; Jetten, Mike S M; van Niftrik, Laura

    2014-11-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost-effective and environment-friendly nitrogen removal system from wastewater. Anammox bacteria have a compartmentalized cell plan that consists of three separate compartments. Here we report the fractionation of the anammox bacterium Kuenenia stuttgartiensis in order to isolate and analyze the innermost cell compartment called the anammoxosome. The subcellular fractions were microscopically characterized and all membranes in the anammox cell were shown to contain ladderane lipids which are unique for anammox bacteria. Proteome analyses and activity assays with the isolated anammoxosomes showed that these organelles harbor the energy metabolism in anammox cells. Together the experimental data provide the first thorough characterization of a respiratory cell organelle from a bacterium and demonstrate the essential role of the anammoxosome in the production of a major portion of the nitrogen gas in our atmosphere. © 2014 John Wiley & Sons Ltd.

  9. Insights in Nanoparticle-Bacterium Interactions: New Frontiers to Bypass Bacterial Resistance to Antibiotics.

    PubMed

    Diab, Roudayna; Khameneh, Bahman; Joubert, Olivier; Duval, Raphael

    2015-01-01

    Nanotechnology has been revealed as a fundamental approach for antibiotics delivery. In this paper, recent findings demonstrating the superiority of nanocarried-antibiotics over "naked" ones and the ways by which nanoparticles can help to overwhelm bacterial drug resistance are reviewed. The second part of this paper sheds light on nanoparticle-bacterium interaction patterns. Finally, key factors affecting the effectiveness of nanoparticles interactions with bacteria are discussed.

  10. Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus

    PubMed Central

    Xiu, Pengyuan; Liu, Rui

    2017-01-01

    ABSTRACT Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium (Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes (flgA and flgP) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and

  11. Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus.

    PubMed

    Xiu, Pengyuan; Liu, Rui; Zhang, Dechao; Sun, Chaomin

    2017-06-15

    Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium ( Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes ( flgA and flgP ) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote

  12. Whole-Genome Sequence of Cupriavidus sp. Strain BIS7, a Heavy-Metal-Resistant Bacterium

    PubMed Central

    Hong, Kar Wai; Thinagaran, Dinaiz a/l; Gan, Han Ming; Yin, Wai-Fong

    2012-01-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome. PMID:23115161

  13. Whole-genome sequence of Cupriavidus sp. strain BIS7, a heavy-metal-resistant bacterium.

    PubMed

    Hong, Kar Wai; Thinagaran, Dinaiz al; Gan, Han Ming; Yin, Wai-Fong; Chan, Kok-Gan

    2012-11-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.

  14. Response to comments on "A bacterium that can grow using arsenic instead of phosphorus"

    USGS Publications Warehouse

    Wolfe-Simon, Felisa; Blum, Jodi Switzer; Kulp, Thomas R.; Gordon, Gwyneth W.; Hoeft, Shelley E.; Pett-Ridge, Jennifer; Stolz, John F.; Webb, Samuel M.; Weber, Peter K.; Davies, Paul C.W.; Anbar, Ariel D.; Oremland, Ronald S.

    2011-01-01

    Concerns have been raised about our recent study suggesting that arsenic (As) substitutes for phosphorus in major biomolecules of a bacterium that tolerates extreme As concentrations. We welcome the opportunity to better explain our methods and results and to consider alternative interpretations. We maintain that our interpretation of As substitution, based on multiple congruent lines of evidence, is viable.

  15. Complete Genome Sequence of the Naphthalene-Degrading Bacterium Pseudomonas stutzeri AN10 (CCUG 29243)

    PubMed Central

    Brunet-Galmés, Isabel; Busquets, Antonio; Peña, Arantxa; Gomila, Margarita; Nogales, Balbina; García-Valdés, Elena; Lalucat, Jorge; Bennasar, Antonio

    2012-01-01

    Pseudomonas stutzeri AN10 (CCUG 29243) can be considered a model strain for aerobic naphthalene degradation. We report the complete genome sequence of this bacterium. Its 4.71-Mb chromosome provides insights into other biodegradative capabilities of strain AN10 (i.e., benzoate catabolism) and suggests a high number of horizontal gene transfer events. PMID:23144395

  16. Complete genome sequence of the xylan-degrading subseafloor bacterium Microcella alkaliphila JAM-AC0309.

    PubMed

    Kurata, Atsushi; Hirose, Yuu; Misawa, Naomi; Wakazuki, Sachiko; Kishimoto, Noriaki; Kobayashi, Tohru

    2016-03-10

    Here we report the complete genome sequence of Microcella alkaliphila JAM-AC0309, which was newly isolated from the deep subseafloor core sediment from offshore of the Shimokita Peninsula of Japan. An array of genes related to utilization of xylan in this bacterium was identified by whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Draft Genome Sequence of Pontibacter sp. nov. BAB1700, a Halotolerant, Industrially Important Bacterium

    PubMed Central

    Joshi, M. N.; Sharma, A. C.; Pandya, R. V.; Patel, R. P.; Saiyed, Z. M.; Saxena, A. K.

    2012-01-01

    Pontibacter sp. nov. BAB1700 is a halotolerant, Gram-negative, rod-shaped, pink-pigmented, menaquinone-7-producing bacterium isolated from sediments of a drilling well. The draft genome sequence of the strain, consisting of one chromosome of 4.5 Mb, revealed vital gene clusters involved in vitamin biosynthesis and resistance against various metals and antibiotics. PMID:23105068

  18. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aurantiacus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Kuo-Hsiang; Barry, Kerrie; Chertkov, Olga

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.

  19. Gene function analysis in extremophiles: the "nif" regulon of the strict iron oxidizing bacterium "Leptospirillum ferrooxidans"

    NASA Astrophysics Data System (ADS)

    Parro, Victor; Moreno-Paz, Mercedes

    2004-03-01

    In Centro de Astrobiologia it has been considered the Tinto river as a model ecosystem to study life based on iron. The final goal is to study the biological and metabolic diversity in microorganisms living there, following a genomic approach, to get insights to the mechanisms of adaptation to this environment. The Gram-negative bacterium Leptospirillum ferrooxidans is one of the most abundant microorganisms in the river, and it is one of the main responsible in maintenance of pH balance and, as a consequence, the physico-chemical properties of the exosystem. We have constructed a Shotgun DNA microarrays from this bacterium and we have used it to studied its genetic capacity for nitrogen fixation. With this approach we have identified most of the genes necessary for dinitrogen (N2) reduction, confirming the capacity of L. ferrooxidans as a free diazotrophic (nitrogen fixer) microorganism.

  20. Draft Genome Sequence of a Pseudomonas aeruginosa NA04 Bacterium Isolated from an Entomopathogenic Nematode.

    PubMed

    Salgado-Morales, Rosalba; Rivera-Gómez, Nancy; Lozano-Aguirre Beltrán, Luis Fernando; Hernández-Mendoza, Armando; Dantán-González, Edgar

    2017-09-07

    We report the draft genome sequence of Gram-negative bacterium Pseudomonas aeruginosa NA04, isolated from the entomopathogenic nematode Heterorhabditis indica MOR03. The draft genome consists of 54 contigs, a length of 6.37 Mb, and a G+C content 66.49%. Copyright © 2017 Salgado-Morales et al.

  1. Curiously modern DNA for a "250 million-year-old" bacterium.

    PubMed

    Nickle, David C; Learn, Gerald H; Rain, Matthew W; Mullins, James I; Mittler, John E

    2002-01-01

    Studies of ancient DNA have attracted considerable attention in scientific journals and the popular press. Several of the more extreme claims for ancient DNA have been questioned on biochemical grounds (i.e., DNA surviving longer than expected) and evolutionary grounds (i.e., nucleotide substitution patterns not matching theoretical expectations for ancient DNA). A recent letter to Nature from Vreeland et al. (2000), however, tops all others with respect to age and condition of the specimen. These researchers extracted and cultured a bacterium from an inclusion body from what they claim is a 250 million-year (Myr)-old salt crystal. If substantiated, this observation could fundamentally alter views about bacterial physiology, ecology and evolution. Here we report on molecular evolutionary analyses of the 16S rDNA from this specimen. We find that 2-9-3 differs from a modern halophile, Salibacillus marismortui, by just 3 unambiguous bp in 16S rDNA, versus the approximately 59 bp that would be expected if these bacteria evolved at the same rate as other bacteria. We show, using a Poisson distribution, that unless it can be shown that S. marismortui evolves 5 to 10 times more slowly than other bacteria for which 16S rDNA substitution rates have been established, Vreeland et al.'s claim would be rejected at the 0.05 level. Also, a molecular clock test and a relative rates test fail to substantiate Vreeland et al.'s claim that strain 2-9-3 is a 250-Myr-old bacterium. The report of Vreeland et al. thus falls into a long series of suspect ancient DNA studies.

  2. Draft Genome Sequence of Sphingobium ummariense Strain RL-3, a Hexachlorocyclohexane-Degrading Bacterium

    PubMed Central

    Kohli, Puneet; Dua, Ankita; Sangwan, Naseer; Oldach, Phoebe; Khurana, J. P.

    2013-01-01

    Here, we report the draft genome sequence of the hexachlorocyclohexane (HCH)-degrading bacterium Sphingobium ummariense strain RL-3, which was isolated from the HCH dumpsite located in Lucknow, India (27°00′N and 81°09′E). The annotated draft genome sequence (4.75 Mb) of strain RL-3 consisted of 139 contigs, 4,645 coding sequences, and 65% G+C content. PMID:24233594

  3. Reduction of nitric oxide catalyzed by hydroxylamine oxidoreductase from an anammox bacterium.

    PubMed

    Irisa, Tatsuya; Hira, Daisuke; Furukawa, Kenji; Fujii, Takao

    2014-12-01

    The hydroxylamine oxidoreductase (HAO) from the anammox bacterium, Candidatus Kuenenia stuttgartiensis has been reported to catalyze the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO) by using bovine cytochrome c as an oxidant. In contrast, we investigated whether the HAO from anammox bacterium strain KSU-1 could catalyze the reduction of NO with reduced benzyl viologen (BVred) and the NO-releasing reagent, NOC 7. The reduction proceeded, resulting in the formation of NH2OH as a product. The oxidation rate of BVred was proportional to the concentration of BVred itself for a short period in each experiment, a situation that was termed quasi-steady state. The analyses of the states at various concentrations of HAO allowed us to determine the rate constant for the catalytic reaction, (2.85 ± 0.19) × 10(5) M(-1) s(-1), governing NO reduction by BVred and HAO, which was comparable to that reported for the HAO from the ammonium oxidizer, Nitrosomonas with reduced methyl viologen. These results suggest that the anammox HAO functions to adjust anammox by inter-conversion of NO and NH2OH depending on the redox potential of the physiological electron transfer protein in anammox bacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. A novel continuous toxicity test system using a luminously modified freshwater bacterium.

    PubMed

    Cho, Jang-Cheon; Park, Kyung-Je; Ihm, Hyuk-Soon; Park, Ji-Eun; Kim, Se-Young; Kang, Ilnam; Lee, Kyu-Ho; Jahng, Deokjin; Lee, Dong-Hun; Kim, Sang-Jong

    2004-09-15

    An automated continuous toxicity test system was developed using a recombinant bioluminescent freshwater bacterium. The groundwater-borne bacterium, Janthinobacterium lividum YH9-RC, was modified with luxAB and optimized for toxicity tests using different kinds of organic carbon compounds and heavy metals. luxAB-marked YH9-RC cells were much more sensitive (average 7.3-8.6 times) to chemicals used for toxicity detection than marine Vibrio fischeri cells used in the Microtox assay. Toxicity tests for wastewater samples using the YH9-RC-based toxicity assay showed that EC50-5 min values in an untreated raw wastewater sample (23.9 +/- 12.8%) were the lowest, while those in an effluent sample (76.7 +/- 14.9%) were the highest. Lyophilization conditions were optimized in 384-multiwell plates containing bioluminescent bacteria that were pre-incubated for 15 min in 0.16 M of trehalose prior to freeze-drying, increasing the recovery of bioluminescence and viability by 50%. Luminously modified cells exposed to continuous phenol or wastewater stream showed a rapid decrease in bioluminescence, which fell below detectable range within 1 min. An advanced toxicity test system, featuring automated real-time toxicity monitoring and alerting functions, was designed and finely tuned. This novel continuous toxicity test system can be used for real-time biomonitoring of water toxicity, and can potentially be used as a biological early warning system.

  5. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans.

    PubMed

    Peng, J B; Yan, W M; Bao, X Z

    1994-07-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host.

  6. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans

    PubMed Central

    Peng, Ji-Bin; Yan, Wang-Ming; Bao, Xue-Zhen

    1994-01-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host. PMID:16349341

  7. Draft Genome Sequence of Lactobacillus paracasei DmW181, a Bacterium Isolated from Wild Drosophila.

    PubMed

    Hammer, Austin J; Walters, Amber; Carroll, Courtney; Newell, Peter D; Chaston, John M

    2017-07-06

    The draft genome sequence of Lactobacillus paracasei DmW181, an anaerobic bacterium isolate from wild Drosophila flies, is reported here. Strain DmW181 possesses genes for sialic acid and mannose metabolism. The assembled genome is 3,201,429 bp, with 3,454 predicted genes. Copyright © 2017 Hammer et al.

  8. Draft Genome Sequence of the 2-Chloro-4-Nitrophenol-Degrading Bacterium Arthrobacter sp. Strain SJCon

    PubMed Central

    Vikram, Surendra; Kumar, Shailesh; Vaidya, Bhumika; Pinnaka, Anil Kumar

    2013-01-01

    We report the 4.39-Mb draft genome sequence of the 2-chloro-4-nitrophenol-degrading bacterium Arthrobacter sp. strain SJCon, isolated from a pesticide-contaminated site. The draft genome sequence of strain SJCon will be helpful in studying the genetic pathways involved in the degradation of several aromatic compounds. PMID:23516196

  9. ‘Cand. Actinochlamydia clariae’ gen. nov., sp. nov., a Unique Intracellular Bacterium Causing Epitheliocystis in Catfish (Clarias gariepinus) in Uganda

    PubMed Central

    Steigen, Andreas; Nylund, Are; Karlsbakk, Egil; Akoll, Peter; Fiksdal, Ingrid U.; Nylund, Stian; Odong, Robinson; Plarre, Heidrun; Semyalo, Ronald; Skår, Cecilie; Watanabe, Kuninori

    2013-01-01

    Background and Objectives Epitheliocystis, caused by bacteria infecting gill epithelial cells in fish, is common among a large range of fish species in both fresh- and seawater. The aquaculture industry considers epitheliocystis an important problem. It affects the welfare of the fish and the resulting gill disease may lead to mortalities. In a culture facility in Kampala, Uganda, juveniles of the African sharptooth catfish (Clarias gariepinus) was observed swimming in the surface, sometimes belly up, showing signs of respiratory problems. Histological examination of gill tissues from this fish revealed large amounts of epitheliocysts, and also presence of a few Ichthyobodo sp. and Trichodina sp. Methods and Results Sequencing of the epitheliocystis bacterium 16S rRNA gene shows 86.3% similarity with Candidatus Piscichlamydia salmonis causing epitheliocystis in Atlantic salmon (Salmo salar). Transmission electron microscopy showed that the morphology of the developmental stages of the bacterium is similar to that of members of the family Chlamydiaceae. The similarity of the bacterium rRNA gene sequences compared with other chlamydia-like bacteria ranged between 80.5% and 86.3%. Inclusions containing this new bacterium have tubules/channels (termed actinae) that are radiating from the inclusion membrane and opening on the cell surface or in neighbouring cells. Conclusions Radiation of tubules/channels (actinae) from the inclusion membrane has never been described in any of the other members of Chlamydiales. It seems to be a completely new character and an apomorphy. We propose the name Candidatus Actinochlamydia clariae gen. nov., sp. nov. (Actinochlamydiaceae fam. nov., order Chlamydiales, phylum Chlamydiae) for this new agent causing epitheliocystis in African sharptooth catfish. PMID:23826156

  10. Combination of a recombinant bacterium with organonitrile-degrading and biofilm-forming capability and a positively charged carrier for organonitriles removal.

    PubMed

    Li, Chunyan; Sun, Yueling; Yue, Zhenlei; Huang, Mingyan; Wang, Jinming; Chen, Xi; An, Xuejiao; Zang, Hailian; Li, Dapeng; Hou, Ning

    2018-04-10

    The immobilization of organonitrile-degrading bacteria via the addition of biofilm-forming bacteria represents a promising technology for the treatment of organonitrile-containing wastewater, but biofilm-forming bacteria simply mixed with degrading bacteria may reduce the biodegradation efficiency. Nitrile hydratase and amidase genes, which play critical roles in organonitriles degradation, were cloned and transformed into the biofilm-forming bacterium Bacillus subtilis N4 to construct a recombinant bacterium B. subtilis N4/pHTnha-ami. Modified polyethylene carriers with positive charge was applied to promote bacterial adherence and biofilm formation. The immobilized B. subtilis N4/pHTnha-ami was resistant to organonitriles loading shocks and could remove organic cyanide ion with a initial concentration of 392.6 mg/L for 24 h in a moving bed biofilm reactor. The imputed quorum-sensing signal and the high-throughput sequencing analysis of the biofilm indicated that B. subtilis N4/pHTnha-ami was successfully immobilized and became dominant. The successful application of the immobilized recombinant bacterium offers a novel strategy for the biodegradation of recalcitrant compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Complete genome sequencing of the luminescent bacterium, Vibrio qinghaiensis sp. Q67 using PacBio technology

    NASA Astrophysics Data System (ADS)

    Gong, Liang; Wu, Yu; Jian, Qijie; Yin, Chunxiao; Li, Taotao; Gupta, Vijai Kumar; Duan, Xuewu; Jiang, Yueming

    2018-01-01

    Vibrio qinghaiensis sp.-Q67 (Vqin-Q67) is a freshwater luminescent bacterium that continuously emits blue-green light (485 nm). The bacterium has been widely used for detecting toxic contaminants. Here, we report the complete genome sequence of Vqin-Q67, obtained using third-generation PacBio sequencing technology. Continuous long reads were attained from three PacBio sequencing runs and reads >500 bp with a quality value of >0.75 were merged together into a single dataset. This resultant highly-contiguous de novo assembly has no genome gaps, and comprises two chromosomes with substantial genetic information, including protein-coding genes, non-coding RNA, transposon and gene islands. Our dataset can be useful as a comparative genome for evolution and speciation studies, as well as for the analysis of protein-coding gene families, the pathogenicity of different Vibrio species in fish, the evolution of non-coding RNA and transposon, and the regulation of gene expression in relation to the bioluminescence of Vqin-Q67.

  12. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.

    PubMed

    Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish

    2017-01-01

    Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes

  13. Draft Genome Sequence of the Obligately Alkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans Strain MLF1

    PubMed Central

    Trubitsyn, Denis; Geurink, Corey; Pikuta, Elena; Lefèvre, Christopher T.; McShan, W. Michael; Gillaspy, Allison F.

    2014-01-01

    Desulfonatronum thiodismutans strain MLF1, an alkaliphilic bacterium capable of sulfate reduction, was isolated from Mono Lake, California. Here we report the 3.92-Mb draft genome sequence comprising 34 contigs and some results of its automated annotation. These data will improve our knowledge of mechanisms by which bacteria withstand extreme environments. PMID:25081260

  14. Identification and Characterization of a High Efficiency Aniline Resistance and Degrading Bacterium MC-01.

    PubMed

    Yang, Liu; Ying, Chen; Fang, Ni; Zhong, Yao; Zhao-Xiang, Zhong; Yun, Sun

    2017-05-01

    Biodegradation is one of the important methods for the treatment of industrial wastewater containing aniline. In this paper, a degrading bacterium named MC-01, which could survive in high concentration aniline wastewater, was screened from industrial wastewater containing aniline and sludge. MC-01 was preliminarily identified as Ochrobactrum sp. based on the amplified 16S rDNA gene sequence and Biolog system identification. MC-01 was highly resistant to aniline. After 24-h culture under aniline concentration of 6500 mg/L, the amount of bacterium survived still remained 0.05 × 10 6  CFU/mL. Experiments showed that there was no coupling expression between the growth of MC-01 and aniline degradation. The optimum growth conditions in LB culture were pH 6.0, 30 °C of temperature, and 4% of incubation amount, respectively. And the optimum conditions of aniline degradation of MC-01 were pH 7.0, 45 °C of temperature, and 3.0% of salt concentration, respectively. The degradation rate of MC-01 (48 h) in different aniline concentrations (200~1600 mg/L) was stable under the optimum conditions, which could reach more than 75%.

  15. The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium.

    PubMed

    Wang, L Q; Meselhy, M R; Li, Y; Nakamura, N; Min, B S; Qin, G W; Hattori, M

    2001-12-01

    A human intestinal bacterium, Eubacterium (E.) sp. strain SDG-2, was tested for its ability to metabolize various (3R)- and (3S)-flavan-3-ols and their 3-O-gallates. This bacterium cleaved the C-ring of (3R)- and (3S)-flavan-3-ols to give 1,3-diphenylpropan-2-ol derivatives, but not their 3-O-gallates. Furthermore, E. sp. strain SDG-2 had the ability of p-dehydroxylation in the B-ring of (3R)-flavan-3-ols, such as (-)-catechin, (-)-epicatechin, (-)-gallocatechin and (-)-epigallocatechin, but not of (3S)-flavan-3-ols, such as (+)-catechin and (+)-epicatechin.

  16. Extracellular polymer substance synthesized by a halophilic bacterium Chromohalobacter canadensis 28.

    PubMed

    Radchenkova, Nadja; Boyadzhieva, Ivanka; Atanasova, Nikolina; Poli, Annarita; Finore, Ilaria; Di Donato, Paola; Nicolaus, Barbara; Panchev, Ivan; Kuncheva, Margarita; Kambourova, Margarita

    2018-04-03

    Halophilic microorganisms are producers of a lot of new compounds whose properties suggest promising perspectives for their biotechnological exploration. Moderate halophilic bacterium Chromohalobacter canadensis 28 was isolated from Pomorie salterns as an extracellular polymer substance (EP) producer. The best carbon source for extracellular polymer production was found to be lactose, a sugar received as a by-product from the dairy industry. After optimization of the culture medium and physicochemical conditions for cultivation, polymer biosynthesis increased more than 2-fold. The highest level of extracellular polymer synthesis by C. canadensis 28 was observed in an unusually high NaCl concentration (15% w/v). Chemical analysis of the purified polymer revealed the presence of an exopolysaccharide (EPS) fraction (14.3% w/w) and protein fraction (72% w/w). HPLC analysis of the protein fraction showed the main presence of polyglutamic acid (PGA) (75.7% w/w). EPS fraction analysis revealed the following sugar composition (% w/w): glucosamine 36.7, glucose 32.3, rhamnose 25.4, xylose 1.7, and not identified sugar 3.9. The hydrogel formed by PGA and EPS fractions showed high swelling behavior, very good emulsifying and stabilizing properties, and good foaming ability. This is the first report for halophilic bacterium able to synthesize a polymer containing PGA fraction. The synthesized biopolymer shows an extremely high hydrophilicity, due to the simultaneous presence of PGA and EPS. The analysis of its functional properties and the presence of glucosamine in the highest proportion in EPS fraction clearly determine the potential of EP synthesized by C. canadensis 28 for application in the cosmetics industry.

  17. Complete Genome Sequence of a New Ruminococcaceae Bacterium Isolated from Anaerobic Biomass Hydrolysis.

    PubMed

    Hahnke, Sarah; Abendroth, Christian; Langer, Thomas; Codoñer, Francisco M; Ramm, Patrice; Porcar, Manuel; Luschnig, Olaf; Klocke, Michael

    2018-04-05

    A new Ruminococcaceae bacterium, strain HV4-5-B5C, participating in the anaerobic digestion of grass, was isolated from a mesophilic two-stage laboratory-scale leach bed biogas system. The draft annotated genome sequence presented in this study and 16S rRNA gene sequence analysis indicated the affiliation of HV4-5-B5C with the family Ruminococcaceae outside recently described genera. Copyright © 2018 Hahnke et al.

  18. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque.

    PubMed

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-02-10

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium.

  19. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque

    PubMed Central

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-01-01

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium. PMID:26860259

  20. Characterization of carbon dioxide concentrating chemolithotrophic bacterium Serratia sp. ISTD04 for production of biodiesel.

    PubMed

    Kumar, Manish; Morya, Raj; Gnansounou, Edgard; Larroche, Christian; Thakur, Indu Shekhar

    2017-11-01

    Proteomics and metabolomics analysis has become a powerful tool for characterization of microbial ability for fixation of Carbon dioxide. Bacterial community of palaeoproterozoic metasediments was enriched in the shake flask culture in the presence of NaHCO 3 . One of the isolate showed resistance to NaHCO 3 (100mM) and was identified as Serratia sp. ISTD04 by 16S rRNA sequence analysis. Carbon dioxide fixing ability of the bacterium was established by carbonic anhydrase enzyme assay along with proteomic analysis by LC-MS/MS. In proteomic analysis 96 proteins were identified out of these 6 protein involved in carbon dioxide fixation, 11 in fatty acid metabolism, indicating the carbon dioxide fixing potency of bacterium along with production of biofuel. GC-MS analysis revealed that hydrocarbons and FAMEs produced by bacteria within the range of C 13 -C 24 and C 11 -C 19 respectively. Presence of 59% saturated and 41% unsaturated organic compounds, make it a better fuel composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats.

    PubMed

    Kandel, Prem P; Lopez, Samantha M; Almeida, Rodrigo P P; De La Fuente, Leonardo

    2016-09-01

    Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect vectors. This bacterium

  2. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats

    PubMed Central

    Kandel, Prem P.; Lopez, Samantha M.; Almeida, Rodrigo P. P.

    2016-01-01

    ABSTRACT Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro. Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. IMPORTANCE Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect

  3. Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves.

    PubMed

    Tamura, Takayoshi; Noda, Masafumi; Ozaki, Moeko; Maruyama, Masafumi; Matoba, Yasuyuki; Kumagai, Takanori; Sugiyama, Masanori

    2010-01-01

    In the present study, we successfully isolated a carrot leaf-derived lactic acid bacterium that produces gamma-aminobutyric acid (GABA) from monosodium L-glutamate (L-MSG) at a hyper conversion rate. The GABA-producing bacterium, identified as Enterococcus (E.) avium G-15, produced 115.7±6.4 g/l GABA at a conversion rate of 86.0±5.0% from the added L-MSG under the optimum culture condition by a continuous L-MSG feeding method using a jar-fermentor, suggesting that the bacterium displays a great potential ability for the commercial-level fermentation production of GABA. Using the reverse transcription polymerase chain reaction (RT-PCR) method, we analyzed the expression of genes for the GABA transporter and glutamate decarboxylase, designated gadT and gadG, respectively, which were cloned from the E. avium G-15 chromosome. Both genes were expressed even without the added L-MSG, but their expression was enhanced by the addition of L-MSG.

  4. Zinc biosorption by the purple non-sulfur bacterium Rhodobacter capsulatus.

    PubMed

    Magnin, Jean-Pierre; Gondrexon, Nicolas; Willison, John C

    2014-12-01

    This paper presents the first report providing information on the zinc (Zn) biosorption potentialities of the purple non-sulfur bacterium Rhodobacter capsulatus. The effects of various biological, physical, and chemical parameters on Zn biosorption were studied in both the wild-type strain B10 and a strain, RC220, lacking the endogenous plasmid. At an initial Zn concentration of 10 mg·L(-1), the Zn biosorption capacity at pH 7 for bacterial biomass grown in synthetic medium containing lactate as carbon source was 17 and 16 mg Zn·(g dry mass)(-1) for strains B10 and RC220, respectively. Equilibrium was achieved in a contact time of 30-120 min, depending on the initial Zn concentration. Zn sorption by live biomass was modelled, at equilibrium, according to the Redlich-Peterson and Langmuir isotherms, in the range of 1-600 mg Zn·L(-1). The wild-type strain showed a maximal Zn uptake capacity (Qm) of 164 ± 8 mg·(g dry mass)(-1) and an equilibrium constant (Kads) of 0.017 ± 0.00085 L·(mg Zn)(-1), compared with values of 73.9 mg·(g dry mass)(-1) and 0.361 L·mg(-1) for the strain lacking the endogenous plasmid. The Qm value observed for R. capsulatus B10 is one of the highest reported in the literature, suggesting that this strain may be useful for Zn bioremediation. The lower Qm value and higher equilibrium constant observed for strain RC220 suggest that the endogenous plasmid confers an enhanced biosorption capacity in this bacterium, although no genetic determinants for Zn resistance appear to be located on the plasmid, and possible explanations for this are discussed.

  5. The Production, Purification and Properties of the Biopolymer Levan Produced by the Bacterium Erwinia Herbicola

    DTIC Science & Technology

    1989-08-01

    standard and an inulin standard provided by Dr. Elwin Reese of this laboratory and a sample of levan from a different bacterium provided by the USDA.23 A...polymyxa 24 Levan standard Continuous culture Tangential Flow purified levan (this study) >■• <-■-’•«■ i-I-» r Inulin standard tu 25 Figure 5. NMR

  6. Genome Sequence of Pedobacter arcticus sp. nov., a Sea Ice Bacterium Isolated from Tundra Soil

    PubMed Central

    Yin, Ye; Yue, Guidong; Gao, Qiang; Wang, Zhiyong; Peng, Fang; Fang, Chengxiang; Yang, Xu

    2012-01-01

    Pedobacter arcticus sp. nov. was originally isolated from tundra soil collected from Ny-Ålesund, in the Arctic region of Norway. It is a Gram-negative bacterium which shows bleb-shaped appendages on the cell surface. Here, we report the draft annotated genome sequence of Pedobacter arcticus sp. nov., which belongs to the genus Pedobacter. PMID:23144423

  7. Hydrogen Production by Co-cultures of Rhizopus oryzae and a Photosynthetic Bacterium, Rhodobacter sphaeroides RV

    NASA Astrophysics Data System (ADS)

    Asada, Yasuo; Ishimi, Katsuhiro; Nagata, Yoko; Wakayama, Tatsuki; Miyake, Jun; Kohno, Hideki

    Hydrogen production with glucose by using co-immobilized cultures of a fungus, Rhizopus oryzae NBRC5384, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. The co-immobilized cultures converted glucose to hydrogen via lactate in a high molar yield of about 8moles of hydrogen per glucose at a maximum under illuminated conditions.

  8. Draft Genome Sequence of the Obligately Alkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans Strain MLF1.

    PubMed

    Trubitsyn, Denis; Geurink, Corey; Pikuta, Elena; Lefèvre, Christopher T; McShan, W Michael; Gillaspy, Allison F; Bazylinski, Dennis A

    2014-07-31

    Desulfonatronum thiodismutans strain MLF1, an alkaliphilic bacterium capable of sulfate reduction, was isolated from Mono Lake, California. Here we report the 3.92-Mb draft genome sequence comprising 34 contigs and some results of its automated annotation. These data will improve our knowledge of mechanisms by which bacteria withstand extreme environments. Copyright © 2014 Trubitsyn et al.

  9. Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

    PubMed Central

    2012-01-01

    Background Chloronitrophenols (CNPs) are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP) is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography–mass spectrometry identified 4-chloro-2-aminophenol (4C2AP) and 2-aminophenol (2AP) as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Conclusions Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i) the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii) the bioremediation of 4C2NP by any bacterium. PMID:23171039

  10. Metabolism of 4-chloro-2-nitrophenol in a gram-positive bacterium, Exiguobacterium sp. PMA.

    PubMed

    Arora, Pankaj Kumar; Sharma, Ashutosh; Mehta, Richa; Shenoy, Belle Damodara; Srivastava, Alok; Singh, Vijay Pal

    2012-11-21

    Chloronitrophenols (CNPs) are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP) is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography-mass spectrometry identified 4-chloro-2-aminophenol (4C2AP) and 2-aminophenol (2AP) as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i) the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii) the bioremediation of 4C2NP by any bacterium.

  11. Complete Genome of Enterobacteriaceae Bacterium Strain FGI 57, a Strain Associated with Leaf-Cutter Ant Fungus Gardens

    PubMed Central

    Aylward, Frank O.; Tremmel, Daniel M.; Bruce, David C.; Chain, Patrick; Chen, Amy; Walston Davenport, Karen; Detter, Chris; Han, Cliff S.; Han, James; Huntemann, Marcel; Ivanova, Natalia N.; Kyrpides, Nikos C.; Markowitz, Victor; Mavrommatis, Kostas; Nolan, Matt; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Deshpande, Shweta; Goodwin, Lynne; Woyke, Tanja

    2013-01-01

    The Enterobacteriaceae bacterium strain FGI 57 was isolated from a fungus garden of the leaf-cutter ant Atta colombica. Analysis of its single 4.76-Mbp chromosome will shed light on community dynamics and plant biomass degradation in ant fungus gardens. PMID:23469353

  12. [Genetic variability of the bacterium Ralstonia solanacearum (Burkholderiales: Burholderiaceae) in the banana-growing region of Uraba (Colombia)].

    PubMed

    Cardozo, Carolina; Rodríguez, Paola; Cotes, José Miguel; Marín, Mauricio

    2010-03-01

    The banana moko disease, caused by the bacterium Ralstonia solanacearum, is one of the most important phytopathological problems of the banana agribusiness in tropical countries. In Uraba and Magdalena (Colombia), the main exporting regions of banana in Colombia, this disease causes a destruction estimated in 16.5 ha/year. The bacterium presents an extremely high level of genetic variation that affects control measures. This is the first study of its variation in Colombia and was done with AFLP molecular markers on a population of 100 isolates from banana plants, soils and "weeds". The high level of genetic diversity, with Nei and Shannon indexes of h=0.32 and I=0.48, respectively, and the AMOVA, showed that this population is subestructured (Fst=0.66): the host is the main factor of differentiation. Even so, previous tests show that all varieties have pathogenicity on Musa.

  13. The O-antigen structure of bacterium Comamonas aquatica CJG.

    PubMed

    Wang, Xiqian; Kondakova, Anna N; Zhu, Yutong; Knirel, Yuriy A; Han, Aidong

    2017-11-01

    Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1 H and 13 C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.

  14. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    PubMed Central

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and contained cytochrome c3 and desulfoviridin. Except for furfural degradation, the characteristics of the furfural isolate were remarkably similar to those of the sulfate reducer Desulfovibrio gigas. The furfural isolate has been tentatively identified as Desulfovibrio sp. strain F-1. Images PMID:16346423

  15. Outbreak of meningitis in weaner pigs caused by unidentified asaccharolytic gram-negative bacterium.

    PubMed Central

    Mohan, K; Holmes, B; Kock, N; Muvavarirwa, P

    1996-01-01

    Several organisms are known to cause outbreaks of meningitis in pigs, with Haemophilus species being the most frequently implicated. We report such an outbreak in which necropsied pigs manifested an unusual combination of meningitis, tracheitis, and bronchitis. The causative agent appeared to be an asaccharolytic gram-negative nonfermentative bacterium whose classification has yet to be determined. The organism was isolated from the brain and was extremely capnophilic, growing in air only after several serial subcultures. PMID:8815112

  16. Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06.

    PubMed

    Liu, Yang; Wang, Runping; Zeng, Runying

    2014-12-01

    Rhizobium sp. MGL06, the first Rhizobium isolate from a marine environment, is a malachite-green-tolerant bacterium with a broader salinity tolerance (range: 0.5% to 9%) than other rhizobia. This study sequences and annotates the draft genome sequence of this strain. Genome sequence information provides a basis for analyzing the malachite green tolerance, broad salinity adaptation, nitrogen fixation properties, and taxonomic classification of the isolate. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. High-Quality Genome Sequence of the Highly Resistant Bacterium Staphylococcus haemolyticus, Isolated from a Neonatal Bloodstream Infection.

    PubMed

    Hosseinkhani, Farideh; Emaneini, Mohammad; van Leeuwen, Willem

    2017-07-20

    Using Illumina HiSeq and PacBio technologies, we sequenced the genome of the multidrug-resistant bacterium Staphylococcus haemolyticus , originating from a bloodstream infection in a neonate. The sequence data can be used as an accurate reference sequence. Copyright © 2017 Hosseinkhani et al.

  18. Complete genome sequences of two strains of the meat spoilage bacterium Brochothrix thermosphacta isolated from ground chicken

    USDA-ARS?s Scientific Manuscript database

    Brochothrix thermosphacta is an important meat spoilage bacterium. Here we report the genome sequences of two strains of B. thermosphacta isolated from ground chicken. The genome sequences were determined using long-read PacBio single-molecule real-time (SMRT©) technology and are the first complete ...

  19. Shedding light on microbial dark matter: a TM6 bacterium as natural endosymbiont of a free-living amoeba.

    PubMed

    Delafont, Vincent; Samba-Louaka, Ascel; Bouchon, Didier; Moulin, Laurent; Héchard, Yann

    2015-12-01

    The TM6 phylum belongs to the so-called microbial dark matter that gathers uncultivated bacteria detected only via DNA sequencing. Recently, the genome sequence of a TM6 bacterium (TM6SC1) has led to suggest that this bacterium would adopt an endosymbiotic life. In the present paper, free-living amoebae bearing a TM6 strain were isolated from a water network. The amoebae were identified as Vermamoeba vermiformis and the presence of a TM6 strain was detected by polymerase chain reaction and microscopy. The partial sequence of its 16S rRNA gene showed this strain to be closely related to the sequenced TM6SC1 strain. These bacteria displayed a pyriform shape and were found within V. vermiformis. Therefore, these bacteria were named Vermiphilus pyriformis. Interactions studies showed that V. pyriformis was highly infectious and that its relation with V. vermiformis was specific and highly stable. Finally, it was found that V. pyriformis inhibited the encystment of V. vermiformis. Overall, this study describes for the first time an endosymbiotic relationship between a TM6 bacterium and a free-living amoeba in the environment. It suggests that other bacteria of the TM6 phylum might also be endosymbiotic bacteria and may be found in other free-living amoebae or other organisms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes

    PubMed Central

    Cossart, Pascale

    2011-01-01

    Listeria monocytogenes has, in 25 y, become a model in infection biology. Through the analysis of both its saprophytic life and infectious process, new concepts in microbiology, cell biology, and pathogenesis have been discovered. This review will update our knowledge on this intracellular pathogen and highlight the most recent breakthroughs. Promising areas of investigation such as the increasingly recognized relevance for the infectious process, of RNA-mediated regulations in the bacterium, and the role of bacterially controlled posttranslational and epigenetic modifications in the host will also be discussed. PMID:22114192

  1. Development of multiplex polymerase chain reaction assay for simultaneous detection of clostero-, badna- and mandari-viruses along with huanglongbing bacterium in citrus trees.

    PubMed

    Meena, Ram Prasnna; Baranwal, V K

    2016-09-01

    Citrus trees harbor a large number of viral and bacterial pathogens. Citrus yellow vein clearing virus (CYVCV), Indian citrus ringspot virus (ICRSV), Citrus yellow mosaic virus (CYMV), Citrus tristeza virus (CTV) and a bacterium, Candidatus Liberibacter asiaticus (CLa) associated with huanglongbing (HLB) disease, the most prevalent pathogens in citrus orchards of different regions in India and are responsible for debilitating citriculture. For detection of these viral and bacterial pathogens a quick, sensitive and cost effective detection method is required. With this objective a multiplex polymerase chain reaction (mPCR) assay was developed for simultaneous detection of four viruses and a bacterium in citrus. Several sets of primers were designed for each virus based on the retrieved reference sequences from the GenBank. A primer pair published previously was used for greening bacterium. Each pair of primers was evaluated for their sensitivity and differentiation by simplex and mPCR. The constant amplified products were identified on the basis of molecular size in mPCR and were compared with standard PCR. The amplicons were cloned and results were confirmed with sequencing analysis. The mPCR assay was validated using naturally infected field samples for one or more citrus viruses and the huanglongbing bacterium. The mPCR assay developed here will aid in the production of virus free planting materials and rapid indexing for certification of citrus budwood programme. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Draft Genome Sequence of Acinetobacter calcoaceticus Strain P23, a Plant Growth-Promoting Bacterium of Duckweed

    PubMed Central

    Hosoyama, Akira; Yamazoe, Atsushi; Morikawa, Masaaki

    2015-01-01

    Acinetobacter calcoaceticus strain P23 is a plant growth-promoting bacterium, which was isolated from the surface of duckweed. We report here the draft genome sequence of strain P23. The genome data will serve as a valuable reference for understanding the molecular mechanism of plant growth promotion in aquatic plants. PMID:25720680

  3. Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata.

    PubMed

    Eslami, Maryam; Amoozegar, Mohammad Ali; Asad, Sedigheh

    2016-04-01

    Azo dyes are a major class of colorants used in various industries including textile, paper and food. These dyes are regarded as pollutant since they are not readily reduced under aerobic conditions. Halomonas elongata, a halophilic bacterium, has the ability to decolorize different mono and di-azo dyes in anoxic conditions. In this study the putative azoreductase gene of H. elongata, formerly annotated as acp, was isolated, heterologously expressed in Escherichia coli, purified and characterized. The gene product, AzoH, was found to have a molecular mass of 22 kDa. The enzyme requires NADH, as an electron donor for its activity. The apparent Km was 63 μM for NADH and 12 μM for methyl red as a mono-azo dye substrate. The specific activity for methyl red was 0.27 μmol min(-1)mg(-1). The optimum enzyme activity was achieved in 50mM sodium phosphate buffer at pH 6. Although increased salinity resulted in reduced activity, AzoH could decolorize azo dye at NaCl concentrations up to 15% (w/v). The enzyme was also shown to be able to decolorize remazol black B as a representative of di-azo dyes. This is the first report describing the sequence and activity of an azo-reducing enzyme from a halophilic bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    PubMed

    Lee, Sang-Yeop; Kim, Gun-Hwa; Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  5. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    PubMed Central

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  6. Detection of the Bacterium, Xylella fastidiosa, in Saliva of Glassy-Winged Sharpshooter, Homalodisca vitripennis

    PubMed Central

    Ramirez, Jose L.; Lacava, Paulo T.; Miller, Thomas A.

    2008-01-01

    Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), the glassy-winged sharpshooter, is one of the most important vectors of the bacterium, Xylella fastidiosa subsp. piercei (Xanthomonadales: Xanthomonadaceae) that causes Pierce's Disease in grapevines in California. In the present study we report a new method for studying pathogen transmission or probing behavior of H. vitripennis. When confined, H. vitripennis attempt to probe the surface of sterile containers 48 hours post-acquisition of X. f. piercei. The saliva deposited during attempted feeding probes was found to contain X. f. piercei. We observed no correlation between X. f. piercei titers in the foregut of H. vitripennis that fed on Xylella-infected grapevines and the presence of this bacterium in the deposited saliva. The infection rate after a 48 h post-acquisition feeding on healthy citrus and grapevines was observed to be 77% for H. vitripennis that fed on grapevines and 81% for H. vitripennis that fed on citrus, with no difference in the number of positive probing sites from H. vitripennis that fed on either grapevine or citrus. This method is amenable for individual assessment of X. f. piercei-infecuvity, with samples less likely to be affected by tissue contamination that is usually present in whole body extracts. PMID:20233080

  7. Accurate Cell Division in Bacteria: How Does a Bacterium Know Where its Middle Is?

    NASA Astrophysics Data System (ADS)

    Howard, Martin; Rutenberg, Andrew

    2004-03-01

    I will discuss the physical principles lying behind the acquisition of accurate positional information in bacteria. A good application of these ideas is to the rod-shaped bacterium E. coli which divides precisely at its cellular midplane. This positioning is controlled by the Min system of proteins. These proteins coherently oscillate from end to end of the bacterium. I will present a reaction-diffusion model that describes the diffusion of the Min proteins, and their binding/unbinding from the cell membrane. The system possesses an instability that spontaneously generates the Min oscillations, which control accurate placement of the midcell division site. I will then discuss the role of fluctuations in protein dynamics, and investigate whether fluctuations set optimal protein concentration levels. Finally I will examine cell division in a different bacteria, B. subtilis. where different physical principles are used to regulate accurate cell division. See: Howard, Rutenberg, de Vet: Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys. Rev. Lett. 87 278102 (2001). Howard, Rutenberg: Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys. Rev. Lett. 90 128102 (2003). Howard: A mechanism for polar protein localization in bacteria. J. Mol. Biol. 335 655-663 (2004).

  8. Pneumonia and bacteremia caused by a previously undescribed Moraxella-like bacterium.

    PubMed Central

    Goetz, M B; Jones, J

    1982-01-01

    Immunocompromised patients are frequently subject to unusual infections. We recently treated a renal allograft recipient for pneumonia due to a hitherto undescribed Moraxella-like bacterium which most closely resembles M-5. M-5 has previously been associated in humans only with dog bites and wound infections. The patient responded well to treatment with aminoglycosides and cephalosporins. Susceptibility to these drugs was demonstrated in vitro by a broth dilution technique. On the basis of the known ability of Moraxella species to colonize the oropharynx and the patient's lack of animal exposure, we propose that our patient's illness was secondary to aspiration of colonized oropharyngeal contents. Images PMID:7040467

  9. A bacterium that can grow by using arsenic instead of phosphorus

    USGS Publications Warehouse

    Wolfe-Simon, Felisa; Blum, J.S.; Kulp, T.R.; Gordon, G.W.; Hoeft, S.E.; Pett-Ridge, J.; Stolz, J.F.; Webb, S.M.; Weber, P.K.; Davies, P.C.W.; Anbar, A.D.; Oremland, R.S.

    2011-01-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.

  10. Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen

    NASA Astrophysics Data System (ADS)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2016-04-01

    Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.

  11. First report of a cross-kingdom pathogenic bacterium, Achromobacter xylosoxidans isolated from stipe-rot Coprinus comatus.

    PubMed

    Ye, Luona; Guo, Mengpei; Ren, Pengfei; Wang, Gangzheng; Bian, Yinbing; Xiao, Yang; Zhou, Yan

    2018-03-01

    Coprinus comatus is an edible mushroom widely cultivated in China as a delicious food. Various diseases have occurred on C. comatus with the cultivated area increasing. In this study, the pathogenic bacterium JTG-B1, identified as Achromobacter xylosoxidans by 16S rDNA and nrdA gene sequencing, was isolated from edible mushroom Coprinus comatus with serious rot disease on its stipe. A. xylosoxidans has been confirmed as an important opportunistic human pathogenic bacterium and has been isolated from respiratory samples from cystic fibrosis. It is widely distributed in the environment. Here, we first report that fungi can also serve as a host for A. xylosoxidans. We confirmed that it can cross-kingdom infect between animals (mice) and fungi (C. comatus). The results of pathogenicity tests, physiological, biochemical and genotyping analysis of A. xylosoxidans from different hosts suggested that different strain of A. xylosoxidans may have pathogenicity differentiation. A. xylosoxidans not only is pathogenic to C. comatus but also may threaten human health. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    PubMed

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. Copyright © 2016, American Association for the Advancement of Science.

  13. Studying the rapid bioconversion of lignocellulosic sugars into ethanol using high cell density fermentations with cell recycle

    PubMed Central

    2014-01-01

    Background The Rapid Bioconversion with Integrated recycle Technology (RaBIT) process reduces capital costs, processing times, and biocatalyst cost for biochemical conversion of cellulosic biomass to biofuels by reducing total bioprocessing time (enzymatic hydrolysis plus fermentation) to 48 h, increasing biofuel productivity (g/L/h) twofold, and recycling biocatalysts (enzymes and microbes) to the next cycle. To achieve these results, RaBIT utilizes 24-h high cell density fermentations along with cell recycling to solve the slow/incomplete xylose fermentation issue, which is critical for lignocellulosic biofuel fermentations. Previous studies utilizing similar fermentation conditions showed a decrease in xylose consumption when recycling cells into the next fermentation cycle. Eliminating this decrease is critical for RaBIT process effectiveness for high cycle counts. Results Nine different engineered microbial strains (including Saccharomyces cerevisiae strains, Scheffersomyces (Pichia) stipitis strains, Zymomonas mobilis 8b, and Escherichia coli KO11) were tested under RaBIT platform fermentations to determine their suitability for this platform. Fermentation conditions were then optimized for S. cerevisiae GLBRCY128. Three different nutrient sources (corn steep liquor, yeast extract, and wheat germ) were evaluated to improve xylose consumption by recycled cells. Capacitance readings were used to accurately measure viable cell mass profiles over five cycles. Conclusion The results showed that not all strains are capable of effectively performing the RaBIT process. Acceptable performance is largely correlated to the specific xylose consumption rate. Corn steep liquor was found to reduce the deleterious impacts of cell recycle and improve specific xylose consumption rates. The viable cell mass profiles indicated that reduction in specific xylose consumption rate, not a drop in viable cell mass, was the main cause for decreasing xylose consumption. PMID:24847379

  14. Controlling microbial contamination during hydrolysis of AFEX-pretreated corn stover and switchgrass: Effects on hydrolysate composition, microbial response and fermentation

    DOE PAGES

    Serate, Jose; Xie, Dan; Pohlmann, Edward; ...

    2015-11-14

    Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production. In this study, we compared hydrolysates produced from AFEX-pretreated corn stover and switchgrass using two different methods to control contamination: either by autoclaving the pretreated feedstocks prior to enzymatic hydrolysis, or by introducing antibiotics duringmore » the hydrolysis of non-autoclaved feedstocks. We then performed extensive chemical analysis, chemical genomics, and comparative fermentations to evaluate any differences between these two different methods used for producing corn stover and switchgrass hydrolysates. Autoclaving the pretreated feedstocks could eliminate the contamination for a variety of feedstocks, whereas the antibiotic gentamicin was unable to control contamination consistently during hydrolysis. Compared to the addition of gentamicin, autoclaving of biomass before hydrolysis had a minimal effect on mineral concentrations, and showed no significant effect on the two major sugars (glucose and xylose) found in these hydrolysates. However, autoclaving elevated the concentration of some furanic and phenolic compounds. Chemical genomics analyses using Saccharomyces cerevisiae strains indicated a high correlation between the AFEX-pretreated hydrolysates produced using these two methods within the same feedstock, indicating minimal differences between the autoclaving and antibiotic methods. Comparative fermentations with S. cerevisiae and Zymomonas mobilis also showed that autoclaving the AFEX-pretreated feedstocks had no significant effects on microbial

  15. Controlling microbial contamination during hydrolysis of AFEX-pretreated corn stover and switchgrass: Effects on hydrolysate composition, microbial response and fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serate, Jose; Xie, Dan; Pohlmann, Edward

    Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production. In this study, we compared hydrolysates produced from AFEX-pretreated corn stover and switchgrass using two different methods to control contamination: either by autoclaving the pretreated feedstocks prior to enzymatic hydrolysis, or by introducing antibiotics duringmore » the hydrolysis of non-autoclaved feedstocks. We then performed extensive chemical analysis, chemical genomics, and comparative fermentations to evaluate any differences between these two different methods used for producing corn stover and switchgrass hydrolysates. Autoclaving the pretreated feedstocks could eliminate the contamination for a variety of feedstocks, whereas the antibiotic gentamicin was unable to control contamination consistently during hydrolysis. Compared to the addition of gentamicin, autoclaving of biomass before hydrolysis had a minimal effect on mineral concentrations, and showed no significant effect on the two major sugars (glucose and xylose) found in these hydrolysates. However, autoclaving elevated the concentration of some furanic and phenolic compounds. Chemical genomics analyses using Saccharomyces cerevisiae strains indicated a high correlation between the AFEX-pretreated hydrolysates produced using these two methods within the same feedstock, indicating minimal differences between the autoclaving and antibiotic methods. Comparative fermentations with S. cerevisiae and Zymomonas mobilis also showed that autoclaving the AFEX-pretreated feedstocks had no significant effects on microbial

  16. Production of a Pyrrole Antibiotic by a Marine Bacterium1

    PubMed Central

    Burkholder, Paul R.; Pfister, Robert M.; Leitz, Frederick H.

    1966-01-01

    Evidence is presented for the isolation and identification of bacteria able to synthesize an unusual antibiotic containing five bromine atoms per molecule. The identification and taxonomic position of these bacteria was made by use of a computer in conjunction with traditional methods. These microorganisms and closely related strains have been isolated on various occasions from tropical water in the vicinity of Puerto Rico. One bacterium, a pseudomonad, has been given the name Pseudomonas bromoutilis because of its distinctive capability. The antibiotic has been extracted, purified, and obtained in crystal form, and its structure has been determined. Although clinical tests of its properties were not encouraging, it may be of significant value and interest from an ecological standpoint. Images Fig. 1 PMID:4380876

  17. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria

    PubMed Central

    da Silva, Fábio Daniel Florêncio; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Dall’Agnol, Leonardo Teixeira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Oliveira, Karol Guimarães; de Lima, Clayton Pereira Silva; Nunes, Márcio Roberto Teixeira; Vianez-Júnior, João Lídio Silva Gonçalves

    2016-01-01

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here. PMID:27198027

  18. Over a Decade of recA and tly Gene Sequence Typing of the Skin Bacterium Propionibacterium acnes: What Have We Learnt?

    PubMed Central

    2017-01-01

    The Gram-positive, anaerobic bacterium Propionibacterium acnes forms part of the normal microbiota on human skin and mucosal surfaces. While normally associated with skin health, P. acnes is also an opportunistic pathogen linked with a range of human infections and clinical conditions. Over the last decade, our knowledge of the intraspecies phylogenetics and taxonomy of this bacterium has increased tremendously due to the introduction of DNA typing schemes based on single and multiple gene loci, as well as whole genomes. Furthermore, this work has led to the identification of specific lineages associated with skin health and human disease. In this review we will look back at the introduction of DNA sequence typing of P. acnes based on recA and tly loci, and then describe how these methods provided a basic understanding of the population genetic structure of the bacterium, and even helped characterize the grapevine-associated lineage of P. acnes, known as P. acnes type Zappe, which appears to have undergone a host switch from humans-to-plants. Particular limitations of recA and tly sequence typing will also be presented, as well as a detailed discussion of more recent, higher resolution, DNA-based methods to type P. acnes and investigate its evolutionary history in greater detail. PMID:29267255

  19. Ability of a haloalkaliphilic bacterium isolated from Soap Lake, Washington to generate electricity at pH 11.0 and 7% salinity.

    PubMed

    Paul, Varun G; Minteer, Shelley D; Treu, Becky L; Mormile, Melanie R

    2014-01-01

    A variety of anaerobic bacteria have been shown to transfer electrons obtained from organic compound oxidation to the surface of electrodes in microbial fuel cells (MFCs) to produce current. Initial enrichments for iron (III) reducing bacteria were set up with sediments from the haloalkaline environment of Soap Lake, Washington, in batch cultures and subsequent transfers resulted in a culture that grew optimally at 7.0% salinity and pH 11.0. The culture was used to inoculate the anode chamber of a MFC with formate as the electron source. Current densities up to 12.5 mA/m2 were achieved by this bacterium. Cyclic voltammetry experiments demonstrated that an electron mediator, methylene blue, was required to transfer electrons to the anode. Scanning electron microscopic imaging of the electrode surface did not reveal heavy colonization of bacteria, providing evidence that the bacterium may be using an indirect mode of electron transfer to generate current. Molecular characterization of the 16S rRNA gene and restriction fragment length profiles (RFLP) analysis showed that the MFC enriched for a single bacterial species with a 99% similarity to the 16S rRNA gene of Halanaerobium hydrogeniformans. Though modest, electricity production was achieved by a haloalkaliphilic bacterium at pH 11.0 and 7.0% salinity.

  20. Production of dihydrodaidzein and dihydrogenistein by a novel oxygen-tolerant bovine rumen bacterium in the presence of atmospheric oxygen.

    PubMed

    Zhao, Hui; Wang, Xiu-Ling; Zhang, Hong-Lei; Li, Chao-Dong; Wang, Shi-Ying

    2011-11-01

    The original bovine rumen bacterial strain Niu-O16, capable of anaerobically bioconverting isoflavones daidzein and genistein to dihydrodaidzein (DHD) and dihydrogenistein (DHG), respectively, is a rod-shaped obligate anaerobic bacterium. After a long-term domestication, an oxygen-tolerant bacterium, which we named Aeroto-Niu-O16 was obtained. Strain Aeroto-Niu-O16, which can grow in the presence of atmospheric oxygen, differed from the original obligate anaerobic bacterium Niu-O16 by various characteristics, including a change in bacterial shape (from rod to filament), in biochemical traits (from indole negative to indole positive and from amylohydrolysis positive to negative), and point mutations in 16S rRNA gene (G398A and G438A). We found that strain Aeroto-Niu-O16 not only grew aerobically but also converted isoflavones daidzein and genistein to DHD and DHG in the presence of atmospheric oxygen. The bioconversion rate of daidzein and genistein by strain Aeroto-Niu-O16 was 60.3% and 74.1%, respectively. And the maximum bioconversion capacity for daidzein was 1.2 and 1.6 mM for genistein. Furthermore, when we added ascorbic acid (0.15%, m/v) in the cultural medium, the bioconversion rate of daidzein was increased from 60.3% to 71.7%, and that of genistein from 74.1% to 89.2%. This is the first reported oxygen-tolerant isoflavone biotransforming pure culture capable of both growing and executing the reductive activity under aerobic conditions. © Springer-Verlag 2011

  1. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors.

    PubMed

    Shen, Tianlin; Stieglmeier, Michaela; Dai, Jiulan; Urich, Tim; Schleper, Christa

    2013-07-01

    Nitrification inhibitors have been used for decades to improve nitrogen fertilizer utilization in farmland. However, their effect on ammonia-oxidizing Archaea (AOA) in soil is little explored. Here, we compared the impact of diverse inhibitors on nitrification activity of the soil archaeon Ca. Nitrososphaera viennensis EN76 and compared it to that of the ammonia-oxidizing bacterium (AOB) Nitrosospira multiformis. Allylthiourea, amidinothiourea, and dicyandiamide (DCD) inhibited ammonia oxidation in cultures of both N. multiformis and N. viennensis, but the effect on N. viennensis was markedly lower. In particular, the effective concentration 50 (EC50) of allylthiourea was 1000 times higher for the AOA culture. Among the tested nitrification inhibitors, DCD was the least potent against N. viennensis. Nitrapyrin had at the maximal soluble concentration only a very weak inhibitory effect on the AOB N. multiformis, but showed a moderate effect on the AOA. The antibiotic sulfathiazole inhibited the bacterium, but barely affected the archaeon. Only the NO-scavenger carboxy-PTIO had a strong inhibitory effect on the archaeon, but had little effect on the bacterium in the concentrations tested. Our results reflect the fundamental metabolic and cellular differences of AOA and AOB and will be useful for future applications of inhibitors aimed at distinguishing activities of AOA and AOB in soil environments. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Effect of Tannic Acid on the Transcriptome of the Soil Bacterium Pseudomonas protegens Pf-5

    PubMed Central

    Lim, Chee Kent; Penesyan, Anahit; Hassan, Karl A.

    2013-01-01

    Tannins are a diverse group of plant-produced, polyphenolic compounds with metal-chelating and antimicrobial properties that are prevalent in many soils. Using transcriptomics, we determined that tannic acid, a form of hydrolysable tannin, broadly affects the expression of genes involved in iron and zinc homeostases, sulfur metabolism, biofilm formation, motility, and secondary metabolite biosynthesis in the soil- and rhizosphere-inhabiting bacterium Pseudomonas protegens Pf-5. PMID:23435890

  3. Complete genome sequence of Klebsiella pneumoniae J1, a protein-based microbial flocculant-producing bacterium.

    PubMed

    Pang, Changlong; Li, Ang; Cui, Di; Yang, Jixian; Ma, Fang; Guo, Haijuan

    2016-02-20

    Klebsiella pneumoniae J1 is a Gram-negative strain, which belongs to a protein-based microbial flocculant-producing bacterium. However, little genetic information is known about this species. Here we carried out a whole-genome sequence analysis of this strain and report the complete genome sequence of this organism and its genetic basis for carbohydrate metabolism, capsule biosynthesis and transport system. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A bacterium that can grow by using arsenic instead of phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe-Simon, F; Blum, J S; Kulp, T R

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may havemore » profound evolutionary and geochemical significance.« less

  5. A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium.

    PubMed

    Gilbert, Jack A; Davies, Peter L; Laybourn-Parry, Johanna

    2005-04-01

    In cold climates, some plants and bacteria that cannot avoid freezing use antifreeze proteins (AFPs) to lessen the destructive effects of ice recrystallization. These AFPs have weak freezing point depression activity, perhaps to avoid sudden, uncontrolled growth of ice. Here, we report on an uncharacteristically powerful bacterial AFP found in an Antarctic strain of the bacterium, Marinomonas primoryensis. It is Ca(2+)-dependent, shows evidence of cooperativity, and can produce over 2 degrees C of freezing point depression. Unlike most AFPs, it does not produce obvious crystal faceting during thermal hysteresis. This AFP might be capable of imparting freezing avoidance to M. primoryensis in ice-covered Antarctic lakes. A hyperactive bacterial AFP has not previously been reported.

  6. Draft Genome Sequence of Aquitalea magnusonii Strain H3, a Plant Growth-Promoting Bacterium of Duckweed (Lemna minor)

    PubMed Central

    Ishizawa, Hidehiro; Kuroda, Masashi

    2017-01-01

    ABSTRACT Aquitalea magnusonii strain H3 is a promising plant growth-promoting bacterium for duckweed. Here, we report the draft genome sequence of strain H3 comprising 4,750,601 bp in 73 contigs. Several genes associated with plant root colonization were identified. PMID:28818906

  7. Genome Sequence of Pseudomonas sp. Strain S9, an Extracellular Arylsulfatase-Producing Bacterium Isolated from Mangrove Soil ▿

    PubMed Central

    Long, Mengxian; Ruan, Lingwei; Yu, Ziniu; Xu, Xun

    2011-01-01

    Pseudomonas sp. strain S9 was originally isolated from mangrove soil in Xiamen, China. It is an aerobic bacterium which shows extracellular arylsulfatase activity. Here, we describe the 4.8-Mb draft genome sequence of Pseudomonas sp. S9, which exhibits novel cysteine-type sulfatases. PMID:21622746

  8. Characterization and identification of a chlorine-resistant bacterium, Sphingomonas TS001, from a model drinking water distribution system.

    PubMed

    Sun, Wenjun; Liu, Wenjun; Cui, Lifeng; Zhang, Minglu; Wang, Bei

    2013-08-01

    This study describes the identification and characterization of a new chlorine resistant bacterium, Sphingomonas TS001, isolated from a model drinking water distribution system. The isolate was identified by 16s rRNA gene analysis and morphological and physiological characteristics. Phylogenetic analysis indicates that TS001 belongs to the genus Sphingomonas. The model distribution system HPC results showed that, when the chlorine residual was greater than 0.7 mg L(-1), 100% of detected heterotrophic bacteria (HPC) was TS001. The bench-scale inactivation efficiency testing showed that this strain was very resistant to chlorine, and 4 mg L(-1) of chlorine with 240 min retention time provided only approximately 5% viability reduction of TS001. In contrast, a 3-log inactivation (99.9%) was obtained for UV fluencies of 40 mJ cm(-2). A high chlorine-resistant and UV sensitive bacterium, Sphingomonas TS001, was documented for the first time. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Study on human intestinal bacterium Blautia sp. AUH-JLD56 for the conversion of arctigenin to (-)-3'-desmethylarctigenin.

    PubMed

    Liu, Ming-Yue; Li, Meng; Wang, Xiu-Ling; Liu, Peng; Hao, Qing-Hong; Yu, Xiu-Mei

    2013-12-11

    Arctium lappa L. (A. lappa) is a popularly used vegetable as well as herbal medicine. Human intestinal microflora was reported to convert arctiin, the lignan compound with highest content in the dried fruits of Arctium lappa, to a series of metabolites. However, the specific bacterium responsible for the formation of 3'-desmethylarctigenin (3'-DMAG), the most predominant metabolite of arctiin by rat or human intestinal microflora, has not been isolated yet. In the present study, we isolated one single bacterium, which we named Blautia sp. AUH-JLD56, capable of solely biotransforming arctiin or arctigenin to (-)-3'-DMAG. The structure of the metabolite 3'-DMAG was elucidated by electrospray ionization mass spectrometry (ESI-MS) and (1)H and (13)C nuclear magnetic resonance spectroscopy. The biotransforming kinetics and maximum biotransforming capacity of strain AUH-JLD56 was investigated. In addition, the metabolite 3'-DMAG showed significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity than that of the substrate arctigenin at the concentrations tested.

  10. Novel oxidized derivatives of antifungal pyrrolnitrin from the bacterium Burkholderia cepacia K87.

    PubMed

    Sultan, Zakir; Park, Kyungseok; Lee, Sang Yeob; Park, Jung Kon; Varughese, Titto; Moon, Surk-Sik

    2008-07-01

    The screening of antifungal active compounds from the fermentation extracts of soil-borne bacterium Burkholderia cepacia K87 afforded pyrrolnitrin (1) and two new pyrrolnitrin analogs, 3-chloro-4-(3-chloro-2-nitrophenyl)-5-methoxy-3-pyrrolin-2-one (2) and 4-chloro-3-(3-chloro-2-nitrophenyl)-5-methoxy-3-pyrrolin-2-one (3). Pyrrolnitrin showed strong antifungal activity against Rhizoctonia solani but the analogs (2 and 3) were found to be marginally active. The isolates, 2 and 3, are believed to be biodegraded derivatives of pyrrolnitrin.

  11. Complete genome sequence of the aerobically denitrifying thermophilic bacterium Chelatococcus daeguensis TAD1.

    PubMed

    Yang, Yunlong; Lin, Ershu; Huang, Shaobin

    Chelatococcus daeguensis TAD1 is a themophilic bacterium isolated from a biotrickling filter used to treat NOx in Ruiming Power Plant, located in Guangzhou, China, which shows an excellent aerobic denitrification activity at high temperature. The complete genome sequence of this strain was reported in the present study. Genes related to the aerobic denitrification were identified through whole genome analysis. This work will facilitate the mechanism of aerobic denitrification and provide evidence for its potential application in the nitrogen removal. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Co-infections and transmission dynamics in a tick-borne bacterium community exposed to songbirds.

    PubMed

    Heylen, Dieter; Fonville, Manoj; van Leeuwen, Arieke Docters; Sprong, Hein

    2016-03-01

    We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naïve birds were infested with three successive batches (spaced 5 days apart) of field-collected Ixodes ricinus nymphs, carrying the following tick-borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and Candidatus Neoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R. helvetica and B. garinii, and to a lesser extent of A. phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R. helvetica remained constant over the three infestations. In contrast, the infection rate of B. garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co-infections in ticks. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously.

    PubMed

    Xiong, Wei; Reyes, Luis H; Michener, William E; Maness, Pin-Ching; Chou, Katherine J

    2018-03-15

    Cellulose and hemicellulose are the most abundant components in plant biomass. A preferred Consolidated Bioprocessing (CBP) system is one which can directly convert both cellulose and hemicellulose into target products without adding the costly hydrolytic enzyme cocktail. In this work, the thermophilic, cellulolytic, and anaerobic bacterium, Clostridium thermocellum DSM 1313, was engineered to grow on xylose in addition to cellulose. Both xylA (encoding for xylose isomerase) and xylB (encoding for xylulokinase) genes from the thermophilic anaerobic bacterium Thermoanaerobacter ethanolicus were introduced to enable xylose utilization while still retaining its inherent ability to grow on 6-carbon substrates. Targeted integration of xylAB into C. thermocellum genome realized simultaneous fermentation of xylose with glucose, with cellobiose (glucose dimer), and with cellulose, respectively, without carbon catabolite repression. We also showed that the respective H 2 and ethanol production were twice as much when both xylose and cellulose were consumed simultaneously than when consuming cellulose alone. Moreover, the engineered xylose consumer can also utilize xylo-oligomers (with degree of polymerization of 2-7) in the presence of xylose. Isotopic tracer studies also revealed that the engineered xylose catabolism contributed to the production of ethanol from xylan which is a model hemicellulose in mixed sugar fermentation, demonstrating immense potential of this enhanced CBP strain in co-utilizing both cellulose and hemicellulose for the production of fuels and chemicals. © 2018 Wiley Periodicals, Inc.

  14. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria.

    PubMed

    da Silva, Fábio Daniel Florêncio; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Dall'Agnol, Leonardo Teixeira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Oliveira, Karol Guimarães; de Lima, Clayton Pereira Silva; Nunes, Márcio Roberto Teixeira; Vianez-Júnior, João Lídio Silva Gonçalves; Gonçalves, Evonnildo Costa

    2016-05-19

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here. Copyright © 2016 da Silva et al.

  15. Phenotypic and genotypic properties of Microbacterium yannicii, a recently described multidrug resistant bacterium isolated from a lung transplanted patient with cystic fibrosis in France.

    PubMed

    Sharma, Poonam; Diene, Seydina M; Thibeaut, Sandrine; Bittar, Fadi; Roux, Véronique; Gomez, Carine; Reynaud-Gaubert, Martine; Rolain, Jean-Marc

    2013-05-03

    Cystic fibrosis (CF) lung microbiota consists of diverse species which are pathogens or opportunists or have unknown pathogenicity. Here we report the full characterization of a recently described multidrug resistant bacterium, Microbacterium yannicii, isolated from a CF patient who previously underwent lung transplantation. Our strain PS01 (CSUR-P191) is an aerobic, rod shaped, non-motile, yellow pigmented, gram positive, oxidase negative and catalase positive bacterial isolate. Full length 16S rRNA gene sequence showed 98.8% similarity with Microbacterium yannicii G72T type strain, which was previously isolated from Arabidopsis thaliana. The genome size is 3.95Mb, with an average G+C content of 69.5%. In silico DNA-DNA hybridization analysis between our Microbacterium yannicii PS01isolate in comparison with Microbacterium testaceum StLB037 and Microbacterium laevaniformans OR221 genomes revealed very weak relationship with only 28% and 25% genome coverage, respectively. Our strain, as compared to the type strain, was resistant to erythromycin because of the presence of a new erm 43 gene encoding a 23S rRNA N-6-methyltransferase in its genome which was not detected in the reference strain. Interestingly, our patient received azithromycin 250 mg daily for bronchiolitis obliterans syndrome for more than one year before the isolation of this bacterium. Although significance of isolating this bacterium remains uncertain in terms of clinical evolution, this bacterium could be considered as an opportunistic human pathogen as previously reported for other species in this genus, especially in immunocompromised patients.

  16. Isolation, identification, and algicidal activity of aerobic denitrifying bacterium R11 and its effect on Microcystis aeruginosa.

    PubMed

    Su, Jun-feng; Shao, Si-cheng; Huang, Ting-lin; Ma, Fang; Zhang, Kai; Wen, Gang; Zheng, Sheng-chen

    2016-01-01

    Recently, algicidal bacteria have attracted attention as possible agents for the inhibition of algal water blooms. In this study, an aerobic denitrifying bacterium, R11, with high algicidal activity against the toxic Microcystis aeruginosa was isolated from lake sediments. Based on its physiological characteristics and 16S rRNA gene sequence, it was identified as Raoultella, indicating that the bacterium R11 has a good denitrifying ability at 30 °C and can reduce the concentration of nitrate-N completely within 36 h. Additionally, different algicidal characteristics against Microcystis aeruginosa were tested. The results showed that the initial bacterial cell density and algal cell densities strongly influence the removal rates of chlorophyll a. Algicidal activity increased with an increase in the bacterial cell density. With densities of bacterial culture at over 2.4 × 10(5) cell/mL, algicidal activity of up to 80% was obtained in 4 days. We have demonstrated that, with the low initial algal cell density (OD680 less than 0.220), the algicidal activity reached was higher than 90% after 6 days.

  17. The Effect of Er:YAG Laser on Entroccocus faecalis Bacterium in the Pulpectomy of Anterior Primary Teeth

    PubMed Central

    Bahrololoomi, Zahra; Poursina, Farkhondeh; Birang, Reza; Foroughi, Elnaz; Yousefshahi, Hazhir

    2017-01-01

    Introduction: Successful root canal therapy depends on the complete elimination of microorganisms such as Entroccocus faecalis, which is impossible to achieve with the traditional methods. Lasers are recently introduced as a new method to solve the problem. The present study is planned and performed to examining the antibacterial effect of Er: YAG laser. Methods: Sixty extracted anterior primary teeth were prepared and sterilized. E. faecalis bacterium was cultured in canals. Samples were randomly divided into two groups. The first group was disinfected by NaOCl 5/25% and Er: YAG laser and the second group just by NaOCl 5/25%. Samples of canal contents were cultured and colony counts were calculated. The results were analyzed statistically by SPSS software and Mann Whitney test. Results: There was no significant difference between colony counts in both groups (P=0.142). But the number of colonies in the first group was lower than in the second group. Conclusion: Although, Er: YAG laser cannot completely eliminate E. faecalis bacterium, its simultaneous use with NaOCl decreases E. faecalis. PMID:29071021

  18. The Effect of Er:YAG Laser on Entroccocus faecalis Bacterium in the Pulpectomy of Anterior Primary Teeth.

    PubMed

    Bahrololoomi, Zahra; Poursina, Farkhondeh; Birang, Reza; Foroughi, Elnaz; Yousefshahi, Hazhir

    2017-01-01

    Introduction: Successful root canal therapy depends on the complete elimination of microorganisms such as Entroccocus faecalis , which is impossible to achieve with the traditional methods. Lasers are recently introduced as a new method to solve the problem. The present study is planned and performed to examining the antibacterial effect of Er: YAG laser. Methods: Sixty extracted anterior primary teeth were prepared and sterilized. E. faecalis bacterium was cultured in canals. Samples were randomly divided into two groups. The first group was disinfected by NaOCl 5/25% and Er: YAG laser and the second group just by NaOCl 5/25%. Samples of canal contents were cultured and colony counts were calculated. The results were analyzed statistically by SPSS software and Mann Whitney test. Results: There was no significant difference between colony counts in both groups ( P =0.142). But the number of colonies in the first group was lower than in the second group. Conclusion: Although, Er: YAG laser cannot completely eliminate E. faecalis bacterium, its simultaneous use with NaOCl decreases E. faecalis .

  19. Differential gene expression in Xylella fastidiosa 9a5c during co-cultivation with the endophytic bacterium Methylobacterium mesophilicum SR1.6/6.

    PubMed

    Dourado, Manuella Nóbrega; Santos, Daiene Souza; Nunes, Luiz Roberto; Costa de Oliveira, Regina Lúcia Batista da; de Oliveira, Marcus Vinicius; Araújo, Welington Luiz

    2015-12-01

    Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC), colonizes plant xylem, reducing sap flow, and inducing internerval chlorosis, leaf size reduction, necrosis, and harder and smaller fruits. This bacterium may be transmitted from plant to plant by sharpshooter insects, including Bucephalogonia xanthopis. The citrus endophytic bacterium Methylobacterium mesophilicum SR1.6/6 colonizes citrus xylem and previous studies showed that this strain is also transferred from plant to plant by B. xanthopis (Insecta), suggesting that this endophytic bacterium may interact with X. fastidiosa in planta and inside the insect vector during co-transmission by the same insect vector. To better understand the X. fastidiosa behavior in the presence of M. mesophilicum, we evaluated the X. fastidiosa transcriptional profile during in vitro interaction with M. mesophilicum SR1.6/6. The results showed that during co-cultivation, X. fastidiosa down-regulated genes related to growth and up-regulated genes related to energy production, stress, transport, and motility, suggesting the existence of a specific adaptive response to the presence of M. mesophilicum in the culture medium. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Adopt a Bacterium - an active and collaborative learning experience in microbiology based on social media.

    PubMed

    Piantola, Marco Aurélio Floriano; Moreno, Ana Carolina Ramos; Matielo, Heloísa Alonso; Taschner, Natalia Pasternak; Cavalcante, Rafael Ciro Marques; Khan, Samia; Ferreira, Rita de Cássia Café

    2018-04-24

    The "Adopt a Bacterium" project is based on the use of social network as a tool in Microbiology undergraduate education, improving student learning and encouraging students to participate in collaborative learning. The approach involves active participation of both students and teachers, emphasizing knowledge exchange, based on widely used social media. Students were organized in groups and asked to adopt a specific bacterial genus and, subsequently, submit posts about "adopted genus". The formative assessment is based on posting information on Facebook®, and the summative assessment involves presentation of seminars about the adopted theme. To evaluate the project, students filled out three anonymous and voluntary surveys. Most of the students enjoyed the activities and positively evaluated the experience. A large amount of students declared a change in their attitude towards the way they processed information, especially regarding the use of scientific sources. Finally, we evaluated knowledge retention six months after the end of the course and students were able to recall relevant Microbiology concepts. Our results suggest that the "Adopt a Bacterium" project represents a useful strategy in Microbiology learning and may be applied to other academic fields. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Characterization of Acrylamidase isolated from a newly isolated acrylamide-utilizing bacterium, Ralstonia eutropha AUM-01.

    PubMed

    Cha, Minseok; Chambliss, Glenn H

    2011-02-01

    A mesophilic bacterium capable of utilizing acrylamide was isolated, AUM-01, from soil collected from leaf litter at Picnic Point on the UW-Madison campus. In minimal medium with acrylamide as the sole carbon and nitrogen source, a batch culture of AUM-01 completely converted 28.0 mM acrylamide to acrylic acid in 8 h and reached a cell density of 0.3 (A₆₀₀)). Afterward all the acrylic acid was degraded by 20 h with the cell density increasing to 1.9 (A₆₀₀). The acrylamide-utilizing bacterium was identified as Ralstonia eutropha based on morphological observations, the BiOLOG GN2 MicroPlate™ identification system for Gram-negative bacteria, and additional physiological tests. An acrylamidase that hydrolyzes acrylamide to acrylic acid was purified from the strain AUM-01. The molecular weight of the enzyme from AUM-01 was determined to be 38 kDa by SDS-PAGE. The enzyme had pH and temperature optima of 6.3 and 55°C, and the influence of different metals and amino acids on the ability of the purified protein to transform acrylamide to acrylic acid was evaluated. The enzyme from AUM-01 was totally inhibited by ZnSO₄ and AgNO₃.

  2. Draft Genome Sequence of Aquitalea magnusonii Strain H3, a Plant Growth-Promoting Bacterium of Duckweed (Lemna minor).

    PubMed

    Ishizawa, Hidehiro; Kuroda, Masashi; Ike, Michihiko

    2017-08-17

    Aquitalea magnusonii strain H3 is a promising plant growth-promoting bacterium for duckweed. Here, we report the draft genome sequence of strain H3 comprising 4,750,601 bp in 73 contigs. Several genes associated with plant root colonization were identified. Copyright © 2017 Ishizawa et al.

  3. Loihichelins A-F, a Suite of Amphiphilic Siderophores Produced by the Marine Bacterium Halomonas LOB-5

    PubMed Central

    Homann, Vanessa V; Sandy, Moriah; Tincu, J. Andy; Templeton, Alexis S.; Tebo, Bradley M.; Butler, Alison

    2009-01-01

    A suite of amphiphilic siderophores, loihichelins A-F, were isolated from cultures of the marine bacterium Halomonas sp. LOB-5. This heterotrophic Mn(II)-oxidizing bacterium was recently isolated from the partially weathered surfaces of submarine glassy pillow basalts and associated hydrothermal flocs of iron oxides collected from the southern rift zone of Loihi Seamount east of Hawai’i. The loihichelins contain a hydrophilic head group consisting of an octapeptide comprised of D-threo-β-hydroxyaspartic acid, D-serine, L-glutamine, L-serine, L-N(δ)-acetyl-N(δ)-hydroxy ornithine, dehydroamino-2-butyric acid, D-serine and cyclic N(δ)-hydroxy-D-ornithine, appended by one of a series of fatty acids ranging from decanoic acid to tetradecanoic acid. The structure of loihichelin C was determined by a combination of amino acid and fatty acid analyses, tandem mass spectrometry and NMR spectroscopy. The structures of the other loihichelins were inferred from the amino acid and fatty acid analyses, and tandem mass spectrometry. The role of these siderophores in sequestering Fe(III) released during basaltic rock weathering, as well as their potential role in the promotion of Mn(II) and Fe(II) oxidation, is of considerable interest. PMID:19320498

  4. Influence of yeast and lactic acid bacterium on the constituent profile of soy sauce during fermentation.

    PubMed

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2017-02-01

    Soy sauce is a Japanese traditional seasoning composed of various constituents that are produced by various microbes during a long-term fermentation process. Due to the complexity of the process, the investigation of the constituent profile during fermentation is difficult. Metabolomics, the comprehensive study of low molecular weight compounds in biological samples, is thought to be a promising strategy for deep understanding of the constituent contribution to food flavor characteristics. Therefore, metabolomics is suitable for the analysis of soy sauce fermentation. Unfortunately, only few and unrefined studies of soy sauce fermentation using metabolomics approach have been reported. Therefore, we investigated changes in low molecular weight hydrophilic and volatile compounds of soy sauce using gas chromatography/mass spectrometry (GC/MS)-based non-targeted metabolic profiling. The data were analyzed by statistical analysis to evaluate influences of yeast and lactic acid bacterium on the constituent profile. Consequently, our results suggested a novel finding that lactic acid bacterium affected the production of several constituents such as cyclotene, furfural, furfuryl alcohol and methional in the soy sauce fermentation process. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Burkholderia vietnamiensis isolated from root tissues of Nipa Palm (Nypa fruticans) in Sarawak, Malaysia, proved to be its major endophytic nitrogen-fixing bacterium.

    PubMed

    Tang, Sui-Yan; Hara, Shintaro; Melling, Lulie; Goh, Kah-Joo; Hashidoko, Yasuyuki

    2010-01-01

    Root-associating bacteria of the nipa palm (Nypa fruticans), preferring brackish-water affected mud in Sarawak, Malaysia, were investigated. In a comparison of rhizobacterial microbiota between the nipa and the sago (Metroxylon sagu) palm, it was found that the nipa palm possessed a group of Burkholderia vietnamiensis as its main active nitrogen-fixing endophytic bacterium. Acetylene reduction by the various isolates of B. vietnamiensis was constant (44 to 68 nmol h(-1) in ethylene production rate) in soft gel medium containing 0.2% sucrose as sole carbon source, and the bacterium also showed motility and biofilm-forming capacity. This is the first report of endophytic nitrogen-fixing bacteria from nipa palm.

  6. Draft Genome Sequence of Acinetobacter calcoaceticus Strain GK1, a Hydrocarbon-Degrading Plant Growth-Promoting Rhizospheric Bacterium.

    PubMed

    Gkorezis, Panagiotis; Bottos, Eric M; Van Hamme, Jonathan D; Franzetti, Andrea; Abbamondi, Gennaro Roberto; Balseiro-Romero, Maria; Weyens, Nele; Rineau, Francois; Vangronsveld, Jaco

    2015-08-13

    The 3.94-Mb draft genome of Acinetobacter calcoaceticus GK1, a hydrocarbonoclastic plant growth-promoting Gram-negative rhizospheric bacterium, is presented here. Isolated at the Ford Motor Company site in Genk, Belgium, from poplar trees planted on a diesel-contaminated plume, GK1 is useful for enhancing hydrocarbon phytoremediation. Copyright © 2015 Gkorezis et al.

  7. Global Analysis of Protein Lysine Succinylation Profiles and Their Overlap with Lysine Acetylation in the Marine Bacterium Vibrio parahemolyticus.

    PubMed

    Pan, Jianyi; Chen, Ran; Li, Chuchu; Li, Weiyan; Ye, Zhicang

    2015-10-02

    Protein lysine acylation, including acetylation and succinylation, has been found to be a major post-translational modification (PTM) and is associated with the regulation of cellular processes that are widespread in bacteria. Vibrio parahemolyticus is a model marine bacterium that causes seafood-borne illness in humans worldwide. The lysine acetylation of V. parahemolyticus has been extensively characterized in our previous work, and here, we report the first global analysis of lysine succinylation and the overlap between the two types of acylation in this bacterium. Using high-accuracy nano liquid chromatography-tandem mass spectrometry combined with affinity purification, we identified 1931 lysine succinylated peptides matched on 642 proteins, with the quantity of the succinyl-proteins accounting for 13.3% of the total proteins in cells. Bioinformatics analysis results showed that these succinylated proteins are involved in almost every cellular process, particularly in protein biosynthesis and metabolism, and are distributed in diverse subcellular compartments. Moreover, several sequence motifs were identified, including succinyl-lysine flanked by a lysine or arginine residue at the -8, -7, or +7 position and without these residues at the -1 or +2 position, and these motifs differ from those found in other bacteria and eukaryotic cells. Furthermore, a total of 517 succinyl-lysine sites (26.7%) on 288 proteins (44.9%) were also found to be acetylated, suggesting extensive overlap between succinylation and acetylation in this bacterium. This systematic analysis provides a promising starting point for further investigations of the physiologic and pathogenic roles of lysine succinylation and acetylation in V. parahemolyticus.

  8. Complete genome sequence of Agarivorans gilvus WH0801(T), an agarase-producing bacterium isolated from seaweed.

    PubMed

    Zhang, Pujuan; Rui, Junpeng; Du, Zongjun; Xue, Changhu; Li, Xiangzhen; Mao, Xiangzhao

    2016-02-10

    Agarivorans gilvus WH0801(T), an agarase-producing bacterium, was isolated from the surface of seaweed. Here, we present the complete genome sequence, which consists of one circular chromosome of 4,416,600 bp with a GC content of 45.9%. This genetic information will provide insight into biotechnological applications of producing agar for food and industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A microsensor for the detection of a single pathogenic bacterium using magnetotactic bacteria-based bio-carriers: simulations and preliminary experiments.

    PubMed

    Denomme, Ryan C; Lu, Zhao; Martel, Sylvain

    2007-01-01

    The proposed Magnetotactic Bacteria (MTB) based bio-carrier has the potential to greatly improve pathogenic bacteria detection time, specificity, and sensitivity. Microbeads are attached to the MTB and are modified with a coating of an antibody or phage that is specific to the target pathogenic bacteria. Using magnetic fields, the modified MTB are swept through a solution and the target bacteria present become attached to the microbeads (due to the coating). Then, the MTB are brought to the detection region and the number of pathogenic bacteria is determined. The high swimming speed and controllability of the MTB make this method ideal for the fast detection of small concentrations of specific bacteria. This paper focuses on an impedimetric detection system that will be used to identify if a target bacterium is attached to the microbead. The proposed detection system measures changes in electrical impedance as objects (MTB, microbeads, and pathogenic bacteria) pass through a set of microelectrodes embedded in a microfluidic device. FEM simulation is used to acquire the optimized parameters for the design of such a system. Specifically, factors such as electrode/detection channel geometry, object size and position, which have direct effects on the detection sensitivity for a single bacterium or microparticle, are investigated. Polymer microbeads and the MTB system with an E. coli bacterium are considered to investigate their impedance variations. Furthermore, preliminary experimental data using a microfabricated microfluidic device connected to an impedance analyzer are presented.

  10. Complete Genome Sequence of Nitrosomonas cryotolerans ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Marlen C.; Norton, Jeanette M.; Stein, Lisa Y.

    ABSTRACT Nitrosomonas cryotoleransATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO 2 fixation were identified.

  11. Complete Genome Sequence of Nitrosomonas cryotolerans ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters

    DOE PAGES

    Rice, Marlen C.; Norton, Jeanette M.; Stein, Lisa Y.; ...

    2017-03-16

    ABSTRACT Nitrosomonas cryotoleransATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO 2 fixation were identified.

  12. Two Alternative Pathways for the Synthesis of the Rare Compatible Solute Mannosylglucosylglycerate in Petrotoga mobilis▿

    PubMed Central

    Fernandes, Chantal; Mendes, Vitor; Costa, Joana; Empadinhas, Nuno; Jorge, Carla; Lamosa, Pedro; Santos, Helena; da Costa, Milton S.

    2010-01-01

    The compatible solute mannosylglucosylglycerate (MGG), recently identified in Petrotoga miotherma, also accumulates in Petrotoga mobilis in response to hyperosmotic conditions and supraoptimal growth temperatures. Two functionally connected genes encoding a glucosyl-3-phosphoglycerate synthase (GpgS) and an unknown glycosyltransferase (gene Pmob_1143), which we functionally characterized as a mannosylglucosyl-3-phosphoglycerate synthase and designated MggA, were identified in the genome of Ptg. mobilis. This enzyme used the product of GpgS, glucosyl-3-phosphoglycerate (GPG), as well as GDP-mannose to produce mannosylglucosyl-3-phosphoglycerate (MGPG), the phosphorylated precursor of MGG. The MGPG dephosphorylation was determined in cell extracts, and the native enzyme was partially purified and characterized. Surprisingly, a gene encoding a putative glucosylglycerate synthase (Ggs) was also identified in the genome of Ptg. mobilis, and an active Ggs capable of producing glucosylglycerate (GG) from ADP-glucose and d-glycerate was detected in cell extracts and the recombinant enzyme was characterized, as well. Since GG has never been identified in this organism nor was it a substrate for the MggA, we anticipated the existence of a nonphosphorylating pathway for MGG synthesis. We putatively identified the corresponding gene, whose product had some sequence homology with MggA, but it was not possible to recombinantly express a functional enzyme from Ptg. mobilis, which we named mannosylglucosylglycerate synthase (MggS). In turn, a homologous gene from Thermotoga maritima was successfully expressed, and the synthesis of MGG was confirmed from GDP-mannose and GG. Based on the measurements of the relevant enzyme activities in cell extracts and on the functional characterization of the key enzymes, we propose two alternative pathways for the synthesis of the rare compatible solute MGG in Ptg. mobilis. PMID:20061481

  13. A marine bacterium, Micrococcus MCCB 104, antagonistic to vibrios in prawn larval rearing systems.

    PubMed

    Jayaprakash, N S; Pai, S Somnath; Anas, A; Preetha, R; Philip, Rosamma; Singh, I S Bright

    2005-12-30

    A marine bacterium, Micrococcus MCCB 104, isolated from hatchery water, demonstrated extracellular antagonistic properties against Vibrio alginolyticus, V. parahaemolyticus, V. vulnificus, V. fluviallis, V. nereis, V. proteolyticus, V. mediterranei, V cholerae and Aeromonas sp., bacteria associated with Macrobrachium rosenbergii larval rearing systems. The isolate inhibited the growth of V. alginolyticus during co-culture. The antagonistic component of the extracellular product was heat-stable and insensitive to proteases, lipase, catalase and alpha-amylase. Micrococcus MCCB 104 was demonstrated to be non-pathogenic to M. rosenbergii larvae.

  14. Genome Sequence of the Enterobacter mori Type Strain, LMG 25706, a Pathogenic Bacterium of Morus alba L. ▿

    PubMed Central

    Zhu, Bo; Zhang, Guo-Qing; Lou, Miao-Miao; Tian, Wen-Xiao; Li, Bin; Zhou, Xue-Ping; Wang, Guo-Feng; Liu, He; Xie, Guan-Lin; Jin, Gu-Lei

    2011-01-01

    Enterobacter mori is a plant-pathogenic enterobacterium responsible for the bacterial wilt of Morus alba L. Here we present the draft genome sequence of the type strain, LMG 25706. To the best of our knowledge, this is the first genome sequence of a plant-pathogenic bacterium in the genus Enterobacter. PMID:21602328

  15. Draft Genome Sequence of Chryseobacterium sp. Strain GSE06, a Biocontrol Endophytic Bacterium Isolated from Cucumber (Cucumis sativus)

    PubMed Central

    Jeong, Jin-Ju; Park, Byeong Hyeok; Park, Hongjae

    2016-01-01

    Chryseobacterium sp. strain GSE06 is a biocontrol endophytic bacterium against the destructive soilborne oomycete Phytophthora capsici, which causes Phytophthora blight of pepper. Here, we present its draft genome sequence, which contains genes related to biocontrol traits, such as colonization, antimicrobial activity, plant growth promotion, and abiotic or biotic stress adaptation. PMID:27313310

  16. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81

    USDA-ARS?s Scientific Manuscript database

    Megaspheara elsdenii T81 grew on either DL-lactate or D-glucose at similar rates (0.85 per h), but displayed major differences in the fermentation of these substrates. Lactate was fermented at up to 210-mM concentration to yield acetic, propionic, butyric, and valeric acids. The bacterium was able t...

  17. Draft Genome Sequence and Description of Janthinobacterium sp. Strain CG3, a Psychrotolerant Antarctic Supraglacial Stream Bacterium

    PubMed Central

    Smith, Heidi; Akiyama, Tatsuya; Franklin, Michael; Woyke, Tanja; Teshima, Hazuki; Davenport, Karen; Daligault, Hajnalka; Erkkila, Tracy; Goodwin, Lynne; Gu, Wei; Xu, Yan; Chain, Patrick

    2013-01-01

    Here we present the draft genome sequence of Janthinobacterium sp. strain CG3, a psychrotolerant non-violacein-producing bacterium that was isolated from the Cotton Glacier supraglacial stream. The genome sequence of this organism will provide insight as to the mechanisms necessary for bacteria to survive in UV-stressed icy environments. PMID:24265494

  18. The FPase properties and morphology changes of a cellulolytic bacterium, Sporocytophaga sp. JL-01, on decomposing filter paper cellulose.

    PubMed

    Wang, Xiuran; Peng, Zhongqi; Sun, Xiaoling; Liu, Dongbo; Chen, Shan; Li, Fan; Xia, Hongmei; Lu, Tiancheng

    2012-01-01

    Sporocytophaga sp. JL-01 is a sliding cellulose degrading bacterium that can decompose filter paper (FP), carboxymethyl cellulose (CMC) and cellulose CF11. In this paper, the morphological characteristics of S. sp. JL-01 growing in FP liquid medium was studied by Scanning Electron Microscope (SEM), and one of the FPase components of this bacterium was analyzed. The results showed that the cell shapes were variable during the process of filter paper cellulose decomposition and the rod shape might be connected with filter paper decomposing. After incubating for 120 h, the filter paper was decomposed significantly, and it was degraded absolutely within 144 h. An FPase1 was purified from the supernatant and its characteristics were analyzed. The molecular weight of the FPase1 was 55 kDa. The optimum pH was pH 7.2 and optimum temperature was 50°C under experiment conditions. Zn(2+) and Co(2+) enhanced the enzyme activity, but Fe(3+) inhibited it.

  19. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  20. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously

    DOE PAGES

    Xiong, Wei; Reyes, Luis H.; Michener, William E.; ...

    2018-04-10

    Here, cellulose and hemicellulose are the most abundant components in plant biomass. A preferred Consolidated Bioprocessing (CBP) system is one which can directly convert both cellulose and hemicellulose into target products without adding the costly hydrolytic enzyme cocktail. In this work, the thermophilic, cellulolytic, and anaerobic bacterium, Clostridium thermocellum DSM 1313, was engineered to grow on xylose in addition to cellulose. Both xylA (encoding for xylose isomerase) and xylB (encoding for xylulokinase) genes from the thermophilic anaerobic bacterium Thermoanaerobacter ethanolicus were introduced to enable xylose utilization while still retaining its inherent ability to grow on 6-carbon substrates. Targeted integration ofmore » xylAB into C. thermocellum genome realized simultaneous fermentation of xylose with glucose, with cellobiose (glucose dimer), and with cellulose, respectively, without carbon catabolite repression. We also showed that the respective H 2 and ethanol production were twice as much when both xylose and cellulose were consumed simultaneously than when consuming cellulose alone. Moreover, the engineered xylose consumer can also utilize xylo-oligomers (with degree of polymerization of 2-7) in the presence of xylose. Isotopic tracer studies also revealed that the engineered xylose catabolism contributed to the production of ethanol from xylan which is a model hemicellulose in mixed sugar fermentation, demonstrating immense potential of this enhanced CBP strain in co-utilizing both cellulose and hemicellulose for the production of fuels and chemicals.« less

  1. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wei; Reyes, Luis H.; Michener, William E.

    Here, cellulose and hemicellulose are the most abundant components in plant biomass. A preferred Consolidated Bioprocessing (CBP) system is one which can directly convert both cellulose and hemicellulose into target products without adding the costly hydrolytic enzyme cocktail. In this work, the thermophilic, cellulolytic, and anaerobic bacterium, Clostridium thermocellum DSM 1313, was engineered to grow on xylose in addition to cellulose. Both xylA (encoding for xylose isomerase) and xylB (encoding for xylulokinase) genes from the thermophilic anaerobic bacterium Thermoanaerobacter ethanolicus were introduced to enable xylose utilization while still retaining its inherent ability to grow on 6-carbon substrates. Targeted integration ofmore » xylAB into C. thermocellum genome realized simultaneous fermentation of xylose with glucose, with cellobiose (glucose dimer), and with cellulose, respectively, without carbon catabolite repression. We also showed that the respective H 2 and ethanol production were twice as much when both xylose and cellulose were consumed simultaneously than when consuming cellulose alone. Moreover, the engineered xylose consumer can also utilize xylo-oligomers (with degree of polymerization of 2-7) in the presence of xylose. Isotopic tracer studies also revealed that the engineered xylose catabolism contributed to the production of ethanol from xylan which is a model hemicellulose in mixed sugar fermentation, demonstrating immense potential of this enhanced CBP strain in co-utilizing both cellulose and hemicellulose for the production of fuels and chemicals.« less

  2. Whole-Genome Sequence of Chryseobacterium oranimense, a Colistin-Resistant Bacterium Isolated from a Cystic Fibrosis Patient in France

    PubMed Central

    Sharma, Poonam; Gupta, Sushim Kumar; Diene, Seydina M.

    2015-01-01

    For the first time, we report the whole-genome sequence analysis of Chryseobacterium oranimense G311, a multidrug-resistant bacterium, from a cystic fibrosis patient in France, including resistance to colistin. Whole-genome sequencing of C. oranimense G311 was performed using Ion Torrent PGM, and RAST, the EMBL-EBI server, and the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) database were used for annotation of all genes, including antibiotic resistance (AR) genes. General features of the C. oranimense G311 draft genome were compared to the other available genomes of Chryseobacterium gleum and Chryseobacterium sp. strain CF314. C. oranimense G311 was found to be resistant to all β-lactams, including imipenem, and to colistin. The genome size of C. oranimense G311 is 4,457,049 bp in length, with 37.70% GC content. We found 27 AR genes in the genome, including β-lactamase genes which showed little similarity to the known β-lactamase genes and could likely be novel. We found the type I polyketide synthase operon followed by a zeaxanthin glycosyltransferase gene in the genome, which could impart the yellow pigmentation of the isolate. We located the O-antigen biosynthesis cluster, and we also discovered a novel capsular polysaccharide biosynthesis cluster. We also found known mutations in the orthologs of the pmrA (E8D), pmrB (L208F and P360Q), and lpxA (G68D) genes. We speculate that the presence of the capsular cluster and mutations in these genes could explain the resistance of this bacterium to colistin. We demonstrate that whole-genome sequencing was successfully applied to decipher the resistome of a multidrug resistance bacterium associated with cystic fibrosis patients. PMID:25583710

  3. Whole-genome sequence of Chryseobacterium oranimense, a colistin-resistant bacterium isolated from a cystic fibrosis patient in France.

    PubMed

    Sharma, Poonam; Gupta, Sushim Kumar; Diene, Seydina M; Rolain, Jean-Marc

    2015-03-01

    For the first time, we report the whole-genome sequence analysis of Chryseobacterium oranimense G311, a multidrug-resistant bacterium, from a cystic fibrosis patient in France, including resistance to colistin. Whole-genome sequencing of C. oranimense G311 was performed using Ion Torrent PGM, and RAST, the EMBL-EBI server, and the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) database were used for annotation of all genes, including antibiotic resistance (AR) genes. General features of the C. oranimense G311 draft genome were compared to the other available genomes of Chryseobacterium gleum and Chryseobacterium sp. strain CF314. C. oranimense G311 was found to be resistant to all β-lactams, including imipenem, and to colistin. The genome size of C. oranimense G311 is 4,457,049 bp in length, with 37.70% GC content. We found 27 AR genes in the genome, including β-lactamase genes which showed little similarity to the known β-lactamase genes and could likely be novel. We found the type I polyketide synthase operon followed by a zeaxanthin glycosyltransferase gene in the genome, which could impart the yellow pigmentation of the isolate. We located the O-antigen biosynthesis cluster, and we also discovered a novel capsular polysaccharide biosynthesis cluster. We also found known mutations in the orthologs of the pmrA (E8D), pmrB (L208F and P360Q), and lpxA (G68D) genes. We speculate that the presence of the capsular cluster and mutations in these genes could explain the resistance of this bacterium to colistin. We demonstrate that whole-genome sequencing was successfully applied to decipher the resistome of a multidrug resistance bacterium associated with cystic fibrosis patients. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Draft Genome Sequence of Caenibacillus caldisaponilyticus B157T, a Thermophilic and Phospholipase-Producing Bacterium Isolated from Acidulocompost

    PubMed Central

    Tsujimoto, Yoshiyuki; Saito, Ryo; Sahara, Takehiko; Kimura, Nobutada; Tsuruoka, Naoki; Shigeri, Yasushi

    2017-01-01

    ABSTRACT Caenibacillus caldisaponilyticus B157T (= NBRC 111400T = DSM 101100T), in the family Sporolactobacillaceae, was isolated from acidulocompost as a thermophilic and phospholipid-degrading bacterium. Here, we report the 3.36-Mb draft genome sequence, with a G+C content of 51.8%, to provide the genetic information coding for phospholipases. PMID:28360164

  5. Production of polyhydroxybutyrate by the marine photosynthetic bacterium Rhodovulum sulfidophilum P5

    NASA Astrophysics Data System (ADS)

    Cai, Jinling; Wei, Ying; Zhao, Yupeng; Pan, Guanghua; Wang, Guangce

    2012-07-01

    The effects of different NaCl concentrations, nitrogen sources, carbon sources, and carbon to nitrogen molar ratios on biomass accumulation and polyhydroxybutyrate (PHB) production were studied in batch cultures of the marine photosynthetic bacterium Rhodovulum sulfidophilum P5 under aerobic-dark conditions. The results show that the accumulation of PHB in strain P5 is a growth-associated process. Strain P5 had maximum biomass and PHB accumulation at 2%-3% NaCl, suggesting that the bacterium can maintain growth and potentially produce PHB at natural seawater salinity. In the nitrogen source test, the maximum biomass accumulation (8.10±0.09 g/L) and PHB production (1.11±0.13 g/L and 14.62%±2.2 of the cell dry weight) were observed when peptone and ammonium chloride were used as the sole nitrogen source. NH{4/+}-N was better for PHB production than other nitrogen sources. In the carbon source test, the maximum biomass concentration (7.65±0.05 g/L) was obtained with malic acid as the sole carbon source, whereas the maximum yield of PHB (5.03±0.18 g/L and 66.93%±1.69% of the cell dry weight) was obtained with sodium pyruvate as the sole carbon source. In the carbon to nitrogen ratios test, sodium pyruvate and ammonium chloride were selected as the carbon and nitrogen sources, respectively. The best carbon to nitrogen molar ratio for biomass accumulation (8.77±0.58 g/L) and PHB production (6.07±0.25 g/L and 69.25%±2.05% of the cell dry weight) was 25. The results provide valuable data on the production of PHB by R. sulfidophilum P5 and further studies are on-going for best cell growth and PHB yield.

  6. Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5.

    PubMed

    Rahman, M F A; Shukor, M Y; Suhaili, Z; Mustafa, S; Shamaan, N A; Syed, M A

    2009-01-01

    The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.

  7. Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions.

    PubMed

    Gilson, Emily R; Huang, Shan; Jaffé, Peter R

    2015-11-01

    This study investigated the possibility of links between the biological immobilization of uranium (U) and ammonium oxidation under iron (Fe) reducing conditions. The recently-identified Acidimicrobiaceae bacterium A6 (ATCC, PTA-122488) derives energy from ammonium oxidation coupled with Fe reduction. This bacterium has been found in various soil and wetland environments, including U-contaminated wetland sediments. Incubations of Acidimicrobiaceae bacteria A6 with nontronite, an Fe(III)-rich clay, and approximately 10 µM U indicate that these bacteria can use U(VI) in addition to Fe(III) as an electron acceptor in the presence of ammonium. Measurements of Fe(II) production and ammonium oxidation support this interpretation. Concentrations of approximately 100 µM U were found to entirely inhibit Acidimicrobiaceae bacteria A6 activity. These results suggest that natural sites of active ammonium oxidation under Fe reducing conditions by Acidimicrobiaceae bacteria A6 could be hotspots of U immobilization by bioreduction. This is the first report of biological U reduction that is not coupled to carbon oxidation.

  8. Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri.

    PubMed

    Saccà, Maria Ludovica; Fajardo, Carmen; Martinez-Gomariz, Montserrat; Costa, Gonzalo; Nande, Mar; Martin, Margarita

    2014-01-01

    Nanotoxicological studies were performed in vitro using the common soil bacterium Pseudomonas stutzeri to assess the potentially toxic impact of commercial nano-sized zero-valent iron (nZVI) particles, which are currently used for environmental remediation projects. The phenotypic response of P. stutzeri to nZVI toxicity includes an initial insult to the cell wall, as evidenced by TEM micrographs. Transcriptional analyses using genes of particular relevance in cellular activity revealed that no significant changes occurred among the relative expression ratios of narG, nirS, pykA or gyrA following nZVI exposure; however, a significant increase in katB expression was indicative of nZVI-induced oxidative stress in P. stutzeri. A proteomic approach identified two major defence mechanisms that occurred in response to nZVI exposure: a downregulation of membrane proteins and an upregulation of proteins involved in reducing intracellular oxidative stress. These biomarkers served as early indicators of nZVI response in this soil bacterium, and may provide relevant information for environmental hazard assessment.

  9. Molecular Stress Responses to Nano-Sized Zero-Valent Iron (nZVI) Particles in the Soil Bacterium Pseudomonas stutzeri

    PubMed Central

    Saccà, Maria Ludovica; Fajardo, Carmen; Martinez-Gomariz, Montserrat; Costa, Gonzalo; Nande, Mar; Martin, Margarita

    2014-01-01

    Nanotoxicological studies were performed in vitro using the common soil bacterium Pseudomonas stutzeri to assess the potentially toxic impact of commercial nano-sized zero-valent iron (nZVI) particles, which are currently used for environmental remediation projects. The phenotypic response of P. stutzeri to nZVI toxicity includes an initial insult to the cell wall, as evidenced by TEM micrographs. Transcriptional analyses using genes of particular relevance in cellular activity revealed that no significant changes occurred among the relative expression ratios of narG, nirS, pykA or gyrA following nZVI exposure; however, a significant increase in katB expression was indicative of nZVI-induced oxidative stress in P. stutzeri. A proteomic approach identified two major defence mechanisms that occurred in response to nZVI exposure: a downregulation of membrane proteins and an upregulation of proteins involved in reducing intracellular oxidative stress. These biomarkers served as early indicators of nZVI response in this soil bacterium, and may provide relevant information for environmental hazard assessment. PMID:24586957

  10. Unexplained agglutination of stored red blood cells in Alsever's solution caused by the gram-negative bacterium Serratia liquefaciens.

    PubMed

    Martincic, I; Mastronardi, C; Chung, A; Ramirez-Arcos, S

    2008-01-01

    Alsever's solution has been used for decades as a preservative solution for storage of RBCs. From October 2005 to January 2006, unexplained hemagglutination of approximately 10 to 20 percent of RBCs stored for several days in a modified version of Alsever's solution was noticed in quality control testing at the Canadian Blood Services Serology Laboratory. An investigation, including microbial testing, was initiated to determine the cause of the unexplained hemagglutination. The gram-negative bacterium Serratia liquefaciens was isolated from supernatant solutions of agglutinated RBCs. Further characterization of this strain revealed that it has the ability to form biofilms; presents high levels of resistance to chloramphenicol, neomycin, and gentamicin; and causes mannose-sensitive hemagglutination. The source of S. liquefaciens contamination in RBC supernatants was not found. However, this bacterium has not been isolated since January 2006 after enhanced cleaning practices were implemented in the serology laboratory where the RBCs are stored. This biofilm-forming, antibiotic-resistant S. liquefaciens strain could be directly linked to the unexplained hemagglutination observed in stored RBCs.

  11. Complete Genome Sequence of Alkaliphilus metalliredigens QYMF, an Alkaliphilic and Metal-Reducing Bacterium Isolated from Borax-contaminated Leachate Ponds

    DOE PAGES

    Hwang, C.; Copeland, A.; Lucas, Susan; ...

    2016-11-03

    Alkaliphilus metalliredigens QYMF is an anaerobic, alkaliphilic, and metal-reducing bacterium associated with phylum Firmicutes. QYMF was isolated from alkaline borax leachate ponds. The genome sequence will help elucidate the role of metal-reducing microorganisms under alkaline environments, a capability that is not commonly observed in metal respiring-microorganisms.

  12. Complete Genome Sequence of Alkaliphilus metalliredigens QYMF, an Alkaliphilic and Metal-Reducing Bacterium Isolated from Borax-contaminated Leachate Ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, C.; Copeland, A.; Lucas, Susan

    Alkaliphilus metalliredigens QYMF is an anaerobic, alkaliphilic, and metal-reducing bacterium associated with phylum Firmicutes. QYMF was isolated from alkaline borax leachate ponds. The genome sequence will help elucidate the role of metal-reducing microorganisms under alkaline environments, a capability that is not commonly observed in metal respiring-microorganisms.

  13. Transcriptional Changes Underlying Elemental Stoichiometry Shifts in a Marine Heterotrophic Bacterium

    PubMed Central

    Chan, Leong-Keat; Newton, Ryan J.; Sharma, Shalabh; Smith, Christa B.; Rayapati, Pratibha; Limardo, Alexander J.; Meile, Christof; Moran, Mary Ann

    2012-01-01

    Marine bacteria drive the biogeochemical processing of oceanic dissolved organic carbon (DOC), a 750-Tg C reservoir that is a critical component of the global C cycle. Catabolism of DOC is thought to be regulated by the biomass composition of heterotrophic bacteria, as cells maintain a C:N:P ratio of ∼50:10:1 during DOC processing. Yet a complicating factor in stoichiometry-based analyses is that bacteria can change the C:N:P ratio of their biomass in response to resource composition. We investigated the physiological mechanisms of resource-driven shifts in biomass stoichiometry in continuous cultures of the marine heterotrophic bacterium Ruegeria pomeroyi (a member of the Roseobacter clade) under four element limitation regimes (C, N, P, and S). Microarray analysis indicated that the bacterium scavenged for alternate sources of the scarce element when cells were C-, N-, or P-limited; reworked the ratios of biomolecules when C- and P- limited; and exerted tighter control over import/export and cytoplasmic pools when N-limited. Under S limitation, a scenario not existing naturally for surface ocean microbes, stress responses dominated transcriptional changes. Resource-driven changes in C:N ratios of up to 2.5-fold and in C:P ratios of up to sixfold were measured in R. pomeroyi biomass. These changes were best explained if the C and P content of the cells was flexible in the face of shifting resources but N content was not, achieved through the net balance of different transcriptional strategies. The cellular-level metabolic trade-offs that govern biomass stoichiometry in R. pomeroyi may have implications for global carbon cycling if extendable to other heterotrophic bacteria. Strong homeostatic responses to N limitation by marine bacteria would intensify competition with autotrophs. Modification of cellular inventories in C- and P-limited heterotrophs would vary the elemental ratio of particulate organic matter sequestered in the deep ocean. PMID:22783226

  14. Isolation and characterization of an algicidal bacterium indigenous to lake Taihu with a red pigment able to lyse microcystis aeruginosa.

    PubMed

    Yang, Fei; Wei, Hai Yan; Li, Xiao Qin; Li, Yun Hui; Li, Xiao Bo; Yin, Li Hong; Pu, Yue Pu

    2013-02-01

    To isolate and characterize indigenous algicidal bacteria and their algae-lysing compounds active against Microcystis aeruginosa, strains TH1, TH2, and FACHB 905. The bacteria were identified using the Biolog automated microbial identification system and 16S rDNA sequence analysis. The algae-lysing compounds were isolated and purified by silica gel column chromatography and reverse-phase high performance liquid chromatography. Their structures were confirmed by Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FT-IR) spectroscopy. Algae-lysing activity was observed using microscopy. The algae-lysing bacterium LTH-2 isolated from Lake Taihu was identified as Serratia marcescens. Strain LTH-2 secreted a red pigment identified as prodigiosin (C20H25N3O), which showed strong lytic activity with algal strains M. aeruginosa TH1, TH2, and FACHB 905 in a concentration-dependent manner. The 50% inhibitory concentration (IC50) of prodigiosin with the algal strains was 4.8 (± 0.4)× 10⁻² μg/mL, 8.9 (± 1.1)× 10⁻² μg/mL, and 1.7 (± 0.1)× 10⁻¹ μg/mL in 24 h, respectively. The bacterium LTH-2 and its pigment had strong Microcystis-lysing activity probably related to damage of cell membranes. The bacterium LTH-2 and its red pigment are potentially useful for regulating blooms of harmful M. aeruginosa. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  15. Refractory Chronic Pleurisy Caused by Helicobacter equorum-Like Bacterium in a Patient with X-Linked Agammaglobulinemia ▿

    PubMed Central

    Funato, Michinori; Kaneko, Hideo; Ohkusu, Kiyofumi; Sasai, Hideo; Kubota, Kazuo; Ohnishi, Hidenori; Kato, Zenichiro; Fukao, Toshiyuki; Kondo, Naomi

    2011-01-01

    We describe a 35-year-old man with X-linked agammaglobulinemia who had refractory chronic pleurisy caused by a Helicobacter equorum-like bacterium. Broad-range bacterial PCR targeting the 16S and 23S rRNA genes and in situ hybridization targeting the 16S rRNA gene of H. equorum confirmed the presence of this pathogen in a human for the first time. PMID:21677071

  16. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment.

    PubMed

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant'Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fábio Oliveira; Souza, Emanuel Maltempi; Brandelli, Adriano; Passaglia, Luciane M P

    2015-04-02

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments. Copyright © 2015 Pereira et al.

  17. Virus-Bacterium Interactions in Water and Sediment of West African Inland Aquatic Systems

    PubMed Central

    Bettarel, Yvan; Bouvy, Marc; Dumont, Claire; Sime-Ngando, Télesphore

    2006-01-01

    The ecology of virioplankton in tropical aquatic ecosystems is poorly documented, and in particular, there are no references concerning African continental waters in the literature. In this study, we examined virus-bacterium interactions in the pelagic and benthic zones of seven contrasting shallow inland waters in Senegal, including one hypersaline lake. SYBR Gold-stained samples revealed that in the surface layers of the sites, the numbers of viruses were in the same range as the numbers of viruses reported previously for productive temperate systems. Despite high bacterial production rates, the percentages of visibly infected cells (as determined by transmission electron microscopy) were similar to the lowest percentages (range, 0.3 to 1.1%; mean, 0.5%) found previously at pelagic freshwater or marine sites, presumably because of the local environmental and climatic conditions. Since the percentages of lysogenic bacteria were consistently less than 8% for pelagic and benthic samples, lysogeny did not appear to be a dominant strategy for virus propagation at these sites. In the benthic samples, viruses were highly concentrated, but paradoxically, no bacteria were visibly infected. This suggests that sediment provides good conditions for virus preservation but ironically is an unfavorable environment for proliferation. In addition, given the comparable size distributions of viruses in the water and sediment samples, our results support the paradigm that aquatic viruses are ubiquitous and may have moved between the two compartments of the shallow systems examined. Overall, this study provides additional information about the relevance of viruses in tropical areas and indicates that the intensity of virus-bacterium interactions in benthic habitats may lower than the intensity in the adjacent bodies of water. PMID:16885276

  18. Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium.

    PubMed

    Baena, S; Fardeau, M L; Ollivier, B; Labat, M; Thomas, P; Garcia, J L; Patel, B K

    1999-07-01

    A novel, asaccharolytic, amino-acid-degrading bacterium, designated strain GLU-3T, was isolated from an anaerobic lagoon of a dairy wastewater treatment plant. Strain GLU-3T stained Gram-negative and was an obligately anaerobic, non-spore-forming, slightly curved, rod-shaped bacterium (0.3 x 4.0-6.0 microns) which existed singly or in pairs. The DNA G+C content was 43 mol%. Optimum growth occurred at 35 degrees C and pH 7.5 on arginine with a generation time of 16 h. Good growth was obtained on arginine, histidine, threonine and glycine. Acetate was the end-product formed from all these substrates, but in addition, a trace of formate was detected from arginine and histidine, and ornithine was produced from arginine. Strain GLU-3T grew slowly on glutamate and produced acetate, carbon dioxide, formate, hydrogen and traces of propionate as the end-products. In syntrophic association with Methanobacterium formicicum, strain GLU-3T oxidized arginine, histidine and glutamate to give propionate as the major product; acetate, carbon dioxide and methane were also produced. Strain GLU-3T did not degrade alanine and the branched-chain amino acids valine, leucine and isoleucine either in pure culture or in association with M. formicicum. The nearest phylogenetic relative of strain GLU-3T was the thermophile Selenomonas acidaminovorans (similarity value of 89.5%). As strain GLU-3T is phylogenetically, physiologically and genotypically different from other amino-acid-degrading genera, it is proposed that it should be designated a new species of a new genus Aminomonas paucivorans gen. nov., sp. nov. (DSM 12260T).

  19. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice.

    PubMed

    Vance, Tyler D R; Olijve, Luuk L C; Campbell, Robert L; Voets, Ilja K; Davies, Peter L; Guo, Shuaiqi

    2014-07-04

    The large size of a 1.5-MDa ice-binding adhesin [MpAFP (Marinomonas primoryensis antifreeze protein)] from an Antarctic Gram-negative bacterium, M. primoryensis, is mainly due to its highly repetitive RII (Region II). MpAFP_RII contains roughly 120 tandem copies of an identical 104-residue repeat. We have previously determined that a single RII repeat folds as a Ca2+-dependent immunoglobulin-like domain. Here, we solved the crystal structure of RII tetra-tandemer (four tandem RII repeats) to a resolution of 1.8 Å. The RII tetra-tandemer reveals an extended (~190-Å × ~25-Å), rod-like structure with four RII-repeats aligned in series with each other. The inter-repeat regions of the RII tetra-tandemer are strengthened by Ca2+ bound to acidic residues. SAXS (small-angle X-ray scattering) profiles indicate the RII tetra-tandemer is significantly rigidified upon Ca2+ binding, and that the protein's solution structure is in excellent agreement with its crystal structure. We hypothesize that >600 Ca2+ help rigidify the chain of ~120 104-residue repeats to form a ~0.6 μm rod-like structure in order to project the ice-binding domain of MpAFP away from the bacterial cell surface. The proposed extender role of RII can help the strictly aerobic, motile bacterium bind ice in the upper reaches of the Antarctic lake where oxygen and nutrients are most abundant. Ca2+-induced rigidity of tandem Ig-like repeats in large adhesins might be a general mechanism used by bacteria to bind to their substrates and help colonize specific niches.

  20. Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-beta1 under the control of dietary xylan

    USDA-ARS?s Scientific Manuscript database

    Background: Growth factors have shown promise in treating inflammatory bowel disease. They are unstable when administered orally and required in higher doses with systemic administration. In consideration of these problems, we have engineered the commensal bacterium Bacteroides ovatus for the con...

  1. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring

    PubMed Central

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-01-01

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ. PMID:27297893

  2. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring.

    PubMed

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-06-25

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ.

  3. Sulfate-Reducing Bacterium with Unusual Morphology and Pigment Content

    PubMed Central

    Jones, H. E.

    1971-01-01

    A dissimilatory sulfate-reducing bacterium was isolated which differed in morphology and pigment content from previously described species. The organism was mesophilic, obligately anaerobic, gram-negative, nonsporulating, long, and slender with one polar flagellum. Whole cells fluoresced red at neutral pH when excited with light at 365 nm owing to the presence of a pink pigment. Desulfoviridin was present. Reduced minus oxidized spectra of whole cells showed peaks in the position of a c-type cytochrome characteristic of Desulfovibrio species and peaks at about 629 and 603 nm. CO difference spectra showed the presence of a CO-binding pigment with a peak at 593 nm. Lactate and pyruvate supported growth in the presence of sulfate but not in its absence. Sulfate, sulfite, and thiosulfate served as electron acceptors for growth. Hydrogenase was present. The deoxyribonucleic acid had a buoyant density of 1.722 g/cm3 and a guanosine plus cystosine molar percentage of total bases calculated by two different methods of 61.2 or 63.2. Images PMID:4929856

  4. Novel Trypanosomatid-Bacterium Association: Evolution of Endosymbiosis in Action

    PubMed Central

    Kostygov, Alexei Y.; Dobáková, Eva; Grybchuk-Ieremenko, Anastasiia; Váhala, Dalibor; Maslov, Dmitri A.; Votýpka, Jan

    2016-01-01

    ABSTRACT We describe a novel symbiotic association between a kinetoplastid protist, Novymonas esmeraldas gen. nov., sp. nov., and an intracytoplasmic bacterium, “Candidatus Pandoraea novymonadis” sp. nov., discovered as a result of a broad-scale survey of insect trypanosomatid biodiversity in Ecuador. We characterize this association by describing the morphology of both organisms, as well as their interactions, and by establishing their phylogenetic affinities. Importantly, neither partner is closely related to other known organisms previously implicated in eukaryote-bacterial symbiosis. This symbiotic association seems to be relatively recent, as the host does not exert a stringent control over the number of bacteria harbored in its cytoplasm. We argue that this unique relationship may represent a suitable model for studying the initial stages of establishment of endosymbiosis between a single-cellular eukaryote and a prokaryote. Based on phylogenetic analyses, Novymonas could be considered a proxy for the insect-only ancestor of the dixenous genus Leishmania and shed light on the origin of the two-host life cycle within the subfamily Leishmaniinae. PMID:26980834

  5. Sequence-based analysis of the microbial composition of water kefir from multiple sources.

    PubMed

    Marsh, Alan J; O'Sullivan, Orla; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2013-11-01

    Water kefir is a water-sucrose-based beverage, fermented by a symbiosis of bacteria and yeast to produce a final product that is lightly carbonated, acidic and that has a low alcohol percentage. The microorganisms present in water kefir are introduced via water kefir grains, which consist of a polysaccharide matrix in which the microorganisms are embedded. We aimed to provide a comprehensive sequencing-based analysis of the bacterial population of water kefir beverages and grains, while providing an initial insight into the corresponding fungal population. To facilitate this objective, four water kefirs were sourced from the UK, Canada and the United States. Culture-independent, high-throughput, sequencing-based analyses revealed that the bacterial fraction of each water kefir and grain was dominated by Zymomonas, an ethanol-producing bacterium, which has not previously been detected at such a scale. The other genera detected were representatives of the lactic acid bacteria and acetic acid bacteria. Our analysis of the fungal component established that it was comprised of the genera Dekkera, Hanseniaspora, Saccharomyces, Zygosaccharomyces, Torulaspora and Lachancea. This information will assist in the ultimate identification of the microorganisms responsible for the potentially health-promoting attributes of these beverages. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization (Towards Lignin valorization: How a soil bacterium extracts building blocks and metabolic energy from "Lignolysis")

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varman, Arul M.; He, Lian; Follenfant, Rhiannon

    Lignin is a major resources for the production of next generation renewable aromatics. Sphingobium sp. SYK-6 is a bacterium that has been well-studied for the breakdown of lignin-derived compounds. There has been a lot of interest in SYK-6 lignolytic activity and many recent works have focused on understanding the unique catabolic pathway it possesses for the degradation of lignin derived monomers and oligomers. Furthermore, there has been no prior effort in understanding the central fluxome based on lignin derived substrates into value-added chemicals.

  7. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization (Towards Lignin valorization: How a soil bacterium extracts building blocks and metabolic energy from "Lignolysis")

    DOE PAGES

    Varman, Arul M.; He, Lian; Follenfant, Rhiannon; ...

    2016-09-15

    Lignin is a major resources for the production of next generation renewable aromatics. Sphingobium sp. SYK-6 is a bacterium that has been well-studied for the breakdown of lignin-derived compounds. There has been a lot of interest in SYK-6 lignolytic activity and many recent works have focused on understanding the unique catabolic pathway it possesses for the degradation of lignin derived monomers and oligomers. Furthermore, there has been no prior effort in understanding the central fluxome based on lignin derived substrates into value-added chemicals.

  8. Recombinant expression of a putative prophage amidase cloned from the genome of Listeria monocytogenes that lyses the bacterium and its biofilm

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes is a Gram-positive, non-sporeforming, catalase-positive rod that is a major bacterial food-borne disease agent, causing listeriosis. Listeria can be associated with uncooked meats including poultry, uncooked vegetables, soft cheeses and unpasteurized milk. The bacterium can be...

  9. Expression of a Clostridium perfringens genome-encoded putative N-acetylmuramoyl-L-alanine amidase as a potential antimicrobial to control the bacterium

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a substantial role in non-foodborne human, animal and avian diseases as well as human foodborne disease. Previously discovered C. perfringens bacteriophage lytic enzyme amino acid sequences were utilized to iden...

  10. Isolation and identification of berberine and berberrubine metabolites by berberine-utilizing bacterium Rhodococcus sp. strain BD7100.

    PubMed

    Ishikawa, Kazuki; Takeda, Hisashi; Wakana, Daigo; Sato, Fumihiko; Hosoe, Tomoo

    2016-05-01

    Based on the finding of a novel berberine (BBR)-utilizing bacterium, Rhodococcus sp. strain BD7100, we investigated the degradation of BBR and its analog berberrubine (BRU). Resting cells of BD7100 demethylenated BBR and BRU, yielding benzeneacetic acid analogs. Isolation of benzeneacetic acid analogs suggested that BD7100 degraded the isoquinoline ring of the protoberberine skeleton. This work represents the first report of cleavage of protoberberine skeleton by a microorganism.

  11. Corky root of lettuce caused by strains of a gram-negative bacterium from muck soils of Florida, new york, and wisconsin.

    PubMed

    van Bruggen, A H; Brown, P R; Jochimsen, K N

    1989-10-01

    Slow-growing bacteria similar to the bacterium causing lettuce corky root (CR) in California (strain CA1) were isolated from muck soils of Florida, New York, and Wisconsin, using lettuce seedlings as bait. All strains were tested for reaction with polyclonal antibodies produced against strain CA1 and for pathogenicity on CR-susceptible (Salinas) and CR-resistant (Green Lake) lettuce cultivars in a greenhouse. Five strains from Florida, three from New York, and three from Wisconsin induced severe CR symptoms on Salinas and mild symptoms on Green Lake. All strains were gram-negative, aerobic, oxidase positive, and catalase positive and reduced nitrate to ammonia. Whole-cell fatty acid compositions were similar for all strains and resembled that of Pseudomonas paucimobilis. Since this fatty acid pattern is unique, it is suggested that CR of lettuce is caused by strains of the same bacterium in Florida, New York, Wisconsin, and California.

  12. First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site.

    PubMed

    Sharafi, Hakimeh; Abdoli, Mahya; Hajfarajollah, Hamidreza; Samie, Nima; Alidoust, Leila; Abbasi, Habib; Fooladi, Jamshid; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2014-07-01

    A biosurfactant-producing thermophile was isolated from the Kahrizak landfill of Tehran and identified as a bacterium belonging to the genus Aneurinibacillus. A thermostable lipopeptide-type biosurfactant was purified from the culture medium of this bacterium and showed stability in the temperature range of 20-90 °C and pH range of 5-10. The produced biosurfactant could reduce the surface tension of water from 72 to 43 mN/m with a CMC of 1.21 mg/mL. The strain growing at a temperature of 45 °C produces a substantial amount of 5 g/L of biosurfactant in the medium supplemented with sunflower oil as the sole carbon source. Response surface methodology was employed to optimize the biosurfactant production using sunflower oil, sodium nitrate, and yeast extract as variables. The optimization resulted in 6.75 g/L biosurfactant production, i.e., 35% improved as compared to the unoptimized condition. Thin-layer chromatography, FTIR spectroscopy, 1H-NMR spectroscopy, and biochemical composition analysis confirmed the lipopeptide structure of the biosurfactant.

  13. Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Zendo, Takeshi; Sakai, Kenji; Sonomoto, Kenji

    2015-01-01

    Production of optically pure lactic acid from lignocellulosic material for commercial purposes is hampered by several difficulties, including heterofermentation of pentose sugars and high energy consumption by mesophilic lactic acid bacteria. Here, we report a novel lactic acid bacterium, strain QU 50, that has the potential to produce optically pure l-lactic acid (≥99.2%) in a homofermentative manner from xylose under thermophilic conditions. Strain QU 50 was isolated from Egyptian fertile soil and identified as Enterococcus faecium QU 50 by analyzing its sugar fermentation pattern and 16S rRNA gene sequence. Enterococcus faecium QU 50 fermented xylose efficiently to produce lactic acid over wide pH (6.0-10.0) and temperature ranges (30-52°C), with a pH of 6.5 and temperature of 50°C being optimal. To our knowledge, this is the first report of homofermentative lactic acid production from xylose by a thermophilic lactic acid bacterium. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Genome sequence analysis of a flocculant-producing bacterium, Paenibacillus shenyangensis.

    PubMed

    Fu, Lili; Jiang, Binhui; Liu, Jinliang; Zhao, Xin; Liu, Qian; Hu, Xiaomin

    2016-03-01

    To explore the metabolic process of Paenibacillus shenyangensis that is an efficient bioflocculant-producing bacterium. The biosynthesis mechanism of bioflocculation was used to enrich the genome of Paenibacillus shenyangensis and provide a basis for molecular genetics and functional genomics analyses. According to the analysis of de novo assembly, a total of 5,501,467 bp clean reads were generated, and were assembled into 92 contigs. 4800 unigenes were predicted of which 4393 were annotated showing a specific gene function in the NCBI-Nr database. 3423 genes were found in the database of cluster of orthologous groups. Among the 168 Kyoto Encyclopedia of Genes and Genomes database, cell growth and metabolism were the main biological processes, and a potential metabolic pathway was predicted from glucose to exopolysaccharide within the starch and sucrose metabolism pathway. By using the high-throughput sequencing technology, we provide a genome analysis of Paenibacillus shenyangensis that predicts the main metabolic processes and a potential pathway of exopolysaccharide biosynthesis.

  15. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium.

    PubMed

    Ma, Yufan; Wang, Zhao; Zhao, Wen; Lu, Tingli; Wang, Rutao; Mei, Qibing; Chen, Tao

    2013-01-01

    Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG), 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS), 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA), nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the amount of negative charges in fluid liposomes reduces fluid liposomes-bacteria fusion when tested without calcium cations due to electric repulsion, but addition of calcium cations brings the fusion level of fluid liposomes to similar or higher levels. Among the negative phospholipids examined, DMPA gave the highest degree of fusion, DMPS and DMPG had intermediate fusion levels, and PI resulted in the lowest degree of fusion. Furthermore, the fluid

  16. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium

    PubMed Central

    Ma, Yufan; Wang, Zhao; Zhao, Wen; Lu, Tingli; Wang, Rutao; Mei, Qibing; Chen, Tao

    2013-01-01

    Background Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. Methods The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG), 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS), 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA), nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. Results It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the amount of negative charges in fluid liposomes reduces fluid liposomes-bacteria fusion when tested without calcium cations due to electric repulsion, but addition of calcium cations brings the fusion level of fluid liposomes to similar or higher levels. Among the negative phospholipids examined, DMPA gave the highest degree of fusion, DMPS and DMPG had intermediate fusion levels, and PI resulted in the lowest degree of fusion

  17. Partial genome sequence of the haloalkaliphilic soda lake bacterium Thioalkalivibrio thiocyanoxidans ARh 2 T

    DOE PAGES

    Berben, Tom; Sorokin, Dimitry Y.; Ivanova, Natalia; ...

    2015-10-26

    Thioalkalivibrio thiocyanoxidans strain ARh 2 T is a sulfur-oxidizing bacterium isolated from haloalkaline soda lakes. It is a motile, Gram-negative member of the Gammaproteobacteria. Remarkable properties include the ability to grow on thiocyanate as the sole energy, sulfur and nitrogen source, and the capability of growth at salinities of up to 4.3 M total Na +. This draft genome sequence consists of 61 scaffolds comprising 2,765,337 bp, and contains 2616 protein-coding and 61 RNA-coding genes. In conclusion, this organism was sequenced as part of the Community Science Program of the DOE Joint Genome Institute.

  18. Axenic Culture of a Candidate Division TM7 Bacterium from the Human Oral Cavity and Biofilm Interactions with Other Oral Bacteria

    PubMed Central

    Soro, Valeria; Dutton, Lindsay C.; Sprague, Susan V.; Nobbs, Angela H.; Ireland, Anthony J.; Sandy, Jonathan R.; Jepson, Mark A.; Micaroni, Massimo; Splatt, Peter R.; Dymock, David

    2014-01-01

    The diversity of bacterial species in the human oral cavity is well recognized, but a high proportion of them are presently uncultivable. Candidate division TM7 bacteria are almost always detected in metagenomic studies but have not yet been cultivated. In this paper, we identified candidate division TM7 bacterial phylotypes in mature plaque samples from around orthodontic bonds in subjects undergoing orthodontic treatment. Successive rounds of enrichment in laboratory media led to the isolation of a pure culture of one of these candidate division TM7 phylotypes. The bacteria formed filaments of 20 to 200 μm in length within agar plate colonies and in monospecies biofilms on salivary pellicle and exhibited some unusual morphological characteristics by transmission electron microscopy, including a trilaminated cell surface layer and dense cytoplasmic deposits. Proteomic analyses of cell wall protein extracts identified abundant polypeptides predicted from the TM7 partial genomic sequence. Pleiomorphic phenotypes were observed when the candidate division TM7 bacterium was grown in dual-species biofilms with representatives of six different oral bacterial genera. The TM7 bacterium formed long filaments in dual-species biofilm communities with Actinomyces oris or Fusobacterium nucleatum. However, the TM7 isolate grew as short rods or cocci in dual-species biofilms with Porphyromonas gingivalis, Prevotella intermedia, Parvimonas micra, or Streptococcus gordonii, forming notably robust biofilms with the latter two species. The ability to cultivate TM7 axenically should majorly advance understanding of the physiology, genetics, and virulence properties of this novel candidate division oral bacterium. PMID:25107981

  19. Axenic culture of a candidate division TM7 bacterium from the human oral cavity and biofilm interactions with other oral bacteria.

    PubMed

    Soro, Valeria; Dutton, Lindsay C; Sprague, Susan V; Nobbs, Angela H; Ireland, Anthony J; Sandy, Jonathan R; Jepson, Mark A; Micaroni, Massimo; Splatt, Peter R; Dymock, David; Jenkinson, Howard F

    2014-10-01

    The diversity of bacterial species in the human oral cavity is well recognized, but a high proportion of them are presently uncultivable. Candidate division TM7 bacteria are almost always detected in metagenomic studies but have not yet been cultivated. In this paper, we identified candidate division TM7 bacterial phylotypes in mature plaque samples from around orthodontic bonds in subjects undergoing orthodontic treatment. Successive rounds of enrichment in laboratory media led to the isolation of a pure culture of one of these candidate division TM7 phylotypes. The bacteria formed filaments of 20 to 200 μm in length within agar plate colonies and in monospecies biofilms on salivary pellicle and exhibited some unusual morphological characteristics by transmission electron microscopy, including a trilaminated cell surface layer and dense cytoplasmic deposits. Proteomic analyses of cell wall protein extracts identified abundant polypeptides predicted from the TM7 partial genomic sequence. Pleiomorphic phenotypes were observed when the candidate division TM7 bacterium was grown in dual-species biofilms with representatives of six different oral bacterial genera. The TM7 bacterium formed long filaments in dual-species biofilm communities with Actinomyces oris or Fusobacterium nucleatum. However, the TM7 isolate grew as short rods or cocci in dual-species biofilms with Porphyromonas gingivalis, Prevotella intermedia, Parvimonas micra, or Streptococcus gordonii, forming notably robust biofilms with the latter two species. The ability to cultivate TM7 axenically should majorly advance understanding of the physiology, genetics, and virulence properties of this novel candidate division oral bacterium. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Characterization of a new oligoalginate lyase from marine bacterium Vibrio sp.

    PubMed

    Yu, Zuochen; Zhu, Benwei; Wang, Wenxia; Tan, Haidong; Yin, Heng

    2018-06-01

    A new oligoalginate lyase encoding gene, designed oal17A, was cloned from marine bacterium Vibrio sp. W13, and then expressed in Escherichia coli. The recombinant Oal17A was purified by NTA-Ni resin with maximal activity at 30°C and pH7.0. Oal17A exhibited broad substrate specificity, and preferred to degrade alginate than polyM or polyG into monosaccharide acid. The specific activity of Oal17A toward alginate, polyM and polyG was 21.14U/mg, 12.31U/mg and 7.43U/mg, respectively. With features of high-level expression and broad substrate specificity, Oal17A would be a potential tool for alginate monomer production process of alginate utilizing for biofuels and bioethanol production. Copyright © 2018 Elsevier B.V. All rights reserved.